WO2007116443A1 - Semiconductor device and process for producing the same - Google Patents

Semiconductor device and process for producing the same Download PDF

Info

Publication number
WO2007116443A1
WO2007116443A1 PCT/JP2006/306665 JP2006306665W WO2007116443A1 WO 2007116443 A1 WO2007116443 A1 WO 2007116443A1 JP 2006306665 W JP2006306665 W JP 2006306665W WO 2007116443 A1 WO2007116443 A1 WO 2007116443A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
wiring
group
hydrogen
conductive
Prior art date
Application number
PCT/JP2006/306665
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Kikuchi
Kouichi Nagai
Original Assignee
Fujitsu Microelectronics Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Microelectronics Limited filed Critical Fujitsu Microelectronics Limited
Priority to JP2008509595A priority Critical patent/JPWO2007116443A1/en
Priority to PCT/JP2006/306665 priority patent/WO2007116443A1/en
Publication of WO2007116443A1 publication Critical patent/WO2007116443A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/57Capacitors with a dielectric comprising a perovskite structure material comprising a barrier layer to prevent diffusion of hydrogen or oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/40Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the peripheral circuit region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)

Definitions

  • the present invention relates to a semiconductor device using a conductive plug for connection to a conductive structure and a method for manufacturing the same, and in particular, a ferroelectric material in which a ferroelectric film is sandwiched between a lower electrode and an upper electrode.
  • the main target is a semiconductor device having a capacitor structure.
  • Ferroelectric memory is a non-volatile memory in which retained information is not lost even when the power is turned off, and is particularly attracting attention because it can be expected to achieve high integration, high speed drive, high durability, and low power consumption.
  • Ferroelectric oxides with a bottom bskite crystal structure such as BT (SrBi Ta O) film are mainly used.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-183106
  • Patent Document 2 JP-A-9 97883
  • a capacitor structure particularly a ferroelectric capacitor structure
  • the present invention has been made in view of the above-described problems, and reliably prevents water and hydrogen from penetrating into the interior with a relatively simple configuration, and has a high performance in a capacitor structure, particularly a ferroelectric capacitor structure. It is an object of the present invention to provide a highly reliable semiconductor device and a method for manufacturing the same, which can realize this without increasing the number of constituent members and the number of processes.
  • the semiconductor device of the present invention is formed above a semiconductor substrate, and has a capacitor structure in which a capacitor film is sandwiched between a lower electrode and an upper electrode, and wiring formed above the capacitor structure. And a conductive plug that is formed on the capacitor structure and electrically connects at least the upper electrode and the wiring thereabove, and the conductive plug is a first conductive material that occludes hydrogen. It is formed including.
  • Another aspect of the semiconductor device of the present invention is formed above a semiconductor substrate, and is formed above a capacitor structure having a capacitor film sandwiched between a lower electrode and an upper electrode, and the capacitor structure. And a conductive plug that is formed on the capacitor structure and electrically connects the upper electrode and the wiring above the wiring.
  • the wiring has a conductive material that absorbs hydrogen. Formed.
  • a method for manufacturing a semiconductor device of the present invention includes a step of forming a capacitor structure having a capacitor film sandwiched between a lower electrode and an upper electrode above a semiconductor substrate, and at least the capacitor structure on the capacitor structure. Forming a conductive plug electrically connected to the upper electrode; and forming a wiring on the conductive plug to form a wiring electrically connected to the upper electrode via the conductive plug;
  • the conductive plug is formed of a material including a first conductive material that absorbs hydrogen.
  • FIG. 1A is a schematic cross-sectional view showing the structure of a planar-type FeRAM according to a first embodiment along with its manufacturing method in the order of steps.
  • FIG. 1B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
  • FIG. 1C is a schematic cross-sectional view showing the structure of the planar-type FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
  • FIG. 1D is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
  • FIG. 2A is a schematic cross-sectional view showing the structure of the planar-type FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
  • FIG. 2B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
  • FIG. 2C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
  • FIG. 2D is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
  • FIG. 3A is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
  • FIG. 3B is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
  • FIG. 3C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
  • FIG. 4A is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
  • FIG. 4B shows the structure of the planar type FeRAM according to the first embodiment. It is a schematic sectional drawing shown in order of a process with a method.
  • FIG. 4C is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the first embodiment in the order of processes together with its manufacturing method.
  • FIG. 5A is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
  • FIG. 5B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
  • FIG. 6A is a schematic cross-sectional view showing the structure of FeRAM in the order of steps together with its manufacturing method (main steps) when damascene wiring is formed according to the first embodiment.
  • FIG. 6B is a schematic cross-sectional view showing the structure of the FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main steps), in the order of steps.
  • FIG. 6C is a schematic cross-sectional view showing the structure of the FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main steps), in the order of steps.
  • FIG. 6D is a schematic cross-sectional view showing the structure of FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main process), in order of process.
  • FIG. 6E is a schematic cross-sectional view showing the structure of the FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main steps), in the order of steps.
  • FIG. 7A is a schematic cross-sectional view showing the structure of FeRAM in the order of steps together with its manufacturing method (main steps) when forming damascene wiring according to the first embodiment.
  • FIG. 7B is a schematic cross-sectional view showing the structure of FeRAM in the first embodiment together with its manufacturing method (main steps) in the order of steps when forming damascene wiring.
  • FIG. 7C is a schematic cross-sectional view showing the structure of the FeRAM when forming the damascene wiring in the first embodiment, together with its manufacturing method (main process).
  • FIG. 7D is a schematic cross-sectional view showing the structure of the FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main steps), in the order of steps.
  • FIG. 8A is a schematic cross-sectional view showing the structure of FeRAM in the order of steps together with its manufacturing method (main steps) when damascene wiring is formed according to the first embodiment.
  • FIG. 8B shows FeRAM when damascene wiring is formed in the first embodiment. It is a schematic sectional drawing which shows this structure with the manufacturing method (main process) in order of a process.
  • FIG. 9A is a schematic cross-sectional view showing the structure of a planar FeRAM according to Modification 1 of the first embodiment together with its manufacturing method (main steps) in the order of steps.
  • FIG. 9B is a schematic cross-sectional view showing the structure of the planar FeRAM according to Modification 1 of the first embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 10A is a schematic cross-sectional view showing the structure of a planar type FeRAM according to Modification 2 of the first embodiment along with its manufacturing method (main steps) in the order of steps.
  • FIG. 10B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
  • FIG. 10C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
  • FIG. 10D is a schematic cross-sectional view showing the structure of the planar FeRAM according to Modification 2 of the first embodiment together with the manufacturing method (main steps) in the order of steps.
  • FIG. 11A is a schematic cross-sectional view showing the structure of a planar type FeRAM according to Modification 2 of the first embodiment along with its manufacturing method (main steps) in the order of steps.
  • FIG. 11B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
  • FIG. 11C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
  • FIG. 11D is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the second modification of the first embodiment along with its manufacturing method (main process).
  • FIG. 12A is a schematic cross-sectional view showing the structure of a planar type FeRAM according to Modification 2 of the first embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 12B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
  • FIG. 12C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 13A shows the structure of a planar type FeRAM according to the second modification of the first embodiment. It is a schematic sectional drawing shown in order of a process with the manufacturing method (main process).
  • FIG. 13B is a schematic cross-sectional view showing the structure of the planar FeRAM according to Modification 2 of the first embodiment together with its manufacturing method (main steps) in the order of steps.
  • FIG. 14A is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment together with its manufacturing method in the order of steps.
  • FIG. 14B is a schematic cross-sectional view showing the configuration of the stacked FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
  • FIG. 14C is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second embodiment along with its manufacturing method in the order of steps.
  • FIG. 14D is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
  • FIG. 15A is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
  • FIG. 15B is a schematic cross-sectional view showing the configuration of the stacked FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
  • FIG. 15C is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
  • FIG. 15D is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
  • FIG. 16A is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
  • FIG. 16B is a schematic cross-sectional view showing the configuration of the stacked FeRAM according to the second embodiment in the order of steps together with the manufacturing method thereof.
  • FIG. 16C is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
  • FIG. 17A is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment along with its manufacturing method in the order of steps.
  • FIG. 17B shows a stack type FeRAM configuration according to the second embodiment. It is a schematic sectional drawing shown in order of a process with a method.
  • FIG. 18A is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
  • FIG. 18B is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment along with its manufacturing method in the order of steps.
  • FIG. 19A is a schematic cross-sectional view showing the structure of a stacked FeRAM according to Modification 1 of the second embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 19B is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the first modification of the second embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 20A is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
  • FIG. 20B is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
  • FIG. 20C is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
  • FIG. 20D is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 21A is a schematic cross-sectional view showing the structure of a stacked FeRAM according to Modification 2 of the second embodiment, together with its manufacturing method (main steps), in the order of steps.
  • FIG. 21B is a schematic cross-sectional view showing the structure of the stacked FeRAM according to the second modification of the second embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 21C is a schematic cross-sectional view showing the structure of the stack type FeRAM according to Modification 2 of the second embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 21D is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
  • FIG. 22A is a schematic cross-sectional view showing the structure of a stack type FeRAM according to Modification 2 of the second embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 22B shows the configuration of the stack type FeRAM according to the second modification of the second embodiment. It is a schematic sectional drawing shown in order of a process with the manufacturing method (main process).
  • FIG. 23A is a schematic cross-sectional view showing the structure of a stacked FeRAM according to Modification 2 of the second embodiment in the order of steps together with its manufacturing method (main steps).
  • FIG. 23B is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
  • the inventor of the present invention desirably provides a component having a material force having a property of blocking hydrogen to prevent the generated hydrogen from entering the capacitor film as much as possible above the capacitor film, that is, the capacitor structure.
  • a component having a material force having a property of blocking hydrogen to prevent the generated hydrogen from entering the capacitor film as much as possible above the capacitor film, that is, the capacitor structure.
  • the constituent member a configuration in which an insulating film such as a metal oxide is formed in an insulating portion above the capacitor structure, and a configuration in which a conductive film is similarly formed in a conductive portion can be considered.
  • the material of the component and its arrangement site in addition to providing it in a site where a sufficient hydrogen blocking function can be exerted on the capacitor film, the number of components and processes are not increased as much as possible. It becomes important. In other words, it is desirable to form the existing and essential components as much as possible with a material having a hydrogen blocking function in a portion close to the capacitor structure.
  • the inventor of the present invention is a highly conductive and highly moisture-resistant conductive material that exhibits a water / hydrogen barrier function more than an insulating material, such as palladium (Pd), lithium (Li), sodium (Na ), Magnesium (Mg), calcium (Ca), titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), lanthanum (La), neodymium (Nd), samarium (Sm), etc. It was judged that a conductive material (hydrogen storage conductive material) having a property of absorbing hydrogen or a conductive material containing these materials is optimal.
  • an insulating material such as palladium (Pd), lithium (Li), sodium (Na ), Magnesium (Mg), calcium (Ca), titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), lanthanum (La), neodymium (Nd), s
  • the present inventor forms a conductive film of a hydrogen-occlusion conductive material on the upper electrode as an arrangement site of the constituent member (application place of the constituent member) close to the capacitor structure.
  • Larger surface area and volume compared to other cases (thus increasing hydrogen absorption) Existing and indispensable for a semiconductor device having a capacitor structure, that is, a conductive plug electrically connected to the upper electrode of the capacitor structure, and an electrical connection with the upper electrode through z or a conductive plug. The idea was to apply it to the wiring that is connected to each other.
  • Pd is a metal having a hydrogen storage function that absorbs hydrogen of 935 times its own volume.
  • this hydrogen-absorbing conductive material typified by Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm, etc.
  • a large amount of hydrogen absorption capacity (a large surface area and a large surface area) can be achieved without increasing the number of components and processes by forming a conductive plug connected to the wiring and / or a wiring electrically connected to the upper electrode via the conductive plug. Therefore, it is possible to efficiently prevent hydrogen from entering the capacitor film and to reliably maintain high capacitor characteristics.
  • Hydrogen-absorbing conductive materials such as Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, and Sm may be used alone, or (2) ( Even if an alloy of any combination of the hydrogen-absorbing conductive materials shown in 1) is used, at least one of the hydrogen-absorbing conductive materials shown in (3) (1) and other metals (aluminum (A1), At least one of common conductive metal materials such as copper (Cu), iron (Fe), nickel (Ni), or iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium An alloy with (Ru), rhodium (Rh), osmium (Os) or other noble metals) may be used.
  • metals aluminum (A1)
  • At least one of common conductive metal materials such as copper (Cu), iron (Fe), nickel (Ni), or iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium
  • Ru
  • the hydrogen is similarly applied on the upper electrode of the capacitor structure, that is, between the upper electrode and the conductive plug.
  • a structure is also proposed in which a conductive film made of an occlusive conductive material or a conductive material containing the same is provided.
  • the material of the conductive film is Pd, or other noble metals (Ir, Pt, Au, Ag, Ru, Rh, Os, etc.) must be limited to alloys with at least one of them. These materials also have resistance to halogen-based gases as will be described later.
  • the capacitor characteristics are easily deteriorated even by an etching cache or the like. For this reason, it is essential to recover the characteristics of the capacitor film using high-temperature annealing. For this reason, noble metals that can withstand high-temperature annealing and conductive oxides of noble metals are frequently used as materials for the upper and lower electrodes. These electrode materials are difficult to react with an etching gas such as a halogen-based gas, and are therefore usually difficult to be etched.
  • an etching gas such as a halogen-based gas
  • the simultaneous via hole as described above is often not formed.
  • the above-mentioned hydrogen diffusion prevention film is often formed to cover the ferroelectric capacitor structure in the ferroelectric capacitor structure. If this hydrogen diffusion prevention film is present on the upper electrode, the etching time of the hydrogen diffusion prevention film is low, so that the etching time is increased, and the amount of overetching exerted on the upper electrode during the formation of the via hole is greatly increased. In addition, it has been confirmed that the etching product from the hydrogen diffusion prevention film lowers the selectivity and greatly increases the amount of scraping of the upper electrode material that is the base film.
  • hydrogen storage materials such as Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, and Sm have not only the above hydrogen absorption function.
  • Other hydrogen-absorbing conductive materials, and metal materials that are difficult to react with halogen-based gases for example, noble materials such as Ir, p t , Au, Ag, Ru, Rh, Os
  • halogen-based gases for example, noble materials such as Ir, p t , Au, Ag, Ru, Rh, Os
  • the upper electrode By providing a conductive film made of a conductive material including a hydrogen storage conductive material between the conductive plug and the conductive plug, the hydrogen absorption capability is improved and hydrogen can be further prevented from entering the capacitor film, and the upper electrode can be prevented. It is possible to suppress retention failure without overetching.
  • Patent Documents 1 and 2 disclose a configuration in which a hydrogen absorption layer having Pd isotropic force is provided on the upper force side of the upper electrode in a semiconductor memory having a ferroelectric capacitor structure.
  • the conductive plug is not an essential component, and not only the basic configuration that is the premise of the present invention is different, but also the object of application of Pd is completely different. Therefore, the present invention is completely different from the inventions of Patent Documents 1 and 2.
  • This embodiment exemplifies V, a so-called planar type FeRA M, in which a conductive plug is formed on the lower electrode and the upper electrode of the ferroelectric capacitor structure, respectively, so as to be conductive.
  • FIG. 1A to FIG. 5B are schematic cross-sectional views showing the structure of the planar type FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
  • the silicon semiconductor substrate 10 functions as a selection transistor.
  • a MOS transistor 20 is formed.
  • the element isolation structure 11 is formed on the surface layer of the silicon semiconductor substrate 10 by, for example, STI (Shallow Trench Isolation) method to determine the element active region.
  • STI Shallow Trench Isolation
  • an impurity here B, for example, is ion-implanted into the element active region under the conditions of a dose of 3.0 ⁇ 10 13 / cm 2 and an acceleration energy of 300 keV to form the wall 12.
  • a silicon nitride film having a thickness of about 29 nm is deposited, and the silicon nitride film, the polycrystalline silicon film, and the gate insulating film 13 are processed into an electrode shape by lithography and subsequent dry etching, whereby the gate insulating film 13 is formed.
  • the gate electrode 14 is patterned.
  • a cap film 15 made of a silicon nitride film is patterned on the gate electrode 14.
  • an impurity for example, arsenic (As) in this case, is ion-implanted under the conditions of a dose of 5.
  • LDD region 16 is formed.
  • a silicon oxide film is deposited on the entire surface by the CVD method, and this silicon oxide film is so-called etched back, so that the silicon oxide film is formed only on the side surfaces of the gate electrode 14 and the cap film 15.
  • a sidewall insulating film 17 is formed leaving the film.
  • an impurity in the element active region here phosphorus (P)
  • P has a higher impurity concentration than the LDD region 16
  • a protective film 21 and an interlayer insulating film 22a of the MOS transistor 20 are sequentially formed.
  • a protective film 21 and an interlayer insulating film 22a are sequentially deposited so as to cover the MOS transistor 20.
  • a silicon oxide film is used as a material, and is deposited to a film thickness of about 20 nm by a CVD method.
  • the interlayer insulating film 22a for example, a plasma SiO film (film thickness 20 nm), a plasma SiN film (film thickness of about 80 nm), and a plasma TEOS film (film thickness of about 1 OOOnm) are sequentially formed, and after stacking, until CMP reaches a film thickness of about 700 nm Grind.
  • an interlayer insulating film 22b and a hydrogen diffusion preventing film 23 are sequentially formed.
  • 1C and subsequent drawings for convenience of illustration, only the structure above the interlayer insulating film 22a is shown, and illustration of the silicon semiconductor substrate 10, the MOS transistor 20, and the like is omitted.
  • a silicon oxide film is deposited to a thickness of about lOOnm on the interlayer insulating film 22a by, for example, a plasma CVD method using TEOS to form the interlayer insulating film 22b. Thereafter, the interlayer insulating film 22b is annealed.
  • the condition for this annealing treatment is N gas
  • run 2 at a flow rate of 20 liters Z for 20 minutes to 45 minutes at 650 ° C.
  • a hydrogen diffusion prevention film 23 is formed to prevent intrusion into the film).
  • the hydrogen diffusion prevention film 23 is made of a metal oxide such as alumina (Al 2 O 3) as a material, and a
  • a lower electrode layer 24, a ferroelectric film 25, and an upper electrode layer 26 are sequentially formed.
  • the film thickness is 150 ⁇ !
  • a Pt film is deposited to about 200 nm to form the lower electrode layer 24.
  • a ferroelectric film 25 having a PbZr Ti O (PZT: 0 ⁇ x ⁇ 1) force which is a ferroelectric material, is formed on the lower electrode layer 24 to a film thickness of about 100 nm to 300 nm by RF sputtering.
  • the ferroelectric film 25 is annealed to crystallize the ferroelectric film 25.
  • the annealing conditions include ArZO gas with 1.98 liters Z for Ar and 0.02 for O.
  • the material of the ferroelectric film 25 is Pb La Zr Ti O (0 l -xl -yy 3 ⁇ ⁇ 1, 0 ⁇ y ⁇ l), SrBi (Ta Nb) O (0 ⁇ x ⁇ 1), Bi Ti O, etc. may be used.
  • the upper electrode layer 26 is deposited on the ferroelectric film 25.
  • an IrO film 26a which is a conductive oxide, is formed to a thickness of about 30 nm to 70 nm by reactive sputtering. Then, anneal the IrO film 26a
  • the annealing conditions include ArZO gas with 2.0 liters of Z,
  • While O is supplied at a flow rate of 0.02 liters Z, for example, 650 ° C to 850 ° C for 10 seconds to 6
  • the IrO film 26b is formed on the IrO film 26a by reactive sputtering.
  • a noble metal film functioning as a yap film, here a Pt film 26c, is formed to a thickness of about lOOnm by sputtering.
  • the upper electrode layer 26 is composed of the IrO films 26a and 26b and the Pt film 26c.
  • Ir, Ru, RuO, SrRuO are used instead of the IrO films 26a, 26b.
  • the upper electrode 31 is patterned.
  • the upper electrode layer 26 is processed into a plurality of electrode shapes by lithography and subsequent dry etching, and the upper electrode 31 is patterned.
  • the ferroelectric film 25 is processed.
  • the ferroelectric film 25 is aligned with the upper electrode 31 and processed by lithography and subsequent dry etching. After the patterning of the ferroelectric film 25, the ferroelectric film 25 is annealed to restore the function of the ferroelectric film 25.
  • a hydrogen diffusion preventing film 27 for preventing the invasion of hydrogen 'water into the ferroelectric film 25 is formed.
  • aluminum Al 2 O 3
  • a sputtering method to prevent hydrogen diffusion.
  • a film 27 is formed. Thereafter, the hydrogen diffusion preventing film 27 is annealed.
  • the lower electrode layer 24 is covered together with the hydrogen diffusion preventing film 27 to complete the ferroelectric capacitor structure 30.
  • the hydrogen diffusion prevention film 27 and the lower electrode layer 24 are aligned with the processed ferroelectric film 25 so that the lower electrode layer 24 remains larger in size than the ferroelectric film 25.
  • dry etching is performed to form a pattern of the lower electrode 32.
  • the hydrogen diffusion preventing film 27 remains so as to cover from the upper surface of the upper electrode 31 to the side surfaces of the upper electrode 31 and the ferroelectric film 25 and the upper surface of the lower electrode layer 24. Thereafter, the hydrogen diffusion preventing film 27 is annealed.
  • a hydrogen diffusion preventing film 28 is formed.
  • the capacitor characteristics of the ferroelectric capacitor structure 30 are prevented from deteriorating so as to cover the entire surface of the ferroelectric capacitor structure 30 (hydrogen generated due to moisture generated from an external or upper insulating film).
  • Hydrogen diffusion prevention film 28 is formed to prevent the intrusion into the ferroelectric film 25).
  • a metal oxide for example, alumina (Al 2 O 3) is used as a material and deposited to a thickness of about 20 nm to 50 nm by a sputtering method. That
  • an interlayer insulating film 33 is formed.
  • the interlayer insulating film 33 is formed so as to cover the ferroelectric capacitor structure 30 via the hydrogen diffusion preventing films 27 and 28.
  • the interlayer insulating film 33 is formed by depositing a silicon oxide film with a film thickness of about 1500 nm to 2500 nm by, for example, a plasma CVD method using TEOS, and then polishing the film by CMP to a film thickness of about lOOOnm. To do. After CMP, for example, N 2 O plasma is used for the purpose of dehydration (and surface nitriding) of the interlayer insulating film 33.
  • a plug 36 connected to the source Z drain region 18 of the transistor structure 20 is formed.
  • the interlayer insulating film 33, the hydrogen diffusion preventing films 28, 27, the interlayer insulating film 22b are processed by lithography and subsequent dry etching to form, for example, a via hole 36a having a diameter of about 0.3 ⁇ ⁇ (about 0.35 m) To do.
  • a base film (glue film) 36b is formed by sequentially depositing, for example, a Ti film and a TiN film with a film thickness of about 20 nm and a film thickness of about 50 nm by a sputtering method so as to cover the wall surface of the via hole 36a. To do. Then, for example, a W film is formed by the CVD method so as to fill the via hole 36a through the glue film 36b. Thereafter, the W film and the glue film 36b are polished by CMP using the interlayer insulating film 33 as a stopper to form a plug 36 that fills the via hole 36a with W through the glue film 36b. After CMP, for example, N 2 plasma annealing is performed.
  • a via to the ferroelectric capacitor structure 30 is formed. Holes 3 4a and 35a are formed.
  • a protective film 37 is formed by depositing, for example, a SiON film on the interlayer insulating film 33 and the plug 36 to a thickness of about lOOnm by the CVD method.
  • a resist is applied on the protective film 37, and the resist is processed by lithography to form a resist mask 38 having openings 38a and 38b.
  • the protective film 37 is dry-etched using the resist mask 38, and openings 37a and 37b are formed at portions matching the openings 38a and 38b of the protective film 37.
  • the interlayer insulating film 33 and the hydrogen diffusion preventing films 28 and 27 are dry-etched.
  • the interlayer insulating film 33 and the hydrogen diffusion preventing films 28 and 27 are processed until a part of the surface of the upper electrode 31 is exposed, and the interlayer insulating film is exposed until a part of the surface of the lower electrode 32 is exposed.
  • 33 and the hydrogen diffusion preventing films 28 and 27 are simultaneously performed, and via holes 34a and 35a having a diameter of about 0.5 m, for example, are simultaneously formed at the respective portions.
  • the resist mask 38 is removed.
  • the plug 36 is covered with the protective film 37.
  • a failure treatment for recovering the damage received by the ferroelectric capacitor structure 30 is performed by various steps after the formation of the ferroelectric capacitor structure 30.
  • the plug 36 is covered with the protective film 37, the oxidation of W is prevented.
  • plugs 34, 3 connected to the ferroelectric capacitor structure 30 are connected. Form 5.
  • the protective film 37 is removed by whole surface anisotropic etching, so-called etch back.
  • a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm by a sputtering method so as to cover the wall surfaces of the via holes 34a, 35a, and a base film (glue film) 34 b, 35b is formed.
  • the hydrogen occlusion property in combination with the hydrogen diffusion prevention films 23, 27, 28, the hydrogen occlusion property has the property of absorbing hydrogen to reliably prevent the generated hydrogen from entering the strong dielectric film 25.
  • the hydrogen storage conductive material or a conductive material containing the same is deposited on the interlayer insulating film 33 so as to fill the via holes 34a and 35a via the glue films 34b and 35b.
  • Examples of hydrogen storage conductive materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen-absorbing conductive materials such as Nd and Sm may be used alone, or (2) Even if an alloy of any combination of hydrogen-absorbing conductive materials shown in (1) is used, (3) ( At least one of the hydrogen-absorbing conductive materials shown in 1) and at least one of the other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) Or an alloy with iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os) or other noble metals. May be used.
  • Pd is used as the conductive material to be deposited, and the plugs 34 and 35 are formed by, for example, the C VD method or the P VD method.
  • the deposited Pd and glue films 34b and 35b are polished by CMP using the interlayer insulating film 33 as a stopper, and the via holes 34a and 35a are filled with W via the glue films 34b and 35b, respectively. , 35.
  • CMP eg N 2 O plasma anneal
  • Processing may be performed.
  • the present invention is applied to a conductive plug that is indispensable for electrical connection with the upper electrode 31 and the lower electrode 32, and the plugs 34 and 35 are provided with a large amount of hydrogen absorption capacity (a large surface area).
  • Pd which is a hydrogen storage conductive material having a volume). Therefore, hydrogen permeates into the ferroelectric film 25 without increasing the number of components and processes. Can be efficiently prevented, and high capacitor characteristics can be reliably maintained.
  • first wirings 45 connected to the plugs 34, 35, 36 are formed.
  • the barrier metal film 42, the wiring film 43, and the barrier metal film 44 are deposited on the entire surface of the interlayer insulating film 33 by sputtering or the like.
  • a Ti film is sequentially formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
  • an A1 alloy film (here, Al—Cu film) is formed to a film thickness of about 350 nm.
  • the noria metal film 44 for example, a Ti film is sequentially formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the laminated structure of Ti film and TiN film has the function as a barrier metal and the effect of suppressing stress migration.
  • the Ti film, which is a constituent element of the barrier metal film, has the effect of reducing the contact resistance.
  • the structure of the wiring film 43 is the same as that of the logic part other than FeRAM of the same rule, so there is no problem in wiring processing or reliability!
  • the antireflection film, the noria metal film 44, the wiring film 43, and the barrier metal film 42 are formed by lithography and subsequent dry etching.
  • the first wiring 45 connected to the plugs 34, 35, and 36 is patterned.
  • a Cu film (or Cu alloy film) may be formed by using a so-called damascene method or the like, and a Cu wiring may be formed as the first wiring 45. .
  • a second wiring 54 connected to the first wiring 45 is formed.
  • an interlayer insulating film 46 is formed so as to cover the first wiring 45.
  • a silicon oxide film is formed to a thickness of about 7 OOnm
  • a plasma TEOS film is formed to a total thickness of about lOOm, and then the surface is polished by CMP.
  • the film thickness is about 750 nm.
  • the interlayer insulating film 46 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 45 is exposed, for example, to form a via hole 47a having a diameter of about 0.25 m. To do.
  • a base film (glue film) 48 so as to cover the wall surface of the via hole 47a
  • a W film is formed so as to fill the via hole 47a through the glue film 48 by the CVD method. Then, for example, the W film and the glue film 48 are polished by CMP using the interlayer insulating film 46 as a stopper to form a plug 47 filling the via hole 47a with W via the glue film 48.
  • the plug 47 may be formed by performing anisotropic etching of the entire surface of the W film and the glue film 48 or so-called etch back. At this time, only W is etched, and the glue film 48 remains as it is.
  • the barrier metal film 51, the wiring film 52, and the barrier metal film 5 are formed on the entire surface by sputtering or the like.
  • a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the glue film 48 remaining when the plug 47 is formed functions as a barrier metal film, and thus the barrier metal film 51 is unnecessary.
  • an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm.
  • the rare metal film 53 for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the structure of the wiring film 52 is assumed to be the same structure as that of the logic part other than the Fe RAM of the same rule, there is no problem in wiring processing and reliability.
  • planar type FeRAM according to the present embodiment is completed through various processes such as the formation of an upper layer wiring and the interlayer insulating film.
  • hydrogen can be reliably prevented from entering the ferroelectric film 25 with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 30 can be maintained.
  • Highly reliable planar type FeRAM without increasing the number of components and processes Can be realized.
  • various wirings of FeRAM a part of the wiring located in the upper layer of the ferroelectric capacitor structure 30, for example, the first wiring and the second wiring (and subsequent wirings) in FIG. It may be formed by a so-called damascene method.
  • damascene method an example is given of the case where Cu wiring is formed by applying the damascene method to the second wiring.
  • FIGS. 6A to 8B are schematic cross-sectional views showing the structure of the FeRAM in FIG. 5A and subsequent steps together with its manufacturing method (main steps) when forming damascene wiring in the first embodiment.
  • an interlayer insulating film 46 is formed so as to cover the first wiring 45 as shown in FIG. 6A.
  • a silicon oxide film is formed to a thickness of about 700 nm so as to cover the first wiring 45, a plasma TEOS film is formed to a total thickness of about lOO nm, and then a CMP film is formed. The surface is then polished to a thickness of about 750 nm, and an interlayer insulating film 46 is formed. After CMP, for example, plasma annealing of N 2 O is performed.
  • a via hole 49 a that exposes the surface of the first wiring 45 is formed.
  • the plug 49 connected to one of the first wires 45 connected to the plugs 34, 35, 36 is shown as a representative. To do.
  • the interlayer insulating film 46 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 45 is exposed, for example, a via hole having a diameter of about 0.25 / zm. 49a is formed.
  • a base film 64 made of a silicide film is formed and Cu plating is performed.
  • the base film is formed of a silicide film as an oxygen-impermeable conductor.
  • a Ta film is formed on the interlayer insulating film 46 by sputtering or the like so as to cover the inner wall surface of the via hole 49a.
  • a base film (glue film) 61 with a thickness of about 20 nm
  • a Cu (or alloy) film 62 is formed on the glue film 61 so as to embed the via hole 49a via the glue film 61 by a plating method.
  • a plug 49 is formed.
  • the Cu film 62 and the glue film 61 are polished by CMP using the interlayer insulating film 46 as a stopper, and a plug 49 is formed in which the via hole 49a is filled with Cu via the glue film 61.
  • the silicon nitride film 63, the interlayer insulating film 64, the SOG film 65, the interlayer insulating film 66, and the silicon nitride film 67 are formed on the interlayer insulating film 46 so as to cover the plug 49. Are sequentially stacked.
  • the silicon nitride film 63 for example, a film thickness of 50 ⁇ ! ⁇ LOOnm is formed.
  • the interlayer insulating film 64 for example, a film thickness of 200 ⁇ ! Forms about ⁇ 400 nm.
  • the SOG film 65 is formed to have a film thickness of about 100 ⁇ m to 200 nm by spin coating SOG.
  • the interlayer insulating film 66 is formed with a film thickness of about 10 Onm by, for example, the CVD method.
  • the silicon nitride film 67 is formed to a thickness of about lOOnm by, for example, the CVD method.
  • the silicon nitride film 67 is processed.
  • the silicon nitride film 67 is patterned by lithography and dry etching, and a wiring-shaped opening 67 a is formed in the silicon nitride film 67.
  • the interlayer insulating film 66 and the SOG film 65 are cleaned.
  • the interlayer insulating film 66 and the SOG film 65 are patterned by lithography and dry etching, and a hole-shaped opening 66a is formed at a position located above the plug 49 aligned with the opening 67a of the interlayer insulating film 66 and the SOG film 65. , 65a.
  • the interlayer insulating film 66 and the interlayer insulating film 64 are processed.
  • the interlayer insulating film 66 is patterned into a wiring shape following the opening 67a by lithography and dry etching to form an opening 66b in which the opening 66a is expanded.
  • the interlayer insulating film 66 and the SOG film 65 function as a mask
  • the interlayer insulating film 64 is patterned into a hole shape following the opening 65a, and the opening 64a is formed.
  • the wiring trench 68 is completed.
  • the silicon nitride film 67 is patterned by lithography and dry etching until the surface of the plug 47 is exposed.
  • the SOG film 65 is formed with a wiring-shaped opening 65b in which the opening 65a is expanded following the openings 67a and 66b, and the silicon nitride film 63 is formed with a hole-shaped opening following the opening 64a. Hole 63a is formed.
  • the silicon nitride film 67 is also thinned by the thickness of the silicon nitride film 63 by etching.
  • the openings 63a and 64a formed in the silicon nitride film 63 and the interlayer insulating film 64 and the openings 65b, 66b and 67a formed in the SOG film 65, the interlayer insulating film 66 and the silicon nitride film 67 are integrated.
  • the wiring groove 68 is completed.
  • a base film 69 made of a silicide film is formed and Cu plating is performed.
  • a Ta film is formed by sputtering, etc. ⁇ ⁇ !
  • a base film (glue film) 69 is formed to a thickness of about 20 nm.
  • a Cu film 70 is formed on the glue film 69 so as to embed the wiring groove 68 through the glue film 69 by a plating method. accumulate.
  • a wiring structure 71 is formed.
  • the Cu film 70, the glue film 69, and the silicon nitride film 67 are polished by CMP using the interlayer insulating film 66 as a stopper, and the wiring groove 68 is filled with Cu (or an alloy thereof) through the glue film 69, and plugged.
  • a wiring structure 71 that is electrically connected to the first wiring 45 through 49 is formed.
  • the portions where the openings 63a and 64a are embedded with Cu via the glue film 69 are embedded in the conductive plug portion, and the openings 65b and 66b are embedded with Cu via the glue film 69.
  • Corresponds to a wiring portion and is formed by forming a conductive plug portion and a wiring portion.
  • the first As a material for the wiring film of 1 wiring a hydrogen storage conductive material or a conductive material containing this is used.
  • FIG. 9A and FIG. 9B are schematic cross-sectional views showing the structure of the planar type FeRAM according to Modification 1 of the first embodiment in the order of steps together with the manufacturing method (main steps).
  • first wirings 84 connected to the plugs 34, 35, 36 are formed.
  • a barrier metal film 81, a wiring film 82, and a barrier metal film 83 are deposited on the entire surface of the interlayer insulating film 33 by sputtering or the like.
  • a Ti film and a TiN film are sequentially laminated to a film thickness of about 5 nm and 150 nm, respectively, by sputtering or the like.
  • the wiring film 82 is formed using a hydrogen storage conductive material having such a property or a conductive material containing the same.
  • Examples of hydrogen storage conductive materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm and other hydrogen-absorbing conductive materials can be used alone, or (2) (3) (3) ( At least one of the hydrogen-absorbing conductive materials shown in 1) and at least one of the other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) Or at least one precious metal such as iridium (Ir), platinum (Pt), gold (Au), silver (A g), ruthenium (R U ), rhodium (Rh), osmium (Os) An alloy may be used.
  • Pd is used as the conductive material to be deposited, and the wiring film 82 is formed to a thickness of about 350 nm by, for example, the CV D method or the PVD method.
  • the present invention is applied to wiring that is indispensable for making electrical connection to the plugs 34 and 35 and establishing electrical connection with the upper electrode 31 and the lower electrode 32 via the plugs 34 and 35.
  • 82 is formed from Pd, which is a hydrogen storage conductive material having a large amount of hydrogen absorption capacity (large surface area and volume). Therefore, it is possible to efficiently prevent hydrogen from entering the strong dielectric film 25 without increasing the number of constituent members and the number of processes, thereby ensuring high capacitor characteristics. It is possible to hold it.
  • the rare metal film 83 for example, a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by sputtering or the like. Since the structure of the wiring film 82 is assumed to be the same structure as that of the logic part other than the FeRAM having the same rule, there is no problem in processing and reliability of the wiring.
  • the antireflection film, the noria metal film 83, the wiring film 82 and the barrier metal film 81 are formed by lithography and subsequent dry etching. Then, the first wiring 84 connected to the plugs 34, 35, and 36 is patterned.
  • the plugs 34 and 35 and the first wiring 84 are formed as separate bodies is illustrated, but these may be formed integrally.
  • glue film 81 (only a TiN film having a thickness of about 150 nm) is formed so as to cover the inner wall surface of via holes 34a and 35a and interlayer insulating film 33.
  • Pd is deposited so as to fill the via holes 34a and 35a and cover the glue film 81 on the interlayer insulating film 33 using a hydrogen storage conductive material or a conductive material containing this, for example, Pd.
  • a glue film 83 (a laminated structure of a Ti film (film thickness of about 5 nm) and a TiN film (film thickness of about 150 nm)) is deposited thereon.
  • the glue films 83, Pd, and the glue film 81 are patterned in a wiring shape.
  • the via holes 34a and 35a are filled with Pd through the glue film 81, and the upper surface is covered with the glue film 83 and extends on the interlayer insulating film 33 (the plugs 34 and 35 and the first wiring 84). Are integrally formed).
  • the first wiring 84 connected to the plug 36 is formed.
  • the plug 36 may be integrally formed with the first wiring 84 in the same manner as described above.
  • Pd is used as the conductive material, and the plugs 34, 35, 36 and the first wiring 84 are integrally formed.
  • a second wiring 54 connected to the first wiring 84 is formed.
  • the interlayer insulating film 46 is formed so as to cover the first wiring 84.
  • a silicon oxide film is formed to a thickness of about 7 OOnm
  • a plasma TEOS film is formed to a total thickness of about lOOm, and then the surface is polished by CMP.
  • Film thickness 7 Form about 50 nm.
  • the interlayer insulating film 46 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 84 is exposed, thereby forming a via hole 47a having a diameter of about 0.25 m, for example.
  • a W film is formed by the CVD method so as to fill the via hole 47a through the glue film 48.
  • the W film and the glue film 48 are polished by CMP using the interlayer insulating film 46 as a stopper to form a plug 47 filling the via hole 47a with W via the glue film 48.
  • the plug 47 may be formed by performing anisotropic etching on the entire surface of the W film and the glue film 48 or so-called etch back. At this time, only W is etched, and the glue film 48 remains as it is.
  • a barrier metal film 51, a wiring film 52, and a barrier metal film 53 are deposited on the entire surface by sputtering or the like.
  • the rare metal film 51 for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the glue film 48 remaining when the plug 47 is formed functions as a barrier metal film, and thus the barrier metal film 51 is unnecessary.
  • an A1 alloy film (here, an Al—Cu film) is formed to a thickness of about 350 nm.
  • the rare metal film 53 for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the structure of the wiring film 52 is assumed to be the same structure as that of the logic part other than the Fe RAM of the same rule, there is no problem in wiring processing and reliability.
  • a SiON film or an antireflection film (not shown) is formed as an antireflection film, and then the antireflection film, the NORA metal film 53, the wiring film 52, and the barrier metal film are formed by lithography and subsequent dry etching. 51 is covered with the wiring shape, and the second wiring 54 is formed into a pattern.
  • an A1 alloy film is used as the wiring film 52 (and the wiring film in the Z or upper wiring).
  • a hydrogen storage conductive material such as Pd or a conductive material containing the same as the wiring film 82.
  • a so-called damascene method or the like may be used as in FIGS. 6A to 8B according to the first embodiment.
  • a Cu film (or Cu alloy film) may be formed by using it, and a Cu wiring may be formed as the second wiring 54.
  • planar type FeRAM according to this example is completed through various processes such as the formation of an interlayer wiring and further upper layer wiring.
  • a conductive film made of a hydrogen storage conductive material or a conductive material including the same is formed on the ferroelectric capacitor structure 30 (between the upper electrode 31 and the plug 34). To do.
  • FIG. 10A to FIG. 13B are schematic cross-sectional views showing the structure of the planar type FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in order of steps.
  • a lower electrode layer 24, a ferroelectric film 25, an upper electrode layer 26, and a conductive film 91 are sequentially formed.
  • a Pt film is deposited to a thickness of, for example, about 150 nm to 200 nm by sputtering, and the lower electrode layer 24 is formed.
  • a ferroelectric film 25 made of a ferroelectric material such as PZT is formed on the lower electrode layer 24 by RF sputtering, with a film thickness of ⁇ ⁇ ! Deposits to about 300nm. Then, the ferroelectric film 25 is annealed to crystallize the ferroelectric film 25. As the conditions for this annealing treatment, ArZO gas is used for Ar 1.98 liters Z 025
  • While 2 is supplied at a flow rate of 0.1 liters Z, for example, it is performed at 550 ° C to 650 ° C for 60 seconds to 120 seconds.
  • the upper electrode layer 26 is deposited on the ferroelectric film 25.
  • an IrO film 26a which is a conductive oxide, is formed to a thickness of about 30 nm to 70 nm by reactive sputtering. Then, anneal the IrO film 26a
  • the annealing conditions include ArZO gas with 2.0 liters of Z,
  • While O is supplied at a flow rate of 0.02 liters Z, for example, 650 ° C to 850 ° C for 10 seconds to 6
  • the IrO film 26b is formed on the IrO film 26a by reactive sputtering.
  • the Pt film 26c is formed to a thickness of about lOOnm by sputtering. IrO film 26a, 26b
