WO2007119315A1 - Magnetic suspension device - Google Patents

Magnetic suspension device Download PDF

Info

Publication number
WO2007119315A1
WO2007119315A1 PCT/JP2007/054456 JP2007054456W WO2007119315A1 WO 2007119315 A1 WO2007119315 A1 WO 2007119315A1 JP 2007054456 W JP2007054456 W JP 2007054456W WO 2007119315 A1 WO2007119315 A1 WO 2007119315A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
value
mode
excitation voltage
excitation
Prior art date
Application number
PCT/JP2007/054456
Other languages
French (fr)
Japanese (ja)
Inventor
Mimpei Morishita
Original Assignee
Toshiba Elevator Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Kabushiki Kaisha filed Critical Toshiba Elevator Kabushiki Kaisha
Priority to CN200780006660.9A priority Critical patent/CN101390283B/en
Publication of WO2007119315A1 publication Critical patent/WO2007119315A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/04Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes
    • B66B7/041Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes including active attenuation system for shocks, vibrations
    • B66B7/044Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes including active attenuation system for shocks, vibrations with magnetic or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Definitions

  • the present invention relates to a magnetic levitation apparatus that supports a levitated body in a non-contact manner by normal conducting magnetic levitation.
  • the normal conducting magnetic levitation device is a transport system in clean rooms in railways and semiconductor factories such as HSST (High Speed Surface Transport) and Trans-Rabbit where noise and dust are eliminated. Has been put to practical use. Attempts have also been made to apply this magnetic levitation device to elevator car guidance devices (see Patent Document 1) and to doors.
  • an electromagnet is made to face a ferromagnetic member, and the levitating body is levitated by using an attractive force generated between the electromagnet and the ferromagnetic member.
  • the magnetic levitation system is basically unstable, and it is necessary to take measures to stabilize it.
  • the gap height is detected by a gap sensor and feedback control is performed to the drive system to achieve stability.
  • a sensor target suitable for the gap sensor to be used is required, and the sensor target must be laid along with the ferromagnetic member.
  • the gap length is estimated by an exciting current force observer (state observer) of an electromagnet (See Non-Patent Document 1).
  • an exciting current force observer state observer
  • the excitation current value of the electromagnet is compared with the reference value with a hysteresis comparator, and when the excitation current is larger than the reference value, the excitation voltage is switched to negative, and when it is smaller, the excitation voltage is switched to positive to switch the switching frequency.
  • a method see Non-Patent Document 3 in which is proportional to the floating gap length.
  • the levitation control system is a non-linear system. For this reason, it is difficult to determine stability, and there is a problem that the floating state cannot be maintained if the electric resistance of the electromagnetic coil changes due to mass change or temperature rise due to excitation.
  • the resistance value of the coil used in the observer is calculated from the DC component of the excitation voltage and the excitation current. There is a problem that the resistance value cannot be measured.
  • Patent Document 1 Japanese Patent Application No. 11 192224
  • Patent Document 2 Japanese Patent Application No. 2002-002646
  • Patent Document 3 Japanese Patent Laid-Open No. 61-102105
  • Patent Document 4 # 112003 344670 Publication
  • Non-Patent Document 1 Mizuno, et al .: “Research on practical application of displacement sensorless magnetic bearing”, Proc.
  • Non-Patent Document 2 Moriyama: “AC Magnetic Levitation Using a Differential Feedback Power Amplifier” 1997 IEEJ National Convention Proceedings, No. 1215
  • Non-Patent Document 3 Mizuno, et al .: “Self-sensing magnetic levitation using hysteresis amplifier” , Transactions of the Society of Instrument and Control Engineers, 32, No. 7, 1043 (1996)
  • the conventional magnetic levitation apparatus requires the gap sensor and the sensor target in order to realize a stable levitation state of the levitation body. For this reason, there is a problem that the apparatus becomes large and complicated, resulting in an increase in cost.
  • an object of the present invention is to provide a magnetic levitation apparatus that can always perform stable levitation control in consideration of the influence of an offset voltage.
  • a magnetic levitation device includes a guide made of a ferromagnetic member, and an electromagnet and a permanent magnet that face the guide through a gap and share a magnetic path in the gap.
  • Magnet unit a floating body that is supported in a non-contact manner by the attraction force of the magnet unit acting on the guide, a sensor unit that detects a current value flowing through the coil of the electromagnet, and a target value of the coil current of the electromagnet
  • a target value setting unit that alternately sets zero to a non-zero value, a coil current converging unit that converges the coil current of the electromagnet to the target value set by the target value setting unit, and a coil current converging unit
  • An excitation voltage calculation unit for calculating an excitation voltage value for stabilizing a magnetic circuit formed by the magnet unit based on a coil current value obtained by the sensor unit force along with the convergence operation;
  • a voltage storage unit that stores the excitation voltage value obtained by the excitation voltage calculation unit when the target value
  • FIG. 1 is a diagram showing a basic configuration of a magnetic levitation apparatus for explaining the principle of the present invention.
  • FIG. 2 is a diagram showing the configuration of the magnetic levitation apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a block diagram showing a detailed configuration of an attractive force control unit of the magnetic levitation apparatus in the same embodiment.
  • FIG. 4 is a diagram showing a configuration of a magnetic levitation apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a perspective view showing a configuration of a frame portion of the magnetic levitation apparatus in the same embodiment.
  • FIG. 6 is a perspective view showing a configuration around a magnet unit of the magnetic levitation apparatus in the embodiment.
  • FIG. 7 is an elevation view showing the configuration of the magnet unit of the magnetic levitation apparatus in the same embodiment.
  • FIG. 8 is a block diagram showing a detailed configuration of the control device for the magnetic levitation apparatus in the embodiment.
  • FIG. 9 is a block diagram showing a configuration of a mode control voltage calculation circuit in the controller of the magnetic levitation apparatus in the same embodiment.
  • FIG. 10 is a block diagram showing a configuration of another mode control voltage calculation circuit in the control device of the magnetic levitation device in the same embodiment.
  • FIG. 11 is a diagram showing a configuration of a magnetic levitation apparatus according to a third embodiment of the present invention.
  • FIG. 12 is a diagram showing a configuration of a magnetic levitation apparatus according to a fourth embodiment of the present invention.
  • FIG. 1 is a diagram showing a basic configuration of a magnetic levitation apparatus for explaining the principle of the present invention.
  • the magnetic levitation apparatus 1 includes a magnet unit 107 composed of a permanent magnet 103 and an electromagnet 105, a levitated body 111 composed of the magnet unit 107 and a load load 109, and a structural member (not shown). And a guide 113 fixed to the top.
  • the magnetic levitation device 1 controls the attractive force of the magnet mute 107 to stably support the levitated body 111 in a non-contact manner, and the attractive force control unit 115 And a driver 116 for exciting the electromagnet 105 based on the output.
  • Reference numeral 131 denotes an auxiliary support portion.
  • the auxiliary support part 131 has a U-shaped cross section, and the magnet unit 107 is fixed to the upper surface inside the lower part.
  • the auxiliary support part 131 also serves as a table of a vibration isolation table in which the ground side force is guided by a guide part that does not act in the vertical direction, such as a linear guide (not shown).
  • the guide 113 is made of a ferromagnetic member.
  • the electromagnet 105 is configured by mounting coils 119, 119 'on iron cores 117a, 117b. Iron cores 117a and 117b are disposed at both magnetic pole ends of the permanent magnet 103, respectively.
  • the coils 1 19 and 119 ′ are connected in series so that the magnetic flux formed in the magnetic path formed by the guide 113 to the iron core 117 a to the permanent magnet 103 to the iron core 117 b to the guide 113 is strengthened (weakened) by excitation of the electromagnet 105.
  • the attractive force control unit 115 includes an excitation voltage calculation unit 125.
  • the excitation voltage calculation unit 125 calculates a voltage for exciting the electromagnet 105 based on the flying gap length obtained by the gap sensor 121 and the coil current value obtained by the current sensor 123.
  • the driver 116 supplies excitation current to the coils 119 and 119 ′ via the lead wire 128 based on the excitation voltage calculated by the excitation voltage calculation unit 125.
  • the magnetic levitation system of the magnetic levitation apparatus 1 can be linearly approximated near the levitation gap length z when the attractive force of the magnet unit 107 is equal to the weight of the levitation body 111.
  • F is the attractive force of the magnet unit 107.
  • m is the mass of the levitated body 111.
  • R is coil 1 z
  • the electrical resistance (hereinafter referred to as coil resistance) when 19, 119 'and the lead wire 128 are connected in series.
  • z is the flying gap length.
  • i is the exciting current of the electromagnet 105.
  • is magnet
  • e is the excitation voltage of the electromagnet 105.
  • Equation 1 the levitation system model of Equation 1 is the following equation of state.
  • s is an external force
  • Equation 4 each parameter in Equation 4 is as follows.
  • Equation 3 Each element x in Equation 3 is a floating system state quantity.
  • C is an output matrix, and is determined by the state quantity detection method used for calculating the excitation voltage e.
  • the gap sensor 121 and the current sensor 123 are used, and when the speed is obtained by differentiating the signal of the gap sensor 121, C becomes a unit matrix.
  • the normal magnetic attraction type magnetic levitation system is unstable, so if there is an error in the estimated value of the state observer, it will be very difficult to stabilize, but as shown in Equation 8, the observer will operate in advance.
  • ⁇ , ie, the flying gap length deviation ⁇ , its speed d (Az) I dt and the excitation current Ai are known by setting the observer's initial value 0 as equal to x 0 as possible From the beginning, the flying gear gap length deviation ⁇ and its velocity d (Az) I dt can be estimated from the excitation current Ai z with little error.
  • FIG. 2 is a diagram showing the configuration of the magnetic levitation apparatus according to the first embodiment of the present invention. The overall configuration is indicated by 1.
  • the gap sensor 121 is omitted. Instead, the floating body 111 and the contact detection unit 130 are provided in the vicinity of the floating body 111.
  • the contact detection unit 130 detects that the levitation body 111 is in a non-contact state force, for example, using the piezoelectric rubber 129.
  • the suction force control unit 115 includes a posture estimation unit 133, a posture calculation unit 135, an estimation initialization unit 137, and an initial initial value setting unit 139.
  • Attitude estimation unit 133 determines excitation gap Ai force and levitation gap length deviation ⁇ and its velocity d (z
  • a z) Estimates Zdt and is composed of, for example, an observer.
  • the posture calculation unit 135 calculates X to be the initial value of the observer when shifting from the posture maintained by the auxiliary support unit 131 to the floating state.
  • the estimation initialization unit 137 detects the observer by touching.
  • the initial value setting unit 139 sets X calculated by the posture calculation unit 135 as an initial value in the initialized observer.
  • the speed d ( ⁇ z) Zdt is input to the excitation voltage calculation unit 125, and the electromagnet 105 is excited via the driver 116 by the output of the excitation voltage calculation unit 125.
  • the levitated body 111 can be reliably transferred to the levitation state and maintained in the levitation state.
  • the magnetic levitation device 1 ′ is provided with a resistance measurement unit 140 for measuring the resistance R of the coils 119, 119 ′.
  • the resistance measurement unit 140 measures the coil resistance R from the voltage equation of the excitation voltage e according to the following equation.
  • Expression 10 is changed as follows.
  • is ⁇ less 1, and is set to an appropriate value based on the noise magnitude of the value obtained by Equation 11 and the required measurement accuracy. Then, if an appropriate noise removal process such as a low pass filter average value calculation is performed on the output of Equation 11, the value of the coil resistance R can be measured.
  • Equation 4 increased due to temperature rise.
  • This estimation error correction unit 142 applies a predetermined gain to the estimated speed value of the posture estimation unit 133.
  • Multiplier gain compensator 144 integrator 146 that integrates the output of gain compensator 144, and adder 148 that adds the output of integrator 146 and the excitation voltage value of excitation voltage calculator 125
  • the estimation error correction unit 142 outputs the output of the adder 148 as an excitation voltage value introduced into the posture estimation unit 133.
  • the excitation voltage calculation unit 125 when measuring the coil resistance value, includes the target value setting unit 150 and the excitation voltage calculation unit 125 so that the offset voltage does not affect the measurement value.
  • a coil current converging unit 152 is provided.
  • the target value setting unit 150 sets the target value of the coil current to zero or non-zero at predetermined time intervals. Set the value alternately.
  • the coil current converging unit 152 converges the coil current value that is the sensor output to the target value set by the target value setting unit 150.
  • the resistance value measurement unit 140 includes a voltage storage unit 154, a voltage input compensation unit 156, and a resistance calculation unit 158.
  • the voltage storage unit 154 stores the excitation voltage value when the target value setting unit 150 sets the target value to zero.
  • the voltage input compensation unit 156 subtracts the offset voltage value output from the voltage storage unit 154 from the excitation voltage value of the electromagnet 105 obtained based on the coil current value that is the sensor output as the excitation voltage compensation value. Output.
  • the resistance calculation unit 158 measures the coil resistance R according to the equation 11 using the excitation voltage compensation value and the coil current value.
  • the voltage storage unit 154 detects the DC component of the excitation voltage value during that time, and the target value setting unit 150 is not zero.
  • the value of the DC component is output to the voltage input compensation unit 156. Therefore, the output of the resistance calculation unit 158 is updated each time the target value setting unit 150 changes the output from zero to a non-zero value.
  • the current sensor 123 is used to detect z. Now, let us consider output offsets depending on the respective temperatures of the current sensor 123 and the driver 116.
  • the former offset is the current offset i
  • the latter zoff offset is the voltage offset e.
  • voltage storage unit 154 receives a signal reporting that zero is output from target value setting unit 150, and extracts the DC component value of e and outputs the previous extraction result. . Subsequently, when the non-zero value I is output from the target value setting unit 150, the coil current convergence unit 1 nz
  • the excitation current i converges to a value that satisfies the following formula.
  • Equation 14 can be modified as follows by Equation 13 above.
  • the voltage value e extracted when the target value setting unit 150 outputs zero is stored in the voltage holding unit 154, and the value is output to the voltage input compensation unit 156 as an offset voltage.
  • the excitation voltage compensator 156 includes the output value e of the input voltage storage unit 154 and the driver 11 zz
  • the resistance calculation unit 158 calculates the coil resistance using the algorithm related to Equation 11 above based on the compensation excitation voltage e output from the excitation voltage compensation unit 156 and the target value I of the excitation zm current i z nz
  • Equation 15 which is a voltage equation related to the driver 116 can also be transformed into the following equation.
  • posture estimation section 133 can always output a correct gap length estimation value and speed estimation value based on the resistance value. This makes it possible to maintain a stable floating state with respect to temperature fluctuations.
  • the coil resistance R measured by the resistance measurement unit 140 is introduced into the excitation voltage calculation unit 125.
  • the feedback constant F in Equation 9 is determined so that a predetermined transient response is obtained with respect to the disturbance.
  • the value of the feedback constant F is changed in the coil current converging unit 152 based on the coil resistance R measured by the resistance measuring unit 140.
  • the response of the levitated body 111 becomes constant with respect to temperature fluctuation, and the stability of the levitated state can be ensured.
  • the reliability can be improved and the gap sensor is not required, simplifying the device. And miniaturization and cost reduction.
  • the second embodiment is characterized in that an excitation voltage and an excitation current are calculated for each mode of the moving coordinate system of the levitated body.
  • an excitation voltage and an excitation current are calculated for each mode of the moving coordinate system of the levitated body.
  • FIG. 4 is a diagram showing a configuration of a magnetic levitation apparatus according to the second embodiment of the present invention.
  • the configuration when this magnetic levitation device is applied to an elevator is indicated by reference numeral 10 as a whole.
  • FIG. 5 is a perspective view showing the configuration of the frame portion of the magnetic levitation apparatus.
  • FIG. 6 is a perspective view showing a configuration around the magnet unit of the magnetic levitation apparatus.
  • FIG. 7 is an elevation view showing the configuration of the magnet unit of the magnetic levitation apparatus.
  • guide rails 14, 14, a moving body 16, and four guide units 18 a to 18 d are formed on the inner surface of the elevator shaft 12.
  • the guide rails 14 and 14 are made of a ferromagnetic member and are laid in the elevator shaft 12 by a predetermined mounting method.
  • the moving body 16 corresponds to the floating body of the magnetic levitation apparatus described above.
  • the moving body 16 moves up and down along the guide rails 14 and 14 'via a drive mechanism (not shown) such as a rope 15 lifting machine.
  • the guide units 18a to 18d are attached to the moving body 16, and guide the moving body 16 to the guide rails 14, 14 'without contact.
  • a car 20 and guide units 18a to 18d are attached to the moving body 16.
  • the moving body 16 includes a frame portion 22 having a strength capable of maintaining a predetermined positional relationship between the guide units 18a to 18d.
  • guide units 18a to 18d facing the guide rails 14 and 14 ' are attached to the four corners of the frame portion 22 by a predetermined method.
  • the guide unit 18 includes an X-direction proximity sensor 26 (26b, 26b '), a y-direction proximity sensor, and a non-magnetic material (for example, aluminum or stainless steel) or a plastic base 24.
  • 28 (28b, 28b ') and the magnet unit 30 are mounted by a predetermined method.
  • the proximity sensors 26 and 28 function as a contact detection unit that detects contact between the guide unit 18 and the guide rails 14 and 14.
  • the magnet unit 30 includes a central iron core 32, permanent magnets 34 and 34 ', and electromagnets 36 and 36'. As shown in FIG. 7, the same polarity of the permanent magnets 34 and 34 'is provided. They face each other through the central iron core 32! / As a whole, they are assembled into an E shape.
  • the electromagnets 36 and 36 are inserted into the coil 40 (40,) after the L-shaped iron core 38 (38,) is inserted into the iron core 38.
  • a flat core 42 is attached to the tip of (38 ').
  • a solid lubricating member 43 is attached to the tip of the central iron core 32 and the electromagnets 36 and 36 ′.
  • This solid lubricating member 43 prevents the magnet unit 30 from being attracted and fixed to the guide rail 14 (14 ') by the attractive force of the permanent magnets 34, 34' when the electromagnets 36, 36 'are not excited.
  • the solid lubricating member 43 is provided so as not to hinder the moving up and down operation of the moving body 16 even if the magnet unit 30 is attracted.
