WO2007119306A1 - Substrate for magnetic recording medium, method for manufacturing such substrate and magnetic recording medium - Google Patents

Substrate for magnetic recording medium, method for manufacturing such substrate and magnetic recording medium Download PDF

Info

Publication number
WO2007119306A1
WO2007119306A1 PCT/JP2007/054168 JP2007054168W WO2007119306A1 WO 2007119306 A1 WO2007119306 A1 WO 2007119306A1 JP 2007054168 W JP2007054168 W JP 2007054168W WO 2007119306 A1 WO2007119306 A1 WO 2007119306A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
coating layer
magnetic recording
recording medium
resin
Prior art date
Application number
PCT/JP2007/054168
Other languages
French (fr)
Japanese (ja)
Inventor
Hideki Kawai
Satoshi Nakano
Hajime Kobayashi
Yoshiharu Masaki
Shigeru Hosoe
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2008510753A priority Critical patent/JPWO2007119306A1/en
Publication of WO2007119306A1 publication Critical patent/WO2007119306A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73925Composite or coated non-esterified substrates

Definitions

  • the present invention relates to a magnetic recording medium substrate used for a substrate of a magnetic disk recording apparatus, a manufacturing method thereof, and a magnetic recording medium, and more particularly to a magnetic recording medium substrate using a resin substrate. .
  • an aluminum substrate or a glass substrate has been used for a magnetic disk recording device used in a computer or the like.
  • a metal magnetic thin film is formed on the substrate, and information is recorded by magnetizing the metal magnetic thin film with a magnetic head (for example, Patent Documents 2 and 3).
  • a glass substrate When a glass substrate is used, a glass material is melted, and the molten glass is press-molded to produce a disk-shaped glass substrate. Then, the surface of the glass substrate is subjected to high-precision polishing IJ 'polishing and cleaning processes to smooth the surface, and then the surface is subjected to chemical strengthening treatment by ion exchange with an alkali molten salt, After passing through a precision cleaning process, a magnetic recording medium is manufactured by applying a texture and forming a Co-based alloy magnetic layer by sputtering.
  • a resin substrate such as a plastic substrate
  • a magnetic recording medium is manufactured by forming a magnetic layer on a resin substrate.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-54965
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-55001
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-163740
  • the present invention solves the above-described problem, and an object thereof is to provide a magnetic recording medium substrate capable of improving the degree of adhesion with a magnetic layer having high chemical durability. .
  • a base material made of a resin having a disk shape is used as a substrate, and a coating layer is formed in an area of 90% or more of the entire surface of the substrate.
  • a magnetic recording medium substrate is used as a substrate, and a coating layer is formed in an area of 90% or more of the entire surface of the substrate.
  • a second aspect of the present invention is the magnetic recording medium substrate according to the first aspect, wherein the coating layer is mainly composed of a metal element.
  • a third aspect of the present invention is the magnetic recording medium substrate according to the first or second aspect, wherein the coating layer formed on the main surface of the substrate is composed of a plurality of layers. It is a thing.
  • a fourth aspect of the present invention is the magnetic recording medium substrate according to any one of the first to third aspects, wherein the coating layer is made of a soft magnetic material or a nonmagnetic material. It is characterized by.
  • a fifth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to fourth aspects, wherein the substrate includes a filler material! / It is characterized by scolding.
  • a sixth aspect of the present invention is a magnetic recording medium substrate according to the fifth aspect, wherein the filler is a filler.
  • the material has a particulate shape, and its average particle diameter Df is 0.001 111 to 10 111].
  • a seventh aspect of the present invention is the magnetic recording medium substrate according to the fifth aspect, wherein the filler material has a particulate shape, the thickness Tc of the coating layer, and the filler material Average particle diameter Df is Tc
  • An eighth aspect of the present invention is the magnetic recording medium substrate according to the fifth aspect, wherein the filler material has a columnar or fibrous shape, and an average diameter Df is 0. 001 [ ⁇
  • a ninth aspect of the present invention is the magnetic recording medium substrate according to the fifth aspect, wherein the filler material has a columnar or fibrous shape, its average diameter Df, and average The length of Lf is
  • a tenth aspect of the present invention is a magnetic recording medium substrate according to the eighth or ninth aspect, wherein the thickness Tc of the coating layer, the diameter Df of the filler material, and the force Tc / Df2> 2 Meet the relationship
  • An eleventh aspect of the present invention is a magnetic recording medium substrate according to any one of the first to tenth aspects, wherein the coating layer thickness Tc force is 0.001 [/ ⁇ ⁇ ] to 50 It is characterized by [/ ⁇ ⁇ ].
  • a twelfth aspect of the present invention is the magnetic recording medium substrate according to any one of the fifth to eleventh aspects, wherein the volume ratio of the filler material to the entire substrate is 0.1 [% ] To 50 [%]. Is.
  • a thirteenth aspect of the present invention is a magnetic recording medium substrate according to any one of the fifth to twelfth aspects, wherein the surface occupancy of the filler material is 0.1 [%] on the surface of the substrate. ] ⁇ 50 [
  • a fourteenth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to thirteenth aspects, wherein a groove is formed on a surface of the substrate. is there.
  • a fifteenth aspect of the present invention is the magnetic recording medium substrate according to the fourteenth aspect, wherein the groove is selected from concentric, radial, lattice, dot, or polygonal patterns. This One or more pattern forces are also included.
  • a sixteenth aspect of the present invention is the magnetic recording medium substrate according to the fifteenth aspect, wherein the pattern is a continuous groove, a discontinuous groove, or a continuous groove and a discontinuous groove. It is characterized by being composed of a combination of
  • a seventeenth aspect of the present invention is a magnetic recording medium substrate according to any one of the fourteenth to sixteenth aspects, wherein the groove depth Dv is 0.001 [m] to l [m ].
  • An eighteenth aspect of the present invention is the magnetic recording medium substrate according to any one of the fourteenth to seventeenth aspects, wherein the groove width Wv is 0.001 [/ ⁇ ⁇ ] to 10 [ / ⁇ ⁇ ].
  • a nineteenth aspect of the present invention is a magnetic recording medium substrate according to any one of the fourteenth to eighteenth aspects, wherein a groove depth Dv, a groove width Wv, and a force Wv> Dv / It is characterized by satisfying the relationship (5).
  • a twentieth aspect of the present invention is a magnetic recording medium substrate according to any one of the fourteenth to nineteenth aspects, wherein the coating layer thickness Tc, groove depth Dv, and force TcZDv> 2 It is characterized by satisfying this relationship.
  • a twenty-first aspect of the present invention is a magnetic recording medium substrate according to any one of the first to twentieth aspects, wherein the surface roughness Ra of the substrate before the coating layer is formed is 1 [ ⁇ ! ] To 1000 [nm], the maximum valley height Rv is 5 to 5000 [nm], and the maximum peak height Rp is 3 [nm] to 3000 [nm].
  • a twenty-second aspect of the present invention is a magnetic recording medium substrate according to any one of the first to twenty-first aspects, wherein the thickness Tc of the coating layer and the substrate before the coating layer is formed The surface roughness Ra and force 5 X surface roughness Ra ⁇ coating layer thickness Tc ⁇ 1000 X surface roughness Ra are satisfied.
  • a twenty-third aspect of the present invention includes a film forming step of forming a coating layer on a region of 90% or more of the surface of a substrate made of a resin having a disk shape. This is a method for manufacturing a magnetic recording medium substrate.
  • a twenty-fourth aspect of the present invention is a method for manufacturing a magnetic recording medium substrate according to the twenty-third aspect.
  • a polishing step for polishing the coating layer wherein the thickness of the coating layer before polishing, the surface roughness Ra of the substrate before the coating layer is formed, and the thickness of the polishing of the coating layer are 5 X surface roughness Ra ⁇ polished thickness ⁇ 0.7 X X satisfies the relationship of the thickness of the coating layer before polishing.
  • a twenty-fifth aspect of the present invention is a method for manufacturing a magnetic recording medium substrate according to the twenty-fourth aspect, wherein the surface roughness Ra of the substrate after polishing is less than 0.1 l [nm] by polishing. It is characterized by that.
  • a base material made of resin having a disk shape is used as a substrate, and a coating layer is formed in an area of 90% or more of the entire surface of the substrate.
  • the magnetic recording medium is characterized in that a magnetic layer is formed on one surface.
  • the coating layer is formed in an area of 90% or more of the surface of the resin substrate, and the substrate is covered with the coating layer, the release of gas from the substrate can be prevented. Is possible. Further, since the resinous substrate is covered with the coating layer, moisture absorption by the resinous substrate can be prevented. As described above, since the chemical durability of the resin substrate can be improved, a highly reliable magnetic recording medium can be manufactured by using the resin substrate according to the present invention. .
  • FIG. 1 is a diagram showing a schematic configuration of a magnetic recording medium substrate according to an embodiment of the present invention.
  • FIG. 1A is a perspective view of the substrate, and
  • FIG. 1B is AA of the substrate. It is sectional drawing.
  • FIG. 2 is a diagram showing a pattern of grooves formed on a substrate
  • FIG. 2 (a) is a top view of the substrate
  • FIG. 2 (b) is a cross-sectional view taken along the line AA of the substrate.
  • FIG. 3 is a top view showing a pattern of grooves formed on a substrate.
  • FIG. 4 is a cross-sectional view of a substrate showing a modification of the magnetic recording medium substrate according to the embodiment of the present invention.
  • FIG. 5 is a schematic view of a substrate showing another modification of the magnetic recording medium substrate according to the embodiment of the present invention. It is sectional drawing.
  • FIG. 6 is an enlarged sectional view of a mold.
  • a magnetic recording medium substrate according to an embodiment of the present invention will be described with reference to FIG.
  • FIG. 1 is a diagram showing a schematic configuration of a magnetic recording medium substrate according to an embodiment of the present invention.
  • FIG. 1 (a) is a perspective view of the substrate
  • FIG. 1 (b) is a cross-sectional view taken along the line AA of the substrate. It is.
  • the substrate 2 has a disk shape and has a hole in the center.
  • a covering layer 3 is formed on the surface of the substrate 2 to form a magnetic recording medium substrate 1.
  • Substrate 2 is made of resin.
  • the coating layer 3 is formed on the entire surface of the substrate 2. That is, the upper surface 2a, the lower surface 2b, the inner peripheral end surface 2c, and the outer peripheral end surface 2d of the base plate 2 are covered with the coating layer 3.
  • the coating layer 3 since the surface of the substrate 2 is covered with the coating layer 3, it is possible to prevent the gas from being released from the substrate 2. Furthermore, moisture absorption by the substrate 2 can be prevented, and moisture resistance can be improved. As a result, the dimensional change of the substrate 2 due to moisture absorption can be prevented, and positional deviation from the magnetic head can be prevented.
  • chemical durability gas emission and moisture resistance
  • the coating layer 3 is formed on the entire surface of the substrate 2 to cover the entire surface.
  • the force covered by the layer 3 Since the covering layer 3 is formed in a region of 90% or more of the entire surface, the chemical durability of the magnetic recording medium substrate 1 can be improved.
  • the thickness Tc of the coating layer 3 is preferably 0.001 [/ ⁇ ⁇ ] to 50 [/ ⁇ ⁇ ], preferably the upper surface 2a, the lower surface 2b, the inner peripheral end surface 2c, and the outer peripheral surface.
  • the thickness of the covering layer on each face of the end face 2d may be the same or different.
  • the thickness of the coating layer 3 formed on the upper surface 2a is equal to the thickness of the coating layer 3 formed on the surface other than the upper surface 2a, for example, the coating layer 3 formed on the lower surface 2b. It's okay or different.
  • the thickness of the coating layer 3 on each surface is different, the chemical durability of the magnetic recording medium substrate 1 can be improved.
  • the material of the substrate 2 made of resin is described.
  • various types of resin can be used in addition to thermoplastic resin, thermosetting resin, or active ray curable resin.
  • the substrate 2 made of resin has a thermoplastic resin such as polycarbonate, polyetheretherketone resin (PEEK resin), cyclic polyolefin resin, methallyl styrene resin (MS resin), Polystyrene resin (PS resin), polyetherimide resin (PEI resin), ABS resin, polyester resin (PET resin, PBT resin, etc.), polyolefin resin (PE resin, PP resin, etc.) ), Polysulfone resin, polyether sulfone resin (PES resin), polyarylate resin, polyphenylene sulfide resin, polyamide resin, acrylic resin, and the like.
  • a thermoplastic resin such as polycarbonate, polyetheretherketone resin (PEEK resin), cyclic polyolefin resin, methallyl styrene resin (MS resin), Polystyrene resin (PS resin), polyetherimide resin (PEI resin), ABS resin, polyester resin (PET resin, PBT resin, etc.), polyolefin resin (
  • thermosetting resins examples include phenol resin, urea resin, unsaturated polyester resin (BMC resin, etc.), silicon resin, urethane resin, epoxy resin, polyimide resin, polyamide Imido resin or polybenzimidazole resin can be used.
  • BMC resin unsaturated polyester resin
  • PEN resin polyethylene naphthalate resin
  • an ultraviolet curable resin for example, an ultraviolet curable resin is used.
  • the ultraviolet curable resin include, for example, an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, Examples thereof include an ultraviolet curable epoxy resin, an ultraviolet curable silicon resin, and an ultraviolet curable acrylic resin.
  • active rays can be irradiated, for example, in an inert gas atmosphere in order to reduce or remove the oxygen concentration.
  • actinic ray infrared rays, visible light, ultraviolet rays, and the like can be appropriately selected.
  • ultraviolet rays are particularly preferred, but are not particularly limited.
  • the curing reaction may be strengthened by heating during active ray irradiation or before and after.
  • the substrate 2 made of resin may use a liquid crystal polymer, an organic Z inorganic hybrid resin (for example, a polymer component incorporating silicon as a skeleton), or the like.
  • a liquid crystal polymer for example, an organic Z inorganic hybrid resin (for example, a polymer component incorporating silicon as a skeleton), or the like.
  • the resin listed above is an example of the resin used for the substrate 2, and the substrate according to the present invention is not limited to these resins.
  • Two or more kinds of resin may be mixed to form a resin-made substrate, or a substrate in which different components are adjacent to each other as separate layers.
  • the resin as a base material has a heat-resistant temperature or a glass transition temperature Tg as high as possible. Since the magnetic layer is formed on the resin substrate 2 by sputtering, it is desirable that the heat resistant temperature or the glass transition temperature Tg is equal to or higher than the sputtering temperature. For example, it is desirable to use a resin having a heat-resistant temperature or a glass transition temperature Tg of 150 ° C or higher, more preferably 200 ° C or higher.
  • Typical heat-resisting temperature or glass transition temperature Tg of 150 ° C or higher includes heat-resistant polycarbonate, silicon resin, Teflon (registered trademark) resin, phenol filler filled with inorganic filler, melanin Resins such as epoxy, polysulfide sulfide, unsaturated polyester, polyethersulfone resin (PES resin), polyetherimide resin (PEI resin), polyamideimide resin, polyimide resin, Nzoimidazole resin, BMC resin, or liquid crystal polymer.
  • polyethersulfone resin PES resin
  • Udel Solveia Devast Polymers
  • polyetherimide resin PEI resin
  • Ultem Japan GE Plastics
  • polyamideimide resin As fat, Torlon (Solveia Devast Polymers), polyimide resin (thermoplastic), Aurum (Mitsui Chemicals), polyimide (thermosetting), Upilex (Ube Industries), or polybenzoimidazo PBlZCelazole (Clariant Japan) is an example of lube.
  • Liquid crystal polymers include SUMIKASUPER LCP (Sumitomo Chemical) and polyetheretherketone as Victorex (Vitatrex MC).
  • the covering layer 3 includes a metal layer, a magnetic layer (paramagnetic layer, soft magnetic layer, or ferromagnetic layer), an oxide layer such as a glass layer and a ceramic layer, or an inorganic layer and an organic layer. These composite layers (hybrid layers) are used.
  • the coating layer includes Mg (magnesium), Ca (calcium), Sr (strontium) Ba (barium), Ti (titanium), Sc (scandium), V (vanadium), Cr (chromium), Mn ( Manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), A1 (aluminum), Si (silicon), P (phosphorus), Ga (gallium), Ge ( Germanium), As (arsenic), Se (selenium), Y (yttrium), Zr (zirconium), Nb (niobium), Mo (molybdenum), Ru (ruthenium) Rh (rhodium), Pd (palladium), Ag ( Silver), Cd (cadmium), In (indium), Sn (tin), Sb (antimony), Te (tellurium), La (lanthanum), Ce (cerium), Pr (prasedium), Nd (neodymium), Pm (Promethium), Sm
  • the coating layer 3 can be formed on the surface of the substrate 2 by a plating method such as electric plating or chemical plating. In addition, it can be formed by sputtering, vacuum deposition, CVD method, or the like. Further, it may be formed by a coating method such as a bar coating method, a dip coating (dipping and pulling up) method, a spin coating method, a spray method, or a printing method.
  • a plating method such as electric plating or chemical plating.
  • sputtering vacuum deposition, CVD method, or the like.
  • a coating method such as a bar coating method, a dip coating (dipping and pulling up) method, a spin coating method, a spray method, or a printing method.
  • a magnetic layer is formed on the coating layer 3 formed on the upper surface 2a to obtain a magnetic recording medium.
  • the coating layer and the magnetic layer may be produced continuously, or if necessary, the magnetic layer may be produced subsequently after treating the surface of the coating layer.
  • the coating layer 3 formed on the upper surface 2a is polished, and a magnetic layer such as a Co-based alloy is formed on the polished coating layer by sputtering or the like to obtain a magnetic recording medium.
  • a perpendicular magnetic recording medium that is highly expected as a high-density technology, it is necessary to arrange magnetic materials perpendicular to the substrate surface.
  • a soft magnetic layer is required between the magnetic layer and the substrate. Need to form.
  • a typical alloy for this soft magnetic layer is a nickel-cobalt (Ni-Co) alloy.
  • Ni—Co alloy By using a Ni—Co alloy as the covering layer 3, it can also function as a soft magnetic layer in a perpendicular magnetic recording medium.
  • a resin having a polar group on the surface, a resin having a large surface roughness Ra, a resin containing a filler material, a resin having a groove on the surface, or the like is used as the material of the substrate 2.
  • the adhesion between the substrate 2 and the coating layer 3 can be increased.
  • the surface roughness Ra of the substrate 2 is increased, the area that adheres to the coating layer 3 formed on the surface increases, so that the adhesion between the substrate 2 and the coating layer 3 is increased.
  • the surface roughness Ra of the substrate 2 obtained by molding can be increased by adjusting the surface roughness Ra of the mold used when the substrate 2 is produced by injection molding or cast molding. Even if the surface roughness Ra of the substrate 2 is increased, the required surface roughness Ra can be obtained by polishing the coating layer 3 formed on the surface.
  • the surface roughness Ra specified by JIS B0601 is 1 [ ⁇ ! ] ⁇ 1000 [nm]
  • maximum valley height Rv is 5 to 5000 [nm]
  • maximum peak height Rp is 3 [nm] to 3000 [nm]! / ,.
  • the relationship between the thickness of the coating layer 3 and the surface roughness Ra of the substrate 2 before forming the coating layer 3 satisfies the following formula (1):
  • the thickness of the coating layer 3 is preferably thicker than 5 XRa in consideration of the amount of polishing.