  • the upper electrode layer 26 is composed of the Pt film 26c.
  • IrO films 26a and 26b Ir, Ru, RuO, SrRuO, other conductive oxides and these
  • a conductive film 91 is formed.
  • a hydrogen storage conductive material or a conductive material including the same is deposited on the upper electrode layer 26.
  • the hydrogen-occlusion conductive material should be a material that has not only the hydrogen-occlusion property but also excellent heat resistance enough to withstand high-temperature annealing and resistance to halogen-based gas.
  • Pd has a high hydrogen absorption capacity that absorbs 935 times its own volume of hydrogen, and other noble metals (Ir, Pt, An alloy with at least one of Au, Ag, Ru, Rh, Os and the like is preferable.
  • Pd is used as a conductive material to be deposited, and the film thickness is such that it does not penetrate through the conductive film 91 by, for example, CVD or PVD, due to overetching when the via hole 34a described later is formed, in this case, about lOOnm. To form.
  • the upper electrode 31 whose upper surface is covered with the conductive film 91 is patterned.
  • the conductive film 91 and the upper electrode layer 26 are processed into a plurality of electrode shapes by lithography and subsequent dry etching, and the upper electrode 31 is patterned in a state where the upper surface is covered with the conductive film 91.
  • the ferroelectric film 25 is processed. Specifically, the ferroelectric film 25 is aligned with the upper electrode 31 and processed by lithography and subsequent dry etching. After the patterning of the ferroelectric film 25, the ferroelectric film 25 is annealed to restore the function of the ferroelectric film 25.
  • a hydrogen diffusion preventing film 27 for preventing the entry of hydrogen into the ferroelectric film 25 is formed.
  • aluminum Al 2 O 3
  • a sputtering method to prevent hydrogen diffusion.
  • a film 27 is formed. Thereafter, the hydrogen diffusion preventing film 27 is annealed.
  • the lower electrode layer 24 is covered together with the hydrogen diffusion preventing film 27 to complete the ferroelectric capacitor structure 30.
  • Lithography and subsequent dry etching are performed so that the hydrogen diffusion preventing film 27 and the lower electrode layer 24 are aligned with the processed ferroelectric film 25 so that the lower electrode layer 24 remains larger than the ferroelectric film 25.
  • the lower electrode 32 is patterned.
  • the ferroelectric film 25 and the upper electrode 31 whose upper surface is covered with the conductive film 91 are sequentially laminated on the lower electrode 32, and the lower electrode 32 and the upper electrode 31 are capacitively connected via the ferroelectric film 25.
  • the ferroelectric capacitor structure 30 to be coupled is completed.
  • the hydrogen diffusion preventing film 27 remains so as to cover the upper surface force of the conductive film 91 over the conductive film 91, the side surfaces of the upper electrode 31 and the ferroelectric film 25, and the upper surface of the lower electrode layer 24. Thereafter, the hydrogen diffusion prevention film 27 is annealed.
  • a hydrogen diffusion preventing film 28 is formed.
  • a film thickness of 20 ⁇ is formed by sputtering using alumina (Al 2 O 3) as a material so as to cover the entire surface of the ferroelectric capacitor structure 30 and the conductive film 91! ⁇ 50nm deposition and hydrogen expansion
  • a scattering prevention film 28 is formed. Thereafter, the hydrogen diffusion preventing film 28 is annealed.
  • an interlayer insulating film 33 is formed.
  • the interlayer insulating film 33 is formed so as to cover the ferroelectric capacitor structure 30 and the conductive film 91 with the hydrogen diffusion preventing films 27 and 28 interposed therebetween.
  • a silicon oxide film is deposited to a film thickness of about 1500 nm to 2500 nm by a plasma CVD method using TEOS, and then, for example, until the film thickness becomes about lOOOnm by CMP. Polished and shaped To do. After CMP, for example, for the purpose of dehydrating the interlayer insulating film 33, for example, a plasma plasma of NO.
  • a plug 36 connected to the source Z drain region 18 of the transistor structure 20 is formed.
  • 22a and the protective film 21 are processed by lithography and subsequent dry etching to form a via hole 36a having a diameter of about 0.3 m, for example.
  • a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm by a sputtering method so as to cover the wall surface of the via hole 36a, and a base film (glue film) 36b is formed.
  • a W film is formed by the CVD method so as to fill the via hole 34a through the glue film 36b.
  • the W film and the glue film 36b are polished by CMP using the interlayer insulating film 33 as a stopper to form a plug 36 filling the via hole 36a with W via the glue film 36a.
  • CMP for example, N 2 plasma annealing is performed.
  • a protective film 37 is formed by depositing, for example, a SiON film on the interlayer insulating film 33 and the plug 36 to a thickness of about lOOnm by the CVD method.
  • a resist is applied on the protective film 37, and the resist is processed by lithography to form a resist mask 38 having openings 38a and 38b.
  • the protective film 37 is dry-etched using the resist mask 38, and openings 37a and 37b are formed at portions matching the openings 38a and 38b of the protective film 37.
  • the interlayer insulating film 33 and the hydrogen diffusion preventing films 28 and 27 are dry-etched using the conductive film 91 and the lower electrode 32 as etching stoppers, respectively.
  • the interlayer insulating film 33 and the hydrogen diffusion preventing films 28 and 27 are processed until a part of the surface of the conductive film 91 is exposed, and the interlayer insulating film is exposed until a part of the surface of the lower electrode 32 is exposed.
  • 33 and the hydrogen diffusion prevention films 28 and 27 are simultaneously performed, and a via hole 34a having a diameter of, for example, about 0.5 m is formed in each portion. , 35a are formed simultaneously.
  • each material of the upper electrode is difficult to react with an etching gas such as a halogen-based gas, and thus is normally difficult to be etched. Since the via holes to the upper electrode and the lower electrode are simultaneously formed by etching as described above, the upper electrode is excessively overetched and the upper electrode is scraped, and the thickness of the upper electrode is reduced. As a result, the so-called retention failure increases. Further, it has been confirmed that when the hydrogen diffusion preventing film is present on the upper electrode, the overetching of the upper electrode during the formation of the via hole is greatly increased.
  • the hydrogen storage conductive material such as Pd has not only a function of absorbing hydrogen as described above, but also because it is difficult to react with a halogen-based etching gas used for etching a via hole. At the time of forming the hole, it has a function that the etching rate is low and etching is difficult.
  • the resist mask 38 is removed.
  • the plug 36 is covered with the protective film 37.
  • a failure treatment for recovering the damage received by the ferroelectric capacitor structure 30 is performed by various steps after the formation of the ferroelectric capacitor structure 30.
  • the plug 36 is covered with the protective film 37, the oxidation of W is prevented.
  • plugs 34 and 35 connected to the ferroelectric capacitor structure 30 are formed.
  • the protective film 37 is removed by whole surface anisotropic etching, so-called etch back.
  • a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm by a sputtering method so as to cover the wall surfaces of the via holes 34a, 35a, and a base film (glue film) 34 b, 35b is formed.
  • plugs 34 and 35 are formed.
  • the hydrogen storage conductive material or a conductive material containing the hydrogen storage conductive material is deposited on the interlayer insulating film 33 so as to fill the via holes 34a and 35a via the glue films 34b and 35b.
  • hydrogen storage conductive materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen-absorbing conductive materials such as Nd and Sm may be used alone, or (2) Even if an alloy based on any combination of hydrogen-absorbing conductive materials shown in (1) is used, (3) At least one of the hydrogen-absorbing conductive materials shown in (1) and other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) Or at least one precious metal such as iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os
  • the deposited Pd and glue films 34b and 35b are polished by CMP using the interlayer insulating film 33 as a stopper, and the via holes 34a and 35a are filled with W via the glue films 34b and 35b, respectively. , 35.
  • CMP eg N 2 O plasma anneal
  • Processing may be performed.
  • each first wiring 84 connected to each of the plugs 34, 35, and 36 is formed.
  • a barrier metal film 81, a wiring film 82, and a barrier metal film 83 are deposited on the entire surface of the interlayer insulating film 33 by sputtering or the like.
  • a Ti film and a TiN film are sequentially laminated to a film thickness of about 5 nm and 150 nm, respectively, by sputtering or the like.
  • the wiring film 82 is formed using a hydrogen storage conductive material having the property of absorbing hydrogen or a conductive material containing the same.
  • Examples of hydrogen storage conductive materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen-absorbing conductive materials such as Nd and Sm may be used alone, or (2) Hydrogen-absorbing properties shown in (1) Even if an alloy of any combination of conductive materials is used, at least one of the hydrogen-absorbing conductive materials shown in (3) (1) and other metals (aluminum (A1), copper (Cu), iron (Fe)) , -Kel (Ni) and other common conductive metal materials, or iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium ( Rh), an alloy with at least one of noble metals such as osmium (Os) may be used.
  • Pd is used as the conductive material to be deposited, and the wiring film 82 is formed to a thickness of about 350 nm by,
  • the conductive film 91 is formed on the upper electrode 31, and the plug 34 that is electrically connected to the upper electrode 31 via the conductive film 91, the plug 35 that is connected to the lower electrode 32, First wiring 84 electrically connected to upper electrode 31 via conductive film 91 and plug 34 Wiring 82 of first wiring 84 and first wiring 84 electrically connected to lower electrode 32 and plug 35
  • the wiring film 82 is formed using Pd, which is a hydrogen storage material having a large amount of hydrogen absorption capacity (large surface area and volume), as a material. Accordingly, it is possible to prevent hydrogen from entering the ferroelectric film 25 as efficiently as possible without increasing the number of constituent members and the number of processes, and it is possible to reliably maintain high capacitor characteristics. Become.
  • the rare metal film 83 for example, a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by sputtering or the like. Since the structure of the wiring film 82 is assumed to be the same structure as that of the logic part other than the FeRAM having the same rule, there is no problem in processing and reliability of the wiring.
  • a SiON film or an antireflection film (not shown) is formed as an antireflection film, and then the antireflection film, the noria metal film 83, the wiring film 82, and the barrier metal film 81 are formed by lithography and subsequent dry etching. Then, the first wiring 84 connected to the plugs 34, 35, and 36 is patterned.
  • a second wiring 54 connected to the first wiring 84 is formed.
  • an interlayer insulating film 46 is formed so as to cover the first wiring 84.
  • a silicon oxide film is formed to a thickness of about 7 OOnm
  • a plasma TEOS film is formed to a total thickness of about lOOm, and then the surface is polished by CMP.
  • Film thickness 7 Form about 50 nm.
  • the interlayer insulating film 46 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 84 is exposed, thereby forming a via hole 47a having a diameter of about 0.25 m, for example.
  • a W film is formed by the CVD method so as to fill the via hole 47a through the glue film 48.
  • the W film and the glue film 48 are polished by CMP using the interlayer insulating film 46 as a stopper to form a plug 47 filling the via hole 47a with W via the glue film 48.
  • the plug 47 may be formed by performing anisotropic etching of the entire surface of the W film and the glue film 48 or so-called etch back. At this time, only W is etched, and the glue film 48 remains as it is.
  • a barrier metal film 51, a wiring film 52, and a barrier metal film 53 are deposited on the entire surface by sputtering or the like.
  • the rare metal film 51 for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the glue film 48 remaining when the plug 47 is formed functions as a barrier metal film, and thus the barrier metal film 51 is unnecessary.
  • an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm.
  • the rare metal film 53 for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the structure of the wiring film 52 is assumed to be the same structure as that of the logic part other than the Fe RAM of the same rule, there is no problem in wiring processing and reliability.
  • a SiON film or an antireflection film (not shown) is formed as an antireflection film, and then the antireflection film, the NORA metal film 53, the wiring film 52, and the barrier metal film are formed by lithography and subsequent dry etching. 51 is covered with the wiring shape, and the second wiring 54 is formed into a pattern.
  • an A1 alloy film is used as the wiring film 52 (and the wiring film in the Z or upper wiring).
  • a hydrogen storage conductive material such as Pd or a conductive material containing the same as the wiring film 82.
  • a so-called damascene method or the like is performed in the same manner as in FIGS. 6A to 8B according to the first embodiment.
  • a Cu film (or Cu alloy film) may be formed by using it, and a Cu wiring may be formed as the second wiring 54.
  • planar type FeRAM according to the present example is completed through various processes such as formation of an interlayer wiring and further upper layer wiring.
  • the plugs 34 and 35 are replaced with the plugs 34 and 35 in the first modification
  • the first wiring 84 is replaced with the plugs 34 and 35 and the first wiring 84 in the first modification.
  • the configuration in which the conductive film 91 is formed using Pd, which is a hydrogen storage conductive material is disclosed, but the following configurations are also included in the scope of the present invention.
  • the plugs 34 and 35 are formed using a hydrogen storage conductive material such as Pd or a conductive material containing the same, and the conductive film 91 is a hydrogen storage conductive material such as Pd or the like.
  • the first wiring shall be a normal A1 alloy wiring or the like.
  • the first wiring 84 is formed using a conductive material containing hydrogen, such as Pd, which is a hydrogen storage conductive material, and the conductive film 91 is formed of Pd, which is a hydrogen storage conductive material.
  • a conductive material containing hydrogen such as Pd
  • the conductive film 91 is formed of Pd, which is a hydrogen storage conductive material.
  • the plugs 34 and 35, the first wiring 84, and the conductive film 91 are all hydrogen-absorbing conductive material such as Pd. Although it is inferior to the case where it is used (in the case of Modification 2), it can reliably maintain high capacitor characteristics and achieve high reliability and FeRAM. [0145] (Second Embodiment)
  • This embodiment exemplifies V, a so-called stack type FeRAM having a configuration in which conductive plugs are formed under the lower electrode and the upper electrode of the ferroelectric capacitor structure, respectively, so as to be conductive.
  • FIG. 14A to FIG. 18B are schematic cross-sectional views showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with the manufacturing method thereof.
  • a MOS transistor 120 that functions as a selection transistor is formed on a silicon semiconductor substrate 110.
  • the element isolation structure 111 is formed on the surface layer of the silicon semiconductor substrate 110 by, for example, the STI (Shallow Trench Isolation) method to determine the element active region.
  • the STI Shallow Trench Isolation
  • an impurity here boron (B)
  • B boron
  • a silicon nitride film having a thickness of about 29 nm is deposited, and the silicon nitride film, the polycrystalline silicon film, and the gate insulating film 113 are processed into an electrode shape by lithography and subsequent dry etching, thereby forming a gate on the gate insulating film 113.
  • the electrode 114 is patterned.
  • a cap film 115 made of a silicon nitride film is patterned on the gate electrode 114.
  • an impurity for example, arsenic (As) is ion-implanted into the element active region under the conditions of a dose of 5.
  • an impurity for example, arsenic (As) is ion-implanted into the element active region under the conditions of a dose of 5.
  • OX 10 14 Zcm 2 and an acceleration energy of lOkeV, and V LDD region 116 is formed.
  • a silicon oxide film is deposited on the entire surface by the CVD method, and this silicon oxide film is so-called etched back, so that the silicon oxide film is formed only on the side surfaces of the gate electrode 114 and the cap film 115.
  • a sidewall insulating film 117 is formed leaving the film.
  • an impurity in the element active region here phosphorus (P)
  • P phosphorus
  • LD A source Z drain region 118 that overlaps the D region 116 is formed to complete the MOS transistor 120.
  • the protective film 121, the interlayer insulating film 122, and the upper insulating film 123 of the MOS transistor 120 are sequentially formed.
  • a protective film 121, an interlayer insulating film 122, and an upper insulating film 123 are sequentially formed so as to cover the MOS transistor 120.
  • the protective film 121 a silicon oxide film is used as a material, and is deposited to a film thickness of about 20 nm by a CVD method.
  • the interlayer insulating film 122 for example, a stacked structure in which a plasma SiO film (film thickness of about 20 nm), a plasma SiN film (film thickness of about 80 nm), and a plasma TEOS film (film thickness of about lOOOnm) are sequentially formed is formed. After that, polishing is performed by CMP until the film thickness reaches about 700 nm.
  • the upper insulating film 123 a silicon nitride film is used as a material, and is deposited to a thickness of about lOOnm by a CVD method.
  • a plug 119 connected to the source Z drain region 118 of the transistor structure 120 is formed.
  • the source Z drain region 118 as an etching stopper, the upper insulating film 223, the interlayer insulating film 122, and the protective film 121 until a part of the surface of the source Z drain region 118 is exposed. Is processed by lithography and subsequent dry etching to form a via hole 119a having a diameter of about 0.3 ⁇ m, for example.
  • a Ti film and a TiN film are sequentially deposited to a film thickness of about 20 nm and a film thickness of about 50 nm by a sputtering method so as to cover the wall surface of the via hole 119a, and a base film (glue film) 119b is formed.
  • a W film is formed by the CVD method so as to fill the via hole 119a through the glue film 119b.
  • the W film and the glue film 119b are polished by CMP using the upper insulating film 123 as a stopper to form a plug 219 that fills the via hole 219a with W via the glue film 219a.
  • plasma annealing with N 2 O is performed after CMP.
  • a lower electrode layer 124, a ferroelectric film 125, and an upper electrode layer 126 are sequentially formed. Specifically, first, for example, the film thickness is 150 ⁇ ! A Pt film is deposited to about 200 nm to form the lower electrode layer 124.
  • a ferroelectric film 225 made of a ferroelectric material such as PZT is formed on the lower electrode layer 124 by RF sputtering, with a film thickness of ⁇ ⁇ ! Deposits to about 300nm. Then, the ferroelectric film 125 is annealed to crystallize the ferroelectric film 125.
  • the conditions for this annealing are ArZO gas with 1.98 liters Z for Ar and 0.025 liters for O.
  • the material of the ferroelectric film 125 is Pb La Zr Ti O (0 ⁇ x ⁇ 1, 0 ⁇ v ⁇ 1 l -x l -y y 3 instead of PZT.
  • the upper electrode layer 126 is deposited on the ferroelectric film 125.
  • an IrO film 126a which is a conductive oxide, is formed to a thickness of about 200 nm by reactive sputtering. After that, the IrO film 126a is annealed.
  • the annealing conditions include ArZO gas with 2.0 liters Z of Ar, O
  • While 2 2 is supplied at a flow rate of 0.02 liters Z, for example, run at 650 ° C to 850 ° C for 10 seconds to 60 seconds. Then, on the IrO film 126a, it functions as a cap film for the IrO film 126a.
  • a noble metal film here a Pt film 126b, is formed to a thickness of about lOOnm by sputtering.
  • the upper electrode layer 126 is composed of the IrO film 126a and the Pt film 126b.
  • Upper electrode layer 1
  • Ir, Ru, RuO, SrRuO, other conductive acids instead of IrO film 126a
  • a TiN film 128 and a silicon oxide film 129 are formed.
  • the TiN film 128 is deposited on the upper electrode layer 126 to a thickness of about 200 nm by sputtering or the like.
  • the silicon oxide film 129 is deposited on the TiN film 128 to a thickness of about lOOOnm by, for example, a CVD method using TEOS.
  • an HDP film may be formed instead of the TEOS film. It is also preferable to further form a silicon nitride film on the silicon oxide film 129.
  • a resist mask 101 is formed.
  • a resist is applied on the silicon oxide film 129, and this resist is integrated with lithography.
  • the resist mask 101 is formed by further processing into an electrode shape.
  • the silicon oxide film 129 is processed.
  • the silicon oxide film 129 is dry etched using the resist mask 101 as a mask. At this time, the silicon oxide film 129 is patterned following the electrode shape of the resist mask 101, and a hard mask 129a is formed. Further, the thickness of the resist mask 101 is reduced by etching.
  • the TiN film 128 is cleaned.
  • the TiN film 128 is dry etched using the resist mask 101 and the hard mask 129a as a mask. At this time, the TiN film 128 is patterned following the electrode shape of the hard mask 129a. Further, the resist mask 101 is etched and thinned during the etching. Thereafter, the resist mask 101 is removed by ashing or the like.
  • the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are processed.
  • the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are dry-etched using the hard mask 129a and the TiN film 128 as a mask and the upper insulating film 123 as an etch duster. At this time, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are patterned following the electrode shape of the TiN film 128. Further, the hard mask 129a is thinned by being etched during the etching. Thereafter, the hard mask 129a is removed by dry etching (etchback) on the entire surface.
  • the ferroelectric capacitor structure 130 is completed.
  • the TiN film 128 used as a mask is removed by wet etching.
  • a ferroelectric film 125 and an upper electrode 132 are sequentially laminated on the lower electrode 131, and the ferroelectric capacitor structure 130 in which the lower electrode 131 and the upper electrode 132 are capacitively coupled through the ferroelectric film 125.
  • the lower electrode 131 is connected to the plug 119, and the source Z drain 118 and the lower electrode 131 are electrically connected via the plug 119.
  • a hydrogen diffusion preventing film 133 and an interlayer insulating film 134 for preventing the entry of hydrogen into the ferroelectric film 125 are formed.
  • a metal oxide such as alumina (Al 2 O 3) is used as a material so as to cover the entire surface of the ferroelectric capacitor structure 130, and a film thickness of about 20 nm to 50 nm is formed by sputtering.
  • a hydrogen diffusion prevention film 133 is formed by deposition. Thereafter, the hydrogen diffusion preventing film 133 is annealed.
  • an interlayer insulating film 134 is formed so as to cover the ferroelectric capacitor structure 130 with the hydrogen diffusion preventing film 133 interposed therebetween.
  • the interlayer insulating film 134 for example, a silicon oxide film is deposited to a film thickness of about 1500 nm to 2500 nm by a plasma CVD method using TEOS, and then polished by CMP until the film thickness becomes, for example, about lOOOnm. Form. After CMP, for example, N 2 O plasma annealing is performed for the purpose of dehydrating the interlayer insulating film 134.
  • a via hole 135a to the upper electrode 132 of the ferroelectric capacitor structure 130 is formed.
  • the interlayer insulating film 134 and the hydrogen diffusion preventing film 133 are patterned by lithography and subsequent dry etching, and a via hole 135a exposing a part of the surface of the upper electrode 132 is formed.
  • a plug 135 connected to the upper electrode 132 of the ferroelectric capacitor structure 130 is formed.
  • a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm so as to cover the wall surface of the via hole 135a, and a base film (glue film) 135b is formed.
  • a base film (glue film) 135b is formed.
  • the plug 135 is formed.
  • a hydrogen storage conductive material having a property of absorbing hydrogen is used to reliably prevent the generated hydrogen from entering the ferroelectric film 125. Then, the hydrogen storage conductive material or a conductive material containing the same is deposited on the interlayer insulating film 134 so as to fill the via hole 135a through the glue film 135b.
  • hydrogen storage materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen absorbing conductive materials such as Nd and Sm may be used alone, or (2) any combination of hydrogen absorbing conductive materials shown in (1).
  • At least one of the hydrogen-absorbing conductive materials shown in (1) and other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni))
  • At least one of the common conductive metal materials such as iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os)
  • An alloy with at least one kind of precious metal such as the above may be used.
  • Pd is used as the conductive material to be deposited, and the plug 135 is formed by, for example, the CVD method or the PVD method.
  • the deposited Pd and glue film 135b are polished to form a plug 135 that fills the via hole 135a with W via the glue film 135b.
  • the deposited Pd and glue film 135b are polished to form a plug 135 that fills the via hole 135a with W via the glue film 135b.
  • the present invention is applied to a conductive bragg that is essential for electrical connection with the upper electrode 132, and the plug 135 has a large amount of hydrogen absorption capacity (large surface area and volume).
  • Pd a hydrogen storage conductive material, is used as a material. Accordingly, it is possible to efficiently prevent hydrogen from entering the ferroelectric film 125 without increasing the number of constituent members and the number of processes, and it is possible to reliably retain the capacitor characteristics.
  • a first wiring 145 connected to the plug 135 is formed.
  • the barrier metal film 142, the wiring film 143, and the barrier metal film 144 are deposited on the entire surface of the interlayer insulating film 134 by sputtering or the like.
  • a TiN film is formed with a film thickness of about 150 nm by a sputtering method.
  • the wiring film 143 for example, an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm.
  • the noria metal film 144 for example, a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the structure of the wiring film 143 is the same structure as the logic part other than FeRAM of the same rule V, so there is no problem in wiring processing or reliability! /.
  • the antireflection film, the noria metal film 144, the wiring film 143, and the barrier metal film are formed by lithography and subsequent dry etching.
  • 142 is processed into a wiring shape, and the first wiring 145 connected to the plug 135 is patterned.
  • a Cu film (or Cu alloy film) is formed using a so-called damascene method or the like, and the first wiring is formed.
  • a Cu wiring may be formed as the line 145.
  • a second wiring 154 connected to the first wiring 145 is formed.
  • an interlayer insulating film 146 is formed so as to cover the first wiring 145.
  • a silicon oxide film is formed to a thickness of about 700 nm
  • a plasma TEOS film is formed to a total thickness of about lOO nm, and then the surface is polished by CMP.
  • the film thickness is formed to about 750 nm.
  • the interlayer insulating film 146 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 145 is exposed to form a via hole 147a having a diameter of about 0.25 m, for example.
  • a W film is formed by the CVD method so as to fill the via hole 147a via the glue film 148.
  • the W film and the glue film 248 are polished by CMP using the interlayer insulating film 146 as a stopper to form a plug 147 that fills the via hole 247a with W via the glue film 148.
  • the plug 147 may be formed by performing anisotropic etching on the entire surface of the W film and the glue film 148 or so-called etch back instead of CMP. At this time, only W is etched, and the glue film 148 remains as it is.
  • a barrier metal film 151, a wiring film 152, and a barrier metal film 153 are deposited on the entire surface by sputtering or the like.
  • a TiN film is formed with a film thickness of about 150 nm by sputtering.
  • the glue film 148 remaining when the plug 147 is formed functions as a barrier metal film, and thus the barrier metal film 151 is unnecessary.
  • the wiring film 152 for example, an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm.
  • As the noria metal film 153 for example, a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the structure of the wiring film 152 is a logic other than FeRAM of the same rule. Since it has the same structure as the hook portion, there is no problem in wiring processing or reliability.
  • the antireflection film, the noria metal film 153, the wiring film 152, and the barrier metal film are formed by lithography and subsequent dry etching.
  • 151 is processed into a wiring shape, and the second wiring 154 is formed into a pattern.
  • a Cu film (or Cu alloy film) is formed using a so-called damascene method or the like, as in FIGS. 6A to 8B according to the first embodiment.
  • a Cu wiring may be formed as the second wiring 154.
  • the stack type FeRAM according to the present embodiment is completed through various processes such as the formation of an upper layer wiring after the interlayer insulating film.
  • a hydrogen storage conductive material or a conductive material including the same is used as the material for at least the wiring film of the first wiring.
  • FIG. 19A and FIG. 19B are schematic cross-sectional views showing the configuration of the stack type FeRAM according to the first modification of the second embodiment in the order of steps together with the manufacturing method (main steps).
  • a first wiring 164 is formed.
  • a barrier metal film 161, a wiring film 162, and a barrier metal film 163 are deposited on the entire surface of the interlayer insulating film 134 by sputtering or the like.
  • a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by a sputtering method or the like.
  • the wiring film 162 is formed using a hydrogen storage conductive material or a conductive material including the hydrogen storage property having a property of absorbing hydrogen to surely prevent entry into the electric conductor film 125.
  • Examples of hydrogen storage materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen-absorbing conductive materials such as Nd and Sm may be used alone, or (2) Even if an alloy of any combination of hydrogen-absorbing conductive materials shown in (1) is used, (3) ( At least one of the hydrogen-absorbing conductive materials shown in 1) and at least 1 of other conductive metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) Seed or alloy with iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os) and other alloys You may do it.
  • Pd is used as the conductive material to be deposited, and the wiring film 162 is formed to a thickness of about 350 nm by, for example, the CVD method or the PVD method
  • the present invention is applied to wiring that is indispensable for electrical connection via the upper electrode 132 and the plug 135, and the wiring film 162 has a large amount of hydrogen absorption capability.
  • Pd which is a hydrogen storage conductive material having a large surface area and volume, is used as a material. Therefore, it is possible to efficiently prevent hydrogen from entering the ferroelectric film 125 without increasing the number of constituent members and the number of processes, and it is possible to reliably maintain high capacitor characteristics.
  • the noria metal film 163 is formed by sequentially laminating, for example, a Ti film and a TiN film in a thickness of about 5 nm and about 150 nm, respectively, by sputtering or the like.
  • the structure of the wiring film 162 is the same as that of the logic part other than the FeRAM of the same rule, so there is no problem in reliability if the wiring is added.
  • the antireflection film, the noria metal film 163, the wiring film 162, and the barrier metal film are formed by lithography and subsequent dry etching.
  • 161 is processed into a wiring shape, and the first wiring 164 connected to the plug 135 is patterned.
  • the plug 135 and the first wiring 164 are formed separately is illustrated, but they may be integrally formed.
  • the via hole 135a is formed simultaneously in FIG. 17A, and then the inner wall surface of the via hole 135a and the interlayer insulating film 134 are covered.
  • a film 161 (only a TiN film having a thickness of about 150 nm) is formed, and a hydrogen storage conductive material or a conductive material containing the same, for example, Pd, is used to fill the via hole 135a and on the interlayer insulating film 134 on the glue film 161.
  • a glue film 163 (a laminated structure of a Ti film (film thickness of about 5 nm) and a TiN film (film thickness of about 150 nm)) is deposited on Pd. Then, on the interlayer insulating film 134, the glue films 163, Pd, and the glue film 161 are patterned in a wiring shape. As a result, the via hole 135a is filled with Pd through the glue film 161 and the upper surface is covered with the glue film 163 and extends on the interlayer insulating film 134 (the plug 135 and the first wiring 164 A body formed) is formed.
  • a second wiring 154 connected to the first wiring 164 is formed.
  • an interlayer insulating film 146 is formed so as to cover the first wiring 164.
  • a silicon oxide film is formed to a thickness of about 700 nm
  • a plasma TEOS film is formed to a total thickness of about lOO nm, and then the surface is polished by CMP.
  • the film thickness is formed to about 750 nm.
  • the interlayer insulating film 146 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 164 is exposed to form a via hole 147a having a diameter of about 0.25 m, for example.
  • a W film is formed by the CVD method so as to fill the via hole 147a via the glue film 148.
  • the W film and the glue film 248 are polished by CMP using the interlayer insulating film 146 as a stopper to form a plug 147 that fills the via hole 247a with W via the glue film 148.
  • the plug 147 may be formed by performing anisotropic etching of the entire surface of the W film and the glue film 148, or a so-called etch back. At this time, only W is etched, and the glue film 148 remains as it is.
  • a barrier metal film 151, a wiring film 152, and a barrier metal film 153 are deposited on the entire surface by sputtering or the like.
  • a TiN film is formed by sputtering. The film is formed to a thickness of about 150 nm.
  • the glue film 148 remaining when the plug 147 is formed functions as a barrier metal film, and thus the barrier metal film 151 is unnecessary.
  • the wiring film 152 for example, an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm.
  • As the noria metal film 153 for example, a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the structure of the wiring film 152 is the same as that of the logic part other than the FeRAM having the same rule, there is no problem in wiring processing and reliability.
  • the antireflection film is formed by lithography and subsequent dry etching.
  • 151 is processed into a wiring shape, and the second wiring 154 is formed into a pattern.
  • a hydrogen storage conductive material such as Pd or the like is included. It is also preferable to use a conductive material.
  • FIG. 6A instead of forming an A1 alloy film as the wiring film 152, FIG. 6A according to the first embodiment
  • Cu film (or Cu alloy film) is formed using the so-called damascene method.
  • a Cu wiring may be formed as the second wiring 154.
  • the stack-type FeRAM according to this example is completed through various processes such as formation of an interlayer wiring and further upper layer wiring.
  • the ferroelectric capacitor structure 130 (upper electrode 1) is used.
  • FIG. 20A to FIG. 23B are schematic cross-sectional views showing the configuration of the stack type FeRAM according to the second modification of the second embodiment, together with its manufacturing method (main steps), in the order of steps.
  • a conductive film 171 is formed on the upper electrode layer 126.
  • a hydrogen storage conductive material or a conductive material including the same is deposited on the upper electrode layer 126.
  • the hydrogen-occlusion conductive material is required to be a material that has not only the hydrogen-occlusion property but also excellent heat resistance enough to withstand high-temperature annealing and resistance to halogen-based gas.
  • Pd has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, and other noble metals (Ir, Pt) that have heat resistance with Pd (or have conductivity even when oxidized) , Au, Ag, Ru, Rh, Os, etc.) and the like are preferable.
  • Pd is used as the conductive material to be deposited.
  • a film thickness that does not penetrate through the conductive film 171 by over-etching when the via hole 135a described later is formed by CVD or PVD, for example, about lOOnm. To form.
  • a TiN film 128 and a silicon oxide film 129 are formed.
  • the TiN film 128 is deposited on the conductive film 171 to a thickness of about 200 ⁇ m by sputtering or the like.
  • the silicon oxide film 129 is deposited on the TiN film 128 to a thickness of about lOOOnm by, for example, a CVD method using TEOS.
  • an HDP film may be formed instead of the TEOS film. It is also preferable to further form a silicon nitride film on the silicon oxide film 129.
  • a resist mask 101 is formed.
  • a resist is applied on the silicon oxide film 129, and this resist is processed into an electrode shape by lithography to form a resist mask 101.
  • the silicon oxide film 129 is cached.
  • the silicon oxide film 129 is dry etched using the resist mask 101 as a mask. At this time, the silicon oxide film 129 is patterned following the electrode shape of the resist mask 101, and a hard mask 129a is formed. Further, the thickness of the resist mask 101 is reduced by etching.
  • the TiN film 128 is cached. Specifically, the TiN film 128 is dry etched using the resist mask 101 and the hard mask 129a as a mask. At this time, the TiN film 128 is patterned following the electrode shape of the hard mask 129a. Further, the resist mask 101 is etched and thinned during the etching. Thereafter, the resist mask 101 is removed by ashing or the like.
  • the upper electrode layer 126, the ferroelectric film 125, the lower electrode layer 124, and the conductive film 171 are processed.
  • the hard mask 129a and the TiN film 128 are used as a mask, the upper insulating film 123 is used as an etch duster, and the conductive film 171, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are dried. Etch. At this time, the conductive film 171, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are patterned following the electrode shape of the TiN film 128. Further, the hard mask 129a is etched and thinned during the etching. Thereafter, the hard mask 129a is removed by dry etching (etchback) on the entire surface.
  • etchback dry etching
  • a ferroelectric capacitor structure 130 whose upper surface is covered with a conductive film 171 is completed.
  • the TiN film 128 used as a mask is removed by wet etching.
  • a ferroelectric film 125 and an upper electrode 132 are sequentially laminated on the lower electrode 131, and the ferroelectric capacitor structure 130 in which the lower electrode 131 and the upper electrode 132 are capacitively coupled through the ferroelectric film 125.
  • the upper surface of the ferroelectric capacitor structure 130 is covered with a conductive film 171.
  • the lower electrode 131 is connected to the plug 119, and the source Z drain 118 and the lower electrode 131 are electrically connected via the plug 119.
  • a hydrogen diffusion preventing film 133 and an interlayer insulating film 134 for preventing intrusion of hydrogen 'water into the ferroelectric film 125 are formed.
  • a metal oxide such as alumina (Al 2 O 3) is used as a material to cover the entire surface of the ferroelectric capacitor structure 130 having the conductive film 171 formed on the upper surface.
  • a hydrogen diffusion preventing film 133 is formed by depositing to about 50 nm. Thereafter, the hydrogen diffusion preventing film 133 is annealed. [0212] Next, an interlayer insulating film 134 is formed so as to cover the ferroelectric capacitor structure 130 and the conductive film 171 with the hydrogen diffusion preventing film 133 interposed therebetween.
  • the interlayer insulating film 134 a silicon oxide film is deposited to a thickness of about 1500 nm to 2500 nm by, for example, a plasma CVD method using TEOS, and then polished by CMP to a thickness of about 1 OOOnm. Form. After CMP, for the purpose of dehydrating the interlayer insulating film 134, for example, a plasma plasma of NO is used.
  • the interlayer insulating film 134 and the hydrogen diffusion preventing film 133 are patterned by lithography and subsequent dry etching, and a via hole 135a exposing a part of the surface of the upper electrode 132 is formed.
  • the hydrogen storage conductive material such as Pd is not only due to the hydrogen absorption function as described above, but also because it is difficult to react with the halogen-based etching gas used when etching the via hole. When formed, it has a function that the etching rate is low and etching is difficult.
  • the hydrogen absorption capability is improved and the penetration of hydrogen into the ferroelectric film 125 can be prevented more reliably, and the via can be prevented.
  • the hole 135a even if a hydrogen diffusion preventing film 133 is formed to cover the upper electrode 132 to further protect the ferroelectric film 125 from hydrogen, the retention failure is not caused without over-etching the upper electrode 132. Can be suppressed.
  • a plug 135 electrically connected to the upper electrode 132 of the ferroelectric capacitor structure 130 via the conductive film 171 is formed.
  • a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm so as to cover the wall surface of the via hole 135a, and a base film (glue film) 135b is formed.
  • a base film (glue film) 135b is formed.
  • hydrogen storage conductive material or a conductive material containing the hydrogen storage conductive material is deposited on the interlayer insulating film 134 so as to fill the via hole 135a via the glue film 135b.
  • hydrogen Occupant conductive materials include: (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd , Sm and other hydrogen-absorbing conductive materials may be used alone, or (2) (3) (3) ( At least one of the hydrogen-absorbing conductive materials shown in 1) and other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) At least one kind or alloy with iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os) or other noble metals May be used.
  • Pd is used as the conductive material to be
  • the deposited Pd and glue film 135b are polished by CMP using the interlayer insulating film 134 as a stopper, thereby forming a plug 135 filling the via hole 135a with W via the glue film 135b.
  • CMP plasma annealing of N 2 O is performed after CMP
  • a first wiring 164 connected to the plug 135 is formed.
  • a barrier metal film 161, a wiring film 162, and a barrier metal film 163 are deposited on the entire surface of the interlayer insulating film 134 by sputtering or the like.
  • a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by a sputtering method or the like.
  • the wiring film 162 is formed using a hydrogen storage conductive material having or a conductive material including the same.
  • Examples of hydrogen storage conductive materials include: (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen absorbing conductive materials such as Nd and Sm may be used alone, or (2) Even if an alloy of any combination of hydrogen absorbing conductive materials shown in (1) is used, (3) (1 ) And other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni) and other common conductive metal materials), Or there are few precious metals such as iridium (Ir), platinum (Pt), gold (A u), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os). An alloy with both of them may be used.
  • Pd is used as the conductive material to be deposited, and the wiring film 162 is formed to a thickness of about 350 nm by, for example, the CVD method or the PVD method.
  • the conductive film 171 is formed on the upper electrode 132 and the plug 135 electrically connected to the upper electrode 132 via the conductive film 171, the upper electrode 132, the conductive film 171, and the plug 135 are formed.
  • the wiring films 162 of the first wirings 164 that are electrically connected via each other are formed using Pd, which is a hydrogen storage conductive material having a large amount of hydrogen absorption capacity (large surface area and volume), as a material. Therefore, it is possible to prevent hydrogen from entering the strong dielectric film 125 without increasing the number of components and the number of processes as efficiently as possible, and high capacitor characteristics can be reliably maintained. It becomes.
  • the noria metal film 163 for example, a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by sputtering or the like.
  • the structure of the wiring film 162 is the same as that of the logic part other than the FeRAM of the same rule, so there is no problem in reliability if the wiring is added.
  • a second wiring 154 connected to the first wiring 164 is formed.
  • an interlayer insulating film 146 is formed so as to cover the first wiring 164.
  • a silicon oxide film is formed to a thickness of about 700 nm
  • a plasma TEOS film is formed to a total thickness of about lOO nm, and then the surface is polished by CMP.
  • the film thickness is formed to about 750 nm.
  • the interlayer insulating film 146 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 164 is exposed to form a via hole 147a having a diameter of about 0.25 m, for example.
  • a base film (glue film) 148 is formed so as to cover the wall surface of the via hole 147a, and then a W film is formed so as to fill the via hole 147a through the glue film 148 by the CVD method. Form.
  • the W film and the glue film 248 are polished by CMP using the interlayer insulating film 146 as a stopper to form a plug 147 that fills the via hole 247a with W via the glue film 148.
  • the plug 147 may be formed by performing anisotropic etching on the entire surface of the W film and the glue film 148, or a so-called etch back. At this time, only W is etched, and the glue film 148 remains as it is.
  • a barrier metal film 151, a wiring film 152, and a barrier metal film 153 are deposited on the entire surface by sputtering or the like.
  • a TiN film is formed with a film thickness of about 150 nm by sputtering.
  • the glue film 148 remaining when the plug 147 is formed functions as a barrier metal film, and thus the barrier metal film 151 is unnecessary.
  • the wiring film 152 for example, an A1 alloy film (here, an Al-Cu film) is formed to a thickness of about 350 nm.
  • the noria metal film 153 for example, a TiN film is formed to a thickness of about 150 nm by sputtering.
  • the structure of the wiring film 152 is the same as that of the logic part other than the FeRAM having the same rule, there is no problem in wiring processing and reliability.
  • the antireflection film after forming, for example, a SiON film or an antireflection film (not shown) as the antireflection film, the antireflection film, the noria metal film 153, the wiring film 152, and the barrier metal film are formed by lithography and subsequent dry etching.
  • 151 is processed into a wiring shape, and the second wiring 154 is formed into a pattern.
  • the A1 alloy film instead of forming the A1 alloy film as the wiring film 152 (and the wiring film in Z or an upper layer wiring thereof), similarly to the wiring film 162, it contains a hydrogen storage conductive material such as Pd or the like. It is also preferable to use a conductive material.
  • FIG. 6A instead of forming an A1 alloy film as the wiring film 152, FIG. 6A according to the first embodiment is used.
  • Cu film (or Cu alloy film) is formed using the so-called damascene method.
  • a Cu wiring may be formed as the second wiring 154.
  • the interlayer insulating film is subjected to various processes such as the formation of a further upper layer wiring. Complete the tack-type FeRAM.
  • the plug 135, the first wiring 164 in addition to the plug 135 in the first modification, and the plug 135 and the first wiring 164 in the first modification are connected to the conductive film 171.
  • Pd which is a hydrogen storage conductive material
  • the plug 135 is formed using a conductive material containing hydrogen, such as Pd, which is a hydrogen storage conductive material, and the conductive film 171 is formed using a conductive material including this, such as Pd, which is a hydrogen storage conductive material.
  • the first wiring shall be a normal A1 alloy wiring or the like.
  • the first wiring 164 is formed using Pd or the like which is a hydrogen storage conductive material or a conductive material including the same, and the conductive film 171 is Pd or the like which is a hydrogen storage conductive material. Is formed using a conductive material containing this, and each plug electrically connected to the ferroelectric capacitor structure 130 is a normal W plug or the like.
  • the plug 135, the first wiring 164, and the conductive film 171 are all made of a hydrogen-absorbing conductive material such as Pd. Although it is inferior to the case where it is formed (in the case of Modification 2), it can reliably maintain high capacitor characteristics, achieve high reliability, and realize an FeRAM.
  • a highly reliable semiconductor device that reliably prevents hydrogen from entering the capacitor film with a relatively simple configuration and maintains the high performance of the capacitor structure, particularly the ferroelectric capacitor structure. Can be realized without increasing the number of components and the number of processes.

