WO2007112861A1 - Schneckenelement - Google Patents

Schneckenelement Download PDF

Info

Publication number
WO2007112861A1
WO2007112861A1 PCT/EP2007/002482 EP2007002482W WO2007112861A1 WO 2007112861 A1 WO2007112861 A1 WO 2007112861A1 EP 2007002482 W EP2007002482 W EP 2007002482W WO 2007112861 A1 WO2007112861 A1 WO 2007112861A1
Authority
WO
WIPO (PCT)
Prior art keywords
kneading
screw
units
width
diameter
Prior art date
Application number
PCT/EP2007/002482
Other languages
English (en)
French (fr)
Inventor
Michael Behling
Ralf J. Dahl
Original Assignee
Kraussmaffei Berstorff Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kraussmaffei Berstorff Gmbh filed Critical Kraussmaffei Berstorff Gmbh
Priority to JP2009501912A priority Critical patent/JP5130285B2/ja
Priority to EP07711985.7A priority patent/EP2001650B1/de
Priority to CN2007800087319A priority patent/CN101400500B/zh
Priority to CA2644925A priority patent/CA2644925C/en
Publication of WO2007112861A1 publication Critical patent/WO2007112861A1/de
Priority to US12/211,410 priority patent/US20090016147A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • B29B7/421Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix with screw and additionally other mixing elements on the same shaft, e.g. paddles, discs, bearings, rotor blades of the Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/256Exchangeable extruder parts
    • B29C48/2564Screw parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Definitions

