WO2007118940A1 - Moteur rotatif a rotor unique et 2 pistons cylindriques alternatifs - Google Patents

Moteur rotatif a rotor unique et 2 pistons cylindriques alternatifs Download PDF

Info

Publication number
WO2007118940A1
WO2007118940A1 PCT/FR2006/000902 FR2006000902W WO2007118940A1 WO 2007118940 A1 WO2007118940 A1 WO 2007118940A1 FR 2006000902 W FR2006000902 W FR 2006000902W WO 2007118940 A1 WO2007118940 A1 WO 2007118940A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
biconvex
stator
piston
crankshaft
Prior art date
Application number
PCT/FR2006/000902
Other languages
English (en)
Other versions
WO2007118940A9 (fr
Inventor
Laurent Paris
Original Assignee
Laurent Paris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laurent Paris filed Critical Laurent Paris
Priority to PCT/FR2006/000902 priority Critical patent/WO2007118940A1/fr
Publication of WO2007118940A1 publication Critical patent/WO2007118940A1/fr
Publication of WO2007118940A9 publication Critical patent/WO2007118940A9/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B57/00Internal-combustion aspects of rotary engines in which the combusted gases displace one or more reciprocating pistons
    • F02B57/08Engines with star-shaped cylinder arrangements

Definitions

  • the present invention relates to thermal engines with single rotary piston and reciprocating pistons. This invention seeks to reconcile the simplicity of the rotary engine and the reliability of the conventional engine, to improve efficiency and economy while respecting the present and future ecological standards. Rotary motors have always impacted on reliability and efficiency due to leaks in the moving parts or designs that do not provide sufficiently high compression rates for optimum performance.
  • This invention attempts to remedy these imperfections by reconciling proven mechanisms and technical innovations, preserving a great mechanical simplicity behind a high technological value.
  • This invention seeks to improve the efficiency of the engine by the small number of moving parts. It also allows to consider a low manufacturing cost thanks to the simple shapes of the parts used.
  • the engine includes:
  • the rotor (1) is a cylindrical part composed of a central part and two ends of smaller diameter called driving end (2).
  • the dimensions of the rotor vary according to the desired use.
  • the rotor (1) whose movement is purely rotary, is mounted on four bearings that minimize friction during rotation: "A peripheral bearing (19) of large diameter between rotor (1) and stator
  • the rotor is framed by these bearings.
  • the driving ends (2) serve to transmit the rotary movement of the rotor (1) to the outside of the stator (1 1).
  • the driving end (2) can be equipped with a ring gear or any other mechanism for transmitting the rotary movement of the rotor (1).
  • the rotor (1) is éyidé along its axis of rotation in order to accommodate the crankshaft (3) which passes through, throughout its length, the rotor (1)
  • two cylindrical bores pass through the rotor. They receive two moving parts: the biconvex pistons (6).
  • These bores have an angular setting relative to each other.
  • the angle is calculated according to the operating cycle of the engine and takes into account the duration of the explosion in the transfer (16).
  • the rotor (1) is equipped with variable timing between compressor stage (12) and motor stage (13). This setting varies according to the speed of rotation of the rotor (1) and makes it possible to act on the duration of the combustion in the transfer (16).
  • Each cylindrical bore is equipped with two internal floating folders (9).
  • the rotor (1) is not in contact with the stator (11).
  • the stator bore (H) is larger than the diameter of the rotor (1) to allow lubrication of the motor and reduce unnecessary friction during rotation.
  • the weight of the rotor (1) must be as small as possible in order to reduce the inertia of the moving parts and to improve the energy efficiency.
  • the rotor (1) can be lightened by any means that the technique currently offers.
  • the rotor (1) is schematically separated into two stages:
  • the crankshaft (3) is composed of a cylindrical portion at each end and a crankpin (4) which connects each cylindrical portion.
  • On the crankpin (4) are articulated rods (5) which have been defined previously.
  • crankshaft (3) serve as axes of rotation to the rotor (1). They are equipped with a bearing called central bearing (18) which is inserted between the rotor (1) and the crankshaft (3).
  • crankshaft (3) passes through the rotor (1) along its axis of rotation.
  • crankpin (4) is split in two at its middle part. This configuration makes it possible to vary the angular setting of the crank pins (4) in order to intervene on the "dead-up" point of the biconvex pistons (6) of the compressor stage (12) and the motor stage (13).
  • Each half-crankshaft carries an off-center crankpin.
  • Each half-needle is attached to the central portion of a side cap (19). It is integral with the stator (18). He does not turn.
  • the biconvex piston stroke (6) is determined by the spacing between the crankpin (4) and the crankshaft centerline (3). On each crankpin turns the foot of the connecting rod (5),
  • the biconvex piston (6) is connected to the crankpin (4) of the crankshaft (3) via the connecting rod (5).
  • crankpin (4) passes through the biconvex piston (6) at its center.
  • the biconvex piston (6) is the movable rotor (I).
  • the rotor (1) carries two biconvex pistons (6) inside the two bores of the rotor (1) and are in contact with the rotor (1) by means of intermediate floating sleeves (9). 6) is cylindrical in its major axis and corresponds to the fusion of two conventional pistons by their feet. The middle part, fusion zone, is recessed to allow the passage of a mechanical part: the crankshaft (3) .
  • Each end of the biconvex piston (6) is called the piston head (7). It has a curved surface that has the same radius of curvature as the rotor (1). y The height of the biconvex piston (6) is equal to the diameter of the rotor (1) minus twice the distance between the axis of the crankshaft (3) and the axis of the crankpin (4) supporting the connecting rod (5).
  • the biconvex piston (6) carries a transverse axis (8) close to one of the piston heads (7). On this transverse axis (8) is articulated a moving part: the head of the connecting rod (5) identical to that of a conventional engine. There is only one rod (5) per piston bicpnvexe (6).
  • the biconvex piston (6) carries a segmentation located near each piston head (7). This segmentation seals with the floating jacket (9) and the biconvex piston (6).
  • the floating jacket (9) is inserted between the rotor (1) and the biconvex piston (6). Its internal shape is cylindrical, its bore corresponds to the dimension of the biconvex piston (6). This floating jacket (9) can be compared to the shirts of conventional thermal engines.
  • the upper part of the floating jacket (9), in contact with the stator (1 1), is of curved shape, the radius of curvature is equal to that of the rotor (1).
  • the surface of the upper part is enlarged and has a flared tongue shape with rounded contours, similar to a ski spatula.
  • the floating jacket (9) is in constant contact with the stator (1 1) and slides on its inner surface.
  • the floating jacket (9) carries, in addition, a complete segmentation which seals between the rotor (1) and the stator (11).
  • the spatula shape of the floating jacket (9) in contact with the stator (1 1) is calculated to conceal the intake (14) and exhaust (15) ports of the stator (11) during the rotating the rotor (1) and sealing the transfer (16) during the combustion of gases, in order to achieve a constant volume combustion.
