WO2007116666A1 - リフロー炉 - Google Patents
リフロー炉 Download PDFInfo
- Publication number
- WO2007116666A1 WO2007116666A1 PCT/JP2007/056112 JP2007056112W WO2007116666A1 WO 2007116666 A1 WO2007116666 A1 WO 2007116666A1 JP 2007056112 W JP2007056112 W JP 2007056112W WO 2007116666 A1 WO2007116666 A1 WO 2007116666A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot air
- heater
- nozzle
- reflow furnace
- air blowing
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/012—Soldering with the use of hot gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/008—Soldering within a furnace
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3494—Heating methods for reflowing of solder
Definitions
- the present invention relates to a reflow furnace for performing soldering by melting a solder paste applied to a printed circuit board.
- the tunnel-shaped pinefull is composed of a preheating zone, a main heating zone, and a cooling zone.
- a heater is installed in the preheating zone and the main heating zone, and a cooler is installed in the cooling zone.
- the hot air blowing heater since hot air convects in the Matsufuru, the hot air enters the shadows of electronic components and narrow gaps, so the entire printed circuit board is more uniform than infrared heaters. It can be heated to a high temperature and is widely used in reflow furnaces today.
- a hot air blowing heater installed in a conventional reflow furnace has a large area hot air outlet and a small area adjacent to the hot air outlet.
- Hot air blowout loca of area A large amount of hot air was blown out and applied to the printed circuit board, and a large area of the printed circuit board was heated at once. Large area blowout force It was thought that blowing hot air would be able to heat the printed circuit board uniformly, but recent experimental results revealed that even if large area force hot air is blown, uniform heating is not possible. did. In other words, large area hot air blowing loca also blows hot air and heats the printed circuit board, and then the printed circuit board advances and reaches the suction port.
- the printed circuit board is cooled by sucking the hot air that flows by force. Therefore, when a temperature profile is drawn in a reflow furnace in which a hot air outlet with a large area and a hot air inlet with a small area and an inlet are adjacent to each other, the temperature rises at the hot air outlet. The temperature rise stops or the temperature drops at the air inlet. In this way, if the temperature rises or falls in the preheating zone or the main heating zone, the printed circuit board will not be heated uniformly, resulting in partial overheating or underheating, causing electronic components to be thermally damaged or soldered. The paste may become unmelted.
- Patent Documents 1, 4, and 6 have a heater surface force protruding from the hot air blowing pipe, Patent Documents 2 and 3 project a row of hot air blowing nozzle force heater surface force, and Patent Document 5 is a hot air blowing hole in the plate.
- Patent Document 7 has a large number of ejection holes drilled in a long linear plate material, and Patent Document 8 has a large number of ejection holes drilled in a long protruding zigzag plate material.
- Patent Document 1 Japanese Patent Laid-Open No. 2-303674
- Patent Document 2 JP 2001-144426 A
- Patent Document 3 Japanese Patent Laid-Open No. 2001-144427
- Patent Document 4 Japanese Patent Laid-Open No. 2001-326455
- Patent Document 5 Japanese Patent Laid-Open No. 2002-198642
- Patent Document 6 Japanese Patent Application Laid-Open No. 2002-331357
- Patent Document 7 Japanese Patent Laid-Open No. 2003-332725
- Patent Document 8 International Publication WO2006 / 013895
- the hot air blowing nozzle is not a pipe, but it is cooled when a cold hot air is sucked because the sheet metal is bent.
- the straight hot air blowing nozzle is arranged perpendicular to the traveling direction of the printed circuit board, the printed circuit board only comes under the straight hot air blowing nozzle. Power to be heated by the hot air The hot air is not applied in the area between the linear nozzle and the adjacent linear nozzle, so the heating is not performed in this area.
- Patent Document 3 describes a linear nozzle force that is bent like S crank shape, X shape, Z shape, or W shape. Therefore, continuous heating cannot be performed.
- the reflow furnace of Patent Document 5 has a hot air jet hole in the plate and a suction hole in the vicinity thereof, but the hot air blown out and the hot air sucked in interfere with each other to cause turbulent flow. May occur.
- the nozzle that blows hot air is zigzag-shaped, and there is always a heating region, so discontinuous heating does not occur.
- the length of the zigzag hot air blowing nozzle is fixed, and is usually larger than the size of the printed circuit board. Therefore, when soldering a printed circuit board that is smaller than the length of the zigzag nozzle, there is a waste that hot air is blown to a place other than the printed circuit board.
- the zigzag hot air blowing nozzle does not have discontinuous heating as described above, but it has a shape that allows continuous heating in addition to the zigzag shape, such as a waveform or a louver shape. Had to make a hot air blowing nozzle of that shape anew.
- the hot air cooled by hitting the printed circuit board does not cool the nozzle, the discontinuous heating area is further removed, and the hot air that is blown out and the hot air that is sucked in do not interfere with each other and become turbulent.
- the nozzle can be adjusted to the size of the printed circuit board. The object is to provide a reflow furnace in which it is easy to form a complicatedly shaped nozzle.
- the nozzle that blows hot air is a plate-shaped block nozzle having holes in the vertical direction
- the inventor cools the plate-shaped side surface because the periphery of the holes is thick and the heat capacity increases.
- the block nozzle is difficult to cool even when hot air comes into contact.Alumi-um is easy to process and can be easily formed into any shape.By combining the block nozzle with various suitable shapes, The present invention was completed by paying attention to the size of the printed circuit board and the ability to make the unit nozzle shaped to fit the mounted electronic component.
- a plate-like heater block has a large number of ejection holes formed vertically, and a unit nozzle is formed by combining a plurality of the heater blocks.
- the unit nozzle is a heater.
- suction and V inlets are formed in the vicinity of the unit nozzles, and a plurality of unit nozzles are installed above or below the preheating zone and the main heating zone. It is a reflow furnace characterized by having.