  • the invention relates to a screw element according to the preamble of claim 1.
  • plasticizing unit such as those in extruders or in injection molding machines
  • a variety of methods are used.
  • One of these methods is compounding, i. the incorporation of fillers or reinforcing agents, incorporation of paints or pigments, blending of various materials, e.g. Plastics or elastomers, reactive processes or the like. All methods have in common that this is done by means of two- or multi-shaft extruder having in the same direction or in opposite directions rotating screws.
  • Scissor energy is used to melt the plastic materials into the material by means of the screws.
  • the screws have so-called screw elements, which are often designed to be multi-threaded.
  • a special screw element is the so-called kneading element, also called kneading block in the literature.
  • a kneading block consists of spiral-shaped screw parts or a plurality of kneading units arranged one behind the other in the direction of the method and having a certain geometry.
  • the geometry of the kneading units especially in terms of their width and their outside and inside diameters, is the same, and is determined by the size of the plasticizing unit, i. the plasticizing unit of the extruder or the injection molding machine selected.
  • the dissipation of the mechanical energy introduced via the drive via a gear and via the worm shaft is determined by, for example, the dependence of the enthalpy of the plastic to be processed on the type of worm assembly used.
  • the type of screw assembly used is also called configuration.
  • the configuration varies, for example, in the type and number of kneading blocks and the other screw elements.
  • the main conversion of the energy depending on the geometry of the screw elements is achieved directly in front of and above the first or the first kneading elements. This major transformation of energy is through shear.
  • the gaps between the kneading unit and the extruder housing and in a twin-screw extruder the kneading units in the gusset area and the comb surface of the kneading elements are determining. From these quantities, the shear rate as well as the shear stress can be calculated accordingly. About the shear stress results in the melting of the material to be plasticized. During melting, the highest mechanical loads for the screw element and their shaft / hub connection result.
  • Such a kneading element is known from the registered documents of German Utility Model 82 32 585.
  • the screw element shown there comprises individual kneading units, which can be plugged together to form a kneading element.
  • the kneading units have the same geometry.
  • DE 100 50 295 A1 describes a multi-shaft extruder for the treatment and / or processing of an elastomer filled with filler with at least two shafts, which in the conveying direction comprise a filling zone, a mastifying zone and a dispersing zone.
  • the masticating as well as the dispersing section may have kneading disks whose maximum diameter increases or decreases in the direction of production.
  • JP 2004202871 a kneading screw is described which has a kneading section between two conveying sections whose kneading disks have a continuously increasing diameter in the conveying direction.
  • the present invention is therefore based on the object of specifying a screw element of the type mentioned, in which a good plasticization of the material to be processed is made possible with reduced mechanical stress on the screw elements.
  • the screw element in question is designed and refined such that the geometry of at least two successively arranged kneading units differs, wherein the width of the kneading units increases in the process direction
  • the width of at least two kneading units could be different. This would affect the shear gap to change the shear area. As in the case of a change in the diameter of the kneading unit, which will be discussed below, this could take place within one or more successive screw elements.
  • the kneading units or screw parts do not have the same width throughout the width of the screw element.
  • the kneading units or screw sections could not consistently have a same diameter.
  • the screw elements could be independent of the number of elements in the screw. Thus, the disk land width variability could extend over several screw elements. The screw elements could thus be independent of length.
  • the width of the kneading units increases in the process direction. This would also increase the shear of the material to be plasticized in the process direction.
  • the direction of the plasticizing unit in which the material to be plasticized and / or plasticized is essentially transported, is thus defined as the method direction.
  • the sequence of variability of the width of the kneading units does not have to increase steadily, but may be partially the same.
  • it has been recognized that to obtain a good plasticization with reduced mechanical stress of the screw element can deviate from the known shape of the same geometry of the kneading units. If one chooses different geometries, namely different widths, in the kneading units, it is possible to control the initiation of the shear and the mechanical load and to optimize the respective method.
  • the use of the screw elements according to the invention is possible in a large number of plasticizing units and a wide variety of methods.
  • the kneading elements according to the invention are conceivable in two- or multi-shaft, in the same direction or in opposite directions rotating plasticizing.
  • the screw elements are designed to be single or multi-threaded, consist of spiral-shaped screw parts or integrally executed or loosely connected kneading units.
  • the kneading units are selected depending on the size of the plasticizing unit and the respective process task.
  • the inventive design of the screw element is therefore independent of the size of the machine and the diameter of the screw element.
  • the screw elements are independent of the type of shaft / hub connection and the mobility of the screw element.
  • the screw elements can furthermore be used in any type of material to be plasticized and are independent of the Da / D ratio and the direction of rotation of the screws.
  • the geometry of the kneading units is designed such that a continuous increase in the shear of the material to be plasticized can be achieved.
  • the diameter of at least two kneading units could also be different.
  • the shearing gap formed between the kneading unit and the extruder housing would be larger or smaller in the direction of the method. be stopped.
  • the diameters of the individual kneading units or sections could increase in the process direction.
  • the kneading units and kneading elements arranged one behind the other could have different diameters throughout.
  • the variability of the geometry thus has a direct influence on the development of the shear rate and the shear stress in front of and in the screw element as well as on the development of the mechanical loading of the elements.
  • the Da / Dj ratio of the kneading units may be constant or vary in the screw element according to the invention.
  • the diameter and the width of at least two kneading units could be different. This would allow a particularly large variability of the shear gap. Such a configured screw element would also be particularly adaptable to a variety of process tasks.
  • both the diameter and the width of the kneading units in the process direction could increase.
  • 1 is a schematic plan view of an embodiment of a screw element with variable diameter
  • FIG. 2 shows a schematic side view of the embodiment of a variable diameter screw element shown in FIG. 1, FIG.
  • Fig. 3 is a schematic plan view of an embodiment of a screw element according to the invention with variable width of the kneading unit and
  • Fig. 4 is a schematic side view of the embodiment shown in Fig. 3 of a screw element according to the invention with variable width of the kneading unit.
  • the screw element is a kneading element 1, which is used for use in a plasticizing unit, not shown, with a worm shaft, also not shown.
  • the kneading element 1 is composed of kneading units 2, which are firmly connected to each other in this embodiment.
  • the kneading units 2 can be arranged on a common axis.
  • the kneading units 2 have a toothing, which can be brought into engagement with a toothing on the worm shaft and thus the kneading element is fixed substantially rotationally fixed on the worm shaft.
  • the kneading units 2 have a geometry which is determined by two diameters Di and D a , ie the diameters D 1 and D 2 , D 3 or D 4 .
  • the geometry of two kneading units 2 arranged one after the other differs.
  • the external diameter of the kneading element 2 shown in FIG. knife D 3 increases in the process direction.
  • the kneading unit 2 with the smallest diameter Di in this embodiment is arranged closest to the feeding zone and the kneading disk 2 with the outside diameter D 4 is arranged furthest in the direction of the discharge zone.
  • D 4 is greater than D 3 and D 3 is greater than D 2 .
  • Di is again smaller than D 2 , ie Di ⁇ D 2 ⁇ D 3 ⁇ D 4 .
  • the inner diameter Di of the kneading element 1 remains constant. It is conceivable in any configuration that the inner diameter Dj varies according to or other than the outer diameter D a .
  • FIG. 2 shows the kneading element 1 shown in FIG. 1 in a schematic side view.
  • the kneading element 1 of this embodiment has an overall width B.
  • the kneading units 2 in turn have a width b.
  • FIG. 3 shows a kneading element according to the invention with a variable web width, ie that the kneading units 2 have different widths b.
  • the diameter ratio DJD 1 is constant in this embodiment. It should also be noted that the outer diameter D 3 is also constant.
  • the width b of the kneading units 2 increases in the process direction. Thus, the shear of the material over the width B of the kneading element 1 is increased.
  • the width bi of the kneading unit 2 which is arranged closest to the feeding zone in this kneading element 1, is smaller than the width b 2 .
  • the width b 2 is again smaller than the width b 3 .
  • the width b 4 of the next kneading unit 2 is again greater than the width b 3 of the previous kneading unit 2. Furthermore, the width bs of the kneading unit 2, which is located farthest in the direction of the discharge zone with respect to this kneading element 2, is greater than the width b 4 . ie bi ⁇ b 2 ⁇ b 3 ⁇ b 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Ein Schneckenelement, insbesondere ein Knetelement (1) zur Verwendung mit einer Plastifiziereinheit mit einer Schneckenwelle mit mindestens zwei Kneteinheiten (2), wobei die Kneteinheiten auf einer gemeinsamen Achse, beispielsweise der Schneckenwelle, anordenbar sind und wobei die Kneteinheiten eine Geometrie aufweisen, ist im Hinblick auf eine besonders gute Plastif izierung und eine verminderte mechanische Belastung derart ausgebildet, dass sich die Geometrie mindestens zweier nacheinander angeordneter Kneteinheiten unterscheidet.