  • the thickness of the coating layer 3 When the coating layer 3 is polished, the thickness of the coating layer 3, the surface roughness Ra of the substrate 2 before forming the coating layer 3, and the thickness of polishing the coating layer 3 are as follows: It is preferable to satisfy equation (2). [0063] Formula (2)
  • the surface roughness Ra of the coated layer 3 after polishing is preferably less than 0.1 [nm].
  • the filler material may have any shape such as a spherical shape, a cylindrical shape, an uneven shape, an elliptical shape, or a fiber shape (fiber shape). Also, the filler material can be included along one direction, which means that it is included in a random direction.
  • the filler material in the base resin, a part of the filler material protrudes from the surface of the substrate 2, and the protrusion makes the surface shape uneven.
  • the degree of unevenness can be controlled by selecting particles (for example, particle type, particle size, particle addition amount), etching, heating, energy particle irradiation, and combinations thereof.
  • the average particle diameter Df of the filler material is 0.001 [m] to 10 [m]! /.
  • the relationship between the average particle diameter Df of the filler material and the thickness Tc of the coating layer 3 satisfies the following formula (3).
  • the average diameter Df of the column is 0.0.
  • the average length Lf is in the range of 01 [m] to 50 [m] and the average length Lf is 0.002 [m] to: LOOO [m].
  • the volume ratio of the filler material to the whole substrate 2 is 0.1 [%] to 50 [%] regardless of the shape of the filler material.
  • the surface occupancy of the filler material is preferably 0.1 [%] to 50 [%]. Furthermore, it is preferred that the surface occupancy is smaller than the volume fraction! (Surface occupancy fraction). As a result, by etching the substrate 2, the filler material on the upper surface 2a disappears and irregularities are formed on the upper surface 2a.
  • the filler material metal, oxide, sulfide, carbonate, phosphorus oxide, fluoride, glass, glass fiber, carbon fiber, or the like is used.
  • the filler material is Si (silicon), A1 (aluminum), C (carbon), Sn (tin), Zn (zinc), Ti (titanium), In (indium), Mg (magnesium). Pd (palladium), Ba (barium), La (lanthanum), Ta (tantanole), Mo (molybdenum), W (tungsten), V (vanadium), or Sr (strontium) can be used.
  • oxides, sulfides, carbonates, phosphorus oxides, fluorides, and the like may be used.
  • oxides, sulfides, carbonates, phosphorus oxides, fluorides, and the like may be used.
  • the above-mentioned examples of the material of the filler material are examples of the inorganic material, but organic, inorganic composite materials may be used as the material of the filler material. May be used in combination!
  • the grooves When grooves are provided on the surface of the substrate 2, the grooves form a pattern such as concentric circles, radial shapes, lattice shapes, dot shapes, or polygonal shapes.
  • the groove may be continuous or may be interrupted and discontinuous.
  • the dot groove is formed by forming a recess at a position distant from each other.
  • a groove formed by combining a plurality of types of patterns may be formed. For example, with concentric patterns Grooves can be formed by combining radial patterns, or multiple types of continuous and discontinuous patterns can be combined.
  • FIG. Fig. 2 is a diagram showing the notches of the grooves formed in the substrate
  • Fig. 2 (a) is a top view of the substrate.
  • the substrate 2 is formed with concentric grooves 21A and grooves 21B extending radially from the center.
  • concentric grooves 21A are formed at equal intervals, and eight radial grooves 21B are formed every 45 °.
  • the number of IBs and the interval between the grooves may be appropriately changed depending on conditions such as the size and material of the substrate 2.
  • the widths of the grooves 21A and 21B may be the same or different. Further, the interval between the grooves 21A may be different depending on the groove. The angle formed by the grooves 21B may be different depending on the groove.
  • the groove is formed only on one surface of the substrate 2, but the groove may be formed on both surfaces.
  • the depth Dv (depth of the recess) of the grooves 21A and 21B is preferably 0.001 [m] to l [m].
  • the width Wv (the diameter of the recess) of the grooves 21A and 21B is preferable. It is preferable that it is 1S 0.001 [m]-10 [m].
  • the relationship between the depth Dv of the grooves 21A and 21B and the width Wv of the grooves 21A and 21B satisfies the following expression (6).
  • the degree of adhesion between the coating layer 3 and the substrate 2 can be increased.
  • FIG. 3 is a top view showing a pattern formed on the substrate.
  • a lattice-like pattern is formed by forming grooves 22 orthogonal to each other on the substrate 2.
  • the number of the grooves 22 and the interval between the grooves 22 may be appropriately changed depending on conditions such as the size and material of the substrate.
  • the widths of the grooves 22 may be the same or different.
  • a groove 23 having a hexagonal pattern force may be formed in the substrate 2.
  • a groove 24 having a triangular pattern force may be formed in the substrate 2.
  • the groove pattern is a triangular shape, a quadrangular shape, or a hexagonal shape, but may be a pattern having an octagonal shape or more.
  • grooves 22, 23, and 24 shown in FIG. 3 also satisfy the relationships of the above formulas (6) and (7).
  • the groove on the substrate 2 it is possible to form the groove directly on the substrate 2 at the time of forming the substrate by forming an original plate of the groove pattern on the mold. Further, when the groove is formed after the substrate 2 is formed, it can be formed by using a technique such as micromachining, a drawing method such as lithograph, or a chemical etching method.
  • Substrate 2 made of resin is molded using a mold having a shape corresponding to substrate 2, such as an injection molding method, a casting molding method, a sheet molding method, an injection compression molding method, or a compression molding method. Can be manufactured by law. Further, if necessary, the substrate 2 may be manufactured by cutting, punching, or press-molding the formed substrate.
  • the substrate 2 by molding the substrate 2 by the injection molding method or the like, at least one of the inner diameter size, the outer diameter size, the inner peripheral end portion shape, or the outer peripheral end portion shape of the substrate 2 is simultaneously performed.
  • molds used in the injection molding method, etc. are manufactured in accordance with the inner and outer diameter dimensions of the substrate 2, and the inner and outer diameter dimensions are completed during resin molding by using these molds. Will be.
  • a mold is manufactured according to the shape of the inner peripheral end of the substrate 2 and the shape of the outer peripheral end, and by using the mold, the shape of the inner peripheral end and the outer periphery The shape of the end is formed at the time of resin molding.
  • the surface roughness Ra of the mold surface used for molding is 1 [ ⁇ ! ] ⁇ 1000 [nm] and maximum peak height Rp is preferably 5 [nm] ⁇ 5000 [nm].
  • the surface of the mold may be composed of a smooth portion and a convex portion.
  • This mold will be described with reference to FIG. Fig. 6 is an enlarged sectional view of the mold.
  • a convex part 101 protruding outward is formed on the surface of the mold 100, and a flat part 102, which is a flat surface, is formed between the convex part 101 and the convex part 101. ing.
  • irregularities are formed on the upper surface 2a of the substrate 2, and the adhesion between the substrate 2 and the coating layer 3 can be increased by the irregularities.
  • the area S on the bottom surface of the protrusion 101 is 100 [nm 2 ] to 1000000 [nm 2 ].
  • the ratio force of the area S of all the protrusions 101 to the entire surface of the substrate is 0.001. [%] To 50 [%] is preferable.
  • a groove having a predetermined pattern is formed on the surface of the substrate 2 as in the substrate shown in FIGS. 2 and 3, by forming a pattern original on the mold 100, the substrate is molded.
  • a groove can be directly formed in the substrate 2.
  • the grooves 21A and 21B shown in FIG. 2 can be formed by changing the pattern of the convex portion 101 to a pattern in which a concentric pattern and a radial pattern are combined.
  • the groove 22 shown in FIG. 3 (a) can be formed by making the pattern of the convex portions 101 into a pattern that is perpendicular to each other.
  • a hexagonal pattern or a triangular pattern a hexagonal or triangular groove can be formed on the substrate 2.
  • the substrate 2 may be subjected to chemical treatment or physical treatment to form irregularities on the surface of the substrate 2, and then the coating layer 3 may be formed on the substrate 2.
  • unevenness is formed on the surface of the substrate 2 by performing etching, spraying of a blast material, laser processing, or machining. In this way, the surface of the substrate 2 is recessed by chemical treatment or physical treatment. By forming the projections, the adhesion between the substrate 2 and the coating layer 3 can be increased.
  • examples of the etching method include chemical etching, physical etching, and physical chemical etching.
  • Chemical etching is a method of selectively etching a removal target using a chemical reaction.
  • Physical etching is a method of etching a removal target by causing accelerated argon ions to collide with the etching target surface. Examples of physical etching include ion milling.
  • physicochemical etching is a method in which anisotropic etching is performed by using a chemical reaction between radicals (activated molecules and atoms having no charge) and the material to be etched and ion irradiation. is there . Examples of physicochemical etching include RIE (Reactive Ion Etching).
  • the coating layer 3 is formed in a region of 90% or more with respect to the entire surface of the substrate 2 by a film forming method such as a plating method. Thereafter, the coating layer 3 is polished, and a magnetic layer is formed on the coated layer 3 after polishing to obtain a magnetic recording medium.
  • a magnetic layer is formed on the covering layer 3 formed on the upper surface 2a.
  • a magnetic layer may be formed on the covering layer 3 formed on the upper surface 2a and the lower surface 2b. In this way, a magnetic layer may be formed on only one side of the magnetic recording medium substrate 1 or a magnetic layer may be formed on both sides.
  • the above description has been made by taking as an example a substrate composed of a single resin.
  • the substrate is not limited to one composed of a single resin, and may be made of metal or metal. It may be configured by coating the surface of a non-magnetic material such as glass with a resin layer.
  • a non-magnetic material coated with the resin various materials applicable as a substrate such as a resin, metal, ceramics, glass, glass ceramics, or an organic-inorganic composite material can be used.
  • FIG. 4 is a cross-sectional view of a substrate showing a modification of the magnetic recording medium substrate according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a substrate showing another modification of the magnetic recording medium substrate according to the embodiment of the present invention.
  • Modification 1 First, Modification 1 will be described with reference to FIG.
  • the coating layer 4 is formed on the upper surface 2a and the lower surface 2b of the disk-shaped substrate 2, but the coating layer is not formed on the inner peripheral end surface 2c and the outer peripheral end surface 2d. It's formed!
  • a coating layer is formed on both end surfaces of the inner peripheral end surface 2c and the outer peripheral end surface 2d, but the inner peripheral end surface 2c or the outer peripheral end surface 2d is shifted to one end surface.
  • a coating layer may be formed on the surface. That is, a coating layer may be formed on the upper surface 2a, the lower surface 2b, and the inner peripheral end surface 2c, or a coating layer may be formed on the upper surface 2a, the lower surface 2b, and the outer peripheral end surface 2d.
  • a coating layer 3 (hereinafter sometimes referred to as a “first coating layer”) is formed on the entire surface of the disk-shaped substrate 2. Further, another coating layer 5 (hereinafter sometimes referred to as “second coating layer”) is formed on the coating layer 3 on the upper surface 2a on which the magnetic layer is formed. That is, two coating layers are formed on the upper surface 2a.
  • the upper surface 2a corresponds to the “main surface” of the present invention. Then, a magnetic layer is formed on the covering layer 5 formed on the upper surface 2a to obtain a magnetic recording medium.
  • the coating layer 3 as the first coating layer is made of a material having a high degree of adhesion to the substrate 2 made of resin, and the coating layer 5 as the second coating layer is adhered to the magnetic layer.
  • Use a high degree of material As a result, the adhesion between the substrate 2 and the coating layer 3 can be increased, and the adhesion between the coating layer 5 and the magnetic layer can be increased. As a result, it is possible to prevent the coating layers 3 and 5 and the magnetic layer from peeling off.
  • the coating layer 5 is formed on the coating layer 4 formed on the upper surface 2a, and the coating layer 4 is formed on the lower surface 2b.
  • Two coating layers may be formed on both sides.
  • the upper surface 2a has a first coating.
  • a coating layer 5 as a second coating layer is formed on the coating layer 3 as a layer, and a second coating layer is formed on the coating layer 3 as the first coating layer on the lower surface 2b.
  • a certain coating layer 5 is formed.
  • a gradient component layer which is a single coating layer and gradually changes its component in the thickness direction, may be formed on the substrate 2.
  • a layer having a high degree of adhesion with the resin is formed on the side in contact with the substrate 2 and a layer having a high degree of adhesion with the magnetic layer is formed on the outermost surface side.
  • Example 1 a specific example of the magnetic recording medium substrate 1 shown in FIG. 1 will be described.
  • the coating layer 3 was formed on the entire surface of the substrate 2 and evaluated for adhesion and chemical durability.
  • Polyimide was used as a substrate material, and a resin substrate 2 was produced by injection molding.
  • Aurum made by Mitsui Engineering Co., Ltd. was used as a polyimide. The dimensions of this substrate 2 are shown below.
  • Substrate 2 thickness 0.4 [mm]
  • Ni layer was formed on the entire surface of the substrate 2 by sputtering the substrate 2. Thereafter, further sputtering was performed to form a nickel monophosphorus (Ni-P) alloy layer (hereinafter referred to as “NiP layer”) on the Ni layer. The thickness of this NiP layer was 10 [nm]. These M layer and NiP layer correspond to the coating layer 3 formed on the substrate 2.
  • the degree of adhesion of the coating layer 3 was evaluated.
  • a substrate tape peeling test was adopted as a method for evaluating the degree of adhesion. This base tape peeling test was performed in accordance with the method specified in Part 5 (Mechanical properties of paint film), Section 6 (Adhesiveness: Cross-cut method) of JIS K 5600 (General paint test method). Then, 11 cut lines that reach the substrate 2 made of resin so as to be orthogonal to each other at intervals of 1 mm are attached to the covering layer 3, and then the cellophane adhesive tape (manufactured by Nichiban Co., Ltd.) is formed on the base.
  • the substrate 2 on which the coating layer 3 is formed is kept in a constant temperature and humidity chamber at a temperature of 60 ° C and a relative humidity of 95% for 1 week, and the mass of the substrate 2 before and after the test is measured, and the chemical durability (moisture resistance) Evaluation).
  • the chemical durability was judged as good if the mass change rate was less than 0.1% and bad if it was 0.1% or more.
  • the surface of the coating layer 3 was polished.
  • a slurry mainly composed of kodiamond was used as an abrasive.
  • the surface roughness Ra of the polished magnetic recording medium substrate was 0.4 [nm].
  • a magnetic layer of a Co-based alloy was formed on the coating layer 3 formed on the surface 2a by sputtering to produce a magnetic recording medium.
  • the adhesion of the magnetic layer was evaluated.
  • the degree of adhesion of the magnetic layer was evaluated by the same method as the method for evaluating the degree of adhesion of the coating layer 3. As a result of this test, it was confirmed that the adhesion of the magnetic layer to the coating layer 3 and the substrate 2 was good.
  • the chemical durability can be increased, and the adhesion between the magnetic layer and the substrate can be increased.
  • Example 1 polyimide was used as the material for the substrate 2 made of resin, but the same effect can be obtained by using other resins described in the above embodiment. Further, the same effect can be obtained by laminating a layer having another component force such as a nickel-cobalt layer having a NiP layer as a coating layer.
  • Example 2 a specific example of the magnetic recording medium substrate 10 shown in FIG. 4 will be described.
  • the coating layer 4 was formed on the upper surfaces 2a and 2b of the substrate 2, and the adhesion and chemical durability were evaluated.
  • Polyimide was used as a substrate material, and a resin substrate 2 was produced by injection molding.
  • Aurum made by Mitsui Engineering Co., Ltd. was used as a polyimide. The dimensions of this substrate 2 are shown below.
  • Substrate 2 thickness 0.3 [mm]
  • NiP layer nickel-phosphorus alloy layer
  • the thickness of this NiP layer is 100 [nm] I got it.
  • the coating layer 4 was formed on the surfaces 2a and 2b of the substrate 2, and the coating layer was not formed on the inner peripheral end surface 2c and the outer peripheral end surface 2d of the substrate 2.
  • the coating layer 4 is formed in an area of 90% or more of the entire surface of the substrate.
  • the adhesion of the coating layer 4 was evaluated in the same manner as in Example 1. As a result, it was confirmed that the adhesion of the coating layer 4 to the substrate 2 was good.
  • Example 2 chemical durability (moisture resistance) was evaluated in the same manner as in Example 1. As a result, it was confirmed that the substrate 2 provided with the coating layer 4 showed good chemical durability.
  • the surface of the coating layer 3 was polished.
  • a slurry containing colloidal silica as a main component was used as an abrasive.
  • the surface roughness Ra of the polished magnetic recording medium substrate was 0.2 [nm].
  • a magnetic layer of a Co-based alloy was formed on the coating layer 4 formed on the surface 2a by sputtering to produce a magnetic recording medium.
  • the adhesion of the magnetic layer was evaluated by the same method as in Example 1. As a result, it was confirmed that the adhesion of the magnetic layer to the coating layer 4 and the substrate 2 was good.
  • the chemical durability can be improved without forming the coating layer 4 only on the upper surface 2a and the lower surface 2b and forming the coating layer on the outer peripheral end surface 2c and the outer peripheral end surface 2d.
  • the adhesion between the magnetic layer and the substrate can be increased.
  • the coating layer is formed in a region of 90% or more on the entire surface of the substrate 2, whereby the chemical durability can be increased, and the magnetic layer and The degree of adhesion with the substrate can be increased.
  • Example 1 and Example 2 a comparative example for Example 1 and Example 2 will be described.
  • a magnetic recording medium was manufactured by forming a Co-based alloy magnetic layer on a resin (polyimide) substrate by sputtering.
  • the magnetic layer was formed directly on the resin-made substrate without forming the coating layer.
  • Polyimide was used as the substrate material, and a resin-made substrate was produced by injection molding.
  • Aurum Mitsubishi Chemical Co., Ltd. was used as the polyimide. The dimensions of this substrate are shown below.
  • a magnetic layer of a Co-based alloy was formed on the resin substrate by sputtering to produce a magnetic recording medium.
  • Example 2 chemical durability (moisture resistance) was evaluated. As a result, it was confirmed that the substrate on which the magnetic layer was formed had a mass increase rate of 0.1% or more, and the chemical durability as a magnetic recording medium was not good.
  • Example 2 After the magnetic layer was formed on a resin substrate, the adhesion of the magnetic layer was evaluated in the same manner as in Example 1 and Example 2. As a result, the adhesion degree of the magnetic layer to the substrate falls under Category 4 in Table 1 of JIS K 5600, and it was confirmed that the adhesion degree was not sufficient. (Comparative Example 2)
  • a sample was prepared in the same manner as in Example 1 except that the coating layer 3 was formed on 90% of the upper surface 2a and 90% of the lower surface 2b of the substrate 2 in Example 1. That is, in this example, the coating layer 3 is formed in 90% of the area on the upper surface 2a and the lower surface 2b of the substrate 2, but the coating layer 3 is formed on all of the inner peripheral end surface 2c and all of the outer peripheral end surface 2d. Therefore, the covering layer is formed only in an area of less than 90% of the entire surface of the substrate 2. [0117] In this comparative sample, it was confirmed that the coating layer had good adhesion, but the chemical durability was evaluated as poor.