- the force for disposing the unit nozzle in the upper portion or the upper and lower portions of the preheating zone and the main heating zone may be the upper portion alone. That is, in general, a printed circuit board is often coated with a solder paste on the top and electronic components are mounted on the coated part. Therefore, if only the top of the printed circuit board is heated with hot air, the solder paste can be melted. However, in order to uniformly heat the entire printed circuit board, it is necessary to heat the unit nozzle also at the lower part of the printed circuit board. In this case, the unit nozzle is blown out from the various unit nozzles used in the present invention.
- the printed circuit board may be further heated uniformly.
- the force at which the suction port is formed in the vicinity of the unit nozzle is formed along the unit nozzle in accordance with the shape of the unit nozzle, or at substantially the center between the adjacent unit nozzles. Or may be formed.
- Suction formed on the heater surface The opening is preferably the same shape as the unit nozzle, but other shapes such as a punching plate with a large number of holes formed on the heater surface and a saw with a large number of slits may be used. As the punching plate can be used on the market, you can save the trouble of creating a suction port.
- the block nozzle used in the reflow furnace of the present invention is a plate-like object having a plurality of holes formed in a vertical direction, and the surface on which the holes are formed has a rectangular shape, a " ⁇ " shape, and a corrugated shape. It has various shapes such as parts. These block nozzles are combined to form a desired unit nozzle.
- the heat capacity becomes larger than that of the pipe.
- the block nozzle is preferably made of aluminum, which is easy to machine and heats up quickly when heated.
- unit nozzles in which the block nozzles are combined are arranged in the preheating zone and the main heating zone.
- the shape of the unit nozzle can be any shape as long as it does not have a discontinuous heating zone when the printed circuit board is heated. Examples of the shape without the discontinuous heating region include a zigzag shape, a corrugated shape, and a louver cross-sectional shape.
- the zigzag shape or corrugated shape is the direction in which the zigzag and wave cross the traveling direction of the printed circuit board, and adjacent units.
- the nozzles are arranged so that the zigzag and wave peaks and peaks, and valleys and valleys coincide with the direction of travel of the printed circuit board.
- the printed circuit board is heated by the first unit nozzle and the next unit nozzle plate adjacent to the first unit nozzle.
- the unit nozzle having a cross-sectional shape of the louver is a unit nozzle having a plurality of rectangular block nozzles arranged obliquely like the cross-section of the louver.
- the unit nozzles were arranged in line.
- the unit nozzles are arranged in a plurality of rows, but the unit nozzles are arranged so that a part of the block nozzles of the unit nozzles adjacent to the block nozzles of one row of unit nozzles enter. If a part of the block nozzle enters the adjacent unit nozzle in this way, the discontinuous heating zone disappears.
- unit nozzles are formed by combining block nozzles of various shapes, so that the unit nozzles have any shape, that is, a size and shape suitable for the size of the printed circuit board and the mounting condition of the electronic component.
- the block nozzle that forms the unit nozzle is a plate with a plate thickness, and a hole is drilled vertically, increasing the heat capacity, Even if hot air with a temperature falling on the printed circuit board comes into contact with the side surface of the block nozzle, the temperature of the hot air flowing through the ejection holes of the block nozzle is not lowered, and the heat stability is excellent.
- FIG. 1 Front sectional view of the reflow furnace of the present invention
- FIG. 4 Perspective view of various heater blocks forming unit nozzles
- FIG.5 Plan view of hot air blowing heater with unit nozzle zigzag shape
- FIG. 7 A plan view of a hot air blowing heater in which the unit nozzle has a corrugated shape.
- FIG. 8 Partial enlarged perspective view of FIG.
- FIG. 9 Plan view of hot air blowing heater with unit nozzle having louver cross section
- Fig. 1 is a front cross-sectional view of the reflow furnace of the present invention
- Fig. 2 is a front cross-sectional view of a hot air blowing heater installed in the reflow furnace of the present invention
- Fig. 3 is a cross-sectional side view of the same
- Fig. 4 is various heater blocks forming a unit nozzle.
- Fig. 5 is a plan view of a hot air blowing heater in which the unit nozzle has a zigzag shape
- Fig. 6 is a partially enlarged perspective view of Fig. 5
- Fig. 7 is a plan view of the hot air blowing heater in which the unit nozzle has a wave shape.
- FIG. 8 is a partially enlarged perspective view of FIG. 7
- FIG. 9 is a plan view of a hot air blowing heater in which a unit nozzle has a louver cross-sectional shape.
- the reflow furnace 1 of the present invention has a tunnel-like pinefull 2 formed in the longitudinal direction, and this pinefull is connected to a preheating zone 3, a main heating zone 4, and a cooling zone 5. ing. Multiple (three pairs) hot air blowing heaters 6 ⁇ ⁇ 'are installed in the upper and lower parts of the preheating zone 3, and multiple (two pairs) hot air blowing heaters 7 are installed in the upper and lower parts of the heating zone 4. Is installed.
- the hot air blowing heater 6 installed in the preheating zone 3 and the hot air blowing heater 7 installed in the main heating zone 4 have almost the same structure
- the hot air blowing heater 7 installed in the main heating zone 7 is the hot air blowing installed in the preheating zone However, the width in the conveying direction is shorter than that of heater 6.
- the cooling zone 5 is provided with a pair of coolers 8 and 8 (structure unknown) for cooling the printed circuit board after soldering.
- a conveyor 9 that transports the printed circuit board P runs from the preheating zone 3 to the cooling zone 5 (arrow X).
- a hot air blowing heater installed in the reflow furnace of the present invention will be described. Since the hot air blowing heater installed in the preheating zone and the hot air blowing heater installed in the main heating zone have the same structure, the hot air blowing heater installed in the preheating zone will be described here.
- To install hot air blowing heater at the upper and lower parts of pine full The hot air blowing heater is not up and down, but the hot air blowing heater described in the figure will be explained in the upper and lower directions as seen in the figure, assuming that it is installed in the lower part of the pine full.