Description

Beschreibung
Schneckenelement
Die Erfindung betrifft ein Schneckenelement gemäß dem Oberbegriff des Anspruchs 1.
Bei der Aufbereitung von Kunststoffen in einer Plastifiziereinheit, wie diese bei Extrudern oder bei Spritzgießmaschinen vorhanden sind, werden unterschiedlichste Verfahren verwendet. Eines dieses Verfahren ist das Compoundieren, d.h. das Einmischen von Füll- oder Verstärkungsstoffen, Einarbeitung von Farben oder Pigmenten, das Verblenden von verschiedenen Materialien wie z.B. Kunststoffen oder Elastomeren, reaktive Verfahren oder dergleichen. Sämtlichen Verfahren ist gemeinsam, dass diese mittels zwei- oder mehrwelliger Extruder erfolgt, die gleichsinnig oder gegensinnig drehende Schnecken aufweisen. Mittels der Schnecken wird Scherenergie zum Aufschmelzen der plastischen Materialien in das Material eingebracht. Die Schnecken weisen sogenannte Schneckenelemente auf, die häufig mehrgängig ausgeführt sind.
Ein spezielles Schneckenelement ist das sogenannte Knetelement, in der Literatur auch Knetblock genannt. Ein solcher Knetblock besteht aus spiralförmigen Schneckenteilen oder mehreren, hintereinander in Verfahrensrichtung angeordneter Kneteinheiten, die eine gewisse Geometrie aufweisen. Bei den bekannten Knetelementen ist die Geometrie der Kneteinheiten, insbesondere hinsichtlich ihrer Breite und ihren Außen- und Innendurchmessern gleich, und wird nach der Größe der Plastifiziereinheit, d.h. der Plastifiziereinheit des Extruders oder der Spritzgießmaschine gewählt.
Die Dissipation der über den Antrieb über ein Getriebe und über die Schneckenwelle eingebrachten mechanischen Energie wird neben beispielsweise der Abhängigkeit der Enthalpie des zu verarbeitenden Kunststoffs durch die Art des eingesetzten Schne- ckenaufbaus bestimmt. Die Art des eingesetzten Schneckenaufbaus wird auch Konfiguration genannt. Die Konfiguration variiert beispielsweise in der Art und Anzahl der Knetblöcke und der sonstigen Schneckenelemente. Vornehmlich wird direkt vor sowie über dem oder den ersten Knetelementen die Hauptumsetzung der Energie in Abhängigkeit der Geometrie der Schneckenelemente erreicht. Diese Hauptumsetzung der Energie erfolgt durch die Scherung. Dabei sind primär die Drehzahl der Schnecke und somit die (Winkel-)Geschwindigkeit der Kneteinheiten, die Spalte zwischen der Kneteinheit und dem Extrudergehäuse sowie bei einem Doppelschneckenextruder den Kneteinheiten im Zwickelbereich und die Kammfläche der Knetelemente bestimmend. Aus diesen Größen lässt sich entsprechend die Schergeschwindigkeit wie auch die Scherspannung berechnen. Über die Scherspannung ergibt sich die Aufschmelzung des zu plastifizierenden Materials. Bei der Aufschmelzung ergeben sich die höchsten mechanischen Belastungen für das Schneckenelement und deren Wellen/Naben-Verbindung.
Ein solches Knetelement ist aus den eingetragenen Unterlagen des deutschen Gebrauchsmusters 82 32 585 bekannt. Das dort gezeigte Schneckenelement umfasst einzelne Kneteinheiten, die separat zu einem Knetelement zusammengesteckt werden können. Die Kneteinheiten weisen hierbei die gleiche Geometrie auf.
In der DE 100 50 295 A1 ist ein Mehrwellen-Extruder zur Aufbereitung und/oder Verarbeitung eines mit Füllstoff versetzten Elastomers mit mindestens zwei Wellen beschrieben, die in Förderrichtung gesehen eine Einfüllzone, eine Mastifizierzone und eine Dispergierzone umfassen. Dabei können der Mastifizier- wie auch der Dispergier- abschnitt Knetscheiben aufweisen, deren maximaler Durchmesser in Produktionsrichtung zu- oder abnimmt.
In der Zusammenfassung der JP 2004202871 ist eine Knetschnecke beschrieben, die zwischen zwei Förderabschnitten einen Knetabschnitt aufweist, deren Knetscheiben einen in Förderrichtung kontinuierlich zunehmenden Durchmesser aufweisen.
Die DE 199 50 917 A1 befasst sich mit einem Doppelschneckenextruder mit bestimmten Scheckenelementen, bei dem bei guter dispersiver Mischwirkung eine möglichst geringe dissipative Temperaturerhöhung auftritt. Lediglich allgemein ist in der Beschreibungseinleitung darauf hingewiesen, dass Schneckenelemente kontinuierliche Steigungswinkel (Verdrehungen) aufweisen können oder auch in Scheiben variabler Breite, deren Steigung unendlich ist (keine Verdrehung) oder unter einem Winkelversatz angeordnet sind (sog. Knetblöcke) vorgesehen sein können.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Schneckenelement der eingangs genannten Art anzugeben, bei dem eine gute Plastifizierung des zu verarbeitenden Materials bei verminderter mechanischer Belastung der Schneckenelemente ermöglicht wird.
Erfindungsgemäß wird die voranstehende Aufgabe durch ein Schneckenelement mit den Merkmalen des Patentanspruchs 1 gelöst.
Danach ist das in Rede stehende Schneckenelement derart ausgestaltet und weitergebildet, dass sich die Geometrie mindestens zweier nacheinander angeordneter Kneteinheiten unterscheidet, wobei die Breite der Kneteinheiten in Verfahrensrichtung zunimmt