Abstract

A hydrogen-occluding conductive material having the property of absorbing hydrogen is used in combination with hydrogen diffusion preventive films (23, 27, 28) in order to prevent, without fail, hydrogen generated from coming into a ferroelectric film (25). The hydrogen-occluding conductive material or a conductive material containing it, palladium (Pd) in this case, is deposited on an interlayer dielectric (33) so as to fill via-holes (34a, 35a) through glue films (34b, 35b). CMP is then conducted to form plugs (34, 35). This relatively simple constitution prevents the penetration of water/hydrogen into inner parts without fail and enables a ferroelectric capacitor structure (30) to retain high performance. This can be realized without the need of increasing the number of constituent members and the number of steps.

Description

明 細 書  Specification
半導体装置及びその製造方法  Semiconductor device and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、導電構造との接続に導電プラグを用いた半導体装置及びその製造方 法に関し、特に、下部電極と上部電極との間に強誘電体膜が挟持されてなる強誘電 体キャパシタ構造を有する半導体装置を主な対象とする。  TECHNICAL FIELD [0001] The present invention relates to a semiconductor device using a conductive plug for connection to a conductive structure and a method for manufacturing the same, and in particular, a ferroelectric material in which a ferroelectric film is sandwiched between a lower electrode and an upper electrode. The main target is a semiconductor device having a capacitor structure.
背景技術  Background art
[0002] 近年、強誘電体の分極反転を利用して情報を強誘電体キャパシタ構造に保持する 強誘電体メモリ(FeRAM)の開発が進められている。強誘電体メモリは、電源を断つ ても保持された情報が消失しない不揮発メモリであり、高集積度、高速駆動、高耐久 性、及び低消費電力の実現が期待できることから特に注目されている。  In recent years, development of a ferroelectric memory (FeRAM) in which information is held in a ferroelectric capacitor structure by using polarization inversion of the ferroelectric has been advanced. Ferroelectric memory is a non-volatile memory in which retained information is not lost even when the power is turned off, and is particularly attracting attention because it can be expected to achieve high integration, high speed drive, high durability, and low power consumption.
[0003] 強誘電体キャパシタ構造を構成する強誘電体膜の材料としては、残留分極量が大 きな、例えば 10 CZcm2)〜30 CZcm2)程度の PZT(Pb (Zr, Ti) 0 )膜、 S [0003] As a material of the ferroelectric film constituting the ferroelectric capacitor structure, PZT (Pb (Zr, Ti) 0) having a large remanent polarization, for example, about 10 CZcm 2 ) to 30 CZcm 2 ) Membrane, S
3 Three
BT(SrBi Ta O )膜などのべ口ブスカイト結晶構造を有する強誘電体酸ィ匕物が主と Ferroelectric oxides with a bottom bskite crystal structure such as BT (SrBi Ta O) film are mainly used.
2 2 9  2 2 9
して用いられている。  It is used as.
[0004] 特許文献 1 :特開平 5— 183106号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-183106
特許文献 2:特開平 9 97883号公報  Patent Document 2: JP-A-9 97883
発明の開示  Disclosure of the invention
[0005] キャパシタ構造、特に強誘電体キャパシタ構造では、シリコン酸ィ匕膜などの水との 親和性の高い層間絶縁膜を介して外部から侵入した水分により、強誘電体力 なる キャパシタ膜の特性が劣化することが知られている。即ち、先ず、外部から侵入した 水分が層間絶縁膜やメタル配線成膜時の高温プロセス中で水素と酸素とに分解する 。この水素がキャパシタ膜中に侵入すると、キャパシタ膜の酸素と反応してキャパシタ 膜に酸素欠陥が形成され結晶性が低下する。また、強誘電体メモリの長期間の使用 によっても同様の現象が発生する。その結果、キャパシタ膜の残留分極量や誘電率 が低下するなどの強誘電体キャパシタ構造の性能劣化が発生する。また、このような 水素の浸入により、強誘電体キャパシタ構造に限らず、トランジスタ等の性能が劣化 することがある。 In a capacitor structure, particularly a ferroelectric capacitor structure, the characteristics of a capacitor film having a ferroelectric force due to moisture entering from the outside through an interlayer insulating film having a high affinity with water, such as a silicon oxide film. It is known to deteriorate. That is, first, moisture that has entered from the outside decomposes into hydrogen and oxygen during a high-temperature process during the formation of an interlayer insulating film or metal wiring. When this hydrogen enters the capacitor film, it reacts with oxygen in the capacitor film to form oxygen defects in the capacitor film and lower the crystallinity. The same phenomenon occurs when a ferroelectric memory is used for a long time. As a result, performance degradation of the ferroelectric capacitor structure occurs, such as a decrease in the amount of remanent polarization and dielectric constant of the capacitor film. In addition, such hydrogen intrusion degrades the performance of transistors and the like as well as ferroelectric capacitor structures. There are things to do.
[0006] この点、強誘電体キャパシタ構造の上層にアルミナ等の水素拡散防止膜を形成す ることにより、水素の浸入を防止する試みがある。この水素拡散防止膜により、ある程 度の水素遮断機能は期待できるのであるが、強誘電体キャパシタ構造の高性能を保 持するに十分であるとは言えない。  [0006] In this regard, there is an attempt to prevent hydrogen from entering by forming a hydrogen diffusion prevention film such as alumina on the upper layer of the ferroelectric capacitor structure. Although this hydrogen diffusion preventing film can be expected to have a certain level of hydrogen blocking function, it cannot be said to be sufficient to maintain the high performance of the ferroelectric capacitor structure.
[0007] 本発明は、上記の課題に鑑みてなされたものであり、比較的簡易な構成で水 '水素 の内部侵入を確実に防止し、キャパシタ構造、特に強誘電体キャパシタ構造の高性 能を保持することを可能とし、しカゝもこれを構成部材数及び工程数を増加させることな く実現する信頼性の高い半導体装置及びその製造方法を提供することを目的とする  [0007] The present invention has been made in view of the above-described problems, and reliably prevents water and hydrogen from penetrating into the interior with a relatively simple configuration, and has a high performance in a capacitor structure, particularly a ferroelectric capacitor structure. It is an object of the present invention to provide a highly reliable semiconductor device and a method for manufacturing the same, which can realize this without increasing the number of constituent members and the number of processes.
[0008] 本発明の半導体装置は、半導体基板の上方に形成されており、下部電極と上部電 極とによりキャパシタ膜を挟持してなるキャパシタ構造と、前記キャパシタ構造の上方 に形成されてなる配線と、前記キャパシタ構造上に形成されてなり、少なくとも前記上 部電極とその上方の前記配線とを電気的に接続する導電プラグとを含み、前記導電 プラグは、水素を吸蔵する第 1の導電材料を含み形成されている。 The semiconductor device of the present invention is formed above a semiconductor substrate, and has a capacitor structure in which a capacitor film is sandwiched between a lower electrode and an upper electrode, and wiring formed above the capacitor structure. And a conductive plug that is formed on the capacitor structure and electrically connects at least the upper electrode and the wiring thereabove, and the conductive plug is a first conductive material that occludes hydrogen. It is formed including.
[0009] 本発明の半導体装置の別態様は、半導体基板の上方に形成されており、下部電 極と上部電極とによりキャパシタ膜を挟持してなるキャパシタ構造と、前記キャパシタ 構造の上方に形成されてなる配線と、前記キャパシタ構造上に形成されてなり、前記 上部電極とその上方の前記配線とを電気的に接続する導電プラグとを含み、前記配 線は、水素を吸蔵する導電材料を有して形成されて 、る。  Another aspect of the semiconductor device of the present invention is formed above a semiconductor substrate, and is formed above a capacitor structure having a capacitor film sandwiched between a lower electrode and an upper electrode, and the capacitor structure. And a conductive plug that is formed on the capacitor structure and electrically connects the upper electrode and the wiring above the wiring. The wiring has a conductive material that absorbs hydrogen. Formed.
[0010] 本発明の半導体装置の製造方法は、半導体基板の上方に、下部電極と上部電極 とによりキャパシタ膜を挟持してなるキャパシタ構造を形成する工程と、前記キャパシ タ構造上に、少なくとも前記上部電極と電気的に接続される導電プラグを形成するェ 程と、前記導電プラグ上に、前記導電プラグを介して前記上部電極と電気的に接続 される配線を形成する配線を形成する工程とを含み、前記導電プラグを、水素を吸 蔵する第 1の導電材料を含む材料から形成する。  [0010] A method for manufacturing a semiconductor device of the present invention includes a step of forming a capacitor structure having a capacitor film sandwiched between a lower electrode and an upper electrode above a semiconductor substrate, and at least the capacitor structure on the capacitor structure. Forming a conductive plug electrically connected to the upper electrode; and forming a wiring on the conductive plug to form a wiring electrically connected to the upper electrode via the conductive plug; The conductive plug is formed of a material including a first conductive material that absorbs hydrogen.
[0011] 本発明によれば、比較的簡易な構成で水素のキャパシタ膜への侵入を確実に防止 し、キャパシタ構造、特に強誘電体キャパシタ構造の高性能を保持する信頼性の高 い半導体装置を、構成部材数及び工程数を増加させることなぐ実現することができ る。 [0011] According to the present invention, hydrogen can be reliably prevented from entering the capacitor film with a relatively simple configuration, and the high reliability of the capacitor structure, particularly the ferroelectric capacitor structure, can be maintained. It is possible to realize a semiconductor device without increasing the number of constituent members and the number of processes.
図面の簡単な説明 Brief Description of Drawings
[図 1A]図 1Aは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。 [FIG. 1A] FIG. 1A is a schematic cross-sectional view showing the structure of a planar-type FeRAM according to a first embodiment along with its manufacturing method in the order of steps.
[図 1B]図 1Bは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  [FIG. 1B] FIG. 1B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
[図 1C]図 1Cは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  [FIG. 1C] FIG. 1C is a schematic cross-sectional view showing the structure of the planar-type FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
[図 1D]図 1Dは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 1D is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
[図 2A]図 2Aは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  [FIG. 2A] FIG. 2A is a schematic cross-sectional view showing the structure of the planar-type FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
[図 2B]図 2Bは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 2B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
[図 2C]図 2Cは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  [FIG. 2C] FIG. 2C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
[図 2D]図 2Dは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  [FIG. 2D] FIG. 2D is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
[図 3A]図 3Aは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 3A is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
[図 3B]図 3Bは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 3B is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
[図 3C]図 3Cは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 3C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
[図 4A]図 4Aは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  [FIG. 4A] FIG. 4A is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
[図 4B]図 4Bは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。 [FIG. 4B] FIG. 4B shows the structure of the planar type FeRAM according to the first embodiment. It is a schematic sectional drawing shown in order of a process with a method.
[図 4C]図 4Cは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  [FIG. 4C] FIG. 4C is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the first embodiment in the order of processes together with its manufacturing method.
[図 5A]図 5Aは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 5A is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
[図 5B]図 5Bは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 5B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the first embodiment in the order of steps together with its manufacturing method.
[図 6A]図 6Aは、第 1の実施形態にお!ヽてダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 6A] FIG. 6A is a schematic cross-sectional view showing the structure of FeRAM in the order of steps together with its manufacturing method (main steps) when damascene wiring is formed according to the first embodiment.
[図 6B]図 6Bは、第 1の実施形態においてダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 6B is a schematic cross-sectional view showing the structure of the FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main steps), in the order of steps.
[図 6C]図 6Cは、第 1の実施形態においてダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 6C is a schematic cross-sectional view showing the structure of the FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main steps), in the order of steps.
[図 6D]図 6Dは、第 1の実施形態においてダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 6D is a schematic cross-sectional view showing the structure of FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main process), in order of process.
[図 6E]図 6Eは、第 1の実施形態においてダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 6E is a schematic cross-sectional view showing the structure of the FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main steps), in the order of steps.
[図 7A]図 7Aは、第 1の実施形態にお!ヽてダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 7A] FIG. 7A is a schematic cross-sectional view showing the structure of FeRAM in the order of steps together with its manufacturing method (main steps) when forming damascene wiring according to the first embodiment.
[図 7B]図 7Bは、第 1の実施形態にお 、てダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 7B] FIG. 7B is a schematic cross-sectional view showing the structure of FeRAM in the first embodiment together with its manufacturing method (main steps) in the order of steps when forming damascene wiring.
[図 7C]図 7Cは、第 1の実施形態にお 、てダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 7C] FIG. 7C is a schematic cross-sectional view showing the structure of the FeRAM when forming the damascene wiring in the first embodiment, together with its manufacturing method (main process).
[図 7D]図 7Dは、第 1の実施形態においてダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 7D is a schematic cross-sectional view showing the structure of the FeRAM when forming damascene wiring in the first embodiment, together with its manufacturing method (main steps), in the order of steps.
[図 8A]図 8Aは、第 1の実施形態にお!ヽてダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 8A] FIG. 8A is a schematic cross-sectional view showing the structure of FeRAM in the order of steps together with its manufacturing method (main steps) when damascene wiring is formed according to the first embodiment.
[図 8B]図 8Bは、第 1の実施形態においてダマシン配線を形成する場合の FeRAM の構成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。 [FIG. 8B] FIG. 8B shows FeRAM when damascene wiring is formed in the first embodiment. It is a schematic sectional drawing which shows this structure with the manufacturing method (main process) in order of a process.
[図 9A]図 9Aは、第 1の実施形態の変形例 1によるプレーナ型の FeRAMの構成をそ の製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 9A is a schematic cross-sectional view showing the structure of a planar FeRAM according to Modification 1 of the first embodiment together with its manufacturing method (main steps) in the order of steps.
[図 9B]図 9Bは、第 1の実施形態の変形例 1によるプレーナ型の FeRAMの構成をそ の製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 9B is a schematic cross-sectional view showing the structure of the planar FeRAM according to Modification 1 of the first embodiment in the order of steps together with its manufacturing method (main steps).
[図 10A]図 10Aは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 10A] FIG. 10A is a schematic cross-sectional view showing the structure of a planar type FeRAM according to Modification 2 of the first embodiment along with its manufacturing method (main steps) in the order of steps.
[図 10B]図 10Bは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 10B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
[図 10C]図 10Cは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 10C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
[図 10D]図 10Dは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成 をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 10D is a schematic cross-sectional view showing the structure of the planar FeRAM according to Modification 2 of the first embodiment together with the manufacturing method (main steps) in the order of steps.
[図 11A]図 11Aは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 11A] FIG. 11A is a schematic cross-sectional view showing the structure of a planar type FeRAM according to Modification 2 of the first embodiment along with its manufacturing method (main steps) in the order of steps.
[図 11B]図 11Bは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 11B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
[図 11C]図 11Cは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 11C] FIG. 11C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
[図 11D]図 11Dは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成 をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 11D] FIG. 11D is a schematic cross-sectional view showing the structure of the planar type FeRAM according to the second modification of the first embodiment along with its manufacturing method (main process).
[図 12A]図 12Aは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 12A] FIG. 12A is a schematic cross-sectional view showing the structure of a planar type FeRAM according to Modification 2 of the first embodiment in the order of steps together with its manufacturing method (main steps).
[図 12B]図 12Bは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 12B] FIG. 12B is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in the order of steps.
[図 12C]図 12Cは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  [FIG. 12C] FIG. 12C is a schematic cross-sectional view showing the structure of the planar FeRAM according to the second modification of the first embodiment in the order of steps together with its manufacturing method (main steps).
[図 13A]図 13Aは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。 [FIG. 13A] FIG. 13A shows the structure of a planar type FeRAM according to the second modification of the first embodiment. It is a schematic sectional drawing shown in order of a process with the manufacturing method (main process).
[図 13B]図 13Bは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 13B is a schematic cross-sectional view showing the structure of the planar FeRAM according to Modification 2 of the first embodiment together with its manufacturing method (main steps) in the order of steps.
[図 14A]図 14Aは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 14A is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment together with its manufacturing method in the order of steps.
[図 14B]図 14Bは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 14B is a schematic cross-sectional view showing the configuration of the stacked FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
[図 14C]図 14Cは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 14C is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second embodiment along with its manufacturing method in the order of steps.
[図 14D]図 14Dは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 14D is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
[図 15A]図 15Aは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 15A is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
[図 15B]図 15Bは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 15B is a schematic cross-sectional view showing the configuration of the stacked FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
[図 15C]図 15Cは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 15C is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
[図 15D]図 15Dは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 15D is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
[図 16A]図 16Aは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 16A is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
[図 16B]図 16Bは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 16B is a schematic cross-sectional view showing the configuration of the stacked FeRAM according to the second embodiment in the order of steps together with the manufacturing method thereof.
[図 16C]図 16Cは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 16C is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
[図 17A]図 17Aは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 17A is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment along with its manufacturing method in the order of steps.
[図 17B]図 17Bは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。 [FIG. 17B] FIG. 17B shows a stack type FeRAM configuration according to the second embodiment. It is a schematic sectional drawing shown in order of a process with a method.
[図 18A]図 18Aは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  [FIG. 18A] FIG. 18A is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second embodiment in the order of steps together with its manufacturing method.
[図 18B]図 18Bは、第 2の実施形態によるスタック型の FeRAMの構成をその製造方 法と共に工程順に示す概略断面図である。  FIG. 18B is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the second embodiment along with its manufacturing method in the order of steps.
[図 19A]図 19Aは、第 2の実施形態の変形例 1によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 19A is a schematic cross-sectional view showing the structure of a stacked FeRAM according to Modification 1 of the second embodiment in the order of steps together with its manufacturing method (main steps).
[図 19B]図 19Bは、第 2の実施形態の変形例 1によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 19B is a schematic cross-sectional view showing the configuration of the stack type FeRAM according to the first modification of the second embodiment in the order of steps together with its manufacturing method (main steps).
[図 20A]図 20Aは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 20A is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
[図 20B]図 20Bは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 20B is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
[図 20C]図 20Cは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 20C is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
[図 20D]図 20Dは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 20D is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment in the order of steps together with its manufacturing method (main steps).
[図 21A]図 21Aは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 21A is a schematic cross-sectional view showing the structure of a stacked FeRAM according to Modification 2 of the second embodiment, together with its manufacturing method (main steps), in the order of steps.
[図 21B]図 21Bは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 21B is a schematic cross-sectional view showing the structure of the stacked FeRAM according to the second modification of the second embodiment in the order of steps together with its manufacturing method (main steps).
[図 21C]図 21Cは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 21C is a schematic cross-sectional view showing the structure of the stack type FeRAM according to Modification 2 of the second embodiment in the order of steps together with its manufacturing method (main steps).
[図 21D]図 21Dは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 21D is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
[図 22A]図 22Aは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 22A is a schematic cross-sectional view showing the structure of a stack type FeRAM according to Modification 2 of the second embodiment in the order of steps together with its manufacturing method (main steps).
[図 22B]図 22Bは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。 [FIG. 22B] FIG. 22B shows the configuration of the stack type FeRAM according to the second modification of the second embodiment. It is a schematic sectional drawing shown in order of a process with the manufacturing method (main process).
[図 23A]図 23Aは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 23A is a schematic cross-sectional view showing the structure of a stacked FeRAM according to Modification 2 of the second embodiment in the order of steps together with its manufacturing method (main steps).
[図 23B]図 23Bは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 23B is a schematic cross-sectional view showing the structure of the stack type FeRAM according to the second modification of the second embodiment together with its manufacturing method (main steps) in the order of steps.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 一本発明の基本骨子 [0013] Basic structure of the present invention
本発明者は、発生した水素のキャパシタ膜への侵入を可及的に防止すベぐ水素 をブロックする性質を有する材料力 なる構成部材をキャパシタ膜、即ちキャパシタ 構造の上方に設けることが望ましいと考察した。当該構成部材としては、キャパシタ 構造の上方における絶縁部位に金属酸ィ匕物等の絶縁膜を形成する構成や、同様に 導電部位に導電膜を形成する構成が考えられる。当該構成部材の材料及びその配 置部位の選定基準としては、キャパシタ膜に対して十分な水素ブロック機能を発揮し 得る部位に設けることに加え、できるだけ構成部材数及び工程数の増加をもたらさな いことが重要となる。即ち、キャパシタ構造に近接した部位において、できる限り既存 で必須の構成部材を水素ブロック機能を有する材料で形成することが望ましい。  The inventor of the present invention desirably provides a component having a material force having a property of blocking hydrogen to prevent the generated hydrogen from entering the capacitor film as much as possible above the capacitor film, that is, the capacitor structure. Considered. As the constituent member, a configuration in which an insulating film such as a metal oxide is formed in an insulating portion above the capacitor structure, and a configuration in which a conductive film is similarly formed in a conductive portion can be considered. As a selection criterion for the material of the component and its arrangement site, in addition to providing it in a site where a sufficient hydrogen blocking function can be exerted on the capacitor film, the number of components and processes are not increased as much as possible. It becomes important. In other words, it is desirable to form the existing and essential components as much as possible with a material having a hydrogen blocking function in a portion close to the capacitor structure.
[0014] キャパシタ構造に近接した部位に設けられる既存で必須の構成部材は、層間絶縁 膜等を除けば殆どが導電部材である。本発明者は、この点を踏まえ、上記の各ポイン トについて総合的に鋭意検討した結果、本発明に想到した。本発明者は、当該構成 部材の材料として、絶縁材料よりも顕著に水 ·水素遮断機能を示す高!、耐湿性を有 する導電材料、例えばパラジウム(Pd) ,リチウム (Li) ,ナトリウム (Na) ,マグネシウム (Mg) ,カルシウム(Ca) ,チタン (Ti) ,ジルコニウム(Zr) ,バナジウム(V) ,ニオブ(N b) ,ランタン (La) ,ネオジム (Nd) ,サマリウム(Sm)等の水素を吸収する性質を有す る導電材料 (水素吸蔵性導電材料)又はこれらを含有する導電材料が最適であると 判断した。 [0014] Most of the existing and indispensable constituent members provided in the vicinity of the capacitor structure are conductive members except for an interlayer insulating film or the like. Based on this point, the inventor of the present invention has come up with the present invention as a result of comprehensively examining each of the above points. As a material of the constituent member, the inventor of the present invention is a highly conductive and highly moisture-resistant conductive material that exhibits a water / hydrogen barrier function more than an insulating material, such as palladium (Pd), lithium (Li), sodium (Na ), Magnesium (Mg), calcium (Ca), titanium (Ti), zirconium (Zr), vanadium (V), niobium (Nb), lanthanum (La), neodymium (Nd), samarium (Sm), etc. It was judged that a conductive material (hydrogen storage conductive material) having a property of absorbing hydrogen or a conductive material containing these materials is optimal.
[0015] そして、本発明者は、当該構成部材の配置部位(当該構成部材の適用場所)として 、キャパシタ構造に近接し、しかも新たに上部電極上に水素吸蔵性導電材料の導電 膜を形成する場合等に比べて表面積及び体積の大きい (従って水素の吸収量が大 きい)ものであり、しかもキャパシタ構造を有する半導体装置に既存で必須のもの、即 ちキャパシタ構造の上部電極と電気的に接続される導電プラグ、及び z又は導電プ ラグを介して上部電極と電気的に接続される配線に適用することに想到した。 [0015] Then, the present inventor forms a conductive film of a hydrogen-occlusion conductive material on the upper electrode as an arrangement site of the constituent member (application place of the constituent member) close to the capacitor structure. Larger surface area and volume compared to other cases (thus increasing hydrogen absorption) Existing and indispensable for a semiconductor device having a capacitor structure, that is, a conductive plug electrically connected to the upper electrode of the capacitor structure, and an electrical connection with the upper electrode through z or a conductive plug. The idea was to apply it to the wiring that is connected to each other.
[0016] 例えば Pdは、自身の体積の 935倍もの水素を吸収する水素吸蔵機能を有する金 属である。この Pdや Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm等に代表され る水素吸蔵性導電材料又はこれを適宜含む導電材料を用いて、上部電極と電気的 に接続される導電プラグ及び,又は導電プラグを介して上部電極と電気的に接続さ れる配線を形成することにより、構成部材数及び工程数を増加させることなぐ大量の 水素吸収能力(大きな表面積及び体積)を有するためにキャパシタ膜への水素の浸 入を効率良く防止することができ、高いキャパシタ特性を確実に保持することが可能 となる。  [0016] For example, Pd is a metal having a hydrogen storage function that absorbs hydrogen of 935 times its own volume. Using this hydrogen-absorbing conductive material typified by Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm, etc. A large amount of hydrogen absorption capacity (a large surface area and a large surface area) can be achieved without increasing the number of components and processes by forming a conductive plug connected to the wiring and / or a wiring electrically connected to the upper electrode via the conductive plug. Therefore, it is possible to efficiently prevent hydrogen from entering the capacitor film and to reliably maintain high capacitor characteristics.
[0017] なお、導電プラグ及び配線について、水素吸収機能を有する金属を使用する場合 には、必ずしも Pdのような高温ァニールに耐える材料である必要はない。そのため、 上記した水素吸収性導電材料を単独で使用することも、或いは任意の金属を合金と して使用することも可能である。即ち、(l) Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, L a, Nd, Sm等の水素吸収性導電材料を単独で使用しても良いし、 (2) (1)に示す水 素吸収性導電材料の任意の組み合わせによる合金を使用しても、 (3) (1)に示す水 素吸収性導電材料の少なくとも 1種と他の金属 (アルミニウム (A1) ,銅 (Cu) ,鉄 (Fe) ,ニッケル (Ni)等の一般的な導電性金属材料の少なくとも 1種、或いはイリジウム (Ir ) , 白金(Pt) ,金 (Au) ,銀 (Ag) ,ルテニウム (Ru) ,ロジウム (Rh) ,オスミウム(Os) 等の貴金属の少なくとも 1種)との合金を使用しても良 、。  [0017] When a metal having a hydrogen absorption function is used for the conductive plug and wiring, it is not always necessary to use a material that can withstand high-temperature annealing such as Pd. Therefore, the above hydrogen-absorbing conductive material can be used alone, or any metal can be used as an alloy. That is, (l) Hydrogen-absorbing conductive materials such as Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, and Sm may be used alone, or (2) ( Even if an alloy of any combination of the hydrogen-absorbing conductive materials shown in 1) is used, at least one of the hydrogen-absorbing conductive materials shown in (3) (1) and other metals (aluminum (A1), At least one of common conductive metal materials such as copper (Cu), iron (Fe), nickel (Ni), or iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium An alloy with (Ru), rhodium (Rh), osmium (Os) or other noble metals) may be used.
[0018] 更に、本発明では、導電プラグ及び Z又は配線を水素吸蔵性導電材料で形成す る構成に加え、キャパシタ構造の上部電極上、即ち上部電極と導電プラグとの間に、 同様に水素吸蔵性導電材料又はこれを含む導電材料からなる導電膜を設ける構成 も提案する。  Furthermore, in the present invention, in addition to the configuration in which the conductive plug and Z or wiring are formed of a hydrogen storage conductive material, the hydrogen is similarly applied on the upper electrode of the capacitor structure, that is, between the upper electrode and the conductive plug. A structure is also proposed in which a conductive film made of an occlusive conductive material or a conductive material containing the same is provided.
[0019] なおこの場合には、コンタクト孔の形成後に高温ァニールを実行するため、耐熱性 に優れた材料を使用する必要がある。従って、当該導電膜の材料としては、 Pd、或 いは Pdと耐熱性を有する (又は酸ィ匕しても導電性を有する)他の貴金属 (Ir, Pt, Au, Ag, Ru, Rh, Os等)の少なくとも 1種との合金に限定する必要がある。また、これらの 材料は、後述するようにハロゲン系ガスに対する耐性も有して 、る。 In this case, it is necessary to use a material having excellent heat resistance because high-temperature annealing is performed after the contact hole is formed. Therefore, the material of the conductive film is Pd, or other noble metals (Ir, Pt, Au, Ag, Ru, Rh, Os, etc.) must be limited to alloys with at least one of them. These materials also have resistance to halogen-based gases as will be described later.
[0020] 強誘電体キャパシタ構造では、エッチングカ卩ェ等によっても容易にキャパシタ特性 が劣化してしまう。そのため、高温ァニールによるキャパシタ膜の特性回復処理が必 須となっている。そのため、上部電極及び下部電極の材料として、高温ァニールに耐 える貴金属や貴金属の導電性酸ィ匕物が多用されている。これらの電極材料は、ハロ ゲン系ガスなどのエッチングガスと反応し難 、ため、通常ではエッチングされ難 ヽ材 料である。 In the ferroelectric capacitor structure, the capacitor characteristics are easily deteriorated even by an etching cache or the like. For this reason, it is essential to recover the characteristics of the capacitor film using high-temperature annealing. For this reason, noble metals that can withstand high-temperature annealing and conductive oxides of noble metals are frequently used as materials for the upper and lower electrodes. These electrode materials are difficult to react with an etching gas such as a halogen-based gas, and are therefore usually difficult to be etched.
[0021] ところで、キャパシタ構造の下部電極上に他の導電プラグが設けられてなるプレー ナ型の半導体メモリでは、上部電極と配線とを接続するためのビア孔を形成する際に 、上部電極及び下部電極への各ビア孔を同時にエッチングカ卩ェして形成する。その ため、上部電極のオーバーエッチが過剰となって上部電極が削れてしまい、上部電 極の膜厚が薄くなる。また、下記に示すように水素拡散防止膜のエッチングレートが 小さいことや水素拡散防止膜からのエッチング生成物が選択比を低下させることによ り、上部電極材料の削れ量が更に増大する。その結果、いわゆるリテンション不良が 増加を招く。  By the way, in the planar type semiconductor memory in which another conductive plug is provided on the lower electrode of the capacitor structure, when forming the via hole for connecting the upper electrode and the wiring, Each via hole to the lower electrode is formed by etching at the same time. Therefore, the upper electrode is excessively overetched and the upper electrode is scraped, and the thickness of the upper electrode is reduced. Further, as shown below, the etching rate of the hydrogen diffusion preventing film is low, and the etching product from the hydrogen diffusion preventing film lowers the selectivity, thereby further increasing the amount of scraping of the upper electrode material. As a result, retention defects increase.
[0022] 一方、下部電極下に他の導電プラグが設けられてなるスタック型の半導体メモリで は、上記のような同時ビア孔の形成を行わない場合が多い。し力しながら、スタック型 *プレーナ型を問わず、強誘電体キャパシタ構造では、当該強誘電体キャパシタ構 造を覆うように上記の水素拡散防止膜を形成することが多!、。この水素拡散防止膜 が上部電極上に存すると水素拡散防止膜のエッチングレートが小さいことによりエツ チング時間が増加し、ビア孔の形成時における上部電極に力かるオーバーエッチ量 が大幅に増加する。また、水素拡散防止膜からのエッチング生成物が選択比を低下 させ、下地膜である上部電極材料の削れ量が大幅に増加することが確認されて 、る  On the other hand, in the stacked type semiconductor memory in which another conductive plug is provided under the lower electrode, the simultaneous via hole as described above is often not formed. However, regardless of stack type or planar type, the above-mentioned hydrogen diffusion prevention film is often formed to cover the ferroelectric capacitor structure in the ferroelectric capacitor structure. If this hydrogen diffusion prevention film is present on the upper electrode, the etching time of the hydrogen diffusion prevention film is low, so that the etching time is increased, and the amount of overetching exerted on the upper electrode during the formation of the via hole is greatly increased. In addition, it has been confirmed that the etching product from the hydrogen diffusion prevention film lowers the selectivity and greatly increases the amount of scraping of the upper electrode material that is the base film.
[0023] この点、 Pdや Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm等の水素吸蔵性導 電材料は、上記のような水素の吸収機能のみならず、他の水素吸収導電性材料や ハロゲン系ガスと反応し難い金属材料 (例えば Ir, pt, Au, Ag, Ru, Rh, Os等の貴 金属)等と合金化することにより、ビア孔のエッチング時に用いるハロゲン系のエッチ ングガスと反応し難 、材料とすることが可能である。それによりビア孔の形成時にはェ ツチングレートが低くエッチングされ難 、と 、う機能を持たせることができる。 [0023] In this respect, hydrogen storage materials such as Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, and Sm have not only the above hydrogen absorption function. , Other hydrogen-absorbing conductive materials, and metal materials that are difficult to react with halogen-based gases (for example, noble materials such as Ir, p t , Au, Ag, Ru, Rh, Os) By alloying with (metal) or the like, it is difficult to react with a halogen-based etching gas used when etching a via hole, and a material can be obtained. As a result, when the via hole is formed, the etching rate is low and it is difficult to perform the etching.
[0024] 従って、構成部材数及び工程数の若干の増加(共に 1点及び 1工程)を容認して、 導電プラグ及び Z又は配線を水素吸蔵性導電材料で形成する構成に加え、上部電 極と導電プラグとの間に水素吸蔵性導電材料を含む導電材料からなる導電膜を設け ることにより、水素吸収能力を向上させてキャパシタ膜への水素の浸入を更に確実に 防止するとともに、上部電極をオーバーエッチさせることなくリテンション不良を抑止 することが可能となる。  Accordingly, in addition to the configuration in which the conductive plug and Z or wiring are formed of a hydrogen storage conductive material in addition to the slight increase in the number of components and the number of steps (both one point and one step), the upper electrode By providing a conductive film made of a conductive material including a hydrogen storage conductive material between the conductive plug and the conductive plug, the hydrogen absorption capability is improved and hydrogen can be further prevented from entering the capacitor film, and the upper electrode can be prevented. It is possible to suppress retention failure without overetching.
[0025] なお、特許文献 1, 2には、強誘電体キャパシタ構造を有する半導体メモリにおいて 、上部電極の上方力 側方にかけて、 Pd等力 なる水素吸収層を設ける構成が開示 されている。し力しながら、この半導体メモリは、導電プラグを必須の構成部材として おらず、本発明とは前提となる基本構成が異なるのみならず、従って Pdの適用対象 も全く異なる。従って、本発明は特許文献 1, 2の発明とは全く別発明である。  [0025] Note that Patent Documents 1 and 2 disclose a configuration in which a hydrogen absorption layer having Pd isotropic force is provided on the upper force side of the upper electrode in a semiconductor memory having a ferroelectric capacitor structure. However, in this semiconductor memory, the conductive plug is not an essential component, and not only the basic configuration that is the premise of the present invention is different, but also the object of application of Pd is completely different. Therefore, the present invention is completely different from the inventions of Patent Documents 1 and 2.
[0026] 本発明を適用した具体的な諸実施形態  [0026] Specific embodiments to which the present invention is applied
以下、本発明を適用した具体的な諸実施形態について、図面を参照しながら詳細 に説明する。以下の諸実施形態では、本発明をキャパシタ膜に強誘電体膜を適用し てなる強誘電体キャパシタ構造を備えた FeRAMに適用する場合について例示する 。各実施形態では、説明の便宜上、 FeRAMの構成をその製造方法と共に説明する 。なお本発明は、キャパシタ膜に通常の誘電体膜を適用してなる半導体メモリにも適 用可能である。  Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In the following embodiments, a case where the present invention is applied to a FeRAM having a ferroelectric capacitor structure in which a ferroelectric film is applied to a capacitor film will be exemplified. In each embodiment, for convenience of explanation, the configuration of FeRAM will be described together with its manufacturing method. The present invention can also be applied to a semiconductor memory in which a normal dielectric film is applied to the capacitor film.