- the hot air blowing heater 6 has a box shape and is divided into four chambers in the vertical direction. These four chambers are a lower force blower chamber 10, a heating chamber 11, a hot air chamber 12, and a suction chamber 13.
- a blower 14 is placed in the center of the blow chamber 10.
- This blower is a sirocco fan and is linked to an external motor 15.
- partition walls 16 On both sides of the air blowing chamber 10, there are partition walls 16 (not shown), and one end of each partition wall is an opening 17. The opening of each partition wall is not an opposite position but a separated end.
- flow paths 18 and 18 are formed on both sides, and a plurality of electric heaters 19 are arranged inside the heating chamber.
- a suction hole 21 is formed in the partition plate 20 that separates the heating chamber 11 and the blower chamber 10. The suction hole is located directly above the blower 14, and its diameter is slightly smaller than the diameter of the sirocco fan that is the blower.
- the hot air chamber 12 communicates with the opening 17 of the air blowing chamber 10 so that hot air can be sent from the air blowing chamber 10! / Speak.
- a partition plate 22 is stretched between the hot air chamber 12 and the suction chamber 13, and the suction chamber 13 communicates with the heating chamber 11 through a flow path 18.
- the upper surface of the suction chamber 13 is a heater surface 23. .
- Unit nozzles 24 are provided on the partition plate 22 so as to protrude from the heater surface 23.
- the unit heater used in the present invention has a zigzag shape as shown in FIGS. 5 and 6, a waveform shape as shown in FIGS. 7 and 8, a louver cross-sectional shape as shown in FIG.
- the unit heater is formed by combining a plurality of heater blocks of various shapes as shown in FIG. As shown in the figure, the heater block has a plurality of ejection holes 25... Vertically formed in a thick plate.
- Heater block A has a " ⁇ " shape on the surface where the ejection holes are drilled
- heater block B is a part of the curved waveform of the surface where the ejection holes are drilled
- heater blocks C and D represent the ejection holes
- the perforated surface is rectangular.
- the zigzag unit heater shown in Figs. 5 and 6 is a combination of A and C in Fig. 4.
- the wavy unit heater shown in Figs. 7 and 8 is a combination of multiple Bs in Fig. 4.
- the louver cross-section unit heater shown in Fig. 9 is a single row with a plurality of C and D shown in Fig. 4 arranged obliquely.
- the unit heaters in Figs. 2 and 3 are combined with the A heater block.
- the zigzag and corrugated unit heaters are arranged in a direction transverse to the direction of travel of the printed circuit board (arrow X).
- the louver cross-sectional shape of the heater has a louver cross-sectional shape in which a plurality of heater blocks each having a rectangular perforation surface are arranged in a direction transverse to the direction of travel of the printed circuit board!
- the hot air blowing heater used in the present invention has a suction port formed in the vicinity of the unit heater.
- the inlet 26 is formed along the entire circumference of the unit heater.
- the heater surface 23 of the hot air blowing heater 6 is a metal plate such as aluminum-hume, stainless steel, or iron, and the surface thereof is coated with a black ceramic 27. If the surface of the suction plate is coated with black ceramic in this way, when the suction plate is heated with hot air, far infrared rays are emitted from the black ceramic cover, and the printed circuit board is heated with hot air and heated with far infrared rays. Since it is heated, it is heated more uniformly than only hot air heating.
- the printed circuit board P is run by the conveyor 9, and the hot printed air blown from the ejection holes 25 ⁇ hits the running printed board P, and the printed circuit board is heated here.
- the printed circuit board heated with hot air melts the solder paste applied to the soldering part, and the printed circuit board and electronic components are soldered.
- zigzag unit nozzles 24 are erected from the surface 23, there is no portion where the hot air does not hit the printed circuit board, and all the portions are uniformly heated by the hot air. . Therefore, it does not partially overheat or unmelt the solder paste.
- the hot air blown from the unit nozzle 24 is deprived of heat by the printed circuit board, so the temperature drops. Garage.
- the hot air whose temperature has thus decreased is sucked into the suction port 26 in the vicinity where the unit nozzle 24 is erected, and enters the heating chamber 11 through the flow path 18.
- the hot air that has entered the heating chamber 11 is heated to a predetermined temperature by the electric heater 19 and sucked into the blower chamber 10 by the blower 14. Then, the hot air is sent from the opening 17 to the hot air chamber 12 and is blown out again from the ejection holes 25 ⁇ of the unit nozzle 24 to heat the printed circuit board.
- the reflow oven of the present invention does not interfere with the hot air blown out from other unit nozzles because the hot air blown out from the unit nozzle is sucked from the suction port immediately after heating the printed circuit board. . Therefore, in the reflow furnace of the present invention, the oxygen concentration at which the turbulent flow in the pineapple is stable is stabilized.