So könnte die Breite von mindestens zwei Kneteinheiten unterschiedlich sein. Hierdurch würde der Scherspalt dahingehend beeinflusst, dass die Scherfläche verändert wird. Ebenso wie bei einer - nachfolgend noch erörterten - Veränderung des Durchmessers der Kneteinheit könnte dies innerhalb einer oder mehrerer aufeinander folgender Schneckenelemente erfolgen. Die Kneteinheiten oder Schneckenteile weisen über die Breite des Schneckenelements durchgängig keine gleiche Breite auf. Zudem könnten die Kneteinheiten oder Schneckenteilabschnitte durchgängig auch keinen gleichen Durchmesser besitzen. Die Schneckenelemente könnten unabhängig von der Anzahl der Elemente in der Schnecke sein. Somit könnten die Scheiben-Stegbreitenvariabilität über mehrere Schneckenelemente erstrecken. Die Schneckenelemente könnten somit längenunabhängig sein.
Insgesamt nimmt die Breite der Kneteinheiten in Verfahrensrichtung zu. Damit würde auch die Scherung des zu plastifizierenden Materials in Verfahrensrichtung zunehmen. Als Verfahrensrichtung wird also die Richtung der Plastifiziereinheit definiert, in der das zu plastifizierende und/oder plastifizierte Material im Wesentlichen transportiert wird. Die Abfolge der Variabilität der Breite der Kneteinheiten muss jedoch nicht stetig zunehmen, sondern kann partiell auch gleich sein. Insgesamt ist erkannt worden, dass man zum Erhalt einer guten Plastifizierung bei verringerter mechanischer Belastung des Schneckenelements von der bekannten Form der gleichen Geometrie der Kneteinheiten abweichen kann. Wählt man unterschiedliche Geometrien, nämlich unterschiedliche Breiten, bei den Kneteinheiten, so ist es möglich, die Einleitung der Scherung und der mechanischen Belastung zu kontrollieren und das jeweilige Verfahren zu optimieren.
Der Einsatz von den erfindungsgemäßen Schneckenelementen ist bei einer Vielzahl von Plastifiziereinheiten und den unterschiedlichsten Verfahren möglich. Die erfindungsgemäßen Knetelemente sind bei zwei- oder mehrwelligen, gleichsinnig oder gegensinnig drehenden Plastifiziereinheiten denkbar. Auch ist es möglich, dass die Schneckenelemente ein- oder mehrgängig ausgestaltet sind, aus spiralförmigen Schneckenteilen oder integral ausgeführter oder lose miteinander verbundenen Kneteinheiten bestehen. Die Kneteinheiten werden abhängig von der Größe der Plastifiziereinheit und der jeweiligen Verfahrensaufgabe gewählt. Die erfindungsgemäße Ausgestaltung des Schneckenelements ist demnach unabhängig von der Maschinengröße und dem Durchmesser des Schneckenelements. Ferner sind die Schneckenelemente unabhängig von der Art der Welle/Nabe-Verbindung sowie der Gängigkeit des Schneckenelements. Die Schneckenelemente können ferner bei jedweder Art von zu plastifizieren- dem Material eingesetzt werden und sind unabhängig von dem Da/D,-Verhältnis sowie von der Drehrichtung der Schnecken.
In besonders vorteilhafter Weise ist die Geometrie der Kneteinheiten derart ausgestaltet, dass eine kontinuierliche Zunahme der Scherung des zu plastifizierenden Materials erreichbar ist. Dies hätte den besonderen Vorteil, dass die Einleitung der Scherung nicht massiv und plötzlich, sondern gleitend, beispielsweise stetig zunehmend, ausgestaltet werden kann. Mechanisch wäre eine solche Ausgestaltung besonders vorteilhaft, da die Belastung des Elements ebenfalls eher ansteigend schwellend über eine längere Strecke als lokal brachial in einem engen begrenzten Bereich erfolgt.
Wie bereits erwähnt könnte auch der Durchmesser von mindestens zwei Kneteinheiten unterschiedlich sein. Hierdurch würde der Scherspalt, der zwischen der Kneteinheit und dem Extrudergehäuse gebildet wird, in Verfahrensrichtung größer oder kleiner ausges- taltet sein. In einer bevorzugten Ausgestaltung könnten die Durchmesser der einzelnen Kneteinheiten oder Abschnitte in Verfahrensrichtung zunehmen. Die Kneteinheiten sowie hintereinander angeordnete Knetelemente könnten hierbei durchgängig unterschiedliche Durchmesser aufweisen.
Die Abfolge der Durchmesser muss jedoch nicht zwingend stetig zunehmen, sondern kann auch partiell gleich sein oder abnehmen. Je nach Verfahrensaufgabe sind jedoch alle möglichen Variationen des Durchmessers denkbar. Die Durchmesservariabilität kann sich hierbei über verschiedene Schneckenelemente erstrecken.
Bei einer Zunahme des Durchmessers der Kneteinheiten in Verfahrensrichtung würde die mechanische Belastung des Elements ansteigend schwellend über eine längere Strecke erfolgen. Die Abfolge der Variabilität des Durchmessers der Kneteinheiten muss jedoch nicht stetig zunehmen, sondern kann partiell auch gleich sein oder abnehmen.
Die Variabilität der Geometrie hat somit einen direkten Einfluss auf die Entwicklung der Schergeschwindigkeit und der Scherspannung vor und in dem Schneckenelement sowie auf die Entwicklung der mechanischen Belastung der Elemente. Ferner kann das Da/Dj-Verhältnis der Kneteinheiten kann bei den erfindungsgemäßen Schneckenelement konstant sein oder aber variieren.