[0027] (第 1の実施形態)  [0027] (First embodiment)
本実施形態では、強誘電体キャパシタ構造の下部電極上及び上部電極上にそれ ぞれ導電プラグが形成されて導通がとられる構成の、 V、わゆるプレーナ型の FeRA Mを例示する。  This embodiment exemplifies V, a so-called planar type FeRA M, in which a conductive plug is formed on the lower electrode and the upper electrode of the ferroelectric capacitor structure, respectively, so as to be conductive.
図 1A〜図 5Bは、第 1の実施形態によるプレーナ型の FeRAMの構成をその製造 方法と共に工程順に示す概略断面図である。  FIG. 1A to FIG. 5B are schematic cross-sectional views showing the structure of the planar type FeRAM according to the first embodiment along with its manufacturing method in the order of steps.
[0028] 先ず、図 1Aに示すように、シリコン半導体基板 10上に選択トランジスタとして機能 する MOSトランジスタ 20を形成する。 [0028] First, as shown in FIG. 1A, the silicon semiconductor substrate 10 functions as a selection transistor. A MOS transistor 20 is formed.
詳細には、シリコン半導体基板 10の表層に例えば STI (Shallow Trench Isolation)法により素子分離構造 11を形成し、素子活性領域を確定する。  Specifically, the element isolation structure 11 is formed on the surface layer of the silicon semiconductor substrate 10 by, for example, STI (Shallow Trench Isolation) method to determine the element active region.
次に、素子活性領域に不純物、ここでは Bを例えばドーズ量 3. 0 X 1013/cm2,加 速エネルギー 300keVの条件でイオン注入し、ゥヱル 12を形成する。 Next, an impurity, here B, for example, is ion-implanted into the element active region under the conditions of a dose of 3.0 × 10 13 / cm 2 and an acceleration energy of 300 keV to form the wall 12.
[0029] 次に、素子活性領域に熱酸化等により膜厚 3. Onm程度の薄いゲート絶縁膜 13を 形成し、ゲート絶縁膜 13上に CVD法により膜厚 180nm程度の多結晶シリコン膜及 び膜厚 29nm程度の例えばシリコン窒化膜を堆積し、シリコン窒化膜、多結晶シリコ ン膜、及びゲート絶縁膜 13をリソグラフィー及びそれに続くドライエッチングにより電 極形状に加工することにより、ゲート絶縁膜 13上にゲート電極 14をパターン形成す る。このとき同時に、ゲート電極 14上にはシリコン窒化膜からなるキャップ膜 15がパタ ーン形成される。 [0029] Next, a thin gate insulating film 13 with a thickness of about 3. Onm is formed in the element active region by thermal oxidation or the like, and a polycrystalline silicon film with a thickness of about 180 nm is formed on the gate insulating film 13 by a CVD method. For example, a silicon nitride film having a thickness of about 29 nm is deposited, and the silicon nitride film, the polycrystalline silicon film, and the gate insulating film 13 are processed into an electrode shape by lithography and subsequent dry etching, whereby the gate insulating film 13 is formed. The gate electrode 14 is patterned. At the same time, a cap film 15 made of a silicon nitride film is patterned on the gate electrode 14.
[0030] 次に、キャップ膜 15をマスクとして素子活性領域に不純物、ここでは砒素 (As)を例 えばドーズ量 5. O X 1014Zcm2、加速エネルギー lOkeVの条件でイオン注入し、い わゆる LDD領域 16を形成する。 [0030] Next, using the cap film 15 as a mask, an impurity, for example, arsenic (As) in this case, is ion-implanted under the conditions of a dose of 5. OX 10 14 Zcm 2 and an acceleration energy of lOkeV. LDD region 16 is formed.
[0031] 次に、全面に例えばシリコン酸ィ匕膜を CVD法により堆積し、このシリコン酸ィ匕膜を いわゆるエッチバックすることにより、ゲート電極 14及びキャップ膜 15の側面のみに シリコン酸ィ匕膜を残してサイドウォール絶縁膜 17を形成する。  Next, for example, a silicon oxide film is deposited on the entire surface by the CVD method, and this silicon oxide film is so-called etched back, so that the silicon oxide film is formed only on the side surfaces of the gate electrode 14 and the cap film 15. A sidewall insulating film 17 is formed leaving the film.
[0032] 次に、キャップ膜 15及びサイドウォール絶縁膜 17をマスクとして素子活性領域に不 純物、ここではリン (P)を LDD領域 16よりも不純物濃度が高くなる条件、例えばドー ズ量 5. O X 1014Zcm2、加速エネルギー 13keVの条件でイオン注入し、 LDD領域 1 6と重畳されるソース Zドレイン領域 18を形成して、 MOSトランジスタ 20を完成させる [0032] Next, using the cap film 15 and the sidewall insulating film 17 as a mask, an impurity in the element active region, here phosphorus (P), has a higher impurity concentration than the LDD region 16, for example, a dose of 5 Ion implantation under conditions of OX 10 14 Zcm 2 and acceleration energy of 13 keV to form the source Z drain region 18 that overlaps the LDD region 16, thereby completing the MOS transistor 20.
[0033] 続いて、図 1Bに示すように、 MOSトランジスタ 20の保護膜 21及び層間絶縁膜 22a を順次形成する。 Subsequently, as shown in FIG. 1B, a protective film 21 and an interlayer insulating film 22a of the MOS transistor 20 are sequentially formed.
詳細には、 MOSトランジスタ 20を覆うように、保護膜 21及び層間絶縁膜 22aを順 次堆積する。ここで、保護膜 21としては、シリコン酸ィ匕膜を材料とし、 CVD法により膜 厚 20nm程度に堆積する。層間絶縁膜 22aとしては、例えばプラズマ SiO膜 (膜厚 20 nm程度)、プラズマ SiN膜 (膜厚 80nm程度)及びプラズマ TEOS膜 (膜厚 1 OOOnm程 度)を順次成膜した積層構造を形成し、積層後、 CMPにより膜厚が 700nm程度とな るまで研磨する。 Specifically, a protective film 21 and an interlayer insulating film 22a are sequentially deposited so as to cover the MOS transistor 20. Here, as the protective film 21, a silicon oxide film is used as a material, and is deposited to a film thickness of about 20 nm by a CVD method. As the interlayer insulating film 22a, for example, a plasma SiO film (film thickness 20 nm), a plasma SiN film (film thickness of about 80 nm), and a plasma TEOS film (film thickness of about 1 OOOnm) are sequentially formed, and after stacking, until CMP reaches a film thickness of about 700 nm Grind.
[0034] 続いて、図 1Cに示すように、層間絶縁膜 22b及び水素拡散防止膜 23を順次形成 する。なお、図 1C以下の各図では、図示の便宜上、層間絶縁膜 22aから上部の構 成のみを示し、シリコン半導体基板 10や MOSトランジスタ 20等の図示を省略する。  Subsequently, as shown in FIG. 1C, an interlayer insulating film 22b and a hydrogen diffusion preventing film 23 are sequentially formed. 1C and subsequent drawings, for convenience of illustration, only the structure above the interlayer insulating film 22a is shown, and illustration of the silicon semiconductor substrate 10, the MOS transistor 20, and the like is omitted.
[0035] 詳細には、先ず、層間絶縁膜 22a上に例えば TEOSを用いたプラズマ CVD法によ り、シリコン酸ィ匕膜を膜厚 lOOnm程度に堆積し、層間絶縁膜 22bを形成する。その 後、層間絶縁膜 22bをァニール処理する。このァニール処理の条件としては、 Nガス  [0035] Specifically, first, a silicon oxide film is deposited to a thickness of about lOOnm on the interlayer insulating film 22a by, for example, a plasma CVD method using TEOS to form the interlayer insulating film 22b. Thereafter, the interlayer insulating film 22b is annealed. The condition for this annealing treatment is N gas
2 を 20リットル Z分の流量で供給しながら、例えば 650°Cで 20分間〜 45分間実行する  For example, run 2 at a flow rate of 20 liters Z for 20 minutes to 45 minutes at 650 ° C.
[0036] 次に、層間絶縁膜 22b上に、後述する強誘電体キャパシタ構造のキャパシタ特性 の劣化を防止する(外部或いは上層の絶縁膜から発生する水分に起因して発生した 水素の強誘電体膜への浸入を防止する)ための水素拡散防止膜 23を形成する。水 素拡散防止膜 23としては、金属酸化物、例えばアルミナ (Al O )を材料として、スパ Next, on the interlayer insulating film 22b, the deterioration of the capacitor characteristics of the ferroelectric capacitor structure to be described later is prevented (the ferroelectric substance of hydrogen generated due to moisture generated from the external or upper insulating film) A hydrogen diffusion prevention film 23 is formed to prevent intrusion into the film). The hydrogen diffusion prevention film 23 is made of a metal oxide such as alumina (Al 2 O 3) as a material, and a
2 3  twenty three
ッタ法により膜厚 20ηπ!〜 50nm程度に堆積する。その後、水素拡散防止膜 23をァ ニール処理する。このァニール処理の条件としては、 Oガスを 2リットル Z分の流量  Film thickness of 20ηπ by using the Deposits at ~ 50nm. Thereafter, the hydrogen diffusion preventing film 23 is annealed. The conditions for this annealing process are: O gas flow rate of 2 liters Z
2  2
で供給しながら、例えば 650°Cで 30秒間〜 120秒間実行する。  For example, at 650 ° C. for 30 seconds to 120 seconds.
[0037] 続いて、図 1Dに示すように、下部電極層 24、強誘電体膜 25及び上部電極層 26を 順次形成する。 Subsequently, as shown in FIG. 1D, a lower electrode layer 24, a ferroelectric film 25, and an upper electrode layer 26 are sequentially formed.
詳細には、先ず、スパッタ法により例えば膜厚が 150ηπ!〜 200nm程度に Pt膜を 堆積し、下部電極層 24を形成する。  Specifically, first, for example, the film thickness is 150 ηπ! A Pt film is deposited to about 200 nm to form the lower electrode layer 24.
[0038] 次に、 RFスパッタ法により、下部電極層 24上に強誘電体である例えば PbZr Ti O (PZT: 0<x< 1)力もなる強誘電体膜 25を膜厚 100nm〜300nm程度に堆積すNext, a ferroelectric film 25 having a PbZr Ti O (PZT: 0 <x <1) force, which is a ferroelectric material, is formed on the lower electrode layer 24 to a film thickness of about 100 nm to 300 nm by RF sputtering. Deposit
3 Three
る。そして、強誘電体膜 25をァニール処理して当該強誘電体膜 25を結晶化する。こ のァニール処理の条件としては、 ArZOガスを Arが 1. 98リットル Z分、 Oが 0. 02  The Then, the ferroelectric film 25 is annealed to crystallize the ferroelectric film 25. The annealing conditions include ArZO gas with 1.98 liters Z for Ar and 0.02 for O.
2 2 twenty two
5リットル Z分の流量で供給しながら、例えば 550°C〜650°Cで 60秒間〜 120秒間 実行する。強誘電体膜 25の材料としては、 PZTの代わりに、 Pb La Zr Ti O (0 l -x l -y y 3 <χ< 1, 0<y< l)、 SrBi (Ta Nb ) O (0<x< 1)、 Bi Ti O 等を用いても良 While supplying at a flow rate of 5 liters Z, for example, run at 550 ° C to 650 ° C for 60 seconds to 120 seconds. The material of the ferroelectric film 25 is Pb La Zr Ti O (0 l -xl -yy 3 <χ <1, 0 <y <l), SrBi (Ta Nb) O (0 <x <1), Bi Ti O, etc. may be used.
2 x 1-x 2 9 4 2 12  2 x 1-x 2 9 4 2 12
い。  Yes.
[0039] 次に、強誘電体膜 25上に上部電極層 26を堆積形成する。  Next, the upper electrode layer 26 is deposited on the ferroelectric film 25.
上部電極層 26としては、先ず反応性スパッタ法により、例えば導電性酸化物である IrO膜 26aを膜厚 30nm〜70nm程度に形成する。その後、 IrO膜 26aをァニール As the upper electrode layer 26, first, for example, an IrO film 26a, which is a conductive oxide, is formed to a thickness of about 30 nm to 70 nm by reactive sputtering. Then, anneal the IrO film 26a
2 2 twenty two
処理する。このァニール処理の条件としては、 ArZOガスを Arが 2. 0リットル Z分、  Process. The annealing conditions include ArZO gas with 2.0 liters of Z,
2  2
Oが 0. 02リットル Z分の流量で供給しながら、例えば 650°C〜850°Cで 10秒間〜 6 While O is supplied at a flow rate of 0.02 liters Z, for example, 650 ° C to 850 ° C for 10 seconds to 6
2 2
0秒間実行する。次に、 IrO膜 26a上に、反応性スパッタ法により IrO膜 26bを膜厚  Run for 0 seconds. Next, the IrO film 26b is formed on the IrO film 26a by reactive sputtering.
2 2  twenty two
150nm〜300nm程度に形成する。そして、 IrO膜 26b上に、当該 IrO膜 26bのキ  It is formed in a thickness of about 150 nm to 300 nm. Then, a key of the IrO film 26b is formed on the IrO film 26b.
2 2  twenty two
ヤップ膜として機能する貴金属膜、ここでは Pt膜 26cをスパッタ法により膜厚 lOOnm 程度に形成する。 IrO膜 26a, 26b及び Pt膜 26cから上部電極層 26が構成される。  A noble metal film functioning as a yap film, here a Pt film 26c, is formed to a thickness of about lOOnm by sputtering. The upper electrode layer 26 is composed of the IrO films 26a and 26b and the Pt film 26c.
2  2
なお、上部電極層 26において、 IrO膜 26a, 26bの代わりに Ir、 Ru、 RuO、 SrRuO  In the upper electrode layer 26, Ir, Ru, RuO, SrRuO are used instead of the IrO films 26a, 26b.
2 2 twenty two
、その他の導電性酸ィ匕物やこれらの積層構造としても良い。また、 Pt膜 26cの形成Other conductive oxides or a laminated structure thereof may be used. Also, formation of Pt film 26c
3 Three
を省略することも可能である。  Can be omitted.
[0040] 続いて、図 2Aに示すように、上部電極 31をパターン形成する。 Subsequently, as shown in FIG. 2A, the upper electrode 31 is patterned.
詳細には、上部電極層 26をリソグラフィー及びそれに続くドライエッチングにより複 数の電極形状に加工して、上部電極 31をパターン形成する。  Specifically, the upper electrode layer 26 is processed into a plurality of electrode shapes by lithography and subsequent dry etching, and the upper electrode 31 is patterned.
[0041] 続いて、図 2Bに示すように、強誘電体膜 25を加工する。 Subsequently, as shown in FIG. 2B, the ferroelectric film 25 is processed.
詳細には、強誘電体膜 25を上部電極 31に整合させて、リソグラフィー及びそれに 続くドライエッチングにより加工する。この強誘電体膜 25のパターユングの後に、強 誘電体膜 25をァニール処理して当該強誘電体膜 25の機能回復を図る。  Specifically, the ferroelectric film 25 is aligned with the upper electrode 31 and processed by lithography and subsequent dry etching. After the patterning of the ferroelectric film 25, the ferroelectric film 25 is annealed to restore the function of the ferroelectric film 25.
[0042] 続いて、図 2Cに示すように、強誘電体膜 25への水素'水の浸入を防止するための 水素拡散防止膜 27を形成する。 Subsequently, as shown in FIG. 2C, a hydrogen diffusion preventing film 27 for preventing the invasion of hydrogen 'water into the ferroelectric film 25 is formed.
詳細には、強誘電体膜 25及び上部電極 31を覆うように下部電極層 24上に、アルミ ナ (Al O )を材料として、スパッタ法により膜厚 50nm程度に堆積し、水素拡散防止 Specifically, on the lower electrode layer 24 so as to cover the ferroelectric film 25 and the upper electrode 31, aluminum (Al 2 O 3) is used as a material and deposited to a film thickness of about 50 nm by a sputtering method to prevent hydrogen diffusion.
2 3 twenty three
膜 27を形成する。その後、水素拡散防止膜 27をァニール処理する。  A film 27 is formed. Thereafter, the hydrogen diffusion preventing film 27 is annealed.
[0043] 続いて、図 2Dに示すように、水素拡散防止膜 27と共に下部電極層 24をカ卩ェし、 強誘電体キャパシタ構造 30を完成させる。 詳細には、水素拡散防止膜 27及び下部電極層 24を、加工された強誘電体膜 25 に整合させて下部電極層 24が強誘電体膜 25よりも大きいサイズに残るように、リソグ ラフィー及びそれに続くドライエッチングにより加工し、下部電極 32をパターン形成す る。これにより、下部電極 32上に強誘電体膜 25、上部電極 31が順次積層され、強誘 電体膜 25を介して下部電極 32と上部電極 31とが容量結合する強誘電体キャパシタ 構造 30を完成させる。このとき同時に、上部電極 31の上面から上部電極 31及び強 誘電体膜 25の側面、下部電極層 24の上面にかけて覆うように水素拡散防止膜 27が 残る。その後、水素拡散防止膜 27をァニール処理する。 Subsequently, as shown in FIG. 2D, the lower electrode layer 24 is covered together with the hydrogen diffusion preventing film 27 to complete the ferroelectric capacitor structure 30. In detail, the hydrogen diffusion prevention film 27 and the lower electrode layer 24 are aligned with the processed ferroelectric film 25 so that the lower electrode layer 24 remains larger in size than the ferroelectric film 25. Subsequent dry etching is performed to form a pattern of the lower electrode 32. Thus, the ferroelectric film 25 and the upper electrode 31 are sequentially laminated on the lower electrode 32, and the ferroelectric capacitor structure 30 in which the lower electrode 32 and the upper electrode 31 are capacitively coupled through the ferroelectric film 25 is obtained. Finalize. At the same time, the hydrogen diffusion preventing film 27 remains so as to cover from the upper surface of the upper electrode 31 to the side surfaces of the upper electrode 31 and the ferroelectric film 25 and the upper surface of the lower electrode layer 24. Thereafter, the hydrogen diffusion preventing film 27 is annealed.
[0044] 続いて、図 3Aに示すように、水素拡散防止膜 28を形成する。 Subsequently, as shown in FIG. 3A, a hydrogen diffusion preventing film 28 is formed.
詳細には、強誘電体キャパシタ構造 30の全面を覆うように、強誘電体キャパシタ構 造 30のキャパシタ特性の劣化を防止する(外部或いは上層の絶縁膜から発生する 水分に起因して発生した水素の強誘電体膜 25への浸入を防止する)ための水素拡 散防止膜 28を形成する。水素拡散防止膜 28としては、金属酸化物、例えばアルミナ (Al O )を材料として、スパッタ法により膜厚 20nm〜50nm程度に堆積する。その Specifically, the capacitor characteristics of the ferroelectric capacitor structure 30 are prevented from deteriorating so as to cover the entire surface of the ferroelectric capacitor structure 30 (hydrogen generated due to moisture generated from an external or upper insulating film). Hydrogen diffusion prevention film 28 is formed to prevent the intrusion into the ferroelectric film 25). As the hydrogen diffusion preventing film 28, a metal oxide, for example, alumina (Al 2 O 3) is used as a material and deposited to a thickness of about 20 nm to 50 nm by a sputtering method. That
2 3 twenty three
後、水素拡散防止 28をァニール処理する。  Thereafter, the hydrogen diffusion prevention 28 is annealed.
[0045] 続いて、図 3Bに示すように、層間絶縁膜 33を成膜する。 Subsequently, as shown in FIG. 3B, an interlayer insulating film 33 is formed.
詳細には、強誘電体キャパシタ構造 30を水素拡散防止膜 27, 28を介して覆うよう に、層間絶縁膜 33を形成する。ここで、層間絶縁膜 33としては、例えば TEOSを用 いたプラズマ CVD法により、シリコン酸化膜を膜厚 1500nm〜2500nm程度に堆積 した後、 CMPにより例えば膜厚が lOOOnm程度となるまで研磨して形成する。 CMP の後に、層間絶縁膜 33の脱水 (及び表面窒化)を目的として、例えば N Oのプラズ  Specifically, the interlayer insulating film 33 is formed so as to cover the ferroelectric capacitor structure 30 via the hydrogen diffusion preventing films 27 and 28. Here, the interlayer insulating film 33 is formed by depositing a silicon oxide film with a film thickness of about 1500 nm to 2500 nm by, for example, a plasma CVD method using TEOS, and then polishing the film by CMP to a film thickness of about lOOOnm. To do. After CMP, for example, N 2 O plasma is used for the purpose of dehydration (and surface nitriding) of the interlayer insulating film 33.
2 マァニール処理を施す。  2 Apply Manil processing.
[0046] 続いて、図 3Cに示すように、トランジスタ構造 20のソース Zドレイン領域 18と接続さ れるプラグ 36を形成する。  Subsequently, as shown in FIG. 3C, a plug 36 connected to the source Z drain region 18 of the transistor structure 20 is formed.
詳細には、先ず、ソース Zドレイン領域 18をエッチングストッパーとして、当該ソース Zドレイン領域 18の表面の一部が露出するまで層間絶縁膜 33、水素拡散防止膜 2 8, 27、層間絶縁膜 22b, 22a、及び保護膜 21をリソグラフィー及びそれに続くドライ エッチングにより加工し、例えば約 0. 3 ^ πι(0. 35 m程度)径のビア孔 36aを形成 する。 Specifically, first, using the source Z drain region 18 as an etching stopper, the interlayer insulating film 33, the hydrogen diffusion preventing films 28, 27, the interlayer insulating film 22b, until a part of the surface of the source Z drain region 18 is exposed. 22a and protective film 21 are processed by lithography and subsequent dry etching to form, for example, a via hole 36a having a diameter of about 0.3 ^ πι (about 0.35 m) To do.
[0047] 次に、ビア孔 36aの壁面を覆うように、スパッタ法により例えば Ti膜及び TiN膜を膜 厚 20nm程度及び膜厚 50nm程度に順次堆積して、下地膜 (グルー膜) 36bを形成 する。そして、 CVD法によりグルー膜 36bを介してビア孔 36aを埋め込むように例え ば W膜を形成する。その後、 CMPにより層間絶縁膜 33をストッパーとして W膜及び グルー膜 36bを研磨し、ビア孔 36a内をグルー膜 36bを介して Wで埋め込むプラグ 3 6を形成する。 CMPの後に、例えば N Oのプラズマァニール処理を施す。  Next, a base film (glue film) 36b is formed by sequentially depositing, for example, a Ti film and a TiN film with a film thickness of about 20 nm and a film thickness of about 50 nm by a sputtering method so as to cover the wall surface of the via hole 36a. To do. Then, for example, a W film is formed by the CVD method so as to fill the via hole 36a through the glue film 36b. Thereafter, the W film and the glue film 36b are polished by CMP using the interlayer insulating film 33 as a stopper to form a plug 36 that fills the via hole 36a with W through the glue film 36b. After CMP, for example, N 2 plasma annealing is performed.
2  2
[0048] 続いて、図 4Aに示すように、後述するようにプラグ 36の酸ィ匕防止のための保護膜 3 7及びレジストマスク 38を順次形成した後、強誘電体キャパシタ構造 30へのビア孔 3 4a, 35aを形成する。  Subsequently, as shown in FIG. 4A, after a protective film 37 and a resist mask 38 for preventing oxidation of the plug 36 are sequentially formed as will be described later, a via to the ferroelectric capacitor structure 30 is formed. Holes 3 4a and 35a are formed.
詳細には、先ず、 CVD法により、層間絶縁膜 33及びプラグ 36上に例えば SiON膜 を膜厚 lOOnm程度に堆積し、保護膜 37を形成する。次に、保護膜 37上にレジストを 塗布し、リソグラフィ一により当該レジストを加工して、開口 38a, 38bを有するレジスト マスク 38を形成する。  Specifically, first, a protective film 37 is formed by depositing, for example, a SiON film on the interlayer insulating film 33 and the plug 36 to a thickness of about lOOnm by the CVD method. Next, a resist is applied on the protective film 37, and the resist is processed by lithography to form a resist mask 38 having openings 38a and 38b.
[0049] 次に、レジストマスク 38を用いて保護膜 37をドライエッチングし、保護膜 37の開口 3 8a, 38bに整合する部位に開口 37a, 37bを形成する。そして、上部電極 31及び下 部電極 32をそれぞれエッチングストッパーとして、層間絶縁膜 33及び水素拡散防止 膜 28, 27をドライエッチングする。このドライエッチングでは、上部電極 31の表面の 一部が露出するまで層間絶縁膜 33及び水素拡散防止膜 28, 27に施す加工と、下 部電極 32の表面の一部が露出するまで層間絶縁膜 33及び水素拡散防止膜 28, 2 7に施すカ卩ェとが同時に実行され、それぞれの部位に例えば約 0. 5 m径のビア孔 34a, 35aが同時形成される。  Next, the protective film 37 is dry-etched using the resist mask 38, and openings 37a and 37b are formed at portions matching the openings 38a and 38b of the protective film 37. Then, using the upper electrode 31 and the lower electrode 32 as an etching stopper, the interlayer insulating film 33 and the hydrogen diffusion preventing films 28 and 27 are dry-etched. In this dry etching, the interlayer insulating film 33 and the hydrogen diffusion preventing films 28 and 27 are processed until a part of the surface of the upper electrode 31 is exposed, and the interlayer insulating film is exposed until a part of the surface of the lower electrode 32 is exposed. 33 and the hydrogen diffusion preventing films 28 and 27 are simultaneously performed, and via holes 34a and 35a having a diameter of about 0.5 m, for example, are simultaneously formed at the respective portions.
[0050] 続いて、図 4Bに示すように、レジストマスク 38を除去する。このとき、プラグ 36は保 護膜 37で覆われた状態とされている。その後、強誘電体キャパシタ構造 30の形成後 の諸工程により強誘電体キャパシタ構造 30の受けたダメージを回復するためのァ- ール処理を行う。ここで、プラグ 36は保護膜 37で覆われているため、 Wの酸化が防 止される。  [0050] Subsequently, as shown in FIG. 4B, the resist mask 38 is removed. At this time, the plug 36 is covered with the protective film 37. Thereafter, a failure treatment for recovering the damage received by the ferroelectric capacitor structure 30 is performed by various steps after the formation of the ferroelectric capacitor structure 30. Here, since the plug 36 is covered with the protective film 37, the oxidation of W is prevented.
[0051] 続いて、図 4Cに示すように、強誘電体キャパシタ構造 30と接続されるプラグ 34, 3 5を形成する。 Subsequently, as shown in FIG. 4C, plugs 34, 3 connected to the ferroelectric capacitor structure 30 are connected. Form 5.
詳細には、先ず、全面異方性エッチング、いわゆるエッチバックにより、保護膜 37を 除去する。  Specifically, first, the protective film 37 is removed by whole surface anisotropic etching, so-called etch back.
次に、ビア孔 34a, 35aの壁面を覆うように、スパッタ法により例えば Ti膜及び TiN 膜を膜厚 20nm程度及びに膜厚 50nm程度に順次堆積して、下地膜 (グルー膜) 34 b, 35bを形成する。  Next, for example, a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm by a sputtering method so as to cover the wall surfaces of the via holes 34a, 35a, and a base film (glue film) 34 b, 35b is formed.
[0052] 次に、プラグ 34, 35を形成する。  Next, plugs 34 and 35 are formed.
本実施形態では、水素拡散防止膜 23, 27, 28と相俟って、発生した水素の強誘 電体膜 25への浸入を確実に防止すベぐ水素を吸収する性質を持つ水素吸蔵性導 電材料を用いて、グルー膜 34b, 35bを介してビア孔 34a, 35aを埋め込むように、層 間絶縁膜 33上に当該水素吸蔵性導電材料又はこれを含む導電材料を堆積する。 水素吸蔵性導電材料としては、 (1)自身の体積の 935倍もの水素を吸収する高い水 素吸収能力を有する Pdや、 Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm等の水 素吸収性導電材料を単独で使用しても良いし、 (2) (1)に示す水素吸収性導電材料 の任意の組み合わせによる合金を使用しても、 (3) (1)に示す水素吸収性導電材料 の少なくとも 1種と他の金属(アルミニウム (A1) ,銅(Cu) ,鉄 (Fe) ,ニッケル (Ni)等 の一般的な導電性金属材料の少なくとも 1種、或いはイリジウム (Ir) , 白金 (Pt) ,金( Au) ,銀 (Ag) ,ルテニウム (Ru) ,ロジウム(Rh) ,オスミウム(Os)等の貴金属の少な くとも 1種)との合金を使用しても良い。ここでは、堆積する導電材料として Pdを用い、 例えば C VD法又は P VD法によりプラグ 34 , 35を形成する。  In the present embodiment, in combination with the hydrogen diffusion prevention films 23, 27, 28, the hydrogen occlusion property has the property of absorbing hydrogen to reliably prevent the generated hydrogen from entering the strong dielectric film 25. Using the conductive material, the hydrogen storage conductive material or a conductive material containing the same is deposited on the interlayer insulating film 33 so as to fill the via holes 34a and 35a via the glue films 34b and 35b. Examples of hydrogen storage conductive materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen-absorbing conductive materials such as Nd and Sm may be used alone, or (2) Even if an alloy of any combination of hydrogen-absorbing conductive materials shown in (1) is used, (3) ( At least one of the hydrogen-absorbing conductive materials shown in 1) and at least one of the other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) Or an alloy with iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os) or other noble metals. May be used. Here, Pd is used as the conductive material to be deposited, and the plugs 34 and 35 are formed by, for example, the C VD method or the P VD method.
[0053] そして、 CMPにより層間絶縁膜 33をストッパーとして、堆積した Pd及びグルー膜 3 4b, 35bを研磨し、ビア孔 34a, 35a内をグルー膜 34b, 35bを介してそれぞれ Wで 埋め込むプラグ 34, 35を形成する。 CMPの後に、例えば N Oのプラズマァニール  Then, the deposited Pd and glue films 34b and 35b are polished by CMP using the interlayer insulating film 33 as a stopper, and the via holes 34a and 35a are filled with W via the glue films 34b and 35b, respectively. , 35. After CMP, eg N 2 O plasma anneal
2  2
処理を施しても良い。  Processing may be performed.
[0054] 本実施形態では、上部電極 31及び下部電極 32との電気的接続をとるために必須 である導電プラグに本発明を適用し、プラグ 34, 35を、大量の水素吸収能力(大きな 表面積及び体積)を有する水素吸蔵性導電材料である Pdを材料として形成する。従 つて、構成部材数及び工程数を増加させることなぐ強誘電体膜 25への水素の浸入 を効率良く防止することができ、高いキャパシタ特性を確実に保持することが可能と なる。 In the present embodiment, the present invention is applied to a conductive plug that is indispensable for electrical connection with the upper electrode 31 and the lower electrode 32, and the plugs 34 and 35 are provided with a large amount of hydrogen absorption capacity (a large surface area). And Pd, which is a hydrogen storage conductive material having a volume). Therefore, hydrogen permeates into the ferroelectric film 25 without increasing the number of components and processes. Can be efficiently prevented, and high capacitor characteristics can be reliably maintained.
[0055] 続いて、図 5Aに示すように、プラグ 34, 35, 36とそれぞれ接続される第 1の配線 4 5を形成する。  Subsequently, as shown in FIG. 5A, first wirings 45 connected to the plugs 34, 35, 36 are formed.
詳細には、先ず、層間絶縁膜 33上の全面にスパッタ法等によりバリアメタル膜 42、 配線膜 43及びバリアメタル膜 44を堆積する。ノリアメタル膜 42としては、スパッタ法 により例えば Ti膜を5 nm程度及び TiN膜を膜厚 150nm程度に順次成膜する。配線 膜 43としては、例えば A1合金膜 (ここでは Al— Cu膜)を膜厚 350nm程度に成膜す る。ノリアメタル膜 44としては、スパッタ法により例えば Ti膜を膜厚 5nm程度及び Ti N膜を膜厚 150nm程度に順次成膜する。 Ti膜と TiN膜との積層構造は、バリアメタ ルとしての機能とストレスマイグレイシヨン抑制効果と奏する。また、バリアメタル膜の 構成要素である Ti膜は、コンタクト抵抗を低減させる効果を奏する。ここで、配線膜 4 3の構造は、同一ルールの FeRAM以外のロジック部と同じ構造とされているため、 配線の加工や信頼性上の問題はな!/、。 Specifically, first, the barrier metal film 42, the wiring film 43, and the barrier metal film 44 are deposited on the entire surface of the interlayer insulating film 33 by sputtering or the like. As the noria metal film 42, for example, a Ti film is sequentially formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering. As the wiring film 43, for example, an A1 alloy film (here, Al—Cu film) is formed to a film thickness of about 350 nm. As the noria metal film 44, for example, a Ti film is sequentially formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering. The laminated structure of Ti film and TiN film has the function as a barrier metal and the effect of suppressing stress migration. The Ti film, which is a constituent element of the barrier metal film, has the effect of reducing the contact resistance. Here, the structure of the wiring film 43 is the same as that of the logic part other than FeRAM of the same rule, so there is no problem in wiring processing or reliability!
[0056] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノリアメタル膜 44 、配線膜 43及びバリアメタル膜 42を配線形状にカ卩ェし、プラグ 34, 35, 36とそれぞ れ接続される各第 1の配線 45をパターン形成する。なお、配線膜 43として A1合金膜 を形成する代わりに、いわゆるダマシン法等を利用して Cu膜 (又は Cu合金膜)を形 成し、第 1の配線 45として Cu配線を形成しても良い。  Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the noria metal film 44, the wiring film 43, and the barrier metal film 42 are formed by lithography and subsequent dry etching. The first wiring 45 connected to the plugs 34, 35, and 36 is patterned. Instead of forming an A1 alloy film as the wiring film 43, a Cu film (or Cu alloy film) may be formed by using a so-called damascene method or the like, and a Cu wiring may be formed as the first wiring 45. .
[0057] 続いて、図 5Bに示すように、第 1の配線 45と接続される第 2の配線 54を形成する。  Subsequently, as shown in FIG. 5B, a second wiring 54 connected to the first wiring 45 is formed.
詳細には、先ず、第 1の配線 45を覆うように層間絶縁膜 46を形成する。層間絶縁 膜 46としては、シリコン酸ィ匕膜を膜厚7 OOnm程度に成膜し、プラズマ TEOS膜を形 成して膜厚を全体で l lOOnm程度とした後に、 CMPにより表面を研磨して、膜厚を 7 50nm程度に形成する。 Specifically, first, an interlayer insulating film 46 is formed so as to cover the first wiring 45. As the interlayer insulating film 46, a silicon oxide film is formed to a thickness of about 7 OOnm, a plasma TEOS film is formed to a total thickness of about lOOm, and then the surface is polished by CMP. The film thickness is about 750 nm.
[0058] 次に、第 1の配線 45と接続されるプラグ 47を形成する。  Next, a plug 47 connected to the first wiring 45 is formed.
第 1の配線 45の表面の一部が露出するまで、層間絶縁膜 46をリソグラフィー及び それに続くドライエッチングにより加工して、例えば約 0. 25 m径のビア孔 47aを形 成する。次に、このビア孔 47aの壁面を覆うように下地膜 (グルー膜) 48を形成した後The interlayer insulating film 46 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 45 is exposed, for example, to form a via hole 47a having a diameter of about 0.25 m. To do. Next, after forming a base film (glue film) 48 so as to cover the wall surface of the via hole 47a,
、 CVD法によりグルー膜 48を介してビア孔 47aを埋め込むように W膜を形成する。そ して、層間絶縁膜 46をストッパーとして例えば W膜及びグルー膜 48を CMPにより研 磨し、ビア孔 47a内をグルー膜 48を介して Wで埋め込むプラグ 47を形成する。 Then, a W film is formed so as to fill the via hole 47a through the glue film 48 by the CVD method. Then, for example, the W film and the glue film 48 are polished by CMP using the interlayer insulating film 46 as a stopper to form a plug 47 filling the via hole 47a with W via the glue film 48.
[0059] なお、 CMPの代わりに、 W膜及びグルー膜 48の全面異方性エッチング、 、わゆる エッチバックを行ってプラグ 47を形成するようにしても良い。このとき、 Wのみエツチン グされ、グルー膜 48はそのまま残存する。 Note that instead of CMP, the plug 47 may be formed by performing anisotropic etching of the entire surface of the W film and the glue film 48 or so-called etch back. At this time, only W is etched, and the glue film 48 remains as it is.
[0060] 次に、プラグ 47とそれぞれ接続される第 2の配線 54を形成する。 Next, second wirings 54 connected to the plugs 47 are formed.
先ず、全面にスパッタ法等によりバリアメタル膜 51、配線膜 52及びバリアメタル膜 5 First, the barrier metal film 51, the wiring film 52, and the barrier metal film 5 are formed on the entire surface by sputtering or the like.
3を堆積する。ノ リアメタル膜 51としては、スパッタ法により例えば Ti膜を 5nm程度及 び TiN膜を膜厚 150nm程度に成膜する。 3 is deposited. As the rare metal film 51, for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
[0061] ここで、プラグ 47をエッチバック法により形成する場合には、プラグ 47の形成時に 残存するグルー膜 48がバリアメタル膜として機能するため、バリアメタル膜 51は不要 である。 Here, when the plug 47 is formed by the etch-back method, the glue film 48 remaining when the plug 47 is formed functions as a barrier metal film, and thus the barrier metal film 51 is unnecessary.
[0062] 配線膜 52としては、例えば A1合金膜 (ここでは Al— Cu膜)を膜厚 350nm程度に成 膜する。ノ リアメタル膜 53としては、スパッタ法により例えば Ti膜を 5nm程度及び Ti N膜を膜厚 150nm程度に成膜する。ここで、配線膜 52の構造は、同一ルールの Fe RAM以外のロジック部と同じ構造とされて ヽるため、配線の加工や信頼性上の問題 はない。  As the wiring film 52, for example, an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm. As the rare metal film 53, for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering. Here, since the structure of the wiring film 52 is assumed to be the same structure as that of the logic part other than the Fe RAM of the same rule, there is no problem in wiring processing and reliability.
[0063] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノ リアメタル膜 53 、配線膜 52及びバリアメタル膜 51を配線形状にカ卩ェし、第 2の配線 54をパターン形 成する。  [0063] Next, after forming, for example, a SiON film or an antireflection film (not shown) as the antireflection film, the antireflection film, the NORA metal film 53, the wiring film 52, and the barrier metal film are formed by lithography and subsequent dry etching. 51 is covered with the wiring shape, and the second wiring 54 is formed into a pattern.
[0064] しカゝる後、層間絶縁膜ゃ更なる上層配線の形成等の諸工程を経て、本実施形態に よるプレーナ型の FeRAMを完成させる。  [0064] After that, the planar type FeRAM according to the present embodiment is completed through various processes such as the formation of an upper layer wiring and the interlayer insulating film.
[0065] 以上説明したように、本実施形態によれば、比較的簡易な構成で水素の強誘電体 膜 25への侵入を確実に防止し、強誘電体キャパシタ構造 30の高性能を保持する信 頼性の高 、プレーナ型の FeRAMを、構成部材数及び工程数を増加させることなぐ 実現することができる。 As described above, according to the present embodiment, hydrogen can be reliably prevented from entering the ferroelectric film 25 with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 30 can be maintained. Highly reliable planar type FeRAM without increasing the number of components and processes Can be realized.
[0066] ここで、 FeRAMの各種配線、強誘電体キャパシタ構造 30の上層に位置する配線 の一部、例えば図 5Bの第 1の配線や第 2の配線 (及びそれ以降の各配線)を、いわ ゆるダマシン法により形成しても良い。以下、第 2の配線にダマシン法を適用して Cu 配線を形成する場合にっ ヽて例示する。  [0066] Here, various wirings of FeRAM, a part of the wiring located in the upper layer of the ferroelectric capacitor structure 30, for example, the first wiring and the second wiring (and subsequent wirings) in FIG. It may be formed by a so-called damascene method. In the following, an example is given of the case where Cu wiring is formed by applying the damascene method to the second wiring.
[0067] 図 6A〜図 8Bは、第 1の実施形態においてダマシン配線を形成する場合、ここでは 図 5A以降の FeRAMの構成をその製造方法 (主要工程)と共に工程順に示す概略 断面図である。  FIGS. 6A to 8B are schematic cross-sectional views showing the structure of the FeRAM in FIG. 5A and subsequent steps together with its manufacturing method (main steps) when forming damascene wiring in the first embodiment.
[0068] 先ず、図 5Aの工程を経た後、図 6Aに示すように、第 1の配線 45を覆うように層間 絶縁膜 46を形成する。  First, after the process of FIG. 5A, an interlayer insulating film 46 is formed so as to cover the first wiring 45 as shown in FIG. 6A.
詳細には、第 1の配線 45を覆うように、シリコン酸ィ匕膜を膜厚 700nm程度に成膜し 、プラズマ TEOS膜を形成して膜厚を全体で l lOOnm程度とした後に、 CMP〖こより 表面を研磨して、膜厚を 750nm程度とし、層間絶縁膜 46を形成する。 CMPの後に 、例えば N Oのプラズマァニール処理を施す。  Specifically, a silicon oxide film is formed to a thickness of about 700 nm so as to cover the first wiring 45, a plasma TEOS film is formed to a total thickness of about lOO nm, and then a CMP film is formed. The surface is then polished to a thickness of about 750 nm, and an interlayer insulating film 46 is formed. After CMP, for example, plasma annealing of N 2 O is performed.
2  2
[0069] 続いて、図 6Bに示すように、第 1の配線 45の表面を露出させるビア孔 49aを形成 する。なお、図 6B以下の各図では、図示の便宜上、層間絶縁膜 46から上部の構成 のみを示し、強誘電体キャパシタ構造 30や第 1の配線 45等の図示を省略する。ここ では、プラグ 34, 35, 36と接続される各第 1の配線 45のうちの 1つ(例えばプラグ 35 と接続される第 1の配線 45)と接続されるプラグ 49等を代表して図示する。  Subsequently, as shown in FIG. 6B, a via hole 49 a that exposes the surface of the first wiring 45 is formed. 6B and subsequent figures, for convenience of illustration, only the structure above the interlayer insulating film 46 is shown, and illustration of the ferroelectric capacitor structure 30, the first wiring 45, and the like is omitted. Here, the plug 49 connected to one of the first wires 45 connected to the plugs 34, 35, 36 (for example, the first wire 45 connected to the plug 35) is shown as a representative. To do.
[0070] 詳細には、第 1の配線 45の表面の一部が露出するまで、層間絶縁膜 46をリソダラ フィー及びそれに続くドライエッチングにより加工して、例えば約 0. 25 /z m径のビア 孔 49aを形成する。  [0070] Specifically, the interlayer insulating film 46 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 45 is exposed, for example, a via hole having a diameter of about 0.25 / zm. 49a is formed.
[0071] 続いて、図 6Cに示すように、シリサイド膜からなる下地膜 64を形成して Cuメツキを 行う。  Subsequently, as shown in FIG. 6C, a base film 64 made of a silicide film is formed and Cu plating is performed.
詳細には、酸素非透過性の導電体として、下地膜をシリサイド膜により形成する。具 体的には、ビア孔 49aの内壁面を覆うように、層間絶縁膜 46上にスパッタ法等により 例えば Ta膜を膜厚 ΙΟηπ!〜 20nm程度に形成し、下地膜 (グルー膜) 61を形成する [0072] そして、 Cuのシード膜 (不図示)を成膜した後、メツキ法により、グルー膜 61を介し てビア孔 49aを埋め込むようにグルー膜 61上に Cu (又はその合金)膜 62を堆積する Specifically, the base film is formed of a silicide film as an oxygen-impermeable conductor. Specifically, for example, a Ta film is formed on the interlayer insulating film 46 by sputtering or the like so as to cover the inner wall surface of the via hole 49a. Form a base film (glue film) 61 with a thickness of about 20 nm Then, after forming a Cu seed film (not shown), a Cu (or alloy) film 62 is formed on the glue film 61 so as to embed the via hole 49a via the glue film 61 by a plating method. accumulate
[0073] 続いて、図 6Dに示すように、プラグ 49を形成する。 Subsequently, as shown in FIG. 6D, a plug 49 is formed.
詳細には、 CMPにより層間絶縁膜 46をストッパーとして Cu膜 62及びグルー膜 61 を研磨し、ビア孔 49aをグルー膜 61を介して Cuで埋め込むプラグ 49を形成する。  Specifically, the Cu film 62 and the glue film 61 are polished by CMP using the interlayer insulating film 46 as a stopper, and a plug 49 is formed in which the via hole 49a is filled with Cu via the glue film 61.
[0074] 続いて、図 6Eに示すように、プラグ 49上を覆うように層間絶縁膜 46上に、シリコン 窒化膜 63、層間絶縁膜 64、 SOG膜 65、層間絶縁膜 66及びシリコン窒化膜 67を順 次積層する。 Subsequently, as shown in FIG. 6E, the silicon nitride film 63, the interlayer insulating film 64, the SOG film 65, the interlayer insulating film 66, and the silicon nitride film 67 are formed on the interlayer insulating film 46 so as to cover the plug 49. Are sequentially stacked.
詳細には、シリコン窒化膜 63としては、例えば CVD法により膜厚 50ηπ!〜 lOOnm 程度に形成する。層間絶縁膜 64としては、例えば CVD法により膜厚 200ηπ!〜 400 nm程度に形成する。 SOG膜 65としては、 SOGを回転塗布することにより膜厚 100η m〜200nm程度に形成する。層間絶縁膜 66としては、例えば CVD法により膜厚 10 Onm程度に形成する。シリコン窒化膜 67としては、例えば CVD法により膜厚 lOOnm 程度に形成する。  Specifically, as the silicon nitride film 63, for example, a film thickness of 50ηπ! ~ LOOnm is formed. As the interlayer insulating film 64, for example, a film thickness of 200 ηπ! Forms about ~ 400 nm. The SOG film 65 is formed to have a film thickness of about 100 ηm to 200 nm by spin coating SOG. The interlayer insulating film 66 is formed with a film thickness of about 10 Onm by, for example, the CVD method. The silicon nitride film 67 is formed to a thickness of about lOOnm by, for example, the CVD method.
[0075] 続いて、図 7Aに示すように、シリコン窒化膜 67を加工する。  Subsequently, as shown in FIG. 7A, the silicon nitride film 67 is processed.
詳細には、リソグラフィー及びドライエッチングによりシリコン窒化膜 67をパターニン グし、シリコン窒化膜 67に配線形状の開口 67aを形成する。  Specifically, the silicon nitride film 67 is patterned by lithography and dry etching, and a wiring-shaped opening 67 a is formed in the silicon nitride film 67.
[0076] 続いて、図 7Bに示すように、層間絶縁膜 66及び SOG膜 65をカ卩ェする。 Subsequently, as shown in FIG. 7B, the interlayer insulating film 66 and the SOG film 65 are cleaned.
詳細には、リソグラフィー及びドライエッチングにより層間絶縁膜 66及び SOG膜 65 をパターニングし、層間絶縁膜 66及び SOG膜 65の開口 67aに整合したプラグ 49の 上方に位置する部位にホール形状の開孔 66a, 65aを形成する。  Specifically, the interlayer insulating film 66 and the SOG film 65 are patterned by lithography and dry etching, and a hole-shaped opening 66a is formed at a position located above the plug 49 aligned with the opening 67a of the interlayer insulating film 66 and the SOG film 65. , 65a.
[0077] 続いて、図 7Cに示すように、層間絶縁膜 66及び層間絶縁膜 64を加工する。 Subsequently, as shown in FIG. 7C, the interlayer insulating film 66 and the interlayer insulating film 64 are processed.
詳細には、シリコン窒化膜 67をノヽードマスクとして用いて、リソグラフィー及びドライ エッチングにより層間絶縁膜 66を開口 67aに倣った配線形状にパターユングし、開 孔 66aを拡張した開口 66bを形成する。このとき同時に、層間絶縁膜 66及び SOG膜 65がマスクとして機能し、層間絶縁膜 64が開孔 65aに倣ったホール形状にパター- ングされ、開孔 64aが形成される。 [0078] 続いて、図 7Dに示すように、配線溝 68を完成させる。 Specifically, using the silicon nitride film 67 as a node mask, the interlayer insulating film 66 is patterned into a wiring shape following the opening 67a by lithography and dry etching to form an opening 66b in which the opening 66a is expanded. At the same time, the interlayer insulating film 66 and the SOG film 65 function as a mask, the interlayer insulating film 64 is patterned into a hole shape following the opening 65a, and the opening 64a is formed. Subsequently, as shown in FIG. 7D, the wiring trench 68 is completed.