  • the lower part of the floating jacket (9) is equipped at its base with a spring (10). This spring maintains the floating jacket (9) in pressure against the inner surface of the stator 1 1) when the rotational speed of the rotor (I) is insufficient to create a centrifugal force and seals the compression chambers or expansion chambers .
  • the weight of the floating jacket (9) is calculated to ensure, under the effect of centrifugal force, the ideal seal between the floating jacket (9) and the stator (11) during rotation.
  • the rotor (1) carries a total of 4 floating folders (9).
  • the floating jackets (9) are the only parts of the rotor (1) in contact with the stator (1 1).
  • the stator (11) is the fixed part of the rotary motor. It is the equivalent of the engine block for a conventional engine. It has a generally cylindrical internal shape. The stator bore dimensions are larger than the outer diameter of the rotor (1).
  • the stator (1 1) is pierced with two orifices which are:
  • the stator (11) is closed at each end by a shell called side cap (17).
  • This lateral cap (17) receives the cylindrical end of the crankshaft (3).
  • the side cap (17) can receive a system that modifies its setting of the crankshaft (3) relative to the side cap (17). This system makes it possible to vary the dead-top position of each biconvex piston (6) during the rotation of the rotor (1).
  • Each lateral cap (17) in the form of a thick disc has an opening at its periphery. This window opens on the driving end (2) of the rotor (1). This window makes it possible to transmit the rotational movement of the rotor (1) to the outside of the stator (1 1).
  • the two side caps (17) are of substantially symmetrical shape.
  • the rotor (1) has a driving end (2) at each of its ends.
  • the motive power is recovered.
  • peripherals are mounted: starter, alternator and pumps.
  • the transfer (16) is the area where the air or mixture sucked by the intake port (14) is transferred and compressed in the compressor stage (12) to the motor stage (13). It is located in the middle position in the stator (11), straddling the compressor stage (12) and the motor stage (13).
  • the transfer (16) is made hollow in the block of the stator (1 1), s . a . form resembles the association of two diametrically reversed pipes.
  • This intermediate zone (21) is axial. It is cylindrical in shape.
  • scoops (20) have the shape of a pipe hearth.
  • the two scoops (20) are diametrically opposed.
  • Each scoop (20) is machined hollow in the stator (11).
  • the proximal part is dug tangentially to the stator block (1 1) and then progressively digs.
  • the width of the scoop (20) is between one-third and one-half the diameter of the biconvex piston (6).
  • the center axis of the bailer (20) is centered biconvex piston (6) so that the floating jacket (9) perfectly hides the scoop (20) during the explosion.
  • the distal portion ends with a sharp, vertical, curved edge on the outer side edge to concentrate the gases to the intermediate zone (21) which opens at the inner side edge of the scoop (20). .
  • the intermediate zone (21) opens into the scoop (20) at the inner side edge.
  • the scoop (20) is equipped with a spark plug and / or an ejector of esse ⁇ ce, in the gasoline configuration, or a high pressure injector diesel in the diesel configuration.
  • the total volume of the transfer (16) is calculated according to the operating mode:
  • the volume of this transfer (16) will be one-tenth of the unit cubic capacity.
  • the transfer volume (16) will be 25 cc.
  • the volume of the transfer (16) will be between the eighteenth and twentieth of the cubic capacity.
  • the transfer volume will be 12.5 to 14 cc.
  • the quality of the combustion of the gases during the explosion is even better than it is at constant volume.
  • variable setting acts on the angle existing between the biconvex pistons.
  • the compressor stage (12) and the motor stage (13) are decoupled.
  • the rotor is divided into two half rotors. Variation of calibration can be done through an active or passive mechanism.
  • the half rotors are secured by axes that can slide in the slots.
  • Each axis is coupled to a spring whose calibration is calculated according to the weight of the axis and the speed of rotation of the rotor.
  • This system works either through a controlled mechanism, or through a mechanism using the variation of centrifugal force during rotation.
  • the motor is lubricated in the space between the rotor (1) and the stator (1 1) by a constant lubricating film between these two moving parts.
  • the lubrication of the biconvex pistons (6) and connecting rods (5) is ensured by a system of pipes made in the crankshaft (3) and the crankpin (4). These lines serve to bring the lubricant to the base of the biconvex piston.
  • the lubrication pressure is ensured by a lubrication pump. The centrifugal force during rotation of the rotor distributes the lubricant between rotor and stator.
  • the lubricating liquid is recovered at a crankcase by a network of channels.
  • the lubrication pump recovers the lubricant in the housing to distribute it in the previously defined areas.
  • the rotary engine has two hot zones: the transfer (16) and the motor stage (13) of the rotor (1). Cooling will focus mainly on these two areas.
  • the cooling can be provided by a coolant circulating in cooling channels or by fins in the case of air cooling.
  • the cooling channels distributed in the stator block, will be more numerous in these hot spots. Liquid cooling uses techniques already used for conventional engines.
  • the compressor stage (12) comprises a biconvex piston (6), two compression chambers, the air inlet (14) and the scoop (20) of the transfer (16).
  • the engine stage (13) comprises a biconvex piston (6), two expansion chambers, the exhaust port (15) and the scoop (20) of the transfer (16).
  • the transfer (16) is the only communication zone between the two stages.
  • the biconvex piston (6) of the engine stage (13) is in the "top dead center” position in front of the scoop (20) of the transfer (16).
  • the gaseous volume at very high level pressure exerts a repulsion phenomenon on the biconvex piston (6) of the motor stage (13) of the rotor (1).
  • the biconvex piston (6) of the engine stage (13) progressively moves from the "dead-low” position to the "dead-top” position and evacuates the gases burned by the exhaust port (15) of the stator (11) facing it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Moteur thermique rotatif composé d'un stator (11) dans lequel tourne un rotor (1) unique portant deux pistons biconvexes (6) animés d'un mouvement alternatif par le biais de bielles (5) et demi-vilebrequins (3). Le moteur se décompose en un étage compresseur (12) et un étage moteur (13). Le moteur rotatif possède deux demi-vilebrequins (3) fixes. Le rotor (1) tourne de façon centrée autour des demi-vilebrequins (3), dans un stator (11). Chaque piston biconvexe (6) est relié à un demi-vilebrequin (3) par une bielle (5) tournant sur le maneton (4) du demi-vilebrequin (3). Le stator (11) est équipé d'un orifice d'admission d'air (14) et d'un orifice d'évacuation des gaz d'échappement (15). Il est également équipé d'un transfert (16) à cheval entre l'étage compresseur (12) et étage moteur (13). C'est dans le transfert (16) que se produit la l'explosion du mélange air-essence comprimé après injection du carburant. Cette explosion s'exerce sur le piston biconvexe (6) de l'étage moteur (13) et entraîne le mouvement rotatif du rotor (1). Cette invention, qui s'assimile au fonctionnement d'un moteur quatre cylindres, quatre temps, apporte une simplification mécanique dans la construction d'un moteur thermique et dans son fonctionnement, tout en gardant le même nombre de temps moteurs. Elle doit améliorer le rendement énergétique du fait d'un mouvement harmonieux des pièces mécaniques.