  • this solid lubricating member 43 for example, there is a material containing Teflon (registered trademark), graphite, molybdenum disulfide or the like.
  • the coils 40b and 40b can be separately excited and controlled independently of the attractive force direction acting on the guide rail 14 and the X direction. Details of this control method are disclosed in Patent Document 1, and detailed description thereof is omitted here.
  • Each suction force of the guide units 18a to 18d is controlled by the control device 44 used as the suction force control unit described above, and the car 20 and the frame part 22 are not in contact with the guide rails 14, 14, and so on. Be guided to.
  • control device 44 may be configured as a single force as a whole as shown in FIG. 8, for example, as shown in FIG.
  • FIG. 8 is a block diagram showing a configuration within the control device in the same embodiment.
  • FIG. 9 is a block diagram showing the configuration of the mode control voltage arithmetic circuit in the control device.
  • the arrow line indicates the signal path, and the bar line indicates the power path around the coil 40.
  • the control device 44 includes a sensor unit 61, an arithmetic circuit 62, and power amplifiers 63a, 63a ′ to 63d, 63d ′, and these are the attraction forces of the four magnet units 30a to 30d.
  • X axis, The y axis is controlled independently.
  • the sensor unit 61 is attached to the car 20 and detects magnetomotive force or magnetic resistance in the magnetic circuit formed by the magnet units 30a to 30d, or changes in the motion of the moving body 16.
  • the arithmetic circuit 62 calculates an applied voltage for exciting the coils 40a, 40a, ⁇ 40d, and 40d ′ that guide the moving body 16 in a non-contact manner based on the signal from the sensor unit 61. Used as a suction force control unit.
  • the power amplifiers 63a, 63a ′ to 63d, 63d ′ are used as excitation units for supplying power to the coils 40 based on the output of the arithmetic circuit 62.
  • the power supply 46 supplies power to the power amplifiers 63a, 63a ′ to 63d, 63d ′ and also supplies power to the constant voltage generator 48 at the same time.
  • the power source 46 has a function of converting the alternating current supplied from the elevator shaft 12 external force by a power line (not shown) for lighting and door opening / closing to a direct current suitable for supplying power to the amplifier. .
  • the constant voltage generator 48 always maintains the operation circuit 62 and the proximity sensors 26a, 26a 'to 26d, 26d at a constant voltage even if the voltage of the power source 46 fluctuates due to the supply of a large current to the power amplifier 63. ', 28a, 28a' to 28d, 28d '[Supply power. From this point, the arithmetic circuit 62 and the proximity sensors 26a, 26a 'to 26d, 26d', 28a, 28a 'to 28d, 28d' are normally operated.
  • the sensor unit 61 includes the proximity sensors 26a, 26a ′ to 26d, 26d ′, 28a, 28a ′ to 28d, 28d, and the current detectors 66a, 66a,. 66d, 66d '.
  • the arithmetic circuit 62 performs guidance control of the moving body 16 for each mode of the motion coordinate system shown in FIG.
  • the above-mentioned modes are y mode (back and forth motion mode) representing the back and forth movement along the y coordinate of the center of gravity of the moving body 16, X mode (left and right motion mode) representing the left and right motion along the X coordinate, and movement.
  • ⁇ mode rolling mode representing rolling around the center of gravity of the body 16
  • mode representing pitching around the center of the moving body 16 (pitch mode)
  • ⁇ mode yo mode representing gyration around the center of gravity of the moving body 16 is there.
  • the arithmetic circuit 62 also performs guidance control in the ⁇ mode (full suction mode), ⁇ mode (twist mode), and ⁇ mode (distortion mode).
  • ⁇ mode full suction mode
  • ⁇ mode tilt mode
  • ⁇ mode distal mode
  • distaltion mode distal mode
  • Ie ⁇ Total attractive force '' exerted on the guide rails 14, 14 'by the magnet units 30a to 30d
  • the calculation circuit 62 has a first calculation function and a second calculation function.
  • the first calculation function is a function for calculating an excitation current for each mode expressed by a linear combination of excitation currents that generate an attractive force that contributes to the freedom of movement of the moving body 16 that is a floating body.
  • the second function to calculate is the mode-specific excitation voltage that is expressed by a linear combination of excitation voltages. Specifically, it is configured as follows.
  • the calculation circuit 62 includes a target value setting unit 74, a resistance measurement unit 64, a current deviation coordinate conversion circuit 83, a control voltage calculation circuit 84, and a control voltage coordinate reverse conversion circuit. It consists of 85.
  • the target value setting unit 74 alternately outputs zero or non-zero values at predetermined intervals as the excitation current target value of the ⁇ mode (all suction mode) among the eight modes. Further, the target value setting unit 74 outputs a predetermined value when the apparatus is stopped, which will be described later, in the y mode and the X mode.
  • the resistance measuring unit 64 is configured to detect the excitation current detection values of the coils 40a, 40a 'to 40d, 40d' and the excitation voltage signals to the respective amplifiers 63a, 63a, to 63d, 63d of the arithmetic circuit 62. Based on ea, ea, ⁇ ed, ed ′ and the output value of the target value setting unit 74, the electrical resistance value of each coil is output.
  • the current deviation coordinate conversion circuit 83 has a current deviation signal A ia,
  • the control voltage calculation circuit 84 serves as a mode excitation voltage calculation unit, and outputs Aiy, ⁇ , ⁇ , ⁇ , ⁇ ,, output of the resistance measurement unit 64, the target value setting unit 74, and the current deviation coordinate conversion circuit 83, respectively. From ⁇ , ⁇ , ⁇ , y-, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -mode electromagnet control voltages ey, ex, e ⁇ , e6 , ⁇ , e ⁇ , e ⁇ , ey ⁇ S.
  • the control voltage coordinate inverse transformation circuit 85 is configured to output the electromagnet excitation voltages ea of the magnet units 30a to 30d from the outputs ey, ex, e ⁇ , e 6, ⁇ , ⁇ , e6, ey of the control voltage calculation circuit 84, respectively. , ea 'to ed, ed'.
  • the calculation result of the control voltage coordinate inverse transformation circuit 85 that is, ea, ea 'to ed, ed', and the other amplifiers 63a, 63a 'to 63d, 63d' are given.
  • the target value setting unit 74 may be configured by at least one target value setting unit 140 in the first embodiment. Further, when the target value setting unit 74 is configured by a plurality of target value setting units 140, there is no phase shift in the period in which each output value becomes zero! Needless to say,! /.
  • the target power of supplying a minute current for resistance measurement to all the coils is acceptable if the target value of at least one mode is a non-zero value. There is no problem even if there is a mode in which the target value setting unit 74 always outputs zero as the excitation current target value.
  • the target value setting unit 74 is configured so that the ⁇ mode (full suction mode) becomes a non-zero value.
  • the same value of excitation current can be supplied to all coils. Since the suction force generated at that time acts as a stress on the frame part 22, the rider can feel comfortable against the change in the output value of the target value setting part 74 in which the posture of the moving body 16 does not change. There is no evil.
  • control voltage calculation circuit 84 includes a longitudinal movement mode control voltage calculation circuit 86a, a left / right movement mode control voltage calculation circuit 86b, a roll mode control voltage calculation circuit 86c, and a pitch mode control circuit.
  • the longitudinal motion mode control voltage calculation circuit 86a calculates the y-mode electromagnet control voltage ey from A iy.
  • the left / right mode control voltage calculation circuit 86b calculates the X mode electromagnet control voltage ex from Aix.
  • the roll mode control voltage calculation circuit 86c calculates the 0 mode electromagnet control voltage e ⁇ from A i 0.
  • the pitch mode control voltage calculation circuit 86d calculates the ⁇ mode electromagnet control voltage e ⁇ from A i.
  • the mode control voltage calculation circuit 86e calculates the ⁇ -mode electromagnet control voltage e ⁇ from A i ⁇ .
  • the full suction mode control voltage calculation circuit 88a calculates the ⁇ -mode electromagnet control voltage e ⁇ from A i ⁇ .
  • the torsion mode control voltage calculation circuit 88b calculates a ⁇ mode electromagnet control voltage e ⁇ from A i ⁇ .
  • the distortion mode control voltage calculation circuit 88c calculates the ⁇ -mode electromagnet control voltage e ⁇ from ⁇ ⁇ ⁇ .
  • control voltage calculation circuit in these modes has the same configuration as the attractive force control unit 115 shown in Figs.
  • the longitudinal movement mode control voltage calculation circuit 86a includes a resistance value averaging unit 90, a gain compensator 91, a resistance value imbalance correction unit 92, a subtractor 93, and an integral compensator 94. , Adder 95, subtractor 96, estimation error correction unit 142, figure mode posture estimation unit 97, estimation initialization unit 98, posture calculation unit 99, initial value setting unit 100, and adder 101
  • the resistance value averaging unit 90 calculates the average value of the resistance values of the coils 40a, 40a ′ to 40d, 40d measured by the resistance measurement unit 64.
  • the gain compensator 91 multiplies the estimated values of A y, A y, and A iy (indicated by “′” in the figure) by an appropriate feedback gain.
  • the resistance value imbalance correction unit 92 determines each coil resistance value based on the output of the resistance measurement unit 64 based on the excitation current ( ⁇ ix to ⁇ i ⁇ ) for each of the seven modes other than the forward / backward movement mode. Multiply the resistance correction gain for each mode obtained by linear combination of and output the sum of these seven multiplication results.
  • the subtractor 93 subtracts A iy from the output of the target value setting unit 74.
  • the integral compensator 94 subtracts Integrate the output value of unit 93 and multiply by the appropriate feedback gain.
  • the adder 95 calculates the sum of the output values of the gain compensator 91.
  • the subtractor 96 subtracts the output value of the adder 95 from the output value of the integral compensator 94 and outputs the first mode excitation voltage eyl in the y mode (forward / reverse operation mode).
  • the estimation error correction unit 142 as a mode estimation error correction unit, corrects the offset voltage component of the power amplifier 63 in the first mode-specific excitation voltage for each mode.
  • the mode posture estimation unit 97 calculates the estimated values of Ay, ⁇ , and ⁇ iy from the output value of the estimation error correction unit 142 and the current deviation Aiy for each mode.
  • the estimation initialization unit 98 initializes the integral operation in the mode posture estimation unit 97 based on ONZOFF of the 16 proximity sensor signals.
  • the attitude calculation unit 99 calculates the attitude when the moving body 16 is in contact based on ONZOFF of the 16 proximity sensor signals, and outputs the position deviation of each magnet unit 30 by mode.
  • the initial value setting unit 100 sets the calculation result of the posture calculation unit 99 as the initial value of the integration operation when the mode posture estimation unit 97 is initialized.
  • the adder 101 adds the first mode-specific excitation voltage eyl and the output of the resistance value imbalance correction unit 92, and outputs the addition result as the second mode-specific excitation voltage ey.
  • mode posture estimation unit 97 estimation initialization unit 98, posture calculation unit 99, and initial value setting unit 100 are described in detail in Patent Document 4, and detailed description thereof is omitted.
  • the left / right mode control voltage calculation circuit 86b, the roll mode control voltage calculation circuit 86c, the pitch mode control calculation circuit 86d, and the short mode control calculation circuit 86e are the same as the vertical mode control voltage calculation circuit 86a.
  • the corresponding input / output signal is indicated by the signal name, and the description thereof is omitted.
  • the subtractors 93 and 93 ′, the gain compensators 91 and 91 ′, the integral compensators 94 and 94 ′, the subtractors 96 and 96 ′, and the adder 95 shown in FIG. 10 are mode-excited. Forming a current converging section ing.
  • the control apparatus 44 causes the electromagnets 36a, 36 to generate a magnetic flux in the same direction as or opposite to the magnetic flux generated by the permanent magnet 34 by the action of the levitation control calculation unit 65. a 'to 36d, 36d'. Further, the current flowing in each coil 40 that maintains a predetermined gap length between the magnet units 30a to 30d and the guide rails 14, 14 'is controlled.
  • the gap length in the gaps G, G ', G " is the y-axis direction in which the magnetic attractive force of each of the magnet units 30a to 30d due to the magnetomotive force of the permanent magnet 34 acts on the center of gravity of the moving body 16
  • the length is exactly the same as the longitudinal force, lateral force in the X direction, torque around the X axis passing through the center of gravity of the moving body 16, torque around the y axis, and torque around the z axis.
  • control device 44 When an external force is applied to the moving body 16 to maintain this balance, the control device 44 performs excitation current control of the electromagnets 36a, 36a, to 36d, 36d. As a result, so-called zero power control is performed.
  • the resistance of the coil 40 is determined based on the equation 18 after considering the offset voltage of the power amplifier and the current detector by the action of the target value setting unit 74 and the resistance measurement unit 64. The value is measured accurately.
  • the parameters of the mode attitude estimation unit 97 and the resistance value imbalance correction units 92 and 92 ′ adjusted by the output value of the resistance measurement unit 64 are accurately adjusted, and the gain compensator 9 1, 91 ′.
  • Integral compensators 94 and 94 ′ can set the gain using the resistance value as a parameter. Therefore, if the stability of the non-contact guidance is maintained with respect to the fluctuation of the offset voltage and the coil resistance value, it is possible to maintain a good and constant ride comfort without the force.
  • the target value setting unit 74 gradually sets the target values in the y mode and the X mode to negative values from zero force.
  • the moving body 16 gradually moves in the y-axis and X-axis directions, and finally the electromagnet is formed on the opposite surface of the guide rail 14 via the tip 1S solid lubricating member 43 of the central core 32 of the magnet units 30a and 30d.
  • the tips of 36a 'and 36d' are adsorbed to the opposing surface of the guide rail 14 through the solid lubricating member 43, respectively.
  • the output of the target value setting unit 74 is reset to zero and the moving body 16 is attracted to the guide rail.
  • the magnet unit is mounted on the floating body side. 1S This does not limit the mounting position of the magnet unit at all. As shown in FIG. It may be arranged on the side. For simplification of description, the same reference numerals are used for the parts common to the first and second embodiments.
  • FIG. 11 is a diagram showing the configuration of a magnetic levitation apparatus according to the third embodiment of the present invention.
  • the overall configuration is denoted by reference numeral 300.
  • the magnetic levitation device 300 includes an auxiliary support 302, a magnet unit 107, a guide 304, a vibration isolation table 306, a linear guide 308, an attractive force controller 115, a power amplifier 313, and a current sensor 1.
  • the auxiliary support 302 has a U-shaped cross section and is formed of a nonmagnetic material such as an aluminum member.
  • the auxiliary support portion 302 is installed on the ground.
  • the magnet unit 107 is attached downward on the upper lower surface of the auxiliary support portion 302.
  • the guide 304 has a U-shaped cross section facing the magnet unit 107, and is formed of a ferromagnetic member such as iron.
  • the anti-vibration table 306 includes the guide 304 on the upper surface of the bottom, and is formed in a U shape as a whole.
  • the linear guide 308 is attached to the side surface of the vibration isolation table 306 and gives the vibration isolation table 306 freedom of movement only in the direction perpendicular to the ground.
  • the attraction force control unit 115 controls the attraction force of the magnet unit 107 so as to support the anti-vibration table 306 in a non-contact manner.
  • the power amplifier 313 is connected to a power source (not shown) for exciting the magnet unit 107 based on the output of the attractive force control unit 115.
  • the current sensor 123 detects the excitation current of the magnet unit 107.
  • the attractive force control unit 115 has the following configuration.
  • the attractive force control unit 115 includes the resistance measurement unit 140, the contact detection unit 130, the posture calculation unit 135, the posture estimation unit 133, the initial value setting unit 139, the estimation initialization unit 137, and the excitation voltage calculation unit 1 25. It has.
  • Resistance measurement unit 140 uses lead current 1 from the excitation current and excitation voltage to magnet unit 107. Measure the series resistance of 28 and coils 119 and 119 '.
  • the contact detection unit 130 includes a micro switch 310 attached to the bottom upper surface of the auxiliary support unit 302 and a piezoelectric rubber 312 attached to the magnetic pole surface of the magnet unit 107.
  • the posture calculation unit 135 calculates the floating gap length when the contact detection signal force of the contact detection unit 130 is in contact with the auxiliary support 302 or the magnet unit 107 of the vibration isolation table 306.
  • the posture estimation unit 133 estimates the flying posture of the vibration isolation table 306 based on the output of the resistance measurement unit 130, the excitation current to the magnet unit 107, and the excitation voltage force.
  • the initial value setting unit 139 sets an estimated initial value in the posture estimation unit 133 based on the output of the posture calculation unit 135.
  • the estimation initialization unit 137 initializes the posture estimation unit 133 based on the output of the contact detection unit 130.
  • the excitation voltage calculation unit 125 calculates the excitation voltage to the magnet unit 107 for magnetically levitating the vibration isolation table 306 based on the output of the posture estimation unit 133.
  • the present invention is not limited to application to a sensorless magnetic levitation apparatus, but may be applied to an attraction type magnetic levitation apparatus using a gap sensor as shown in FIG.
  • the same reference numerals are used for the parts common to the first to third embodiments.
  • FIG. 12 is a diagram showing the configuration of the magnetic levitation apparatus according to the fourth embodiment.
  • the overall configuration is indicated by reference numeral 400.
  • the gap sensor 121 that obtains information on the levitation gap length and the velocity used for stabilization of the magnetic levitation system in the attitude estimation unit 133 in the first embodiment. And using the pseudo-differentiator 402. [0156] The output of the gap sensor 121 is directly input to the excitation voltage calculator 125 as information on the flying gap length, and is also converted to a speed signal via the pseudo-differentiator 402 and input to the excitation voltage calculator 125. The In addition, the excitation current of the coils 119 and 119 ′ is input to the excitation voltage calculation unit 125 by the current sensor 123.
  • the offset voltage of the power amplifier 313 and the current sensor 123 is taken into account in the same manner as in the first embodiment by the functions of the target value setting unit 150 and the resistance measurement unit 40 in the excitation voltage calculation unit 125.
  • the coil resistance value is measured. Based on the coil resistance value, the excitation voltage for levitating the levitated body 111 with a stable and constant transient response is calculated.
  • control device that performs magnetic levitation is described as an analog configuration.
  • the present invention is not limited to an analog control method. It is also possible to configure with digital control.
  • the power using the power amplifier as the configuration of the excitation unit.
  • This is not limited to the driver system, and may be of the PWM (Pulse Width Modulation) type, for example.
  • the magnetic levitation apparatus of the present invention even when the offset voltage changes due to the influence of temperature fluctuation or the like, these can be accurately measured, and the stability of the levitation state is maintained based on the measured value.
  • the levitation control parameters can be adapted as possible. This makes it possible to maintain the stability of the magnetic levitation system and the transient response to external disturbances at the time of design. This improves the reliability of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