詳細には、シリコン窒化膜 67をノヽードマスクとして用いて、リソグラフィー及びドライ エッチングにより、プラグ 47の表面が露出するまでシリコン窒化膜 63をパターユング する。このとき、 SOG膜 65には開口 67a, 66bに倣って開孔 65aが拡張された配線 形状の開口 65bが形成されるとともに、シリコン窒化膜 63には開孔 64aに倣ったホー ル形状の開孔 63aが形成される。ここで、シリコン窒化膜 67もエッチングによりシリコ ン窒化膜 63の膜厚分だけ薄くなる。このとき、シリコン窒化膜 63及び層間絶縁膜 64 に形成された開孔 63a, 64aと、 SOG膜 65、層間絶縁膜 66及びシリコン窒化膜 67 に形成された開口 65b, 66b, 67aとが一体となって配線溝 68が完成する。  Specifically, using the silicon nitride film 67 as a node mask, the silicon nitride film 63 is patterned by lithography and dry etching until the surface of the plug 47 is exposed. At this time, the SOG film 65 is formed with a wiring-shaped opening 65b in which the opening 65a is expanded following the openings 67a and 66b, and the silicon nitride film 63 is formed with a hole-shaped opening following the opening 64a. Hole 63a is formed. Here, the silicon nitride film 67 is also thinned by the thickness of the silicon nitride film 63 by etching. At this time, the openings 63a and 64a formed in the silicon nitride film 63 and the interlayer insulating film 64 and the openings 65b, 66b and 67a formed in the SOG film 65, the interlayer insulating film 66 and the silicon nitride film 67 are integrated. Thus, the wiring groove 68 is completed.
[0079] 続いて、図 8Aに示すように、シリサイド膜からなる下地膜 69を形成して Cuメツキを 行う。  Subsequently, as shown in FIG. 8A, a base film 69 made of a silicide film is formed and Cu plating is performed.
詳細には、例えば Ta膜をスパッタ法等により膜厚 ΙΟηπ!〜 20nm程度に形成し、下 地膜 (グルー膜) 69を形成する。  Specifically, for example, a Ta film is formed by sputtering, etc. 膜厚 ηπ! A base film (glue film) 69 is formed to a thickness of about 20 nm.
[0080] そして、 Cuのシード膜 (不図示:膜厚 130nm程度)を成膜した後、メツキ法により、 グルー膜 69を介して配線溝 68を埋め込むようにグルー膜 69上に Cu膜 70を堆積す る。 Then, after forming a Cu seed film (not shown: film thickness of about 130 nm), a Cu film 70 is formed on the glue film 69 so as to embed the wiring groove 68 through the glue film 69 by a plating method. accumulate.
[0081] 続いて、図 8Bに示すように、配線構造 71を形成する。  Subsequently, as shown in FIG. 8B, a wiring structure 71 is formed.
詳細には、 CMPにより層間絶縁膜 66をストッパーとして Cu膜 70、グルー膜 69及 びシリコン窒化膜 67を研磨し、配線溝 68をグルー膜 69を介して Cu (又はその合金) で埋め込み、プラグ 49を介して第 1の配線 45と電気的に接続されてなる配線構造 7 1を形成する。ここで、配線構造 71は、開孔 63a, 64aの部分をグルー膜 69を介して Cuで埋め込む部分が導電プラグ部分に、開口 65b, 66bの部分をグルー膜 69を介 して Cuで埋め込む部分が配線部分に相当し、導電プラグ部分と配線部分とがー体 形成されてなるものである。  Specifically, the Cu film 70, the glue film 69, and the silicon nitride film 67 are polished by CMP using the interlayer insulating film 66 as a stopper, and the wiring groove 68 is filled with Cu (or an alloy thereof) through the glue film 69, and plugged. A wiring structure 71 that is electrically connected to the first wiring 45 through 49 is formed. Here, in the wiring structure 71, the portions where the openings 63a and 64a are embedded with Cu via the glue film 69 are embedded in the conductive plug portion, and the openings 65b and 66b are embedded with Cu via the glue film 69. Corresponds to a wiring portion, and is formed by forming a conductive plug portion and a wiring portion.
[0082] 一変形例 [0082] A variation
以下、第 1の実施形態の緒変形例について説明する。  Hereinafter, a modification of the first embodiment will be described.
[0083] (変形例 1) [0083] (Modification 1)
本例では、第 1の実施形態の構成に加えて、多層配線構造において、少なくとも第 1の配線の配線膜の材料として、水素吸蔵性導電材料又はこれを含む導電材料を用 いる。 In this example, in addition to the configuration of the first embodiment, in the multilayer wiring structure, at least the first As a material for the wiring film of 1 wiring, a hydrogen storage conductive material or a conductive material containing this is used.
図 9A,図 9Bは、第 1の実施形態の変形例 1によるプレーナ型の FeRAMの構成を その製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 9A and FIG. 9B are schematic cross-sectional views showing the structure of the planar type FeRAM according to Modification 1 of the first embodiment in the order of steps together with the manufacturing method (main steps).
[0084] 初めに、第 1の実施形態と同様に、図 1A〜図 4Cの各工程を経る。 First, similarly to the first embodiment, the respective steps of FIGS. 1A to 4C are performed.
続いて、図 9Aに示すように、プラグ 34, 35, 36とそれぞれ接続される各第 1の配線 84を形成する。  Subsequently, as shown in FIG. 9A, first wirings 84 connected to the plugs 34, 35, 36 are formed.
詳細には、先ず、層間絶縁膜 33上の全面にスパッタ法等によりバリアメタル膜 81、 配線膜 82及びバリアメタル膜 83を堆積する。ノリアメタル膜 81としては、スパッタ法 等により例えば Ti膜及び TiN膜をそれぞれ膜厚 5nm程度、 150nm程度に順次積層 して形成する。  Specifically, first, a barrier metal film 81, a wiring film 82, and a barrier metal film 83 are deposited on the entire surface of the interlayer insulating film 33 by sputtering or the like. As the noria metal film 81, for example, a Ti film and a TiN film are sequentially laminated to a film thickness of about 5 nm and 150 nm, respectively, by sputtering or the like.
[0085] 本例では、水素拡散防止膜 23, 27, 28及びプラグ 34, 35と相俟って、発生した水 素の強誘電体膜 25への浸入を確実に防止すベぐ水素を吸収する性質を持つ水素 吸蔵性導電材料又はこれを含む導電材料を用いて配線膜 82を形成する。水素吸蔵 性導電材料としては、 (1)自身の体積の 935倍もの水素を吸収する高い水素吸収能 力を有する Pdや、 Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm等の水素吸収'性 導電材料を単独で使用しても良いし、(2) (1)に示す水素吸収性導電材料の任意の 組み合わせによる合金を使用しても、 (3) (1)に示す水素吸収性導電材料の少なくと も 1種と他の金属(アルミニウム (A1) ,銅 (Cu) ,鉄 (Fe) ,ニッケル (Ni)等の一般的な 導電性金属材料の少なくとも 1種、或いはイリジウム (Ir) , 白金 (Pt) ,金 (Au) ,銀 (A g) ,ルテニウム (RU) ,ロジウム (Rh) ,オスミウム (Os)等の貴金属の少なくとも 1種)と の合金を使用しても良い。ここでは、堆積する導電材料として Pdを用い、例えば CV D法又は PVD法により配線膜 82を膜厚 350nm程度に成膜する。 [0085] In this example, in combination with the hydrogen diffusion prevention films 23, 27, 28 and the plugs 34, 35, hydrogen is absorbed so as to surely prevent the generated hydrogen from entering the ferroelectric film 25. The wiring film 82 is formed using a hydrogen storage conductive material having such a property or a conductive material containing the same. Examples of hydrogen storage conductive materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm and other hydrogen-absorbing conductive materials can be used alone, or (2) (3) (3) ( At least one of the hydrogen-absorbing conductive materials shown in 1) and at least one of the other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) Or at least one precious metal such as iridium (Ir), platinum (Pt), gold (Au), silver (A g), ruthenium (R U ), rhodium (Rh), osmium (Os) An alloy may be used. Here, Pd is used as the conductive material to be deposited, and the wiring film 82 is formed to a thickness of about 350 nm by, for example, the CV D method or the PVD method.
[0086] 本例では、プラグ 34, 35にカロえ、上部電極 31及び下部電極 32とプラグ 34, 35を 介して電気的接続をとるために必須である配線に本発明を適用し、配線膜 82を、大 量の水素吸収能力(大きな表面積及び体積)を有する水素吸蔵性導電材料である P dを材料として形成する。従って、構成部材数及び工程数を増カロさせることなぐ強誘 電体膜 25への水素の浸入を効率良く防止することができ、高いキャパシタ特性を確 実に保持することが可能となる。 [0086] In this example, the present invention is applied to wiring that is indispensable for making electrical connection to the plugs 34 and 35 and establishing electrical connection with the upper electrode 31 and the lower electrode 32 via the plugs 34 and 35. 82 is formed from Pd, which is a hydrogen storage conductive material having a large amount of hydrogen absorption capacity (large surface area and volume). Therefore, it is possible to efficiently prevent hydrogen from entering the strong dielectric film 25 without increasing the number of constituent members and the number of processes, thereby ensuring high capacitor characteristics. It is possible to hold it.
[0087] ノ リアメタル膜 83としては、スパッタ法等により例えば Ti膜及び TiN膜をそれぞれ 膜厚 5nm程度、 150nm程度に順次積層して形成する。配線膜 82の構造は、同一 ルールの FeRAM以外のロジック部と同じ構造とされて ヽるため、配線の加工や信頼 '性上の問題はない。  [0087] As the rare metal film 83, for example, a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by sputtering or the like. Since the structure of the wiring film 82 is assumed to be the same structure as that of the logic part other than the FeRAM having the same rule, there is no problem in processing and reliability of the wiring.
[0088] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノリアメタル膜 83 、配線膜 82及びバリアメタル膜 81を配線形状にカ卩ェし、プラグ 34, 35, 36とそれぞ れ接続される各第 1の配線 84をパターン形成する。  Next, for example, after forming a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the noria metal film 83, the wiring film 82 and the barrier metal film 81 are formed by lithography and subsequent dry etching. Then, the first wiring 84 connected to the plugs 34, 35, and 36 is patterned.
[0089] なお、本例では、プラグ 34, 35と第 1の配線 84とを別体として形成する場合につい て例示したが、これらを一体形成しても良い。  In this example, the case where the plugs 34 and 35 and the first wiring 84 are formed as separate bodies is illustrated, but these may be formed integrally.
この場合、例えば図 4Bでビア孔 34a, 35aを同時形成した後、ビア孔 34a, 35aの 内壁面及び層間絶縁膜 33上を覆うようにグルー膜 81 (膜厚 150nm程度の TiN膜の み)を形成し、水素吸蔵性導電材料又はこれを含む導電材料、例えば Pdを用いて、 ビア孔 34a, 35aを埋め込むと共に層間絶縁膜 33上でグルー膜 81上を覆うように Pd を堆積し、 Pd上にグルー膜 83 (Ti膜 (膜厚 5nm程度)と TiN膜 (膜厚 150nm程度)と の積層構造)を堆積する。そして、層間絶縁膜 33上でグルー膜 83、 Pd、及びグルー 膜 81を配線形状にパターユングする。これにより、ビア孔 34a, 35aをグルー膜 81を 介して Pdで埋め込み、上面をグルー膜 83で覆われて層間絶縁膜 33上で延在する 配線構造 (プラグ 34, 35と第 1の配線 84とが一体形成されたもの)がそれぞれ形成さ れる。このとき同時に、プラグ 36と接続される第 1の配線 84が形成される。  In this case, for example, after forming via holes 34a and 35a simultaneously in FIG. 4B, glue film 81 (only a TiN film having a thickness of about 150 nm) is formed so as to cover the inner wall surface of via holes 34a and 35a and interlayer insulating film 33. Pd is deposited so as to fill the via holes 34a and 35a and cover the glue film 81 on the interlayer insulating film 33 using a hydrogen storage conductive material or a conductive material containing this, for example, Pd. A glue film 83 (a laminated structure of a Ti film (film thickness of about 5 nm) and a TiN film (film thickness of about 150 nm)) is deposited thereon. Then, on the interlayer insulating film 33, the glue films 83, Pd, and the glue film 81 are patterned in a wiring shape. As a result, the via holes 34a and 35a are filled with Pd through the glue film 81, and the upper surface is covered with the glue film 83 and extends on the interlayer insulating film 33 (the plugs 34 and 35 and the first wiring 84). Are integrally formed). At the same time, the first wiring 84 connected to the plug 36 is formed.
[0090] また、プラグ 36も上記と同様に、第 1の配線 84と一体形成することも考えられる。こ の場合、導電材料に Pdを用い、プラグ 34, 35, 36と第 1の配線 84とを一体形成する ことになる。  Further, the plug 36 may be integrally formed with the first wiring 84 in the same manner as described above. In this case, Pd is used as the conductive material, and the plugs 34, 35, 36 and the first wiring 84 are integrally formed.
[0091] 続いて、図 9Bに示すように、第 1の配線 84と接続される第 2の配線 54を形成する。  Subsequently, as shown in FIG. 9B, a second wiring 54 connected to the first wiring 84 is formed.
詳細には、先ず、第 1の配線 84を覆うように層間絶縁膜 46を形成する。層間絶縁 膜 46としては、シリコン酸ィ匕膜を膜厚7 OOnm程度に成膜し、プラズマ TEOS膜を形 成して膜厚を全体で l lOOnm程度とした後に、 CMPにより表面を研磨して、膜厚を 7 50nm程度に形成する。 Specifically, first, the interlayer insulating film 46 is formed so as to cover the first wiring 84. As the interlayer insulating film 46, a silicon oxide film is formed to a thickness of about 7 OOnm, a plasma TEOS film is formed to a total thickness of about lOOm, and then the surface is polished by CMP. , Film thickness 7 Form about 50 nm.
[0092] 次に、第 1の配線 84と接続されるプラグ 47を形成する。  Next, a plug 47 connected to the first wiring 84 is formed.
第 1の配線 84の表面の一部が露出するまで、層間絶縁膜 46をリソグラフィー及び それに続くドライエッチングにより加工して、例えば約 0. 25 m径のビア孔 47aを形 成する。次に、このビア孔 47aの壁面を覆うように下地膜 (グルー膜) 48を形成した後 、 CVD法によりグルー膜 48を介してビア孔 47aを埋め込むように W膜を形成する。そ して、層間絶縁膜 46をストッパーとして例えば W膜及びグルー膜 48を CMPにより研 磨し、ビア孔 47a内をグルー膜 48を介して Wで埋め込むプラグ 47を形成する。  The interlayer insulating film 46 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 84 is exposed, thereby forming a via hole 47a having a diameter of about 0.25 m, for example. Next, after forming a base film (glue film) 48 so as to cover the wall surface of the via hole 47a, a W film is formed by the CVD method so as to fill the via hole 47a through the glue film 48. Then, for example, the W film and the glue film 48 are polished by CMP using the interlayer insulating film 46 as a stopper to form a plug 47 filling the via hole 47a with W via the glue film 48.
[0093] なお、 CMPの代わりに、 W膜及びグルー膜 48の全面異方性エッチング、 、わゆる エッチバックを行ってプラグ 47を形成するようにしても良い。このとき、 Wのみエツチン グされ、グルー膜 48はそのまま残存する。  Note that instead of CMP, the plug 47 may be formed by performing anisotropic etching on the entire surface of the W film and the glue film 48 or so-called etch back. At this time, only W is etched, and the glue film 48 remains as it is.
[0094] 次に、プラグ 47とそれぞれ接続される第 2の配線 54を形成する。  Next, second wirings 54 connected to the plugs 47 are formed.
先ず、全面にスパッタ法等によりバリアメタル膜 51、配線膜 52及びバリアメタル膜 5 3を堆積する。ノ リアメタル膜 51としては、スパッタ法により例えば Ti膜を 5nm程度及 び TiN膜を膜厚 150nm程度に成膜する。  First, a barrier metal film 51, a wiring film 52, and a barrier metal film 53 are deposited on the entire surface by sputtering or the like. As the rare metal film 51, for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
[0095] ここで、プラグ 47をエッチバック法により形成する場合には、プラグ 47の形成時に 残存するグルー膜 48がバリアメタル膜として機能するため、バリアメタル膜 51は不要 である。  Here, when the plug 47 is formed by the etch-back method, the glue film 48 remaining when the plug 47 is formed functions as a barrier metal film, and thus the barrier metal film 51 is unnecessary.
[0096] 配線膜 52としては、例えば A1合金膜 (ここでは Al— Cu膜)を膜厚 350nm程度に成 膜する。ノ リアメタル膜 53としては、スパッタ法により例えば Ti膜を 5nm程度及び Ti N膜を膜厚 150nm程度に成膜する。ここで、配線膜 52の構造は、同一ルールの Fe RAM以外のロジック部と同じ構造とされて ヽるため、配線の加工や信頼性上の問題 はない。  As the wiring film 52, for example, an A1 alloy film (here, an Al—Cu film) is formed to a thickness of about 350 nm. As the rare metal film 53, for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering. Here, since the structure of the wiring film 52 is assumed to be the same structure as that of the logic part other than the Fe RAM of the same rule, there is no problem in wiring processing and reliability.
[0097] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノ リアメタル膜 53 、配線膜 52及びバリアメタル膜 51を配線形状にカ卩ェし、第 2の配線 54をパターン形 成する。  Next, for example, a SiON film or an antireflection film (not shown) is formed as an antireflection film, and then the antireflection film, the NORA metal film 53, the wiring film 52, and the barrier metal film are formed by lithography and subsequent dry etching. 51 is covered with the wiring shape, and the second wiring 54 is formed into a pattern.
[0098] なお、配線膜 52 (及び Z又はその上層の配線における配線膜)として A1合金膜を 形成する代わりに、配線膜 82と同様に、 Pd等の水素吸蔵性導電材料又はこれを含 む導電材料を用いても好適である。 [0098] Note that an A1 alloy film is used as the wiring film 52 (and the wiring film in the Z or upper wiring). Instead of forming, it is also preferable to use a hydrogen storage conductive material such as Pd or a conductive material containing the same as the wiring film 82.
[0099] また、配線膜 52 (及び Z又はその上層の配線における配線膜)として A1合金膜を 形成する代わりに、第 1の実施形態による図 6A〜図 8Bと同様に、いわゆるダマシン 法等を利用して Cu膜 (又は Cu合金膜)を形成し、第 2の配線 54として Cu配線を形 成しても良い。 [0099] Instead of forming the A1 alloy film as the wiring film 52 (and the wiring film in Z or an upper layer wiring thereof), a so-called damascene method or the like may be used as in FIGS. 6A to 8B according to the first embodiment. A Cu film (or Cu alloy film) may be formed by using it, and a Cu wiring may be formed as the second wiring 54.
[0100] し力る後、層間絶縁膜ゃ更なる上層配線の形成等の諸工程を経て、本例によるプ レーナ型の FeRAMを完成させる。  [0100] After the pressing force, the planar type FeRAM according to this example is completed through various processes such as the formation of an interlayer wiring and further upper layer wiring.
[0101] 以上説明したように、本例によれば、比較的簡易な構成で水素の強誘電体膜 25へ の侵入をより確実に防止し、強誘電体キャパシタ構造 30の高性能を保持する信頼性 の高いプレーナ型の FeRAMを、構成部材数及び工程数を増加させることなぐ実現 することができる。 [0101] As described above, according to this example, hydrogen can be more reliably prevented from entering the ferroelectric film 25 with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 30 can be maintained. A highly reliable planar FeRAM can be realized without increasing the number of components and processes.
[0102] (変形例 2) [0102] (Variation 2)
本例では、変形例 1の構成に加えて、強誘電体キャパシタ構造 30上(上部電極 31 とプラグ 34との間)に、水素吸蔵性導電材料又はこれを含む導電材料からなる導電 膜を形成する。  In this example, in addition to the configuration of Modification 1, a conductive film made of a hydrogen storage conductive material or a conductive material including the same is formed on the ferroelectric capacitor structure 30 (between the upper electrode 31 and the plug 34). To do.
図 10A〜図 13Bは、第 1の実施形態の変形例 2によるプレーナ型の FeRAMの構 成をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 10A to FIG. 13B are schematic cross-sectional views showing the structure of the planar type FeRAM according to the second modification of the first embodiment along with its manufacturing method (main steps) in order of steps.
[0103] 先ず、第 1の実施形態と同様に、図 1A〜図 1Cの各工程を経る。 First, similarly to the first embodiment, the respective steps of FIGS. 1A to 1C are performed.
続いて、図 10Aに示すように、下部電極層 24、強誘電体膜 25、上部電極層 26、及 び導電膜 91を順次形成する。  Subsequently, as shown in FIG. 10A, a lower electrode layer 24, a ferroelectric film 25, an upper electrode layer 26, and a conductive film 91 are sequentially formed.
[0104] 詳細には、先ず、スパッタ法により例えば膜厚が 150nm〜200nm程度に Pt膜を 堆積し、下部電極層 24を形成する。 Specifically, first, a Pt film is deposited to a thickness of, for example, about 150 nm to 200 nm by sputtering, and the lower electrode layer 24 is formed.
次に、 RFスパッタ法により、下部電極層 24上に強誘電体である例えば PZTからな る強誘電体膜 25を膜厚 ΙΟΟηπ!〜 300nm程度に堆積する。そして、強誘電体膜 25 をァニール処理して当該強誘電体膜 25を結晶化する。このァニール処理の条件とし ては、 ArZOガスを Arが 1. 98リットル Z 025  Next, a ferroelectric film 25 made of a ferroelectric material such as PZT is formed on the lower electrode layer 24 by RF sputtering, with a film thickness of 膜厚 ηπ! Deposits to about 300nm. Then, the ferroelectric film 25 is annealed to crystallize the ferroelectric film 25. As the conditions for this annealing treatment, ArZO gas is used for Ar 1.98 liters Z 025
2 分、 O  2 minutes, O
2が 0. リットル Z分の流量で供給 しながら、例えば 550°C〜650°Cで 60秒間〜 120秒間実行する。 [0105] 次に、強誘電体膜 25上に上部電極層 26を堆積形成する。 While 2 is supplied at a flow rate of 0.1 liters Z, for example, it is performed at 550 ° C to 650 ° C for 60 seconds to 120 seconds. Next, the upper electrode layer 26 is deposited on the ferroelectric film 25.
上部電極層 26としては、先ず反応性スパッタ法により、例えば導電性酸化物である IrO膜 26aを膜厚 30nm〜70nm程度に形成する。その後、 IrO膜 26aをァニール As the upper electrode layer 26, first, for example, an IrO film 26a, which is a conductive oxide, is formed to a thickness of about 30 nm to 70 nm by reactive sputtering. Then, anneal the IrO film 26a
2 2 twenty two
処理する。このァニール処理の条件としては、 ArZOガスを Arが 2. 0リットル Z分、  Process. The annealing conditions include ArZO gas with 2.0 liters of Z,
2  2
Oが 0. 02リットル Z分の流量で供給しながら、例えば 650°C〜850°Cで 10秒間〜 6 While O is supplied at a flow rate of 0.02 liters Z, for example, 650 ° C to 850 ° C for 10 seconds to 6
2 2
0秒間実行する。次に、 IrO膜 26a上に、反応性スパッタ法により IrO膜 26bを膜厚  Run for 0 seconds. Next, the IrO film 26b is formed on the IrO film 26a by reactive sputtering.
2 2  twenty two
150nm〜300nm程度に形成する。  It is formed in a thickness of about 150 nm to 300 nm.
[0106] 次に、 IrO膜 26b上に、当該 IrO膜 26bのキャップ膜として機能する貴金属膜、こ Next, a noble metal film functioning as a cap film for the IrO film 26b, on the IrO film 26b,
2 2  twenty two
こでは Pt膜 26cをスパッタ法により膜厚 lOOnm程度に形成する。 IrO膜 26a, 26b  Here, the Pt film 26c is formed to a thickness of about lOOnm by sputtering. IrO film 26a, 26b
2  2
及び Pt膜 26cから上部電極層 26が構成される。なお、上部電極層 26において、 IrO 膜 26a, 26bの代わりに Ir、 Ru、 RuO、 SrRuO、その他の導電性酸化物やこれら The upper electrode layer 26 is composed of the Pt film 26c. In the upper electrode layer 26, instead of the IrO films 26a and 26b, Ir, Ru, RuO, SrRuO, other conductive oxides and these
2 2 3 2 2 3
の積層構造としても良い。また、 Pt膜 26cの形成を省略することも可能である。  It is good also as a laminated structure. Further, the formation of the Pt film 26c can be omitted.
[0107] 次に、導電膜 91を形成する。  Next, a conductive film 91 is formed.
本例では、上部電極層 26上に、水素吸蔵性導電材料又はこれを含む導電材料を 堆積する。水素吸蔵性導電材料としては、当該水素吸蔵性のみならず、高温ァニー ルに耐えるだけの耐熱性に優れ、ハロゲン系ガスに対する耐性も有する材料である ことが必要である。具体的には、自身の体積の 935倍もの水素を吸収する高い水素 吸収能力を有する Pdや、 Pdと耐熱性を有する (又は酸化しても導電性を有する)他の 貴金属 (Ir, Pt, Au, Ag, Ru, Rh, Os等)の少なくとも 1種との合金等が好ましい。こ こでは、堆積する導電材料として Pdを用い、例えば CVD法又は PVD法により導電 膜 91を、後述するビア孔 34aのエッチング形成時におけるオーバーエッチで貫通し ない程度の膜厚、ここでは lOOnm程度に形成する。  In this example, a hydrogen storage conductive material or a conductive material including the same is deposited on the upper electrode layer 26. The hydrogen-occlusion conductive material should be a material that has not only the hydrogen-occlusion property but also excellent heat resistance enough to withstand high-temperature annealing and resistance to halogen-based gas. Specifically, Pd has a high hydrogen absorption capacity that absorbs 935 times its own volume of hydrogen, and other noble metals (Ir, Pt, An alloy with at least one of Au, Ag, Ru, Rh, Os and the like is preferable. Here, Pd is used as a conductive material to be deposited, and the film thickness is such that it does not penetrate through the conductive film 91 by, for example, CVD or PVD, due to overetching when the via hole 34a described later is formed, in this case, about lOOnm. To form.
[0108] 続いて、図 10Bに示すように、上面を導電膜 91で覆われた上部電極 31をパターン 形成する。  Subsequently, as shown in FIG. 10B, the upper electrode 31 whose upper surface is covered with the conductive film 91 is patterned.
詳細には、導電膜 91及び上部電極層 26をリソグラフィー及びそれに続くドライエツ チングにより複数の電極形状に加工して、上面を導電膜 91で覆われた状態に上部 電極 31をパターン形成する。  Specifically, the conductive film 91 and the upper electrode layer 26 are processed into a plurality of electrode shapes by lithography and subsequent dry etching, and the upper electrode 31 is patterned in a state where the upper surface is covered with the conductive film 91.
[0109] 続いて、図 10Cに示すように、強誘電体膜 25を加工する。 詳細には、強誘電体膜 25を上部電極 31に整合させて、リソグラフィー及びそれに 続くドライエッチングにより加工する。この強誘電体膜 25のパターユングの後に、強 誘電体膜 25をァニール処理して当該強誘電体膜 25の機能回復を図る。 Subsequently, as shown in FIG. 10C, the ferroelectric film 25 is processed. Specifically, the ferroelectric film 25 is aligned with the upper electrode 31 and processed by lithography and subsequent dry etching. After the patterning of the ferroelectric film 25, the ferroelectric film 25 is annealed to restore the function of the ferroelectric film 25.
[0110] 続いて、図 10Dに示すように、強誘電体膜 25への水素'水の浸入を防止するため の水素拡散防止膜 27を形成する。 Subsequently, as shown in FIG. 10D, a hydrogen diffusion preventing film 27 for preventing the entry of hydrogen into the ferroelectric film 25 is formed.
詳細には、強誘電体膜 25及び上部電極 31を覆うように下部電極層 24上に、アルミ ナ (Al O )を材料として、スパッタ法により膜厚 50nm程度に堆積し、水素拡散防止 Specifically, on the lower electrode layer 24 so as to cover the ferroelectric film 25 and the upper electrode 31, aluminum (Al 2 O 3) is used as a material and deposited to a film thickness of about 50 nm by a sputtering method to prevent hydrogen diffusion.
2 3 twenty three
膜 27を形成する。その後、水素拡散防止膜 27をァニール処理する。  A film 27 is formed. Thereafter, the hydrogen diffusion preventing film 27 is annealed.
[0111] 続いて、図 11Aに示すように、水素拡散防止膜 27と共に下部電極層 24をカ卩ェし、 強誘電体キャパシタ構造 30を完成させる。 Subsequently, as shown in FIG. 11A, the lower electrode layer 24 is covered together with the hydrogen diffusion preventing film 27 to complete the ferroelectric capacitor structure 30.
水素拡散防止膜 27及び下部電極層 24を、加工された強誘電体膜 25に整合させ て下部電極層 24が強誘電体膜 25よりも大きいサイズに残るように、リソグラフィー及 びそれに続くドライエッチングにより加工し、下部電極 32をパターン形成する。これに より、下部電極 32上に強誘電体膜 25、上面を導電膜 91で覆われた上部電極 31が 順次積層され、強誘電体膜 25を介して下部電極 32と上部電極 31とが容量結合する 強誘電体キャパシタ構造 30を完成させる。このとき同時に、導電膜 91の上面力も導 電膜 91、上部電極 31及び強誘電体膜 25の側面、下部電極層 24の上面にかけて覆 うように水素拡散防止膜 27が残る。その後、水素拡散防止膜 27をァニール処理する  Lithography and subsequent dry etching are performed so that the hydrogen diffusion preventing film 27 and the lower electrode layer 24 are aligned with the processed ferroelectric film 25 so that the lower electrode layer 24 remains larger than the ferroelectric film 25. Then, the lower electrode 32 is patterned. As a result, the ferroelectric film 25 and the upper electrode 31 whose upper surface is covered with the conductive film 91 are sequentially laminated on the lower electrode 32, and the lower electrode 32 and the upper electrode 31 are capacitively connected via the ferroelectric film 25. The ferroelectric capacitor structure 30 to be coupled is completed. At the same time, the hydrogen diffusion preventing film 27 remains so as to cover the upper surface force of the conductive film 91 over the conductive film 91, the side surfaces of the upper electrode 31 and the ferroelectric film 25, and the upper surface of the lower electrode layer 24. Thereafter, the hydrogen diffusion prevention film 27 is annealed.
[0112] 続いて、図 11Bに示すように、水素拡散防止膜 28を形成する。 Subsequently, as shown in FIG. 11B, a hydrogen diffusion preventing film 28 is formed.
詳細には、強誘電体キャパシタ構造 30及び導電膜 91の全面を覆うように、アルミナ (Al O )を材料として、スパッタ法により膜厚 20ηπ!〜 50nm程度に堆積し、水素拡 More specifically, a film thickness of 20ηπ is formed by sputtering using alumina (Al 2 O 3) as a material so as to cover the entire surface of the ferroelectric capacitor structure 30 and the conductive film 91! ~ 50nm deposition and hydrogen expansion
2 3 twenty three
散防止膜 28を形成する。その後、水素拡散防止膜 28をァニール処理する。  A scattering prevention film 28 is formed. Thereafter, the hydrogen diffusion preventing film 28 is annealed.
[0113] 続いて、図 11Cに示すように、層間絶縁膜 33を成膜する。 Subsequently, as shown in FIG. 11C, an interlayer insulating film 33 is formed.
詳細には、強誘電体キャパシタ構造 30及び導電膜 91を水素拡散防止膜 27, 28を 介して覆うように、層間絶縁膜 33を形成する。ここで、層間絶縁膜 33としては、例え ば TEOSを用いたプラズマ CVD法により、シリコン酸ィ匕膜を膜厚 1500nm〜2500n m程度に堆積した後、 CMPにより例えば膜厚が lOOOnm程度となるまで研磨して形 成する。 CMPの後に、層間絶縁膜 33の脱水を目的として、例えば N Oのプラズマァ Specifically, the interlayer insulating film 33 is formed so as to cover the ferroelectric capacitor structure 30 and the conductive film 91 with the hydrogen diffusion preventing films 27 and 28 interposed therebetween. Here, as the interlayer insulating film 33, for example, a silicon oxide film is deposited to a film thickness of about 1500 nm to 2500 nm by a plasma CVD method using TEOS, and then, for example, until the film thickness becomes about lOOOnm by CMP. Polished and shaped To do. After CMP, for example, for the purpose of dehydrating the interlayer insulating film 33, for example, a plasma plasma of NO.
2  2
ニール処理を施す。  Neal treatment is applied.
[0114] 続いて、図 11Dに示すように、トランジスタ構造 20のソース Zドレイン領域 18と接続 されるプラグ 36を形成する。  Subsequently, as shown in FIG. 11D, a plug 36 connected to the source Z drain region 18 of the transistor structure 20 is formed.
詳細には、先ず、ソース Zドレイン領域 18をエッチングストッパーとして、当該ソース Zドレイン領域 18の表面の一部が露出するまで層間絶縁膜 33、水素拡散防止膜 2 8, 27、層間絶縁膜 22b, 22a、及び保護膜 21をリソグラフィー及びそれに続くドライ エッチングにより加工し、例えば約 0. 3 m径のビア孔 36aを形成する。  Specifically, first, using the source Z drain region 18 as an etching stopper, the interlayer insulating film 33, the hydrogen diffusion preventing films 28, 27, the interlayer insulating film 22b, until a part of the surface of the source Z drain region 18 is exposed. 22a and the protective film 21 are processed by lithography and subsequent dry etching to form a via hole 36a having a diameter of about 0.3 m, for example.
[0115] 次に、ビア孔 36aの壁面を覆うように、スパッタ法により例えば Ti膜及び TiN膜を膜 厚 20nm程度及びに膜厚 50nm程度に順次堆積して、下地膜 (グルー膜) 36bを形 成する。そして、 CVD法によりグルー膜 36bを介してビア孔 34aを埋め込むように例 えば W膜を形成する。その後、 CMPにより層間絶縁膜 33をストッパーとして W膜及 びグルー膜 36bを研磨し、ビア孔 36a内をグルー膜 36aを介して Wで埋め込むプラ グ 36を形成する。 CMPの後に、例えば N Oのプラズマァニール処理を施す。  Next, for example, a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm by a sputtering method so as to cover the wall surface of the via hole 36a, and a base film (glue film) 36b is formed. Form. Then, for example, a W film is formed by the CVD method so as to fill the via hole 34a through the glue film 36b. Thereafter, the W film and the glue film 36b are polished by CMP using the interlayer insulating film 33 as a stopper to form a plug 36 filling the via hole 36a with W via the glue film 36a. After CMP, for example, N 2 plasma annealing is performed.
2  2
[0116] 続いて、図 12Aに示すように、プラグ 36の酸化防止のための保護膜 37及びレジス トマスク 38を順次形成した後、強誘電体キャパシタ構造 30へのビア孔 34a, 35aを形 成する。  Subsequently, as shown in FIG. 12A, after forming a protective film 37 and a resist mask 38 for preventing oxidation of the plug 36 in sequence, via holes 34a and 35a to the ferroelectric capacitor structure 30 are formed. To do.
詳細には、先ず、 CVD法により、層間絶縁膜 33及びプラグ 36上に例えば SiON膜 を膜厚 lOOnm程度に堆積し、保護膜 37を形成する。次に、保護膜 37上にレジストを 塗布し、リソグラフィ一により当該レジストを加工して、開口 38a, 38bを有するレジスト マスク 38を形成する。  Specifically, first, a protective film 37 is formed by depositing, for example, a SiON film on the interlayer insulating film 33 and the plug 36 to a thickness of about lOOnm by the CVD method. Next, a resist is applied on the protective film 37, and the resist is processed by lithography to form a resist mask 38 having openings 38a and 38b.
[0117] 次に、レジストマスク 38を用いて保護膜 37をドライエッチングし、保護膜 37の開口 3 8a, 38bに整合する部位に開口 37a, 37bを形成する。そして、導電膜 91及び下部 電極 32をそれぞれエッチングストッパーとして、層間絶縁膜 33及び水素拡散防止膜 28, 27をドライエッチングする。このドライエッチングでは、導電膜 91の表面の一部 が露出するまで層間絶縁膜 33及び水素拡散防止膜 28, 27に施す加工と、下部電 極 32の表面の一部が露出するまで層間絶縁膜 33及び水素拡散防止膜 28, 27に 施すカ卩ェとが同時に実行され、それぞれの部位に例えば約 0. 5 m径のビア孔 34a , 35aが同時形成される。 Next, the protective film 37 is dry-etched using the resist mask 38, and openings 37a and 37b are formed at portions matching the openings 38a and 38b of the protective film 37. Then, the interlayer insulating film 33 and the hydrogen diffusion preventing films 28 and 27 are dry-etched using the conductive film 91 and the lower electrode 32 as etching stoppers, respectively. In this dry etching, the interlayer insulating film 33 and the hydrogen diffusion preventing films 28 and 27 are processed until a part of the surface of the conductive film 91 is exposed, and the interlayer insulating film is exposed until a part of the surface of the lower electrode 32 is exposed. 33 and the hydrogen diffusion prevention films 28 and 27 are simultaneously performed, and a via hole 34a having a diameter of, for example, about 0.5 m is formed in each portion. , 35a are formed simultaneously.
[0118] ここで、上部電極の各材料はハロゲン系ガスなどのエッチングガスと反応し難いた め、通常ではエッチングされ難い材料である。上部電極及び下部電極へのビア孔は 、上記のようにエッチングにより同時形成されるため、上部電極のオーバーエッチが 過剰となって上部電極が削れてしまい、上部電極の膜厚が薄くなる。その結果、いわ ゆるリテンション不良が増加を招く。更に、水素拡散防止膜が上部電極上に存すると 、ビア孔の形成時における上部電極のオーバーエッチが大幅に増加することが確認 されている。 Here, each material of the upper electrode is difficult to react with an etching gas such as a halogen-based gas, and thus is normally difficult to be etched. Since the via holes to the upper electrode and the lower electrode are simultaneously formed by etching as described above, the upper electrode is excessively overetched and the upper electrode is scraped, and the thickness of the upper electrode is reduced. As a result, the so-called retention failure increases. Further, it has been confirmed that when the hydrogen diffusion preventing film is present on the upper electrode, the overetching of the upper electrode during the formation of the via hole is greatly increased.
[0119] この点、 Pd等の水素吸蔵性導電材料は、上記のような水素の吸収機能のみならず 、ビア孔のエッチング時に用いるハロゲン系のエッチングガスと反応し難いことに起因 して、ビア孔の形成時にはエッチングレートが低くエッチングされ難いという機能を有 する。  [0119] In this respect, the hydrogen storage conductive material such as Pd has not only a function of absorbing hydrogen as described above, but also because it is difficult to react with a halogen-based etching gas used for etching a via hole. At the time of forming the hole, it has a function that the etching rate is low and etching is difficult.
[0120] 本例では、上部電極 31上に Pdからなる導電膜 91を設けることにより、水素吸収能 力を向上させて強誘電体膜 25への水素の浸入を更に確実に防止するともに、ビア 孔 34a, 35aを同時形成する際に、上部電極 31をオーバーエッチさせることなくリテ ンシヨン不良を抑止することが可能となる。  [0120] In this example, by providing the conductive film 91 made of Pd on the upper electrode 31, the hydrogen absorption capability is improved, and the penetration of hydrogen into the ferroelectric film 25 is more reliably prevented, and the via When the holes 34a and 35a are formed at the same time, it is possible to suppress the retention failure without over-etching the upper electrode 31.
[0121] 続いて、図 12Bに示すように、レジストマスク 38を除去する。このとき、プラグ 36は保 護膜 37で覆われた状態とされている。その後、強誘電体キャパシタ構造 30の形成後 の諸工程により強誘電体キャパシタ構造 30の受けたダメージを回復するためのァ- ール処理を行う。ここで、プラグ 36は保護膜 37で覆われているため、 Wの酸化が防 止される。  Subsequently, as shown in FIG. 12B, the resist mask 38 is removed. At this time, the plug 36 is covered with the protective film 37. Thereafter, a failure treatment for recovering the damage received by the ferroelectric capacitor structure 30 is performed by various steps after the formation of the ferroelectric capacitor structure 30. Here, since the plug 36 is covered with the protective film 37, the oxidation of W is prevented.
[0122] 続いて、図 12Cに示すように、強誘電体キャパシタ構造 30と接続されるプラグ 34, 35を形成する。  Subsequently, as shown in FIG. 12C, plugs 34 and 35 connected to the ferroelectric capacitor structure 30 are formed.
詳細には、先ず、全面異方性エッチング、いわゆるエッチバックにより、保護膜 37を 除去する。  Specifically, first, the protective film 37 is removed by whole surface anisotropic etching, so-called etch back.
次に、ビア孔 34a, 35aの壁面を覆うように、スパッタ法により例えば Ti膜及び TiN 膜を膜厚 20nm程度及びに膜厚 50nm程度に順次堆積して、下地膜 (グルー膜) 34 b, 35bを形成する。 [0123] 次に、プラグ 34, 35を形成する。 Next, for example, a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm by a sputtering method so as to cover the wall surfaces of the via holes 34a, 35a, and a base film (glue film) 34 b, 35b is formed. Next, plugs 34 and 35 are formed.
本例では、グルー膜 34b, 35bを介してビア孔 34a, 35aを埋め込むように、層間絶 縁膜 33上に当該水素吸蔵性導電材料又はこれを含む導電材料を堆積する。水素 吸蔵性導電材料としては、 (1)自身の体積の 935倍もの水素を吸収する高い水素吸 収能力を有する Pdや、 Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm等の水素吸 収性導電材料を単独で使用しても良いし、(2) (1)に示す水素吸収性導電材料の任 意の組み合わせによる合金を使用しても、 (3) (1)に示す水素吸収性導電材料の少 なくとも 1種と他の金属(アルミニウム (A1) ,銅 (Cu) ,鉄 (Fe) ,ニッケル (Ni)等の一 般的な導電性金属材料の少なくとも 1種、或いはイリジウム (Ir) , 白金 (Pt) ,金 (Au) ,銀 (Ag) ,ルテニウム (Ru) ,ロジウム (Rh) ,オスミウム(Os)等の貴金属の少なくとも 1種)との合金を使用しても良い。ここでは、堆積する導電材料として Pdを用い、例え ば C VD法又は P VD法によりプラグ 34 , 35を形成する。  In this example, the hydrogen storage conductive material or a conductive material containing the hydrogen storage conductive material is deposited on the interlayer insulating film 33 so as to fill the via holes 34a and 35a via the glue films 34b and 35b. Examples of hydrogen storage conductive materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen-absorbing conductive materials such as Nd and Sm may be used alone, or (2) Even if an alloy based on any combination of hydrogen-absorbing conductive materials shown in (1) is used, (3) At least one of the hydrogen-absorbing conductive materials shown in (1) and other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) Or at least one precious metal such as iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os) An alloy may be used. Here, Pd is used as the conductive material to be deposited, and the plugs 34 and 35 are formed by, for example, the CVD method or the PVD method.
[0124] そして、 CMPにより層間絶縁膜 33をストッパーとして、堆積した Pd及びグルー膜 3 4b, 35bを研磨し、ビア孔 34a, 35a内をグルー膜 34b, 35bを介してそれぞれ Wで 埋め込むプラグ 34, 35を形成する。 CMPの後に、例えば N Oのプラズマァニール  Then, the deposited Pd and glue films 34b and 35b are polished by CMP using the interlayer insulating film 33 as a stopper, and the via holes 34a and 35a are filled with W via the glue films 34b and 35b, respectively. , 35. After CMP, eg N 2 O plasma anneal
2  2
処理を施しても良い。  Processing may be performed.
[0125] 続いて、図 13Aに示すように、プラグ 34, 35, 36とそれぞれ接続される各第 1の配 線 84を形成する。  Subsequently, as shown in FIG. 13A, each first wiring 84 connected to each of the plugs 34, 35, and 36 is formed.
詳細には、先ず、層間絶縁膜 33上の全面にスパッタ法等によりバリアメタル膜 81、 配線膜 82及びバリアメタル膜 83を堆積する。ノリアメタル膜 81としては、スパッタ法 等により例えば Ti膜及び TiN膜をそれぞれ膜厚 5nm程度、 150nm程度に順次積層 して形成する。  Specifically, first, a barrier metal film 81, a wiring film 82, and a barrier metal film 83 are deposited on the entire surface of the interlayer insulating film 33 by sputtering or the like. As the noria metal film 81, for example, a Ti film and a TiN film are sequentially laminated to a film thickness of about 5 nm and 150 nm, respectively, by sputtering or the like.
[0126] 本例では、水素拡散防止膜 23, 27, 28、導電膜 91、及びプラグ 34, 35と相俟っ て、発生した水素の強誘電体膜 25への浸入を確実に防止すベぐ水素を吸収する 性質を持つ水素吸蔵性導電材料又はこれを含む導電材料を用いて配線膜 82を形 成する。水素吸蔵性導電材料としては、(1)自身の体積の 935倍もの水素を吸収す る高い水素吸収能力を有する Pdや、 Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, S m等の水素吸収性導電材料を単独で使用しても良いし、 (2) (1)に示す水素吸収性 導電材料の任意の組み合わせによる合金を使用しても、 (3) (1)に示す水素吸収性 導電材料の少なくとも 1種と他の金属(アルミニウム (A1) ,銅 (Cu) ,鉄 (Fe) , -ッケ ル (Ni)等の一般的な導電性金属材料の少なくとも 1種、或いはイリジウム (Ir) , 白金 (Pt) ,金 (Au) ,銀 (Ag) ,ルテニウム (Ru) ,ロジウム (Rh) ,オスミウム(Os)等の貴 金属の少なくとも 1種)との合金を使用しても良い。ここでは、堆積する導電材料として Pdを用い、例えば CVD法又は PVD法により配線膜 82を膜厚 350nm程度に成膜 する。 In this example, in combination with the hydrogen diffusion preventing films 23, 27, 28, the conductive film 91, and the plugs 34, 35, it is necessary to reliably prevent the generated hydrogen from entering the ferroelectric film 25. The wiring film 82 is formed using a hydrogen storage conductive material having the property of absorbing hydrogen or a conductive material containing the same. Examples of hydrogen storage conductive materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen-absorbing conductive materials such as Nd and Sm may be used alone, or (2) Hydrogen-absorbing properties shown in (1) Even if an alloy of any combination of conductive materials is used, at least one of the hydrogen-absorbing conductive materials shown in (3) (1) and other metals (aluminum (A1), copper (Cu), iron (Fe)) , -Kel (Ni) and other common conductive metal materials, or iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium ( Rh), an alloy with at least one of noble metals such as osmium (Os) may be used. Here, Pd is used as the conductive material to be deposited, and the wiring film 82 is formed to a thickness of about 350 nm by, for example, the CVD method or the PVD method.