Abstract

Provided is a substrate for a magnetic recording medium, which has high chemical durability and improved adhesiveness with a magnetic layer. A coating layer (3) is formed on a region of 90% or more of the entire surface of a resin substrate (2). The coating layer (3) is formed on an upper surface (2a), a lower surface (2b), an inner circumference end surface (2c) and an outer circumference end surface (2d) of the substrate (2). Since the substrate (2) is coated with the coating layer (3), a gas is prevented from being discharged from the substrate (2) and the substrate (2) can be prevented from absorbing moisture. Furthermore, adhesiveness between the magnetic layer and the substrate can be improved by forming the magnetic layer on the coating layer (3).

Description

磁気記録媒体用基板、その製造方法、及び磁気記録媒体 技術分野  MAGNETIC RECORDING MEDIUM SUBSTRATE, ITS MANUFACTURING METHOD, AND MAGNETIC RECORDING MEDIUM
[0001] この発明は、磁気ディスク記録装置の基板に用いられる磁気記録媒体用基板、そ の製造方法、及び磁気記録媒体に関し、特に、榭脂製の基板を用いた磁気記録媒 体用基板に関する。  TECHNICAL FIELD [0001] The present invention relates to a magnetic recording medium substrate used for a substrate of a magnetic disk recording apparatus, a manufacturing method thereof, and a magnetic recording medium, and more particularly to a magnetic recording medium substrate using a resin substrate. .
背景技術  Background art
[0002] コンピュータなどに用いられる磁気ディスク記録装置には、従来力 アルミニウム基 板又はガラス基板が用いられている。そして、この基板上に金属磁気薄膜が形成さ れ、金属磁気薄膜を磁気ヘッドで磁化することにより情報が記録される(例えば特許 文献 特許文献 2、及び特許文献 3など)。  [0002] Conventionally, an aluminum substrate or a glass substrate has been used for a magnetic disk recording device used in a computer or the like. A metal magnetic thin film is formed on the substrate, and information is recorded by magnetizing the metal magnetic thin film with a magnetic head (for example, Patent Documents 2 and 3).
[0003] 例えばアルミニウム基板を用いる場合、アルミニウム板をプレス成形して円盤状にし た後、表面に対して高精度の研肖! 研磨加工及び洗浄工程を施すことにより、表面を 平滑化し、続いて、めっき処理を施すことによりニッケル—リン (Ni-P)合金を基板の 表面に形成する。その後、研磨加工、テクスチャー加工を施し、さらにスパッタリング により Co系合金の磁性層を形成することで磁気記録媒体を製造している。  [0003] For example, when an aluminum substrate is used, after an aluminum plate is press-molded into a disk shape, the surface is polished with high precision! By applying a polishing process and a cleaning process, the surface is smoothed, and then a nickel-phosphorus (Ni-P) alloy is formed on the surface of the substrate by plating. After that, polishing and texturing are performed, and a magnetic layer of Co alloy is formed by sputtering to produce a magnetic recording medium.
[0004] また、ガラス基板を用いる場合、ガラス素材を溶融し、溶融したガラスをプレス成形 し、円盤状のガラス基板を作製する。そして、ガラス基板の表面に対して高精度の研 肖 IJ '研磨加工及び洗浄工程を施すことにより、表面を平滑化した後、アルカリの溶融 塩によるイオン交換によって表面をィ匕学強化処理し、精密洗浄工程を経た後、テクス チヤ一加ェを施し、さらにスパッタリングにより Co系合金の磁性層を形成することで磁 気記録媒体を製造している。  [0004] When a glass substrate is used, a glass material is melted, and the molten glass is press-molded to produce a disk-shaped glass substrate. Then, the surface of the glass substrate is subjected to high-precision polishing IJ 'polishing and cleaning processes to smooth the surface, and then the surface is subjected to chemical strengthening treatment by ion exchange with an alkali molten salt, After passing through a precision cleaning process, a magnetic recording medium is manufactured by applying a texture and forming a Co-based alloy magnetic layer by sputtering.
[0005] ところで、磁気記録媒体用基板としてプラスチック基板などの榭脂製基板を採用す る試みがなされている。この場合、榭脂製基板上に磁性層を形成することで磁気記 録媒体を製造している。  [0005] By the way, an attempt has been made to employ a resin substrate such as a plastic substrate as the magnetic recording medium substrate. In this case, a magnetic recording medium is manufactured by forming a magnetic layer on a resin substrate.
特許文献 1:特開 2003 - 54965号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-54965
特許文献 2:特開 2003 - 55001号公報 特許文献 3:特開 2000— 163740号公報 Patent Document 2: Japanese Patent Laid-Open No. 2003-55001 Patent Document 3: Japanese Unexamined Patent Publication No. 2000-163740
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、榭脂製基板上に磁性層を形成する際に榭脂製基板カゝらガスが放出 されるため、磁気記録媒体用基板が汚染されてしまう問題があった。また、基板が榭 脂で構成されているため、基板が水分や湿気を吸収してしまい、磁気記録媒体基板 としての形状品質が変質して記録再生特性が低下する恐れがあるという問題もある( 耐湿性の問題)。このように、榭脂製基板の化学的耐久性 (ガスの放出や耐湿性)に 問題があつたため、磁気記録媒体用基板の信頼性を確保することが困難であった。  [0006] However, when a magnetic layer is formed on a resin substrate, gas is released from the resin substrate cover, causing a problem that the magnetic recording medium substrate is contaminated. In addition, since the substrate is made of a resin, the substrate absorbs moisture and moisture, and there is a problem that the shape and quality of the magnetic recording medium substrate may change and the recording / reproducing characteristics may deteriorate ( Moisture resistance issue). As described above, there is a problem in the chemical durability (gas release and moisture resistance) of the resinous resin substrate, so that it is difficult to ensure the reliability of the magnetic recording medium substrate.
[0007] また、榭脂製基板と磁性層の密着度が低ぐ且つ熱膨張係数が大きく異なるため、 磁性層が榭脂製基板から剥離しやす ヽという問題もある。  [0007] Further, since the adhesion between the resinous substrate and the magnetic layer is low and the thermal expansion coefficient is greatly different, there is a problem that the magnetic layer is easily peeled off from the resinous substrate.
[0008] この発明は上記の問題を解決するものであり、化学的耐久性が高ぐ磁性層との密 着度を向上させることが可能な磁気記録媒体用基板を提供することを目的とする。 課題を解決するための手段  [0008] The present invention solves the above-described problem, and an object thereof is to provide a magnetic recording medium substrate capable of improving the degree of adhesion with a magnetic layer having high chemical durability. . Means for solving the problem
[0009] この発明の第 1の形態は、円盤状の形状を有する榭脂製の母材を基板とし、その基 板の全表面の 90%以上の領域において被覆層が形成されていることを特徴とする 磁気記録媒体用基板である。 [0009] According to a first aspect of the present invention, a base material made of a resin having a disk shape is used as a substrate, and a coating layer is formed in an area of 90% or more of the entire surface of the substrate. A magnetic recording medium substrate.
[0010] この発明の第 2の形態は、第 1の形態に係る磁気記録媒体用基板であって、被覆 層は、金属元素を主成分とすることを特徴とするものである。 [0010] A second aspect of the present invention is the magnetic recording medium substrate according to the first aspect, wherein the coating layer is mainly composed of a metal element.
[0011] この発明の第 3の形態は、第 1又は第 2の形態に係る磁気記録媒体用基板であつ て、基板の主表面に形成されている被覆層は複数の層で構成されていることもので ある。 [0011] A third aspect of the present invention is the magnetic recording medium substrate according to the first or second aspect, wherein the coating layer formed on the main surface of the substrate is composed of a plurality of layers. It is a thing.
[0012] この発明の第 4の形態は、第 1から第 3のいずれかの形態に係る磁気記録媒体用 基板であって、被覆層は軟磁性体又は非磁性体で構成されて ヽることを特徴とする ものである。  A fourth aspect of the present invention is the magnetic recording medium substrate according to any one of the first to third aspects, wherein the coating layer is made of a soft magnetic material or a nonmagnetic material. It is characterized by.
[0013] この発明の第 5の形態は、第 1から第 4のいずれかの形態に係る磁気記録媒体用 基板であって、基板中にフィラー材が含まれて!/ヽることを特徴とするものである。  [0013] A fifth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to fourth aspects, wherein the substrate includes a filler material! / It is characterized by scolding.
[0014] この発明の第 6の形態は、第 5の形態に係る磁気記録媒体用基板であって、フイラ ー材は粒子状の形状を有し、その平均粒径 Df が 0. 001 111]〜10 111]でぁる ことを特徴とするものである。 [0014] A sixth aspect of the present invention is a magnetic recording medium substrate according to the fifth aspect, wherein the filler is a filler. -The material has a particulate shape, and its average particle diameter Df is 0.001 111 to 10 111].
[0015] この発明の第 7の形態は、第 5の形態に係る磁気記録媒体用基板であって、フイラ ー材は粒子状の形状を有し、被覆層の厚さ Tcと、フィラー材の平均粒径 Df とが、 TcA seventh aspect of the present invention is the magnetic recording medium substrate according to the fifth aspect, wherein the filler material has a particulate shape, the thickness Tc of the coating layer, and the filler material Average particle diameter Df is Tc
/Df > 2 の関係を満たすことを特徴とするものである。 It is characterized by satisfying the relationship of / Df> 2.
[0016] この発明の第 8の形態は、第 5の形態に係る磁気記録媒体用基板であって、フイラ ー材は円柱状又は繊維状の形状を有し、その平均の直径 Df が 0. 001 [ π [0016] An eighth aspect of the present invention is the magnetic recording medium substrate according to the fifth aspect, wherein the filler material has a columnar or fibrous shape, and an average diameter Df is 0. 001 [π
2 !]〜 50 2! ] ~ 50
[ /z m]で、平均の長さ Lfが 0. 002[ /ζ πι]〜1000[ /ζ πι]であることを特徴とするもの である。 [/ z m] and the average length Lf is 0.002 [/ ζ πι] to 1000 [/ ζ πι].
[0017] この発明の第 9の形態は、第 5の形態に係る磁気記録媒体用基板であって、フイラ ー材は円柱状又は繊維状の形状を有し、その平均の直径 Df と、平均の長さ Lfとが  [0017] A ninth aspect of the present invention is the magnetic recording medium substrate according to the fifth aspect, wherein the filler material has a columnar or fibrous shape, its average diameter Df, and average The length of Lf is
2  2
、 Lf/Df > 2 の関係を満たすことを特徴とするものである。  , Lf / Df> 2 is satisfied.
2  2
[0018] この発明の第 10の形態は、第 8又は第 9の形態に係る磁気記録媒体用基板であつ て、被覆層の厚さ Tcと、フィラー材の直径 Df と力 Tc/Df2 > 2 の関係を満た  [0018] A tenth aspect of the present invention is a magnetic recording medium substrate according to the eighth or ninth aspect, wherein the thickness Tc of the coating layer, the diameter Df of the filler material, and the force Tc / Df2> 2 Meet the relationship
2  2
すことを特徴とするものである。  It is characterized by that.
[0019] この発明の第 11の形態は、第 1から第 10のいずれかの形態に係る磁気記録媒体 用基板であって、被覆層の厚さ Tc力 0. 001 [ /ζ πι]〜50[ /ζ πι]であることを特徴と するものである。 An eleventh aspect of the present invention is a magnetic recording medium substrate according to any one of the first to tenth aspects, wherein the coating layer thickness Tc force is 0.001 [/ ζ πι] to 50 It is characterized by [/ ζ πι].
[0020] この発明の第 12の形態は、第 5から第 11のいずれかの形態に係る磁気記録媒体 用基板であって、フィラー材が基板全体に占める体積の割合が、 0. 1 [%]〜50[%] であることを特徴とする。ものである。  [0020] A twelfth aspect of the present invention is the magnetic recording medium substrate according to any one of the fifth to eleventh aspects, wherein the volume ratio of the filler material to the entire substrate is 0.1 [% ] To 50 [%]. Is.
[0021] この発明の第 13の形態は、第 5から第 12のいずれかの形態に係る磁気記録媒体 用基板であって、基板の表面において、フィラー材の表面占有率が 0. 1 [%]〜50[A thirteenth aspect of the present invention is a magnetic recording medium substrate according to any one of the fifth to twelfth aspects, wherein the surface occupancy of the filler material is 0.1 [%] on the surface of the substrate. ] ~ 50 [
%]であることを特徴とするものである。 %].
[0022] この発明の第 14の形態は、第 1から第 13のいずれかの形態に係る磁気記録媒体 用基板であって、基板の表面に溝が形成されていることを特徴とするものである。 A fourteenth aspect of the present invention is a magnetic recording medium substrate according to any one of the first to thirteenth aspects, wherein a groove is formed on a surface of the substrate. is there.
[0023] この発明の第 15の形態は、第 14の形態に係る磁気記録媒体用基板であって、溝 は、同心円状、放射状、格子状、ドット状、又は多角形状のパターンの中から選ばれ る 1つ以上のパターン力も成る構成を有していることを特徴とするものである。 [0023] A fifteenth aspect of the present invention is the magnetic recording medium substrate according to the fourteenth aspect, wherein the groove is selected from concentric, radial, lattice, dot, or polygonal patterns. This One or more pattern forces are also included.
[0024] この発明の第 16の形態は、第 15の形態に係る磁気記録媒体用基板であって、パ ターンは、連続した溝、不連続の溝、又は連続した溝と不連続の溝との組み合わせ で構成されて 、ることを特徴とするものである。 A sixteenth aspect of the present invention is the magnetic recording medium substrate according to the fifteenth aspect, wherein the pattern is a continuous groove, a discontinuous groove, or a continuous groove and a discontinuous groove. It is characterized by being composed of a combination of
[0025] この発明の第 17の形態は、第 14から第 16のいずれかの形態に係る磁気記録媒体 用基板であって、溝の深さ Dvが、 0. 001 [ m]〜l [ m]であることを特徴とするも のである。 A seventeenth aspect of the present invention is a magnetic recording medium substrate according to any one of the fourteenth to sixteenth aspects, wherein the groove depth Dv is 0.001 [m] to l [m ].
[0026] この発明の第 18の形態は、第 14から第 17のいずれかの形態に係る磁気記録媒体 用基板であって、溝の幅 Wvが、 0. 001 [ /ζ πι]〜10 [ /ζ πι]であることを特徴とするも のである。  An eighteenth aspect of the present invention is the magnetic recording medium substrate according to any one of the fourteenth to seventeenth aspects, wherein the groove width Wv is 0.001 [/ ζ πι] to 10 [ / ζ πι].
[0027] この発明の第 19の形態は、第 14から第 18のいずれかの形態に係る磁気記録媒体 用基板であって、溝の深さ Dvと、溝の幅 Wvと力 Wv > Dv/5 の関係を満たす ことを特徴とするものである。  A nineteenth aspect of the present invention is a magnetic recording medium substrate according to any one of the fourteenth to eighteenth aspects, wherein a groove depth Dv, a groove width Wv, and a force Wv> Dv / It is characterized by satisfying the relationship (5).
[0028] この発明の第 20の形態は、第 14から第 19のいずれかの形態に係る磁気記録媒体 用基板であって、被覆層の厚さ Tcと溝の深さ Dvと力 TcZDv > 2 の関係を満 たすことを特徴とするものである。 A twentieth aspect of the present invention is a magnetic recording medium substrate according to any one of the fourteenth to nineteenth aspects, wherein the coating layer thickness Tc, groove depth Dv, and force TcZDv> 2 It is characterized by satisfying this relationship.
[0029] この発明の第 21の形態は、第 1から第 20のいずれかの形態に係る磁気記録培媒 体用基板であって、被覆層が形成される前の基板の表面粗さ Raが 1 [ηπ!]〜 1000 [ nm]、最大谷高さ Rvが 5〜5000 [nm]、及び、最大山高さ Rpが 3 [nm]〜3000 [n m]であることを特徴とするものである。 [0029] A twenty-first aspect of the present invention is a magnetic recording medium substrate according to any one of the first to twentieth aspects, wherein the surface roughness Ra of the substrate before the coating layer is formed is 1 [ηπ! ] To 1000 [nm], the maximum valley height Rv is 5 to 5000 [nm], and the maximum peak height Rp is 3 [nm] to 3000 [nm].
[0030] この発明の第 22の形態は、第 1から第 21のいずれかの形態に係る磁気記録媒体 用基板であって、被覆層の厚さ Tcと、被覆層が形成される前の基板の表面粗さ Raと 力 5 X表面粗さ Ra < 被覆層の厚さ Tc < 1000 X表面粗さ Ra の関係を満た すことを特徴とするものである。 [0030] A twenty-second aspect of the present invention is a magnetic recording medium substrate according to any one of the first to twenty-first aspects, wherein the thickness Tc of the coating layer and the substrate before the coating layer is formed The surface roughness Ra and force 5 X surface roughness Ra <coating layer thickness Tc <1000 X surface roughness Ra are satisfied.
[0031] この発明の第 23の形態は、円盤状の形状を有する榭脂製の基板に対して、その基 板の表面の 90%以上の領域に被覆層を成膜する成膜ステップを含むことを特徴とす る磁気記録媒体用基板の製造方法である。 [0031] A twenty-third aspect of the present invention includes a film forming step of forming a coating layer on a region of 90% or more of the surface of a substrate made of a resin having a disk shape. This is a method for manufacturing a magnetic recording medium substrate.
[0032] この発明の第 24の形態は、第 23の形態に係る磁気記録媒体用基板の製造方法で あって、被覆層を研磨する研磨ステップを更に含み、研磨前の被覆層の厚さ、被覆 層が形成される前の基板の表面粗さ Ra、及び、被覆層を研磨した厚さが、 5 X表面 粗さ Ra < 研磨した厚さ < 0. 7 X研磨前の被覆層の厚さ の関係を満たすこと を特徴とするものである。 A twenty-fourth aspect of the present invention is a method for manufacturing a magnetic recording medium substrate according to the twenty-third aspect. A polishing step for polishing the coating layer, wherein the thickness of the coating layer before polishing, the surface roughness Ra of the substrate before the coating layer is formed, and the thickness of the polishing of the coating layer are 5 X surface roughness Ra <polished thickness <0.7 X X satisfies the relationship of the thickness of the coating layer before polishing.
[0033] この発明の第 25の形態は、第 24の形態に係る磁気記録媒体用基板の製造方法で あって、研磨によって、研磨後の基板の表面粗さ Raを 0. l [nm]未満とすることを特 徴とするちのである。 A twenty-fifth aspect of the present invention is a method for manufacturing a magnetic recording medium substrate according to the twenty-fourth aspect, wherein the surface roughness Ra of the substrate after polishing is less than 0.1 l [nm] by polishing. It is characterized by that.
[0034] この発明の第 26の形態は、円盤状の形状を有する榭脂製の母材を基板とし、その 基板の全表面の 90%以上の領域において被覆層が形成され、その基板の少なくと も 1面に磁性層が形成されていることを特徴とする磁気記録媒体である。  [0034] In a twenty-sixth aspect of the present invention, a base material made of resin having a disk shape is used as a substrate, and a coating layer is formed in an area of 90% or more of the entire surface of the substrate. The magnetic recording medium is characterized in that a magnetic layer is formed on one surface.