Description

MOTEUR ROTATIF A ROTOR UNIQUE ET 2 PISTONS CYLINDRIQUES ALTERNATIFS
La présente invention concerne les moteurs thermiques à piston rotatif unique et pistons alternatifs. Cette invention cherche à concilier la simplicité du moteur rotatif et la fiabilité du moteur classique, à améliorer le rendement donc l'économie tout en respectant les normes écologiques présentes et futures. Les moteurs rotatifs ont toujours buté sur la fiabilité et le rendement du fait de défauts d'étanchéité des pièces mobiles ou bien de conceptions ne permettant pas d'obtenir des taux de compressions suffisamment élevés pour un rendement optimum.
Afin d'y parvenir, certains moteurs rotatifs font preuve d'une grande complexité, faisant ainsi perdre au moteur tout intérêt technique.
Cette invention essaie de remédier à ces imperfections en conciliant des mécanismes éprouvés et des innovations techniques, préservant une grande simplicité mécanique derrière une valeur technologique élevée.
Cette invention cherche à améliorer le rendement du moteur par le petit nombre de pièces mobiles. Il permet également d'envisager un faible coût de fabrication grâce aux formes simples des pièces utilisées.
DESCRIPTION DU MOTEUR
Le moteur comprend :
• Le rotor (1)
• Deux pistons biconvexes (6)
• 4 chemises flottantes (9)
• Le vilebrequin (3) • Le stator (11)
• Le transfert (16) Le calage variable Les pièces référencées dans le texte :
1. Le rotor (1).
2. L'extrémité motrice (2).
3. Le vilebrequin (3).
4. Le maneton (4).
5. La bielle (5),
6. Le piston biconvexe (6).
7. La tête du piston (7).
8. L'axe de bielle (8).
9. Les chemises flottantes (9).
10. Le ressort de la chemise flottante (10).
1 1. Le stator (1 1).
12. L'étage compresseur (12).
13. L'étage moteur (13).
14. L'orifice d'admission d'air (14).
15. L'orifice d'échappement (15).
16. Le transfert (16).
17. Le chapeau latéral (17).
18. Le roulement central (18).
19. Le roulement périphérique (J 9).
20. L'écope (20).
Nous allons décrire chaque élément et définir son fonctionnement.
LE ROTOR (1)
Le rotor (1) est une pièce de forme cylindrique composée d'une partie centrale et de deux extrémités de plus faible diamètre appelées extrémité motrice (2). Les cotes du rotor varient en fonction de l'utilisation recherchée.
Le rotor (1), dont le mouvement est purement rotatif, est monté sur quatre roulements qui permettent de diminuer au maximum les frottements lors de la rotation : " Un roulement périphérique (19) de grand diamètre entre rotor (1 ) et stator
(1 1 ), au niveau de chaque extrémité motrice (2),
" Un roulement central (18) de plus petit diamètre entre rotor (1) et vilebrequin (3), de même au niveau de chaque extrémité motrice (2).
Lors de la rotation, le rotor est encadré par ces roulements.
Les extrémités motrices (2) servent à transmettre le mouvement rotatif du rotor (1 ) vers l'extérieur du stator (1 1).
L'extrémité motrice (2) peut être équipée d'une couronne dentée ou de tout autre mécanisme permettant la transmission du mouvement rotatif du rotor (1 ).
Le rotor (1) est éyidé le long de son axe de rotation afin d'y loger le vilebrequin (3) qui traverse de part en part, sur toute sa longueur, le rotor (1)
Perpendiculairement à l'axe du rotor (1), deux alésages cylindriques traversent le rotor. Ils reçoivent les deux pièces mobiles : les pistons biconvexes (6).
Ces alésages présentent un calage angulaire l'un par rapport à l'autre. L'angle est calculé en fonction du cycle de fonctionnement du moteur et tient compte de la durée de l'explosion dans le transfert (16).
Dans certaines versions, le rotor (1) est équipé d'un calage variable entre étage compresseur (12) et étage moteur (13). Ce calage varie en fonction de la vitesse de rotation du rotor (1) et permet d'agir sur la durée de la combustion dans le transfert (16).
Chaque alésage cylindrique est équipé de 2 chemises flottantes (9) internes.
Le rotor (1) n'est pas en contact avec le stator (11). L'alésage du stator (H) est supérieur au diamètre du rotor (1) pour permettre la lubrification du moteur et diminuer les frottements inutiles au cours de la rotation.
Le poids du rotor (1) doit être le plus faible possible afin de réduire l'inertie des pièces mobiles et d'améliorer le rendement énergétique. Dans ce but, le rotor (1) pourra être allégé par tous les moyens que la technique offre actuellement. Le rotor (1) est schématiquement séparé en 2 étages :
> Un étage compresseur (12),
> Un étage moteur (13).
LE VILEBREQUIN (3)
Le vilebrequin (3) est composé d'une partie cylindrique à chaque extrémité et d'un maneton (4) qui relie chaque partie cylindrique. Sur le maneton (4) s'articulent les bielles (5) qui ont été définies précédemment.
Les extrémités cylindriques du vilebrequin (3) servent d'axes de rotation au rotor (1). Elles sont équipés d'un roulement appelé roulement central (18) qui s' insert entre le rotor (1) et le vilebrequin (3).