An excitation voltage value at a time when a target value of coil current is set to zero by a target value setting section (150) is obtained and stored in a voltage storing unit (154). In a voltage input compensation unit (156), the excitation voltage value stored in the voltage storing unit (154) is subtracted from an excitation voltage value supplied to a driver (116) as an offset voltage value to obtain a compensation value of the excitation voltage. The compensation value is input to a resistance calculation unit (158) to measure a coil resistance value, and according to the value, suspension control is performed.

Description

明 細 書  Specification
磁気浮上装置  Magnetic levitation device
技術分野  Technical field
[0001] 本発明は、常電導吸引式磁気浮上により浮上体を非接触で支持する磁気浮上装 置に関する。  TECHNICAL FIELD [0001] The present invention relates to a magnetic levitation apparatus that supports a levitated body in a non-contact manner by normal conducting magnetic levitation.
背景技術  Background art
[0002] 常電導吸引式磁気浮上装置は、騒音や発塵がなぐ HSST (High Speed Surface T ransport:超高速地表輸送機)やトランスラビッド等の鉄道や半導体工場でのクリーン ルーム内搬送システムですでに実用化が図られている。また、この磁気浮上装置を エレベータの乗りかごの案内装置に適用することや (特許文献 1参照)、ドアへ適用 することが試みられている。  [0002] The normal conducting magnetic levitation device is a transport system in clean rooms in railways and semiconductor factories such as HSST (High Speed Surface Transport) and Trans-Rabbit where noise and dust are eliminated. Has been put to practical use. Attempts have also been made to apply this magnetic levitation device to elevator car guidance devices (see Patent Document 1) and to doors.
[0003] この磁気浮上装置は、電磁石を強磁性部材に対向させ、電磁石の励磁によって強 磁性部材との間に生じる吸引力を利用して浮上体を浮上させる。このため、基本的に 磁気浮上系が不安定であり、それを安定化させるための対策が必要となる。一般的 には、ギャップセンサにより浮上ギャップ長を検出し、それを駆動系へフィードバック 制御することで安定ィ匕を図っている。しかし、ギャップセンサにて浮上ギャップ長を検 出する場合、使用するギャップセンサに適したセンサターゲットが必要であり、そのセ ンサターゲットを強磁性部材に付随して敷設しなければならない。  In this magnetic levitation apparatus, an electromagnet is made to face a ferromagnetic member, and the levitating body is levitated by using an attractive force generated between the electromagnet and the ferromagnetic member. For this reason, the magnetic levitation system is basically unstable, and it is necessary to take measures to stabilize it. In general, the gap height is detected by a gap sensor and feedback control is performed to the drive system to achieve stability. However, when detecting the flying gap length with a gap sensor, a sensor target suitable for the gap sensor to be used is required, and the sensor target must be laid along with the ferromagnetic member.
[0004] このように、磁気浮上系の安定ィ匕を図るためには、ギャップセンサやセンサターゲッ トといった部品が必要であり、その分のコストがかかると共に、その設置スペースを確 保するために装置が大型化すると!、つた問題があった。  [0004] As described above, in order to stabilize the magnetic levitation system, parts such as a gap sensor and a sensor target are required, which is costly and secures the installation space. There was another problem when the equipment became larger!
[0005] また、鉄道や搬送システムにお!/ヽては、強磁性ガイドで構成される軌道に分岐個所 が設けられる。したがって、センサターゲットとガイドが交差してギャップ長の検出を妨 げな 、ような仕組みが必要であり、システムが複雑ィ匕すると!/、つた問題もある。  [0005] In addition, in railways and transport systems, there are branch points on the tracks composed of ferromagnetic guides. Therefore, it is necessary to have a mechanism in which the sensor target and the guide cross each other so that the gap length cannot be detected. If the system is complicated! /, There is another problem.
[0006] こうした問題を解決するため、ギャップセンサを必要としな 、様々な手法が提案され ている。  [0006] In order to solve such problems, various methods have been proposed that do not require a gap sensor.
[0007] 例えば、電磁石の励磁電流力 オブザーバ (状態観測器)によりギャップ長を推定 する方法 (非特許文献 1参照)がある。また、磁気浮上により生じる電磁石の励磁電 圧と励磁電流の位相差にギャップ情報を含ませ、これを励磁電圧にフィードバックす る方法 (非特許文献 2参照)がある。また、電磁石の励磁電流値をヒステリシスコンパ レータで基準値と比較し、励磁電流が基準値より大きい場合には励磁電圧を負に、 小さ 、場合には励磁電圧を正に切替えることで、スイッチング周波数を浮上ギャップ 長に比例させる方法 (非特許文献 3参照)がある。 [0007] For example, the gap length is estimated by an exciting current force observer (state observer) of an electromagnet (See Non-Patent Document 1). In addition, there is a method in which gap information is included in the phase difference between the exciting voltage and exciting current of the electromagnet generated by magnetic levitation, and this is fed back to the exciting voltage (see Non-Patent Document 2). In addition, the excitation current value of the electromagnet is compared with the reference value with a hysteresis comparator, and when the excitation current is larger than the reference value, the excitation voltage is switched to negative, and when it is smaller, the excitation voltage is switched to positive to switch the switching frequency. There is a method (see Non-Patent Document 3) in which is proportional to the floating gap length.
[0008] し力しながら、上述したオブザーバを使用する場合には、浮上状態にないときの浮 上ギャップ長を推定することができない。これは、オブザーバが浮上状態における磁 気浮上系の線型モデル力も導出されるためである。よって、浮上開始時の制御が困 難となり、また、浮上体が他の構造物に一旦接触した場合に、再び浮上状態に復帰 できない等の問題がある。 [0008] However, when the above-described observer is used, the floating gap length when not in the floating state cannot be estimated. This is because the linear model force of the magnetic levitation system when the observer is in the levitated state is also derived. Therefore, there is a problem that control at the start of levitation becomes difficult, and that the levitation body cannot return to the levitation state again once it comes into contact with another structure.
[0009] また、ギャップ情報を含む物理量で電磁石の励磁電圧を制御する場合には、浮上 制御系が非線型系になる。このため、安定判別が困難であり、浮上体に質量の変化 や励磁による温度上昇で電磁石コイルに電気抵抗の変動があると、浮上状態の維持 ができなくなるなどの問題がある。  [0009] When the excitation voltage of the electromagnet is controlled by a physical quantity including gap information, the levitation control system is a non-linear system. For this reason, it is difficult to determine stability, and there is a problem that the floating state cannot be maintained if the electric resistance of the electromagnetic coil changes due to mass change or temperature rise due to excitation.
[0010] こうした問題に対処するための手法として、以下のような手法が知られている。 [0010] The following methods are known as methods for dealing with these problems.
[0011] 電磁石の励磁電流力 オブザーバによりギャップ長を推定するセンサレス化方法に おいて、浮上体が浮上状態にない場合に浮上体の接触を検出してオブザーバの積 分器を初期化すると共に、浮上体の接触状態力 幾何学的に接触時のギャップ長を 推定する。このギャップ長推定値に基づ 、てオブザーバの積分器に初期値を与える ことで、浮上状態への復帰を行う(特許文献 2参照)。 [0011] In the sensorless method of estimating the gap length with an observer using an exciting current force of an electromagnet, when the floating body is not in a floating state, the contact of the floating body is detected to initialize the integrator of the observer, Contact state force of levitated body Geometrically estimate the gap length at the time of contact. Based on the estimated gap length, an initial value is given to the integrator of the observer to return to the floating state (see Patent Document 2).
[0012] し力しながら、この手法をゼロパワー制御(特許文献 3参照)に適用した場合には、 以下のような問題が生じる。  However, when this method is applied to zero power control (see Patent Document 3), the following problems occur.
[0013] すなわち、浮上体が定常浮上状態にあるときは、電磁石の励磁電流がゼロに収束 しているため、特に問題はない。ところが、浮上体に大きな外力が長時間加えられた 場合に、電磁石のコイルに過渡的な制御電流が流れ続け、コイルの温度が上昇する ことになる。この温度の上昇に伴い、コイルの電気抵抗が大きくなり、励磁電流から浮 上ギャップ長を推定するオブザーバの出力誤差が大きくなる。その結果、次第に浮 上状態の維持が困難になり、浮上体が接触してしまう。 [0013] That is, when the levitated body is in a steady levitating state, there is no particular problem because the exciting current of the electromagnet converges to zero. However, when a large external force is applied to the levitated body for a long time, a transient control current continues to flow through the coil of the electromagnet, and the coil temperature rises. As the temperature rises, the electrical resistance of the coil increases and the output error of the observer that estimates the floating gap length from the excitation current increases. As a result, It becomes difficult to maintain the upper state, and the floating body comes into contact.
[0014] なお、浮上体が接触した場合には、浮上状態への復帰制御が試みられる。しかし、 浮上状態に復帰しても、浮上時の浮上ギャップ長推定値の誤差が大きいため、再び 浮上体は接触し、接触状態と浮上状態が交互に繰返されることになる。こうした状態 では、電磁石には大きな制御電流が流れ続けるため、電磁石のコイル抵抗値がさら に上昇し、ついには浮上体が接触したままで励磁電流が流れ続けることになる。その 流れ続ける励磁電流が大き!ヽと、電磁石が発火する可能性がある。  [0014] When the floating body comes into contact with the floating body, control for returning to the floating state is attempted. However, even after returning to the levitation state, there is a large error in the estimated value of the levitation gap length at the time of levitation, so that the levitation body contacts again, and the contact state and the levitation state are repeated alternately. In such a state, since a large control current continues to flow through the electromagnet, the coil resistance of the electromagnet further increases, and finally the excitation current continues to flow with the floating body in contact. If the exciting current that continues to flow is large, the electromagnet may ignite.
[0015] 一方、このようなセンサレスの磁気浮上における電磁石のコイル抵抗値の変動に関 し、コイルの抵抗値を測定しながら浮上制御を行い、その測定される抵抗値に基づい て、オブザーバのパラメータを変更する方法が提案されている(特許文献 4参照)。  [0015] On the other hand, regarding the fluctuation of the coil resistance value of the electromagnet in such sensorless magnetic levitation, the levitation control is performed while measuring the resistance value of the coil, and the observer parameters are determined based on the measured resistance value. Has been proposed (see Patent Document 4).
[0016] また、電磁石に過渡的な励磁電流が流れ続ける場合に、コイル抵抗値の増加に加 え、オフセット電圧が温度の上昇に伴って変動する問題がある。このオフセット電圧 の変動は、前記コイル抵抗値の変動と同様に、浮上ギャップ長を推定するォブザー バの出力誤差を大きくする。このような問題に対しては、オブザーバの速度推定値を ゼロにするための励磁電圧にオフセット補償量を加算することで、オブザーバの出力 誤差を抑制することができる。  [0016] Further, when a transient exciting current continues to flow through the electromagnet, there is a problem that the offset voltage fluctuates with an increase in temperature in addition to an increase in the coil resistance value. This variation in the offset voltage increases the output error of the observer that estimates the levitation gap length, similarly to the variation in the coil resistance value. To solve this problem, the output error of the observer can be suppressed by adding the offset compensation amount to the excitation voltage for setting the observer speed estimate to zero.
[0017] しかし、上述のような対策を用いたとしても、オブザーバ中で用いるコイルの抵抗値 は、励磁電圧と励磁電流の直流成分から算出するため、励磁電圧にオフセット電圧 が混入すると、正確な抵抗値を測定できなと ヽつた問題がある。  [0017] However, even if the measures described above are used, the resistance value of the coil used in the observer is calculated from the DC component of the excitation voltage and the excitation current. There is a problem that the resistance value cannot be measured.
特許文献 1:特願平 11 192224号公報  Patent Document 1: Japanese Patent Application No. 11 192224
特許文献 2:特願 2002— 002646号公報  Patent Document 2: Japanese Patent Application No. 2002-002646
特許文献 3:特開昭 61— 102105号公報  Patent Document 3: Japanese Patent Laid-Open No. 61-102105
特許文献 4: #112003 344670号公報  Patent Document 4: # 112003 344670 Publication
非特許文献 1 :水野,他:「変位センサレス磁気軸受の実用化に関する研究」,電気学 会論文集 D分冊, 116, No. 1, 35 (1996)  Non-Patent Document 1: Mizuno, et al .: “Research on practical application of displacement sensorless magnetic bearing”, Proc.
非特許文献 2 :森山:「差動帰還形パワーアンプを用いた AC磁気浮上」 1997年電気 学会全国大会予稿集, No. 1215  Non-Patent Document 2: Moriyama: “AC Magnetic Levitation Using a Differential Feedback Power Amplifier” 1997 IEEJ National Convention Proceedings, No. 1215
非特許文献 3 :水野,他:「ヒステリシスアンプを利用したセルフセンシング磁気浮上」 ,計測自動制御学会論文集, 32, No. 7, 1043 (1996) Non-Patent Document 3: Mizuno, et al .: “Self-sensing magnetic levitation using hysteresis amplifier” , Transactions of the Society of Instrument and Control Engineers, 32, No. 7, 1043 (1996)
発明の開示  Disclosure of the invention
[0018] 上述したように、従来の磁気浮上装置にあっては、浮上体の安定な浮上状態を実 現するために、ギャップセンサおよびセンサターゲットを必要とした。このため、装置 が大型化して複雑になり、コストアップを招くなどの問題があった。  [0018] As described above, the conventional magnetic levitation apparatus requires the gap sensor and the sensor target in order to realize a stable levitation state of the levitation body. For this reason, there is a problem that the apparatus becomes large and complicated, resulting in an increase in cost.
[0019] また、こうした問題を避けるために、ギャップセンサを用いずにギャップ長の情報を フィードバック制御したとしても、浮上系の安定性がオフセット電圧に依存される。この ため、温度が変動すると、それに伴うオフセット電圧の変動により、安定した制御を行 うことができなかった。  [0019] In order to avoid such a problem, even if the gap length information is feedback controlled without using the gap sensor, the stability of the levitation system depends on the offset voltage. For this reason, when the temperature fluctuates, stable control cannot be performed due to the fluctuation of the offset voltage.
[0020] そこで、本発明の目的は、オフセット電圧の影響を考慮して常に安定した浮上制御 を行うことのできる磁気浮上装置を提供することにある。  [0020] Therefore, an object of the present invention is to provide a magnetic levitation apparatus that can always perform stable levitation control in consideration of the influence of an offset voltage.
[0021] 本発明の一観点による磁気浮上装置は、強磁性部材で構成されるガイドと、このガ イドに空隙を介して対向し、当該空隙中において磁路を共有する電磁石と永久磁石 で構成される磁石ユニットと、前記ガイドに作用する前記磁石ユニットの吸引力で非 接触支持される浮上体と、前記電磁石のコイルに流れる電流値を検出するセンサ部 と、前記電磁石のコイル電流の目標値をゼロまたは非ゼロ値に交互に設定する目標 値設定部と、この目標値設定部によって設定された目標値に前記電磁石のコイル電 流を収束させるコイル電流収束部と、このコイル電流収束部による収束動作に伴い、 前記センサ部力 得られるコイル電流値に基づいて前記磁石ユニットが形成する磁 気回路を安定化させるための励磁電圧値を演算する励磁電圧演算部と、前記目標 値がゼロ設定されているときに前記励磁電圧演算部によって得られた励磁電圧値を 保存する電圧保存部と、前記電磁石の励磁電圧値から前記電圧保存部に保存され た励磁電圧値をオフセット電圧値として減算することにより励磁電圧の補償値を求め る励磁電圧補償部と、この励磁電圧補償部によって得られた補償値に基づいて前記 電磁石のコイル抵抗値を演算する抵抗演算部と、この抵抗演算部によって得られた コイル抵抗値を前記励磁電圧演算部にフィードバックして前記浮上体の浮上制御を 行う制御部とを具備して構成される。  [0021] A magnetic levitation device according to an aspect of the present invention includes a guide made of a ferromagnetic member, and an electromagnet and a permanent magnet that face the guide through a gap and share a magnetic path in the gap. Magnet unit, a floating body that is supported in a non-contact manner by the attraction force of the magnet unit acting on the guide, a sensor unit that detects a current value flowing through the coil of the electromagnet, and a target value of the coil current of the electromagnet A target value setting unit that alternately sets zero to a non-zero value, a coil current converging unit that converges the coil current of the electromagnet to the target value set by the target value setting unit, and a coil current converging unit An excitation voltage calculation unit for calculating an excitation voltage value for stabilizing a magnetic circuit formed by the magnet unit based on a coil current value obtained by the sensor unit force along with the convergence operation; A voltage storage unit that stores the excitation voltage value obtained by the excitation voltage calculation unit when the target value is set to zero, and an excitation voltage value stored in the voltage storage unit from the excitation voltage value of the electromagnet An excitation voltage compensator that obtains an excitation voltage compensation value by subtracting as an offset voltage value, and a resistance calculator that computes the coil resistance value of the electromagnet based on the compensation value obtained by the excitation voltage compensation unit; A control unit that feeds back the coil resistance value obtained by the resistance calculation unit to the excitation voltage calculation unit and controls the floating body.
図面の簡単な説明 [0022] [図 1]図 1は本発明の原理を説明するための磁気浮上装置の基本構成を示す図であ る。 Brief Description of Drawings FIG. 1 is a diagram showing a basic configuration of a magnetic levitation apparatus for explaining the principle of the present invention.
[図 2]図 2は本発明の第 1の実施形態に係る磁気浮上装置の構成を示す図である。  FIG. 2 is a diagram showing the configuration of the magnetic levitation apparatus according to the first embodiment of the present invention.
[図 3]図 3は同実施形態における磁気浮上装置の吸引力制御部の詳細な構成を示 すブロック図である。  FIG. 3 is a block diagram showing a detailed configuration of an attractive force control unit of the magnetic levitation apparatus in the same embodiment.
[図 4]図 4は本発明の第 2の実施形態に係る磁気浮上装置の構成を示す図である。  FIG. 4 is a diagram showing a configuration of a magnetic levitation apparatus according to a second embodiment of the present invention.
[図 5]図 5は同実施形態における磁気浮上装置のフレーム部の構成を示す斜視図で ある。  FIG. 5 is a perspective view showing a configuration of a frame portion of the magnetic levitation apparatus in the same embodiment.
[図 6]図 6は同実施形態における磁気浮上装置の磁石ユニット周辺の構成を示す斜 視図である。  FIG. 6 is a perspective view showing a configuration around a magnet unit of the magnetic levitation apparatus in the embodiment.
[図 7]図 7は同実施形態における磁気浮上装置の磁石ユニットの構成を示す立面図 である。  FIG. 7 is an elevation view showing the configuration of the magnet unit of the magnetic levitation apparatus in the same embodiment.
[図 8]図 8は同実施形態における磁気浮上装置の制御装置の詳しい構成を示すプロ ック図である。  FIG. 8 is a block diagram showing a detailed configuration of the control device for the magnetic levitation apparatus in the embodiment.
[図 9]図 9は同実施形態における磁気浮上装置の制御装置内のモード制御電圧演算 回路の構成を示すブロック図である。  FIG. 9 is a block diagram showing a configuration of a mode control voltage calculation circuit in the controller of the magnetic levitation apparatus in the same embodiment.
[図 10]図 10は同実施形態における磁気浮上装置の制御装置内の他のモード制御 電圧演算回路の構成を示すブロック図である。  FIG. 10 is a block diagram showing a configuration of another mode control voltage calculation circuit in the control device of the magnetic levitation device in the same embodiment.
[図 11]図 11は本発明の第 3の実施形態に係る磁気浮上装置の構成を示す図である [図 12]図 12は本発明の第 4の実施形態に係る磁気浮上装置の構成を示す図である  FIG. 11 is a diagram showing a configuration of a magnetic levitation apparatus according to a third embodiment of the present invention. FIG. 12 is a diagram showing a configuration of a magnetic levitation apparatus according to a fourth embodiment of the present invention. FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0023] まず、本発明の基本的な原理について説明する。 [0023] First, the basic principle of the present invention will be described.
[0024] 図 1は本発明の原理を説明するための磁気浮上装置の基本構成を示す図である。  FIG. 1 is a diagram showing a basic configuration of a magnetic levitation apparatus for explaining the principle of the present invention.
一質点系の磁気浮上装置の全体構成が符号 1で示されている。  The overall configuration of a one-mass system magnetic levitation apparatus is indicated by reference numeral 1.
[0025] 磁気浮上装置 1は、永久磁石 103および電磁石 105で構成される磁石ユニット 107 と、磁石ユニット 107と負荷荷重 109からなる浮上体 111と、図示せぬ構造部材で地 上に対して固定されるガイド 113とを備える。また、この磁気浮上装置 1は、磁石ュ- ット 107の吸引力を制御して、浮上体 111を安定に非接触支持するための吸引力制 御部 115と、この吸引力制御部 115の出力に基づいて電磁石 105を励磁するための ドライバ 116とを備える。 The magnetic levitation apparatus 1 includes a magnet unit 107 composed of a permanent magnet 103 and an electromagnet 105, a levitated body 111 composed of the magnet unit 107 and a load load 109, and a structural member (not shown). And a guide 113 fixed to the top. In addition, the magnetic levitation device 1 controls the attractive force of the magnet mute 107 to stably support the levitated body 111 in a non-contact manner, and the attractive force control unit 115 And a driver 116 for exciting the electromagnet 105 based on the output.