In einer vorteilhaften Ausgestaltung könnte der Durchmesser und die Breite von mindestens zwei Kneteinheiten unterschiedlich sein. Hierdurch wäre eine besonders große Variabilität des Scherspalts ermöglicht. Ein derart ausgestaltetes Schneckenelement wäre ebenfalls besonders gut an unterschiedlichste Verfahrensaufgaben anpassbar.
Im Rahmen einer besonders guten Einleitung der Scherung und im Hinblick auf eine ausgewogene Belastung des Scherelements könnte sowohl der Durchmesser als auch die Breite der Kneteinheiten in Verfahrensrichtung zunehmen.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die dem Patentanspruch 1 nachgeordneten Patentansprüche und andererseits auf die nachfolgende Er- läuterung von bevorzugten Ausführungsbeispielen des erfindungsgemäßen Schneckenelements anhand der Zeichnung zu verweisen. In Verbindung der Erläuterung der bevorzugten Ausführungsbeispiele des erfindungsgemäßen Schneckenelements anhand der Zeichnung werden auch im allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert. In der Zeichnung zeigen die
Fig. 1 in einer schematischen Draufsicht ein Ausführungsbeispiel eines Schneckenelements mit variablem Durchmesser,
Fig. 2 in einer schematischen Seitenansicht das in Fig. 1 gezeigte Ausführungsbeispiel eines Schneckenelements mit variablem Durchmesser,
Fig. 3 in einer schematischen Draufsicht ein Ausführungsbeispiel eines erfindungsgemäßen Schneckenelements mit variabler Breite der Kneteinheit und
Fig. 4 in einer schematischen Seitenansicht das in Fig. 3 gezeigte Ausführungsbeispiel eines erfindungsgemäßen Schneckenelements mit variabler Breite der Kneteinheit.
In den gezeigten Ausführungsbeispielen handelt es sich bei dem Schneckenelement um ein Knetelement 1, das zur Verwendung in einer nicht gezeigten Plastifiziereinheit mit einer ebenfalls nicht gezeigten Schneckenwelle verwendet wird.
Das Knetelement 1 ist aus Kneteinheiten 2 zusammengesetzt, die in diesem Ausführungsbeispiel fest miteinander verbunden sind. Die Kneteinheiten 2 sind auf einer gemeinsamen Achse anordenbar. Hierzu weisen die Kneteinheiten 2 eine Verzahnung auf, die mit einer Verzahnung auf der Schneckenwelle in Eingriff bringbar ist und somit das Knetelement im Wesentlichen drehfest auf der Schneckenwelle festgelegt wird. Die Kneteinheiten 2 weisen eine Geometrie auf, die von zwei Durchmessern Di und Da, d.h. den Durchmessern D1 bzw. D2, D3 oder D4 bestimmt ist.
Dabei unterscheidet sich die Geometrie zweier nacheinander angeordneter Kneteinheiten 2. Bei dem in Fig. 1 gezeigten Knetelement ist es nun so, dass der Außendurch- messer D3 in Verfahrensrichtung zunimmt. Dies bedeutet, dass die Kneteinheit 2 mit dem geringsten Durchmesser Di bei diesem Ausführungsbeispiel am nächsten in Richtung der Fütterzone angeordnet ist und die Knetscheibe 2 mit dem Außendurchmesser D4 am weitesten in Richtung der Austragszone angeordnet ist. In dem hier gezeigten Ausführungsbeispiel ist also D4 größer als D3 und D3 größer als D2. Di ist wiederum kleiner als D2, d.h. Di < D2 < D3 < D4. Der Innendurchmesser Di des Knetelements 1 bleibt hierbei konstant. Es ist bei jedweder Ausgestaltung denkbar, dass der Innendurchmesser Dj entsprechend oder anders als der Außendurchmessers Da variiert.
Figur 2 zeigt das in Fig. 1 gezeigte Knetelement 1 in einer schematischen Seitenansicht. Das Knetelement 1 dieses Ausführungsbeispiels weist eine Gesamtbreite B auf. Die Kneteinheiten 2 weisen ihrerseits eine Breite b auf.
Fig. 3 zeigt ein erfindungsgemäßes Knetelement mit variabler Stegbreite, d.h. dass die Kneteinheiten 2 unterschiedliche Breiten b aufweisen. Das Durchmesserverhältnis DJD1 ist in diesem Ausführungsbeispiel konstant. Ferner ist zu beachten, dass der Außendurchmesser D3 ebenfalls konstant ist. Die Breite b der Kneteinheiten 2 nimmt in Verfahrensrichtung zu. Somit wird die Scherung des Materials über die Breite B des Knetelements 1 erhöht. In diesem konkreten Ausführungsbeispiel ist die Breite bi der Kneteinheit 2, die bei diesem Knetelement 1 am nächsten in Richtung Fütterungszone angeordnet ist, kleiner als die Breite b2. Die Breite b2 ist wiederum kleiner als die Breite b3. Die Breite b4 der nächsten Kneteinheit 2 ist wiederum größer als die Breite b3 der vorherigen Kneteinheit 2. Ferner ist die Breite bs der Kneteinheit 2, welche bezüglich dieses Knetelements 2 am weitesten in Richtung Austragszone angeordnet ist, größer als die Breite b4, d.h. bi < b2 < b3 < b4.
Hinsichtlich weiterer Details wird zur Vermeidung von Wiederholungen auf die allgemeine Beschreibung verwiesen.
Schließlich sei ausdrücklich darauf hingewiesen, dass die voranstehend beschriebenen Ausführungsbeispiele lediglich zur Erörterung der beanspruchten Lehre dienen, diese jedoch nicht auf diese Ausführungsbeispiele einschränken. Bezugszeichenliste
1 Knetelement
2 Kneteinheit
Da> Di, D2, D3, D4 Außendurchmesser
Di Innendurchmesser Kneteinheit b Breite der Kneteinheit
B Breite des Knetelements