Le vilebrequin (3) traverse le rotor (1) suivant son axe de rotation.
> Le vilebrequin (3) unique peut être remplacé par deux demi-vilebrequins. Dans cette configuration, le maneton (4) est scindé en deux à sa partie médiane. Cette configuration permet de faire varier le calage angulaire des manetons (4) afin d'intervenir sur le « point mort-haut » des pistons biconvexes (6) de l'étage compresseur (12) et de l'étage moteur (13).
> Chaque demi-vilebrequin porte un maneton décentré. Chaque demi- vilebreqμin est fixé à la partie centrale d'un chapeau latéral (19). Il est solidaire du stator (18). Il ne tourne pas.
> La course du piston biconvexe (6) est déterminée par l'entraxe entre le maneton (4) et l'axe médian du vilebrequin (3). Sur chaque maneton tourne le pied de la bielle (5),
> Le piston biconvexe (6) est relié au maneton (4) du vilebrequin (3) par la bielle (5).
> Le maneton (4) traverse le piston biconvexe (6) par son centre.
La rotation du rotor (1) sur le vilebrequin (3) crée un mouvement de va et vient du piston biconvexe (6) à l'intérieur du rotor (1) par l'intermédiaire de la bielle (5) et du maneton (4). LE PISTON BICONVEXE (6)
Le piston biconvexe (6) est l'équipage mobile du rotor (I). Le rotor (1) porte deux pistons biconvexes ((6) à l'intérieur des deux alésages du rotor (1). Ils sont au contact du rotor (1) par T intermédiaire des chemises flottantes (9). y Le piston biconvexe (6) est de forme cylindrique dans son grand axe et correspond à la fusion de deux pistons classiques par leurs pieds. La partie médiane, zone de la fusion, est évidée afin de permettre le passage d'une pièce mécanique : le vilebrequin (3).
> Chaque extrémité du piston biconvexe (6) est appelée tête de piston (7). Elle a une surface courbe qui possède le même rayon de courbure que le rotor (1 ). y La hauteur du piston biconvexe (6) est égale au diamètre du rotor (1) diminué de deux fois la distance entre l'axe du vilebrequin (3) et l'axe du maneton (4) supportant la bielle (5).
> Le piston biconvexe (6) porte un axe transversal (8) proche de l'une des têtes de pistons (7). Sur cet axe transversal (8) s'articule une pièce mobile : la tête de la bielle (5) identique à celle d'un moteur classique. Il n'y a qu'une bielle (5) par piston bicpnvexe (6).
> Le piston biconvexe (6) porte une segmentation située près de chaque tête de piston (7). Cette segmentation assure l'étanchéité avec la chemise flottante (9) et le piston biconvexe (6).
P- La course du piston biconvexe (6) dans la chemise flottante (9) est égale à deux fois la distance entre l'axe du vilebrequin (3) et l'axe du maneton (4).
LA CHEMISE FLOTTANTE (9)
La chemise flottante (9) s'intercale entre le rotor (1) et le piston biconvexe (6). Sa forme interne est cylindrique, son alésage correspond à la cote du piston biconvexe (6). Cette chemise flottante (9) peut être comparée aux chemises des moteurs thermiques classiques.
La partie supérieure de la chemise flottante (9), en contact avec le stator (1 1), est de forme courbe, le rayon de courbure est égal à celui du rotor (1). La surface de la partie supérieure est élargie et possède une forme de langue évasée aux contours arrondis, semblable à une spatule de ski.
La chemise flottante (9) est en contact constant avec le stator (1 1) et glisse sur sa surface interne. La chemise flottante (9) porte, de plus, une segmentation complète qui assure l'étanchéité entre le rotor (1) et le stator (11).
La forme en spatule de la chemise flottante (9) en contact avec le stator (1 1) est calculée afin d'occulter les orifices d'admission (14) et d'échappement (15) du stator (11) au cours de la rotation du rotor (1) et assurer l'étanchéité du transfert (16) au cours de la combustion des gaz, dans le but de réaliser une combustion à volume constant.
La partie inférieure de la chemise flottante (9) est équipée, à sa base d'un ressort (10). Ce ressort maintient la chemise flottante (9) en pression contre la surface interne du stator 1 1) lorsque Ia vitesse de rotation du rotor (I) est insuffisante pour créer une force centrifuge et assure l'étanchéité des chambres de compression ou d'expansion.
Lorsque la vitesse de rotation du rotor (1) augmente, la chemise flottante (9) est maintenue en pression sur la face interne du stator (11) grâce à la force centrifuge à laquelle elle est soumise.
Le poids de la chemise flottante (9) est calculé afin d'assurer sous l'effet de la force centrifuge, l'étanchéité idéale entre la chemise flottante (9) et le stator (11 ) lors de la rotation.
Le rotor (1 ) porte au total 4 chemises flottantes (9).
Les chemises flottantes (9) sont les seules pièces du rotor (1) en contact avec le stator (1 1). LE STATOR (11)
Le stator (11) est la partie fixe du moteur rotatif. Il est l'équivalent du bloc moteur pour un moteur conventionnel. Il possède une forme interne globalement cylindrique. Les cotes d'alésage du stator sont supérieures au diamètre externe du rotor (1 ).