発明の効果  The invention's effect
[0035] この発明によると、榭脂製の基板表面の 90%以上の領域において被覆層が形成さ れ、基板がその被覆層で覆われているため、基板からのガスの放出を防止することが 可能となる。また、榭脂製の基板が被覆層で覆われているため、榭脂製の基板による 吸湿を防止することが可能となる。このように、榭脂製基板の化学的耐久性を向上さ せることができるため、この発明に係る榭脂製基板を用いることにより、信頼性が高い 磁気記録媒体を製造することが可能となる。  [0035] According to the present invention, since the coating layer is formed in an area of 90% or more of the surface of the resin substrate, and the substrate is covered with the coating layer, the release of gas from the substrate can be prevented. Is possible. Further, since the resinous substrate is covered with the coating layer, moisture absorption by the resinous substrate can be prevented. As described above, since the chemical durability of the resin substrate can be improved, a highly reliable magnetic recording medium can be manufactured by using the resin substrate according to the present invention. .
[0036] さらに、榭脂製の基板上に被覆層を形成し、その被覆層の上に磁性層を形成する ことで、基板と磁性層との密着度を向上させることが可能となる。  [0036] Furthermore, by forming a coating layer on a resin-made substrate and forming a magnetic layer on the coating layer, the adhesion between the substrate and the magnetic layer can be improved.
図面の簡単な説明  Brief Description of Drawings
[0037] [図 1]この発明の実施形態に係る磁気記録媒体用基板の概略構成を示す図であり、 図 1 (a)は基板の斜視図、図 1 (b)は基板の A— A断面図である。  1 is a diagram showing a schematic configuration of a magnetic recording medium substrate according to an embodiment of the present invention. FIG. 1A is a perspective view of the substrate, and FIG. 1B is AA of the substrate. It is sectional drawing.
[図 2]基板に形成された溝のパターンを示す図であり、図 2 (a)は基板の上面図であり 、図 2 (b)は基板の A— A断面図である。  FIG. 2 is a diagram showing a pattern of grooves formed on a substrate, FIG. 2 (a) is a top view of the substrate, and FIG. 2 (b) is a cross-sectional view taken along the line AA of the substrate.
[図 3]基板に形成された溝のパターンを示す上面図である。  FIG. 3 is a top view showing a pattern of grooves formed on a substrate.
[図 4]この発明の実施形態に係る磁気記録媒体用基板の変形例を示す基板の断面 図である。  FIG. 4 is a cross-sectional view of a substrate showing a modification of the magnetic recording medium substrate according to the embodiment of the present invention.
[図 5]この発明の実施形態に係る磁気記録媒体用基板の別の変形例を示す基板の 断面図である。 FIG. 5 is a schematic view of a substrate showing another modification of the magnetic recording medium substrate according to the embodiment of the present invention. It is sectional drawing.
[図 6]金型の拡大断面図である。  FIG. 6 is an enlarged sectional view of a mold.
符号の説明  Explanation of symbols
[0038] 1、 10、20 磁気記録媒体用基板 [0038] 1, 10, 20 Substrate for magnetic recording medium
2 基板  2 Board
3、 4、 5 被覆層  3, 4, 5 coating layer
21A、 21B、 22、 23、 24 溝  21A, 21B, 22, 23, 24 groove
100 金型  100 mold
101 凸部  101 Convex
102 平坦部  102 Flat part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0039] この発明の実施形態に係る磁気記録媒体用基板について図 1を参照して説明するA magnetic recording medium substrate according to an embodiment of the present invention will be described with reference to FIG.
。図 1は、この発明の実施形態に係る磁気記録媒体用基板の概略構成を示す図であ り、図 1 (a)は基板の斜視図、図 1 (b)は基板の A— A断面図である。 . FIG. 1 is a diagram showing a schematic configuration of a magnetic recording medium substrate according to an embodiment of the present invention. FIG. 1 (a) is a perspective view of the substrate, and FIG. 1 (b) is a cross-sectional view taken along the line AA of the substrate. It is.
[0040] 基板 2は円盤状の形状を有し、中央に孔が形成されている。この基板 2の表面に被 覆層 3が形成されて磁気記録媒体用基板 1となる。基板 2は榭脂により構成されてい る。 [0040] The substrate 2 has a disk shape and has a hole in the center. A covering layer 3 is formed on the surface of the substrate 2 to form a magnetic recording medium substrate 1. Substrate 2 is made of resin.
[0041] 図 1 (b)に示すように、被覆層 3は基板 2の表面全体に形成されている。つまり、基 板 2の上面 2a、下面 2b、内周端面 2c、及び外周端面 2dが被覆層 3で覆われている ことになる。このように基板 2の表面が被覆層 3によって覆われていることにより、基板 2からのガスの放出を防止することが可能となる。さらに、基板 2による吸湿を防止す ることができ、耐湿性を向上させることが可能となる。これにより、吸湿による基板 2の 寸法変化を防止することができ、磁気ヘッドとの位置ずれを防止することが可能とな る。以上のように、この実施形態に係る磁気記録媒体用基板 1によると、化学的耐久 性 (ガスの放出及び耐湿性)を向上させることが可能となる。  As shown in FIG. 1 (b), the coating layer 3 is formed on the entire surface of the substrate 2. That is, the upper surface 2a, the lower surface 2b, the inner peripheral end surface 2c, and the outer peripheral end surface 2d of the base plate 2 are covered with the coating layer 3. As described above, since the surface of the substrate 2 is covered with the coating layer 3, it is possible to prevent the gas from being released from the substrate 2. Furthermore, moisture absorption by the substrate 2 can be prevented, and moisture resistance can be improved. As a result, the dimensional change of the substrate 2 due to moisture absorption can be prevented, and positional deviation from the magnetic head can be prevented. As described above, according to the magnetic recording medium substrate 1 according to this embodiment, chemical durability (gas emission and moisture resistance) can be improved.
[0042] また、被覆層 3上に磁性層を形成することで、磁性層を直接、基板 2上に形成する よりも、磁性層と基板との密着度を高めることが可能となる。  In addition, by forming a magnetic layer on the coating layer 3, it is possible to increase the degree of adhesion between the magnetic layer and the substrate, rather than forming the magnetic layer directly on the substrate 2.
[0043] なお、この実施形態では、基板 2の全表面に被覆層 3が形成されて、全表面が被覆 層 3によって覆われている力 全表面の 90%以上の領域において被覆層 3が形成さ れていることにより、磁気記録媒体用基板 1の化学的耐久性を向上させることが可能 となる。 In this embodiment, the coating layer 3 is formed on the entire surface of the substrate 2 to cover the entire surface. The force covered by the layer 3 Since the covering layer 3 is formed in a region of 90% or more of the entire surface, the chemical durability of the magnetic recording medium substrate 1 can be improved.
[0044] また、被覆層 3の厚さ Tcは、 0. 001 [ /ζ πι]〜50[ /ζ πι]であることが好ましぐ上面 2 a、下面 2b、内周端面 2c、及び外周端面 2dの各面上の被覆層の厚さは等しくても良 ぐ異なっていても良い。例えば、上面 2a上に形成されている被覆層 3の厚さと、上面 2a以外の面上に形成されている被覆層 3、例えば下面 2b上に形成されている被覆 層 3の厚さとが、等しくても良ぐ異なっていても良い。このように各面上の被覆層 3の 厚さが異なっていても、磁気記録媒体用基板 1の化学的耐久性を向上させることが 可能である。  [0044] The thickness Tc of the coating layer 3 is preferably 0.001 [/ ζ πι] to 50 [/ ζ πι], preferably the upper surface 2a, the lower surface 2b, the inner peripheral end surface 2c, and the outer peripheral surface. The thickness of the covering layer on each face of the end face 2d may be the same or different. For example, the thickness of the coating layer 3 formed on the upper surface 2a is equal to the thickness of the coating layer 3 formed on the surface other than the upper surface 2a, for example, the coating layer 3 formed on the lower surface 2b. It's okay or different. Thus, even if the thickness of the coating layer 3 on each surface is different, the chemical durability of the magnetic recording medium substrate 1 can be improved.
[0045] 次に、榭脂製の基板 2の材料について説明する。基板 2には、熱可塑性榭脂、熱硬 化性榭脂、又は活性線硬化性榭脂の他、様々な榭脂を用いることができる。  Next, the material of the substrate 2 made of resin is described. For the substrate 2, various types of resin can be used in addition to thermoplastic resin, thermosetting resin, or active ray curable resin.
[0046] 例えば、榭脂製の基板 2には、熱可塑性榭脂として、例えば、ポリカーボネイト、ポリ エーテルエーテルケトン樹脂(PEEK榭脂)、環状ポリオレフイン榭脂、メタタリルスチ レン榭脂 (MS榭脂)、ポリスチレン榭脂 (PS榭脂)、ポリエーテルイミド榭脂 (PEI榭脂 )、 ABS榭脂、ポリエステル榭脂 (PET榭脂、 PBT榭脂など)、ポリオレフイン榭脂 (P E榭脂、 PP榭脂など)、ポリスルホン樹脂、ポリエーテルスルホン榭脂(PES榭脂)、ポ リアリレート榭脂、ポリフエ-レンサルファイド榭脂、ポリアミド榭脂、又は、アクリル榭脂 などを用いることができる。また、熱硬化性榭脂として、例えば、フエノール榭脂、ユリ ァ榭脂、不飽和ポリエステル榭脂 (BMC榭脂など)、シリコン榭脂、ウレタン榭脂、ェ ポキシ榭脂、ポリイミド榭脂、ポリアミドイミド榭脂、又は、ポリべンゾイミダゾール榭脂 などを用いることができる。その他、ポリエチレンナフタレート榭脂(PEN榭脂)などを 用!/、ることができる。  [0046] For example, the substrate 2 made of resin has a thermoplastic resin such as polycarbonate, polyetheretherketone resin (PEEK resin), cyclic polyolefin resin, methallyl styrene resin (MS resin), Polystyrene resin (PS resin), polyetherimide resin (PEI resin), ABS resin, polyester resin (PET resin, PBT resin, etc.), polyolefin resin (PE resin, PP resin, etc.) ), Polysulfone resin, polyether sulfone resin (PES resin), polyarylate resin, polyphenylene sulfide resin, polyamide resin, acrylic resin, and the like. Examples of thermosetting resins include phenol resin, urea resin, unsaturated polyester resin (BMC resin, etc.), silicon resin, urethane resin, epoxy resin, polyimide resin, polyamide Imido resin or polybenzimidazole resin can be used. In addition, polyethylene naphthalate resin (PEN resin) can be used!
[0047] 活性線硬化性榭脂として、例えば、紫外線硬化性榭脂が用いられる。紫外線硬化 性榭脂としては、例えば、紫外線硬化性アクリルウレタン系榭脂、紫外線硬化性ポリ エステルアタリレート系榭脂、紫外線硬化性エポキシアタリレート系榭脂、紫外線硬化 性ポリオールアタリレート系榭脂、紫外線硬化性エポキシ榭脂、紫外線硬化シリコン 系榭脂、又は、紫外線硬化アクリル榭脂などを挙げることができる。 [0048] また、塗設された硬化前の層に活性線を照射することによって硬化するときに、光 開始剤を用いて硬化反応を促進させることが好ましい。このとき光増感剤を併用して も良い。 [0047] As the actinic radiation curable resin, for example, an ultraviolet curable resin is used. Examples of the ultraviolet curable resin include, for example, an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, Examples thereof include an ultraviolet curable epoxy resin, an ultraviolet curable silicon resin, and an ultraviolet curable acrylic resin. [0048] In addition, it is preferable to accelerate the curing reaction using a photoinitiator when curing is performed by irradiating the applied layer with active rays. At this time, a photosensitizer may be used in combination.
[0049] また、空気中の酸素が上記硬化反応を抑制する場合は、酸素濃度を低下させる、 または除去するために、例えば不活性ガス雰囲気下で活性線を照射することもできる 。活性線としては、赤外線、可視光、紫外線などを適宜選択することができるが、特に 紫外線を選択することが好ましいが、特に限定されるものではない。また、活性線の 照射中、または前後に加熱によって硬化反応を強化させても良 、。  [0049] When oxygen in the air suppresses the curing reaction, active rays can be irradiated, for example, in an inert gas atmosphere in order to reduce or remove the oxygen concentration. As the actinic ray, infrared rays, visible light, ultraviolet rays, and the like can be appropriately selected. However, ultraviolet rays are particularly preferred, but are not particularly limited. In addition, the curing reaction may be strengthened by heating during active ray irradiation or before and after.
[0050] さらに、榭脂製の基板 2には、液晶ポリマー、有機 Z無機ハイブリッド榭脂 (例えば、 高分子成分にシリコンを骨格として取り込んだもの)などを用いても良い。なお、上記 に挙げた榭脂は基板 2に用いられる榭脂の一例であり、この発明に係る基板がこれら の榭脂に限定されることはない。 2種以上の榭脂を混合して榭脂製の基板としても良 ぐまた、別々の層として異なる成分を隣接させた基板としても良い。  [0050] Furthermore, the substrate 2 made of resin may use a liquid crystal polymer, an organic Z inorganic hybrid resin (for example, a polymer component incorporating silicon as a skeleton), or the like. Note that the resin listed above is an example of the resin used for the substrate 2, and the substrate according to the present invention is not limited to these resins. Two or more kinds of resin may be mixed to form a resin-made substrate, or a substrate in which different components are adjacent to each other as separate layers.
[0051] また、母材としての榭脂は、極力、耐熱温度又はガラス転移温度 Tgが高い方が望 ましい。榭脂製の基板 2にはスパッタリングにより磁性層が形成されるため、耐熱温度 又はガラス転移温度 Tgは、そのスパッタリングにおける温度以上であることが望まし い。例えば、耐熱温度又はガラス転移温度 Tgが 150°C以上である榭脂を用いること が望ましぐより好ましくは 200°C以上である榭脂を用いることが望ましい。  [0051] Further, it is desirable that the resin as a base material has a heat-resistant temperature or a glass transition temperature Tg as high as possible. Since the magnetic layer is formed on the resin substrate 2 by sputtering, it is desirable that the heat resistant temperature or the glass transition temperature Tg is equal to or higher than the sputtering temperature. For example, it is desirable to use a resin having a heat-resistant temperature or a glass transition temperature Tg of 150 ° C or higher, more preferably 200 ° C or higher.
[0052] 耐熱温度又はガラス転移温度 Tgが 150°C以上の代表的な榭脂として、耐熱性ポリ カーボネイト、シリコン榭脂、テフロン (登録商標)榭脂、無機フィラーを充填したフヱノ ール、メラニン、エポキシ、ポリフエ-レンスルファイド、不飽和ポリエステルなどの榭 脂、ポリエーテルスルホン榭脂(PES榭脂)、ポリエーテルイミド榭脂(PEI榭脂)、ポリ アミドイミド榭脂、ポリイミド榭脂、ポリべンゾイミダゾール榭脂、 BMC榭脂、又は、液 晶ポリマーなどが挙げられる。より具体的には、ポリエーテルスルホン榭脂(PES榭脂 )として、ユーデル (ソルべィアデバンストポリマーズ)、ポリエーテルイミド榭脂(PEI榭 脂)として、ウルテム(日本 GEプラスチック)、ポリアミドイミド榭脂として、トーロン (ソル べィアデバンストポリマーズ)、ポリイミド榭脂 (熱可塑性)として、オーラム(三井化学) 、ポリイミド (熱硬化性)として、ユーピレックス (宇部興産)、又は、ポリべンゾイミダゾー ル榭脂として、 PBlZCelazole (クラリアントジャパン)が挙げられる。また、液晶ポリマ 一として、スミカスーパー LCP (住友ィ匕学)、ポリエーテルエーテルケトンとして、ビクト レックス(ビタトレックス MC)が挙げられる。 [0052] Typical heat-resisting temperature or glass transition temperature Tg of 150 ° C or higher includes heat-resistant polycarbonate, silicon resin, Teflon (registered trademark) resin, phenol filler filled with inorganic filler, melanin Resins such as epoxy, polysulfide sulfide, unsaturated polyester, polyethersulfone resin (PES resin), polyetherimide resin (PEI resin), polyamideimide resin, polyimide resin, Nzoimidazole resin, BMC resin, or liquid crystal polymer. More specifically, polyethersulfone resin (PES resin), Udel (Solveia Devast Polymers), polyetherimide resin (PEI resin), Ultem (Japan GE Plastics), polyamideimide resin As fat, Torlon (Solveia Devast Polymers), polyimide resin (thermoplastic), Aurum (Mitsui Chemicals), polyimide (thermosetting), Upilex (Ube Industries), or polybenzoimidazo PBlZCelazole (Clariant Japan) is an example of lube. Liquid crystal polymers include SUMIKASUPER LCP (Sumitomo Chemical) and polyetheretherketone as Victorex (Vitatrex MC).
[0053] 被覆層 3には、金属層、磁性層(常磁性層、軟磁性層、又は強磁性層)、ガラス層、 セラミック層等の酸ィ匕物層、又は、無機層と有機層との複合層(ハイブリッド層)が用 いられる。被覆層の具体的な成分として、 Mg (マグネシウム)、 Ca (カルシウム)、 Sr ( ストロンチウム) Ba (バリウム)、 Ti (チタン)、 Sc (スカンジウム)、 V (バナジウム)、 Cr ( クロム)、 Mn (マンガン)、 Fe (鉄)、 Co (コバルト)、 Ni (ニッケル)、 Cu (銅)、 Zn (亜鉛 )、 A1 (アルミニウム)、 Si (シリコン)、 P (リン)、 Ga (ガリウム)、 Ge (ゲルマニウム)、 As (砒素)、 Se (セレン)、 Y (イットリウム)、 Zr (ジルコニウム)、 Nb (ニオブ)、 Mo (モリブ デン)、 Ru (ルテニウム) Rh (ロジウム)、 Pd (パラジウム)、 Ag (銀)、 Cd (カドミウム)、 I n (インジウム)、 Sn (錫)、 Sb (アンチモン)、 Te (テルル)、 La (ランタン)、 Ce (セリウム )、 Pr (プラセォジゥム)、 Nd (ネオジゥム)、 Pm (プロメチウム)、 Sm (サマリウム)、 Eu (ユーロピウム)、 Gd (ガドリゥム)、 Tb (テルビウム)、 Dy (ジスプロシウム)、 Ho (ホルミ ゥム)、 Er (エルビウム)、 Tm (ツリウム)、 Yb (イッテルビウム)、 Lu (ルテチウム)、 Hf ( ハフニウム)、 Ta (タンタル)、 W (タングステン)、 Re (レニウム)、 Os (オスミウム)、 Ir ( イリジウム)、 Pt (白金)、 Au (金)、 T1 (タリウム)、 Pb (鉛)、 Bi (ビスマス)、 Po (ポロ-ゥ ム)、などが挙げられる。  The covering layer 3 includes a metal layer, a magnetic layer (paramagnetic layer, soft magnetic layer, or ferromagnetic layer), an oxide layer such as a glass layer and a ceramic layer, or an inorganic layer and an organic layer. These composite layers (hybrid layers) are used. Specific components of the coating layer include Mg (magnesium), Ca (calcium), Sr (strontium) Ba (barium), Ti (titanium), Sc (scandium), V (vanadium), Cr (chromium), Mn ( Manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), A1 (aluminum), Si (silicon), P (phosphorus), Ga (gallium), Ge ( Germanium), As (arsenic), Se (selenium), Y (yttrium), Zr (zirconium), Nb (niobium), Mo (molybdenum), Ru (ruthenium) Rh (rhodium), Pd (palladium), Ag ( Silver), Cd (cadmium), In (indium), Sn (tin), Sb (antimony), Te (tellurium), La (lanthanum), Ce (cerium), Pr (prasedium), Nd (neodymium), Pm (Promethium), Sm (Samarium), Eu (Europium , Gd (gadrium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), Lu (lutetium), Hf (hafnium), Ta ( Tantalum), W (tungsten), Re (rhenium), Os (osmium), Ir (iridium), Pt (platinum), Au (gold), T1 (thallium), Pb (lead), Bi (bismuth), Po ( Porous)).
[0054] 被覆層 3は、電気めつき又は化学めつきなどのめつき法によって基板 2の表面上に 形成することが可能である。その他、スパッタリング、真空蒸着、又は CVD法などによ つても形成することが可能である。また、バーコート法、ディップコート (浸漬引き上げ) 法、スピンコート法、スプレー法、又は印刷法などの塗布法によって形成しても良い。  [0054] The coating layer 3 can be formed on the surface of the substrate 2 by a plating method such as electric plating or chemical plating. In addition, it can be formed by sputtering, vacuum deposition, CVD method, or the like. Further, it may be formed by a coating method such as a bar coating method, a dip coating (dipping and pulling up) method, a spin coating method, a spray method, or a printing method.