[0127] 本例では、上部電極 31上に導電膜 91を形成するとともに、上部電極 31と導電膜 9 1を介して電気的に接続されるプラグ 34、下部電極 32と接続されるプラグ 35、上部 電極 31と導電膜 91及びプラグ 34を介して電気的に接続される第 1の配線 84の配線 膜 82、及び下部電極 32とプラグ 35を介して電気的に接続される第 1の配線 84の配 線膜 82を、大量の水素吸収能力(大きな表面積及び体積)を有する水素吸蔵性導 電材料である Pdを材料としてそれぞれ形成する。従って、構成部材数及び工程数を 増加させることなぐ強誘電体膜 25への水素の浸入を可及的に効率良く防止するこ とができ、高 、キャパシタ特性を確実に保持することが可能となる。  In this example, the conductive film 91 is formed on the upper electrode 31, and the plug 34 that is electrically connected to the upper electrode 31 via the conductive film 91, the plug 35 that is connected to the lower electrode 32, First wiring 84 electrically connected to upper electrode 31 via conductive film 91 and plug 34 Wiring 82 of first wiring 84 and first wiring 84 electrically connected to lower electrode 32 and plug 35 The wiring film 82 is formed using Pd, which is a hydrogen storage material having a large amount of hydrogen absorption capacity (large surface area and volume), as a material. Accordingly, it is possible to prevent hydrogen from entering the ferroelectric film 25 as efficiently as possible without increasing the number of constituent members and the number of processes, and it is possible to reliably maintain high capacitor characteristics. Become.
[0128] ノ リアメタル膜 83としては、スパッタ法等により例えば Ti膜及び TiN膜をそれぞれ 膜厚 5nm程度、 150nm程度に順次積層して形成する。配線膜 82の構造は、同一 ルールの FeRAM以外のロジック部と同じ構造とされて ヽるため、配線の加工や信頼 '性上の問題はない。  [0128] As the rare metal film 83, for example, a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by sputtering or the like. Since the structure of the wiring film 82 is assumed to be the same structure as that of the logic part other than the FeRAM having the same rule, there is no problem in processing and reliability of the wiring.
[0129] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノリアメタル膜 83 、配線膜 82及びバリアメタル膜 81を配線形状にカ卩ェし、プラグ 34, 35, 36とそれぞ れ接続される各第 1の配線 84をパターン形成する。  Next, for example, a SiON film or an antireflection film (not shown) is formed as an antireflection film, and then the antireflection film, the noria metal film 83, the wiring film 82, and the barrier metal film 81 are formed by lithography and subsequent dry etching. Then, the first wiring 84 connected to the plugs 34, 35, and 36 is patterned.
[0130] 続いて、図 13Bに示すように、第 1の配線 84と接続される第 2の配線 54を形成する 詳細には、先ず、第 1の配線 84を覆うように層間絶縁膜 46を形成する。層間絶縁 膜 46としては、シリコン酸ィ匕膜を膜厚7 OOnm程度に成膜し、プラズマ TEOS膜を形 成して膜厚を全体で l lOOnm程度とした後に、 CMPにより表面を研磨して、膜厚を 7 50nm程度に形成する。 Subsequently, as shown in FIG. 13B, a second wiring 54 connected to the first wiring 84 is formed. Specifically, first, an interlayer insulating film 46 is formed so as to cover the first wiring 84. Form. As the interlayer insulating film 46, a silicon oxide film is formed to a thickness of about 7 OOnm, a plasma TEOS film is formed to a total thickness of about lOOm, and then the surface is polished by CMP. , Film thickness 7 Form about 50 nm.
[0131] 次に、第 1の配線 84と接続されるプラグ 47を形成する。  Next, a plug 47 connected to the first wiring 84 is formed.
第 1の配線 84の表面の一部が露出するまで、層間絶縁膜 46をリソグラフィー及び それに続くドライエッチングにより加工して、例えば約 0. 25 m径のビア孔 47aを形 成する。次に、このビア孔 47aの壁面を覆うように下地膜 (グルー膜) 48を形成した後 、 CVD法によりグルー膜 48を介してビア孔 47aを埋め込むように W膜を形成する。そ して、層間絶縁膜 46をストッパーとして例えば W膜及びグルー膜 48を CMPにより研 磨し、ビア孔 47a内をグルー膜 48を介して Wで埋め込むプラグ 47を形成する。  The interlayer insulating film 46 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 84 is exposed, thereby forming a via hole 47a having a diameter of about 0.25 m, for example. Next, after forming a base film (glue film) 48 so as to cover the wall surface of the via hole 47a, a W film is formed by the CVD method so as to fill the via hole 47a through the glue film 48. Then, for example, the W film and the glue film 48 are polished by CMP using the interlayer insulating film 46 as a stopper to form a plug 47 filling the via hole 47a with W via the glue film 48.
[0132] なお、 CMPの代わりに、 W膜及びグルー膜 48の全面異方性エッチング、 、わゆる エッチバックを行ってプラグ 47を形成するようにしても良い。このとき、 Wのみエツチン グされ、グルー膜 48はそのまま残存する。  Note that instead of CMP, the plug 47 may be formed by performing anisotropic etching of the entire surface of the W film and the glue film 48 or so-called etch back. At this time, only W is etched, and the glue film 48 remains as it is.
[0133] 次に、プラグ 47とそれぞれ接続される第 2の配線 54を形成する。  Next, second wirings 54 connected to the plugs 47 are formed.
先ず、全面にスパッタ法等によりバリアメタル膜 51、配線膜 52及びバリアメタル膜 5 3を堆積する。ノ リアメタル膜 51としては、スパッタ法により例えば Ti膜を 5nm程度及 び TiN膜を膜厚 150nm程度に成膜する。  First, a barrier metal film 51, a wiring film 52, and a barrier metal film 53 are deposited on the entire surface by sputtering or the like. As the rare metal film 51, for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering.
[0134] ここで、プラグ 47をエッチバック法により形成する場合には、プラグ 47の形成時に 残存するグルー膜 48がバリアメタル膜として機能するため、バリアメタル膜 51は不要 である。  Here, when the plug 47 is formed by the etch-back method, the glue film 48 remaining when the plug 47 is formed functions as a barrier metal film, and thus the barrier metal film 51 is unnecessary.
[0135] 配線膜 52としては、例えば A1合金膜 (ここでは Al— Cu膜)を膜厚 350nm程度に成 膜する。ノ リアメタル膜 53としては、スパッタ法により例えば Ti膜を 5nm程度及び Ti N膜を膜厚 150nm程度に成膜する。ここで、配線膜 52の構造は、同一ルールの Fe RAM以外のロジック部と同じ構造とされて ヽるため、配線の加工や信頼性上の問題 はない。  As the wiring film 52, for example, an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm. As the rare metal film 53, for example, a Ti film is formed to a thickness of about 5 nm and a TiN film is formed to a thickness of about 150 nm by sputtering. Here, since the structure of the wiring film 52 is assumed to be the same structure as that of the logic part other than the Fe RAM of the same rule, there is no problem in wiring processing and reliability.
[0136] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノ リアメタル膜 53 、配線膜 52及びバリアメタル膜 51を配線形状にカ卩ェし、第 2の配線 54をパターン形 成する。  [0136] Next, for example, a SiON film or an antireflection film (not shown) is formed as an antireflection film, and then the antireflection film, the NORA metal film 53, the wiring film 52, and the barrier metal film are formed by lithography and subsequent dry etching. 51 is covered with the wiring shape, and the second wiring 54 is formed into a pattern.
[0137] なお、配線膜 52 (及び Z又はその上層の配線における配線膜)として A1合金膜を 形成する代わりに、配線膜 82と同様に、 Pd等の水素吸蔵性導電材料又はこれを含 む導電材料を用いても好適である。 [0137] Note that an A1 alloy film is used as the wiring film 52 (and the wiring film in the Z or upper wiring). Instead of forming, it is also preferable to use a hydrogen storage conductive material such as Pd or a conductive material containing the same as the wiring film 82.
[0138] また、配線膜 52 (及び Z又はその上層の配線における配線膜)として A1合金膜を 形成する代わりに、第 1の実施形態による図 6A〜図 8Bと同様に、いわゆるダマシン 法等を利用して Cu膜 (又は Cu合金膜)を形成し、第 2の配線 54として Cu配線を形 成しても良い。 In addition, instead of forming the A1 alloy film as the wiring film 52 (and the wiring film in the Z or the upper layer wiring), a so-called damascene method or the like is performed in the same manner as in FIGS. 6A to 8B according to the first embodiment. A Cu film (or Cu alloy film) may be formed by using it, and a Cu wiring may be formed as the second wiring 54.
[0139] し力る後、層間絶縁膜ゃ更なる上層配線の形成等の諸工程を経て、本例によるプ レーナ型の FeRAMを完成させる。  [0139] After applying the force, the planar type FeRAM according to the present example is completed through various processes such as formation of an interlayer wiring and further upper layer wiring.
[0140] 以上説明したように、本例によれば、比較的簡易な構成で水素の強誘電体膜 25へ の侵入を可及的に防止し、強誘電体キャパシタ構造 30の高性能を保持するとともに 、上部電極 31をオーバーエッチさせることなくリテンション不良を抑止することが可能 となる。この構成により、極めて信頼性の高いプレーナ型の FeRAMを、徒に構成部 材数及び工程数を増加させることなぐ実現することができる。  [0140] As described above, according to the present example, hydrogen is prevented from entering the ferroelectric film 25 as much as possible with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 30 is maintained. At the same time, it is possible to suppress the retention failure without over-etching the upper electrode 31. With this configuration, an extremely reliable planar FeRAM can be realized without increasing the number of components and processes.
[0141] なお、第 1の実施形態ではプラグ 34, 35を、変形例 1ではプラグ 34, 35にカ卩えて 第 1の配線 84を、変形例 1ではプラグ 34, 35及び第 1の配線 84に加えて導電膜 91 を、水素吸蔵性導電材料である Pdを材料して形成する構成をそれぞれ開示したが、 以下のような緒構成も本発明の範疇に含まれる。  In the first embodiment, the plugs 34 and 35 are replaced with the plugs 34 and 35 in the first modification, and the first wiring 84 is replaced with the plugs 34 and 35 and the first wiring 84 in the first modification. In addition to the above, the configuration in which the conductive film 91 is formed using Pd, which is a hydrogen storage conductive material, is disclosed, but the following configurations are also included in the scope of the present invention.
[0142] (1)プラグ 34, 35を、水素吸蔵性導電材料である Pd等あるいはこれを含む導電材料 を用いて形成するとともに、導電膜 91を水素吸蔵性導電材料である Pd等あるいはこ れを含む導電材料を用いて形成し、第 1の配線は通常の A1合金配線等とする。  [0142] (1) The plugs 34 and 35 are formed using a hydrogen storage conductive material such as Pd or a conductive material containing the same, and the conductive film 91 is a hydrogen storage conductive material such as Pd or the like. The first wiring shall be a normal A1 alloy wiring or the like.
[0143] (2)第 1の配線 84を、水素吸蔵性導電材料である Pd等ある 、はこれを含む導電材 料を用いて形成するとともに、導電膜 91を水素吸蔵性導電材料である Pd等あるいは これを含む導電材料を用いて形成し、強誘電体キャパシタ構造 30と電気的に接続さ れる各プラグは通常の Wプラグ等とする。  (2) The first wiring 84 is formed using a conductive material containing hydrogen, such as Pd, which is a hydrogen storage conductive material, and the conductive film 91 is formed of Pd, which is a hydrogen storage conductive material. Each plug formed by using a conductive material containing the same or the like and electrically connected to the ferroelectric capacitor structure 30 is a normal W plug or the like.
[0144] (1) , (2)の手法でも、プラグ 34, 35、第 1の配線 84、及び導電膜 91を全て水素吸 蔵性導電材料である Pd等ある ヽはこれを含む導電材料を用いて形成した場合 (変形 例 2の場合)に比べれば劣るものの、高いキャパシタ特性を確実に保持し、信頼性の 高!、FeRAMを実現させることができる。 [0145] (第 2の実施形態) [0144] Even in the methods (1) and (2), the plugs 34 and 35, the first wiring 84, and the conductive film 91 are all hydrogen-absorbing conductive material such as Pd. Although it is inferior to the case where it is used (in the case of Modification 2), it can reliably maintain high capacitor characteristics and achieve high reliability and FeRAM. [0145] (Second Embodiment)
本実施形態では、強誘電体キャパシタ構造の下部電極下及び上部電極上にそれ ぞれ導電プラグが形成されて導通がとられる構成の、 V、わゆるスタック型の FeRAM を例示する。  This embodiment exemplifies V, a so-called stack type FeRAM having a configuration in which conductive plugs are formed under the lower electrode and the upper electrode of the ferroelectric capacitor structure, respectively, so as to be conductive.
図 14A〜図 18Bは、第 2の実施形態によるスタック型の FeRAMの構成をその製造 方法と共に工程順に示す概略断面図である。  FIG. 14A to FIG. 18B are schematic cross-sectional views showing the configuration of the stack type FeRAM according to the second embodiment in the order of steps together with the manufacturing method thereof.
[0146] 先ず、図 14Aに示すように、シリコン半導体基板 110上に選択トランジスタとして機 能する MOSトランジスタ 120を形成する。  First, as shown in FIG. 14A, a MOS transistor 120 that functions as a selection transistor is formed on a silicon semiconductor substrate 110.
詳細には、シリコン半導体基板 110の表層に例えば STI (Shallow Trench Isolation)法により素子分離構造 111を形成し、素子活性領域を確定する。  Specifically, the element isolation structure 111 is formed on the surface layer of the silicon semiconductor substrate 110 by, for example, the STI (Shallow Trench Isolation) method to determine the element active region.
次に、素子活性領域に不純物、ここではホウ素(B)を例えばドーズ量 3. 0 X 1013/ cm2、加速エネルギー 300keVの条件でイオン注入し、ゥエル 112を形成する。 Next, an impurity, here boron (B), is ion-implanted into the element active region, for example, under the conditions of a dose of 3.0 × 10 13 / cm 2 and an acceleration energy of 300 keV to form the well 112.
[0147] 次に、素子活性領域に熱酸化等により膜厚 3. Onm程度の薄いゲート絶縁膜 113 を形成し、ゲート絶縁膜 113上に CVD法により膜厚 180nm程度の多結晶シリコン膜 及び膜厚 29nm程度の例えばシリコン窒化膜を堆積し、シリコン窒化膜、多結晶シリ コン膜、及びゲート絶縁膜 113をリソグラフィー及びそれに続くドライエッチングにより 電極形状に加工することにより、ゲート絶縁膜 113上にゲート電極 114をパターン形 成する。このとき同時に、ゲート電極 114上にはシリコン窒化膜からなるキャップ膜 11 5がパターン形成される。  Next, a thin gate insulating film 113 having a thickness of about 3. Onm is formed in the element active region by thermal oxidation or the like, and a polycrystalline silicon film and a film having a thickness of about 180 nm are formed on the gate insulating film 113 by a CVD method. For example, a silicon nitride film having a thickness of about 29 nm is deposited, and the silicon nitride film, the polycrystalline silicon film, and the gate insulating film 113 are processed into an electrode shape by lithography and subsequent dry etching, thereby forming a gate on the gate insulating film 113. The electrode 114 is patterned. At the same time, a cap film 115 made of a silicon nitride film is patterned on the gate electrode 114.
[0148] 次に、キャップ膜 115をマスクとして素子活性領域に不純物、ここでは砒素 (As)を 例えばドーズ量 5. O X 1014Zcm2、加速エネルギー lOkeVの条件でイオン注入し、 Vヽゎゆる LDD領域 116を形成する。 [0148] Next, using the cap film 115 as a mask, an impurity, for example, arsenic (As) is ion-implanted into the element active region under the conditions of a dose of 5. OX 10 14 Zcm 2 and an acceleration energy of lOkeV, and V LDD region 116 is formed.
[0149] 次に、全面に例えばシリコン酸ィ匕膜を CVD法により堆積し、このシリコン酸ィ匕膜を いわゆるエッチバックすることにより、ゲート電極 114及びキャップ膜 115の側面のみ にシリコン酸ィ匕膜を残してサイドウォール絶縁膜 117を形成する。  Next, for example, a silicon oxide film is deposited on the entire surface by the CVD method, and this silicon oxide film is so-called etched back, so that the silicon oxide film is formed only on the side surfaces of the gate electrode 114 and the cap film 115. A sidewall insulating film 117 is formed leaving the film.
[0150] 次に、キャップ膜 115及びサイドウォール絶縁膜 117をマスクとして素子活性領域 に不純物、ここではリン (P)を LDD領域 116よりも不純物濃度が高くなる条件、例え ばドーズ量 5. O X 1014Zcm2、加速エネルギー 13keVの条件でイオン注入し、 LD D領域 116と重畳されるソース Zドレイン領域 118を形成して、 MOSトランジスタ 120 を完成させる。 [0150] Next, using the cap film 115 and the sidewall insulating film 117 as a mask, an impurity in the element active region, here phosphorus (P), has a higher impurity concentration than the LDD region 116, for example, a dose amount 5. OX Ion implantation under conditions of 10 14 Zcm 2 and acceleration energy of 13 keV, LD A source Z drain region 118 that overlaps the D region 116 is formed to complete the MOS transistor 120.
[0151] 続いて、図 14Bに示すように、 MOSトランジスタ 120の保護膜 121、層間絶縁膜 12 2、及び上部絶縁膜 123を順次形成する。  Subsequently, as shown in FIG. 14B, the protective film 121, the interlayer insulating film 122, and the upper insulating film 123 of the MOS transistor 120 are sequentially formed.
詳細には、 MOSトランジスタ 120を覆うように、保護膜 121、層間絶縁膜 122、及び 上部絶縁膜 123を順次形成する。ここで、保護膜 121としては、シリコン酸ィ匕膜を材 料とし、 CVD法により膜厚 20nm程度に堆積する。層間絶縁膜 122としては、例えば プラズマ SiO膜 (膜厚 20nm程度)、プラズマ SiN膜 (膜厚 80nm程度)及びプラズマ T EOS膜 (膜厚 lOOOnm程度)を順次成膜した積層構造を形成し、積層後、 CMPによ り膜厚が 700nm程度となるまで研磨する。上部絶縁膜 123としては、シリコン窒化膜 を材料とし、 CVD法により膜厚 lOOnm程度に堆積する。  Specifically, a protective film 121, an interlayer insulating film 122, and an upper insulating film 123 are sequentially formed so as to cover the MOS transistor 120. Here, as the protective film 121, a silicon oxide film is used as a material, and is deposited to a film thickness of about 20 nm by a CVD method. As the interlayer insulating film 122, for example, a stacked structure in which a plasma SiO film (film thickness of about 20 nm), a plasma SiN film (film thickness of about 80 nm), and a plasma TEOS film (film thickness of about lOOOnm) are sequentially formed is formed. After that, polishing is performed by CMP until the film thickness reaches about 700 nm. As the upper insulating film 123, a silicon nitride film is used as a material, and is deposited to a thickness of about lOOnm by a CVD method.
[0152] 続いて、図 14Cに示すように、トランジスタ構造 120のソース Zドレイン領域 118と 接続されるプラグ 119を形成する。なお、図 14C以下の各図では、図示の便宜上、 層間絶縁膜 122から上部の構成のみを示し、シリコン半導体基板 110や MOSトラン ジスタ 120等の図示を省略する。  Subsequently, as shown in FIG. 14C, a plug 119 connected to the source Z drain region 118 of the transistor structure 120 is formed. 14C and subsequent figures, for convenience of illustration, only the structure above the interlayer insulating film 122 is shown, and the illustration of the silicon semiconductor substrate 110, the MOS transistor 120, and the like is omitted.
[0153] 詳細には、先ず、ソース Zドレイン領域 118をエッチングストッパーとして、当該ソー ス Zドレイン領域 118の表面の一部が露出するまで上部絶縁膜 223、層間絶縁膜 1 22、及び保護膜 121をリソグラフィー及びそれに続くドライエッチングにより加工し、 例えば約 0. 3 μ m径のビア孔 119aを形成する。  Specifically, first, using the source Z drain region 118 as an etching stopper, the upper insulating film 223, the interlayer insulating film 122, and the protective film 121 until a part of the surface of the source Z drain region 118 is exposed. Is processed by lithography and subsequent dry etching to form a via hole 119a having a diameter of about 0.3 μm, for example.
[0154] 次に、ビア孔 119aの壁面を覆うように、スパッタ法により例えば Ti膜及び TiN膜を 膜厚 20nm程度及びに膜厚 50nm程度に順次堆積して、下地膜 (グルー膜) 119bを 形成する。そして、 CVD法によりグルー膜 119bを介してビア孔 119aを埋め込むよう に例えば W膜を形成する。その後、 CMPにより上部絶縁膜 123をストッパーとして W 膜及びグルー膜 119bを研磨し、ビア孔 219a内をグルー膜 219aを介して Wで埋め 込むプラグ 219を形成する。 CMPの後に、例えば N Oのプラズマァニール処理を施  Next, for example, a Ti film and a TiN film are sequentially deposited to a film thickness of about 20 nm and a film thickness of about 50 nm by a sputtering method so as to cover the wall surface of the via hole 119a, and a base film (glue film) 119b is formed. Form. Then, for example, a W film is formed by the CVD method so as to fill the via hole 119a through the glue film 119b. Thereafter, the W film and the glue film 119b are polished by CMP using the upper insulating film 123 as a stopper to form a plug 219 that fills the via hole 219a with W via the glue film 219a. For example, plasma annealing with N 2 O is performed after CMP.
2  2
す。  The
[0155] 続いて、図 14Dに示すように、下部電極層 124、強誘電体膜 125及び上部電極層 126を順次形成する。 詳細には、先ず、スパッタ法により例えば膜厚が 150ηπ!〜 200nm程度に Pt膜を 堆積し、下部電極層 124を形成する。 Subsequently, as shown in FIG. 14D, a lower electrode layer 124, a ferroelectric film 125, and an upper electrode layer 126 are sequentially formed. Specifically, first, for example, the film thickness is 150 ηπ! A Pt film is deposited to about 200 nm to form the lower electrode layer 124.
[0156] 次に、 RFスパッタ法により、下部電極層 124上に強誘電体である例えば PZTから なる強誘電体膜 225を膜厚 ΙΟΟηπ!〜 300nm程度に堆積する。そして、強誘電体膜 125をァニール処理して当該強誘電体膜 125を結晶化する。このァニール処理の条 件としては、 ArZOガスを Arが 1. 98リットル Z分、 Oが 0. 025リットル Next, a ferroelectric film 225 made of a ferroelectric material such as PZT is formed on the lower electrode layer 124 by RF sputtering, with a film thickness of 膜厚 ηπ! Deposits to about 300nm. Then, the ferroelectric film 125 is annealed to crystallize the ferroelectric film 125. The conditions for this annealing are ArZO gas with 1.98 liters Z for Ar and 0.025 liters for O.
2 2 Z分の流量 で供給しながら、例えば 550°C〜650°Cで 60秒間〜 120秒間実行する。強誘電体 膜 125の材料としては、 PZTの代わりに、 Pb La Zr Ti O (0<x< 1, 0<v< 1 l -x l -y y 3  2. While supplying at a flow rate of 2 Z, for example, run from 550 ° C to 650 ° C for 60 seconds to 120 seconds. The material of the ferroelectric film 125 is Pb La Zr Ti O (0 <x <1, 0 <v <1 l -x l -y y 3 instead of PZT.
)、SrBi (Ta Nb ) O (0<x< 1)、 Bi Ti O 等を用いても良い。  ), SrBi (Ta Nb) O (0 <x <1), Bi Ti O or the like may be used.
2 x l -x 2 9 4 2 12  2 x l -x 2 9 4 2 12
[0157] 次に、強誘電体膜 125上に上部電極層 126を堆積形成する。  Next, the upper electrode layer 126 is deposited on the ferroelectric film 125.
上部電極層 126としては、先ず反応性スパッタ法により、例えば導電性酸化物であ る IrO膜 126aを膜厚 200nm程度に形成する。その後、 IrO膜 126aをァニール処 As the upper electrode layer 126, first, for example, an IrO film 126a, which is a conductive oxide, is formed to a thickness of about 200 nm by reactive sputtering. After that, the IrO film 126a is annealed.
2 2 twenty two
理する。このァニール処理の条件としては、 ArZOガスを Arが 2. 0リットル Z分、 O  Make sense. The annealing conditions include ArZO gas with 2.0 liters Z of Ar, O
2 2 が 0. 02リットル Z分の流量で供給しながら、例えば 650°C〜850°Cで 10秒間〜 60 秒間実行する。そして、 IrO膜 126a上に、当該 IrO膜 126aのキャップ膜として機能  While 2 2 is supplied at a flow rate of 0.02 liters Z, for example, run at 650 ° C to 850 ° C for 10 seconds to 60 seconds. Then, on the IrO film 126a, it functions as a cap film for the IrO film 126a.
2 2  twenty two
する貴金属膜、ここでは Pt膜 126bをスパッタ法により膜厚 lOOnm程度に形成する。 IrO膜 126a及び Pt膜 126bから上部電極層 126が構成される。なお、上部電極層 1 A noble metal film, here a Pt film 126b, is formed to a thickness of about lOOnm by sputtering. The upper electrode layer 126 is composed of the IrO film 126a and the Pt film 126b. Upper electrode layer 1
2 2
26において、 IrO膜 126aの代わりに Ir、 Ru、 RuO、 SrRuO、その他の導電性酸  26, Ir, Ru, RuO, SrRuO, other conductive acids instead of IrO film 126a
2 2 3  2 2 3
化物やこれらの積層構造としても良い。また、 Pt膜 126bの形成を省略することも可能 である。  It is good also as a compound and these laminated structures. In addition, the formation of the Pt film 126b can be omitted.
[0158] 続いて、図 15Aに示すように、 TiN膜 128及びシリコン酸ィ匕膜 129を形成する。  Subsequently, as shown in FIG. 15A, a TiN film 128 and a silicon oxide film 129 are formed.
詳細には、 TiN膜 128については、上部電極層 126上にスパッタ法等により膜厚 2 00nm程度に堆積形成する。シリコン酸ィ匕膜 129については、 TiN膜 128上に、例え ば TEOSを用いた CVD法により膜厚 lOOOnm程度に堆積形成する。ここで、 TEOS 膜の代わりに HDP膜を形成しても良い。なお、シリコン酸ィ匕膜 129上に更にシリコン 窒化膜を形成しても好適である。  Specifically, the TiN film 128 is deposited on the upper electrode layer 126 to a thickness of about 200 nm by sputtering or the like. The silicon oxide film 129 is deposited on the TiN film 128 to a thickness of about lOOOnm by, for example, a CVD method using TEOS. Here, an HDP film may be formed instead of the TEOS film. It is also preferable to further form a silicon nitride film on the silicon oxide film 129.
[0159] 続いて、図 15B〖こ示すよう〖こ、レジストマスク 101を形成する。 Subsequently, as shown in FIG. 15B, a resist mask 101 is formed.
詳細には、シリコン酸ィ匕膜 129上にレジストを塗布し、このレジストをリソグラフィ一に より電極形状に加工して、レジストマスク 101を形成する。 Specifically, a resist is applied on the silicon oxide film 129, and this resist is integrated with lithography. The resist mask 101 is formed by further processing into an electrode shape.
[0160] 続いて、図 15Cに示すように、シリコン酸ィ匕膜 129を加工する。 Subsequently, as shown in FIG. 15C, the silicon oxide film 129 is processed.
詳細には、レジストマスク 101をマスクとしてシリコン酸ィ匕膜 129をドライエッチング する。このとき、レジストマスク 101の電極形状に倣ってシリコン酸化膜 129がパター ユングされ、ハードマスク 129aが形成される。また、レジストマスク 101のエッチングさ れて厚みが減少する。  Specifically, the silicon oxide film 129 is dry etched using the resist mask 101 as a mask. At this time, the silicon oxide film 129 is patterned following the electrode shape of the resist mask 101, and a hard mask 129a is formed. Further, the thickness of the resist mask 101 is reduced by etching.
[0161] 続いて、図 15Dに示すように、 TiN膜 128をカ卩ェする。 Subsequently, as shown in FIG. 15D, the TiN film 128 is cleaned.
詳細には、レジストマスク 101及びハードマスク 129aをマスクとして、 TiN膜 128を ドライエッチングする。このとき、ハードマスク 129aの電極形状に倣って TiN膜 128が パター-ングされる。また、レジストマスク 101は、当該エッチング中に自身がエツチン グされて薄くなる。その後、灰化処理等によりレジストマスク 101を除去する。  Specifically, the TiN film 128 is dry etched using the resist mask 101 and the hard mask 129a as a mask. At this time, the TiN film 128 is patterned following the electrode shape of the hard mask 129a. Further, the resist mask 101 is etched and thinned during the etching. Thereafter, the resist mask 101 is removed by ashing or the like.
[0162] 続いて、図 16Aに示すように、上部電極層 126、強誘電体膜 125、及び下部電極 層 124を加工する。 Subsequently, as shown in FIG. 16A, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are processed.
詳細には、ハードマスク 129a及び TiN膜 128をマスクとし、上部絶縁膜 123をエツ チンダストッパーとして、上部電極層 126、強誘電体膜 125、及び下部電極層 124を ドライエッチングする。このとき、 TiN膜 128の電極形状に倣って、上部電極層 126、 強誘電体膜 125、及び下部電極層 124がパターユングされる。また、ハードマスク 12 9aは、当該エッチング中に自身がエッチングされて薄くなる。その後、ハードマスク 1 29aを全面ドライエッチング (エッチバック)によりエッチング除去する。  Specifically, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are dry-etched using the hard mask 129a and the TiN film 128 as a mask and the upper insulating film 123 as an etch duster. At this time, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are patterned following the electrode shape of the TiN film 128. Further, the hard mask 129a is thinned by being etched during the etching. Thereafter, the hard mask 129a is removed by dry etching (etchback) on the entire surface.
[0163] 続いて、図 16Bに示すように、強誘電体キャパシタ構造 130を完成させる。  Subsequently, as shown in FIG. 16B, the ferroelectric capacitor structure 130 is completed.
詳細には、マスクとして用いられた TiN膜 128をウエットエッチングにより除去する。 このとき、下部電極 131上に強誘電体膜 125、上部電極 132が順次積層され、強誘 電体膜 125を介して下部電極 131と上部電極 132とが容量結合する強誘電体キャパ シタ構造 130を完成させる。この強誘電体キャパシタ構造 130においては、下部電極 131がプラグ 119と接続され、当該プラグ 119を介してソース Zドレイン 118と下部電 極 131とが電気的に接続される。  Specifically, the TiN film 128 used as a mask is removed by wet etching. At this time, a ferroelectric film 125 and an upper electrode 132 are sequentially laminated on the lower electrode 131, and the ferroelectric capacitor structure 130 in which the lower electrode 131 and the upper electrode 132 are capacitively coupled through the ferroelectric film 125. To complete. In the ferroelectric capacitor structure 130, the lower electrode 131 is connected to the plug 119, and the source Z drain 118 and the lower electrode 131 are electrically connected via the plug 119.
[0164] 続いて、図 16Cに示すように、強誘電体膜 125への水素'水の浸入を防止するため の水素拡散防止膜 133及び層間絶縁膜 134を形成する。 詳細には、先ず、強誘電体キャパシタ構造 130の全面を覆うように、金属酸化物、 例えばアルミナ (Al O )を材料として、スパッタ法により膜厚 20nm〜50nm程度に Subsequently, as shown in FIG. 16C, a hydrogen diffusion preventing film 133 and an interlayer insulating film 134 for preventing the entry of hydrogen into the ferroelectric film 125 are formed. Specifically, first, a metal oxide such as alumina (Al 2 O 3) is used as a material so as to cover the entire surface of the ferroelectric capacitor structure 130, and a film thickness of about 20 nm to 50 nm is formed by sputtering.
2 3  twenty three
堆積し、水素拡散防止膜 133を形成する。その後、水素拡散防止膜 133をァニール 処理する。  A hydrogen diffusion prevention film 133 is formed by deposition. Thereafter, the hydrogen diffusion preventing film 133 is annealed.
[0165] 次に、強誘電体キャパシタ構造 130を水素拡散防止膜 133を介して覆うように、層 間絶縁膜 134を形成する。ここで、層間絶縁膜 134としては、例えば TEOSを用いた プラズマ CVD法により、シリコン酸ィ匕膜を膜厚 1500nm〜2500nm程度に堆積した 後、 CMPにより例えば膜厚が lOOOnm程度となるまで研磨して形成する。 CMPの 後に、層間絶縁膜 134の脱水を目的として、例えば N Oのプラズマァニール処理を  Next, an interlayer insulating film 134 is formed so as to cover the ferroelectric capacitor structure 130 with the hydrogen diffusion preventing film 133 interposed therebetween. Here, as the interlayer insulating film 134, for example, a silicon oxide film is deposited to a film thickness of about 1500 nm to 2500 nm by a plasma CVD method using TEOS, and then polished by CMP until the film thickness becomes, for example, about lOOOnm. Form. After CMP, for example, N 2 O plasma annealing is performed for the purpose of dehydrating the interlayer insulating film 134.
2  2
施す。  Apply.
[0166] 続いて、図 17Aに示すように、強誘電体キャパシタ構造 130の上部電極 132への ビア孔 135aを形成する。  Subsequently, as shown in FIG. 17A, a via hole 135a to the upper electrode 132 of the ferroelectric capacitor structure 130 is formed.
詳細には、リソグラフィー及びそれに続くドライエッチングにより層間絶縁膜 134及 び水素拡散防止膜 133をパターユングし、上部電極 132の表面の一部を露出させる ビア孔 135aを形成する。  Specifically, the interlayer insulating film 134 and the hydrogen diffusion preventing film 133 are patterned by lithography and subsequent dry etching, and a via hole 135a exposing a part of the surface of the upper electrode 132 is formed.
[0167] 続いて、図 17Bに示すように、強誘電体キャパシタ構造 130の上部電極 132と接続 されるプラグ 135を形成する。  Subsequently, as shown in FIG. 17B, a plug 135 connected to the upper electrode 132 of the ferroelectric capacitor structure 130 is formed.
詳細には、先ず、ビア孔 135aの壁面を覆うように、スパッタ法により例えば Ti膜及 び TiN膜を膜厚 20nm程度及びに膜厚 50nm程度に順次堆積して、下地膜 (グルー 膜) 135bを形成する。  Specifically, first, for example, a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm so as to cover the wall surface of the via hole 135a, and a base film (glue film) 135b is formed. Form.
[0168] 次に、プラグ 135を形成する。  [0168] Next, the plug 135 is formed.
本実施形態では、水素拡散防止膜 133と相俟って、発生した水素の強誘電体膜 1 25への浸入を確実に防止すベぐ水素を吸収する性質を持つ水素吸蔵性導電材料 を用いて、グルー膜 135bを介してビア孔 135aを埋め込むように、層間絶縁膜 134 上に当該水素吸蔵性導電材料又はこれを含む導電材料を堆積する。水素吸蔵性導 電材料としては、 (1)自身の体積の 935倍もの水素を吸収する高い水素吸収能力を 有する Pdや、 Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm等の水素吸収性導電 材料を単独で使用しても良いし、 (2) (1)に示す水素吸収性導電材料の任意の組み 合わせによる合金を使用しても、 (3) (1)に示す水素吸収性導電材料の少なくとも 1 種と他の金属(アルミニウム (A1) ,銅 (Cu) ,鉄 (Fe) ,ニッケル (Ni)等の一般的な導 電性金属材料の少なくとも 1種、或いはイリジウム (Ir) , 白金 (Pt) ,金 (Au) ,銀 (Ag) ,ルテニウム (Ru) ,ロジウム (Rh) ,オスミウム(Os)等の貴金属の少なくとも 1種)との 合金を使用しても良い。ここでは、堆積する導電材料として Pdを用い、例えば CVD 法又は PVD法によりプラグ 135を形成する。 In the present embodiment, in combination with the hydrogen diffusion prevention film 133, a hydrogen storage conductive material having a property of absorbing hydrogen is used to reliably prevent the generated hydrogen from entering the ferroelectric film 125. Then, the hydrogen storage conductive material or a conductive material containing the same is deposited on the interlayer insulating film 134 so as to fill the via hole 135a through the glue film 135b. Examples of hydrogen storage materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen absorbing conductive materials such as Nd and Sm may be used alone, or (2) any combination of hydrogen absorbing conductive materials shown in (1). (3) At least one of the hydrogen-absorbing conductive materials shown in (1) and other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni)) At least one of the common conductive metal materials such as iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os) An alloy with at least one kind of precious metal such as the above may be used. Here, Pd is used as the conductive material to be deposited, and the plug 135 is formed by, for example, the CVD method or the PVD method.
[0169] そして、 CMPにより層間絶縁膜 134をストッパーとして、堆積した Pd及びグルー膜 135bを研磨し、ビア孔 135a内をグルー膜 135bを介してそれぞれ Wで埋め込むプ ラグ 135を形成する。 CMPの後に、例えば N Oのプラズマァニール処理を施しても Then, using the interlayer insulating film 134 as a stopper by CMP, the deposited Pd and glue film 135b are polished to form a plug 135 that fills the via hole 135a with W via the glue film 135b. For example, even if plasma annealing of N 2 O is performed after CMP
2  2
良い。  good.
[0170] 本実施形態では、上部電極 132との電気的接続をとるために必須である導電ブラ グに本発明を適用し、プラグ 135を、大量の水素吸収能力(大きな表面積及び体積) を有する水素吸蔵性導電材料である Pdを材料として形成する。従って、構成部材数 及び工程数を増加させることなぐ強誘電体膜 125への水素の浸入を効率良く防止 することができ、高 、キャパシタ特性を確実に保持することが可能となる。  [0170] In this embodiment, the present invention is applied to a conductive bragg that is essential for electrical connection with the upper electrode 132, and the plug 135 has a large amount of hydrogen absorption capacity (large surface area and volume). Pd, a hydrogen storage conductive material, is used as a material. Accordingly, it is possible to efficiently prevent hydrogen from entering the ferroelectric film 125 without increasing the number of constituent members and the number of processes, and it is possible to reliably retain the capacitor characteristics.
[0171] 続いて、図 18Aに示すように、プラグ 135と接続される第 1の配線 145を形成する。  Subsequently, as shown in FIG. 18A, a first wiring 145 connected to the plug 135 is formed.
詳細には、先ず、層間絶縁膜 134上の全面にスパッタ法等によりバリアメタル膜 14 2、配線膜 143及びバリアメタル膜 144を堆積する。ノリアメタル膜 142としては、スパ ッタ法により例えば TiN膜を膜厚 150nm程度に成膜する。配線膜 143としては、例 えば A1合金膜 (ここでは Al— Cu膜)を膜厚 350nm程度に成膜する。ノリアメタル膜 144としては、スパッタ法により例えば TiN膜を膜厚 150nm程度に成膜する。ここで 、配線膜 143の構造は、同一ルールの FeRAM以外のロジック部と同じ構造とされて V、るため、配線の加工や信頼性上の問題はな!/、。  Specifically, first, the barrier metal film 142, the wiring film 143, and the barrier metal film 144 are deposited on the entire surface of the interlayer insulating film 134 by sputtering or the like. As the noria metal film 142, for example, a TiN film is formed with a film thickness of about 150 nm by a sputtering method. As the wiring film 143, for example, an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm. As the noria metal film 144, for example, a TiN film is formed to a thickness of about 150 nm by sputtering. Here, the structure of the wiring film 143 is the same structure as the logic part other than FeRAM of the same rule V, so there is no problem in wiring processing or reliability! /.
[0172] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノリアメタル膜 14 4、配線膜 143及びバリアメタル膜 142を配線形状に加工し、プラグ 135と接続される 第 1の配線 145をパターン形成する。なお、配線膜 143として A1合金膜を形成する代 わりに、いわゆるダマシン法等を利用して Cu膜 (又は Cu合金膜)を形成し、第 1の配 線 145として Cu配線を形成しても良い。 Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the noria metal film 144, the wiring film 143, and the barrier metal film are formed by lithography and subsequent dry etching. 142 is processed into a wiring shape, and the first wiring 145 connected to the plug 135 is patterned. Instead of forming the A1 alloy film as the wiring film 143, a Cu film (or Cu alloy film) is formed using a so-called damascene method or the like, and the first wiring is formed. A Cu wiring may be formed as the line 145.
[0173] 続いて、図 18Bに示すように、第 1の配線 145と接続される第 2の配線 154を形成 する。 Subsequently, as shown in FIG. 18B, a second wiring 154 connected to the first wiring 145 is formed.
詳細には、先ず、第 1の配線 145を覆うように層間絶縁膜 146を形成する。層間絶 縁膜 146としては、シリコン酸ィ匕膜を膜厚 700nm程度に成膜し、プラズマ TEOS膜 を形成して膜厚を全体で l lOOnm程度とした後に、 CMPにより表面を研磨して、膜 厚を 750nm程度に形成する。  Specifically, first, an interlayer insulating film 146 is formed so as to cover the first wiring 145. As the interlayer insulating film 146, a silicon oxide film is formed to a thickness of about 700 nm, a plasma TEOS film is formed to a total thickness of about lOO nm, and then the surface is polished by CMP. The film thickness is formed to about 750 nm.
[0174] 次に、第 1の配線 145と接続されるプラグ 147を形成する。 [0174] Next, a plug 147 connected to the first wiring 145 is formed.
第 1の配線 145の表面の一部が露出するまで、層間絶縁膜 146をリソグラフィー及 びそれに続くドライエッチングにより加工して、例えば約 0. 25 m径のビア孔 147a を形成する。次に、このビア孔 147aの壁面を覆うように下地膜 (グルー膜) 148を形 成した後、 CVD法によりグルー膜 148を介してビア孔 147aを埋め込むように W膜を 形成する。そして、層間絶縁膜 146をストッパーとして例えば W膜及びグルー膜 248 を CMPにより研磨し、ビア孔 247a内をグルー膜 148を介して Wで埋め込むプラグ 1 47を形成する。  The interlayer insulating film 146 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 145 is exposed to form a via hole 147a having a diameter of about 0.25 m, for example. Next, after forming a base film (glue film) 148 so as to cover the wall surface of the via hole 147a, a W film is formed by the CVD method so as to fill the via hole 147a via the glue film 148. Then, for example, the W film and the glue film 248 are polished by CMP using the interlayer insulating film 146 as a stopper to form a plug 147 that fills the via hole 247a with W via the glue film 148.
[0175] なお、 CMPの代わりに、 W膜及びグルー膜 148の全面異方性エッチング、いわゆ るエッチバックを行ってプラグ 147を形成するようにしても良い。このとき、 Wのみエツ チングされ、グルー膜 148はそのまま残存する。  Note that the plug 147 may be formed by performing anisotropic etching on the entire surface of the W film and the glue film 148 or so-called etch back instead of CMP. At this time, only W is etched, and the glue film 148 remains as it is.
[0176] 次に、プラグ 147とそれぞれ接続される第 2の配線 154を形成する。 Next, second wirings 154 connected to the plugs 147 are formed.
先ず、全面にスパッタ法等によりバリアメタル膜 151、配線膜 152及びバリアメタル 膜 153を堆積する。ノリアメタル膜 151としては、スパッタ法により例えば TiN膜を膜 厚 150nm程度に成膜する。  First, a barrier metal film 151, a wiring film 152, and a barrier metal film 153 are deposited on the entire surface by sputtering or the like. As the noria metal film 151, for example, a TiN film is formed with a film thickness of about 150 nm by sputtering.
[0177] ここで、プラグ 147をエッチバック法により形成する場合には、プラグ 147の形成時 に残存するグルー膜 148がバリアメタル膜として機能するため、バリアメタル膜 151は 不要である。 Here, when the plug 147 is formed by the etch-back method, the glue film 148 remaining when the plug 147 is formed functions as a barrier metal film, and thus the barrier metal film 151 is unnecessary.
[0178] 配線膜 152としては、例えば A1合金膜 (ここでは Al— Cu膜)を膜厚 350nm程度に 成膜する。ノリアメタル膜 153としては、スパッタ法により例えば TiN膜を膜厚 150nm 程度に成膜する。ここで、配線膜 152の構造は、同一ルールの FeRAM以外のロジ ック部と同じ構造とされているため、配線の加工や信頼性上の問題はない。 [0178] As the wiring film 152, for example, an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm. As the noria metal film 153, for example, a TiN film is formed to a thickness of about 150 nm by sputtering. Here, the structure of the wiring film 152 is a logic other than FeRAM of the same rule. Since it has the same structure as the hook portion, there is no problem in wiring processing or reliability.
[0179] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノリアメタル膜 15 3、配線膜 152及びバリアメタル膜 151を配線形状に加工し、第 2の配線 154をパタ ーン形成する。なお、配線膜 152として A1合金膜を形成する代わりに、第 1の実施形 態による図 6A〜図 8Bと同様に、いわゆるダマシン法等を利用して Cu膜 (又は Cu合 金膜)を形成し、第 2の配線 154として Cu配線を形成しても良い。  Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the noria metal film 153, the wiring film 152, and the barrier metal film are formed by lithography and subsequent dry etching. 151 is processed into a wiring shape, and the second wiring 154 is formed into a pattern. Instead of forming an A1 alloy film as the wiring film 152, a Cu film (or Cu alloy film) is formed using a so-called damascene method or the like, as in FIGS. 6A to 8B according to the first embodiment. However, a Cu wiring may be formed as the second wiring 154.
[0180] しカゝる後、層間絶縁膜ゃ更なる上層配線の形成等の諸工程を経て、本実施形態に よるスタック型の FeRAMを完成させる。  [0180] After that, the stack type FeRAM according to the present embodiment is completed through various processes such as the formation of an upper layer wiring after the interlayer insulating film.
[0181] 以上説明したように、本実施形態によれば、比較的簡易な構成で水素の強誘電体 膜 125への侵入を確実に防止し、強誘電体キャパシタ構造 130の高性能を保持する 信頼性の高 ヽスタック型の FeRAMを、構成部材数及び工程数を増加させることなく 、実現することがでさる。  [0181] As described above, according to the present embodiment, hydrogen can be reliably prevented from entering the ferroelectric film 125 with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 130 can be maintained. A highly reliable stack-type FeRAM can be realized without increasing the number of components and the number of processes.
[0182] 一変形例  [0182] A variation
以下、第 2の実施形態の緒変形例について説明する。  Hereinafter, a modification of the second embodiment will be described.
[0183] (変形例 1)  [0183] (Variation 1)
本例では、第 2の実施形態の構成に加えて、多層配線構造において、少なくとも第 1の配線の配線膜の材料として、水素吸蔵性導電材料又はこれを含む導電材料を用 いる。  In this example, in addition to the configuration of the second embodiment, in the multilayer wiring structure, as the material for at least the wiring film of the first wiring, a hydrogen storage conductive material or a conductive material including the same is used.
図 19A,図 19Bは、第 2の実施形態の変形例 1によるスタック型の FeRAMの構成 をその製造方法 (主要工程)と共に工程順に示す概略断面図である。  FIG. 19A and FIG. 19B are schematic cross-sectional views showing the configuration of the stack type FeRAM according to the first modification of the second embodiment in the order of steps together with the manufacturing method (main steps).