[0026] なお、 131は補助支持部である。この補助支持部 131は、コの字形状の断面を持 ち、下部内側上面に磁石ユニット 107が固定される。また、この補助支持部 131は、 例えば図示せぬリニアガイド等の上下方向に力が作用しない案内部によって地上側 力も案内される防振台のテーブルを兼ねている。  [0026] Reference numeral 131 denotes an auxiliary support portion. The auxiliary support part 131 has a U-shaped cross section, and the magnet unit 107 is fixed to the upper surface inside the lower part. The auxiliary support part 131 also serves as a table of a vibration isolation table in which the ground side force is guided by a guide part that does not act in the vertical direction, such as a linear guide (not shown).
[0027] ここで、磁石ユニット 107の磁気的吸引力で浮上体 111を非接触で支持するため、 ガイド 113は強磁性部材で構成されて 、る。  Here, in order to support the levitated body 111 in a non-contact manner by the magnetic attractive force of the magnet unit 107, the guide 113 is made of a ferromagnetic member.
[0028] 電磁石 105は、鉄心 117a, 117bにコイル 119, 119 'を卷装して構成される。永久 磁石 103の両磁極端部には、それぞれ鉄心 117a, 117bが配置されている。コイル 1 19, 119 'は、電磁石 105の励磁によってガイド 113〜鉄心 117a〜永久磁石 103〜 鉄心 117b〜ガイド 113で形成される磁路の磁束が強まる(弱まる)ように直列に接続 されている。  [0028] The electromagnet 105 is configured by mounting coils 119, 119 'on iron cores 117a, 117b. Iron cores 117a and 117b are disposed at both magnetic pole ends of the permanent magnet 103, respectively. The coils 1 19 and 119 ′ are connected in series so that the magnetic flux formed in the magnetic path formed by the guide 113 to the iron core 117 a to the permanent magnet 103 to the iron core 117 b to the guide 113 is strengthened (weakened) by excitation of the electromagnet 105.
[0029] また、吸引力制御部 115は、励磁電圧演算部 125を備えている。この励磁電圧演 算部 125は、ギャップセンサ 121で得られる浮上ギャップ長および電流センサ 123で 得られるコイル電流値に基づいて電磁石 105を励磁する電圧を演算する。ドライバ 1 16は、この励磁電圧演算部 125によって演算された励磁電圧に基づいて、リード線 128を介してコイル 119, 119 'に励磁電流を供給している。  In addition, the attractive force control unit 115 includes an excitation voltage calculation unit 125. The excitation voltage calculation unit 125 calculates a voltage for exciting the electromagnet 105 based on the flying gap length obtained by the gap sensor 121 and the coil current value obtained by the current sensor 123. The driver 116 supplies excitation current to the coils 119 and 119 ′ via the lead wire 128 based on the excitation voltage calculated by the excitation voltage calculation unit 125.
[0030] このとき、磁気浮上装置 1の磁気浮上系は、磁石ユニット 107の吸引力が浮上体 11 1の重量と等しくなるときの浮上ギャップ長 zの近傍で線型近似でき、以下の微分方  [0030] At this time, the magnetic levitation system of the magnetic levitation apparatus 1 can be linearly approximated near the levitation gap length z when the attractive force of the magnet unit 107 is equal to the weight of the levitation body 111.
0  0
程式で記述される。  It is described by a formula.
[数 1]  [Number 1]
Figure imgf000008_0001
[0031] Fは磁石ユニット 107の吸引力である。 mは浮上体 111の質量である。 Rはコイル 1 z
Figure imgf000008_0001
[0031] F is the attractive force of the magnet unit 107. m is the mass of the levitated body 111. R is coil 1 z
19, 119 'とリード線 128を直列に接続したときの電気抵抗 (以下、コイル抵抗と称す )である。 zは浮上ギャップ長である。 iは電磁石 105の励磁電流である。 φは磁石ュ  The electrical resistance (hereinafter referred to as coil resistance) when 19, 119 'and the lead wire 128 are connected in series. z is the flying gap length. i is the exciting current of the electromagnet 105. φ is magnet
z  z
ニット 107の主磁束である。 eは電磁石 105の励磁電圧である。  This is the main magnetic flux of the knit 107. e is the excitation voltage of the electromagnet 105.
[0032] Δは定常浮上状態 (z = z [0032] Δ is the steady levitation state (z = z
Figure imgf000009_0001
Figure imgf000009_0001
= Δ ί ) )からの偏差を示す。記号 "·"は dZdt、偏微分 3 Z 3 h (h=z, i )は定常浮 上状態 (z = z における被偏微分関数のそれぞれの偏微分値である。 L は
Figure imgf000009_0002
= Δ ί))) Deviation from The symbol “·” is dZdt, and the partial differential 3 Z 3 h (h = z, i) is the partial differential value of the partial differential function in the steady levitation state (z = z. L is
Figure imgf000009_0002
、以下のように表させる。  It is expressed as follows.
[数 2]  [Equation 2]
LzO = Loo + N (2) LzO = L oo + N (2)
di また、前記式 1の浮上系モデルは、下記のような状態方程式となる。  di In addition, the levitation system model of Equation 1 is the following equation of state.
[数 3]  [Equation 3]
X = Ax + bez + dus X = Ax + be z + du s
(3)  (3)
γ = Cx  γ = Cx
[0034] ただし、状態ベクトル x、システム行列 A、制御行列 bおよび外乱行列 dは、以下のよ うに表される。なお、 u [0034] However, the state vector x, the system matrix A, the control matrix b, and the disturbance matrix d are expressed as follows. U
sは外力である。  s is an external force.
[数 4]  [Equation 4]
(4)
Figure imgf000009_0004
(Four)
Figure imgf000009_0004
[0035] ここで、式 4中の各パラメータは、以下のようになる。 [0035] Here, each parameter in Equation 4 is as follows.
[数 5]  [Equation 5]
ョ3333
Figure imgf000009_0003
[0036] 前記式 3中の xの各要素が浮上系の状態量である。 Cは出力行列であり、励磁電圧 eの計算に用いる状態量の検出方法により決定される。
Figure imgf000009_0003
[0036] Each element x in Equation 3 is a floating system state quantity. C is an output matrix, and is determined by the state quantity detection method used for calculating the excitation voltage e.
[0037] 磁気浮上装置 1では、ギャップセンサ 121と電流センサ 123を使用しており、ギヤッ プセンサ 121の信号を微分して速度を得る場合に、 Cは単位行列となる。  [0037] In the magnetic levitation device 1, the gap sensor 121 and the current sensor 123 are used, and when the speed is obtained by differentiating the signal of the gap sensor 121, C becomes a unit matrix.
[0038] ここで、 Fを Xの比例ゲイン、 Kを積分ゲインとして、励磁電圧 eを下記のような式 6 で与えると、磁気浮上装置 1は、特許文献 3に見られるゼロパワー制御で浮上する。 ここで、励磁電圧演算部 125において、式 6が演算されることは言うまでもない。  [0038] Here, when F is a proportional gain of X, K is an integral gain, and excitation voltage e is given by the following equation 6, magnetic levitation device 1 is levitated by zero power control as shown in Patent Document 3. To do. Here, it goes without saying that the excitation voltage calculation unit 125 calculates Equation 6.
a  a
[数 6] 2 οο 1 ez = -Fx - J KiAizdt (6) また、磁気浮上装置 1において、ギャップセンサ 121を使用せずに、励磁電流 Δ ί から浮上ギャップ長偏差 Δ ζおよびその速度 d ( Δ z) Zdtを推定するための推定手段 として、例えば同一次元状態観測器 (以下、オブザーバと称す)を適用する場合を考 える。このとき、線型制御理論によれば、オブザーバは、以下のような式で表される。 [Equation 6] 2 οο 1 e z = -Fx-J KiAi z dt (6) Also, in the magnetic levitation device 1, without using the gap sensor 121, the levitation gap length deviation Δ ζ and its deviation from the excitation current Δ ί As an estimation means for estimating the velocity d (Δz) Zdt, for example, consider the case where a same-dimensional state observer (hereinafter referred to as an observer) is applied. At this time, according to the linear control theory, the observer is expressed by the following equation.
[数 7] it - Ax + By + Eez (フ) [Equation 7] it-Ax + By + Ee z
一 χ  One χ
x a23 - α2 x a 23- α 2
a33 - α3a33- α 3
Figure imgf000010_0001
Figure imgf000010_0002
ただし、 ίϊはオブザーバの推定値状態ベクトル、 α2, α3はオブザーバの極を 決定するパラメータ、 y = Cxで C = [001]である。 [数 8] この場合、 式 7の状態観測器の推定誤差は、 式 3および式 7の演算開始時の初期 値をそれぞれ、 0および x0とすれば、 ¾下のような式で与えられる。 x(t) - x(t) = eAt(x0 - xo) …(8) このとき、励磁電圧演算部 125においては、例えば、 ez = -Fx - J KiAizdt ·■· (9) が演算され、 磁気浮上系の安定化が達成される。
Figure imgf000010_0001
Figure imgf000010_0002
Where ίϊ is the estimated state vector of the observer, α 2 and α 3 are parameters that determine the poles of the observer, y = Cx and C = [001]. [Equation 8] In this case, the estimation error of the state observer of Equation 7 is given by the following equation if the initial values at the start of computation of Equation 3 and Equation 7 are 0 and x 0 , respectively: . x (t) −x (t) = e At (x 0 −xo) ( 8 ) At this time, in the excitation voltage calculation unit 125, for example, e z = -Fx-J KiAi z dt · ■ · (9) is calculated, and stabilization of the magnetic levitation system is achieved.
一般に、 常電導吸引式磁気浮上系は不安定なため、 状態観測器の推定値に誤差 があると安定化が非常に困難となるが、 式 8力 ら明らかなようにあらかじめォブ ザーバが動作を開始するときの Χοすなわち、 浮上ギャップ長偏差 Δζ、 その速度 d(Az) I dtおよび励磁電流 Aiの値が既知であればオブザーバの初期値 0をできる だけ x0に等しく設定することで推定当初から誤差が少ない状態で励磁電流 Aizか ら浮上ギヤップ長偏差 Δζおよびその速度 d(Az) I dtを推定することができる。 In general, the normal magnetic attraction type magnetic levitation system is unstable, so if there is an error in the estimated value of the state observer, it will be very difficult to stabilize, but as shown in Equation 8, the observer will operate in advance. Χο, ie, the flying gap length deviation Δζ, its speed d (Az) I dt and the excitation current Ai are known by setting the observer's initial value 0 as equal to x 0 as possible From the beginning, the flying gear gap length deviation Δζ and its velocity d (Az) I dt can be estimated from the excitation current Ai z with little error.
[0041] ここで、推定当初の誤差が大きいと、式 9で異常な励磁電圧が演算されるため、浮 上状態の安定ィ匕ができなくなる。 [0041] Here, if the error in the initial estimation is large, an abnormal excitation voltage is calculated by Equation 9, so that the floating state cannot be stabilized.
[0042] 以下、本発明の実施形態について、図面を参照して詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0043] (第 1の実施形態) [0043] (First embodiment)
図 2は本発明の第 1の実施形態に係る磁気浮上装置の構成を示す図である。その 全体構成が 1,で示されて 、る。  FIG. 2 is a diagram showing the configuration of the magnetic levitation apparatus according to the first embodiment of the present invention. The overall configuration is indicated by 1.
[0044] この磁気浮上装置 1 'にあっては、ギャップセンサ 121が省略されている。代わりに、 浮上体 111およびその浮上体 111の近傍に接触検出部 130が備えられている。接 触検出部 130は、浮上体 111が非接触状態力も接触状態になったことを、例えば圧 電ゴム 129を用いて検出する。 In the magnetic levitation apparatus 1 ′, the gap sensor 121 is omitted. Instead, the floating body 111 and the contact detection unit 130 are provided in the vicinity of the floating body 111. The contact detection unit 130 detects that the levitation body 111 is in a non-contact state force, for example, using the piezoelectric rubber 129.
[0045] また、吸引力制御部 115には、前記接触検出部 130に加えて、姿勢推定部 133、 姿勢演算部 135、推定初期化部 137、初初期値設定部 139が備えられている。 In addition to the contact detection unit 130, the suction force control unit 115 includes a posture estimation unit 133, a posture calculation unit 135, an estimation initialization unit 137, and an initial initial value setting unit 139.
[0046] 姿勢推定部 133は、励磁電流 Ai力も浮上ギャップ長偏差 Δ ζおよびその速度 d( z [0046] Attitude estimation unit 133 determines excitation gap Ai force and levitation gap length deviation Δζ and its velocity d (z
A z)Zdtを推定するものであり、例えばオブザーバで構成される。姿勢演算部 135 は、補助支持部 131で維持された姿勢から浮上状態へ移行する場合のオブザーバ の初期値となるべき Xを演算する。推定初期化部 137は、接触によりオブザーバの  A z) Estimates Zdt, and is composed of, for example, an observer. The posture calculation unit 135 calculates X to be the initial value of the observer when shifting from the posture maintained by the auxiliary support unit 131 to the floating state. The estimation initialization unit 137 detects the observer by touching.
0  0
出力値を初期状態に戻す。初期値設定部 139は、初期化されたオブザーバに姿勢 演算部 135で計算された Xを初期値として設定する。 [0047] 姿勢推定部 133によって推定された励磁電流 Ai、浮上ギャップ長偏差 Δ ζおよび Return the output value to the initial state. The initial value setting unit 139 sets X calculated by the posture calculation unit 135 as an initial value in the initialized observer. [0047] Excitation current Ai, levitation gap length deviation Δζ estimated by posture estimation unit 133 and
ζ  ζ
その速度 d ( Δ z) Zdtは励磁電圧演算部 125に入力され、この励磁電圧演算部 125 の出力によりドライバ 116を介して電磁石 105が励磁される。  The speed d (Δz) Zdt is input to the excitation voltage calculation unit 125, and the electromagnet 105 is excited via the driver 116 by the output of the excitation voltage calculation unit 125.
[0048] このように、オブザーバを初期化すると共に所定の初期値を与えることにより、浮上 体 111が停止状態から浮上する場合や、外力やその他の理由により浮上状態から接 触状態になった場合でも、励磁電流 Ai力 浮上ギャップ長偏差 Δ ζおよびその速度 [0048] As described above, when the observer is initialized and given a predetermined initial value, the levitated body 111 is levitated from the stopped state, or the levitated state is changed from the levitated state to the contact state due to an external force or other reasons. But exciting current Ai force levitation gap length deviation Δ ζ and its speed
ζ  ζ
d( A z) Zdtを推定当初力も誤差を抑えて推定することができる。その結果、浮上体 1 11を確実に浮上状態へ移行させて、その浮上状態を維持することができる。  d (A z) Zdt can be estimated with an initial error and error being suppressed. As a result, the levitated body 111 can be reliably transferred to the levitation state and maintained in the levitation state.
[0049] し力しながら、浮上状態にある浮上体 111に過渡的な外力が持続的に加えられると 、その外力に対して浮上状態を保っための吸引力制御がなされる。このとき、コイル 1 19, 119'には、励磁電流が持続的に流れて、コイル 119, 119'の温度が上昇し、 それに伴いコイル抵抗 Rが増加する。すると、式 4中のパラメータ a が増大するが、そ [0049] When a transient external force is continuously applied to the levitated body 111 that is in the levitating state while the force is applied, suction force control is performed to keep the levitating state against the external force. At this time, the exciting current continuously flows in the coils 1 19 and 119 ′, the temperature of the coils 119 and 119 ′ increases, and the coil resistance R increases accordingly. As a result, the parameter a in Equation 4 increases.
33  33
の一方で式 7で説明したオブザーバでは、ノ ラメータ a が設定時のままとなる。この  On the other hand, for the observer described in Equation 7, the parameter a remains as set. this
33  33
ため、実際の磁気浮上系とオブザーバの間に差異が生じ、励磁電流 Ai z、浮上ギヤ ップ長偏差 Δ zおよびその速度 d ( Δ z) Zdtの実際の値と推定値が乖離することにな る。本来不安定な常電導吸引式磁気浮上系では、実際の値と推定値の乖離はフィ ードバック制御による浮上状態の安定ィ匕を非常に困難なものにする。  Therefore, there is a difference between the actual magnetic levitation system and the observer, and the actual value and estimated value of the excitation current Ai z, the levitation gap length deviation Δ z, and its velocity d (Δ z) Zdt diverge. Become. In the normally unstable normally attracted magnetic levitation system, the deviation between the actual value and the estimated value makes it very difficult to stabilize the levitation state by feedback control.
[0050] ここで、例えば特許文献 4のように、磁気浮上装置 1 'には、コイル 119, 119'の抵 抗 Rを測定するための抵抗測定部 140が備えられている。この抵抗測定部 140は、 例えば、励磁電圧 eの電圧方程式から下記の式に従ってコイル抵抗 Rを測定する。 Here, as in Patent Document 4, for example, the magnetic levitation device 1 ′ is provided with a resistance measurement unit 140 for measuring the resistance R of the coils 119, 119 ′. For example, the resistance measurement unit 140 measures the coil resistance R from the voltage equation of the excitation voltage e according to the following equation.
z  z
[数 10] daiz [Equation 10] dai z
ez _ Lz0 ~― ez _ L z0 ~ ―
R = ■·■ (10)  R = ■ (10)
Διζ Δι ζ
[0051] 本発明にあっては、ゼロパワー制御で浮上体 111が浮上するため、過渡的かつ持 続的な外力に起因する励磁電流 Aiがゼロ点をクロスする。励磁電流 Aiがゼロに In the present invention, since the levitated body 111 is levitated by zero power control, the excitation current Ai caused by a transient and continuous external force crosses the zero point. Excitation current Ai is zero
z z  z z
なると、式 10の除算を不可能にするため、式 10を次のように変更する。
Figure imgf000013_0001
Then, in order to make division of Expression 10 impossible, Expression 10 is changed as follows.
Figure imgf000013_0001
[0052] ただし、 εは εくく 1で、式 11で得られる値のノイズの大きさや必要な測定精度に基 づいて適当な値に設定される。そして、前記式 11の出力に、例えば低域通過フィル タゃ平均値演算等の適当なノイズ除去処理を施せば、コイル抵抗 Rの値を測定する ことができる。 [0052] However, ε is ε less 1, and is set to an appropriate value based on the noise magnitude of the value obtained by Equation 11 and the required measurement accuracy. Then, if an appropriate noise removal process such as a low pass filter average value calculation is performed on the output of Equation 11, the value of the coil resistance R can be measured.
[0053] このようにして得られたコイル抵抗値を抵抗測定部 140から出力し、前記姿勢推定 部 133に導入して式 7中のパラメータ a を変更すれば、温度上昇により増大した式 4  [0053] If the coil resistance value obtained in this way is output from the resistance measurement unit 140 and introduced into the posture estimation unit 133 and the parameter a in Equation 7 is changed, Equation 4 increased due to temperature rise.
33  33
中のパラメータ a の値と式 7中のパラメータ a の値が一致する。よって、実際の磁気  The value of parameter a inside matches the value of parameter a in Equation 7. Therefore, the actual magnetic
33 33  33 33
浮上系とオブザーバの間に構造上の差異が生じることがなぐ励磁電流 A i、浮上ギ z ヤップ長偏差 Δ zおよびその速度 d ( Δ z) Zdtの実際の値と推定値が乖離することも ない。  The actual and estimated values of the excitation current A i, the levitation gap z yap length deviation Δ z, and its velocity d (Δ z) Zdt can be deviated from each other without structural differences between the levitation system and the observer. Absent.
[0054] さらに、本発明では、過渡的な外力の印加等により励磁電流が増加し、その影響で ドライバ 116にオフセット電圧が発生しても、当該オフセット電圧の発生が浮上ギヤッ プ長推定値や速度推定値に誤差を生じないように、推定誤差補正部 142が備えられ ている。  [0054] Furthermore, in the present invention, even if an excitation current increases due to the application of a transient external force or the like, and an offset voltage is generated in the driver 116 due to the increase, the generation of the offset voltage is caused by the estimated floating gear length or An estimation error correction unit 142 is provided so as not to cause an error in the speed estimation value.
[0055] この推定誤差補正部 142は、姿勢推定部 133の速度推定値に所定のゲインえ を  [0055] This estimation error correction unit 142 applies a predetermined gain to the estimated speed value of the posture estimation unit 133.
OS  OS
乗じるゲイン補償器 144と、ゲイン補償器 144の出力を積分する積分器 146と、積分 器 146の出力と励磁電圧演算部 125の励磁電圧値を加算する加算器 148とからなる Multiplier gain compensator 144, integrator 146 that integrates the output of gain compensator 144, and adder 148 that adds the output of integrator 146 and the excitation voltage value of excitation voltage calculator 125
。この推定誤差補正部 142は、加算器 148の出力を前記姿勢推定部 133に導入さ れる励磁電圧値として出力する。 . The estimation error correction unit 142 outputs the output of the adder 148 as an excitation voltage value introduced into the posture estimation unit 133.
[0056] このような構成により、温度変動によりオフセット電圧が生じても、推定値への影響 を最小限に抑えることができる。 With such a configuration, even if an offset voltage is generated due to temperature fluctuation, the influence on the estimated value can be minimized.
[0057] 加えて本発明では、図 3に示すように、コイル抵抗値を測定する際に、前記オフセッ ト電圧が測定値に影響しないように、励磁電圧演算部 125に目標値設定部 150とコ ィル電流収束部 152が備えられて 、る。 In addition, in the present invention, as shown in FIG. 3, when measuring the coil resistance value, the excitation voltage calculation unit 125 includes the target value setting unit 150 and the excitation voltage calculation unit 125 so that the offset voltage does not affect the measurement value. A coil current converging unit 152 is provided.
[0058] 目標値設定部 150は、コイル電流の目標値を所定の時間間隔でゼロまたは非ゼロ の値に交互に設定する。コイル電流収束部 152は、センサ出力であるコイル電流値 を前記目標値設定部 150によって設定される目標値に収束させる。 [0058] The target value setting unit 150 sets the target value of the coil current to zero or non-zero at predetermined time intervals. Set the value alternately. The coil current converging unit 152 converges the coil current value that is the sensor output to the target value set by the target value setting unit 150.