Le stator (1 1) est percé de deux orifices qui sont :
• L'orifice d'admission d'air (14).
" L'orifice d'évacuation des gaz d'échappement (15).
Proche de la partie médiane du stator (1 1), une chambre est creusée dans la paroi, c'est le transfert (16)
Le stator (11) est fermé à chaque extrémité par une coque appelée chapeau latéral (17).
La partie centrale de ce chapeau latéral (17) reçoit l'extrémité cylindrique du vilebrequin (3).
Dans certaines versions du moteur, le chapeau latéral (17) peut recevoir un système qui modifie son calage du vilebrequin (3) par rapport au chapeau latéral (17). Ce système permet de faire varier la position du point mort-haut de chaque piston biconvexe (6) durant la rotation du rotor (1).
Chaque chapeau latéral (17) en forme de disque épais, possède une ouverture à sa périphérie. Cette fenêtre s'ouvre sur l'extrémité motrice (2) du rotor (1). Cette fenêtre permet de transmettre le mouvement de rotation du rotor (1) à l'extérieur du stator (1 1).
Les 2 chapeaux latéraux (17) sont de forme sensiblement symétrique. Ainsi, le rotor (1) possède une extrémité motrice (2) à chacune de ses extrémités.
A l'une des extrémités, c'est la puissance motrice qui est récupérée.
A l'autre, sont montés les périphériques : démarreur, alternateur et pompes.
LE TRANSFERT (16)
Le transfert (16) est la zone où est transféré l'air ou le mélange aspiré par l'orifice d'admission (14) puis comprimé dans l'étage compresseur (12) vers l'étage moteur (13). Il est situé en position médiane dans le stator (11), à cheval entre l'étage compresseur (12) et l'étage moteur (13).
Le transfert (16) est réalisé en creux dans le bloc du stator (1 1), s. a . forme ressemble à l'association de deux pipes diamétralement inversées.
Sa forme générale comprend une zone intermédiaire totalement creusée dans le bloc stator (1 1). Cette zone intermédiaire (21) est axiale. Elle est de forme cylindrique.
Les extrémités appelées écopes (20) ont la forme d'un foyer de pipe. Les deux écopes (20) sont diamétralement opposées.
Chaque écope (20) est usinée en creux dans le stator (11).
• La partie proximale est creusée tangentiellement au bloc stator (1 1 ) puis se creuse progressivement.
" La largeur de l'écope (20) mesure entre le tiers et la moitié du diamètre du piston biconvexe (6).
" L'axe médian de l'écope (20) est centré du piston biconvexe (6) pour que la chemise flottante (9) occulte parfaitement l'écope (20) lors de l'explosion.
" La partie distale se termine par un bord net; vertical, de forme courbe sur le bord latéral externe, afin de concentrer les gaz vers la zone intermédiaire (21) qui s'ouvre au niveau du bord latéral interne de cette écope (20).
Au niveau de l'étage moteur (13), on retrouve la même écope (20), diamétralement opposée, pe même, la zone intermédiaire (21) débouche dans l'écope (20) au niveau du bord latéral interne.
Au niveau de l'étage moteur (13), l'écope (20) est équipée d'une bougie d'allumage et/ou d'un iηjecteur d'esseηce, dans la configuration essence, ou bien d'un injecteur haute pression diesel dans la configuration diesel.
Le volume total du transfert (16) est calculé selon le mode de fonctionnement :
Dans la configuration essence ou gaz, le volume de ce transfert (16) sera le dixième de la cylindrée unitaire. Pour un moteur de 1000 ce soit de cylindrée unitaire de 250 ce, le volume du transfert (16) sera de 25 ce. Dans la configuration diesel, le volume du transfert (16) sera compris entre le dix huitième et le vingtième de la cylindrée unitaire. Pour le même exemple, le volume du transfert sera de 12,5 à 14 ce.
LE CALAGE VARIABLE ENTRE ETAGE COMPRESSEUR ET ETAGE MOTEUR
La qualité de la combustion des gaz lors de l'explosion est d'autant meilleure qu'elle se fait à volume constant.
Dans ce moteur, la combustion se fait dans le transfert (16), fermé aux deux extrémités par les chemises flottantes (9).
Plus la vitesse de rotation du rotor (1) est importante et plus court est le temps de combustion du combustible dans le transfert (16) fermé.
Afin de garder une durée constante, le calage variable agit sur l'angle existant entre les pistons biconvexes. Plus la vitesse de rotation augmente, plus l'angle entre les pistons augmente. De ce fait, le temps de combustion reste constant, Pexplq'sipn des gaz garde la même efficacité, ce qui maintient un bon rendement malgré l'augmentation de la vitesse de rotation.
Pour cela, l'étage compresseur (12) et l'étage moteur (13) sont découplés. Le rotor est divisé en deux demi rotors. La variation du calage peut se faire grâce à un mécanisme actif ou passif.
Les demi rotors sont solidarisés par des axes qui peuvent coulisser dans les fentes. Chaque axe est couplé à un ressort dont le tarage est calculé en fonction du poids de l'axe et de la vitesse de rotation du rotor.