Claims

Ansprüche
1. Schneckenelement, insbesondere Knetelement (1 ), zur Verwendung in einer Plastifiziereinheit mit einer Schneckenwelle, mit mindestens zwei Kneteinheiten (2), wobei
- die Kneteinheiten (2) auf einer gemeinsame Achse, beispielsweise der Schneckenwelle, anordenbar sind,
- die Kneteinheiten (2) eine Geometrie aufweisen und
- sich die Geometrie mindestens zweier nacheinander angeordneter Kneteinheiten (2) unterscheidet, dadurch gekennzeichnet, dass die Breite (b) der Kneteinheiten (2) in Verfahrensrichtung zunimmt.
2. Schneckenelement nach Anspruch 1 , dadurch gekennzeichnet, dass der Durchmesser (D-i, D2, D3, D4) von mindestens zwei Kneteinheiten (2) unterschiedlich ist.
3. Schneckenelement nach Anspruch 2, dadurch gekennzeichnet, dass der Durchmesser (Di, D2, D3, D4) der Kneteinheiten (2) in Verfahrensrichtung zunimmt.
PCT/EP2007/002482 2006-03-28 2007-03-21 Schneckenelement WO2007112861A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009501912A JP5130285B2 (ja) 2006-03-28 2007-03-21 スクリューエレメント
EP07711985.7A EP2001650B1 (de) 2006-03-28 2007-03-21 Schneckenelement
CN2007800087319A CN101400500B (zh) 2006-03-28 2007-03-21 揉捏元件
CA2644925A CA2644925C (en) 2006-03-28 2007-03-21 Screw element
US12/211,410 US20090016147A1 (en) 2006-03-28 2008-09-16 Screw element for use as a kneading element in a plasticizing unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006014692.1 2006-03-28
DE102006014692A DE102006014692B3 (de) 2006-03-28 2006-03-28 Schneckenelement

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/211,410 Continuation US20090016147A1 (en) 2006-03-28 2008-09-16 Screw element for use as a kneading element in a plasticizing unit

Publications (1)

Publication Number Publication Date
WO2007112861A1 true WO2007112861A1 (de) 2007-10-11

Family

ID=38268426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/002482 WO2007112861A1 (de) 2006-03-28 2007-03-21 Schneckenelement

Country Status (9)