[0059] また、抵抗値測定部 140においては、電圧保存部 154と、電圧入力補償部 156と、 抵抗演算部 158とが備えられている。  In addition, the resistance value measurement unit 140 includes a voltage storage unit 154, a voltage input compensation unit 156, and a resistance calculation unit 158.
[0060] 電圧保存部 154は、前記目標値設定部 150が目標値をゼロ設定しているときの励 磁電圧値を保存する。電圧入力補償部 156は、センサ出力であるコイル電流値に基 づいて得られる電磁石 105の励磁電圧値から電圧保存部 154の出力であるオフセッ ト電圧値を減算した値を励磁電圧の補償値として出力する。抵抗演算部 158は、そ の励磁電圧補償値およびコイル電流値を用いて、前記式 11に従ってコイル抵抗 Rを 測定する。  The voltage storage unit 154 stores the excitation voltage value when the target value setting unit 150 sets the target value to zero. The voltage input compensation unit 156 subtracts the offset voltage value output from the voltage storage unit 154 from the excitation voltage value of the electromagnet 105 obtained based on the coil current value that is the sensor output as the excitation voltage compensation value. Output. The resistance calculation unit 158 measures the coil resistance R according to the equation 11 using the excitation voltage compensation value and the coil current value.
[0061] このような構成において、電圧保存部 154は、目標値設定部 150がゼロを出力する 度に、その間の励磁電圧値の直流成分を検出し、前記目標値設定部 150がゼロから 非ゼロ値に出力を変更する度に、前記直流成分の値を電圧入力補償部 156に出力 する。したがって、抵抗演算部 158の出力は目標値設定部 150がゼロから非ゼロ値 に出力を変更する度に更新されることになる。  In such a configuration, every time the target value setting unit 150 outputs zero, the voltage storage unit 154 detects the DC component of the excitation voltage value during that time, and the target value setting unit 150 is not zero. Each time the output is changed to zero, the value of the DC component is output to the voltage input compensation unit 156. Therefore, the output of the resistance calculation unit 158 is updated each time the target value setting unit 150 changes the output from zero to a non-zero value.
[0062] 一般に、常電導吸引式の磁気浮上装置では、前記励磁電流 i  [0062] In general, in a normal conducting magnetic levitation apparatus, the excitation current i
zを検出するために 電流センサ 123を使用する。今、電流センサ 123およびドライバ 116でそれぞれの温 度に依存する出力オフセットを考える。前者のオフセットを電流オフセット i 、後者の zoff オフセットを電圧オフセット e とする。  The current sensor 123 is used to detect z. Now, let us consider output offsets depending on the respective temperatures of the current sensor 123 and the driver 116. The former offset is the current offset i, and the latter zoff offset is the voltage offset e.
zoff  zoff
[0063] 浮上体 111が浮上状態にあり、目標値設定部 150からゼロが出力されている場合 に、ドライバ 116への励磁電圧の値を e 、ドライバ 116に接続されているコイル抵抗 R の値を Rとすれば、以下の電圧方程式が成立する。  [0063] When the levitated body 111 is in the levitated state and zero is output from the target value setting unit 150, the value of the excitation voltage to the driver 116 is e, and the value of the coil resistance R connected to the driver 116 is If R is R, the following voltage equation holds.
z  z
[数 12] ez z = - Rzizof f - ezof f "'は2) [Equation 12] ez z = -R zizof f- e zof f "'is 2)
[0064] この間、電圧保存部 154は、目標値設定部 150よりゼロが出力されていることを報 知する信号を受けて、 e の直流成分値を抽出すると共に前回の抽出結果を出力す る。 [0065] 続いて、目標値設定部 150から非ゼロの値 I が出力されると、コイル電流収束部 1 nz [0064] During this time, voltage storage unit 154 receives a signal reporting that zero is output from target value setting unit 150, and extracts the DC component value of e and outputs the previous extraction result. . Subsequently, when the non-zero value I is output from the target value setting unit 150, the coil current convergence unit 1 nz
52の作用で励磁電流 iは以下の式を満足する値に収束する。  With the action of 52, the excitation current i converges to a value that satisfies the following formula.
z  z
[数 13] iz + izoff = Jnz …(丄 J) [Equation 13] iz + izoff = J nz… (丄J )
[0066] ここで、ドライバ 116へ入力される電圧信号 eについて、以下の電圧方程式が成立 z Here, the following voltage equation is established for the voltage signal e input to the driver 116 z
する。  To do.
[数 14] ez + ez o f f = Rziz …(14) [ Equation 14] e z + e zoff = R z i z (14)
[0067] 式 14は、前記式 13により以下のように変形できる。 [0067] Equation 14 can be modified as follows by Equation 13 above.
[数 15] + ezoff = ^ζ^ηζ - of f ) …(15) [Equation 15] + e zo ff = ^ ζ ^ ηζ-of f)… (15)
[0068] このように、目標値設定部 150が非ゼロの値 I を出力しているとき、電圧保存部 15 nz In this way, when the target value setting unit 150 outputs the non-zero value I, the voltage storage unit 15 nz
4では、目標値設定部 150がゼロを出力しているときに抽出された電圧値 e が電圧 保持部 154に記憶されると共に、その値がオフセット電圧として電圧入力補償部 156 に出力される。  4, the voltage value e extracted when the target value setting unit 150 outputs zero is stored in the voltage holding unit 154, and the value is output to the voltage input compensation unit 156 as an offset voltage.
[0069] 励磁電圧補償部 156は、入力される電圧保存部 154の出力値 e およびドライバ 11 zz  [0069] The excitation voltage compensator 156 includes the output value e of the input voltage storage unit 154 and the driver 11 zz
6への電圧信号 eを用いて、次式に従って補償励磁電圧 e を演算する。  Using the voltage signal e to 6, calculate the compensation excitation voltage e according to the following equation.
z zm  z zm
[数 16] ezm = ez - ezz = ez + Rz!zoff + ezof f …(16) [Equation 16] ezm = e z- e zz = e z + Rz! Zoff + e zof f… (16)
[0070] 抵抗演算部 158は、励磁電圧補償部 156から出力される補償励磁電圧 e と、励磁 zm 電流 iの目標値 I に基づいて上述の式 11に関わるアルゴリズムでコイル抵抗を演算 z nz [0070] The resistance calculation unit 158 calculates the coil resistance using the algorithm related to Equation 11 above based on the compensation excitation voltage e output from the excitation voltage compensation unit 156 and the target value I of the excitation zm current i z nz
する。このときに演算された測定結果を R  To do. The measurement result calculated at this time is R
mとすれば、以下のような式が成立する。  If m, then the following equation holds.
[数 17] ezm = x mInz …レ '') また、式 16を式 17に代入して整理すると、以下のように変形できる。 [数 18] ez = RmInz ― Rzizof f ― ezoff ' " (18) [Equation 17] ezm = x m I nz… Le '') Substituting Equation 16 into Equation 17 and rearranging it can be transformed as follows. [Equation 18] ez = R m I nz ― R zizof f ― e zoff '"(18)
[0072] このとき、ドライバ 116に関わる電圧方程式である式 15も次式に変形できる。 At this time, Equation 15 which is a voltage equation related to the driver 116 can also be transformed into the following equation.
[数 19] ez = Rz¾z - Rzizoff - ezoff …(19) [Equation 19] e z = R z¾z- R zizoff- e zoff… (19)
[0073] 式 18と式 19により、以下のような式が成立する。 [0073] From the equations 18 and 19, the following equations are established.
[数 20]  [Equation 20]
Rm = Rz " " (20) [0074] すなわち、抵抗演算部 158において、電圧入力補償部 156の出力値 e を用いてド R m = R z "" (20) [0074] That is, in the resistance calculation unit 158, the output value e of the voltage input compensation unit 156 is used.
zm  zm
ライバ 116に接続されるコイル抵抗の値を測定すると、電流オフセット i 、および電  When the value of the coil resistance connected to driver 116 is measured, current offset i and current
zof  zof
圧オフセット e が変動したとしても、測定結果を常に真値に一致させることができる。  Even if the pressure offset e fluctuates, the measurement result can always match the true value.
zoff  zoff
言い換えれば、温度変動等より電流検出部 (電流センサ 123)や励磁部(ドライバ 11 6)にオフセット電圧が発生しても、そのオフセット電圧に応じた励磁電圧の補償値を 用いて常に正し 、抵抗値を測定することができる。  In other words, even if an offset voltage occurs in the current detection unit (current sensor 123) or excitation unit (driver 116) due to temperature fluctuations, etc., it is always corrected using the compensation value of the excitation voltage according to the offset voltage, The resistance value can be measured.
[0075] さらに、姿勢推定部 133では、その抵抗値に基づいて常に正しいギャップ長推定値 およびその速度推定値を出力することができる。これにより、温度変動に対して常に 安定した浮上状態を維持することが可能となる。  Furthermore, posture estimation section 133 can always output a correct gap length estimation value and speed estimation value based on the resistance value. This makes it possible to maintain a stable floating state with respect to temperature fluctuations.
[0076] また、本発明では、抵抗測定部 140で測定されたコイル抵抗 Rは励磁電圧演算部 1 25に導入されている。励磁電圧演算部 125では、外乱に対して所定の過渡応答が 得られるように、例えば式 9中のフィードバック定数 Fが決定されている。制御系設計 時のコイル抵抗 Rの関数で Fが与えられるときには、コイル抵抗 Rに基づいて Fの値を 変更すれば、外乱に対する浮上体の過渡応答が温度変動に対して一定になる。  In the present invention, the coil resistance R measured by the resistance measurement unit 140 is introduced into the excitation voltage calculation unit 125. In the excitation voltage calculator 125, for example, the feedback constant F in Equation 9 is determined so that a predetermined transient response is obtained with respect to the disturbance. When F is given as a function of the coil resistance R when designing the control system, if the value of F is changed based on the coil resistance R, the transient response of the levitated body to the disturbance becomes constant with respect to temperature fluctuations.
[0077] 以上のように、本発明では、抵抗測定部 140で測定されたコイル抵抗 Rに基づ 、て コイル電流収束部 152中でフィードバック定数 Fの値を変更している。これにより、浮 上体 111の応答が温度変動に対して一定となり、浮上状態の安定性が確保できる。 その結果、信頼性の向上が図れると共に、ギャップセンサを不要として装置の簡素化 や小型化、コストの低減化を実現できる。 As described above, in the present invention, the value of the feedback constant F is changed in the coil current converging unit 152 based on the coil resistance R measured by the resistance measuring unit 140. As a result, the response of the levitated body 111 becomes constant with respect to temperature fluctuation, and the stability of the levitated state can be ensured. As a result, the reliability can be improved and the gap sensor is not required, simplifying the device. And miniaturization and cost reduction.
[0078] (第 2の実施形態)  [0078] (Second Embodiment)
次に、本発明の第 2の実施形態について説明する。  Next, a second embodiment of the present invention will be described.
[0079] 第 2の実施形態では、浮上体の運動座標系の各モード毎に励磁電圧、励磁電流を 演算することを特徴とする。ここでは、本発明の磁気浮上装置をエレベータに適用し た場合を例にして説明する。  [0079] The second embodiment is characterized in that an excitation voltage and an excitation current are calculated for each mode of the moving coordinate system of the levitated body. Here, the case where the magnetic levitation apparatus of the present invention is applied to an elevator will be described as an example.
[0080] 図 4は本発明の第 2の実施形態に係る磁気浮上装置の構成を示す図である。この 磁気浮上装置をエレベータに適用した場合の構成が全体として符号 10で示されて いる。また、図 5はその磁気浮上装置のフレーム部の構成を示す斜視図である。図 6 はその磁気浮上装置の磁石ユニット周辺の構成を示す斜視図である。図 7はその磁 気浮上装置の磁石ユニットの構成を示す立面図である。  FIG. 4 is a diagram showing a configuration of a magnetic levitation apparatus according to the second embodiment of the present invention. The configuration when this magnetic levitation device is applied to an elevator is indicated by reference numeral 10 as a whole. FIG. 5 is a perspective view showing the configuration of the frame portion of the magnetic levitation apparatus. FIG. 6 is a perspective view showing a configuration around the magnet unit of the magnetic levitation apparatus. FIG. 7 is an elevation view showing the configuration of the magnet unit of the magnetic levitation apparatus.
[0081] 図 4に示すように、エレベータシャフト 12の内面にガイドレール 14, 14,と、移動体 1 6と、 4つの案内ユニット 18a〜18dが構成されている。ガイドレール 14, 14,は、強磁 性部材で構成され、エレベータシャフト 12内に所定の取り付け方法で敷設されてい る。  As shown in FIG. 4, guide rails 14, 14, a moving body 16, and four guide units 18 a to 18 d are formed on the inner surface of the elevator shaft 12. The guide rails 14 and 14 are made of a ferromagnetic member and are laid in the elevator shaft 12 by a predetermined mounting method.
[0082] 移動体 16は、上述した磁気浮上装置の浮上体に相当する。この移動体 16は、ガイ ドレール 14, 14'に沿って、例えばロープ 15の卷上げ機等の図示せぬ駆動機構を 介して上下方向に移動する。案内ユニット 18a〜18dは、移動体 16に取り付けられて おり、この移動体 16をガイドレール 14, 14'に対して非接触で案内する。  [0082] The moving body 16 corresponds to the floating body of the magnetic levitation apparatus described above. The moving body 16 moves up and down along the guide rails 14 and 14 'via a drive mechanism (not shown) such as a rope 15 lifting machine. The guide units 18a to 18d are attached to the moving body 16, and guide the moving body 16 to the guide rails 14, 14 'without contact.
[0083] 移動体 16には、乗りかご 20と案内ユニット 18a〜18dが取り付けられる。移動体 16 は、案内ユニット 18a〜18dの所定の位置関係を保持可能な強度を有するフレーム 部 22を備えている。図 5に示すように、このフレーム部 22の四隅には、ガイドレール 1 4, 14'と対向する案内ユニット 18a〜18dが所定の方法で取り付けられている。  [0083] A car 20 and guide units 18a to 18d are attached to the moving body 16. The moving body 16 includes a frame portion 22 having a strength capable of maintaining a predetermined positional relationship between the guide units 18a to 18d. As shown in FIG. 5, guide units 18a to 18d facing the guide rails 14 and 14 'are attached to the four corners of the frame portion 22 by a predetermined method.
[0084] 案内ユニット 18は、図 6に示すように、非磁性材料 (例えばアルミやステンレス)もし くはプラスチック製の台座 24に X方向近接センサ 26 (26b, 26b ' )、 y方向近接セン サ 28 (28b, 28b ' )および磁石ユニット 30を所定の方法で取り付けて構成されている 。近接センサ 26, 28は、案内ユニット 18とガイドレール 14, 14,の接触を検出する接 触検出部として機能する。 [0085] 磁石ユニット 30は、中央鉄心 32、永久磁石 34, 34'、電磁石 36, 36 'で構成され ており、図 7にも示されているように、永久磁石 34, 34'の同極同士が中央鉄心 32を 介して向か!/、合う状態で全体として E字形状に組み立てられて 、る。 [0084] As shown in FIG. 6, the guide unit 18 includes an X-direction proximity sensor 26 (26b, 26b '), a y-direction proximity sensor, and a non-magnetic material (for example, aluminum or stainless steel) or a plastic base 24. 28 (28b, 28b ') and the magnet unit 30 are mounted by a predetermined method. The proximity sensors 26 and 28 function as a contact detection unit that detects contact between the guide unit 18 and the guide rails 14 and 14. [0085] The magnet unit 30 includes a central iron core 32, permanent magnets 34 and 34 ', and electromagnets 36 and 36'. As shown in FIG. 7, the same polarity of the permanent magnets 34 and 34 'is provided. They face each other through the central iron core 32! / As a whole, they are assembled into an E shape.
[0086] 電磁石 36, 36,は、 L字形状の鉄心 38 (38,)をコイル 40 (40,)に挿入後、鉄心 38  [0086] The electromagnets 36 and 36 are inserted into the coil 40 (40,) after the L-shaped iron core 38 (38,) is inserted into the iron core 38.
(38 ' )の先端部に平板形状の鉄心 42を取り付けて構成されている。中央鉄心 32お よび電磁石 36, 36 'の先端部には、個体潤滑部材 43が取付けられている。この個体 潤滑部材 43は、電磁石 36, 36 'が励磁されていない時に永久磁石 34, 34'の吸引 力で磁石ユニット 30がガイドレール 14 (14' )に吸着して固着することを防止する。ま た、この個体潤滑部材 43は、磁石ユニット 30が吸着しても、移動体 16の昇降動作に 支障を与えないようにするためにある。この個体潤滑部材 43としては、例えばテフ口 ン (登録商標)や黒鉛あるいは二硫ィ匕モリブデン等を含有する材料がある。  A flat core 42 is attached to the tip of (38 '). A solid lubricating member 43 is attached to the tip of the central iron core 32 and the electromagnets 36 and 36 ′. This solid lubricating member 43 prevents the magnet unit 30 from being attracted and fixed to the guide rail 14 (14 ') by the attractive force of the permanent magnets 34, 34' when the electromagnets 36, 36 'are not excited. In addition, the solid lubricating member 43 is provided so as not to hinder the moving up and down operation of the moving body 16 even if the magnet unit 30 is attracted. As this solid lubricating member 43, for example, there is a material containing Teflon (registered trademark), graphite, molybdenum disulfide or the like.
[0087] 以下では、簡単のために、主要部分を示す番号に案内ユニット 18a〜18dのアルフ ァベット (a〜d)を付して説明する。  [0087] Hereinafter, for the sake of simplicity, the alphabets (a to d) of the guide units 18a to 18d are attached to the numbers indicating the main parts.
[0088] 磁石ユニット 30bでは、コイル 40b, 40b,を個別に励磁することでガイドレール 14, に作用する吸引力 方向と X方向に関して独立に制御することができる。この制御 方式については、特許文献 1に詳細が開示されており、ここでは詳しい説明を省略す る。  [0088] In the magnet unit 30b, the coils 40b and 40b can be separately excited and controlled independently of the attractive force direction acting on the guide rail 14 and the X direction. Details of this control method are disclosed in Patent Document 1, and detailed description thereof is omitted here.
[0089] 案内ユニット 18a〜18dの各吸引力は、上述した吸引力制御部として用いられる制 御装置 44により制御され、乗りかご 20およびフレーム部 22がガイドレール 14, 14, に対して非接触に案内される。  [0089] Each suction force of the guide units 18a to 18d is controlled by the control device 44 used as the suction force control unit described above, and the car 20 and the frame part 22 are not in contact with the guide rails 14, 14, and so on. Be guided to.
[0090] なお、制御装置 44は図 4の例では分割されている力 例えば図 8に示すように、全 体として 1つに構成されて 、ても良!、。  [0090] It should be noted that the control device 44 may be configured as a single force as a whole as shown in FIG. 8, for example, as shown in FIG.
[0091] 図 8は同実施形態における制御装置内の構成を示すブロック図である。図 9はその 制御装置内のモード制御電圧演算回路の構成を示すブロック図である。なお、ブロッ ク図において、矢印線は信号経路を、棒線はコイル 40周辺の電力経路を示している  FIG. 8 is a block diagram showing a configuration within the control device in the same embodiment. FIG. 9 is a block diagram showing the configuration of the mode control voltage arithmetic circuit in the control device. In the block diagram, the arrow line indicates the signal path, and the bar line indicates the power path around the coil 40.
[0092] この制御装置 44は、センサ部 61と、演算回路 62と、パワーアンプ 63a, 63a'〜63 d, 63d'とで構成されており、これらで 4つの磁石ユニット 30a〜30dの吸引力を X軸, y軸にっ 、て独立に制御して 、る。 The control device 44 includes a sensor unit 61, an arithmetic circuit 62, and power amplifiers 63a, 63a ′ to 63d, 63d ′, and these are the attraction forces of the four magnet units 30a to 30d. X axis, The y axis is controlled independently.
[0093] センサ部 61は、乗りかご 20に取付けられて磁石ユニット 30a〜30dによって形成さ れる磁気回路中の起磁力あるいは磁気抵抗、もしくは、移動体 16の運動の変化を検 出する。 The sensor unit 61 is attached to the car 20 and detects magnetomotive force or magnetic resistance in the magnetic circuit formed by the magnet units 30a to 30d, or changes in the motion of the moving body 16.
[0094] 演算回路 62は、このセンサ部 61からの信号に基づいて移動体 16を非接触案内さ せるベぐ各コイル 40a, 40a,〜40d, 40d'を励磁するための印加電圧を演算する 吸引力制御部として用いられる。パワーアンプ 63a, 63a'〜63d, 63d'は、この演算 回路 62の出力に基づ 、て各コイル 40に電力を供給する励磁部として用いられる。  The arithmetic circuit 62 calculates an applied voltage for exciting the coils 40a, 40a, ˜40d, and 40d ′ that guide the moving body 16 in a non-contact manner based on the signal from the sensor unit 61. Used as a suction force control unit. The power amplifiers 63a, 63a ′ to 63d, 63d ′ are used as excitation units for supplying power to the coils 40 based on the output of the arithmetic circuit 62.
[0095] また、電源 46は、パワーアンプ 63a, 63a'〜63d, 63d'に電力を供給すると同時 に定電圧発生装置 48にも電力を供給している。なお、この電源 46は、照明やドアの 開閉のために図示せぬ電源線でエレベータシャフト 12外力 供給される交流をパヮ 一アンプへの電力供給に適した直流に変換する機能を有している。  In addition, the power supply 46 supplies power to the power amplifiers 63a, 63a ′ to 63d, 63d ′ and also supplies power to the constant voltage generator 48 at the same time. The power source 46 has a function of converting the alternating current supplied from the elevator shaft 12 external force by a power line (not shown) for lighting and door opening / closing to a direct current suitable for supplying power to the amplifier. .
[0096] 定電圧発生装置 48は、パワーアンプ 63への大電流の供給などにより電源 46の電 圧が変動しても常に一定の電圧で演算回路 62および近接センサ 26a, 26a'〜26d , 26d' , 28a, 28a'〜28d, 28d'【こ電力を供給する。これ【こより、演算回路 62およ び近接センサ 26a, 26a'〜26d, 26d' , 28a, 28a'〜28d, 28d' ίま常【こ正常【こ動 作する。  [0096] The constant voltage generator 48 always maintains the operation circuit 62 and the proximity sensors 26a, 26a 'to 26d, 26d at a constant voltage even if the voltage of the power source 46 fluctuates due to the supply of a large current to the power amplifier 63. ', 28a, 28a' to 28d, 28d '[Supply power. From this point, the arithmetic circuit 62 and the proximity sensors 26a, 26a 'to 26d, 26d', 28a, 28a 'to 28d, 28d' are normally operated.
