WO2007110920A1 - Hydrophobic silica - Google Patents

Hydrophobic silica Download PDF

Info

Publication number
WO2007110920A1
WO2007110920A1 PCT/JP2006/306224 JP2006306224W WO2007110920A1 WO 2007110920 A1 WO2007110920 A1 WO 2007110920A1 JP 2006306224 W JP2006306224 W JP 2006306224W WO 2007110920 A1 WO2007110920 A1 WO 2007110920A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silica
carbon atoms
hydrophobic silica
diisocyanate
Prior art date
Application number
PCT/JP2006/306224
Other languages
French (fr)
Japanese (ja)
Inventor
Chonghui Wang
Tadakazu Motohashi
Original Assignee
Hakuto Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co., Ltd. filed Critical Hakuto Co., Ltd.
Priority to PCT/JP2006/306224 priority Critical patent/WO2007110920A1/en
Priority to JP2008507308A priority patent/JPWO2007110920A1/en
Publication of WO2007110920A1 publication Critical patent/WO2007110920A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/309Combinations of treatments provided for in groups C09C1/3009 - C09C1/3081

Definitions

  • the present invention relates to hydrophobic silica used in paints, rubbers, resins, agricultural chemicals, papers and the like.
  • Hydrophobic silica has made use of its hydrophobicity, and has traditionally been used as a general paint matting agent, photoaging inhibitor, water-proofing agent, oil-proofing agent, chemical-proofing agent and filler, ship bottom Antifouling additives for paint stains (shells), surface slipperiness improvers for rubber and resin, wear resistance improvers and mechanical strength reinforcing agents, fluidization of fine powders such as toner for electrostatic copying machines
  • Hydrophobic silica is mainly used to make hydrophobic silica, which is used as a carrier for hydrophobic components of chemicals, pesticides, antifoam components, water repellents, oil repellents, and blocking agents for paper.
  • Various methods have been proposed in the past.
  • a method of obtaining hydrophobic silica by reacting hydrophilic silica with methylchlorosilane or silane coupling agent a method of hydrophobizing with hydrophilic silica and high molecular weight organopolysiloxane, hexamethyldisilazane (HMDS) And a method of hydrophobizing with onoreganopolysiloxane (for example, see Patent Document 1).
  • the ability to easily obtain hydrophobic silica by these methods The modified hydrophobicity of the hydrophobic silica (see Patent Document 2) is limited to around 70%.
  • silane-powered primer and / or organopolysiloxane is only attached to the surface of the silica where it reacts with the silica surface.
  • separation of silane coupling agent from hydrophilic silica and Z or onoleganopolysiloxane occurs depending on the use environment.
  • hydrophilic silica surface treatment of hydrophilic silica with polyethylene wax is used as an exuding agent for paints (see, for example, Patent Document 3), and hydrophilic silica is basic such as water vapor and ammonia
  • H MDS hexamethyldisilazane
  • Patent Document 1 JP-A-5-97423
  • Patent Document 2 JP-A-8-259216
  • Patent Document 3 Japanese Patent Laid-Open No. 7-166091
  • Patent Document 4 JP-A-8-259216
  • the purpose of the present invention is to improve the photo-aging prevention performance of general paints, improve water resistance and oil resistance, improve the dirt (shell) adhesion prevention performance of ship bottom paint, and improve the surface slipperiness of rubber and resin.
  • hydrophilic silica after reacting hydrophilic silica and an aminoalkylsilane compound to introduce a reactive amino group on the surface of the hydrophilic silica, the amino group is further reacted with a specific compound.
  • the resulting hydrophobic silica has high hydrophobicity.
  • the invention according to claim 1 is characterized in that the hydrophilic silica is represented by the general formula (1) (wherein R 2 is independently an alkylene group having 1 to 4 carbon atoms, R 3 , R 5 is independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and n is an integer of 0 to 5.
  • R 2 is independently an alkylene group having 1 to 4 carbon atoms
  • R 3 , R 5 is independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms
  • n is an integer of 0 to 5.