Plus le rotor tourne vite et plus cet axe est attiré vers la périphérie du rotor. Dans son déplacement, il glisse en même temps dans la fente verticale et la fente oblique et provoque une variation du calage des deux demi rotors.
Ce système fonctionne soit grâce à un mécanisme contrôlé, soit grâce à un mécanisme utilisant la variation de la force centrifuge au cours de la rotation.
LUBRIFICATION ET REFROIDISSEMENT
La lubrification du moteur est assurée, dans l'espace existant entre rotor (1) et stator (1 1) par un film lubrifiant constant entre ces deux pièces en mouvement.
La lubrification des pistons biconvexes (6) et bielles (5) est assurée par un système de canalisations réalisées dans le vilebrequin (3) et le maneton (4). Ces canalisations servent à amener le lubrifiant à la base du piston biconvexe. La pression de lubrification est assurée par une pompe de lubrification. La force centrifuge lors de la rotation du rotor distribue le lubrifiant entre rotor et stator.
Le liquide de lubrification est récupéré au niveau d'un carter moteur par un réseau de canaux. La pompe de lubrification récupère le lubrifiant dans le carter pour le distribuer dans les zones définies précédemment.
Le moteur rotatif possède deux zones chaudes : le transfert (16) et l'étage moteur (13) du rotor (1). Le refroidissement se concentrera principalement sur ces deux zones.
Le refroidissement peut être assuré par un liquide de refroidissement circulant dans des canaux de refroidissement ou par des ailettes dans le cas d'un refroidissement par air.
Les canaux de refroidissement, répartis dans le bloc stator, seront plus nombreux dans ces points chauds. Le refroidissement par liquide fait appel aux techniques déjà utilisées pour les moteurs classiques.
PRINCIPE DE FONCTIONNEMENT DU MOTEUR
Nous allons décrire le fonctionnement du moteur en s'intéressant à un seul cycle moteur.
Avant de définir le cycle, nous divisons le moteur rotatif schématiquement en deux parties :
A, Un étage compresseur (12).
B, Un étage moteur (13).
A L'étage compresseur (12) comprend un piston biconvexe (6), deux chambres de compression, l'orifice d'admission de l'air (14) et l'écope (20) du transfert (16).
B L'étage moteur (13) comprend un piston biconvexe (6), deux chambres d'expansion, l'orifice d'échappement (15) et l'écope (20) du transfert (16).
Le transfert (16) est la seule zone de communication entre les deux étages. Nous définirons également deux positions du piston biconvexe (6) : a) Une position « point mort haut » lorsque le piston biconvexe (6) est en contact avec le stator (1 1). b) Une position « point mort bas » lorsque le piston biconvexe (6) est dans la position la plus éloignée du stator (1 1).
Définition du cycle moteur au cours de la rotation du rotor:
1. Au cours de la rotation du rotor (1), le piston biconvexe (6) de l'étage compresseur (12) passe sous la contrainte de la bielle (5) de la position « point mort haut » à la position « point mort bas », face à l'orifice d'admission d'air (14) ce qui crée une dépression et aspire l'air par le orifice d'admission (14).
2. La rotation se poursuit , le piston biconvexe (6) de l'étage compresseur (12) arrive à proximité de l'écope (20) du transfert (16), et passe progressivement de la position « point mort-bas » à la position « point mort-haut ». L'air est alors comprimé et s'engouffre dans l'écope (20) du transfert (16).
3. En fin de compression, l'écope (20) du transfert (16) est fermée par la langue évasée de la chemise flottante (9). 4. Dans le transfert (16), l'injecteur injecte sous pression la quantité de carburant nécessaire et le système d'allumage enflamme le mélange comprimé air-essence ainsi obtenu.
5. L'explosion se produit dans le transfert (16).
6. Au même instant, le piston biconvexe (6) de l'étage moteur (13) se trouve en position « point mort haut » en face de l'écope (20) du transfert (16), Le volume gazeux sous très haute pression exerce un phénomène de répulsion sur le piston biconvexe (6) de l'étage moteur (13) du rotor (1).
7. Cette pression repousse le piston biconvexe (6) de l'étage moteur (13) de la position « point mort haut » vers la position « point mort-bas » en ' provoquant un couple de rotation sur le rotor (1) autour du vilebrequin (3) et entraîne le rotor (J) dans, un mouvement rotatif.
8. Après un demi tour de rotor (1), le piston biconvexe (6) de l'étage moteur (13) passe progressivement de la position « point mort-bas » à la position « point mort- haut » et évacue les gaz brûlés par l'orifice d'échappement (15) du stator (11) qui se trouve face à lui.
Nous avons ainsi défini un cycle moteur. Pendant ce cycle, un nouveau cycle démarre dans la partie diamétralement opposée du piston biconvexe (6).
Il existe 2 temps moteurs pour une révolution de 360° du rotor (1) soit autant de temps moteur que dans un moteur classique à 4 cylindres et 4 temps.