Country Link
US (1) US20090016147A1 (de)
EP (1) EP2001650B1 (de)
JP (1) JP5130285B2 (de)
CN (1) CN101400500B (de)
CA (1) CA2644925C (de)
DE (1) DE102006014692B3 (de)
RU (1) RU2442688C2 (de)
TW (1) TWI432309B (de)
WO (1) WO2007112861A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834653B2 (ja) * 2007-12-19 2011-12-14 株式会社神戸製鋼所 混練スクリュ及び押出機
DE102013110671B4 (de) 2013-09-26 2018-05-24 Kraussmaffei Berstorff Gmbh Verschleißkörper zur Aufnahme einer Doppelschnecke zur Extrusion von schmelzfähigem Material
JP6198666B2 (ja) * 2014-04-22 2017-09-20 宏平 澤 混練装置
EP3311975A1 (de) * 2016-10-18 2018-04-25 Reifenhäuser GmbH & Co. KG Maschinenfabrik Schnecke zum einsatz in einem extruder und extruder
MX2019009375A (es) 2017-06-01 2019-09-23 Wenger Mfg Ensamble de tornillo de extrusion por energia mecanica especifica elevada.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728337A (en) 1995-07-19 1998-03-17 Toshiba Machine Co., Ltd. Twin screw extruder and an extruding method using the same
JP2000296517A (ja) * 1999-04-15 2000-10-24 Japan Steel Works Ltd:The ニーディングスクリュピース体
JP2004202871A (ja) * 2002-12-25 2004-07-22 Japan Steel Works Ltd:The 混練押出機用のスクリュ
DE102004019430A1 (de) * 2004-04-19 2005-11-03 Basf Ag Verfahren zur Herstellung von thermoplastischen Formmassen

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1101142A (en) * 1912-03-28 1914-06-23 Max Mueller Auger brick-machine.
US2453088A (en) * 1945-12-26 1948-11-02 Dow Chemical Co Mixing torpedo for plastics extruders
US2607077A (en) * 1951-06-28 1952-08-19 Dow Chemical Co Mixing torpedo for plastics extruders
US3146493A (en) * 1960-07-25 1964-09-01 Bergwerksgesellschaft Hibernia Process and apparatus for the production of polyolefine granulates
DE1502335B2 (de) * 1965-02-13 1971-10-21 Werner & Pfleiderer, 7000 Stuttgart Schneckenstrangprese fuer die verarbeitung von kunststoff
DE1679884B2 (de) * 1967-12-16 1971-08-26 Werner & Pfleiderer Mehrwellige kontinuierlich arbeitende misch und knetmaschine fuer plastizierbare massen
US4015833A (en) * 1975-10-03 1977-04-05 The B. F. Goodrich Company Extruder screw
US4099897A (en) * 1975-11-04 1978-07-11 Hitachi Cable, Ltd. Apparatus for producing foamed plastic insulated wires
DE3026842C2 (de) * 1980-07-16 1984-02-16 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Doppelschnecken-Entgasungsextruder für thermoplastische Materialien
US4408887A (en) * 1981-12-07 1983-10-11 Kishihiro Yamaoka Continuous kneader
DE8232585U1 (de) * 1982-11-20 1983-06-23 Leistritz Maschinenfabrik Paul Leistritz GmbH, 8500 Nürnberg Knetblock fuer gleichlaufschneckenpressen
US4663103A (en) * 1983-08-09 1987-05-05 Collins & Aikman Corporation Apparatus and method of extrusion
DE3412258A1 (de) * 1984-04-02 1985-10-10 Werner & Pfleiderer, 7000 Stuttgart Gleichdrall-doppelschneckenkneter mit knetscheiben
EP0213510B2 (de) * 1985-08-16 1995-01-11 Idemitsu Petrochemical Co. Ltd. Schnecke zum Verarbeiten von thermoplastischem Kunststoff
AU620380B2 (en) * 1988-03-18 1992-02-20 Denso Corporation Fiber-reinforced polymer composition and method of producing same
DE3841729C1 (de) * 1988-12-10 1990-03-01 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De
DE3841728C1 (de) * 1988-12-10 1990-03-01 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover, De
JPH0677679B2 (ja) * 1991-07-29 1994-10-05 ビーエイチ工業有限会社 連続捏和機
US5486366A (en) * 1993-09-24 1996-01-23 Wm. Wrigley Jr. Company Continuous chewing gum base manufacturing process using a mixing-restriction element
JP2909577B2 (ja) * 1993-10-29 1999-06-23 トヨタ自動車株式会社 樹脂廃材の再生方法及び装置
US6254266B1 (en) * 1998-05-22 2001-07-03 Robert A. Barr Floating ring mixer for extruder
SE9802350D0 (sv) * 1998-07-01 1998-07-01 Borealis As Mixing device
JP2000037764A (ja) * 1998-07-23 2000-02-08 Asahi Chem Ind Co Ltd 押出機及びそれを用いた方法
US6241375B1 (en) * 1998-08-01 2001-06-05 Peter Wang Shear ring screw
US6234659B1 (en) * 1998-09-25 2001-05-22 Hpm Corporation Surge suppressor for vented injection molding machine screw
US6132076A (en) * 1998-12-09 2000-10-17 General Electric Company Single extruder screw for efficient blending of miscible and immiscible polymeric materials
DE19860256A1 (de) * 1998-12-24 2000-06-29 Krupp Werner & Pfleiderer Gmbh Zwei-Wellen-Extruder
DE19950917A1 (de) * 1999-10-21 2001-04-26 Degussa Doppelschneckenextruder mit neuen Schneckenelementen
DE10050295A1 (de) * 2000-10-10 2002-04-11 Buehler Ag Mehrwellen-Extruder und Verfahren zur Aufbereitung und/oder Vorarbeitung von mit Füllstoff versetzten Elastomeren
US7049361B2 (en) * 2001-03-14 2006-05-23 Sumitomo Chemical Company, Limited Polyolefin series resinfilm, composition for preparing the same, process for preparing the composition for preparing the same, and apparatus for preparing the same
DE10233213B4 (de) * 2002-07-22 2004-09-09 3+Extruder Gmbh Extruder
US7246936B2 (en) * 2004-06-04 2007-07-24 Certainteed Corp. Dynamic mixer screw tip
US7527493B1 (en) * 2007-11-01 2009-05-05 Md Plastics Incorporated Precise control non-return valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728337A (en) 1995-07-19 1998-03-17 Toshiba Machine Co., Ltd. Twin screw extruder and an extruding method using the same
JP2000296517A (ja) * 1999-04-15 2000-10-24 Japan Steel Works Ltd:The ニーディングスクリュピース体
JP2004202871A (ja) * 2002-12-25 2004-07-22 Japan Steel Works Ltd:The 混練押出機用のスクリュ
DE102004019430A1 (de) * 2004-04-19 2005-11-03 Basf Ag Verfahren zur Herstellung von thermoplastischen Formmassen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200104, Derwent World Patents Index; AN 2001-027937, XP002446008 *