[0055] この磁気記録媒体用基板 1を用いて磁気記録媒体を作製する場合、上面 2a上に 形成された被覆層 3の上に磁性層を形成して磁気記録媒体とする。この場合、被覆 層と磁性層を連続して作製しても良ぐまた必要に応じて、被覆層表面を処理した後 に引き続いて磁性層を作製しても良い。例えば、上面 2a上に形成された被覆層 3を 研磨し、研磨後の被覆層上にスパッタリングなどにより Co系合金などの磁性層を形 成して磁気記録媒体とする。 [0056] また、高密度化技術として期待の大きい垂直磁気記録媒体においては、基板表面 に対して垂直に磁性体を並べる必要があり、そのためには、磁性層と基板との間に 軟磁性層を形成する必要がある。この軟磁性層の代表的な合金として、ニッケル一コ バルト (Ni— Co)合金がある。被覆層 3として Ni— Co合金を用いることにより、垂直磁 気記録媒体における軟磁性層としての機能も果たすことが可能となる。 When a magnetic recording medium is manufactured using the magnetic recording medium substrate 1, a magnetic layer is formed on the coating layer 3 formed on the upper surface 2a to obtain a magnetic recording medium. In this case, the coating layer and the magnetic layer may be produced continuously, or if necessary, the magnetic layer may be produced subsequently after treating the surface of the coating layer. For example, the coating layer 3 formed on the upper surface 2a is polished, and a magnetic layer such as a Co-based alloy is formed on the polished coating layer by sputtering or the like to obtain a magnetic recording medium. [0056] Also, in a perpendicular magnetic recording medium that is highly expected as a high-density technology, it is necessary to arrange magnetic materials perpendicular to the substrate surface. To that end, a soft magnetic layer is required between the magnetic layer and the substrate. Need to form. A typical alloy for this soft magnetic layer is a nickel-cobalt (Ni-Co) alloy. By using a Ni—Co alloy as the covering layer 3, it can also function as a soft magnetic layer in a perpendicular magnetic recording medium.
[0057] また、基板 2には、表面に形成される被覆層 3との密着性が良い榭脂を用いることが 望ましい。例えば、表面に極性基が存在する榭脂や、表面粗さ Raが大きい榭脂や、 フィラー材が含まれる榭脂や、表面に溝が設けられた榭脂などを基板 2の材料として 用いることで、基板 2と被覆層 3との密着度を高めることが可能となる。  [0057] It is desirable to use a resin having good adhesion to the coating layer 3 formed on the surface for the substrate 2. For example, a resin having a polar group on the surface, a resin having a large surface roughness Ra, a resin containing a filler material, a resin having a groove on the surface, or the like is used as the material of the substrate 2. As a result, the adhesion between the substrate 2 and the coating layer 3 can be increased.
[0058] 例えば、基板 2の表面粗さ Raを大きくすると、その表面上に形成される被覆層 3と密 着する面積が大きくなるため、基板 2と被覆層 3との密着度を高くすることが可能とな る。射出成形や注型成形などにより基板 2を作製する際に用いられる金型の表面粗 さ Raを調整することで、成形によって得られる基板 2の表面粗さ Raを大きくすることが できる。なお、基板 2の表面粗さ Raを大きくしても、その表面に形成される被覆層 3を 研磨することで、必要とされる表面粗さ Raを得ることが可能である。  [0058] For example, if the surface roughness Ra of the substrate 2 is increased, the area that adheres to the coating layer 3 formed on the surface increases, so that the adhesion between the substrate 2 and the coating layer 3 is increased. Is possible. The surface roughness Ra of the substrate 2 obtained by molding can be increased by adjusting the surface roughness Ra of the mold used when the substrate 2 is produced by injection molding or cast molding. Even if the surface roughness Ra of the substrate 2 is increased, the required surface roughness Ra can be obtained by polishing the coating layer 3 formed on the surface.
[0059] 具体的には、被覆層 3を形成する前の基板 2において、 JIS B0601で規格される 表面粗さ Raが 1 [ηπ!]〜 1000[nm]、最大谷高さ Rvが 5〜5000[nm]、最大山高さ Rpが 3 [nm]〜3000 [nm]であることが好まし!/、。このように表面粗さ Raなどの値を 調整することで、基板 2と被覆層 3との密着度を高くすることが可能となる。  [0059] Specifically, in the substrate 2 before the coating layer 3 is formed, the surface roughness Ra specified by JIS B0601 is 1 [ηπ! ] ~ 1000 [nm], maximum valley height Rv is 5 to 5000 [nm], maximum peak height Rp is 3 [nm] to 3000 [nm]! / ,. Thus, by adjusting values such as the surface roughness Ra, it is possible to increase the degree of adhesion between the substrate 2 and the coating layer 3.
[0060] また、被覆層 3の厚さと、被覆層 3を形成する前の基板 2の表面粗さ Raとの関係が 以下の式(1)を満たすことが好ま U、。  [0060] Further, it is preferable that the relationship between the thickness of the coating layer 3 and the surface roughness Ra of the substrate 2 before forming the coating layer 3 satisfies the following formula (1):
[0061] 式(1)  [0061] Formula (1)
5 X表面粗さ Ra < 被覆層 3の厚さ く 1000 X表面粗さ Ra  5 X Surface roughness Ra <Thickness of coating layer 3 1000 X Surface roughness Ra
磁性層を被覆層 3の上に形成する前に被覆層 3を研磨するため、その研磨の量を 考慮すると、被覆層 3の厚さを 5 XRaより厚くすることが好ましい。  Since the coating layer 3 is polished before the magnetic layer is formed on the coating layer 3, the thickness of the coating layer 3 is preferably thicker than 5 XRa in consideration of the amount of polishing.
[0062] また、被覆層 3を研磨する場合、被覆層 3の厚さ、被覆層 3を形成する前の基板 2の 表面粗さ Ra、及び、被覆層 3を研磨した厚さが、以下の式 (2)を満たすことが好まし い。 [0063] 式(2) [0062] When the coating layer 3 is polished, the thickness of the coating layer 3, the surface roughness Ra of the substrate 2 before forming the coating layer 3, and the thickness of polishing the coating layer 3 are as follows: It is preferable to satisfy equation (2). [0063] Formula (2)
5 X表面粗さ Ra < 研磨した厚さ く 0. 7 X被覆層 3の厚さ  5 X Surface roughness Ra <Polished thickness 0.7 X Thickness of X coating layer 3
そして、研磨後の被覆層 3の表面粗さ Raが 0. l [nm]未満となることが好ましい。  The surface roughness Ra of the coated layer 3 after polishing is preferably less than 0.1 [nm].
[0064] また、榭脂にフイラ一材を含ませる場合、フィラー材の形状は、球状、円柱状、凸凹 状、楕円状、又はファイバー状 (繊維状)などいずれの形状であっても良い。また、フ イラー材を 1方向に沿って含ませることもでき、ランダムな方向を向いた状態で含ませ ることちでさる。 [0064] When the filler contains a filler, the filler material may have any shape such as a spherical shape, a cylindrical shape, an uneven shape, an elliptical shape, or a fiber shape (fiber shape). Also, the filler material can be included along one direction, which means that it is included in a random direction.
[0065] このようにフィラー材を母材の榭脂に含ませることにより、基板 2の表面にフィラー材 の一部が突出し、その突出により表面の形状が凹凸状になる。そのことにより、基板 2 と被覆層 3との密着度を向上させることが可能となる。なお、この凹凸の程度は、粒子 の選択 (例えば、粒子の種類、粒子のサイズ、粒子の添加量)、エッチング、加熱、ェ ネルギー粒子照射、及びそれらの組み合わせによりコントロールできる。  [0065] By thus including the filler material in the base resin, a part of the filler material protrudes from the surface of the substrate 2, and the protrusion makes the surface shape uneven. As a result, the degree of adhesion between the substrate 2 and the coating layer 3 can be improved. The degree of unevenness can be controlled by selecting particles (for example, particle type, particle size, particle addition amount), etching, heating, energy particle irradiation, and combinations thereof.
[0066] 例えば、粒子状のフィラー材を用いる場合、そのフィラー材の平均粒径 Df が 0. 00 1 [ m]〜 10 [ m]であることが好まし!/、。このようなフィラー材を用いることで基板 2 の表面に適度な凹凸が形成され、その凹凸によって被覆層 3と基板 2との密着度を 高めることが可能となる。  [0066] For example, when a particulate filler material is used, it is preferable that the average particle diameter Df of the filler material is 0.001 [m] to 10 [m]! /. By using such a filler material, moderate irregularities are formed on the surface of the substrate 2, and the degree of adhesion between the coating layer 3 and the substrate 2 can be increased by the irregularities.
[0067] また、フィラー材の平均粒径 Df と、被覆層 3の厚さ Tcとの関係が以下の式(3)を満 たすことが好ましい。  [0067] Further, it is preferable that the relationship between the average particle diameter Df of the filler material and the thickness Tc of the coating layer 3 satisfies the following formula (3).
[0068] 式(3)  [0068] Formula (3)
被覆層 3の厚さ Tc,平均粒径 Di > 2  Covering layer 3 thickness Tc, average particle size Di> 2
これにより、被覆層 3と基板 2との密着度を高めることが可能となる。  This makes it possible to increase the degree of adhesion between the coating layer 3 and the substrate 2.
[0069] また、繊維状又は円柱状のフィラー材を用いる場合、円柱の平均の直径 Df が 0. 0 [0069] When a fibrous or columnar filler material is used, the average diameter Df of the column is 0.0.
2 2
01 [ m]〜50 [ m]で、平均の長さ Lfが 0. 002 [ m]〜: LOOO [ m]であることが 好ましぐ以下の式 (4)を満たすことが好ましい。 It is preferable that the average length Lf is in the range of 01 [m] to 50 [m] and the average length Lf is 0.002 [m] to: LOOO [m].
[0070] 式(4) [0070] Formula (4)
Lf/Df > 2  Lf / Df> 2
2  2
このようなフィラー材を用いることで基板 2の表面に適度な凹凸が形成され、その凹 凸によって被覆層 3と基板 2との密着度を高めることが可能となる。 [0071] また、フィラー材の平均の直径 Df と、被覆層 3の厚さ Tcとの関係が以下の式(5)を By using such a filler material, moderate irregularities are formed on the surface of the substrate 2, and the degree of adhesion between the coating layer 3 and the substrate 2 can be increased by the irregularities. [0071] Further, the relationship between the average diameter Df of the filler material and the thickness Tc of the coating layer 3 is expressed by the following equation (5).
2  2
満たすことが好ましい。  It is preferable to satisfy.
[0072] 式(5) [0072] Formula (5)
被覆層 3の厚さ Tc,平均の直径 Df > 2  Covering layer 3 thickness Tc, average diameter Df> 2
2  2
これにより、被覆層 3と基板 2との密着度を高めることが可能となる。  This makes it possible to increase the degree of adhesion between the coating layer 3 and the substrate 2.
[0073] さらに、フィラー材の形状にかかわらず、基板 2の全体に占めるフィラー材の体積の 割合が 0. 1 [ % ]〜 50 [ % ]であることが好まし 、。 [0073] Further, it is preferable that the volume ratio of the filler material to the whole substrate 2 is 0.1 [%] to 50 [%] regardless of the shape of the filler material.
[0074] また、フィラー材の表面占有率が 0. 1 [%]〜50[%]であることが好ましい。さらに、 表面占有率が体積の割合よりも小さ!、ことが好ま 、 (表面占有率く体積の割合)。 これにより、基板 2に対してエッチングを行なうことで、上面 2aのフイラー材がなくなつ て上面 2aに凹凸が形成されることになる。 [0074] The surface occupancy of the filler material is preferably 0.1 [%] to 50 [%]. Furthermore, it is preferred that the surface occupancy is smaller than the volume fraction! (Surface occupancy fraction). As a result, by etching the substrate 2, the filler material on the upper surface 2a disappears and irregularities are formed on the upper surface 2a.
[0075] フィラー材の材料としては、金属、酸化物、硫化物、炭酸化物、リン酸化物、フツイ匕 物、ガラス、ガラスファイバー、又はカーボンファイバーなどが用いられる。具体的に は、フィラー材の材料として、 Si (シリコン)、 A1 (アルミニウム)、 C (カーボン)、 Sn (錫) 、 Zn (亜鉛)、 Ti (チタン)、 In (インジウム)、 Mg (マグネシウム)、 Pd (パラジウム)、 Ba (バリウム)、 La (ランタン)、 Ta (タンタノレ)、 Mo (モリブデン)、 W (タングステン)、 V( バナジウム)、又は Sr (ストロンチウム)などを用いることができる。さらに、これらを主成 分とする化合物、例えば、酸化物、硫化物、炭酸化物、リン酸化物、フッ化物などで あっても良い。具体的には、 SiO、 Al O、 TiO、 SrCO、 C、 AlPO、 CaCO、 IT [0075] As a material of the filler material, metal, oxide, sulfide, carbonate, phosphorus oxide, fluoride, glass, glass fiber, carbon fiber, or the like is used. Specifically, the filler material is Si (silicon), A1 (aluminum), C (carbon), Sn (tin), Zn (zinc), Ti (titanium), In (indium), Mg (magnesium). Pd (palladium), Ba (barium), La (lanthanum), Ta (tantanole), Mo (molybdenum), W (tungsten), V (vanadium), or Sr (strontium) can be used. Furthermore, compounds containing these as main components, for example, oxides, sulfides, carbonates, phosphorus oxides, fluorides, and the like may be used. Specifically, SiO, Al O, TiO, SrCO, C, AlPO, CaCO, IT
2 2 3 2 3 4 3 2 2 3 2 3 4 3
0、 ZnS、 MgFなどがフィラー材として用いられる。 0, ZnS, MgF, etc. are used as filler materials.
2  2
[0076] なお、上述したフィラー材の材料の例は無機物質の例であるが、有機無機の複合 物質をフイラー材の材料に用いても良ぐさらに粒子状、繊維状、円柱状のものを組 み合わせて使用しても良!、。  [0076] The above-mentioned examples of the material of the filler material are examples of the inorganic material, but organic, inorganic composite materials may be used as the material of the filler material. May be used in combination!
[0077] また、基板 2の表面に溝を設ける場合、その溝は、同心円状、放射状、格子状、ドッ ト状、又は多角形状などのパターンを構成している。その溝は、連続していても良ぐ 途中で途切れて不連続となっていても良い。また、ドット状に溝を形成する場合は、 互いに離れた位置に凹部を形成することで、ドット状の溝を形成する。さらに、複数種 類のパターンを組み合わせた溝を形成しても良い。例えば、同心円状のパターンと 放射状のパターンとを組み合わせた溝を形成しても良ぐまた連続したパターンと不 連続のパターンを複数種類組み合わせても良 、。 [0077] When grooves are provided on the surface of the substrate 2, the grooves form a pattern such as concentric circles, radial shapes, lattice shapes, dot shapes, or polygonal shapes. The groove may be continuous or may be interrupted and discontinuous. In addition, when forming a groove in a dot shape, the dot groove is formed by forming a recess at a position distant from each other. Further, a groove formed by combining a plurality of types of patterns may be formed. For example, with concentric patterns Grooves can be formed by combining radial patterns, or multiple types of continuous and discontinuous patterns can be combined.
[0078] ここで、基板に形成された溝のパターンについて図 2を参照して説明する。図 2は、 基板に形成された溝のノターンを示す図であり、図 2 (a)は基板の上面図であり、図Here, the pattern of grooves formed in the substrate will be described with reference to FIG. Fig. 2 is a diagram showing the notches of the grooves formed in the substrate, and Fig. 2 (a) is a top view of the substrate.
2 (b)は基板の A— A断面図である。 2 (b) is a cross-sectional view taken along the line AA of the substrate.
[0079] 図 2 (a)の上面図に示すように、基板 2には同心円状の溝 21Aと、中心から放射状 に伸びる溝 21Bとが形成されている。この例では、同心円状の溝 21Aは等間隔で 3 本形成されており、放射状の溝 21Bは 45° ごとに 8本形成されているが、溝 21A、 2[0079] As shown in the top view of FIG. 2 (a), the substrate 2 is formed with concentric grooves 21A and grooves 21B extending radially from the center. In this example, three concentric grooves 21A are formed at equal intervals, and eight radial grooves 21B are formed every 45 °.
IBの本数や溝の間隔は、基板 2の大きさや材料などの条件によって適宜変えれば 良い。 The number of IBs and the interval between the grooves may be appropriately changed depending on conditions such as the size and material of the substrate 2.
[0080] なお、溝 21A、 21Bのそれぞれの幅は等しくても、異なっていても良い。また、溝 21 Aの間隔は溝によって異なっていても良ぐ溝 21Bのなす角度は溝によって異なって いても良い。  [0080] The widths of the grooves 21A and 21B may be the same or different. Further, the interval between the grooves 21A may be different depending on the groove. The angle formed by the grooves 21B may be different depending on the groove.
[0081] また、図 2に示す例では、同心円状の溝 21Aと放射状の溝 21Bの 2種類の溝を基 板 2に形成して 、るが、 、ずれか一方の溝を形成しても良!、。  [0081] In the example shown in Fig. 2, two types of grooves, concentric grooves 21A and radial grooves 21B, are formed on the base plate 2, but one of the grooves may be formed. Good!
[0082] 以上のように基板 2の表面に溝を形成することにより、基板 2と被覆層 3との密着度 を高めることが可能となる。なお、図 2に示す例では、基板 2の片面のみに溝が形成さ れているが、両面に溝が形成されていても良い。 [0082] By forming grooves on the surface of the substrate 2 as described above, it is possible to increase the degree of adhesion between the substrate 2 and the coating layer 3. In the example shown in FIG. 2, the groove is formed only on one surface of the substrate 2, but the groove may be formed on both surfaces.
[0083] また、溝 21A及び 21Bの深さ Dv (凹部の深さ)力 0. 001 [ m]〜l [ m]である ことが好ましぐ溝 21A及び 21Bの幅 Wv (凹部の径) 1S 0. 001 [ m]〜10 [ m] であることが好ましい。 [0083] The depth Dv (depth of the recess) of the grooves 21A and 21B is preferably 0.001 [m] to l [m]. The width Wv (the diameter of the recess) of the grooves 21A and 21B is preferable. It is preferable that it is 1S 0.001 [m]-10 [m].
[0084] さらに、溝 21A及び 21Bの深さ Dvと、溝 21A及び 21Bの幅 Wvとの関係が以下の 式 (6)を満たすことが好ま 、。  [0084] Further, it is preferable that the relationship between the depth Dv of the grooves 21A and 21B and the width Wv of the grooves 21A and 21B satisfies the following expression (6).
[0085] 式(6) [0085] Formula (6)
幅 Wv > 深さ DvZ5  Width Wv> Depth DvZ5
このような溝(凹凸のパターン)が表面に形成された基板を用いることにより、被覆層 3と基板 2との密着度を高めることが可能となる。  By using a substrate having such a groove (uneven pattern) formed on the surface, the degree of adhesion between the coating layer 3 and the substrate 2 can be increased.
[0086] また、溝 21A及び 21Bの深さ Dvと、被覆層 3の厚さ Tcとの関係が以下の式(7)を 満たすことが好ましい。 [0086] The relationship between the depth Dv of the grooves 21A and 21B and the thickness Tc of the coating layer 3 is expressed by the following equation (7). It is preferable to satisfy.
[0087] 式(7) [0087] Formula (7)
被覆層 3の厚さ TcZ溝の深さ Dv > 2  Covering layer 3 thickness TcZ groove depth Dv> 2
上記溝の他のパターンについて図 3を参照して説明する。図 3は、基板に形成され たパターンを示す上面図である。  Another pattern of the groove will be described with reference to FIG. FIG. 3 is a top view showing a pattern formed on the substrate.
[0088] 例えば、図 3 (a)に示すように、基板 2に互いに直交する溝 22を形成することで、格 子状のパターンを形成する。溝 22の本数や溝 22の間隔は、基板の大きさや材料な どの条件によって適宜変えれば良い。なお、溝 22のそれぞれの幅は等しくても、異な つていても良い。また、図 3 (b)に示すように、基板 2に、 6角形状のパターン力もなる 溝 23を形成しても良い。さらに、図 3 (c)に示すように、基板 2に、 3角形状のパターン 力もなる溝 24を形成しても良い。なお、図 3に示す例では、溝のパターンを 3角形状 、 4角形状、又は 6角形状としたが、 8角形状以上のパターンとしても良い。  [0088] For example, as shown in FIG. 3 (a), a lattice-like pattern is formed by forming grooves 22 orthogonal to each other on the substrate 2. The number of the grooves 22 and the interval between the grooves 22 may be appropriately changed depending on conditions such as the size and material of the substrate. The widths of the grooves 22 may be the same or different. Further, as shown in FIG. 3B, a groove 23 having a hexagonal pattern force may be formed in the substrate 2. Further, as shown in FIG. 3C, a groove 24 having a triangular pattern force may be formed in the substrate 2. In the example shown in FIG. 3, the groove pattern is a triangular shape, a quadrangular shape, or a hexagonal shape, but may be a pattern having an octagonal shape or more.