[0097] センサ部 61は、前述した近接センサ 26a, 26a'〜26d, 26d' , 28a, 28a'〜28d , 28d,と、各コイル 40の励磁電流を検出する電流検出器 66a, 66a,〜66d, 66d' で構成されている。  The sensor unit 61 includes the proximity sensors 26a, 26a ′ to 26d, 26d ′, 28a, 28a ′ to 28d, 28d, and the current detectors 66a, 66a,. 66d, 66d '.
[0098] 演算回路 62は、図 4に示される運動座標系の各モード毎に移動体 16の案内制御 を行っている。ここで、前記各モードとは、移動体 16の重心の y座標に沿った前後動 を表す yモード (前後動モード)、 X座標に沿った左右動を表す Xモード (左右動モード )、移動体 16の重心回りのローリングを表す Θモード(ロールモード)、移動体 16の重 心回りのピッチングを表す モード(ピッチモード)、移動体 16の重心回りのョーイン グを表す Φモード(ョーモード)である。  The arithmetic circuit 62 performs guidance control of the moving body 16 for each mode of the motion coordinate system shown in FIG. Here, the above-mentioned modes are y mode (back and forth motion mode) representing the back and forth movement along the y coordinate of the center of gravity of the moving body 16, X mode (left and right motion mode) representing the left and right motion along the X coordinate, and movement. Θ mode (roll mode) representing rolling around the center of gravity of the body 16, mode representing pitching around the center of the moving body 16 (pitch mode), and Φ mode (yo mode) representing gyration around the center of gravity of the moving body 16 is there.
[0099] また、この 5つのモードに加え、演算回路 62は、 ζモード(全吸引モード)、 δモー ド(ねじれモード)、 γモード (歪モード)についても案内制御を行っている。すなわち 、磁石ユニット 30a〜30dがガイドレール 14, 14'に及ぼす「全吸引力」、磁石ュニッ ト 30a〜30dがフレーム部 22に及ぼす z軸周りの「ねじれトルク」、磁石ユニット 30a, 3 Od力 Sフレーム咅 22に、磁石ユニット 30b, 30c力 Sフレーム咅 22に及ぼ、す回転トノレクで フレーム部 22を z軸に対して左右対称に歪ませる「歪力」に関する 3つのモードである [0099] In addition to these five modes, the arithmetic circuit 62 also performs guidance control in the ζ mode (full suction mode), δ mode (twist mode), and γ mode (distortion mode). Ie `` Total attractive force '' exerted on the guide rails 14, 14 'by the magnet units 30a to 30d, `` Torsion torque''around the z-axis exerted on the frame part 22 by the magnet units 30a to 30d, and the magnet units 30a, 3 Od force S There are three modes related to the “distortion force” that exerts a force on the frame 磁石 22 and the magnet unit 30b, 30c force on the S frame 咅 22.
[0100] 以上のような 8つのモードに対し、磁石ユニット 30a〜30dのコイル電流をゼロに収 束させることで、積荷の重量に関わらず永久磁石 34の吸引力だけで移動体を安定 に支持する。これが、いわゆる「ゼロパワー制御」による案内制御である。 [0100] For the above eight modes, by converging the coil currents of the magnet units 30a to 30d to zero, the moving body can be stably supported only by the attractive force of the permanent magnet 34 regardless of the weight of the load. To do. This is guidance control by so-called “zero power control”.
[0101] 演算回路 62は、第 1の演算する機能と第 2の演算する機能を備える。第 1の演算す る機能は、浮上体である移動体 16の運動の自由度に寄与する吸引力を発生させる 励磁電流の線形結合で表させるモード別励磁電流を演算する機能である。第 2の演 算する機能は、励磁電圧の線形結合で表させるモード別励磁電圧を演算する機能 である。具体的には、次のように構成される。  [0101] The calculation circuit 62 has a first calculation function and a second calculation function. The first calculation function is a function for calculating an excitation current for each mode expressed by a linear combination of excitation currents that generate an attractive force that contributes to the freedom of movement of the moving body 16 that is a floating body. The second function to calculate is the mode-specific excitation voltage that is expressed by a linear combination of excitation voltages. Specifically, it is configured as follows.
[0102] すなわち、図 8に示すように、演算回路 62は、目標値設定部 74と、抵抗測定部 64 と、電流偏差座標変換回路 83と、制御電圧演算回路 84、制御電圧座標逆変換回路 85とで構成されている。  That is, as shown in FIG. 8, the calculation circuit 62 includes a target value setting unit 74, a resistance measurement unit 64, a current deviation coordinate conversion circuit 83, a control voltage calculation circuit 84, and a control voltage coordinate reverse conversion circuit. It consists of 85.
[0103] 目標値設定部 74は、前記 8つの各モードのうち、 ζモード (全吸引モード)の励磁 電流目標値として所定の周期で交互にゼロまたは非ゼロの値を出力する。また、この 目標値設定部 74は、 yモードおよび Xモードにおいては後述の装置停止の際に所定 の値を出力する。  [0103] The target value setting unit 74 alternately outputs zero or non-zero values at predetermined intervals as the excitation current target value of the ζ mode (all suction mode) among the eight modes. Further, the target value setting unit 74 outputs a predetermined value when the apparatus is stopped, which will be described later, in the y mode and the X mode.
[0104] 抵抗測定部 64は、各コイル 40a, 40a'〜40d, 40d'の励磁電流検出値と演算回 路 62の各ノ ヮ一アンプ 63a, 63a,〜63d, 63d,への励磁電圧信号 ea, ea,〜ed, e d'および前記目標値設定部 74の出力値に基づ 、て、それぞれのコイルの電気抵抗 値を出力する。  [0104] The resistance measuring unit 64 is configured to detect the excitation current detection values of the coils 40a, 40a 'to 40d, 40d' and the excitation voltage signals to the respective amplifiers 63a, 63a, to 63d, 63d of the arithmetic circuit 62. Based on ea, ea, ˜ed, ed ′ and the output value of the target value setting unit 74, the electrical resistance value of each coil is output.
[0105] 電流偏差座標変換回路 83は、モード励磁電流演算部として、電流偏差信号 A ia,  [0105] The current deviation coordinate conversion circuit 83 has a current deviation signal A ia,
Δ ia,〜 Δ id, Δ id'により移動体 16の重心の y方向の運動に関わる電流偏差 Δ iy、 X方向の運動に関わる電気偏差 A ix、同重心のまわりのローリングに関わる電流偏差 Δ ί θ ,移動体 16のピッチングに関わる電流偏差 A i ξ、同重心のまわりのョーイング に関わる電流偏差 Δίφ、フレーム部 22に応力をかける ζ , δ , γに関する電流偏差 Δίζ , Δίδ , Δίγを演算する。 Δ ia, ~ Δ id, Δ id ′, current deviation related to y direction motion of the center of gravity of moving body 16 Δ iy, electrical deviation related to motion in X direction A ix, current deviation related to rolling around the center of gravity Δ ί θ, current deviation A i ξ related to pitching of moving body 16, bowing around the same center of gravity Is calculated, and current deviations Δίζ, Δίδ, and Δίγ are calculated for stress ζ, δ, and γ that apply stress to the frame portion 22.
[0106] 制御電圧演算回路 84は、モード励磁電圧演算部として、前記抵抗測定部 64、前 記目標値設定部 74および前記電流偏差座標変換回路 83の出力 Aiy, Δίχ, Δίθ , Μξ , Μφ , Δίζ , Δίδ , Δίγより y, χ, θ , ξ , φ , ζ , δ , γの各モードにお いて移動体 16を安定に磁気浮上させるモード別電磁石制御電圧 ey, ex, e Θ , e 6 , βφ , e ζ , e δ , eyを演算す <S。  The control voltage calculation circuit 84 serves as a mode excitation voltage calculation unit, and outputs Aiy, Δίχ, Δίθ, Μξ, Μφ,, output of the resistance measurement unit 64, the target value setting unit 74, and the current deviation coordinate conversion circuit 83, respectively. From Δίζ, Δίδ, Δίγ, y-, χ-, θ-, ξ-, φ-, ζ-, δ-, γ-mode electromagnet control voltages ey, ex, eΘ, e6 , βφ, e ζ, e δ, ey <S.
[0107] 制御電圧座標逆変換回路 85は、制御電圧演算回路 84の出力 ey, ex, e Θ , e 6 , Θ , θζ , e6 , eyより前記磁石ユニット 30a〜30dのそれぞれの電磁石励磁電圧 e a, ea'〜ed, ed'を演算する。この制御電圧座標逆変換回路 85の演算結果つまり ea , ea'〜ed, ed' ίま、ノ ヮ一アンプ 63a, 63a'〜63d, 63d'【こ与えられる。  The control voltage coordinate inverse transformation circuit 85 is configured to output the electromagnet excitation voltages ea of the magnet units 30a to 30d from the outputs ey, ex, e Θ, e 6, Θ, θζ, e6, ey of the control voltage calculation circuit 84, respectively. , ea 'to ed, ed'. The calculation result of the control voltage coordinate inverse transformation circuit 85, that is, ea, ea 'to ed, ed', and the other amplifiers 63a, 63a 'to 63d, 63d' are given.
[0108] なお、目標値設定部 74は、前記第 1の実施形態における少なくとも 1つの目標値設 定部 140で構成することでも良い。また、複数の目標値設定部 140で当該目標値設 定部 74を構成する場合には、それぞれの出力値がゼロになる周期に位相のずれが 存在しな!、ことは言うまでもな!/、。  Note that the target value setting unit 74 may be configured by at least one target value setting unit 140 in the first embodiment. Further, when the target value setting unit 74 is configured by a plurality of target value setting units 140, there is no phase shift in the period in which each output value becomes zero! Needless to say,! /.
[0109] また、非ゼロ値を出力する周期においては、すべてのコイルに抵抗測定用の微小 電流を供給するという目的力 少なくとも 1つのモードの目標値が非ゼロ値であれば 良 、。目標値設定部 74が励磁電流目標値として常にゼロを出力するモードがあって も何ら差し支えない。  [0109] Also, in the cycle of outputting a non-zero value, the target power of supplying a minute current for resistance measurement to all the coils is acceptable if the target value of at least one mode is a non-zero value. There is no problem even if there is a mode in which the target value setting unit 74 always outputs zero as the excitation current target value.
[0110] ここで、本実施形態では、 ζモード (全吸引モード)が非ゼロ値になるように目標値 設定部 74を構成している。この場合、すべてのコイルに同じ値の励磁電流を供給す ることができる。し力も、その際に発生する吸引力は前記フレーム部 22への応力とし て作用するので、移動体 16の姿勢が変化することがなぐ目標値設定部 74の出力 値の変化に対して乗り心地が悪ィ匕することはない。  Here, in the present embodiment, the target value setting unit 74 is configured so that the ζ mode (full suction mode) becomes a non-zero value. In this case, the same value of excitation current can be supplied to all coils. Since the suction force generated at that time acts as a stress on the frame part 22, the rider can feel comfortable against the change in the output value of the target value setting part 74 in which the posture of the moving body 16 does not change. There is no evil.
[0111] なお、後述の説明のため、図 8の電流偏差座標変換回路 83、制御電圧演算回路 8 4および制御電圧座標逆変換回路 85を浮上制御演算部 65とする。  Note that the current deviation coordinate conversion circuit 83, the control voltage calculation circuit 84, and the control voltage coordinate reverse conversion circuit 85 in FIG.
[0112] さらに、制御電圧演算回路 84は、前後動モード制御電圧演算回路 86a、左右動モ ード制御電圧演算回路 86b、ロールモード制御電圧演算回路 86c、ピッチモード制 御電圧演算回路 86d、ョーモード制御電圧演算回路 86e、全吸引モード制御電圧演 算回路 88a、ねじれモード制御電圧演算回路 88b、歪モード制御電圧演算回路 88c で構成されている。 [0112] Further, the control voltage calculation circuit 84 includes a longitudinal movement mode control voltage calculation circuit 86a, a left / right movement mode control voltage calculation circuit 86b, a roll mode control voltage calculation circuit 86c, and a pitch mode control circuit. A control voltage calculation circuit 86d, a normal mode control voltage calculation circuit 86e, an all suction mode control voltage calculation circuit 88a, a torsion mode control voltage calculation circuit 88b, and a distortion mode control voltage calculation circuit 88c.
[0113] 前後動モード制御電圧演算回路 86aは、 A iyより yモードの電磁石制御電圧 eyを 演算する。左右動モード制御電圧演算回路 86bは、 A ixより Xモードの電磁石制御 電圧 exを演算する。ロールモード制御電圧演算回路 86cは、 A i 0より 0モードの電 磁石制御電圧 e Θを演算する。ピッチモード制御電圧演算回路 86dは、 A i より ξ モードの電磁石制御電圧 e ξを演算する。ョーモード制御電圧演算回路 86eは、 A i φより φモードの電磁石制御電圧 e φを演算する。  [0113] The longitudinal motion mode control voltage calculation circuit 86a calculates the y-mode electromagnet control voltage ey from A iy. The left / right mode control voltage calculation circuit 86b calculates the X mode electromagnet control voltage ex from Aix. The roll mode control voltage calculation circuit 86c calculates the 0 mode electromagnet control voltage e Θ from A i 0. The pitch mode control voltage calculation circuit 86d calculates the ξ mode electromagnet control voltage e ξ from A i. The mode control voltage calculation circuit 86e calculates the φ-mode electromagnet control voltage e φ from A i φ.
[0114] 全吸引モード制御電圧演算回路 88aは、 A i ζより ζモードの電磁石制御電圧 e ζ を演算する。ねじれモード制御電圧演算回路 88bは、 A i δより δモードの電磁石制 御電圧 e δを演算する。歪モード制御電圧演算回路 88cは、 Δ ί γより γモードの電 磁石制御電圧 e γを演算する。  [0114] The full suction mode control voltage calculation circuit 88a calculates the ζ-mode electromagnet control voltage e ζ from A i ζ. The torsion mode control voltage calculation circuit 88b calculates a δ mode electromagnet control voltage e δ from A i δ. The distortion mode control voltage calculation circuit 88c calculates the γ-mode electromagnet control voltage e γ from Δ ί γ.
[0115] これらモードの制御電圧演算回路が図 2および図 3に示す吸引力制御部 115と同 様の構成を備えている。  [0115] The control voltage calculation circuit in these modes has the same configuration as the attractive force control unit 115 shown in Figs.
[0116] すなわち、前後動モード制御電圧演算回路 86aは、図 9に示すように、抵抗値平均 化部 90、ゲイン補償器 91、抵抗値アンバランス補正部 92、減算器 93、積分補償器 94、加算器 95、減算器 96、推定誤差補正部 142、姿モード姿勢推定部 97、推定初 期化部 98、姿勢演算部 99、初期値設定部 100および加算器 101で構成されている  That is, as shown in FIG. 9, the longitudinal movement mode control voltage calculation circuit 86a includes a resistance value averaging unit 90, a gain compensator 91, a resistance value imbalance correction unit 92, a subtractor 93, and an integral compensator 94. , Adder 95, subtractor 96, estimation error correction unit 142, figure mode posture estimation unit 97, estimation initialization unit 98, posture calculation unit 99, initial value setting unit 100, and adder 101
[0117] 抵抗値平均化部 90は、抵抗測定部 64で測定されたコイル 40a, 40a '〜40d, 40d ,の抵抗値の平均値を演算する。ゲイン補償器 91は、 A y, A y, A iyの推定値(図中 'で表示)に適当なフィードバックゲインを乗じる。 The resistance value averaging unit 90 calculates the average value of the resistance values of the coils 40a, 40a ′ to 40d, 40d measured by the resistance measurement unit 64. The gain compensator 91 multiplies the estimated values of A y, A y, and A iy (indicated by “′” in the figure) by an appropriate feedback gain.
[0118] 抵抗値アンバランス補正部 92は、当該前後動モード以外の 7つのモード別励磁電 流( Δ ix〜 Δ i γ )に抵抗測定部 64の出力に基づ 、て、各コイル抵抗値の線形結合 で得られるモード別抵抗補正ゲインを乗算すると共にそれら 7つの乗算結果の総和 を出力する。  [0118] The resistance value imbalance correction unit 92 determines each coil resistance value based on the output of the resistance measurement unit 64 based on the excitation current (Δ ix to Δ i γ) for each of the seven modes other than the forward / backward movement mode. Multiply the resistance correction gain for each mode obtained by linear combination of and output the sum of these seven multiplication results.
[0119] 減算器 93は、 A iyを目標値設定部 74の出力より減じる。積分補償器 94は、減算 器 93の出力値を積分し適当なフィードバックゲインを乗じる。加算器 95は、ゲイン補 償器 91の出力値の総和を演算する。減算器 96は、加算器 95の出力値を積分補償 器 94の出力値より減じて yモード (前後動モード)の第 1のモード別励磁電圧 eylを出 力する。 The subtractor 93 subtracts A iy from the output of the target value setting unit 74. The integral compensator 94 subtracts Integrate the output value of unit 93 and multiply by the appropriate feedback gain. The adder 95 calculates the sum of the output values of the gain compensator 91. The subtractor 96 subtracts the output value of the adder 95 from the output value of the integral compensator 94 and outputs the first mode excitation voltage eyl in the y mode (forward / reverse operation mode).
[0120] 推定誤差補正部 142は、モード推定誤差補正部として、モード毎の第 1のモード別 励磁電圧におけるパワーアンプ 63のオフセット電圧成分を補正する。モード姿勢推 定部 97は、姿勢推定部 133と同様に推定誤差補正部 142の出力値とモード別電流 偏差 Aiyから Ay, Δγ, Δ iyの推定値を演算する。  [0120] The estimation error correction unit 142, as a mode estimation error correction unit, corrects the offset voltage component of the power amplifier 63 in the first mode-specific excitation voltage for each mode. As with the posture estimation unit 133, the mode posture estimation unit 97 calculates the estimated values of Ay, Δγ, and Δiy from the output value of the estimation error correction unit 142 and the current deviation Aiy for each mode.
[0121] 推定初期化部 98は、 16個の近接センサ信号の ONZOFFに基づいてモード姿勢 推定部 97中の積分演算を初期化する。姿勢演算部 99は、 16個の近接センサ信号 の ONZOFFに基づいて移動体 16の接触時の姿勢を演算して各磁石ユニット 30の モード別位置偏差を出力する。  [0121] The estimation initialization unit 98 initializes the integral operation in the mode posture estimation unit 97 based on ONZOFF of the 16 proximity sensor signals. The attitude calculation unit 99 calculates the attitude when the moving body 16 is in contact based on ONZOFF of the 16 proximity sensor signals, and outputs the position deviation of each magnet unit 30 by mode.
[0122] 初期値設定部 100は、姿勢演算部 99の演算結果をモード姿勢推定部 97の初期 化時に積分動作の初期値として設定する。加算器 101は、前記第 1のモード別励磁 電圧 eylと前記抵抗値アンバランス補正部 92の出力を加算し、その加算結果を第 2 のモード別励磁電圧 eyとして出力する。  [0122] The initial value setting unit 100 sets the calculation result of the posture calculation unit 99 as the initial value of the integration operation when the mode posture estimation unit 97 is initialized. The adder 101 adds the first mode-specific excitation voltage eyl and the output of the resistance value imbalance correction unit 92, and outputs the addition result as the second mode-specific excitation voltage ey.
[0123] なお、モード姿勢推定部 97、推定初期化部 98、姿勢演算部 99および初期値設定 部 100については特許文献 4で詳細に記述その詳しい説明は省略する。  It should be noted that mode posture estimation unit 97, estimation initialization unit 98, posture calculation unit 99, and initial value setting unit 100 are described in detail in Patent Document 4, and detailed description thereof is omitted.
[0124] また、左右動モード制御電圧演算回路 86b、ロールモード制御電圧演算回路 86c 、ピッチモード制御演算回路 86dおよびョーモード制御演算回路 86eについても、前 記上下動モード制御電圧演算回路 86aと同様の構成であり、対応する入出力信号を 信号名で示し、その説明は省略するものとする。  [0124] Also, the left / right mode control voltage calculation circuit 86b, the roll mode control voltage calculation circuit 86c, the pitch mode control calculation circuit 86d, and the short mode control calculation circuit 86e are the same as the vertical mode control voltage calculation circuit 86a. The corresponding input / output signal is indicated by the signal name, and the description thereof is omitted.
[0125] 一方、 ζ , δおよび γの 3つの各モード制御電圧演算回路 88a〜88cはすべて同 じ構成である。また、上下動モード制御電圧演算回路 86aと同じ構成要素を有するの で、同一部分に同一符号を付すと共に、区別するために、 'を付して図 10にその構 成を示す。  On the other hand, all the three mode control voltage calculation circuits 88a to 88c of ζ, δ and γ have the same configuration. Further, since it has the same constituent elements as the vertical movement mode control voltage calculation circuit 86a, the same reference numerals are given to the same parts, and the structure is shown in FIG.
[0126] 本実施形態では、図 10に示した減算器 93, 93'、ゲイン補償器 91, 91 '、積分補 償器 94, 94'、減算器 96, 96'および加算器 95がモード励磁電流収束部を形成し ている。 In this embodiment, the subtractors 93 and 93 ′, the gain compensators 91 and 91 ′, the integral compensators 94 and 94 ′, the subtractors 96 and 96 ′, and the adder 95 shown in FIG. 10 are mode-excited. Forming a current converging section ing.
[0127] 次に、以上のように構成された磁気浮上装置の動作について説明する。  [0127] Next, the operation of the magnetic levitation apparatus configured as described above will be described.
[0128] 装置が停止状態にあるときは、磁石ユニット 30a, 30dの中央鉄心 32の先端が、固 体潤滑部材 43を介してガイドレール 14の対向面に、電磁石 36a' , 36d'の先端が固 体潤滑部材 43を介してガイドレール 14の対向面にそれぞれ吸着して 、る。このとき に、固体潤滑部材 43の働きにより、移動体 16の昇降が妨げられることはない。  [0128] When the apparatus is in a stopped state, the tips of the central iron cores 32 of the magnet units 30a and 30d are opposed to the guide rail 14 via the solid lubricating member 43, and the tips of the electromagnets 36a 'and 36d' are It is adsorbed to the opposing surface of the guide rail 14 via the solid lubricating member 43. At this time, the moving of the moving body 16 is not hindered by the action of the solid lubricating member 43.