Claims

REVENDICATIONS
1) Moteur rotatif thermique caractérisé en ce qu'il est composé d'un rotor (1) unique de forme cylindrique, prolongé de deux extrémités motrices (2) de plus faible diamètre. Selon les versions, ce rotor peut être scindé en deux et posséder un calage variable entre l'étage compresseur (12) et l'étage moteur (13). Ce rotor (1) tourne à l'intérieur d'un stator (11) cylindrique. Ce dit stator (11) possède un orifice d'admission d'air (14) et un orifice d'évacuation des gaz d'échappement (15). Chaque extrémité du stator (11) est fermée par un chapeau latéral (17). Chaque chapeau latéral (17) a, à sa périphérie une ou plusieurs fenêtres qui s'ouvrent sur l'extrémité motrice (2). Chaque chapeau latéral (17) porte en son centre l'extrémité cylindrique du vilebrequin (3). Dans certaines versions, ce vilebrequin est remplacé par deux demi-vilebrequins (3). Le demi-vilebrequin (3) est fixé, au niveau <Je son extrémité cylindrique, au centre du chapeau latéral (17). La partie cylindrique du vilebrequin sert d'axe de rotation au rotor (1) et est équipé d'un roulement central (18) entre rotor (1) et vilebrequin (3). Ce demi- vilebrequin est également composé d'un maneton (4) sur lequel s'articule une bielle (5). Chaque demi-vilebrequin (3) peut présenter un calage variable au niveau du chapeau latéral (17) afin modifier la position « point mort-haut » du piston biconvexe (6) de l'étage compresseur (12) et de l'étage moteur (13). Le rotor (1) tourne à l'intérieur du stator (11) en appui sur deux roulements périphériques (19) placés au niveau des extrémités motrices (2) entre rotor (1) et stator (11). Le rotor (1) présente deux alésages de forme cylindrique, perpendiculaires à l'axe de rotation du rotor (1). Chaque alésage reçoit deux chemises flottantes (9) et un piston biconvexe (6). Le piston biconvexe (6) est cylindrique et a une forme quasi symétrique. Les deux extrémités du piston biconvexe (6) appelées tête de piston (7) ont une surface courbe dont le rayon de courbure est identique à celui du rotor (1). Le piston biconvexe (6) est évidé dans sa partie médiane afin de permettre le passage du maneton (4) du demi-vilebrequin (3). La hauteur du piston biconvexe (6) est déterminée en fonction du diamètre du rotor (1 ) diminuée de deux fois l'entraxe entre le centre du demi-vilebrequin (3) et le maneton (4) porté par le demi-vilebrequin (3). Le piston biconvexe (6) porte, près de l'une de ses extrémités, un axe transversal sur lequel s'articule la tête de la bielle (4) .Chaque alésage du rotor (1) reçoit deux chemises flottantes (9) entre rotor (1) et piston biconvexe (6). Ces chemises flottantes (9), de forme cylindrique à leur base, sont mobiles dans les alésages du rotor (1). La surface des chemises flottantes (9) en contact avec le stator (1 1), est évasée en forme de spatule de ski et porte une segmentation afin d'assurer une étanchéité parfaite entre rotor (1) et stator (11), au cours de la rotation dudit rotor (1). L'étanchéité est assuré, à l'arrêt et à basse vitesse par des ressorts (10) entre rotor (1) et chemise flottante (9) puis par la force centrifuge lorsque Ia vitesse de rotation augmente, qui plaque la chemise flottante (9) contre le stator (11). Les chemises flottantes (9) ferment des écopes (20) du transfert (16) durant l'explosion du mélange air essence. Le transfert (16) est usiné en creux dans la paroi du stator (1 1). Le transfert (16) en forme de deux pipes diamétralement inversées, est à cheval entre l'étage compresseur (12) et l'étage moteur (13). Il est composé de deux écopes diamétralement opposées, réunies par la zone intermédiaire. L'écope (20) de l'étage moteur (13) reçoit Pinjecteur de carburant et selon le mode de fonctionnement, un système d'allumage.
2) Moteur rotatif thermique selon la revendication 1 caractérisé en ce que les pistons biconvexes (6) sont animés d'un mouvement de va et vient dans les chemises flottantes, au cours de la rotation du rotor (1), sous la contrainte de la bielle (5) tournant autour du maneton (4) du demi-vilebrequin (3).
3) Moteur rotatif thermique selon la revendication 1 caractérisé en ce que la force motrice rotative du moteur est transmise vers les périphériques du moteur par {es extrémités motrices (2) du rotor (1) à travers les fenêtres des chapeaux latéraux (17)).
4) Moteur rotatif thermique selon la revendication 1 caractérisé en ce que Pair est admis par l'orifice d'admission d'air (14) au niveau de l'étage compresseur (12) puis est comprimé dans l'unique transfert (16). Ce transfert (16) est équipé d'un injecteur de carburant avec ou sans système d'allumage. L'explosion du mélange gazeux exerce une très haute pression sur le piston biconvexe (6) de l'étage moteur (13) du rotor (1) et entraîne un couple de rotation sur le rotor (1) puis ces gaz sont évacués par l'orifice d'échappement (15) en fin de rotation. Le trajet des gaz lors du cycle s'apparente à une spire.
PCT/FR2006/000902 2006-04-13 2006-04-13 Moteur rotatif a rotor unique et 2 pistons cylindriques alternatifs WO2007118940A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/FR2006/000902 WO2007118940A1 (fr) 2006-04-13 2006-04-13 Moteur rotatif a rotor unique et 2 pistons cylindriques alternatifs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2006/000902 WO2007118940A1 (fr) 2006-04-13 2006-04-13 Moteur rotatif a rotor unique et 2 pistons cylindriques alternatifs