[0089] なお、図 3に示す溝 22、 23及び 24についても、上記式(6)及び式(7)の関係を満 たすことが好ましい。  [0089] It is preferable that the grooves 22, 23, and 24 shown in FIG. 3 also satisfy the relationships of the above formulas (6) and (7).
[0090] 基板 2に溝を形成する場合は、金型に溝のパターンの原版を形成しておくことで、 基板成型時に、直接、基板 2に溝を形成することができる。また、基板 2を成形した後 に溝を形成する場合は、微細機械加工、リゾグラフなどの描画法、又は化学エツチン グ法などの手法を用いて形成することができる。  When forming the groove on the substrate 2, it is possible to form the groove directly on the substrate 2 at the time of forming the substrate by forming an original plate of the groove pattern on the mold. Further, when the groove is formed after the substrate 2 is formed, it can be formed by using a technique such as micromachining, a drawing method such as lithograph, or a chemical etching method.
[0091] 榭脂製の基板 2は、基板 2に対応した形状を有する金型を用いて、射出成形法、注 型成形法、シート成形法、射出圧縮成形法、又は圧縮成形法などの成形法によって 製造することができる。さらに、必要に応じて、成形した基板をカッティングし、打ち抜 き、又はプレス成形を行って基板 2を製造しても良い。  [0091] Substrate 2 made of resin is molded using a mold having a shape corresponding to substrate 2, such as an injection molding method, a casting molding method, a sheet molding method, an injection compression molding method, or a compression molding method. Can be manufactured by law. Further, if necessary, the substrate 2 may be manufactured by cutting, punching, or press-molding the formed substrate.
[0092] また、上記射出成形法などにより基板 2を成形することで、基板 2の内径の寸法、外 径の寸法、内周端部の形状、又は外周端部の形状の少なくとも 1つを同時に形成す ることができる。つまり、基板 2の内径の寸法や外径の寸法に合わせて、射出成形法 などに用いられる金型を作製し、その金型を用いることで、内径寸法や外径寸法が 榭脂成形時に完成されることになる。また、基板 2の内周端部の形状や外周端部の 形状に合わせて、金型を作製し、その金型を用いることで、内周端部の形状や外周 端部の形状が榭脂成形時に形成されることになる。 [0092] Further, by molding the substrate 2 by the injection molding method or the like, at least one of the inner diameter size, the outer diameter size, the inner peripheral end portion shape, or the outer peripheral end portion shape of the substrate 2 is simultaneously performed. Can be formed. In other words, molds used in the injection molding method, etc., are manufactured in accordance with the inner and outer diameter dimensions of the substrate 2, and the inner and outer diameter dimensions are completed during resin molding by using these molds. Will be. In addition, a mold is manufactured according to the shape of the inner peripheral end of the substrate 2 and the shape of the outer peripheral end, and by using the mold, the shape of the inner peripheral end and the outer periphery The shape of the end is formed at the time of resin molding.
[0093] 成形に用いられる金型表面の表面粗さ Raが 1 [ηπ!]〜 1000[nm]、最大山高さ Rp が 5 [nm]〜5000 [nm]であることが好まし ヽ。この金型で基板 2を製造することで、 基板 2の表面に適度な凹凸が形成され、その凹凸によって基板 2と被覆層 3との密着 度を高めることが可能となる。  [0093] The surface roughness Ra of the mold surface used for molding is 1 [ηπ! ] ~ 1000 [nm] and maximum peak height Rp is preferably 5 [nm] ~ 5000 [nm]. By manufacturing the substrate 2 with this mold, moderate irregularities are formed on the surface of the substrate 2, and the adhesion between the substrate 2 and the coating layer 3 can be increased by the irregularities.
[0094] また、金型の表面は平滑部と凸部とで構成されていても良い。この金型について図 6を参照して説明する。図 6は金型の拡大断面図である。図 6に示すように、金型 100 の表面には、外側に突出した凸部 101が形成され、凸部 101と凸部 101との間には 平坦な面である平担部 102が形成されている。この金型 100を用いて基板 2を成形 することで、基板 2の上面 2aには凹凸が形成され、その凹凸によって基板 2と被覆層 3との密着度を高めることが可能となる。  [0094] Further, the surface of the mold may be composed of a smooth portion and a convex portion. This mold will be described with reference to FIG. Fig. 6 is an enlarged sectional view of the mold. As shown in FIG. 6, a convex part 101 protruding outward is formed on the surface of the mold 100, and a flat part 102, which is a flat surface, is formed between the convex part 101 and the convex part 101. ing. By forming the substrate 2 using this mold 100, irregularities are formed on the upper surface 2a of the substrate 2, and the adhesion between the substrate 2 and the coating layer 3 can be increased by the irregularities.
[0095] また、凸部 101の底面における面積 Sが 100[nm2]〜1000000 [nm2]であること が好ましぐ基板の全面に対する全ての凸部 101の面積 Sの割合力 0. 001 [%]〜 50 [%]であることが好ましい。このような金型を用いて基板 2を成形することで、基板 2の表面に適度な凹凸が形成され、その凹凸によって基板 2と被覆層 3との密着度を 高めることが可能となる。 [0095] In addition, it is preferable that the area S on the bottom surface of the protrusion 101 is 100 [nm 2 ] to 1000000 [nm 2 ]. The ratio force of the area S of all the protrusions 101 to the entire surface of the substrate is 0.001. [%] To 50 [%] is preferable. By molding the substrate 2 using such a mold, moderate irregularities are formed on the surface of the substrate 2, and the degree of adhesion between the substrate 2 and the coating layer 3 can be increased by the irregularities.
[0096] さらに、図 2及び図 3に示す基板のように、基板 2の表面に所定のパターンを有する 溝を形成する場合は、金型 100にパターンの原版を形成することで、基板成型時に 、直接、基板 2に溝を形成することができる。例えば、凸部 101のパターンを、同心円 状のパターンと放射状のパターンとを組み合わせたパターンにすることで、図 2に示 す溝 21A及び 21Bを形成することができる。また、凸部 101のパターンを、互いに直 交するパターンとすることで、図 3 (a)に示す溝 22を形成することができる。さらに、凸 部 101のパターンを、 6角形状のパターンや 3角形状のパターンとすることで、基板 2 に 6角形状や 3角形状の溝を形成することが可能となる。  [0096] Further, when a groove having a predetermined pattern is formed on the surface of the substrate 2 as in the substrate shown in FIGS. 2 and 3, by forming a pattern original on the mold 100, the substrate is molded. A groove can be directly formed in the substrate 2. For example, the grooves 21A and 21B shown in FIG. 2 can be formed by changing the pattern of the convex portion 101 to a pattern in which a concentric pattern and a radial pattern are combined. Further, the groove 22 shown in FIG. 3 (a) can be formed by making the pattern of the convex portions 101 into a pattern that is perpendicular to each other. Furthermore, by making the pattern of the convex portion 101 a hexagonal pattern or a triangular pattern, a hexagonal or triangular groove can be formed on the substrate 2.
[0097] また、基板 2に対して化学的処理又は物理的処理を施すことにより、基板 2の表面 に凹凸を形成し、その後、基板 2上に被覆層 3を形成しても良い。例えば、エッチング 、ブラスト材の吹き付け、レーザ処理、又は機械加工を行うことにより基板 2の表面に 凹凸を形成する。このように化学的処理又は物理的処理によって基板 2の表面に凹 凸を形成することで、基板 2と被膜層 3との密着度を高めることができる。 Further, the substrate 2 may be subjected to chemical treatment or physical treatment to form irregularities on the surface of the substrate 2, and then the coating layer 3 may be formed on the substrate 2. For example, unevenness is formed on the surface of the substrate 2 by performing etching, spraying of a blast material, laser processing, or machining. In this way, the surface of the substrate 2 is recessed by chemical treatment or physical treatment. By forming the projections, the adhesion between the substrate 2 and the coating layer 3 can be increased.
[0098] なお、エッチングの方法として、化学的エッチング、物理的エッチング、又は物理ィ匕 学的エッチングが挙げられる。化学的エッチングは、化学反応を利用して除去対象を 選択的にエッチングする方法である。物理的エッチングは、加速されたアルゴンィォ ンをエッチングの対象面に衝突させることで除去対象をエッチングする方法である。 物理的エッチングとして例えばイオンミリングが挙げられる。また、物理化学的エッチ ングは、ラジカル (電荷を持たない活性化された分子や原子)とエッチング対象の材 料との化学反応と、イオン照射と併用することで異方性エッチングを行なう方法である 。物理化学的エッチングとしては例えば RIE (Reactive Ion Etching)が挙げられ る。 [0098] Note that examples of the etching method include chemical etching, physical etching, and physical chemical etching. Chemical etching is a method of selectively etching a removal target using a chemical reaction. Physical etching is a method of etching a removal target by causing accelerated argon ions to collide with the etching target surface. Examples of physical etching include ion milling. In addition, physicochemical etching is a method in which anisotropic etching is performed by using a chemical reaction between radicals (activated molecules and atoms having no charge) and the material to be etched and ion irradiation. is there . Examples of physicochemical etching include RIE (Reactive Ion Etching).
[0099] 榭脂製の基板 2を作製した後、めっき法などの成膜方法によって、基板 2の全表面 に対して 90%以上の領域に被覆層 3を形成する。その後、被覆層 3を研磨し、研磨 後の被覆層 3上に磁性層を形成して磁気記録媒体とする。例えば、上面 2a上に形成 された被覆層 3の上に磁性層を形成する。また、上面 2aと下面 2b上に形成された被 覆層 3の上に磁性層を形成しても良い。このように、磁気記録媒体用基板 1の片面の みに磁性層を形成しても良ぐ両面に磁性層を形成しても良 ヽ。  [0099] After preparing the resin substrate 2, the coating layer 3 is formed in a region of 90% or more with respect to the entire surface of the substrate 2 by a film forming method such as a plating method. Thereafter, the coating layer 3 is polished, and a magnetic layer is formed on the coated layer 3 after polishing to obtain a magnetic recording medium. For example, a magnetic layer is formed on the covering layer 3 formed on the upper surface 2a. Further, a magnetic layer may be formed on the covering layer 3 formed on the upper surface 2a and the lower surface 2b. In this way, a magnetic layer may be formed on only one side of the magnetic recording medium substrate 1 or a magnetic layer may be formed on both sides.
[0100] また、以上の説明は、基板が単一の榭脂により構成されているものを例として行つ たが、基板は単一の榭脂で構成されているものに限らず、金属やガラスなどの非磁 性材料の表面を榭脂層で被覆することにより構成されるものでも良い。この場合、榭 脂で被覆される非磁性材料としては、榭脂、金属、セラミックス、ガラス、ガラスセラミツ タス、又は、有機無機複合材など、基板として適用できる様々な素材を用いることが できる。  [0100] Further, the above description has been made by taking as an example a substrate composed of a single resin. However, the substrate is not limited to one composed of a single resin, and may be made of metal or metal. It may be configured by coating the surface of a non-magnetic material such as glass with a resin layer. In this case, as the nonmagnetic material coated with the resin, various materials applicable as a substrate such as a resin, metal, ceramics, glass, glass ceramics, or an organic-inorganic composite material can be used.
(変形例)  (Modification)
次に、この発明の実施形態に係る磁気記録媒体用基板の変形例について図 4及 び図 5を参照して説明する。図 4は、この発明の実施形態に係る磁気記録媒体用基 板の変形例を示す基板の断面図である。図 5は、この発明の実施形態に係る磁気記 録媒体用基板の別の変形例を示す基板の断面図である。  Next, modified examples of the magnetic recording medium substrate according to the embodiment of the present invention will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 is a cross-sectional view of a substrate showing a modification of the magnetic recording medium substrate according to the embodiment of the present invention. FIG. 5 is a cross-sectional view of a substrate showing another modification of the magnetic recording medium substrate according to the embodiment of the present invention.
(変形例 1) まず、変形例 1について図 4を参照して説明する。この変形例 1に係る磁気記録媒 体用基板 10は、円盤状の基板 2の上面 2aと下面 2bに被覆層 4が形成されているが、 内周端面 2cと外周端面 2dには被覆層は形成されて!、な!/ヽ。 (Modification 1) First, Modification 1 will be described with reference to FIG. In the magnetic recording medium substrate 10 according to Modification 1, the coating layer 4 is formed on the upper surface 2a and the lower surface 2b of the disk-shaped substrate 2, but the coating layer is not formed on the inner peripheral end surface 2c and the outer peripheral end surface 2d. It's formed!
[0101] このように基板 2の全面に被覆層が形成されていなくても、基板 2からのガスの放出 を抑制することが可能となり、基板 2による吸湿を防止することができ、耐湿性を向上 させることが可能となる。また、被覆層 4の上に磁性層を形成することで、磁性層と基 板との密着度を高めることが可能となる。  [0101] In this way, even if no coating layer is formed on the entire surface of the substrate 2, it is possible to suppress the release of gas from the substrate 2, prevent moisture absorption by the substrate 2, and improve moisture resistance. It becomes possible to improve. Further, by forming a magnetic layer on the coating layer 4, it is possible to increase the degree of adhesion between the magnetic layer and the substrate.
[0102] なお、この変形例 1では、内周端面 2cと外周端面 2dの両端面に被覆層を形成して Vヽな 、が、内周端面 2c又は外周端面 2dの 、ずれか一方の端面に被覆層が形成さ れていても良い。つまり、上面 2a、下面 2b、及び内周端面 2cに被覆層を形成しても 良ぐ上面 2a、下面 2b、及び外周端面 2dに被覆層を形成しても良い。  [0102] It should be noted that, in this modified example 1, a coating layer is formed on both end surfaces of the inner peripheral end surface 2c and the outer peripheral end surface 2d, but the inner peripheral end surface 2c or the outer peripheral end surface 2d is shifted to one end surface. A coating layer may be formed on the surface. That is, a coating layer may be formed on the upper surface 2a, the lower surface 2b, and the inner peripheral end surface 2c, or a coating layer may be formed on the upper surface 2a, the lower surface 2b, and the outer peripheral end surface 2d.
(変形例 2)  (Modification 2)
次に、変形例 2について図 5を参照して説明する。この変形例 2に係る磁気記録媒 体用基板 20は、円盤状の基板 2の全表面に被覆層 3 (以下、「第 1の被覆層」と称す る場合がある)が形成されている。さらに、磁性層が形成される上面 2a上には、被覆 層 3上に別の被覆層 5 (以下、「第 2の被覆層」と称する場合がある)が形成されて!、る 。つまり、上面 2aには 2層の被覆層が形成されていることになる。この上面 2aがこの 発明の「主表面」に相当する。そして、上面 2a上に形成されている被覆層 5の上に磁 性層を形成して磁気記録媒体とする。  Next, Modification 2 will be described with reference to FIG. In the magnetic recording medium substrate 20 according to Modification 2, a coating layer 3 (hereinafter sometimes referred to as a “first coating layer”) is formed on the entire surface of the disk-shaped substrate 2. Further, another coating layer 5 (hereinafter sometimes referred to as “second coating layer”) is formed on the coating layer 3 on the upper surface 2a on which the magnetic layer is formed. That is, two coating layers are formed on the upper surface 2a. The upper surface 2a corresponds to the “main surface” of the present invention. Then, a magnetic layer is formed on the covering layer 5 formed on the upper surface 2a to obtain a magnetic recording medium.
[0103] 第 1の被覆層である被覆層 3には、榭脂製の基板 2との密着度が高い材料を用い、 第 2の被覆層である被覆層 5には、磁性層との密着度が高い材料を用いる。これによ り、基板 2と被覆層 3との密着度を高めるとともに、被覆層 5と磁性層との密着度を高 めることが可能となる。その結果、被覆層 3、 5、及び磁性層の剥離を防止することが 可能となる。 [0103] The coating layer 3 as the first coating layer is made of a material having a high degree of adhesion to the substrate 2 made of resin, and the coating layer 5 as the second coating layer is adhered to the magnetic layer. Use a high degree of material. As a result, the adhesion between the substrate 2 and the coating layer 3 can be increased, and the adhesion between the coating layer 5 and the magnetic layer can be increased. As a result, it is possible to prevent the coating layers 3 and 5 and the magnetic layer from peeling off.
[0104] また、図 4に示す変形例 1と同様に、内周端面 2cと外周端面 2dに被覆層を形成し なくても良い。この場合、上面 2a上に形成された被覆層 4上に被覆層 5を形成し、下 面 2b上に被覆層 4を形成することになる。  [0104] Further, similarly to the first modification shown in FIG. 4, it is not necessary to form a coating layer on the inner peripheral end face 2c and the outer peripheral end face 2d. In this case, the coating layer 5 is formed on the coating layer 4 formed on the upper surface 2a, and the coating layer 4 is formed on the lower surface 2b.
[0105] また、両面に 2層の被覆層を形成しても良い。この場合、上面 2aには、第 1の被覆 層である被覆層 3の上に、第 2の被覆層である被覆層 5が形成され、さらに下面 2bに は、第 1の被覆層である被覆層 3の上に、第 2の被覆層である被覆層 5が形成される ことになる。このように基板 2の両面に 2層の被覆層を形成することで、両面に磁性層 を形成する場合に、基板 2と被覆層との密着度を高めるとともに、被覆層と両面の磁 性層との密着度を高めることが可能となる。なお、基板 2の両面に被覆層を形成する 場合は、上面 2aと下面 2bがこの発明の「主表面」に相当することになる。 [0105] Two coating layers may be formed on both sides. In this case, the upper surface 2a has a first coating. A coating layer 5 as a second coating layer is formed on the coating layer 3 as a layer, and a second coating layer is formed on the coating layer 3 as the first coating layer on the lower surface 2b. A certain coating layer 5 is formed. By forming two coating layers on both surfaces of the substrate 2 in this way, when forming a magnetic layer on both surfaces, the degree of adhesion between the substrate 2 and the coating layer is increased, and the coating layer and the magnetic layers on both surfaces are also formed. It is possible to increase the degree of adhesion to the. When the coating layers are formed on both surfaces of the substrate 2, the upper surface 2a and the lower surface 2b correspond to the “main surface” of the present invention.