[0129] この状態で、本装置を起動させると、制御装置 44は浮上制御演算部 65の働きによ り、永久磁石 34が発生する磁束と同じ向きまたは逆向きの磁束を各電磁石 36a, 36 a'〜36d, 36d'に発生させる。また、磁石ユニット 30a〜30dとガイドレーノレ 14, 14' との間に所定の空隙長を維持させるベぐ各コイル 40に流す電流を制御する。  [0129] When the present apparatus is started in this state, the control apparatus 44 causes the electromagnets 36a, 36 to generate a magnetic flux in the same direction as or opposite to the magnetic flux generated by the permanent magnet 34 by the action of the levitation control calculation unit 65. a 'to 36d, 36d'. Further, the current flowing in each coil 40 that maintains a predetermined gap length between the magnet units 30a to 30d and the guide rails 14, 14 'is controlled.
[0130] これによつて、図 7に示すように、永久磁石 34〜鉄心 38, 42〜空隙 G〜ガイドレー ル 14 (14' )〜空隙 G"〜中央鉄心 32〜永久磁石 34の経路からなる磁気回路 Mcお よび永久磁石 34'〜鉄心 38、 42〜空隙 G'〜ガイドレール 14 (14' )〜空隙 G"〜中 央鉄心 32〜永久磁石 34の経路力もなる磁気回路 Mc,が形成される。  Accordingly, as shown in FIG. 7, from the path of the permanent magnet 34 to the iron core 38, 42 to the gap G to the guide rail 14 (14 ') to the gap G "to the central iron core 32 to the permanent magnet 34. The magnetic circuit Mc and the permanent magnet 34 'to the iron core 38, 42 to the gap G' to the guide rail 14 (14 ') to the gap G "to the central iron core 32 to the magnetic circuit Mc that forms the path force of the permanent magnet 34 are formed. Is done.
[0131] このとき、空隙 G, G' , G"におけるギャップ長は、永久磁石 34の起磁力による各磁 石ユニット 30a〜30dの磁気的吸引力が移動体 16の重心に作用する y軸方向前後 力、同 X方向左右力、移動体 16の重心を通る X軸回りのトルク、同 y軸回りのトルクお よび同 z軸回りのトルクと丁度釣合うような長さになる。  [0131] At this time, the gap length in the gaps G, G ', G "is the y-axis direction in which the magnetic attractive force of each of the magnet units 30a to 30d due to the magnetomotive force of the permanent magnet 34 acts on the center of gravity of the moving body 16 The length is exactly the same as the longitudinal force, lateral force in the X direction, torque around the X axis passing through the center of gravity of the moving body 16, torque around the y axis, and torque around the z axis.
[0132] 制御装置 44は、この釣合いを維持すべく移動体 16に外力が作用すると電磁石 36 a, 36a,〜36d, 36d,の励磁電流制御を行う。これによつて、いわゆるゼロパワー制 御がなされる。  [0132] When an external force is applied to the moving body 16 to maintain this balance, the control device 44 performs excitation current control of the electromagnets 36a, 36a, to 36d, 36d. As a result, so-called zero power control is performed.
[0133] 今、ゼロパワー制御で非接触案内されている移動体 16が図示せぬ卷上げ機によつ てガイドレール 14, 14,に沿って昇降を開始した場合に、ガイドレール 14, 14,の歪 曲等により移動体 16に揺れが生じたとする。このよう場合でも、磁石ユニット 30a〜3 Odが空隙中で電磁石と磁路を共有する永久磁石を備えているため、電磁石コイルの 励磁により速やかに磁石ユニット 30a〜30dの吸引力を制御して揺れを抑えることが できる。  [0133] Now, when the moving body 16 that is being non-contact guided by zero power control starts to move up and down along the guide rails 14 and 14 by a lifting machine (not shown), the guide rails 14 and 14 Suppose that the moving body 16 sways due to the distortion of. Even in this case, the magnet units 30a to 3Od have permanent magnets that share a magnetic path with the electromagnet in the air gap. Can be suppressed.
[0134] また、人員や積荷の偏った移動、もしくは地震等に起因するロープの揺れ等が原因 で移動体 16に過大な外力が加えられたとする。このような場合、磁石ユニット 30a〜3 Odの電磁石の温度が上昇し、電磁石コイルの電気抵抗およびパワーアンプや電流 検出器のオフセット電圧が変動する。特に、電力消費を極端に抑制できるゼロパワー 制御が用いられている場合には、過大な外力で大きな励磁電流が流れると各電磁石 コイルやパワーアンプが急激に発熱し、ギャップ長一定制御などの他の制御方式より も抵抗値の変動が大きくなる。こうなると、各運動モードでギャップ長推定値とその速 度推定値の誤差が増大し、乗り心地が極端に悪化する。 [0134] Also, due to uneven movement of personnel and cargo, or rope swings caused by earthquakes, etc. Then, it is assumed that an excessive external force is applied to the moving body 16. In such a case, the temperature of the electromagnets of the magnet units 30a to 3Od rises, and the electric resistance of the electromagnet coil and the offset voltage of the power amplifier and current detector fluctuate. In particular, when zero power control that can extremely reduce power consumption is used, when a large excitation current flows due to excessive external force, each electromagnet coil and power amplifier generate heat suddenly, and other control such as constant gap length control is performed. The resistance value fluctuates more than in this control method. If this happens, the error between the gap length estimation value and the speed estimation value increases in each motion mode, and the ride quality is extremely deteriorated.
[0135] しかし、本発明によれば、目標値設定部 74および抵抗測定部 64の作用によりパヮ 一アンプおよび電流検出器のオフセット電圧を考慮した上で、前記式 18に基づいて コイル 40の抵抗値が正確に測定される。  However, according to the present invention, the resistance of the coil 40 is determined based on the equation 18 after considering the offset voltage of the power amplifier and the current detector by the action of the target value setting unit 74 and the resistance measurement unit 64. The value is measured accurately.
[0136] したがって、抵抗測定部 64の出力値で調整されるモード姿勢推定部 97や抵抗値 アンバランス補正部 92, 92'のパラメータが正確に調整されると共に、ゲイン補償器 9 1, 91 '、積分補償器 94, 94'で抵抗値をパラメータとしたゲイン設定が可能である。 よって、前記オフセット電圧やコイル抵抗値の変動に対して非接触案内の安定性が 維持されるば力りでなぐ良好で一定な乗り心地を持続させることができる。  Accordingly, the parameters of the mode attitude estimation unit 97 and the resistance value imbalance correction units 92 and 92 ′ adjusted by the output value of the resistance measurement unit 64 are accurately adjusted, and the gain compensator 9 1, 91 ′. Integral compensators 94 and 94 ′ can set the gain using the resistance value as a parameter. Therefore, if the stability of the non-contact guidance is maintained with respect to the fluctuation of the offset voltage and the coil resistance value, it is possible to maintain a good and constant ride comfort without the force.
[0137] また、パワーアンプのオフセット電圧の変動に対してはモード別偏位およびモード 別偏移速度において、推定誤差が生じるが、推定誤差補正部 142の動作によっても これらの誤差はゼロになる。しかし、モード姿勢推定部 97の推定値が真値に収束す る速さはコイル抵抗測定値の正確性に依存している。したがって、抵抗測定部 67で オフセット電圧を考慮した正確な抵抗測定を行うことにより、モード姿勢推定部 97の 推定値が真値に迅速に収束する。  [0137] In addition, an estimation error occurs in the deviation for each mode and the deviation speed for each mode with respect to the fluctuation of the offset voltage of the power amplifier. . However, the speed at which the estimated value of the mode attitude estimation unit 97 converges to the true value depends on the accuracy of the coil resistance measurement value. Therefore, when the resistance measurement unit 67 performs accurate resistance measurement in consideration of the offset voltage, the estimated value of the mode posture estimation unit 97 quickly converges to a true value.
[0138] 本装置が運転を終えて停止する場合には、目標値設定部 74において、 yモードお よび Xモードの目標値をゼロ力ら徐々に負の値とする。これにより、移動体 16は、 y軸 、 X軸方向に徐々に移動し、最終的に磁石ユニット 30a, 30dの中央鉄心 32の先端 1S 固体潤滑部材 43を介してガイドレール 14の対向面に電磁石 36a' , 36d'の先端 が固体潤滑部材 43を介してガイドレール 14の対向面にそれぞれ吸着する。この状 態で装置を停止させると、目標値設定部 74の出力がすべてゼロにリセットされると共 に移動体 16がガイドレールに吸着する。 [0139] (第 3の実施形態) [0138] When the apparatus stops operation and stops, the target value setting unit 74 gradually sets the target values in the y mode and the X mode to negative values from zero force. As a result, the moving body 16 gradually moves in the y-axis and X-axis directions, and finally the electromagnet is formed on the opposite surface of the guide rail 14 via the tip 1S solid lubricating member 43 of the central core 32 of the magnet units 30a and 30d. The tips of 36a 'and 36d' are adsorbed to the opposing surface of the guide rail 14 through the solid lubricating member 43, respectively. When the apparatus is stopped in this state, the output of the target value setting unit 74 is reset to zero and the moving body 16 is attracted to the guide rail. [0139] (Third embodiment)
次に、本発明の第 3の実施形態について説明する。  Next, a third embodiment of the present invention will be described.
[0140] 前記第 1および第 2の実施形態では、磁石ユニットが浮上体側に取付けられていた 1S これは磁石ユニットの取付け位置をなんら限定するものでなぐ図 11に示すよう に、磁石ユニットを地上側に配置しても良い。なお、説明の簡単化のために、以下、 第 1および第 2の実施形態と共通する部分には同一の符号を用いて説明する。 [0140] In the first and second embodiments, the magnet unit is mounted on the floating body side. 1S This does not limit the mounting position of the magnet unit at all. As shown in FIG. It may be arranged on the side. For simplification of description, the same reference numerals are used for the parts common to the first and second embodiments.
[0141] 図 11は本発明の第 3の実施形態に係る磁気浮上装置の構成を示す図であり、その 全体の構成が符号 300で示されて 、る。 FIG. 11 is a diagram showing the configuration of a magnetic levitation apparatus according to the third embodiment of the present invention. The overall configuration is denoted by reference numeral 300.
[0142] 磁気浮上装置 300は、補助支持部 302、磁石ユニット 107、ガイド 304、防振台テ 一ブル 306、リニアガイド 308、吸引力制御部 115、パワーアンプ 313、電流センサ 1[0142] The magnetic levitation device 300 includes an auxiliary support 302, a magnet unit 107, a guide 304, a vibration isolation table 306, a linear guide 308, an attractive force controller 115, a power amplifier 313, and a current sensor 1.
23を備えている。 Has 23.
[0143] 補助支持部 302は、断面がコ字形状をなし、例えばアルミ部材などの非磁性体で 形成される。この補助支持部 302は地上に設置されている。磁石ユニット 107は、補 助支持部 302の上部下面に下向きに取付けられている。  [0143] The auxiliary support 302 has a U-shaped cross section and is formed of a nonmagnetic material such as an aluminum member. The auxiliary support portion 302 is installed on the ground. The magnet unit 107 is attached downward on the upper lower surface of the auxiliary support portion 302.
[0144] ガイド 304は、磁石ユニット 107に対向する断面がコ字形状をなし、例えば鉄などの 強磁性部材で形成されている。防振台テーブル 306は、このガイド 304を底部上面 に備えており、全体としてコ字形状に形成されている。リニアガイド 308は、防振台テ 一ブル 306の側面に取付けられ、地上に対して垂直方向にのみ動きの自由度を防 振台テーブル 306に付与する。  The guide 304 has a U-shaped cross section facing the magnet unit 107, and is formed of a ferromagnetic member such as iron. The anti-vibration table 306 includes the guide 304 on the upper surface of the bottom, and is formed in a U shape as a whole. The linear guide 308 is attached to the side surface of the vibration isolation table 306 and gives the vibration isolation table 306 freedom of movement only in the direction perpendicular to the ground.
[0145] 吸引力制御部 115は、磁石ユニット 107の吸引力を制御して防振テーブル 306を 非接触で支持するための制御を行う。パワーアンプ 313は、吸引力制御部 115の出 力に基づ 、て磁石ユニット 107を励磁するための図示せぬ電源に接続されて 、る。 電流センサ 123は、磁石ユニット 107の励磁電流を検出する。  The attraction force control unit 115 controls the attraction force of the magnet unit 107 so as to support the anti-vibration table 306 in a non-contact manner. The power amplifier 313 is connected to a power source (not shown) for exciting the magnet unit 107 based on the output of the attractive force control unit 115. The current sensor 123 detects the excitation current of the magnet unit 107.
[0146] ここで、吸引力制御部 115は、以下のような構成を有する。  Here, the attractive force control unit 115 has the following configuration.
[0147] すなわち、吸引力制御部 115は、抵抗測定部 140、接触検出部 130、姿勢演算部 135、姿勢推定部 133、初期値設定部 139、推定初期化部 137、励磁電圧演算部 1 25を備えている。  That is, the attractive force control unit 115 includes the resistance measurement unit 140, the contact detection unit 130, the posture calculation unit 135, the posture estimation unit 133, the initial value setting unit 139, the estimation initialization unit 137, and the excitation voltage calculation unit 1 25. It has.
[0148] 抵抗測定部 140は、磁石ユニット 107への励磁電流および励磁電圧からリード線 1 28およびコイル 119および 119'の直列抵抗値を測定する。接触検出部 130は、補 助支持部 302の底部上面に取付けられたマイクロスィッチ 310と磁石ユニット 107の 磁極面に貼られた圧電ゴム 312を備える。 [0148] Resistance measurement unit 140 uses lead current 1 from the excitation current and excitation voltage to magnet unit 107. Measure the series resistance of 28 and coils 119 and 119 '. The contact detection unit 130 includes a micro switch 310 attached to the bottom upper surface of the auxiliary support unit 302 and a piezoelectric rubber 312 attached to the magnetic pole surface of the magnet unit 107.
[0149] 姿勢演算部 135は、接触検出部 130の接触検出信号力も防振テーブル 306の補 助支持部 302もしくは磁石ユニット 107への接触時の浮上ギャップ長を計算する。姿 勢推定部 133は、抵抗測定部 130の出力および磁石ユニット 107への励磁電流、励 磁電圧力ゝら防振テーブル 306の浮上姿勢を推定する。  The posture calculation unit 135 calculates the floating gap length when the contact detection signal force of the contact detection unit 130 is in contact with the auxiliary support 302 or the magnet unit 107 of the vibration isolation table 306. The posture estimation unit 133 estimates the flying posture of the vibration isolation table 306 based on the output of the resistance measurement unit 130, the excitation current to the magnet unit 107, and the excitation voltage force.
[0150] 初期値設定部 139は、姿勢演算部 135の出力に基づいて姿勢推定部 133に推定 初期値を設定する。推定初期化部 137は、接触検出部 130の出力に基づいて姿勢 推定部 133を初期化する。励磁電圧演算部 125は、姿勢推定部 133の出力に基づ いて防振テーブル 306を磁気浮上させるための磁石ユニット 107への励磁電圧を演 算する。  The initial value setting unit 139 sets an estimated initial value in the posture estimation unit 133 based on the output of the posture calculation unit 135. The estimation initialization unit 137 initializes the posture estimation unit 133 based on the output of the contact detection unit 130. The excitation voltage calculation unit 125 calculates the excitation voltage to the magnet unit 107 for magnetically levitating the vibration isolation table 306 based on the output of the posture estimation unit 133.
[0151] このような構成によれば、磁石ユニット 107を地上側に配置したことにより、可動部 である防振テーブル 306からの配線がなくなり、装置の信頼性が向上するといつた利 点がある。  [0151] According to such a configuration, since the magnet unit 107 is arranged on the ground side, there is no longer any wiring from the vibration isolation table 306, which is a movable part, and there is an advantage that the reliability of the apparatus is improved. .
[0152] (第 4の実施形態)  [0152] (Fourth embodiment)
次に、第 4の実施形態について説明する。  Next, a fourth embodiment will be described.
[0153] 前記第 1乃至第 3の実施形態では、ギャップセンサを必要としないセンサレス磁気 浮上装置に本発明を適用した場合について説明した。しかしながら、本発明はセン サレス磁気浮上装置への適用を限定するものではなぐ図 12に示すように、ギャップ センサを用いた吸引式磁気浮上装置に適用することでも良い。なお、説明の簡単ィ匕 のために、以下、第 1乃至第 3の実施形態と共通する部分には同一の符号を用いて 説明する。  In the first to third embodiments, the case where the present invention is applied to a sensorless magnetic levitation apparatus that does not require a gap sensor has been described. However, the present invention is not limited to application to a sensorless magnetic levitation apparatus, but may be applied to an attraction type magnetic levitation apparatus using a gap sensor as shown in FIG. For simplicity of explanation, the same reference numerals are used for the parts common to the first to third embodiments.
[0154] 図 12は第 4の実施形態に係る磁気浮上装置の構成を示す図であり、その全体の構 成が符号 400で示されて!/、る。  FIG. 12 is a diagram showing the configuration of the magnetic levitation apparatus according to the fourth embodiment. The overall configuration is indicated by reference numeral 400.
[0155] 本実施形態における磁気浮上装置 400では、磁気浮上系の安定化のために用い られる浮上ギャップ長およびその速度の情報を前記第 1の実施形態の姿勢推定部 1 33ではなぐギャップセンサ 121および擬似微分器 402を用いて取得する。 [0156] ギャップセンサ 121の出力は、浮上ギャップ長の情報として励磁電圧演算部 125に 直接入力されると共に、擬似微分器 402を介して速度信号に変換されて励磁電圧演 算部 125に入力される。また、電流センサ 123によりコイル 119, 119 'の励磁電流が 励磁電圧演算部 125に入力される。 [0155] In the magnetic levitation apparatus 400 in the present embodiment, the gap sensor 121 that obtains information on the levitation gap length and the velocity used for stabilization of the magnetic levitation system in the attitude estimation unit 133 in the first embodiment. And using the pseudo-differentiator 402. [0156] The output of the gap sensor 121 is directly input to the excitation voltage calculator 125 as information on the flying gap length, and is also converted to a speed signal via the pseudo-differentiator 402 and input to the excitation voltage calculator 125. The In addition, the excitation current of the coils 119 and 119 ′ is input to the excitation voltage calculation unit 125 by the current sensor 123.
[0157] ここで、励磁電圧演算部 125中の目標値設定部 150および抵抗測定部 40の機能 により、前記第 1の実施形態と同様にしてパワーアンプ 313および電流センサ 123の オフセット電圧を考慮したコイル抵抗値の測定がなされる。そして、コイル電流収束部 125〖こお 、て、そのコイル抵抗値に基づ!/、て浮上体 111を安定かつ一定の過渡応 答で浮上させる励磁電圧が演算される。  Here, the offset voltage of the power amplifier 313 and the current sensor 123 is taken into account in the same manner as in the first embodiment by the functions of the target value setting unit 150 and the resistance measurement unit 40 in the excitation voltage calculation unit 125. The coil resistance value is measured. Based on the coil resistance value, the excitation voltage for levitating the levitated body 111 with a stable and constant transient response is calculated.
[0158] このような構成によれば、簡便な制御装置にて温度変動に対して常に安定した浮 上状態を維持することができる。  [0158] With such a configuration, it is possible to always maintain a stable floating state with respect to temperature fluctuations with a simple control device.
[0159] なお、前記各実施形態では、磁気浮上を行う制御装置(吸引力制御部 115)がアナ ログ的な構成として説明されている力 本発明は、アナログの制御方式に限定される ものではなぐデジタル制御にて構成することも可能である。  [0159] In the above embodiments, the control device (attraction force control unit 115) that performs magnetic levitation is described as an analog configuration. The present invention is not limited to an analog control method. It is also possible to configure with digital control.
[0160] また、励磁部の構成としてパワーアンプを用いている力 これはドライバの方式を何 ら限定するものではなぐ例えば PWM (Pulse Width Modulation)形のものであって 何ら差し支えない。  [0160] Further, the power using the power amplifier as the configuration of the excitation unit. This is not limited to the driver system, and may be of the PWM (Pulse Width Modulation) type, for example.
[0161] この他、本発明の要旨を逸脱しない範囲で種々変更可能である。要するに、本発 明は前記各実施形態そのままに限定されるものではなぐ実施段階ではその要旨を 逸脱しない範囲で構成要素を変形して具体ィ匕できる。また、前記各実施形態に開示 されている複数の構成要素の適宜な組み合わせにより、種々の形態を形成できる。 例えば、実施形態に示される全構成要素カゝら幾つかの構成要素を省略してもよい。 さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。  In addition, various modifications can be made without departing from the scope of the present invention. In short, the present invention is not limited to the above-described embodiments as they are, but can be specifically modified by modifying constituent elements without departing from the scope of the invention. Moreover, various forms can be formed by appropriately combining a plurality of constituent elements disclosed in the respective embodiments. For example, some constituent elements such as all the constituent elements shown in the embodiment may be omitted. Furthermore, constituent elements over different embodiments may be appropriately combined.
産業上の利用可能性  Industrial applicability
[0162] 本発明の磁気浮上装置によれば、オフセット電圧が温度変動等の影響により変化 しても、これらを正確に測定することができ、その測定値に基づいて浮上状態の安定 性が維持できるように浮上制御パラメータを適応させることができる。これにより、磁気 浮上系の安定性や外乱に対する過渡応答を常に設計時の状態に維持することがで き、装置の信頼性が向上する。 [0162] According to the magnetic levitation apparatus of the present invention, even when the offset voltage changes due to the influence of temperature fluctuation or the like, these can be accurately measured, and the stability of the levitation state is maintained based on the measured value. The levitation control parameters can be adapted as possible. This makes it possible to maintain the stability of the magnetic levitation system and the transient response to external disturbances at the time of design. This improves the reliability of the device.