  • an aminoalkylsilane compound represented by general formula (2) (wherein R 6 is a linear or branched alkyl group having 2 to 21 carbon atoms, and having 2 to 21 carbon atoms) A carboxylic acid compound represented by a straight or branched alkenyl group, X is a hydroxyl group, a chlorine atom, or a bromine atom), general formula (3) (wherein R 8 is a straight chain having 1 to 20 carbon atoms) Chain or branched chain An alkyl group, a linear or branched alkenyl group having 1 to 21 carbon atoms, and an alkylphenyl group having 6 to 24 carbon atoms.
  • Alkylketene dimer represented by general formula (4) (wherein R 9 is an alkylene group having 6 to 24 carbon atoms and an alkylphenylene group having 6 to 24 carbon atoms). It is a hydrophobic silica obtained by reacting with a hydrophobizing agent containing one or more selected from cyanate compounds.
  • the invention according to claim 2 is the hydrophobic silica according to claim 1, wherein the aminoalkylsilane compound is 2-aminoethyltriethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) _ It is characterized by being one or more of 3-aminopropyltrimethoxysilane.
  • the invention according to claim 3 is the hydrophobic silica according to claim 1, wherein the hydrophobizing agent is decanoic acid, dodecanoic acid, stearic acid, decanoic acid chloride, dodecanoic acid chloride, stearic acid salt Hardened beef tallow alkyl (carbon number 14-18) ketene dimer, stearyl ketene dimer, beninole ketene dimer, 1,6-hexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, It is one or more of xylylene diisocyanate and tolylene diisocyanate.
  • the hydrophobizing agent is decanoic acid, dodecanoic acid, stearic acid, decanoic acid chloride, dodecanoic acid chloride, stearic acid salt
  • the invention according to claim 4 is the hydrophobic silica according to any one of claims 1 to 3, wherein the hydrophilic silica is treated with an aminoalkylsilane compound and then the hydrophobizing agent in the presence of a fluorosurfactant. Hydrophilic silica treated with an aminoalkylsilane compound is hydrophobized by the above.
  • the hydrophobic silica of the present invention can obtain a higher water repellency than the hydrophobic silica produced by the conventional method, and can improve the anti-aging property and water resistance * oil resistance of general paints. Improves dirt (shell) adhesion prevention performance on ship bottom paint, improves surface slipperiness of rubber and resin, improves wear resistance and mechanical strength, improves fluidity of toner in electrostatic copier, It is possible to greatly contribute to improving the defoaming performance of the foaming agent and the blocking performance of the paper.
  • hydrophilic silica and an aminoalkylsilane compound are reacted to introduce a hydrophobic group having a reactive amino group on the surface of the hydrophilic silica, and then the amino group and It is a hydrophobic silica having a high hydrophobicity obtained by reacting with one or more hydrophobizing agents selected from certain carboxylic acid compounds, alkyl ketene dimers or alkenyl ketene dimers, and diisocyanate compounds.
  • hydrophilic silica used in the present invention is not particularly limited, and may be any of wet precipitation silica, wet gel silica, dry silica (including fumed silica produced by flame pyrolysis of chlorosilane), etc. These silicas may be used alone or in combination.
  • the aminoaminosilane compound used in the present invention is an aminoaminosilane compound represented by the general formula (1).
  • R 2 is an alkylene group having 1 to 4 carbon atoms such as methylene group, ethylene group, propylene group, isopropylene group, butylene. A len group and an isobutylene group.
  • R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, such as a hydrogen atom, a methyl group, an ethyl group, or a propyl group.
  • Specific aminoalkylsilane compounds include 2_aminoethyltrimethoxysilane, 2_aminoethyltriethoxysilane, 2-aminoethylethylethyloxysilane, 3-aminopropyltriethoxysilane, N- (2- Aminoethyl) 1-2-aminoethyltriethoxysilane, N- (2-aminoethyl) 1-2-aminoethylethylethyloxysilane, N- (2-aminoethyl) _3-aminopropylmethyldimethoxysilane, N— (2-aminoethyl) 1-3-aminopropyltrimethoxysilane, N— (2-aminoethyl) 1-3-
  • the reaction between the hydrophilic silica and the aminoalkylsilane compound is not particularly limited and is performed according to a normal hydrophobizing reaction.
  • the amount of aminoalkylsilane compound used can be calculated according to the following formula.
  • the minimum coverage is calculated from the Stuart-Briegleb molecular model.