[0106] この変形例 2では、 2層の被覆層を形成したが、 3層以上の被覆層を形成しても良 い。また、 1層の被覆層であって、厚さ方向に徐々にその成分を変えた傾斜成分層を 基板 2に形成しても良い。例えば、基板 2と接する面側には榭脂との密着度が高い層 を形成し、最表面側には磁性層との密着度が高い層を形成する。これにより、基板 2 と被覆層との密着度を高めるとともに、被覆層と磁性層との密着度を高めることが可 能となり、被覆層と磁性層の剥離を防止することが可能となる。  [0106] In Modified Example 2, two coating layers are formed, but three or more coating layers may be formed. Further, a gradient component layer, which is a single coating layer and gradually changes its component in the thickness direction, may be formed on the substrate 2. For example, a layer having a high degree of adhesion with the resin is formed on the side in contact with the substrate 2 and a layer having a high degree of adhesion with the magnetic layer is formed on the outermost surface side. As a result, the adhesion between the substrate 2 and the coating layer can be increased, and the adhesion between the coating layer and the magnetic layer can be increased, thereby preventing the coating layer and the magnetic layer from peeling off.
[0107] また、変形例 1及び変形例 2についても、図 2及び図 3に示すような所定のパターン を有する溝を形成しても良 ヽ。  [0107] Also, in Modification 1 and Modification 2, grooves having a predetermined pattern as shown in FIGS. 2 and 3 may be formed.
[実施例]  [Example]
次に、この発明の具体的な実施例について説明する。  Next, specific examples of the present invention will be described.
(実施例 1)  (Example 1)
実施例 1では、図 1に示す磁気記録媒体用基板 1の具体例について説明する。この 実施例 1では、基板 2の全面に被覆層 3を形成し、密着度と化学的耐久性について 評価した。  In Example 1, a specific example of the magnetic recording medium substrate 1 shown in FIG. 1 will be described. In Example 1, the coating layer 3 was formed on the entire surface of the substrate 2 and evaluated for adhesion and chemical durability.
(基板 2の成形)  (Substrate 2 molding)
基板の材料としてポリイミドを用い、射出成形により榭脂製の基板 2を作製した。ポリ イミドとして、オーラム (三井ィ匕学社製)を用いた。この基板 2の寸法を以下に示す。  Polyimide was used as a substrate material, and a resin substrate 2 was produced by injection molding. Aurum (made by Mitsui Engineering Co., Ltd.) was used as a polyimide. The dimensions of this substrate 2 are shown below.
[0108] 外径: 27. 4 [mm] [0108] Outer diameter: 27.4 [mm]
基板 2の厚さ: 0. 4 [mm]  Substrate 2 thickness: 0.4 [mm]
表面粗さ Ra: 5nm  Surface roughness Ra: 5nm
(被覆層 3の成膜)  (Deposition of coating layer 3)
基板 2に対してスパッタリングを施すことにより、基板 2の全表面に Ni層を形成した。 その後、さらにスパッタリングを施すことにより、 Ni層上にニッケル一リン (Ni-P)合金 層(以下、「NiP層」と称する)を成膜した。この NiP層の厚さは、 10 [nm]となった。こ れら M層と NiP層が、基板 2上に形成された被覆層 3に相当する。 A Ni layer was formed on the entire surface of the substrate 2 by sputtering the substrate 2. Thereafter, further sputtering was performed to form a nickel monophosphorus (Ni-P) alloy layer (hereinafter referred to as “NiP layer”) on the Ni layer. The thickness of this NiP layer was 10 [nm]. These M layer and NiP layer correspond to the coating layer 3 formed on the substrate 2.
(被覆層 3の密着度の評価)  (Evaluation of adhesion of coating layer 3)
上記被覆層 3を基板 2上に形成した後、被覆層 3の密着度を評価した。ここで、密着 度の評価方法として基盤目テープ剥離試験を採用した。この基盤目テープ剥離試験 は、 JIS K 5600 (塗料一般試験法)の第 5部 (塗膜の機械的性質)第 6節 (付着性: クロスカット法)に規定する方法に従った。そして、 1 [mm]間隔で相互に直交するよう 、 11本ずっ榭脂製の基板 2に到達する切り込み線を被覆層 3に付けた後、その基盤 目上にセロハン製粘着テープ (ニチバン社製 LP— 24)を粘着させ、直ちにテープを 引き剥がし、被覆層 3の剥がれた状態を確認した。密着性の判定は、 JIS K 5600 の第 5部第 6節 8. 3に記載の表 1「試験結果の分類」に従い、分類 0、分類 又は分 類 2に該当するものを良好とし、それ以外の分類に該当するものを不良として実施し た。  After the coating layer 3 was formed on the substrate 2, the degree of adhesion of the coating layer 3 was evaluated. Here, a substrate tape peeling test was adopted as a method for evaluating the degree of adhesion. This base tape peeling test was performed in accordance with the method specified in Part 5 (Mechanical properties of paint film), Section 6 (Adhesiveness: Cross-cut method) of JIS K 5600 (General paint test method). Then, 11 cut lines that reach the substrate 2 made of resin so as to be orthogonal to each other at intervals of 1 mm are attached to the covering layer 3, and then the cellophane adhesive tape (manufactured by Nichiban Co., Ltd.) is formed on the base. LP-24) was adhered, and the tape was immediately peeled off to confirm that the covering layer 3 was peeled off. Judgment of adhesion shall be good if it falls under Category 0, Category or Category 2 according to Table 1 `` Classification of test results '' described in JIS K 5600 Part 5 Section 6 8.3. Those that fall under the category were implemented as defective.
[0109] この剥離試験を実施した結果、実施例 1については、被覆層 3の基板 2に対する密 着性は良好であることが確認された。  [0109] As a result of performing this peeling test, it was confirmed that in Example 1, the adhesion of the coating layer 3 to the substrate 2 was good.
(化学的耐久性の評価)  (Evaluation of chemical durability)
さらに、化学的耐久性 (耐湿性)を評価した。被覆層 3を形成した基板 2を、温度 60 °C、相対湿度 95%の恒温恒湿槽に 1週間保持し、試験前後における基板 2の質量を 計測し、増減度合いによって化学的耐久性 (耐湿性)の評価を行った。化学的耐久 性の判定は、質量の変化率が 0. 1%未満のものを良好とし、 0. 1%以上のものを不 良として実施した。  Furthermore, chemical durability (humidity resistance) was evaluated. The substrate 2 on which the coating layer 3 is formed is kept in a constant temperature and humidity chamber at a temperature of 60 ° C and a relative humidity of 95% for 1 week, and the mass of the substrate 2 before and after the test is measured, and the chemical durability (moisture resistance) Evaluation). The chemical durability was judged as good if the mass change rate was less than 0.1% and bad if it was 0.1% or more.
[0110] この試験の結果、被覆層 3を形成した基板 2は良好な化学的耐久性を示すことが確 f*i¾ れ 。  [0110] As a result of this test, it was confirmed that the substrate 2 on which the coating layer 3 was formed exhibited good chemical durability.
(研磨工程)  (Polishing process)
上記被覆層 3を形成した後、被覆層 3の表面を研磨した。この研磨工程では、コダ ィャモンドを主成分とするスラリーを研磨剤として用いた。研磨後の磁気記録媒体用 基板の表面粗さ Raは、 0. 4[nm]となった。 (磁性層の成膜) After the coating layer 3 was formed, the surface of the coating layer 3 was polished. In this polishing step, a slurry mainly composed of kodiamond was used as an abrasive. The surface roughness Ra of the polished magnetic recording medium substrate was 0.4 [nm]. (Deposition of magnetic layer)
上記研磨工程後、表面 2a上に形成されている被覆層 3上にスパッタリングによって Co系合金の磁性層を形成し、磁気記録媒体を製造した。  After the polishing step, a magnetic layer of a Co-based alloy was formed on the coating layer 3 formed on the surface 2a by sputtering to produce a magnetic recording medium.
(磁性層の密着度の評価)  (Evaluation of magnetic layer adhesion)
上記磁性層を被覆層 3上に形成した後、磁性層の密着度を評価した。磁性層の密 着度の評価は、被覆層 3の密着度の評価方法と同じ方法によって行った。この試験 の結果、磁性層の被覆層 3及び基板 2に対する密着度は良好であることが確認され た。  After the magnetic layer was formed on the coating layer 3, the adhesion of the magnetic layer was evaluated. The degree of adhesion of the magnetic layer was evaluated by the same method as the method for evaluating the degree of adhesion of the coating layer 3. As a result of this test, it was confirmed that the adhesion of the magnetic layer to the coating layer 3 and the substrate 2 was good.
[0111] 以上のように、実施例 1に係る磁気記録媒体用基板 1によると、化学的耐久性を高 めることができ、また、磁性層と基板との密着度を高めることができる。  [0111] As described above, according to the magnetic recording medium substrate 1 of Example 1, the chemical durability can be increased, and the adhesion between the magnetic layer and the substrate can be increased.
[0112] なお、この実施例 1では榭脂製の基板 2の材料としてポリイミドを用いたが、上記実 施形態で挙げた他の榭脂を用いても同様の効果を奏することができる。また、被覆層 を NiP層とした力 ニッケル一コバルト層などの他の成分力 なる層を積層しても同様 の効果を奏することができる。  [0112] In Example 1, polyimide was used as the material for the substrate 2 made of resin, but the same effect can be obtained by using other resins described in the above embodiment. Further, the same effect can be obtained by laminating a layer having another component force such as a nickel-cobalt layer having a NiP layer as a coating layer.
(実施例 2)  (Example 2)
実施例 2では、図 4に示す磁気記録媒体用基板 10の具体例について説明する。こ の実施例 2では、基板 2の上面 2a、 2bに被覆層 4を形成し、密着度と化学的耐久性 を評価した。  In Example 2, a specific example of the magnetic recording medium substrate 10 shown in FIG. 4 will be described. In Example 2, the coating layer 4 was formed on the upper surfaces 2a and 2b of the substrate 2, and the adhesion and chemical durability were evaluated.
(基板 2の成形)  (Substrate 2 molding)
基板の材料としてポリイミドを用い、射出成形により榭脂製の基板 2を作製した。ポリ イミドとして、オーラム (三井ィ匕学社製)を用いた。この基板 2の寸法を以下に示す。  Polyimide was used as a substrate material, and a resin substrate 2 was produced by injection molding. Aurum (made by Mitsui Engineering Co., Ltd.) was used as a polyimide. The dimensions of this substrate 2 are shown below.
[0113] 外径: 21. 6 [mm]) [0113] Outer diameter: 21.6 [mm])
基板 2の厚さ: 0. 3 [mm]  Substrate 2 thickness: 0.3 [mm]
表面粗さ Ra: 30nm  Surface roughness Ra: 30nm
(被覆層 4の成膜)  (Deposition of coating layer 4)
基板 2に対してスパッタリングを施すことにより、基板 2の表面 2a、 2bに Ni層を形成 した。その後、さらにスパッタリングを施すことにより、 Ni層上にニッケル一リン (Ni— P )合金層(以下、「NiP層」と称する)を成膜した。この NiP層の厚さは、 100[nm]とな つた。これら Ni層と NiP層力 基板 2上に形成された被覆層 4に相当する。このように 、実施例 2では、基板 2の表面 2a、 2bに被覆層 4を形成し、基板 2の内周端面 2cと外 周端面 2dには被覆層を形成しなカゝつた。この例では、基板の全表面の 90%以上の 領域にお 、て被覆層 4が形成されて 、ることになる。 By sputtering the substrate 2, Ni layers were formed on the surfaces 2a and 2b of the substrate 2. Thereafter, further sputtering was performed to form a nickel-phosphorus (Ni—P) alloy layer (hereinafter referred to as “NiP layer”) on the Ni layer. The thickness of this NiP layer is 100 [nm] I got it. These Ni layer and NiP layer forces correspond to the coating layer 4 formed on the substrate 2. Thus, in Example 2, the coating layer 4 was formed on the surfaces 2a and 2b of the substrate 2, and the coating layer was not formed on the inner peripheral end surface 2c and the outer peripheral end surface 2d of the substrate 2. In this example, the coating layer 4 is formed in an area of 90% or more of the entire surface of the substrate.
(被覆層 4の密着度の評価)  (Evaluation of adhesion of coating layer 4)
上記被覆層 4を基板 2上に形成した後、実施例 1と同じ方法で被覆層 4の密着度を 評価した。その結果、被覆層 4の基板 2に対する密着度は良好であることが確認され た。  After the coating layer 4 was formed on the substrate 2, the adhesion of the coating layer 4 was evaluated in the same manner as in Example 1. As a result, it was confirmed that the adhesion of the coating layer 4 to the substrate 2 was good.
(化学的耐久性の評価)  (Evaluation of chemical durability)
さらに、実施例 1と同様に化学的耐久性 (耐湿性)を評価した。その結果、被覆層 4 を施した基板 2は良好な化学的耐久性を示すことが確認された。  Further, the chemical durability (moisture resistance) was evaluated in the same manner as in Example 1. As a result, it was confirmed that the substrate 2 provided with the coating layer 4 showed good chemical durability.
(研磨工程)  (Polishing process)
上記被覆層 3を形成した後、被覆層 3の表面を研磨した。この研磨工程では、コロイ ダルシリカを主成分とするスラリーを研磨剤として用いた。研磨後の磁気記録媒体用 基板の表面粗さ Raは、 0. 2 [nm]となった。  After the coating layer 3 was formed, the surface of the coating layer 3 was polished. In this polishing step, a slurry containing colloidal silica as a main component was used as an abrasive. The surface roughness Ra of the polished magnetic recording medium substrate was 0.2 [nm].
(磁性層の成膜)  (Deposition of magnetic layer)
上記研磨工程後、表面 2a上に形成されている被覆層 4上にスパッタリングによって Co系合金の磁性層を形成し、磁気記録媒体を製造した。  After the polishing step, a magnetic layer of a Co-based alloy was formed on the coating layer 4 formed on the surface 2a by sputtering to produce a magnetic recording medium.
(磁性層の密着度の評価)  (Evaluation of magnetic layer adhesion)
上記磁性層を被覆層 4の上に形成した後、実施例 1と同じ方法で磁性層の密着度 を評価した。その結果、磁性層の被覆層 4及び基板 2に対する密着性は良好である ことが確認された。  After the magnetic layer was formed on the coating layer 4, the adhesion of the magnetic layer was evaluated by the same method as in Example 1. As a result, it was confirmed that the adhesion of the magnetic layer to the coating layer 4 and the substrate 2 was good.
[0114] 以上のように、上面 2a及び下面 2b上のみに被覆層 4を形成し、外周端面 2c及び外 周端面 2dに被覆層を形成しなくても、化学的耐久性を高めることができ、また、磁性 層と基板との密着度を高めることができる。  [0114] As described above, the chemical durability can be improved without forming the coating layer 4 only on the upper surface 2a and the lower surface 2b and forming the coating layer on the outer peripheral end surface 2c and the outer peripheral end surface 2d. In addition, the adhesion between the magnetic layer and the substrate can be increased.
[0115] 上記実施例 1と実施例 2の他、基板 2の全表面において、 90%以上の領域に被覆 層が形成されていることにより、化学的耐久性を高めることができ、磁性層と基板との 密着度を高めることができる。 (比較例 1) [0115] In addition to Example 1 and Example 2 above, the coating layer is formed in a region of 90% or more on the entire surface of the substrate 2, whereby the chemical durability can be increased, and the magnetic layer and The degree of adhesion with the substrate can be increased. (Comparative Example 1)
次に、上記実施例 1と実施例 2に対する比較例について説明する。この比較例では 、榭脂 (ポリイミド)製の基板上に、スパッタリングによって Co系合金の磁性層を形成し 、磁気記録媒体を製造した。このように、比較例では、榭脂製の基板上に被覆層を形 成せずに直接、磁性層を形成した。  Next, a comparative example for Example 1 and Example 2 will be described. In this comparative example, a magnetic recording medium was manufactured by forming a Co-based alloy magnetic layer on a resin (polyimide) substrate by sputtering. Thus, in the comparative example, the magnetic layer was formed directly on the resin-made substrate without forming the coating layer.
(基板の成形) (Substrate molding)
基板の材料としてポリイミドを用い、射出成形により榭脂製の基板を作製した。ポリイ ミドとして、オーラム (三井ィ匕学社製)を用いた。この基板の寸法を以下に示す。  Polyimide was used as the substrate material, and a resin-made substrate was produced by injection molding. Aurum (Mitsui Engineering Co., Ltd.) was used as the polyimide. The dimensions of this substrate are shown below.
外径: 27. 4 [mm]  Outer diameter: 27.4 [mm]
基板の厚さ: 0. 4 [mm]  Substrate thickness: 0.4 [mm]
表面粗さ Ra: 5nm  Surface roughness Ra: 5nm
(磁性層の成膜) (Deposition of magnetic layer)
上記榭脂製の基板上にスパッタリングによって Co系合金の磁性層を形成し、磁気 記録媒体を製造した。  A magnetic layer of a Co-based alloy was formed on the resin substrate by sputtering to produce a magnetic recording medium.
(化学的耐久性の評価) (Evaluation of chemical durability)
実施例 1及び実施例 2と同様に、化学的耐久性 (耐湿性)を評価した。その結果、磁 性層を形成した基板は、質量の増加率が 0. 1%以上と多くなり、磁気記録媒体として は、化学的耐久性が良好ではないことが確認された。  In the same manner as in Example 1 and Example 2, chemical durability (moisture resistance) was evaluated. As a result, it was confirmed that the substrate on which the magnetic layer was formed had a mass increase rate of 0.1% or more, and the chemical durability as a magnetic recording medium was not good.
(磁性層の密着度の評価) (Evaluation of magnetic layer adhesion)
上記磁性層を榭脂製の基板上に形成した後、実施例 1及び実施例 2と同じ方法で 磁性層の密着度を評価した。その結果、磁性層の基板に対する密着度は、 JIS K 5600の表 1における分類 4に該当し、密着度は十分ではないことが確認された。 (比較例 2)  After the magnetic layer was formed on a resin substrate, the adhesion of the magnetic layer was evaluated in the same manner as in Example 1 and Example 2. As a result, the adhesion degree of the magnetic layer to the substrate falls under Category 4 in Table 1 of JIS K 5600, and it was confirmed that the adhesion degree was not sufficient. (Comparative Example 2)
実施例 1において基板 2の上面 2aの 90%及び下面 2bの 90%に被覆層 3を形成し た以外は、実施例 1と同様な試料を作製した。すなわち、この例では、基板 2の上面 2 aと下面 2bでは 90%の領域において被覆層 3が形成されていることになるが、内周 端面 2cの全部、外周端面 2dの全部に被覆層 3が形成されていないので、基板 2の 全表面の 90%未満の領域しか被覆層が形成されて 、な ヽこと〖こなる。 [0117] この比較試料では、被覆層の密着度においては、良好であることを確認したが、化 学的耐久性の評価では不良との結果であった。 A sample was prepared in the same manner as in Example 1 except that the coating layer 3 was formed on 90% of the upper surface 2a and 90% of the lower surface 2b of the substrate 2 in Example 1. That is, in this example, the coating layer 3 is formed in 90% of the area on the upper surface 2a and the lower surface 2b of the substrate 2, but the coating layer 3 is formed on all of the inner peripheral end surface 2c and all of the outer peripheral end surface 2d. Therefore, the covering layer is formed only in an area of less than 90% of the entire surface of the substrate 2. [0117] In this comparative sample, it was confirmed that the coating layer had good adhesion, but the chemical durability was evaluated as poor.
[0118] 以上のように、基板 2の全表面において、 90%以上の領域が被覆層で覆われてい ることにより、化学的耐久性を向上させることが可能となる。さらに、その被覆層上に 磁性層を形成することで、基板上に磁性層を直接形成するよりも、磁性層と基板との 密着度を高めることが可能となる。すなわち、本発明によれば、密着性と化学的耐久 性の両者を同時に満足する磁気記録媒体用基板が得られる。  [0118] As described above, since 90% or more of the entire surface of the substrate 2 is covered with the coating layer, chemical durability can be improved. Furthermore, by forming a magnetic layer on the covering layer, it is possible to increase the degree of adhesion between the magnetic layer and the substrate rather than directly forming the magnetic layer on the substrate. That is, according to the present invention, it is possible to obtain a magnetic recording medium substrate that satisfies both adhesion and chemical durability at the same time.