- the reflow furnace of the present invention has an excellent effect in an inert atmosphere reflow furnace in which the inside of the pineapple is filled with an inert gas because there is no turbulent flow of hot air, but because the entire printed circuit board can be heated uniformly. Needless to say, it can also be used in atmospheric reflow furnaces.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
【課題】多数の熱風吹き出し口の近傍に吸い込み口が形成された従来のリフロー炉では、熱風吹き出しノズルの肉厚が薄いため、プリント基板加熱後の温度の下がった熱風が熱風吹き出しノズルに接触すると、熱風吹き出しノズルを冷やしてしまうことがあった。また従来の肉厚の厚い熱風吹き出しノズルを設置したリフロー炉では、熱風吹き出しノズルの形状が決まっていたため、プリント基板に適合した形状にすることが困難であった。 【解決手段】本発明のリフロー炉は、各種形状のブロックヒータを組み合わせることにより、所望形状の熱風吹き出しノズルを形成したものであり、しかもブロックヒーターが肉厚の厚い板状に縦方に熱風噴出孔を穿設してある。
Description
明 細 書
リフロー炉
技術分野
[0001] 本発明は、プリント基板に塗布したソルダペーストを溶融させてはんだ付けを行うリ フロー炉に関する。
背景技術
[0002] ソルダペーストを用いて、プリント基板と電子部品をはんだ付けする場合、一般には リフロー炉で行う。リフロー炉とは、トンネル状のマツフル内が予備加熱ゾーン、本カロ 熱ゾーン、冷却ゾーンとなっており、予備加熱ゾーンと本加熱ゾーンにはヒーターが 設置され、冷却ゾーンには冷却機が設置されて 、る。
[0003] リフロー炉に用いるヒーターとしては、赤外線ヒーターと熱風吹き出しヒーターがある 。赤外線ヒーターは、赤外線がプリント基板や電子機器の内部まで浸透して、はんだ 付け部に塗布されたソルダペーストを溶融させるものである力 赤外線は直進するた め、電子部品の影となるはんだ付け部や隙間となるはんだ付け部を充分に加熱でき ないという問題があった。
[0004] 一方、熱風吹き出しヒーターは、マツフル内で熱風が対流するため、熱風が電子部 品の影となるところや狭い隙間にも侵入することから、赤外線ヒーターに比べてプリン ト基板全体を均一に加熱することができるという特長を有しており、今日ではリフロー 炉に多く使用されているものである。
[0005] 従来のリフロー炉に設置された熱風吹き出しヒーターは、大きな面積の熱風吹き出 し口と該熱風吹き出し口に隣接して小面積の熱風吸 、込み口が形成されたものであ り、大面積の熱風吹き出しロカ 熱風を大量に吹き出させてプリント基板に当て、一 度にプリント基板の広 、面積を加熱するようになって 、た。この大面積の吹き出し口 力 熱風を吹き出させることがプリント基板を均一加熱できるものであると考えられて いたが、最近の実験結果からは、大面積力 熱風を吹き付けても均一加熱できない ことが判明した。即ち、大面積の熱風吹き出しロカも熱風を吹き出してプリント基板を 加熱後、プリント基板が進行して吸い込み口に到来すると、ここでは熱風が当たらな
いば力りでなぐ熱風を吸い込むことから却ってプリント基板が冷やされることになる。 従って、このように大面積の熱風吹き出し口と小面積の熱風吸 、込み口が隣接して 設置されたリフロー炉で温度プロファイルを描いてみると、熱風吹き出し口では温度 は上昇して 、るが、吸 、込み口では温度上昇が止まったり温度が下がったりしてしま つて 、る。このように予備加熱ゾーンや本加熱ゾーンにぉ 、て温度の上下動があると 、プリント基板は均一加熱されず、部分的にオーバーヒートや加熱不足になって、電 子部品を熱損傷させたりソルダペーストが未溶融となったりすることがある。
[0006] これら大面積の吹き出しロカ 熱風を吹き出すリフロー炉の問題に鑑み、多数の小 面積の熱風吹き出し口や連続した熱風吹き出し口を設けるとともに、これらの熱風吹 き出し口の近傍に、やはり多数の熱風吸!、込み口や連続した熱風吸!、込み口を設 けたリフロー炉が提案されて 、る (特許文献 1〜8)。
[0007] 特許文献 1、 4、 6はヒーター面力も熱風吹き出し用のパイプが突出し、特許文献 2、 3は条列状の熱風吹き付けノズル力ヒーター面力 突出し、特許文献 5はプレートに 熱風吹き付け孔が開いており、特許文献 7は長い直線状の板材に多数の噴出孔を 穿設してあり、特許文献 8は突出した長いジグザグ状の板材に多数の噴出孔を穿設 してある。
特許文献 1:特開平 2— 303674号公報
特許文献 2:特開 2001— 144426号公報
特許文献 3:特開 2001— 144427号公報
特許文献 4:特開 2001— 326455号公報
特許文献 5:特開 2002— 198642号公報
特許文献 6:特開 2002— 331357号公報
特許文献 7:特開 2003 - 332725号公報
特許文献 8 :国際公開 WO2006/013895号公報
発明の開示
発明が解決しょうとする課題
[0008] ところで特許文献 1、 4、 6のリフロー炉は、熱風を吹き出すノズルがパイプであるた め、パイプから吹き出た熱風がプリント基板に当たり、プリント基板を加熱して熱を奪
われて冷えた熱風がパイプ近傍の吸い込み口に吸い込まれるときに、パイプに接触 してパイプを冷却する。すると熱源からパイプに流入した温度の高 、熱風が冷えるた め、パイプから吹き出る熱風は充分に温度が上がらず、プリント基板の加熱が充分と はならなくなる。
[0009] 特許文献 2、 3のリフロー炉は、熱風吹き出しノズルがパイプではな 、が、薄 ヽ板材 を折り曲げカ卩ェしたものであるため、やはり冷えた熱風を吸い込むときに冷やされて しまう。また特許文献 2のリフロー炉は、直線状の熱風吹き出しノズルがプリント基板 の進行方向に対して直交して配置されているため、プリント基板は直線状の熱風吹き 出しノズルの真下に到来したときだけ熱風が当たって加熱される力 直線状ノズルと 隣接した直線状ノズル間の域では熱風が当たらな 、ため、この域では加熱が行われ ないという不連続加熱となる。そして特許文献 3は直線状ノズル力 Sクランク状、 X状、 Z 状、 W状のように屈曲している力 プリント基板の進行方向に対して、やはり加熱でき な!、域が存在して 、るため連続した加熱が行えな 、。