Also Published As

Publication number Publication date
CA2644925A1 (en) 2007-10-11
US20090016147A1 (en) 2009-01-15
EP2001650A1 (de) 2008-12-17
JP2009531199A (ja) 2009-09-03
TW200800569A (en) 2008-01-01
CN101400500A (zh) 2009-04-01
DE102006014692B3 (de) 2007-08-02
TWI432309B (zh) 2014-04-01
RU2008142522A (ru) 2010-05-10
EP2001650B1 (de) 2016-03-16
CN101400500B (zh) 2013-08-28
RU2442688C2 (ru) 2012-02-20
JP5130285B2 (ja) 2013-01-30
CA2644925C (en) 2013-10-29

Similar Documents

Publication Publication Date Title
EP0490058B1 (de) Hochleistungsextruder
EP1533101B2 (de) Planetwalzenextruder zum Mischen und Extrudieren von Kunststoffen
DE3206325A1 (de) &#34;mehrwellige, kontinuierlich arbeitende misch- und knetmaschine fuer plastifizierbare massen mit ineinandergreifenden, gleichsinnig drehenden schnecken konstanten achsabstandes&#34;
EP2260991B1 (de) Misch- und Knetmaschine für kontinuierliche Aufbereitungsprozesse, Verfahren zur Durchführung von kontinuierlichen Aufbereitungsprozessen mittels einer Misch- und Knetmaschine, sowie deren Verwendung
AT509710B1 (de) Extruder
DE112016001990T5 (de) Extruderschnecke, Extruder und Extrusionsverfahren
EP1194278B1 (de) Einschnecken-extruder
DE112016001976T5 (de) Extruderschnecke, Extruder und Extrusionsverfahren
EP3600824B1 (de) Einschneckenextruder zur kunststoffplastifizierung
EP2212090B1 (de) Extruderschnecke für einen schneckenextruder
EP2001650B1 (de) Schneckenelement
EP2335898B1 (de) Planetwalzenextruder
DE10114727B4 (de) Schneckenelement für gleichsinnig drehende Mehrschneckenextruder
DE4433487C2 (de) Planetwalzenextruder
EP2921279B1 (de) Vorrichtung und Verfahren zur Homogenisierung von Kunststoffschmelzen
DE2514307A1 (de) Schneckengehaeuse fuer einen extruder oder eine spritzgiessmaschine
EP0490362B1 (de) Hochleistungsextruder mit konstanter Gangzahl im Einlauf- und Auslaufbereich eines Transferscherteiles
DE4120016C1 (de)
EP1121238B1 (de) Gleichdralldoppelschneckenextruder
EP0490360B1 (de) Verfahren und Extruder zur Verarbeitung und Herstellung von Kautschuk und thermoplastischen Kunststoffen
WO2021023389A1 (de) Verfahren und extrusionsvorrichtung zur extrusion von faserverstärktem kunststoffmaterial für die additive fertigung eines bauteils
DE2533195C3 (de) Kontinuierlicher Doppelschneckenextruder
DE4114610C2 (de) Stifttransferextruder
DE102011054409B4 (de) Extrudervorrichtung und Extrusionsverfahren, insbesondere zur Compoundierung von Kunststoffen
DE3101297A1 (de) Kontinuierlich arbeitender mischer

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07711985

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007711985

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2644925

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200780008731.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2009501912

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008142522

Country of ref document: RU

Kind code of ref document: A