Claims

請求の範囲 The scope of the claims
[1] 円盤状の形状を有する榭脂製の母材を基板とし、前記基板の全表面の 90%以上 の領域において被覆層が形成されていることを特徴とする磁気記録媒体用基板。  [1] A substrate for a magnetic recording medium, wherein a base material made of a resin having a disk shape is used as a substrate, and a coating layer is formed in an area of 90% or more of the entire surface of the substrate.
[2] 前記被覆層は、金属元素を主成分とすることを特徴とする請求の範囲第 1項に記 載の磁気記録媒体用基板。 [2] The magnetic recording medium substrate according to claim 1, wherein the coating layer contains a metal element as a main component.
[3] 前記基板の主表面に形成されて ヽる被覆層は複数の層で構成されて ヽることを特 徴とする請求の範囲第 1項又は第 2項に記載の磁気記録媒体用基板。 [3] The magnetic recording medium substrate according to [1] or [2], wherein the coating layer formed on the main surface of the substrate is composed of a plurality of layers. .
[4] 前記被覆層は軟磁性体又は非磁性体で構成されて ヽることを特徴とする請求の範 囲第 1項力 第 3項のいずれかに記載の磁気記録媒体用基板。 [4] The magnetic recording medium substrate according to any one of [1], [3], [3] and [3], wherein the coating layer is made of a soft magnetic material or a non-magnetic material.
[5] 前記基板中にフィラー材が含まれていることを特徴とする請求の範囲第 1項力 第[5] The first aspect of the present invention, wherein the substrate contains a filler material.
4項の ヽずれかに記載の磁気記録媒体用基板。 5. The magnetic recording medium substrate according to any one of items 4 above.
[6] 前記フィラー材は粒子状の形状を有し、その平均粒径 Df が 0. 001 [ μ m]〜: L0 [ m]であることを特徴とする請求の範囲第 5項に記載の磁気記録媒体用基板。 [6] The filler material according to claim 5, wherein the filler material has a particulate shape, and an average particle diameter Df thereof is 0.001 [μm] to: L0 [m]. A substrate for magnetic recording media.
[7] 前記フィラー材は粒子状の形状を有し、前記被覆層の厚さ Tcと、前記フィラー材の 平均粒径 Df とが、 [7] The filler material has a particulate shape, and the thickness Tc of the coating layer and the average particle diameter Df of the filler material are:
Tc/Df > 2  Tc / Df> 2
の関係を満たすことを特徴とする請求の範囲第 5項に記載の磁気記録媒体用基板  The magnetic recording medium substrate according to claim 5, wherein the following relationship is satisfied:
[8] 前記フィラー材は円柱状又は繊維状の形状を有し、その平均の直径 Df が 0. 001 [8] The filler material has a cylindrical or fibrous shape, and an average diameter Df is 0.001.
2  2
[ m]〜50 [ m]で、平均の長さ Lfが 0. 002 [ m]〜 1000 [ m]であることを特 徴とする請求の範囲第 5項に記載の磁気記録媒体用基板。  6. The magnetic recording medium substrate according to claim 5, wherein the average length Lf is from 0.002 [m] to 1000 [m] from [m] to 50 [m].
[9] 前記フィラー材は円柱状又は繊維状の形状を有し、その平均の直径 Df と、前記平 [9] The filler material has a columnar or fibrous shape, and an average diameter Df thereof and the flat material.
2 均の長さ Lfとが、  2 Average length Lf is
Lf/Df > 2  Lf / Df> 2
2  2
の関係を満たすことを特徴とする請求の範囲第 5項に記載の磁気記録媒体用基板  The magnetic recording medium substrate according to claim 5, wherein the following relationship is satisfied:
[10] 前記被覆層の厚さ Tcと、前記フィラー材の直径 Df とが、 [10] The thickness Tc of the coating layer and the diameter Df of the filler material are:
2  2
Tc/Df2 > 2 の関係を満たすことを特徴とする請求の範囲第 8項又は第 9項に記載の磁気記録 媒体用基板。 Tc / Df2> 2 The magnetic recording medium substrate according to claim 8 or 9, wherein the following relationship is satisfied.
[11] 前記被覆層の厚さ Tcが、 0. 001 [ m]〜50 [ m]であることを特徴とする請求の 範囲第 1項力も第 10項のいずれかに記載に磁気記録媒体用基板。  [11] The thickness of the coating layer Tc is 0.001 [m] to 50 [m]. substrate.
[12] 前記フィラー材が前記基板全体に占める体積の割合力 0. 1 [%]〜50 [%]である ことを特徴とする請求の範囲第 5項から第 11項のいずれかに記載の磁気記録媒体 用基板。  [12] The volume force of the filler material occupying the entire substrate is 0.1 [%] to 50 [%]. The method according to any one of claims 5 to 11, A substrate for magnetic recording media.
[13] 前記基板の表面において、フィラー材の表面占有率が 0. 1 [%]〜50 [%]であるこ とを特徴とする請求の範囲第 5項力 第 12項のいずれかに記載の磁気記録媒体用 基板。  [13] The force according to any one of claims 5 to 12, wherein a surface occupancy ratio of the filler material is 0.1 [%] to 50 [%] on the surface of the substrate. Substrate for magnetic recording media.
[14] 前記基板の表面に溝が形成されていることを特徴とする請求の範囲第 1項力 第 1 [14] The first aspect of the present invention is characterized in that a groove is formed on the surface of the substrate.
3項の ヽずれかに記載の磁気記録媒体用基板。 4. The magnetic recording medium substrate according to any one of 3).
[15] 前記溝は、同心円状、放射状、格子状、ドット状、又は多角形状のパターンの中か ら選ばれる 1つ以上のパターン力 成る構成を有していることを特徴とする請求の範 囲第 14項に記載の磁気記録媒体用基板。 [15] The groove has a configuration of one or more pattern forces selected from concentric, radial, grid, dot, or polygonal patterns. 15. A substrate for a magnetic recording medium according to item 14.
[16] 前記パターンは、連続した溝、不連続の溝、又は連続した溝と不連続の溝との組み 合わせで構成されていることを特徴とする請求の範囲第 15項に記載の磁気記録媒 体用基板。 16. The magnetic recording according to claim 15, wherein the pattern is configured by a continuous groove, a discontinuous groove, or a combination of a continuous groove and a discontinuous groove. Media substrate.
[17] 前記溝の深さ Dvが、 0. 001 [ m]〜l [ m]であることを特徴とする請求の範囲 第 14項から第 16項のいずれかに記載の磁気記録媒体用基板。  [17] The magnetic recording medium substrate according to any one of [14] to [16], wherein a depth Dv of the groove is 0.001 [m] to l [m]. .
[18] 前記溝の幅 Wvが、 0. 001 [ μ m]〜10 [ m]であることを特徴とする請求の範囲 第 14項から第 17項のいずれかに記載の磁気記録媒体用基板。  [18] The magnetic recording medium substrate according to any one of [14] to [17], wherein a width Wv of the groove is 0.001 [μm] to 10 [m]. .
[19] 前記溝の深さ Dvと、前記溝の幅 Wvとが、  [19] The groove depth Dv and the groove width Wv are:
Wv > Dv/5  Wv> Dv / 5
の関係を満たすことを特徴とする請求の範囲第 14項力も第 18項のいずれかに記 載の磁気記録媒体用基板。  The magnetic recording medium substrate as set forth in any one of claims 14 and 18, wherein the force satisfies the following relationship.
[20] 前記被覆層の厚さ Tcと前記溝の深さ Dvとが、 [20] The thickness Tc of the coating layer and the depth Dv of the groove are:
Tc/Dv > 2 の関係を満たすことを特徴とする請求の範囲第 14項力も第 19項のいずれかに記 載の磁気記録媒体用基板。 Tc / Dv> 2 The magnetic recording medium substrate according to any one of claims 14 to 19, wherein the force satisfies the following relationship.
[21] 前記被覆層が形成される前の基板の表面粗さ Raが 1 [ηπ!]〜 1000 [nm]、最大谷 高さ Rvが 5〜5000 [nm]、及び、最大山高さ Rpが 3 [nm]〜3000 [nm]であることを 特徴とする請求の範囲第 1項から第 20項のいずれかに記載の磁気記録媒体用基板 [21] The surface roughness Ra of the substrate before the coating layer is formed is 1 [ηπ! The maximum valley height Rv is 5 to 5000 [nm], and the maximum peak height Rp is 3 [nm] to 3000 [nm]. Item 20. The magnetic recording medium substrate according to any one of Items 20
[22] 前記被覆層の厚さ Tcと、前記被覆層が形成される前の基板の表面粗さ Raとが、 [22] The thickness Tc of the coating layer and the surface roughness Ra of the substrate before the coating layer is formed,
5 X表面粗さ Ra < 被覆層の厚さ Tc < 1000 X表面粗さ Ra  5 X surface roughness Ra <coating layer thickness Tc <1000 X surface roughness Ra
の関係を満たすことを特徴とする請求の範囲第 1項から第 21項のいずれかに記載 の磁気記録媒体用基板。  The magnetic recording medium substrate according to any one of claims 1 to 21, wherein the following relationship is satisfied.
[23] 円盤状の形状を有する榭脂製の基板に対して、前記基板の表面の 90%以上の領 域に被覆層を成膜する成膜ステップを含むことを特徴とする磁気記録媒体用基板の 製造方法。 [23] For a magnetic recording medium, comprising a film forming step of forming a coating layer in a region of 90% or more of the surface of the substrate with respect to a resin-made substrate having a disk shape A method for manufacturing a substrate.
[24] 前記被覆層を研磨する研磨ステップを更に含み、  [24] The method further comprises a polishing step of polishing the coating layer,
前記研磨前の被覆層の厚さ、被覆層が形成される前の基板の表面粗さ Ra、及び、 被覆層を研磨した厚さが、  The thickness of the coating layer before polishing, the surface roughness Ra of the substrate before the coating layer is formed, and the thickness of polishing the coating layer,
5 X表面粗さ Ra < 研磨した厚さ < 0. 7 X研磨前の被覆層の厚さ の関係を満たすことを特徴とする請求の範囲第 23項に記載の磁気記録媒体用基 板の製造方法。  24. Production of a substrate for a magnetic recording medium according to claim 23, wherein the relationship of 5 X surface roughness Ra <polished thickness <0.7 X thickness of coating layer before polishing is satisfied Method.
[25] 前記研磨によって、研磨後の基板の表面粗さ Raを 0. l [nm]未満とすることを特徴 とする請求の範囲第 24項に記載の磁気記録媒体用基板の製造方法。  25. The method for manufacturing a substrate for a magnetic recording medium according to claim 24, wherein the surface roughness Ra of the substrate after polishing is made less than 0.1 [nm] by the polishing.
[26] 円盤状の形状を有する榭脂製の母材を基板とし、前記基板の全表面の 90%以上 の領域において被覆層が形成され、前記基板の少なくとも 1面に磁性層が形成され て 、ることを特徴とする磁気記録媒体。  [26] A base material made of resin having a disk shape is used as a substrate, a covering layer is formed in a region of 90% or more of the entire surface of the substrate, and a magnetic layer is formed on at least one surface of the substrate. A magnetic recording medium characterized by the above.
PCT/JP2007/054168 2006-03-13 2007-03-05 Substrate for magnetic recording medium, method for manufacturing such substrate and magnetic recording medium WO2007119306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008510753A JPWO2007119306A1 (en) 2006-03-13 2007-03-05 SUBSTRATE FOR MAGNETIC RECORDING MEDIUM, MANUFACTURING METHOD THEREOF, AND MAGNETIC RECORDING MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-067682 2006-03-13
JP2006067682 2006-03-13

Publications (1)

Publication Number Publication Date
WO2007119306A1 true WO2007119306A1 (en) 2007-10-25

Family

ID=38609119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054168 WO2007119306A1 (en) 2006-03-13 2007-03-05 Substrate for magnetic recording medium, method for manufacturing such substrate and magnetic recording medium

Country Status (2)

Country Link
JP (1) JPWO2007119306A1 (en)
WO (1) WO2007119306A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158729A (en) * 2007-12-27 2009-07-16 Hitachi Ltd Substrate for imprint
TWI755466B (en) * 2016-12-28 2022-02-21 日商東洋鋼鈑股份有限公司 Substrate for hard disk and hard disk device using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132630A (en) * 1988-11-11 1990-05-22 Sekisui Chem Co Ltd Magnetic recording medium
JPH033114A (en) * 1989-05-31 1991-01-09 Sekisui Chem Co Ltd Magnetic disk substrate
JPH0718076A (en) * 1993-06-30 1995-01-20 Tdk Corp Film produced by gas-phase polymerization and information medium
JP2002032908A (en) * 2000-07-18 2002-01-31 Fuji Photo Film Co Ltd Magnetic recording medium
JP2007066390A (en) * 2005-08-30 2007-03-15 Konica Minolta Opto Inc Substrate for magnetic recording medium and method for manufacturing substrate for magnetic recording medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104422A (en) * 1984-10-26 1986-05-22 Sumitomo Bakelite Co Ltd Magnetic disk
JPH0754573B2 (en) * 1985-07-22 1995-06-07 昭和アルミニウム株式会社 Aluminum alloy substrate for magnetic disk
JPH0997417A (en) * 1995-09-29 1997-04-08 Kao Corp Magnetic recording medium
JP3310563B2 (en) * 1996-12-09 2002-08-05 株式会社日立製作所 Magnetic recording medium and method of manufacturing the same
AU2003220879A1 (en) * 2002-12-24 2004-07-22 Fujitsu Limited Magnetooptic recording medium and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132630A (en) * 1988-11-11 1990-05-22 Sekisui Chem Co Ltd Magnetic recording medium
JPH033114A (en) * 1989-05-31 1991-01-09 Sekisui Chem Co Ltd Magnetic disk substrate
JPH0718076A (en) * 1993-06-30 1995-01-20 Tdk Corp Film produced by gas-phase polymerization and information medium
JP2002032908A (en) * 2000-07-18 2002-01-31 Fuji Photo Film Co Ltd Magnetic recording medium
JP2007066390A (en) * 2005-08-30 2007-03-15 Konica Minolta Opto Inc Substrate for magnetic recording medium and method for manufacturing substrate for magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158729A (en) * 2007-12-27 2009-07-16 Hitachi Ltd Substrate for imprint
TWI755466B (en) * 2016-12-28 2022-02-21 日商東洋鋼鈑股份有限公司 Substrate for hard disk and hard disk device using the same

Also Published As

Publication number Publication date
JPWO2007119306A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
US20070048553A1 (en) Substrate for magnetic information recording medium, and producing method of substrate for magnetic information recording medium
WO2007119306A1 (en) Substrate for magnetic recording medium, method for manufacturing such substrate and magnetic recording medium
JP2008210450A (en) Manufacturing method of magnetic recording medium, stamper, transfer device, and resin mask forming method
EP2028652A1 (en) Magnetic recording medium and production method thereof
WO2007074645A1 (en) Magnetic recording medium substrate and magnetic recording medium
EP1204097B1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk apparatus
JP4983268B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
JP4285452B2 (en) Device and manufacturing method thereof
EP1492102B1 (en) Method for producing stamper for optical information recording medium
JP4775444B2 (en) Magnetic recording medium and method for manufacturing substrate for magnetic recording medium
JP2004171658A (en) Substrate for perpendicular magnetic recording medium and perpendicular magnetic recording medium and method for manufacturing the same
JP2008090988A (en) Substrate for magnetic recording medium
JP5062167B2 (en) Substrate for magnetic recording medium
JP2009230811A (en) Member for metal mold
US20100075180A1 (en) Magnetic recording medium substrate and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof
WO2007099732A1 (en) Substrate for magnetic recording medium, method for manufacturing such substrate, and metal mold for substrate for magnetic recording medium
US20080220290A1 (en) Magnetic recording medium and manufacturing method for the same
JP2009223999A (en) Mold member, injection molding mold, and manufacturing method of substrate for magnetic recording medium
JPH05334667A (en) Production of magnetic disk and magnetic disk
US20110212272A1 (en) Manufacturing method for magnetic recording medium
JP2009054253A (en) Substrate for magnetic recording medium, and magnetic recording device
JPH05334666A (en) Production of magnetic disk and magnetic disk
WO2003042993A1 (en) Multi-layered optical recording medium
JP2009054252A (en) Substrate for magnetic recording medium, magnetic recording medium, and magnetic recording device
JP2009226695A (en) Mold member, mold for injection molding, and method for manufacturing substrate for magnetic recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07737763

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008510753

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07737763

Country of ref document: EP

Kind code of ref document: A1