[0010] 特許文献 5のリフロー炉は、プレートに熱風の噴出孔を穿設し、その近傍に吸い込 み孔を穿設したものであるが、吹き出す熱風と吸い込まれる熱風が干渉して乱流を 起こすことがある。
[0011] 特許文献 8は、熱風を吹き出すノズルがジグザグ状であり、必ず加熱域が存在して いるため、不連続加熱となることはない。し力しながらジグザグ状の熱風吹き出しノズ ルは長さが決まっており、通常はプリント基板の大きさよりも余裕をもって大きくしてあ る。従って、ジグザグ状ノズルの長さよりも小さいプリント基板のはんだ付けを行うとき には、プリント基板以外の箇所まで熱風が吹付けられるという無駄があった。またジグ ザグ状の熱風吹き出しノズルは、前述のように不連続加熱はないが、ジグザグ状以外 にも連続加熱を可能にする形状、例えば波形やルーバー状等の形状がある力 その 形状にするには、改めてその形状の熱風吹き出しノズルを作製しなければならなかつ た。
[0012] 本発明は、プリント基板に当たって冷やされた熱風がノズルを冷やさず、また不連 続加熱域がなぐさらにまた吹き出す熱風と吸い込まれる熱風が干渉を起こして乱流 となることがなぐそしてまたプリント基板の大きさに合わせたノズルにすることができる
ば力りでなく複雑形状のノズルの形成も容易であるというリフロー炉を提供することに ある。
課題を解決するための手段
[0013] 本発明者は、熱風を吹き出すノズルを縦方向に孔が穿設された板状のブロックノズ ルにすると、孔の周囲は肉厚となって熱容量が大きくなるため板状の側面に冷えた 熱風が接触してもブロックノズルは冷えにくくなること、またアルミ-ユームは加工がし やすく如何なる形状にも容易に成形できること、ブロックノズルを各種適宜な形状に すると、ブロックノズルを組み合わせることにより、プリント基板の大きさや実装された 電子部品に適合した形状のユニットノズルにできること、等に着目して本発明を完成 させた。
[0014] 本発明は、板状のヒーターブロックには縦方に多数の噴出孔が穿設されていて、該 ヒーターブロックを複数個組み合わせてユニットノズルが形成されており、該ユニットノ ズルはヒーター面力 突出して配置されているとともに、ユニットノズルの近傍には吸 V、込み口が形成されて 、て、しかも複数のユニットノズルが予備加熱ゾーンと本加熱 ゾーンの上部または上下部に設置されていることを特徴とするリフロー炉である。
[0015] 本発明では、ユニットノズルを予備加熱ゾーンと本加熱ゾーンの上部または上下部 に配置する力 該配置は上部だけでもよい。つまり一般にプリント基板は上部にソル ダペーストを塗布し、該塗布部に電子部品を搭載することが多いため、プリント基板 の上部だけを熱風で加熱すれば、ソルダペーストを溶融させることができる。しかしな がら、プリント基板全体を均一加熱するためには、ユニットノズルをプリント基板の下 部も加熱することが必要であり、この場合は本発明に使用するような各種形状のュニ ットノズルから吹き出す熱風でなぐ従来のリフロー炉に使用されていたノズルから吹 き出す熱風でもよぐ或いは遠赤外線であってもよい。本発明のリフロー炉において、 ユニットノズルを上下部に配置すれば、さらにプリント基板を均一加熱することが可能 となる。
[0016] 本発明では、吸い込み口がユニットノズルの近傍に形成されている力 該吸い込み 口はユニットノズルの形状にあわせてユニットノズルに沿って形成したり、或いは隣接 したユニットノズル間の略中央に形成したりしてもよい。ヒーター面に形成する吸い込
み口はユニットノズルと同一形状にすることが好ましいが、その他の形状、例えばヒー ター面に多数の穴が形成されたパンチングプレートや多数のスリットが形成されたス ノコ等でもよい。パンチングプレートゃスノコは、巿販のものを利用できるため、吸い込 み口形成の手間が省ける。
[0017] 本発明のリフロー炉に使用するブロックノズルは、板状物に縦方に複数の孔を穿設 したものであり、孔を穿設した面は長方形、「く」字形、波形の一部、等の各種の形状 のものである。これらのブロックノズルを組み合わせて所望のユニットノズルに形成す る。ブロックノズルとして板状物を用いたことによりパイプよりも熱容量が大きくなる。そ の結果、プリント基板に当たって温度の下がった熱風がブロックノズルの側面に接触 してもブロックノズルの温度が下がりにくくなり、ブロックノズルに流入する高温となつ た熱風の温度を下げるようなことがない。ブロックノズルは、機械加工が容易で、しか も加熱されたときに短時間で昇温するアルミ製のものがよい。
[0018] 本発明では、予備加熱ゾーンと本加熱ゾーンには前述ブロックノズルを組み合わせ たユニットノズルが配置されている。ユニットノズルの形状としては、プリント基板をカロ 熱したときに不連続加熱域のな!ヽ形状であれば如何なる形状でも良!ヽ。不連続加熱 域のない形状としては、ジグザグ形状、波形形状、ルーバーの断面形状、等がある。
[0019] ユニットノズルにおけるジグザグ形状や波形形状で不連続加熱域をなくすには、ジ グザグ形状や波形形状がプリント基板の進行方向に対してジグザグと波が横切る方 向であり、また隣接したユニットノズルとはプリント基板の進行方向に対してジグザグ や波の山と山、谷と谷が一致するように配置する。このようにユニットノズルのジグザグ や波の山と山、谷と谷を一致させて配置すると、プリント基板は、先ず最初のユニット ノズルの山近くの噴出孔で加熱され、そしてプリント基板の進行にともなって、順次谷 に向カゝぅ途中の噴出口で加熱され、そして谷に到達するときには次のユニットノズル の山近くの噴出孔で加熱される。従って、プリント基板は、最初のユニットノズルと、そ れに隣接した次のユニットノズル板で加熱されるため、不連続な加熱はなぐ常にカロ 熱されている状態となる。
[0020] ルーバーの断面形状のユニットノズルとは、長方形のブロックノズルがルーバーの 断面のように斜めにして複数個配置されたものでプリント基板の進行方向に対して一
列並んだものをユニットノズルとした。該ユニットノズルは、複数列並べるが、一列のュ ニットノズルのブロックノズルに対して隣接したユニットノズルのブロックノズルが一部 入り込むように配置する。このように隣接したユニットノズルに対してブロックノズルが 一部入り込むようにすると不連続加熱域がなくなる。
発明の効果