[0184] 初めに、第 2の実施形態と同様に、図 14A〜図 17Bの各工程を経る。 First, similarly to the second embodiment, the respective steps of FIGS. 14A to 17B are performed.
続いて、図 19Aに示すように、第 1の配線 164を形成する。  Subsequently, as shown in FIG. 19A, a first wiring 164 is formed.
詳細には、先ず、層間絶縁膜 134上の全面にスパッタ法等によりバリアメタル膜 16 1、配線膜 162及びバリアメタル膜 163を堆積する。ノリアメタル膜 161としては、スパ ッタ法等により例えば Ti膜及び TiN膜をそれぞれ膜厚 5nm程度、 150nm程度に順 次積層して形成する。  Specifically, first, a barrier metal film 161, a wiring film 162, and a barrier metal film 163 are deposited on the entire surface of the interlayer insulating film 134 by sputtering or the like. As the noria metal film 161, for example, a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by a sputtering method or the like.
[0185] 本例では、水素拡散防止膜 133及びプラグ 135と相俟って、発生した水素の強誘 電体膜 125への浸入を確実に防止すベぐ水素を吸収する性質を持つ水素吸蔵性 導電材料又はこれを含む導電材料を用いて配線膜 162を形成する。水素吸蔵性導 電材料としては、 (1)自身の体積の 935倍もの水素を吸収する高い水素吸収能力を 有する Pdや、 Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm等の水素吸収性導電 材料を単独で使用しても良いし、 (2) (1)に示す水素吸収性導電材料の任意の組み 合わせによる合金を使用しても、 (3) (1)に示す水素吸収性導電材料の少なくとも 1 種と他の金属(アルミニウム (A1) ,銅 (Cu) ,鉄 (Fe) ,ニッケル (Ni)等の一般的な導 電性金属材料の少なくとも 1種、或いはイリジウム (Ir) , 白金 (Pt) ,金 (Au) ,銀 (Ag) ,ルテニウム (Ru) ,ロジウム (Rh) ,オスミウム(Os)等の貴金属の少なくとも 1種)との 合金を使用しても良い。ここでは、堆積する導電材料として Pdを用い、例えば CVD 法又は PVD法により配線膜 162を膜厚 350nm程度に成膜する。 In this example, in combination with the hydrogen diffusion preventing film 133 and the plug 135, the generated hydrogen is strongly induced. The wiring film 162 is formed using a hydrogen storage conductive material or a conductive material including the hydrogen storage property having a property of absorbing hydrogen to surely prevent entry into the electric conductor film 125. Examples of hydrogen storage materials include (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen-absorbing conductive materials such as Nd and Sm may be used alone, or (2) Even if an alloy of any combination of hydrogen-absorbing conductive materials shown in (1) is used, (3) ( At least one of the hydrogen-absorbing conductive materials shown in 1) and at least 1 of other conductive metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) Seed or alloy with iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os) and other alloys You may do it. Here, Pd is used as the conductive material to be deposited, and the wiring film 162 is formed to a thickness of about 350 nm by, for example, the CVD method or the PVD method.
[0186] 本例では、プラグ 135に加え、上部電極 132とプラグ 135を介して電気的接続をと るために必須である配線に本発明を適用し、配線膜 162を、大量の水素吸収能力( 大きな表面積及び体積)を有する水素吸蔵性導電材料である Pdを材料として形成す る。従って、構成部材数及び工程数を増加させることなぐ強誘電体膜 125への水素 の浸入を効率良く防止することができ、高いキャパシタ特性を確実に保持することが 可能となる。 In this example, in addition to the plug 135, the present invention is applied to wiring that is indispensable for electrical connection via the upper electrode 132 and the plug 135, and the wiring film 162 has a large amount of hydrogen absorption capability. Pd, which is a hydrogen storage conductive material having a large surface area and volume, is used as a material. Therefore, it is possible to efficiently prevent hydrogen from entering the ferroelectric film 125 without increasing the number of constituent members and the number of processes, and it is possible to reliably maintain high capacitor characteristics.
[0187] ノリアメタル膜 163としては、スパッタ法等により例えば Ti膜及び TiN膜をそれぞれ 膜厚 5nm程度、 150nm程度に順次積層して形成する。ここで、配線膜 162の構造 は、同一ルールの FeRAM以外のロジック部と同じ構造とされているため、配線の加 ェゃ信頼性上の問題はな ヽ。  [0187] The noria metal film 163 is formed by sequentially laminating, for example, a Ti film and a TiN film in a thickness of about 5 nm and about 150 nm, respectively, by sputtering or the like. Here, the structure of the wiring film 162 is the same as that of the logic part other than the FeRAM of the same rule, so there is no problem in reliability if the wiring is added.
[0188] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノリアメタル膜 16 3、配線膜 162及びバリアメタル膜 161を配線形状に加工し、プラグ 135と接続される 第 1の配線 164をパターン形成する。  Next, after forming, for example, a SiON film or an antireflection film (not shown) as an antireflection film, the antireflection film, the noria metal film 163, the wiring film 162, and the barrier metal film are formed by lithography and subsequent dry etching. 161 is processed into a wiring shape, and the first wiring 164 connected to the plug 135 is patterned.
[0189] なお、本例では、プラグ 135と第 1の配線 164とを別体として形成する場合について 例示したが、これらを一体形成しても良い。この場合、例えば図 17Aでビア孔 135aを 同時形成した後、ビア孔 135aの内壁面及び層間絶縁膜 134上を覆うようにグルー 膜 161 (膜厚 150nm程度の TiN膜のみ)を形成し、水素吸蔵性導電材料又はこれを 含む導電材料、例えば Pdを用いて、ビア孔 135aを埋め込むと共に層間絶縁膜 134 上でグルー膜 161上を覆うように Pdを堆積し、 Pd上にグルー膜 163 (Ti膜 (膜厚 5n m程度)と TiN膜 (膜厚 150nm程度)との積層構造)を堆積する。そして、層間絶縁 膜 134上でグルー膜 163、 Pd、及びグルー膜 161を配線形状にパターユングする。 これにより、ビア孔 135aをグルー膜 161を介して Pdで埋め込み、上面をグルー膜 16 3で覆われて層間絶縁膜 134上で延在する配線構造 (プラグ 135と第 1の配線 164と がー体形成されたもの)が形成される。 [0189] In this example, the case where the plug 135 and the first wiring 164 are formed separately is illustrated, but they may be integrally formed. In this case, for example, the via hole 135a is formed simultaneously in FIG. 17A, and then the inner wall surface of the via hole 135a and the interlayer insulating film 134 are covered. A film 161 (only a TiN film having a thickness of about 150 nm) is formed, and a hydrogen storage conductive material or a conductive material containing the same, for example, Pd, is used to fill the via hole 135a and on the interlayer insulating film 134 on the glue film 161. Pd is deposited so as to cover, and a glue film 163 (a laminated structure of a Ti film (film thickness of about 5 nm) and a TiN film (film thickness of about 150 nm)) is deposited on Pd. Then, on the interlayer insulating film 134, the glue films 163, Pd, and the glue film 161 are patterned in a wiring shape. As a result, the via hole 135a is filled with Pd through the glue film 161 and the upper surface is covered with the glue film 163 and extends on the interlayer insulating film 134 (the plug 135 and the first wiring 164 A body formed) is formed.
[0190] 続いて、図 19Bに示すように、第 1の配線 164と接続される第 2の配線 154を形成 する。 Subsequently, as shown in FIG. 19B, a second wiring 154 connected to the first wiring 164 is formed.
詳細には、先ず、第 1の配線 164を覆うように層間絶縁膜 146を形成する。層間絶 縁膜 146としては、シリコン酸ィ匕膜を膜厚 700nm程度に成膜し、プラズマ TEOS膜 を形成して膜厚を全体で l lOOnm程度とした後に、 CMPにより表面を研磨して、膜 厚を 750nm程度に形成する。  Specifically, first, an interlayer insulating film 146 is formed so as to cover the first wiring 164. As the interlayer insulating film 146, a silicon oxide film is formed to a thickness of about 700 nm, a plasma TEOS film is formed to a total thickness of about lOO nm, and then the surface is polished by CMP. The film thickness is formed to about 750 nm.
[0191] 次に、第 1の配線 164と接続されるプラグ 147を形成する。 [0191] Next, a plug 147 connected to the first wiring 164 is formed.
第 1の配線 164の表面の一部が露出するまで、層間絶縁膜 146をリソグラフィー及 びそれに続くドライエッチングにより加工して、例えば約 0. 25 m径のビア孔 147a を形成する。次に、このビア孔 147aの壁面を覆うように下地膜 (グルー膜) 148を形 成した後、 CVD法によりグルー膜 148を介してビア孔 147aを埋め込むように W膜を 形成する。そして、層間絶縁膜 146をストッパーとして例えば W膜及びグルー膜 248 を CMPにより研磨し、ビア孔 247a内をグルー膜 148を介して Wで埋め込むプラグ 1 47を形成する。  The interlayer insulating film 146 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 164 is exposed to form a via hole 147a having a diameter of about 0.25 m, for example. Next, after forming a base film (glue film) 148 so as to cover the wall surface of the via hole 147a, a W film is formed by the CVD method so as to fill the via hole 147a via the glue film 148. Then, for example, the W film and the glue film 248 are polished by CMP using the interlayer insulating film 146 as a stopper to form a plug 147 that fills the via hole 247a with W via the glue film 148.
[0192] なお、 CMPの代わりに、 W膜及びグルー膜 148の全面異方性エッチング、 、わゆ るエッチバックを行ってプラグ 147を形成するようにしても良い。このとき、 Wのみエツ チングされ、グルー膜 148はそのまま残存する。  Note that instead of CMP, the plug 147 may be formed by performing anisotropic etching of the entire surface of the W film and the glue film 148, or a so-called etch back. At this time, only W is etched, and the glue film 148 remains as it is.
[0193] 次に、プラグ 147とそれぞれ接続される第 2の配線 154を形成する。  Next, second wirings 154 connected to the plugs 147 are formed.
先ず、全面にスパッタ法等によりバリアメタル膜 151、配線膜 152及びバリアメタル 膜 153を堆積する。ノリアメタル膜 151としては、スパッタ法により例えば TiN膜を膜 厚 150nm程度に成膜する。 First, a barrier metal film 151, a wiring film 152, and a barrier metal film 153 are deposited on the entire surface by sputtering or the like. As the noria metal film 151, for example, a TiN film is formed by sputtering. The film is formed to a thickness of about 150 nm.
[0194] ここで、プラグ 147をエッチバック法により形成する場合には、プラグ 147の形成時 に残存するグルー膜 148がバリアメタル膜として機能するため、バリアメタル膜 151は 不要である。 Here, when the plug 147 is formed by the etch-back method, the glue film 148 remaining when the plug 147 is formed functions as a barrier metal film, and thus the barrier metal film 151 is unnecessary.
[0195] 配線膜 152としては、例えば A1合金膜 (ここでは Al— Cu膜)を膜厚 350nm程度に 成膜する。ノリアメタル膜 153としては、スパッタ法により例えば TiN膜を膜厚 150nm 程度に成膜する。ここで、配線膜 152の構造は、同一ルールの FeRAM以外のロジ ック部と同じ構造とされているため、配線の加工や信頼性上の問題はない。  [0195] As the wiring film 152, for example, an A1 alloy film (here, Al—Cu film) is formed to a thickness of about 350 nm. As the noria metal film 153, for example, a TiN film is formed to a thickness of about 150 nm by sputtering. Here, since the structure of the wiring film 152 is the same as that of the logic part other than the FeRAM having the same rule, there is no problem in wiring processing and reliability.
[0196] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノリアメタル膜 15 3、配線膜 152及びバリアメタル膜 151を配線形状に加工し、第 2の配線 154をパタ ーン形成する。  [0196] Next, after forming, for example, a SiON film or an antireflection film (not shown) as the antireflection film, the antireflection film, the noria metal film 153, the wiring film 152, and the barrier metal film are formed by lithography and subsequent dry etching. 151 is processed into a wiring shape, and the second wiring 154 is formed into a pattern.
[0197] なお、配線膜 152 (及び Z又はその上層の配線における配線膜)として A1合金膜を 形成する代わりに、配線膜 162と同様に、 Pd等の水素吸蔵性導電材料又はこれを含 む導電材料を用いても好適である。  [0197] Instead of forming the A1 alloy film as the wiring film 152 (and the wiring film in Z or an upper layer wiring thereof), similarly to the wiring film 162, a hydrogen storage conductive material such as Pd or the like is included. It is also preferable to use a conductive material.
[0198] また、配線膜 152として A1合金膜を形成する代わりに、第 1の実施形態による図 6A[0198] Further, instead of forming an A1 alloy film as the wiring film 152, FIG. 6A according to the first embodiment
〜図 8Bと同様に、いわゆるダマシン法等を利用して Cu膜 (又は Cu合金膜)を形成し~ Similar to Fig. 8B, Cu film (or Cu alloy film) is formed using the so-called damascene method.
、第 2の配線 154として Cu配線を形成しても良い。 Alternatively, a Cu wiring may be formed as the second wiring 154.
[0199] し力る後、層間絶縁膜ゃ更なる上層配線の形成等の諸工程を経て、本例によるス タック型の FeRAMを完成させる。 [0199] After this, the stack-type FeRAM according to this example is completed through various processes such as formation of an interlayer wiring and further upper layer wiring.
[0200] 以上説明したように、本例によれば、比較的簡易な構成で水素の強誘電体膜 125 への侵入をより確実に防止し、強誘電体キャパシタ構造 130の高性能を保持する信 頼性の高 ヽスタック型の FeRAMを、構成部材数及び工程数を増加させることなく、 実現することができる。 [0200] As described above, according to this example, hydrogen can be more reliably prevented from entering the ferroelectric film 125 with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 130 can be maintained. A highly reliable stack-type FeRAM can be realized without increasing the number of components and processes.
[0201] (変形例 2) [0201] (Variation 2)
本例では、変形例 1の構成に加えて、強誘電体キャパシタ構造 130上(上部電極 1 In this example, in addition to the configuration of the first modification, the ferroelectric capacitor structure 130 (upper electrode 1) is used.
32とプラグ 135との間)に、水素吸蔵性導電材料又はこれを含む導電材料からなる 導電膜を形成する。 図 20A〜図 23Bは、第 2の実施形態の変形例 2によるスタック型の FeRAMの構成 をその製造方法 (主要工程)と共に工程順に示す概略断面図である。 A conductive film made of a hydrogen storage conductive material or a conductive material containing this is formed between 32 and the plug 135). FIG. 20A to FIG. 23B are schematic cross-sectional views showing the configuration of the stack type FeRAM according to the second modification of the second embodiment, together with its manufacturing method (main steps), in the order of steps.
[0202] 先ず、第 2の実施形態と同様に、図 14A〜図 14Dの各工程を経る。  First, similarly to the second embodiment, the respective steps of FIGS. 14A to 14D are performed.
続いて、図 20Aに示すように、上部電極層 126上に、導電膜 171を形成する。  Subsequently, as shown in FIG. 20A, a conductive film 171 is formed on the upper electrode layer 126.
[0203] 本例では、上部電極層 126上に、水素吸蔵性導電材料又はこれを含む導電材料 を堆積する。水素吸蔵性導電材料としては、当該水素吸蔵性のみならず、高温ァニ ールに耐えるだけの耐熱性に優れ、ハロゲン系ガスに対する耐性も有する材料であ ることが必要である。具体的には、自身の体積の 935倍もの水素を吸収する高い水 素吸収能力を有する Pdや、 Pdと耐熱性を有する (又は酸化しても導電性を有する)他 の貴金属 (Ir, Pt, Au, Ag, Ru, Rh, Os等)の少なくとも 1種との合金等が好ましい。 ここでは、堆積する導電材料として Pdを用い、例えば CVD法又は PVD法により導電 膜 171を、後述するビア孔 135aのエッチング形成時におけるオーバーエッチで貫通 しな ヽ程度の膜厚、ここでは lOOnm程度に形成する。  [0203] In this example, a hydrogen storage conductive material or a conductive material including the same is deposited on the upper electrode layer 126. The hydrogen-occlusion conductive material is required to be a material that has not only the hydrogen-occlusion property but also excellent heat resistance enough to withstand high-temperature annealing and resistance to halogen-based gas. Specifically, Pd has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, and other noble metals (Ir, Pt) that have heat resistance with Pd (or have conductivity even when oxidized) , Au, Ag, Ru, Rh, Os, etc.) and the like are preferable. Here, Pd is used as the conductive material to be deposited. For example, a film thickness that does not penetrate through the conductive film 171 by over-etching when the via hole 135a described later is formed by CVD or PVD, for example, about lOOnm. To form.
[0204] 続いて、図 20Bに示すように、 TiN膜 128及びシリコン酸ィ匕膜 129を形成する。  Subsequently, as shown in FIG. 20B, a TiN film 128 and a silicon oxide film 129 are formed.
詳細には、 TiN膜 128については、導電膜 171上にスパッタ法等により膜厚 200η m程度に堆積形成する。シリコン酸ィ匕膜 129については、 TiN膜 128上に、例えば T EOSを用いた CVD法により膜厚 lOOOnm程度に堆積形成する。ここで、 TEOS膜 の代わりに HDP膜を形成しても良い。なお、シリコン酸ィ匕膜 129上に更にシリコン窒 化膜を形成しても好適である。  Specifically, the TiN film 128 is deposited on the conductive film 171 to a thickness of about 200 ηm by sputtering or the like. The silicon oxide film 129 is deposited on the TiN film 128 to a thickness of about lOOOnm by, for example, a CVD method using TEOS. Here, an HDP film may be formed instead of the TEOS film. It is also preferable to further form a silicon nitride film on the silicon oxide film 129.
[0205] 続いて、図 20Cに示すように、レジストマスク 101を形成する。  Subsequently, as shown in FIG. 20C, a resist mask 101 is formed.
詳細には、シリコン酸ィ匕膜 129上にレジストを塗布し、このレジストをリソグラフィ一に より電極形状に加工して、レジストマスク 101を形成する。  Specifically, a resist is applied on the silicon oxide film 129, and this resist is processed into an electrode shape by lithography to form a resist mask 101.
[0206] 続いて、図 20Dに示すように、シリコン酸ィ匕膜 129をカ卩ェする。  Subsequently, as shown in FIG. 20D, the silicon oxide film 129 is cached.
詳細には、レジストマスク 101をマスクとしてシリコン酸ィ匕膜 129をドライエッチング する。このとき、レジストマスク 101の電極形状に倣ってシリコン酸化膜 129がパター ユングされ、ハードマスク 129aが形成される。また、レジストマスク 101のエッチングさ れて厚みが減少する。  Specifically, the silicon oxide film 129 is dry etched using the resist mask 101 as a mask. At this time, the silicon oxide film 129 is patterned following the electrode shape of the resist mask 101, and a hard mask 129a is formed. Further, the thickness of the resist mask 101 is reduced by etching.
[0207] 続いて、図 21Aに示すように、 TiN膜 128をカ卩ェする。 詳細には、レジストマスク 101及びハードマスク 129aをマスクとして、 TiN膜 128を ドライエッチングする。このとき、ハードマスク 129aの電極形状に倣って TiN膜 128が パター-ングされる。また、レジストマスク 101は、当該エッチング中に自身がエツチン グされて薄くなる。その後、灰化処理等によりレジストマスク 101を除去する。 Subsequently, as shown in FIG. 21A, the TiN film 128 is cached. Specifically, the TiN film 128 is dry etched using the resist mask 101 and the hard mask 129a as a mask. At this time, the TiN film 128 is patterned following the electrode shape of the hard mask 129a. Further, the resist mask 101 is etched and thinned during the etching. Thereafter, the resist mask 101 is removed by ashing or the like.
[0208] 続いて、図 21Bに示すように、上部電極層 126、強誘電体膜 125、下部電極層 12 4、及び導電膜 171を加工する。  Subsequently, as shown in FIG. 21B, the upper electrode layer 126, the ferroelectric film 125, the lower electrode layer 124, and the conductive film 171 are processed.
[0209] 詳細には、ハードマスク 129a及び TiN膜 128をマスクとし、上部絶縁膜 123をエツ チンダストッパーとして、導電膜 171、上部電極層 126、強誘電体膜 125、及び下部 電極層 124をドライエッチングする。このとき、 TiN膜 128の電極形状に倣って、導電 膜 171、上部電極層 126、強誘電体膜 125、及び下部電極層 124がパターユングさ れる。また、ハードマスク 129aは、当該エッチング中に自身がエッチングされて薄くな る。その後、ハードマスク 129aを全面ドライエッチング(エッチバック)によりエッチング 除去する。  Specifically, the hard mask 129a and the TiN film 128 are used as a mask, the upper insulating film 123 is used as an etch duster, and the conductive film 171, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are dried. Etch. At this time, the conductive film 171, the upper electrode layer 126, the ferroelectric film 125, and the lower electrode layer 124 are patterned following the electrode shape of the TiN film 128. Further, the hard mask 129a is etched and thinned during the etching. Thereafter, the hard mask 129a is removed by dry etching (etchback) on the entire surface.
[0210] 続いて、図 21Cに示すように、上面を導電膜 171で覆われてなる強誘電体キャパシ タ構造 130を完成させる。  Subsequently, as shown in FIG. 21C, a ferroelectric capacitor structure 130 whose upper surface is covered with a conductive film 171 is completed.
詳細には、マスクとして用いられた TiN膜 128をウエットエッチングにより除去する。 このとき、下部電極 131上に強誘電体膜 125、上部電極 132が順次積層され、強誘 電体膜 125を介して下部電極 131と上部電極 132とが容量結合する強誘電体キャパ シタ構造 130を完成させる。強誘電体キャパシタ構造 130の上面は導電膜 171で覆 われる。この強誘電体キャパシタ構造 130においては、下部電極 131がプラグ 119と 接続され、当該プラグ 119を介してソース Zドレイン 118と下部電極 131とが電気的 に接続される。  Specifically, the TiN film 128 used as a mask is removed by wet etching. At this time, a ferroelectric film 125 and an upper electrode 132 are sequentially laminated on the lower electrode 131, and the ferroelectric capacitor structure 130 in which the lower electrode 131 and the upper electrode 132 are capacitively coupled through the ferroelectric film 125. To complete. The upper surface of the ferroelectric capacitor structure 130 is covered with a conductive film 171. In this ferroelectric capacitor structure 130, the lower electrode 131 is connected to the plug 119, and the source Z drain 118 and the lower electrode 131 are electrically connected via the plug 119.
[0211] 続いて、図 21Dに示すように、強誘電体膜 125への水素'水の浸入を防止するた めの水素拡散防止膜 133及び層間絶縁膜 134を形成する。  Subsequently, as shown in FIG. 21D, a hydrogen diffusion preventing film 133 and an interlayer insulating film 134 for preventing intrusion of hydrogen 'water into the ferroelectric film 125 are formed.
詳細には、先ず、上面に導電膜 171が形成された強誘電体キャパシタ構造 130の 全面を覆うように、金属酸化物、例えばアルミナ (Al O )を材料として、スパッタ法に  Specifically, first, a metal oxide such as alumina (Al 2 O 3) is used as a material to cover the entire surface of the ferroelectric capacitor structure 130 having the conductive film 171 formed on the upper surface.
2 3  twenty three
より膜厚 20ηπ!〜 50nm程度に堆積し、水素拡散防止膜 133を形成する。その後、 水素拡散防止膜 133をァニール処理する。 [0212] 次に、強誘電体キャパシタ構造 130及び導電膜 171を水素拡散防止膜 133を介し て覆うように、層間絶縁膜 134を形成する。ここで、層間絶縁膜 134としては、例えば TEOSを用いたプラズマ CVD法により、シリコン酸化膜を膜厚 1500nm〜2500nm 程度に堆積した後、 CMPにより例えば膜厚が 1 OOOnm程度となるまで研磨して形成 する。 CMPの後に、層間絶縁膜 134の脱水を目的として、例えば N Oのプラズマァ More film thickness 20ηπ! A hydrogen diffusion preventing film 133 is formed by depositing to about 50 nm. Thereafter, the hydrogen diffusion preventing film 133 is annealed. [0212] Next, an interlayer insulating film 134 is formed so as to cover the ferroelectric capacitor structure 130 and the conductive film 171 with the hydrogen diffusion preventing film 133 interposed therebetween. Here, as the interlayer insulating film 134, a silicon oxide film is deposited to a thickness of about 1500 nm to 2500 nm by, for example, a plasma CVD method using TEOS, and then polished by CMP to a thickness of about 1 OOOnm. Form. After CMP, for the purpose of dehydrating the interlayer insulating film 134, for example, a plasma plasma of NO is used.
2  2
ニール処理を施す。  Neal treatment is applied.
[0213] 続いて、図 22Aに示すように、導電膜 171へのビア孔 135aを形成する。  [0213] Subsequently, as shown in FIG. 22A, a via hole 135a to the conductive film 171 is formed.
詳細には、リソグラフィー及びそれに続くドライエッチングにより層間絶縁膜 134及 び水素拡散防止膜 133をパターユングし、上部電極 132の表面の一部を露出させる ビア孔 135aを形成する。  Specifically, the interlayer insulating film 134 and the hydrogen diffusion preventing film 133 are patterned by lithography and subsequent dry etching, and a via hole 135a exposing a part of the surface of the upper electrode 132 is formed.
[0214] ここで、上部電極上に水素拡散防止膜が存すると、ビア孔の形成時における上部 電極のオーバーエッチが大幅に増加することが確認されている。この点、 Pd等の水 素吸蔵性導電材料は、上記のような水素の吸収機能のみならず、ビア孔のエツチン グ時に用いるハロゲン系のエッチングガスと反応し難いことに起因して、ビア孔の形 成時にはエッチングレートが低くエッチングされ難いという機能を有する。  [0214] Here, it has been confirmed that the presence of a hydrogen diffusion preventing film on the upper electrode significantly increases the overetching of the upper electrode during the formation of the via hole. In this respect, the hydrogen storage conductive material such as Pd is not only due to the hydrogen absorption function as described above, but also because it is difficult to react with the halogen-based etching gas used when etching the via hole. When formed, it has a function that the etching rate is low and etching is difficult.
[0215] 本例では、上部電極 132上に Pdからなる導電膜 171を設けることにより、水素吸収 能力を向上させて強誘電体膜 125への水素の浸入を更に確実に防止するともに、ビ ァ孔 135aを形成する際に、上部電極 132を覆う水素拡散防止膜 133を形成して強 誘電体膜 125の水素からの更なる保護を図る場合でも、上部電極 132をオーバーェ ツチさせることなくリテンション不良を抑止することが可能となる。  [0215] In this example, by providing the conductive film 171 made of Pd on the upper electrode 132, the hydrogen absorption capability is improved and the penetration of hydrogen into the ferroelectric film 125 can be prevented more reliably, and the via can be prevented. When forming the hole 135a, even if a hydrogen diffusion preventing film 133 is formed to cover the upper electrode 132 to further protect the ferroelectric film 125 from hydrogen, the retention failure is not caused without over-etching the upper electrode 132. Can be suppressed.
[0216] 続いて、図 22Bに示すように、強誘電体キャパシタ構造 130の上部電極 132と導電 膜 171を介して電気的に接続されるプラグ 135を形成する。  Subsequently, as shown in FIG. 22B, a plug 135 electrically connected to the upper electrode 132 of the ferroelectric capacitor structure 130 via the conductive film 171 is formed.
詳細には、先ず、ビア孔 135aの壁面を覆うように、スパッタ法により例えば Ti膜及 び TiN膜を膜厚 20nm程度及びに膜厚 50nm程度に順次堆積して、下地膜 (グルー 膜) 135bを形成する。  Specifically, first, for example, a Ti film and a TiN film are sequentially deposited to a thickness of about 20 nm and a thickness of about 50 nm so as to cover the wall surface of the via hole 135a, and a base film (glue film) 135b is formed. Form.
[0217] 次に、プラグ 135を形成する。  [0217] Next, the plug 135 is formed.
本実施形態では、グルー膜 135bを介してビア孔 135aを埋め込むように、層間絶 縁膜 134上に当該水素吸蔵性導電材料又はこれを含む導電材料を堆積する。水素 吸蔵性導電材料としては、 (1)自身の体積の 935倍もの水素を吸収する高い水素吸 収能力を有する Pdや、 Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm等の水素吸 収性導電材料を単独で使用しても良いし、(2) (1)に示す水素吸収性導電材料の任 意の組み合わせによる合金を使用しても、 (3) (1)に示す水素吸収性導電材料の少 なくとも 1種と他の金属(アルミニウム (A1) ,銅 (Cu) ,鉄 (Fe) ,ニッケル (Ni)等の一 般的な導電性金属材料の少なくとも 1種、或いはイリジウム (Ir) , 白金 (Pt) ,金 (Au) ,銀 (Ag) ,ルテニウム (Ru) ,ロジウム (Rh) ,オスミウム(Os)等の貴金属の少なくとも 1種)との合金を使用しても良い。ここでは、堆積する導電材料として Pdを用い、例え ば C VD法又は P VD法によりプラグ 135を形成する。 In this embodiment, the hydrogen storage conductive material or a conductive material containing the hydrogen storage conductive material is deposited on the interlayer insulating film 134 so as to fill the via hole 135a via the glue film 135b. hydrogen Occupant conductive materials include: (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd , Sm and other hydrogen-absorbing conductive materials may be used alone, or (2) (3) (3) ( At least one of the hydrogen-absorbing conductive materials shown in 1) and other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni), etc.) At least one kind or alloy with iridium (Ir), platinum (Pt), gold (Au), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os) or other noble metals May be used. Here, Pd is used as the conductive material to be deposited. For example, the plug 135 is formed by the CVD method or the PVD method.
[0218] そして、 CMPにより層間絶縁膜 134をストッパーとして、堆積した Pd及びグルー膜 135bを研磨し、ビア孔 135a内をグルー膜 135bを介してそれぞれ Wで埋め込むプ ラグ 135を形成する。 CMPの後に、例えば N Oのプラズマァニール処理を施しても [0218] Then, the deposited Pd and glue film 135b are polished by CMP using the interlayer insulating film 134 as a stopper, thereby forming a plug 135 filling the via hole 135a with W via the glue film 135b. For example, even if plasma annealing of N 2 O is performed after CMP
2  2
良い。  good.
[0219] 続いて、図 23Aに示すように、プラグ 135と接続される第 1の配線 164を形成する。  Subsequently, as shown in FIG. 23A, a first wiring 164 connected to the plug 135 is formed.
詳細には、先ず、層間絶縁膜 134上の全面にスパッタ法等によりバリアメタル膜 16 1、配線膜 162及びバリアメタル膜 163を堆積する。ノリアメタル膜 161としては、スパ ッタ法等により例えば Ti膜及び TiN膜をそれぞれ膜厚 5nm程度、 150nm程度に順 次積層して形成する。  Specifically, first, a barrier metal film 161, a wiring film 162, and a barrier metal film 163 are deposited on the entire surface of the interlayer insulating film 134 by sputtering or the like. As the noria metal film 161, for example, a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by a sputtering method or the like.
[0220] 本例では、水素拡散防止膜 133、導電膜 91、及びプラグ 135と相俟って、発生した 水素の強誘電体膜 125への浸入を確実に防止すベぐ水素を吸収する性質を持つ 水素吸蔵性導電材料又はこれを含む導電材料を用いて配線膜 162を形成する。水 素吸蔵性導電材料としては、 (1)自身の体積の 935倍もの水素を吸収する高い水素 吸収能力を有する Pdや、 Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, Sm等の水素 吸収性導電材料を単独で使用しても良いし、 (2) (1)に示す水素吸収性導電材料の 任意の組み合わせによる合金を使用しても、 (3) (1)に示す水素吸収性導電材料の 少なくとも 1種と他の金属(アルミニウム (A1) ,銅(Cu) ,鉄 (Fe) ,ニッケル (Ni)等の 一般的な導電性金属材料の少なくとも 1種、或いはイリジウム (Ir) , 白金 (Pt) ,金 (A u) ,銀 (Ag) ,ルテニウム (Ru) ,ロジウム (Rh) ,オスミウム(Os)等の貴金属の少なく とも 1種)との合金を使用しても良い。ここでは、堆積する導電材料として Pdを用い、 例えば CVD法又は PVD法により配線膜 162を膜厚 350nm程度に成膜する。 [0220] In this example, in combination with the hydrogen diffusion prevention film 133, the conductive film 91, and the plug 135, the property of absorbing hydrogen to prevent the generated hydrogen from entering the ferroelectric film 125 reliably. The wiring film 162 is formed using a hydrogen storage conductive material having or a conductive material including the same. Examples of hydrogen storage conductive materials include: (1) Pd, which has a high hydrogen absorption capacity to absorb 935 times its own volume of hydrogen, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Hydrogen absorbing conductive materials such as Nd and Sm may be used alone, or (2) Even if an alloy of any combination of hydrogen absorbing conductive materials shown in (1) is used, (3) (1 ) And other metals (aluminum (A1), copper (Cu), iron (Fe), nickel (Ni) and other common conductive metal materials), Or there are few precious metals such as iridium (Ir), platinum (Pt), gold (A u), silver (Ag), ruthenium (Ru), rhodium (Rh), osmium (Os). An alloy with both of them may be used. Here, Pd is used as the conductive material to be deposited, and the wiring film 162 is formed to a thickness of about 350 nm by, for example, the CVD method or the PVD method.
[0221] 本例では、上部電極 132上に導電膜 171を形成するとともに、上部電極 132と導電 膜 171を介して電気的に接続されるプラグ 135、上部電極 132と導電膜 171及びプ ラグ 135を介して電気的に接続される第 1の配線 164の配線膜 162を、大量の水素 吸収能力(大きな表面積及び体積)を有する水素吸蔵性導電材料である Pdを材料と してそれぞれ形成する。従って、構成部材数及び工程数を増カロさせることなぐ強誘 電体膜 125への水素の浸入を可及的に効率良く防止することができ、高いキャパシ タ特性を確実に保持することが可能となる。  In this example, the conductive film 171 is formed on the upper electrode 132 and the plug 135 electrically connected to the upper electrode 132 via the conductive film 171, the upper electrode 132, the conductive film 171, and the plug 135 are formed. The wiring films 162 of the first wirings 164 that are electrically connected via each other are formed using Pd, which is a hydrogen storage conductive material having a large amount of hydrogen absorption capacity (large surface area and volume), as a material. Therefore, it is possible to prevent hydrogen from entering the strong dielectric film 125 without increasing the number of components and the number of processes as efficiently as possible, and high capacitor characteristics can be reliably maintained. It becomes.
[0222] ノリアメタル膜 163としては、スパッタ法等により例えば Ti膜及び TiN膜をそれぞれ 膜厚 5nm程度、 150nm程度に順次積層して形成する。ここで、配線膜 162の構造 は、同一ルールの FeRAM以外のロジック部と同じ構造とされているため、配線の加 ェゃ信頼性上の問題はな ヽ。  [0222] As the noria metal film 163, for example, a Ti film and a TiN film are sequentially stacked to a thickness of about 5 nm and 150 nm, respectively, by sputtering or the like. Here, the structure of the wiring film 162 is the same as that of the logic part other than the FeRAM of the same rule, so there is no problem in reliability if the wiring is added.
[0223] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノリアメタル膜 16 3、配線膜 162及びバリアメタル膜 161を配線形状に加工し、プラグ 135と接続される 第 1の配線 164をパターン形成する。  [0223] Next, after forming, for example, a SiON film or an antireflection film (not shown) as the antireflection film, the antireflection film, the noria metal film 163, the wiring film 162, and the barrier metal film are formed by lithography and subsequent dry etching. 161 is processed into a wiring shape, and the first wiring 164 connected to the plug 135 is patterned.
[0224] 続いて、図 23Bに示すように、第 1の配線 164と接続される第 2の配線 154を形成 する。  Subsequently, as shown in FIG. 23B, a second wiring 154 connected to the first wiring 164 is formed.
詳細には、先ず、第 1の配線 164を覆うように層間絶縁膜 146を形成する。層間絶 縁膜 146としては、シリコン酸ィ匕膜を膜厚 700nm程度に成膜し、プラズマ TEOS膜 を形成して膜厚を全体で l lOOnm程度とした後に、 CMPにより表面を研磨して、膜 厚を 750nm程度に形成する。  Specifically, first, an interlayer insulating film 146 is formed so as to cover the first wiring 164. As the interlayer insulating film 146, a silicon oxide film is formed to a thickness of about 700 nm, a plasma TEOS film is formed to a total thickness of about lOO nm, and then the surface is polished by CMP. The film thickness is formed to about 750 nm.
[0225] 次に、第 1の配線 164と接続されるプラグ 147を形成する。 [0225] Next, a plug 147 connected to the first wiring 164 is formed.
第 1の配線 164の表面の一部が露出するまで、層間絶縁膜 146をリソグラフィー及 びそれに続くドライエッチングにより加工して、例えば約 0. 25 m径のビア孔 147a を形成する。次に、このビア孔 147aの壁面を覆うように下地膜 (グルー膜) 148を形 成した後、 CVD法によりグルー膜 148を介してビア孔 147aを埋め込むように W膜を 形成する。そして、層間絶縁膜 146をストッパーとして例えば W膜及びグルー膜 248 を CMPにより研磨し、ビア孔 247a内をグルー膜 148を介して Wで埋め込むプラグ 1 47を形成する。 The interlayer insulating film 146 is processed by lithography and subsequent dry etching until a part of the surface of the first wiring 164 is exposed to form a via hole 147a having a diameter of about 0.25 m, for example. Next, a base film (glue film) 148 is formed so as to cover the wall surface of the via hole 147a, and then a W film is formed so as to fill the via hole 147a through the glue film 148 by the CVD method. Form. Then, for example, the W film and the glue film 248 are polished by CMP using the interlayer insulating film 146 as a stopper to form a plug 147 that fills the via hole 247a with W via the glue film 148.
[0226] なお、 CMPの代わりに、 W膜及びグルー膜 148の全面異方性エッチング、 、わゆ るエッチバックを行ってプラグ 147を形成するようにしても良い。このとき、 Wのみエツ チングされ、グルー膜 148はそのまま残存する。  Note that instead of CMP, the plug 147 may be formed by performing anisotropic etching on the entire surface of the W film and the glue film 148, or a so-called etch back. At this time, only W is etched, and the glue film 148 remains as it is.
[0227] 次に、プラグ 147とそれぞれ接続される第 2の配線 154を形成する。 Next, second wirings 154 connected to the plugs 147 are formed.
先ず、全面にスパッタ法等によりバリアメタル膜 151、配線膜 152及びバリアメタル 膜 153を堆積する。ノリアメタル膜 151としては、スパッタ法により例えば TiN膜を膜 厚 150nm程度に成膜する。  First, a barrier metal film 151, a wiring film 152, and a barrier metal film 153 are deposited on the entire surface by sputtering or the like. As the noria metal film 151, for example, a TiN film is formed with a film thickness of about 150 nm by sputtering.
[0228] ここで、プラグ 147をエッチバック法により形成する場合には、プラグ 147の形成時 に残存するグルー膜 148がバリアメタル膜として機能するため、バリアメタル膜 151は 不要である。 Here, when the plug 147 is formed by the etch-back method, the glue film 148 remaining when the plug 147 is formed functions as a barrier metal film, and thus the barrier metal film 151 is unnecessary.
[0229] 配線膜 152としては、例えば A1合金膜 (ここでは Al— Cu膜)を膜厚 350nm程度に 成膜する。ノリアメタル膜 153としては、スパッタ法により例えば TiN膜を膜厚 150nm 程度に成膜する。ここで、配線膜 152の構造は、同一ルールの FeRAM以外のロジ ック部と同じ構造とされているため、配線の加工や信頼性上の問題はない。  [0229] As the wiring film 152, for example, an A1 alloy film (here, an Al-Cu film) is formed to a thickness of about 350 nm. As the noria metal film 153, for example, a TiN film is formed to a thickness of about 150 nm by sputtering. Here, since the structure of the wiring film 152 is the same as that of the logic part other than the FeRAM having the same rule, there is no problem in wiring processing and reliability.
[0230] 次に、反射防止膜として例えば SiON膜または反射防止膜 (不図示)を成膜した後 、リソグラフィー及びそれに続くドライエッチングにより反射防止膜、ノリアメタル膜 15 3、配線膜 152及びバリアメタル膜 151を配線形状に加工し、第 2の配線 154をパタ ーン形成する。  Next, after forming, for example, a SiON film or an antireflection film (not shown) as the antireflection film, the antireflection film, the noria metal film 153, the wiring film 152, and the barrier metal film are formed by lithography and subsequent dry etching. 151 is processed into a wiring shape, and the second wiring 154 is formed into a pattern.
[0231] なお、配線膜 152 (及び Z又はその上層の配線における配線膜)として A1合金膜を 形成する代わりに、配線膜 162と同様に、 Pd等の水素吸蔵性導電材料又はこれを含 む導電材料を用いても好適である。  [0231] Instead of forming the A1 alloy film as the wiring film 152 (and the wiring film in Z or an upper layer wiring thereof), similarly to the wiring film 162, it contains a hydrogen storage conductive material such as Pd or the like. It is also preferable to use a conductive material.
[0232] また、配線膜 152として A1合金膜を形成する代わりに、第 1の実施形態による図 6AFurther, instead of forming an A1 alloy film as the wiring film 152, FIG. 6A according to the first embodiment is used.
〜図 8Bと同様に、いわゆるダマシン法等を利用して Cu膜 (又は Cu合金膜)を形成し~ Similar to Fig. 8B, Cu film (or Cu alloy film) is formed using the so-called damascene method.
、第 2の配線 154として Cu配線を形成しても良い。 Alternatively, a Cu wiring may be formed as the second wiring 154.
[0233] し力る後、層間絶縁膜ゃ更なる上層配線の形成等の諸工程を経て、本例によるス タック型の FeRAMを完成させる。 [0233] After applying the force, the interlayer insulating film is subjected to various processes such as the formation of a further upper layer wiring. Complete the tack-type FeRAM.
[0234] 以上説明したように、本例によれば、比較的簡易な構成で水素の強誘電体膜 125 への侵入を可及的に防止し、強誘電体キャパシタ構造 30の高性能を保持するととも に、上部電極 132をオーバーエッチさせることなくリテンション不良を抑止することが 可能となる。この構成により、極めて信頼性の高いスタック型の FeRAMを、徒に構成 部材数及び工程数を増加させることなぐ実現することができる。  [0234] As described above, according to this example, hydrogen is prevented from entering the ferroelectric film 125 as much as possible with a relatively simple configuration, and the high performance of the ferroelectric capacitor structure 30 is maintained. At the same time, it is possible to suppress retention failure without over-etching the upper electrode 132. With this configuration, an extremely reliable stack-type FeRAM can be realized without increasing the number of components and processes.
[0235] なお、第 2の実施形態ではプラグ 135を、変形例 1ではプラグ 135に加えて第 1の 配線 164を、変形例 1ではプラグ 135及び第 1の配線 164にカ卩えて導電膜 171を、水 素吸蔵性導電材料である Pdを材料して形成する構成をそれぞれ開示したが、以下 のような緒構成も本発明の範疇に含まれる。  [0235] In the second embodiment, the plug 135, the first wiring 164 in addition to the plug 135 in the first modification, and the plug 135 and the first wiring 164 in the first modification are connected to the conductive film 171. Each of the above-described structures formed from Pd, which is a hydrogen storage conductive material, is disclosed, but the following structures are also included in the scope of the present invention.
[0236] (1)プラグ 135を、水素吸蔵性導電材料である Pd等ある 、はこれを含む導電材料を 用いて形成するとともに、導電膜 171を水素吸蔵性導電材料である Pd等あるいはこ れを含む導電材料を用いて形成し、第 1の配線は通常の A1合金配線等とする。  [0236] (1) The plug 135 is formed using a conductive material containing hydrogen, such as Pd, which is a hydrogen storage conductive material, and the conductive film 171 is formed using a conductive material including this, such as Pd, which is a hydrogen storage conductive material. The first wiring shall be a normal A1 alloy wiring or the like.
[0237] (2)第 1の配線 164を、水素吸蔵性導電材料である Pd等あるいはこれを含む導電 材料を用いて形成するとともに、導電膜 171を水素吸蔵性導電材料である Pd等ある いはこれを含む導電材料を用いて形成し、強誘電体キャパシタ構造 130と電気的に 接続される各プラグは通常の Wプラグ等とする。  [0237] (2) The first wiring 164 is formed using Pd or the like which is a hydrogen storage conductive material or a conductive material including the same, and the conductive film 171 is Pd or the like which is a hydrogen storage conductive material. Is formed using a conductive material containing this, and each plug electrically connected to the ferroelectric capacitor structure 130 is a normal W plug or the like.
[0238] (1) , (2)の手法でも、プラグ 135、第 1の配線 164、及び導電膜 171を全て水素吸 蔵性導電材料である Pd等ある ヽはこれを含む導電材料を用いて形成した場合 (変形 例 2の場合)に比べれば劣るものの、高いキャパシタ特性を確実に保持し、信頼性の 高!、FeRAMを実現させることができる。  [0238] In the methods (1) and (2), the plug 135, the first wiring 164, and the conductive film 171 are all made of a hydrogen-absorbing conductive material such as Pd. Although it is inferior to the case where it is formed (in the case of Modification 2), it can reliably maintain high capacitor characteristics, achieve high reliability, and realize an FeRAM.
産業上の利用可能性  Industrial applicability
[0239] 本発明によれば、比較的簡易な構成で水素のキャパシタ膜への侵入を確実に防止 し、キャパシタ構造、特に強誘電体キャパシタ構造の高性能を保持する信頼性の高 い半導体装置を、構成部材数及び工程数を増加させることなぐ実現することができ る。 [0239] According to the present invention, a highly reliable semiconductor device that reliably prevents hydrogen from entering the capacitor film with a relatively simple configuration and maintains the high performance of the capacitor structure, particularly the ferroelectric capacitor structure. Can be realized without increasing the number of components and the number of processes.