Publications (2)

Publication Number Publication Date
WO2007118940A1 true WO2007118940A1 (fr) 2007-10-25
WO2007118940A9 WO2007118940A9 (fr) 2009-03-05

Family

ID=37547587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/000902 WO2007118940A1 (fr) 2006-04-13 2006-04-13 Moteur rotatif a rotor unique et 2 pistons cylindriques alternatifs

Country Status (1)

Country Link
WO (1) WO2007118940A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB126109A (en) * 1918-04-23 1919-04-23 Herbert Stanley Jordan Improvements in or relating to Fluid Pressure Engines, Pumps and the like having Revolving Cylinders.
US2109185A (en) * 1936-03-17 1938-02-22 Charles H Thompson Internal combustion engine
CH346395A (de) * 1956-08-08 1960-05-15 Lang Adolf Kolbenmotor mit umlaufenden Zylindern
DE1401973A1 (de) * 1962-11-29 1968-10-24 Paul Molnaur Viertaktkolbenkraft- und -arbeitsmaschine
US3730152A (en) * 1970-02-19 1973-05-01 P Vincent Rotary internal combustion engines
FR2608213A1 (fr) * 1986-12-15 1988-06-17 Paris Laurent Moteur thermique a piston rotatifs et pistons oscillants de type quatre temps
FR2883036A1 (fr) * 2005-03-14 2006-09-15 Laurent Guy Paris Moteur thermique, rotatif a rotor unique et deux pistons cylindriques, biconvexes et a mouvements alternatifs

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB126109A (en) * 1918-04-23 1919-04-23 Herbert Stanley Jordan Improvements in or relating to Fluid Pressure Engines, Pumps and the like having Revolving Cylinders.
US2109185A (en) * 1936-03-17 1938-02-22 Charles H Thompson Internal combustion engine
CH346395A (de) * 1956-08-08 1960-05-15 Lang Adolf Kolbenmotor mit umlaufenden Zylindern
DE1401973A1 (de) * 1962-11-29 1968-10-24 Paul Molnaur Viertaktkolbenkraft- und -arbeitsmaschine
US3730152A (en) * 1970-02-19 1973-05-01 P Vincent Rotary internal combustion engines
FR2608213A1 (fr) * 1986-12-15 1988-06-17 Paris Laurent Moteur thermique a piston rotatifs et pistons oscillants de type quatre temps
FR2883036A1 (fr) * 2005-03-14 2006-09-15 Laurent Guy Paris Moteur thermique, rotatif a rotor unique et deux pistons cylindriques, biconvexes et a mouvements alternatifs

Also Published As

Publication number Publication date
WO2007118940A9 (fr) 2009-03-05

Similar Documents

Publication Publication Date Title
EP0302042B1 (fr) Moteur à combustion interne à six temps
EP1084334B1 (fr) Procede de fonctionnement et dispositif de moteur a injection d&#39;air comprime additionnel fonctionnat en mono-energie, ou en bi-energie bi ou tri modes d&#39;alimentation
EP2107226B1 (fr) Moteur à combustion interne d&#39;encombrement minimal
CA2250998A1 (fr) Moteur a combustion interne a chambre de combustion independante a volume constant
EP3662153B1 (fr) Moteur a source chaude externe a boisseaux
CA1320878C (fr) Moteur a combustion interne a pistons annulaires, en opposition et solidaires, et a arbre central
FR2717857A1 (fr) Moteur à combustion interne, à obturateurs de distribution rotatifs.
WO2007118940A1 (fr) Moteur rotatif a rotor unique et 2 pistons cylindriques alternatifs
EP0358655B1 (fr) Procede et dispositif d&#39;amenagement d&#39;un moteur a deux temps a post-remplissage
FR2883036A1 (fr) Moteur thermique, rotatif a rotor unique et deux pistons cylindriques, biconvexes et a mouvements alternatifs
FR2708970A1 (fr) Moteur thermique à combustion interne comportant au moins deux cylindres opposés.
WO2008107547A1 (fr) Moteur rotatif a losange deformable
EP0069039B1 (fr) Moteur à combustion interne suralimenté
EP0250960A2 (fr) Moteur à combustion interne
FR2957631A1 (fr) Element de moteur a combustion interne a detente prolongee et moteur a combustion interne comprenant un ou plusieurs de ces elements
WO1997032115A1 (fr) Perfectionnement aux moteurs a combustion interne a deux temps a balayage en boucle
FR2757568A1 (fr) Moteur thermique 3 temps a 4 ou 6 cylindres opposes 2 a 2 avec un vilebrequin contrarotatif excentre et une distribution automatique
BE378939A (fr)
WO1986000374A1 (fr) Procede d&#39;amelioration du fonctionnement d&#39;un moteur a combustion interne a deux temps
FR2583108A2 (fr) Procede d&#39;amelioration du fonctionnement d&#39;un moteur a combustion interne, a cycle court, et moteur a combustion interne a fonctionnement ameliore a cycle court et a structure simplifiee
BE892384A (fr) Moteur rotatif a combustion interne
FR3028563A1 (fr) Piston alternatif et contenant faisant moteur thermique, pneumatique, hybride et recuperateur d&#39;energie pneumatique
CA2452240A1 (fr) Moteur alternatif rotatif a aubes balancier, sans contact
FR2822894A1 (fr) Mecanisme de moteur rotatif
EP4077902A1 (fr) Moteur a source chaude externe a cycle divise a boisseaux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06743721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06743721

Country of ref document: EP

Kind code of ref document: A1