[0021] 本発明のリフロー炉は、各種形状のブロックノズルを組み合わせてユニットノズルを 形成するため、ユニットノズルを如何なる形状、即ちプリント基板の大きさや電子部品 の実装状況に適合した大きさや形状にすることができるという汎用性に優れたもので あり、またユニットノズルを形成するブロックノズルは板厚の厚 ヽ板状物に縦方に穴を 穿設したものであることから、熱容量が大きくなり、プリント基板に当たって温度の下が つた熱風がブロックノズルの側面に接触してもブロックノズルの噴出孔を流動する熱 風の温度を下げな ヽと 、う熱安定性に優れて 、るものである。
図面の簡単な説明
[0022] [図 1]本発明リフロー炉の正面断面図
[図 2]本発明リフロー炉に設置する熱風吹き出しヒーターの正面断面図
[図 3]同側面断面図
[図 4]ユニットノズルを形成する各種ヒーターブロックの斜視図
[図 5]ユニットノズルがジグザグ形形状である熱風吹き出しヒーターの平面図
[図 6]図 5の部分拡大斜視図
[図 7]ユニットノズルが波形形状である熱風吹き出しヒーターの平面図
[図 8]図 7の部分拡大斜視図
[図 9]ユニットノズルがルーバー断面形状である熱風吹き出しヒーターの平面図 符号の説明
[0023] 1 リフロー炉
3 予備加熱ゾーン
4 本加熱ゾーン
5 冷却ゾーン
6 熱風吹き出しヒーター
23 ヒーター面
24 ユニットノズル
A、 B、 C、 D ヒーターブロック
25 噴出孔
26 吸い込み口
発明を実施するための最良の形態
[0024] 以下、図面に基づいて本発明のリフロー炉を説明する。図 1は本発明リフロー炉の 正面断面図、図 2は本発明リフロー炉に設置する熱風吹き出しヒーターの正面断面 図、図 3は同側面断面図、図 4はユニットノズルを形成する各種ヒーターブロックの斜 視図、図 5はユニットノズルがジグザグ形形状である熱風吹き出しヒーターの平面図、 図 6は図 5の部分拡大斜視図、図 7はユニットノズルが波形形状である熱風吹き出しヒ 一ターの平面図、図 8は図 7の部分拡大斜視図、図 9はユニットノズルがルーバー断 面形状である熱風吹き出しヒーターの平面図である。
[0025] 図 1に示すように本発明のリフロー炉 1は、長手方向にトンネル状のマツフル 2が形 成されており、該マツフルが予備加熱ゾーン 3、本加熱ゾーン 4、冷却ゾーン 5となつ ている。予備加熱ゾーン 3の上下部には複数 (三対)の熱風吹き出しヒーター 6 · · 'が 設置されており、本加熱ゾーン 4の上下部には複数(二対)の熱風吹き出しヒーター 7 • · ·が設置されている。予備加熱ゾーン 3に設置する熱風吹き出しヒーター 6と本加熱 ゾーン 4に設置する熱風吹き出しヒーター 7は構造がほとんど同一である力 本加熱 ゾーンに設置する熱風吹き出しヒーター 7は予備加熱ゾーンに設置する熱風吹き出 しヒーター 6よりも搬送方向の巾が短くなつている。そして冷却ゾーン 5には、はんだ 付け後のプリント基板を冷却する一対の冷却機 8、 8(構造不明示)が設置されている 。マツフル 2内には予備加熱ゾーン 3から冷却ゾーン 5方向(矢印 X)にプリント基板 P を搬送するコンベア 9が走行して 、る。
[0026] ここで本発明のリフロー炉に設置する熱風吹き出しヒーターについて説明する。予 備加熱ゾーンに設置する熱風吹き出しヒーターと本加熱ゾーンに設置する熱風吹き 出しヒーターは、同一構造であるため、ここでは予備加熱ゾーンに設置する熱風吹き 出しヒーターで説明する。熱風吹き出しヒーターはマツフルの上下部に設置するため
、熱風吹き出しヒーターに上下はないが、図で説明する熱風吹き出しヒーターはマツ フルの下部に設置した場合を想定して、図で見る通りの上下で説明する。
[0027] 熱風吹き出しヒーター 6は箱状であり、上下方向に四室に分かれている。この四室 は下力 送風室 10、加熱室 11、熱風室 12、吸い込み室 13となっている。
[0028] 送風室 10の中央には送風機 14が置かれている。この送風機はシロッコファンであ り、外部に置かれたモーター 15と連動している。送風室 10の両側には隔壁 16 (—方 は図示せず)があり、該隔壁の一端は開口 17となっている。それぞれの隔壁の開口 は、相対向する位置ではなく離れた端部である。
[0029] 加熱室 11には、両側に流路 18、 18が形成されており、また加熱室の内部には複 数の電熱ヒーター 19 · · ·が配置されている。加熱室 11と送風室 10を隔てている仕切 板 20には吸い込み穴 21が穿設されている。該吸い込み穴は、送風機 14の真上とな るところであり、その直径は送風機であるシロッコファンの直径よりも少し小径である。
[0030] 熱風室 12は前述送風室 10の開口 17と連通しており、送風室 10から熱風が送り込 まれるようになって!/ヽる。熱風室 12と吸 ヽ込み室 13間には仕切板 22が張設されてお り、吸い込み室 13は流路 18で加熱室 11と連通している。また吸い込み室 13の上は ヒーター面 23となっている。。
[0031] 仕切板 22にはユニットノズル 24がヒーター面 23より突出して立設されている。本発 明に使用するユニットヒーターは、図 5、 6に示すようなジグザグ形状、図 7、 8に示す ような波形形状、図 9に示すようなルーバーの断面形状等である。ユニットヒーターは 、図 4に示すような各種形状のヒーターブロックを複数個組み合わせて形成したもの である。ヒーターブロックは、図に示すように肉厚の厚い板状のものに縦方に複数の 噴出孔 25 · · ·を穿設してある。ヒーターブロック Aは噴出孔の穿設面が「く」字形形状 であり、ヒーターブロック Bは噴出孔の穿設面が湾曲した波形の一部であり、そしてヒ 一ターブロック C、 Dは噴出孔の穿設面が長方形である。図 5、 6に示すジグザグ形状 のユニットヒーターは、図 4の Aと Cを組み合わせたものであり、図 7、 8に示す波形形 状のユニットヒーターは、図 4の Bを複数個組み合わせたものであり、また図 9に示す ルーバーの断面形状のユニットヒーターは、図 4の Cと Dを斜めにして複数個配置して 一列にしたものである。図 2、 3のユニットヒーターは、 Aのヒーターブロックを組み合わ
せたものとする。
[0032] ジグザグ形状と波形形状のユニットヒーターは、プリント基板の進行方向(矢印 X)に対 して横切る方向に配置されて 、る。またルーバーの断面形状のュ-ットヒーターは、 穿設面が長方形のヒーターブロックが複数個並んでルーバーの断面形状となったも のがプリント基板の進行方向に対して横切る方向に配置されて!ヽる。
[0033] 本発明に使用する熱風吹き出しヒータは、ユニットヒーターの近傍に吸い込み口が 形成されている。実施例に示すユニットヒーターでは、ユニットヒーターの全周に沿つ て吸 、込み口 26が形成されて 、る。