Claims

請求の範囲 The scope of the claims
[1] 強磁性部材で構成されるガイドと、  [1] a guide composed of a ferromagnetic member;
このガイドに空隙を介して対向し、当該空隙中において磁路を共有する電磁石と永 久磁石で構成される磁石ユニットと、  A magnet unit composed of an electromagnet and a permanent magnet facing the guide through a gap and sharing a magnetic path in the gap;
前記ガイドに作用する前記磁石ユニットの吸引力で非接触支持される浮上体と、 前記電磁石のコイルに流れる電流値を検出するセンサ部と、  A levitated body that is supported in a non-contact manner by the attractive force of the magnet unit acting on the guide;
前記電磁石のコイル電流の目標値をゼロまたは非ゼロ値に交互に設定する目標値 設定部と、  A target value setting unit for alternately setting the target value of the coil current of the electromagnet to zero or a non-zero value;
この目標値設定部によって設定された目標値に前記電磁石のコイル電流を収束さ せるコイル電流収束部と、  A coil current converging unit for converging the coil current of the electromagnet to the target value set by the target value setting unit;
このコイル電流収束部による収束動作に伴い、前記センサ部から得られるコイル電 流値に基づいて前記磁石ユニットが形成する磁気回路を安定化させるための励磁電 圧値を演算する励磁電圧演算部と、  An excitation voltage calculation unit for calculating an excitation voltage value for stabilizing the magnetic circuit formed by the magnet unit based on the coil current value obtained from the sensor unit in accordance with the convergence operation by the coil current convergence unit; ,
前記目標値がゼロ設定されているときに前記励磁電圧演算部によって得られた励 磁電圧値を保存する電圧保存部と、  A voltage storage unit for storing the excitation voltage value obtained by the excitation voltage calculation unit when the target value is set to zero;
前記電磁石の励磁電圧値から前記電圧保存部に保存された励磁電圧値をオフセ ット電圧値として減算することにより励磁電圧の補償値を求める励磁電圧補償部と、 この励磁電圧補償部によって得られた補償値に基づいて前記電磁石のコイル抵抗 値を演算する抵抗演算部と、  An excitation voltage compensator for obtaining a compensation value of the excitation voltage by subtracting the excitation voltage value stored in the voltage storage unit as an offset voltage value from the excitation voltage value of the electromagnet, and obtained by the excitation voltage compensation unit. A resistance calculation unit for calculating a coil resistance value of the electromagnet based on the compensation value,
この抵抗演算部によって得られたコイル抵抗値を前記励磁電圧演算部にフィード バックして前記浮上体の浮上制御を行う制御部と  A control unit that performs feedback control of the floating body by feeding back the coil resistance value obtained by the resistance calculation unit to the excitation voltage calculation unit;
を具備したことを特徴とする磁気浮上装置。  A magnetic levitation apparatus comprising:
[2] 前記励磁電圧演算部は、前記抵抗演算部の出力に基づいて前記電磁石の励磁 電圧を演算することを特徴とする請求項 1記載の磁気浮上装置。  2. The magnetic levitation device according to claim 1, wherein the excitation voltage calculation unit calculates an excitation voltage of the electromagnet based on an output of the resistance calculation unit.
[3] 前記センサ部力 得られるコイル電流値と前記抵抗演算部によって得られたコイル 抵抗値とに基づいて、前記強磁性部材に対する前記浮上体の姿勢および姿勢変化 速度を推定する姿勢推定部を備えたことを特徴とする請求項 1記載の磁気浮上装置 [3] A posture estimation unit that estimates the posture of the floating body and the posture change speed with respect to the ferromagnetic member based on the coil current value obtained by the sensor unit force and the coil resistance value obtained by the resistance calculation unit. The magnetic levitation device according to claim 1, further comprising:
[4] 前記浮上体の運動の自由度に寄与する吸引力を発生させるための励磁電圧を所 定のモード毎に演算するモード励磁電圧演算部と、 [4] A mode excitation voltage calculation unit that calculates an excitation voltage for generating a suction force that contributes to the degree of freedom of movement of the levitated body for each predetermined mode;
前記浮上体の運動の自由度に寄与する吸引力を発生させるための励磁電流を所 定のモード毎に演算するモード励磁電流演算部とを備え、  A mode excitation current calculation unit that calculates an excitation current for generating a suction force that contributes to the degree of freedom of movement of the levitating body for each predetermined mode;
前記姿勢推定部は、前記モード励磁電流演算部および前記モード励磁電圧演算 部の出力に基づ!/、て、前記浮上体の前記強磁性部材に対する姿勢および当該姿勢 の時間変化を前記浮上体の運動の自由度毎に推定することを特徴とする請求項 3記 載の磁気浮上装置。  The attitude estimation unit is configured to determine the attitude of the levitating body with respect to the ferromagnetic member and the temporal change of the attitude based on the outputs of the mode exciting current calculating unit and the mode exciting voltage calculating unit. 4. The magnetic levitation apparatus according to claim 3, wherein the estimation is performed for each degree of freedom of movement.
[5] 前記目標値設定手段は、前記モード励磁電流演算部によって得られるモード別の 励磁電流に対して目標値を設定することを特徴とする請求項 4記載の磁気浮上装置  5. The magnetic levitation apparatus according to claim 4, wherein the target value setting means sets a target value for the excitation current for each mode obtained by the mode excitation current calculation unit.
[6] 前記コイル電流収束は、前記モード励磁電流演算部によって得られるモード別の 励磁電流を当該モードの目標値に収束させることを特徴とする請求項 4記載の磁気 浮上装置。 6. The magnetic levitation apparatus according to claim 4, wherein in the coil current convergence, the excitation current for each mode obtained by the mode excitation current calculation unit is converged to a target value of the mode.
[7] 前記浮上体が浮上状態にないときに前記浮上体と前記ガイドの位置関係を所定の 状態に維持する補助支持部と、  [7] An auxiliary support portion that maintains the positional relationship between the floating body and the guide in a predetermined state when the floating body is not in the floating state;
前記浮上体と前記ガイドとの接触を検出する接触検出部と、  A contact detection unit that detects contact between the floating body and the guide;
この接触検出部の出力に基づき接触時の前記ガイドに対する前記浮上体の姿勢を 出力する姿勢演算部と、  A posture calculation unit that outputs the posture of the floating body with respect to the guide at the time of contact based on the output of the contact detection unit;
この接触検出部の出力に基づき接触時に前記姿勢推定部を初期化する推定初期 化部と、  An estimation initialization unit that initializes the posture estimation unit at the time of contact based on the output of the contact detection unit;
前記姿勢推定部が初期化される際に前記姿勢演算部の出力値を前記姿勢推定部 の初期値として設定する初期値設定部と  An initial value setting unit that sets an output value of the posture calculation unit as an initial value of the posture estimation unit when the posture estimation unit is initialized;
を備えたことを特徴とする請求項 3記載の磁気浮上装置。  The magnetic levitation apparatus according to claim 3, further comprising:
[8] 前記姿勢推定部によって得られる姿勢変化速度の推定値に所定のゲイン乗じて積 分し、その積分結果を前記励磁電圧値に加算すると共に、その加算結果を新たな励 磁電圧値として前記姿勢推定部にフィードバックする推定誤差補正部を備えたことを 特徴とする請求項 3記載の磁気浮上装置。 [8] The posture change speed estimated value obtained by the posture estimating unit is multiplied by a predetermined gain and integrated, and the integration result is added to the excitation voltage value, and the addition result is used as a new excitation voltage value. The magnetic levitation apparatus according to claim 3, further comprising an estimation error correction unit that feeds back to the posture estimation unit.
[9] 前記姿勢推定部によって得られる姿勢変化速度の推定値に所定のゲイン乗じて積 分し、その積分結果を前記モード別励磁電圧値に加算すると共に、その加算結果を 新たなモード別の励磁電圧値として前記姿勢推定部にフィードバックするモード推定 誤差補正部を備えたことを特徴とする請求項 4記載の磁気浮上装置。 [9] The posture change speed estimated value obtained by the posture estimator is multiplied by a predetermined gain, and the integration result is added to the excitation voltage value for each mode, and the addition result is added for each new mode. 5. The magnetic levitation apparatus according to claim 4, further comprising a mode estimation error correction unit that feeds back to the posture estimation unit as an excitation voltage value.
[10] 前記浮上体が前記磁石ユニットを備えて 、ることを特徴とする請求項 1記載の磁気 浮上装置。  10. The magnetic levitation apparatus according to claim 1, wherein the levitation body includes the magnet unit.
[11] 前記浮上体が前記強磁性体部材を備えていることを特徴とする請求項 1記載の磁 気浮上装置。  11. The magnetic levitation apparatus according to claim 1, wherein the levitation body includes the ferromagnetic member.
[12] 前記センサ部が前記空隙を測定するギャップセンサを備えて 、ることを特徴とする 請求項 1記載の磁気浮上装置。  12. The magnetic levitation apparatus according to claim 1, wherein the sensor unit includes a gap sensor that measures the gap.
PCT/JP2007/054456 2006-03-20 2007-03-07 Magnetic suspension device WO2007119315A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200780006660.9A CN101390283B (en) 2006-03-20 2007-03-07 Magnetic suspension device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-077199 2006-03-20
JP2006077199A JP4509053B2 (en) 2006-03-20 2006-03-20 Magnetic levitation device

Publications (1)

Publication Number Publication Date
WO2007119315A1 true WO2007119315A1 (en) 2007-10-25

Family

ID=38609124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054456 WO2007119315A1 (en) 2006-03-20 2007-03-07 Magnetic suspension device

Country Status (3)

Country Link
JP (1) JP4509053B2 (en)
CN (1) CN101390283B (en)
WO (1) WO2007119315A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130940A1 (en) * 2008-04-22 2009-10-29 株式会社安川電機 Magnetic levitation controller
US10744887B2 (en) 2014-09-08 2020-08-18 Skytran, Inc. Levitation control system for a transportation system
CN113525099A (en) * 2021-07-12 2021-10-22 同济大学 Suspension electromagnet motion control method, system and storage medium

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099629B2 (en) * 2007-10-23 2012-12-19 東芝エレベータ株式会社 Magnetic levitation device
CN103954845B (en) * 2014-04-11 2017-01-04 西南交通大学 A kind of medium-and low-speed maglev train levitating electromagnet inductance parameters online test method based on resistance
CN107615890A (en) * 2015-05-11 2018-01-19 株式会社荏原制作所 Electromagnet apparatus, electromagnet control device, electromagnet control method and electromagnet system
CN111201384A (en) * 2017-07-27 2020-05-26 超级高铁技术公司 Enhanced permanent magnet system
CN108354259B (en) * 2018-01-21 2020-12-08 海宁百丽丝染整有限责任公司 Shoes with self-generating function
JP7155531B2 (en) * 2018-02-14 2022-10-19 株式会社島津製作所 Magnetic levitation controller and vacuum pump
CN109094421B (en) * 2018-08-06 2020-04-07 江西理工大学 Multi-point cooperative suspension control system of suspension type magnetic suspension train
JP7222848B2 (en) 2019-08-26 2023-02-15 株式会社荏原製作所 Electromagnet controller and electromagnet system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187136A (en) * 1997-09-09 1999-03-30 Ebara Corp Magnetic levitation system
JP2000262079A (en) * 1999-03-11 2000-09-22 Ebara Corp Magnetically levitated system
JP2000259252A (en) * 1999-03-09 2000-09-22 Ebara Corp Controller for magnetic levitating device
JP2002031134A (en) * 2000-05-08 2002-01-31 Tokyo Denki Univ Sensorless magnetic levitation device
JP2002140116A (en) * 2000-11-01 2002-05-17 Toshin Denki Kk Coating system
JP2003204609A (en) * 2002-01-09 2003-07-18 Toshiba Corp Magnetic levitation apparatus
JP2005117705A (en) * 2003-10-02 2005-04-28 Toshiba Corp Magnetic levitation system
JP2005298073A (en) * 2004-04-06 2005-10-27 Toshiba Elevator Co Ltd Elevating and guiding device for elevator
JP2005333772A (en) * 2004-05-21 2005-12-02 Toshiba Elevator Co Ltd Magnetic levitation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587519B2 (en) * 2000-03-16 2010-11-24 東芝エレベータ株式会社 Elevator guide device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187136A (en) * 1997-09-09 1999-03-30 Ebara Corp Magnetic levitation system
JP2000259252A (en) * 1999-03-09 2000-09-22 Ebara Corp Controller for magnetic levitating device
JP2000262079A (en) * 1999-03-11 2000-09-22 Ebara Corp Magnetically levitated system
JP2002031134A (en) * 2000-05-08 2002-01-31 Tokyo Denki Univ Sensorless magnetic levitation device
JP2002140116A (en) * 2000-11-01 2002-05-17 Toshin Denki Kk Coating system
JP2003204609A (en) * 2002-01-09 2003-07-18 Toshiba Corp Magnetic levitation apparatus
JP2005117705A (en) * 2003-10-02 2005-04-28 Toshiba Corp Magnetic levitation system
JP2005298073A (en) * 2004-04-06 2005-10-27 Toshiba Elevator Co Ltd Elevating and guiding device for elevator
JP2005333772A (en) * 2004-05-21 2005-12-02 Toshiba Elevator Co Ltd Magnetic levitation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130940A1 (en) * 2008-04-22 2009-10-29 株式会社安川電機 Magnetic levitation controller
US10744887B2 (en) 2014-09-08 2020-08-18 Skytran, Inc. Levitation control system for a transportation system
US11890946B2 (en) 2014-09-08 2024-02-06 Skytran, Inc. Levitation control system for a transportation system
CN113525099A (en) * 2021-07-12 2021-10-22 同济大学 Suspension electromagnet motion control method, system and storage medium
CN113525099B (en) * 2021-07-12 2022-08-05 同济大学 Suspension electromagnet motion control method, system and storage medium

Also Published As

Publication number Publication date
CN101390283A (en) 2009-03-18
JP4509053B2 (en) 2010-07-21
CN101390283B (en) 2010-12-08
JP2007259521A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
WO2007119315A1 (en) Magnetic suspension device
JP4499673B2 (en) Magnetic levitation device
JP5099629B2 (en) Magnetic levitation device
JP4744928B2 (en) Magnetic levitation device
JP4097848B2 (en) Elevator guide device
JP4587519B2 (en) Elevator guide device
JP5196367B2 (en) Magnetic guide device
JP5294164B2 (en) Magnetic guide device
TW200540094A (en) Magent unit, elevator guiding apparatus and weighing apparatus
JP5611790B2 (en) Magnetic levitation device
JP2967822B2 (en) Floating transfer device
JP5483692B2 (en) Magnetic levitation device
JP2012125067A (en) Magnetic levitation apparatus
JP4216683B2 (en) Magnetic levitation device
JP3871570B2 (en) Magnetic levitation device
JP4146392B2 (en) Magnetic levitation device
JP2005036839A (en) Magnetic supporting device
JP3448734B2 (en) Control device used for magnetic levitation system
JP3940680B2 (en) Weighing device
JPH11243607A (en) Magnetically levitated apparatus
JP5936918B2 (en) Magnetic levitation device
Morishita et al. The self-gap-detecting electromagnetic suspension system with robustness against variation of coil resistance
JPH05199614A (en) Levitation conveyor
JPH05199615A (en) Levitation conveyor
JPH06319208A (en) Levitation type conveying apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 200780006660.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737970

Country of ref document: EP

Kind code of ref document: A1