Claims

請求の範囲 The scope of the claims
[1] 半導体基板の上方に形成されており、下部電極と上部電極とによりキャパシタ膜を 挟持してなるキャパシタ構造と、  [1] a capacitor structure formed above a semiconductor substrate and having a capacitor film sandwiched between a lower electrode and an upper electrode;
前記キャパシタ構造の上方に形成されてなる配線と、  Wiring formed above the capacitor structure;
前記キャパシタ構造上に形成されてなり、少なくとも前記上部電極とその上方の前 記配線とを電気的に接続する導電プラグと  A conductive plug formed on the capacitor structure and electrically connecting at least the upper electrode and the wiring above the upper electrode;
を含み、  Including
前記導電プラグは、水素を吸蔵する第 1の導電材料を含み形成されていることを特 徴とする半導体装置。  The semiconductor device is characterized in that the conductive plug includes a first conductive material that absorbs hydrogen.
[2] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd,及び Smを第 1の群、 Al, Cu, Fe [2] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, and Sm in the first group, Al, Cu, Fe
,及び Niを第 2の群、 Ir, Pt, Au, Ag, Ru, Rh,及び Osを第 3の群として、 , And Ni as the second group, Ir, Pt, Au, Ag, Ru, Rh, and Os as the third group,
前記第 1の導電材料は、前記第 1の群力 選ばれた 1種、前記第 1の群力 選ばれ た複数種の組み合わせによる合金、前記第 1の群力 選ばれた少なくとも 1種と第 2 の群力 選ばれた少なくとも 1種の組み合わせによる合金、又は、前記第 1の群から 選ばれた少なくとも 1種と第 3の群力 選ばれた少なくとも 1種の組み合わせによる合 金であることを特徴とする請求項 1に記載の半導体装置。  The first conductive material is selected from the first group force selected one type, the first group force selected from a combination of a plurality of types, the first group force selected at least one type and the first group force. Group power of 2 Alloy of at least one selected combination, or alloy of at least one selected from the first group and at least one combination selected from the third group power The semiconductor device according to claim 1, characterized in that:
[3] 前記上部電極と前記導電プラグとの間に導電膜が設けられており、  [3] A conductive film is provided between the upper electrode and the conductive plug,
前記導電膜は、水素を吸蔵する第 2の導電材料を含み形成されて ヽることを特徴と する請求項 1に記載の半導体装置。  2. The semiconductor device according to claim 1, wherein the conductive film includes a second conductive material that occludes hydrogen.
[4] 前記第 2の導電材料は、 Pd、又は Pdと Ir, Pt, Au, Ag, Ru, Rh, Osから選ばれた 少なくとも 1種との組み合わせによる合金であることを特徴とする請求項 3に記載の半 導体装置。  [4] The second conductive material may be Pd or an alloy of Pd and a combination of at least one selected from Ir, Pt, Au, Ag, Ru, Rh, and Os. The semiconductor device according to 3.
[5] 前記配線は、水素を吸蔵する第 3の導電材料を含み形成されて ヽることを特徴とす る請求項 1に記載の半導体装置。  5. The semiconductor device according to claim 1, wherein the wiring is formed to include a third conductive material that absorbs hydrogen.
[6] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd,及び Smを第 1の群、 Al, Cu, Fe[6] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, and Sm in the first group, Al, Cu, Fe
,及び Niを第 2の群、 Ir, Pt, Au, Ag, Ru, Rh,及び Osを第 3の群として、 , And Ni as the second group, Ir, Pt, Au, Ag, Ru, Rh, and Os as the third group,
前記第 3の導電材料は、前記第 1の群力 選ばれた 1種、前記第 1の群力 選ばれ た複数種の組み合わせによる合金、前記第 1の群力 選ばれた少なくとも 1種と第 2 の群力 選ばれた少なくとも 1種の組み合わせによる合金、又は、前記第 1の群から 選ばれた少なくとも 1種と第 3の群力 選ばれた少なくとも 1種の組み合わせによる合 金であることを特徴とする請求項 5に記載の半導体装置。 The third conductive material is selected from the first group force selected one type, the first group force selected from a combination of a plurality of types, the first group force selected at least one type and the first group force. 2 Group force of an alloy of at least one selected combination, or an alloy of at least one selected from the first group and a combination of at least one selected from the third group force The semiconductor device according to claim 5.
[7] 前記導電プラグ及び前記配線は、前記第 1の導電材料を含み一体形成されてなる ことを特徴とする請求項 1に記載の半導体装置。 7. The semiconductor device according to claim 1, wherein the conductive plug and the wiring are integrally formed including the first conductive material.
[8] 前記キャパシタ膜は、強誘電特性を有する強誘電材料からなることを特徴とする請 求項 1に記載の半導体装置。 [8] The semiconductor device according to [1], wherein the capacitor film is made of a ferroelectric material having ferroelectric characteristics.
[9] 前記キャパシタ構造は、前記下部電極上に他の導電プラグが設けられてなるプレ ーナ型のものであり、 [9] The capacitor structure is a planar type in which another conductive plug is provided on the lower electrode,
前記他の導電プラグは、前記導電プラグと共に、前記第 1の導電材料を含み形成さ れてなることを特徴とする請求項 1に記載の半導体装置。  2. The semiconductor device according to claim 1, wherein the other conductive plug is formed including the first conductive material together with the conductive plug.
[10] 前記キャパシタ構造は、前記下部電極下に他の導電プラグが設けられてなるスタツ ク型のものであることを特徴とする請求項 1に記載の半導体装置。 10. The semiconductor device according to claim 1, wherein the capacitor structure is of a stack type in which another conductive plug is provided under the lower electrode.
[11] 半導体基板の上方に形成されており、下部電極と上部電極とによりキャパシタ膜を 挟持してなるキャパシタ構造と、 [11] A capacitor structure formed above a semiconductor substrate and sandwiching a capacitor film between a lower electrode and an upper electrode;
前記キャパシタ構造の上方に形成されてなる配線と、  Wiring formed above the capacitor structure;
前記キャパシタ構造上に形成されてなり、前記上部電極とその上方の前記配線とを 電気的に接続する導電プラグと  A conductive plug formed on the capacitor structure and electrically connecting the upper electrode and the wiring thereabove;
を含み、  Including
前記配線は、水素を吸蔵する導電材料を有して形成されて ヽることを特徴とする半 導体装置。  The semiconductor device is characterized in that the wiring is formed of a conductive material that occludes hydrogen.
[12] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd,及び Smを第 1の群、 Al, Cu, Fe ,及び Niを第 2の群、 Ir, Pt, Au, Ag, Ru, Rh,及び Osを第 3の群として、  [12] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, and Sm in the first group, Al, Cu, Fe, and Ni in the second group, Ir, Pt , Au, Ag, Ru, Rh, and Os as a third group,
前記導電材料は、前記第 1の群から選ばれた 1種、前記第 1の群から選ばれた複数 種の組み合わせによる合金、前記第 1の群力 選ばれた少なくとも 1種と第 2の群から 選ばれた少なくとも 1種の組み合わせによる合金、又は、前記第 1の群力 選ばれた 少なくとも 1種と第 3の群力 選ばれた少なくとも 1種の組み合わせによる合金であるこ とを特徴とする請求項 11に記載の半導体装置。 The conductive material is one selected from the first group, an alloy of a plurality of combinations selected from the first group, at least one selected from the first group force and the second group. Or an alloy of at least one combination selected from the above, or an alloy of at least one combination selected from the first group force and the third group force. Item 12. The semiconductor device according to Item 11.
[13] 前記上部電極と前記導電プラグとの間に導電膜が設けられており、 前記導電膜は、水素を吸蔵する他の導電材料を含み形成されて!ヽることを特徴と する請求項 11に記載の半導体装置。 [13] The conductive film is provided between the upper electrode and the conductive plug, and the conductive film is formed to include another conductive material that absorbs hydrogen. 11. The semiconductor device according to 11.
[14] 前記他の導電材料は、 Pd、又は Pdと Ir, Pt, Au, Ag, Ru, Rh, Osから選ばれた 少なくとも 1種との組み合わせによる合金であることを特徴とする請求項 13に記載の 半導体装置。 [14] The other conductive material is Pd or an alloy of Pd and a combination of at least one selected from Ir, Pt, Au, Ag, Ru, Rh, and Os. A semiconductor device according to 1.
[15] 半導体基板の上方に、下部電極と上部電極とによりキャパシタ膜を挟持してなるキ ャパシタ構造を形成する工程と、  [15] forming a capacitor structure having a capacitor film sandwiched between a lower electrode and an upper electrode above the semiconductor substrate;
前記キャパシタ構造上に、少なくとも前記上部電極と電気的に接続される導電ブラ グを形成する工程と、  Forming a conductive plug electrically connected to at least the upper electrode on the capacitor structure;
前記導電プラグ上に、前記導電プラグを介して前記上部電極と電気的に接続され る配線を形成する配線を形成する工程と  Forming a wiring on the conductive plug to form a wiring electrically connected to the upper electrode through the conductive plug;
を含み、  Including
前記導電プラグを、水素を吸蔵する第 1の導電材料を含む材料から形成することを 特徴とする半導体装置の製造方法。  The method of manufacturing a semiconductor device, wherein the conductive plug is formed of a material including a first conductive material that occludes hydrogen.
[16] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd,及び Smを第 1の群、 Al, Cu, Fe ,及び Niを第 2の群、 Ir, Pt, Au, Ag, Ru, Rh,及び Osを第 3の群として、  [16] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, and Sm in the first group, Al, Cu, Fe, and Ni in the second group, Ir, Pt , Au, Ag, Ru, Rh, and Os as a third group,
前記第 1の導電材料は、前記第 1の群力 選ばれた 1種、前記第 1の群力 選ばれ た複数種の組み合わせによる合金、前記第 1の群力 選ばれた少なくとも 1種と第 2 の群力 選ばれた少なくとも 1種の組み合わせによる合金、又は、前記第 1の群から 選ばれた少なくとも 1種と第 3の群力 選ばれた少なくとも 1種の組み合わせによる合 金であることを特徴とする請求項 15に記載の半導体装置の製造方法。  The first conductive material is selected from the first group force selected one type, the first group force selected from a combination of a plurality of types, the first group force selected at least one type and the first group force. Group power of 2 Alloy of at least one selected combination, or alloy of at least one selected from the first group and at least one combination selected from the third group power 16. The method for manufacturing a semiconductor device according to claim 15, wherein:
[17] 前記上部電極上に導電膜を介して前記導電プラグを形成し、  [17] forming the conductive plug on the upper electrode through a conductive film,
前記導電膜を、水素を吸蔵する第 2の導電材料を含む材料から形成することを特 徴とする請求項 15に記載の半導体装置の製造方法。  16. The method for manufacturing a semiconductor device according to claim 15, wherein the conductive film is formed of a material including a second conductive material that occludes hydrogen.
[18] 前記第 2の導電材料は、 Pd、又は Pdと Ir, Pt, Au, Ag, Ru, Rh, Osから選ばれた 少なくとも 1種との組み合わせによる合金であることを特徴とする請求項 17に記載の 半導体装置の製造方法。 [18] The second conductive material may be Pd or an alloy of Pd and a combination of at least one selected from Ir, Pt, Au, Ag, Ru, Rh, and Os. 18. A method for manufacturing a semiconductor device according to 17.
[19] 前記配線を、水素を吸蔵する第 3の導電材料を含む材料から形成することを特徴と する請求項 15に記載の半導体装置の製造方法。 19. The method of manufacturing a semiconductor device according to claim 15, wherein the wiring is formed from a material including a third conductive material that occludes hydrogen.
[20] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd,及び Smを第 1の群、 Al, Cu, Fe[20] Pd, Li, Na, Mg, Ca, Ti, Zr, V, Nb, La, Nd, and Sm in the first group, Al, Cu, Fe
,及び Niを第 2の群、 Ir, Pt, Au, Ag, Ru, Rh,及び Osを第 3の群として、 , And Ni as the second group, Ir, Pt, Au, Ag, Ru, Rh, and Os as the third group,
前記第 3の導電材料は、前記第 1の群力 選ばれた 1種、前記第 1の群力 選ばれ た複数種の組み合わせによる合金、前記第 1の群力 選ばれた少なくとも 1種と第 2 の群力 選ばれた少なくとも 1種の組み合わせによる合金、又は、前記第 1の群から 選ばれた少なくとも 1種と第 3の群力 選ばれた少なくとも 1種の組み合わせによる合 金であることを特徴とする請求項 19に記載の半導体装置の製造方法。  The third conductive material is selected from the first group force selected one type, the first group force selected from a combination of a plurality of types, the first group force selected at least one type and the first group force. Group power of 2 Alloy of at least one selected combination, or alloy of at least one selected from the first group and at least one combination selected from the third group power 20. The method for manufacturing a semiconductor device according to claim 19, wherein:
[21] 前記導電プラグ及び前記配線を、前記第 1の導電材料を含む材料を用いて一体形 成することを特徴とする請求項 15に記載の半導体装置の製造方法。 21. The method of manufacturing a semiconductor device according to claim 15, wherein the conductive plug and the wiring are integrally formed using a material including the first conductive material.
[22] 前記キャパシタ膜は、強誘電特性を有する強誘電材料からなることを特徴とする請 求項 15に記載の半導体装置の製造方法。 [22] The method for manufacturing a semiconductor device according to claim 15, wherein the capacitor film is made of a ferroelectric material having ferroelectric characteristics.
[23] 前記キャパシタ構造は、前記下部電極上に他の導電プラグが設けられてなるプレ ーナ型のものであり、 [23] The capacitor structure is a planar type in which another conductive plug is provided on the lower electrode,
前記他の導電プラグを、前記導電プラグと同時に、前記第 1の導電材料を含む材 料から形成することを特徴とする請求項 15に記載の半導体装置の製造方法。  16. The method of manufacturing a semiconductor device according to claim 15, wherein the other conductive plug is formed of a material containing the first conductive material simultaneously with the conductive plug.
[24] 前記キャパシタ構造は、前記下部電極下に他の導電プラグが設けられてなるスタツ ク型のものであることを特徴とする請求項 15に記載の半導体装置の製造方法。 24. The method of manufacturing a semiconductor device according to claim 15, wherein the capacitor structure is of a stack type in which another conductive plug is provided under the lower electrode.
PCT/JP2006/306665 2006-03-30 2006-03-30 Semiconductor device and process for producing the same WO2007116443A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008509595A JPWO2007116443A1 (en) 2006-03-30 2006-03-30 Semiconductor device and manufacturing method thereof
PCT/JP2006/306665 WO2007116443A1 (en) 2006-03-30 2006-03-30 Semiconductor device and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306665 WO2007116443A1 (en) 2006-03-30 2006-03-30 Semiconductor device and process for producing the same

Publications (1)

Publication Number Publication Date
WO2007116443A1 true WO2007116443A1 (en) 2007-10-18

Family

ID=38580752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306665 WO2007116443A1 (en) 2006-03-30 2006-03-30 Semiconductor device and process for producing the same

Country Status (2)

Country Link
JP (1) JPWO2007116443A1 (en)
WO (1) WO2007116443A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126722A (en) * 1997-07-02 1999-01-29 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH1140761A (en) * 1997-07-23 1999-02-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JP2001257322A (en) * 2000-03-13 2001-09-21 Oki Electric Ind Co Ltd Structure of semiconductor device using ferroelectric and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187633A (en) * 1997-09-02 1999-03-30 Fujitsu Ltd Manufacture of semiconductor device
JP2003243625A (en) * 2002-02-19 2003-08-29 Seiko Epson Corp Ferroelectric memory device and method of manufacturing the same
JP3836052B2 (en) * 2002-06-25 2006-10-18 沖電気工業株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1126722A (en) * 1997-07-02 1999-01-29 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH1140761A (en) * 1997-07-23 1999-02-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JP2001257322A (en) * 2000-03-13 2001-09-21 Oki Electric Ind Co Ltd Structure of semiconductor device using ferroelectric and its manufacturing method

Also Published As

Publication number Publication date
JPWO2007116443A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP3331334B2 (en) Method for manufacturing semiconductor device
JP4998262B2 (en) Semiconductor device and manufacturing method thereof
JP4690234B2 (en) Semiconductor device and manufacturing method thereof
JPH1117124A (en) Semiconductor device and manufacture thereof
US7781812B2 (en) Semiconductor device for non-volatile memory and method of manufacturing the same
JP2007165350A (en) Method of manufacturing semiconductor device
JP2006261328A (en) Capacitive element, manufacturing method thereof, and semiconductor device
US8324671B2 (en) Semiconductor device and method of manufacturing the same
JP2006222227A (en) Semiconductor device and its manufacturing method
JP4854675B2 (en) Semiconductor device and manufacturing method thereof
WO2006134664A1 (en) Semiconductor device and method for manufacturing same
WO2006134663A1 (en) Semiconductor device and method for manufacturing same
JP2002280528A (en) Semiconductor device and its manufacturing method
EP1387405A2 (en) Semiconductor memory device and method for manufacturing the same
JP5018772B2 (en) Manufacturing method of semiconductor device
JP2001358309A (en) Semiconductor device
JP2006302976A (en) Semiconductor device and manufacturing method thereof
WO2007116501A1 (en) Semiconductor device and its manufacturing method
US20060102942A1 (en) Ferroelectric memory and method for manufacturing the same
JP2007005409A (en) Dielectric memory and its manufacturing method
JP4985401B2 (en) Semiconductor device and manufacturing method thereof
WO2007116443A1 (en) Semiconductor device and process for producing the same
JP2002043540A (en) Semiconductor device
JP5202846B2 (en) Semiconductor device and manufacturing method thereof
JP3944364B2 (en) Ferroelectric capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008509595

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06730613

Country of ref document: EP

Kind code of ref document: A1