[0034] 熱風吹き出しヒーター 6のヒーター面 23は、アルミ-ユーム、ステンレス、鉄等の金 属板であり、その表面には黒色のセラミック 27が被覆してある。このように吸い込み板 の表面に黒色セラミックを被覆しておくと、吸い込み板が熱風で加熱されたときに、黒 色セラミックカゝら遠赤外線が放射され、プリント基板は熱風加熱とともに遠赤外線でカロ 熱されるため、熱風加熱だけよりもさらに均一加熱されるようになる。
[0035] 次に上記構造を有するリフロー炉での熱風の吹き出しと吸い込み状態について説 明する。加熱室 11内に配設された電熱ヒーター 19に通電するとともにモーター 15を 駆動させて送風機 14であるシロッコファンを回転させる。すると加熱室 11内にある気 体が電熱ヒーター 19で加熱されて高温の熱風となり、送風機 14で送風機の吸 ヽ込 み側から送風室 10内に引き込まれる。送風室 10内に引き込まれた熱風は、送風機 1 4で送風機の吹き出し側から開口 17を通って熱風室 12に送られ、さらに多数のブロ ックノズル Α· · ·で形成されたユニットノズル 24の噴出孔 25 · · 'から吹き出される。マツ フル 2内ではコンベア 9によりプリント基板 Pが走行させられており、走行しているプリン ト基板 Pに噴出孔 25 · · 'から吹き出た熱風が当たって、ここでプリント基板を加熱する 。熱風で加熱されたプリント基板は、はんだ付け部に塗布されたソルダペーストが溶 融し、プリント基板と電子部品がはんだ付けされる。このとき表面 23からはジグザグ形 状のユニットノズル 24· · ·が立設されているため、プリント基板に対して熱風の当たら ない部分は全く存在せず、全ての部分が熱風で均一加熱される。従って、部分的に オーバーヒートしたりソルダペーストの未溶融が発生したりすることがない。
[0036] ユニットノズル 24から吹き出た熱風は熱をプリント基板に奪われるため、温度が下
がる。このように温度が下がった熱風は、ユニットノズル 24を立設した近傍の吸い込 み口 26に吸い込まれ、流路 18を通って加熱室 11に入る。加熱室 11に入った熱風 は、電熱ヒーター 19で所定の温度まで加熱され、送風機 14で送風室 10に吸い込ま れる。そして熱風は、開口 17から熱風室 12に送られ、再度ユニットノズル 24の噴出 孔 25 · · 'から吹き出されてプリント基板を加熱する。つまり本発明のリフロー炉は、ュ ニットノズルから吹き出された熱風がプリント基板を加熱した後に、直ぐ近くの吸い込 み口から吸い込まれるため、他のユニットノズルから吹き出した熱風と干渉することが ない。従って、本発明のリフロー炉では、マツフル内での乱流がなぐ酸素濃度が安 定するわけである。
産業上の利用可能性
本発明のリフロー炉は、熱風の乱流がないことからマツフル内を不活性ガスで充満 させた不活性雰囲気リフロー炉において、優れた効果を奏するものであるが、プリント 基板全体を均一加熱できるため、大気リフロー炉にも採用できることはいうまでもない
Claims
[1] 縦方に多数の噴出孔が穿設されているヒーターブロック、ヒーター面から突出して配 置されており、該ヒーターブロックを複数個組み合わせたユニットノズル、複数のュ- ットノズル力も成り、該ユニットノズルの近傍には吸 、込み口が形成されて 、て予備カロ 熱ゾーンと本加熱ゾーンの上部または上下部に設置されている熱風吹き出しヒータ 一、力 構成されることを特徴とするリフロー炉
[2] 前記ヒーターブロックは、噴出孔の穿設面が「く」字形形状であることを特徴とする請 求項 1記載のリフロー炉。
[3] 前記ヒーターブロックは、噴出孔の穿設面が湾曲形状であることを特徴とする請求項
1記載のリフロー炉。
[4] 前記ヒーターブロックは、噴出孔の穿設面が矩形形状であることを特徴とする請求項 1記載のリフロー炉。
[5] 前記ヒーターブロックは、アルミ製であることを特徴とする請求項 1乃至 4記載のリフロ ー炉。
[6] 前記ユニットノズルは、ジグザグ形状であることを特徴とする請求項 1記載のリフロー 炉。
[7] 前記ユニットノズルは、波形形状であることを特徴とする請求項 1記載のリフロー炉。
[8] 前記ユニットノズルは、ルーバーの断面形状であることを特徴とする請求項 1記載のリ フロー炉。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2007800104831A CN101411249B (zh) | 2006-03-27 | 2007-03-24 | 回流炉 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-086000 | 2006-03-27 | ||
JP2006086000A JP4887858B2 (ja) | 2006-03-27 | 2006-03-27 | リフロー炉 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007116666A1 true WO2007116666A1 (ja) | 2007-10-18 |
Family
ID=38580965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/056112 WO2007116666A1 (ja) | 2006-03-27 | 2007-03-24 | リフロー炉 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4887858B2 (ja) |
CN (1) | CN101411249B (ja) |
WO (1) | WO2007116666A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2941104A4 (en) * | 2012-12-28 | 2016-09-14 | Senju Metal Industry Co | GAS SUCTION HOLE ALIGNMENT STRUCTURE AND SOLDERING DEVICE |
EP2941103A4 (en) * | 2012-12-28 | 2016-09-28 | Senju Metal Industry Co | GAS INLET HOLE ASSEMBLY STRUCTURE AND SOLDERING DEVICE |
WO2021003044A1 (en) * | 2019-07-03 | 2021-01-07 | Corning Incorporated | Shuttle kiln exhaust configuration |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103639564B (zh) * | 2013-12-11 | 2015-08-26 | 中国电子科技集团公司第二研究所 | 炉门带锁紧机构的共晶炉 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0661364U (ja) * | 1993-01-19 | 1994-08-30 | 東京生産技研株式会社 | 半田付装置 |
JP2002331357A (ja) * | 2001-02-23 | 2002-11-19 | Tamura Seisakusho Co Ltd | 熱風噴射装置、熱風噴射型加熱装置および加熱炉 |
WO2006013895A1 (ja) * | 2004-08-04 | 2006-02-09 | Senju Metal Industry Co., Ltd. | リフロー炉 |
WO2007023604A1 (ja) * | 2005-08-23 | 2007-03-01 | Senju Metal Industry Co., Ltd. | リフロー炉 |
-
2006
- 2006-03-27 JP JP2006086000A patent/JP4887858B2/ja active Active
-
2007
- 2007-03-24 WO PCT/JP2007/056112 patent/WO2007116666A1/ja active Application Filing
- 2007-03-24 CN CN2007800104831A patent/CN101411249B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0661364U (ja) * | 1993-01-19 | 1994-08-30 | 東京生産技研株式会社 | 半田付装置 |
JP2002331357A (ja) * | 2001-02-23 | 2002-11-19 | Tamura Seisakusho Co Ltd | 熱風噴射装置、熱風噴射型加熱装置および加熱炉 |
WO2006013895A1 (ja) * | 2004-08-04 | 2006-02-09 | Senju Metal Industry Co., Ltd. | リフロー炉 |
WO2007023604A1 (ja) * | 2005-08-23 | 2007-03-01 | Senju Metal Industry Co., Ltd. | リフロー炉 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2941104A4 (en) * | 2012-12-28 | 2016-09-14 | Senju Metal Industry Co | GAS SUCTION HOLE ALIGNMENT STRUCTURE AND SOLDERING DEVICE |
EP2941103A4 (en) * | 2012-12-28 | 2016-09-28 | Senju Metal Industry Co | GAS INLET HOLE ASSEMBLY STRUCTURE AND SOLDERING DEVICE |
US9511379B2 (en) | 2012-12-28 | 2016-12-06 | Senju Metal Industry Co., Ltd. | Gas-intake-port array structure and soldering apparatus |
WO2021003044A1 (en) * | 2019-07-03 | 2021-01-07 | Corning Incorporated | Shuttle kiln exhaust configuration |
Also Published As
Publication number | Publication date |
---|---|
CN101411249A (zh) | 2009-04-15 |
CN101411249B (zh) | 2012-05-16 |
JP2007266100A (ja) | 2007-10-11 |
JP4887858B2 (ja) | 2012-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4169075B2 (ja) | リフロー炉 | |
JP3515058B2 (ja) | リフロー半田付け装置 | |
TWI389617B (zh) | 迴焊爐 | |
JP4100578B2 (ja) | リフロー炉 | |
WO2007116666A1 (ja) | リフロー炉 | |
US20050178814A1 (en) | Reflow soldering device | |
KR20150094781A (ko) | 기체 흡입 구멍의 배열 구조 및 솔더링 장치 | |
JP3585750B2 (ja) | リフローはんだ付け装置 | |
KR100270764B1 (ko) | 리플로우납땜방법및이리플로우납땜방법을이용한리플로우납땜장치 | |
JP4401859B2 (ja) | リフロー炉 | |
JP4957797B2 (ja) | 加熱炉 | |
JP2715267B2 (ja) | 熱風吹き出しヒーター | |
JPH0739482Y2 (ja) | リフロー炉 | |
JP2588656Y2 (ja) | リフロー炉 | |
KR20070032042A (ko) | 리플로우 오븐 | |
JP4866253B2 (ja) | リフロー炉 | |
JP2005175286A (ja) | 回路基板の加熱装置、加熱方法及び該加熱装置を備えたリフロー炉 | |
JP2013098464A (ja) | リフロー半田付け装置 | |
JP4131938B2 (ja) | リフロー半田付け装置 | |
JP2006324303A (ja) | リフロー半田付け装置 | |
CN2408647Y (zh) | 红外再流焊机的加热装置 | |
JP2625931B2 (ja) | 加熱炉 | |
JP2005072423A (ja) | リフロー装置 | |
JP2625931C (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07739553 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200780010483.1 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07739553 Country of ref document: EP Kind code of ref document: A1 |