  • the amount of aminoalkylsilane compound used is appropriately selected depending on the intended use of hydrophobic silica and the degree of hydrophobicity required, and is usually 2 to 20 wt% with respect to hydrophilic silica.
  • aminoalkylsilane compound used is 2wt of silica.
  • the hydrophobization rate of the hydrophilic silica may be low, and the degree of hydrophobization of the produced hydrophobic silica may not be sufficiently high, which may be undesirable.
  • Aminoa If the amount of the alkylsilan compound used is 20 wt% or more of the hydrophilic silica, the cost of the aminoalkylsilane compound used is high and uneconomical, and the produced hydrophobic silica tends to aggregate, resulting in dry dispersion. It may be difficult to do so and may not be preferable.
  • the aminoalkylsilane compound is used as it is, a method of using an aminoalkylsilane compound as it is, a method of preparing and using a dilute aqueous solution having a concentration of 0.5 to 2 wt%, and a solution in a water-soluble organic solvent. And a method of dissolving and using in a water-insoluble organic solvent, and any method may be used.
  • the method of adding the aminoalkylsilane compound to the hydrophilic silica is not particularly limited.
  • the mixer is mixed with the hydrophilic silica in a blender, and the aminoalkylsilane compound is directly added while stirring.
  • there is a method of spray-coating an aqueous solution of an aminoalkylsilane compound or a diluted organic solvent, and any of them may be used.
  • reaction time between the hydrophilic silica and the aminoalkylsilane compound is appropriately selected depending on the intended use of the hydrophobic silica force and the required level of hydrophobicity, and cannot be determined uniformly, but is usually preferably 5 to 100 minutes.
  • the reaction proceeds almost completely in 20 to 60 minutes, and the aminoalkylsilane compound reacts with the OH group on the hydrophilic silica surface with the reactive amino group facing outward and binds.
  • the carboxylic acid compound used in the hydrophobizing agent of the present invention is a carboxylic acid or a carboxylic acid halide represented by the general formula (2).
  • R 6 in the general formula (2) is a linear or branched alkyl group having 2 to 21 carbon atoms or a linear or branched alkenyl group having 2 to 21 carbon atoms, and X is a hydroxyl group or a chlorine atom. A bromine atom.
  • carboxylic acid examples include propionic acid, butanoic acid, hexanoic acid, decanoic acid, dodecanoic acid, myristic acid, isomyristic acid, palmitic acid, isopalmitic acid, stearic acid, isostearic acid, oleic acid, 1 2-hydroxystearic acid, behenylic acid and the like.
  • carboxylic acid halide having 3 to 22 carbon atoms include acid chlorides and acid bromides of the above carboxylic acids. Specifically, propionate chloride, propionate bromide, butanoic acid chloride, and hexanoic acid.
  • Chloride decanoic acid chloride, dodecanoic acid chloride, myristic acid chloride, isomyristic acid chloride, palmitic acid chloride, isopalmitic acid chloride, stearic acid salt, stearic acid bromide Products, isostearic acid chloride, isostearic acid bromide, oleic acid chloride, 12-hydroxystearic acid chloride, behenyl acid chloride and the like. These can be used alone or in combination of two or more.
  • the alkyl ketene dimer used in the hydrophobizing agent of the present invention is an alkyl ketene dimer represented by the general formula (3).
  • R 7 and R 8 are each a straight chain or branched chain alkyl group, alkenyl group, or alkylphenyl group having carbon numbers:! -20.
  • alkyl ketene dimers include propylene ketene dimer, butylene ketene dimer, octyl ketene dimer, 2-ethyl hexyl ketene dimer, decyl ketene dimer, dodecyl ketene dimer, coco alkyl (10 to 12 carbon atoms) ketene dimer, Tetradecyl ketene dimer, hexadecyl ketene dimer, stearyl ketene dimer, isostearino ketene dimer, vinyl ketene dimer, cured beef tallow alkyl (carbon number 14-18) ketene dimer, tallow alkyl (carbon number 14-18) ) Ketene dimer, oleyl ketene dimer, butyl phenyl ketene dimer, octyl phenyl ketene dimer, nonyl phenyl keten
  • Alkyl (8-18 carbon atoms) ketene dimer (AKD). These can be used alone or in combination of two or more. An alkyl ketene dimer having less than 10 carbon atoms may not be sufficiently hydrophobized, and an alkyl ketene dimer having more than 48 carbon atoms may be difficult to obtain industrially.
  • the diisocyanate compound used in the hydrophobizing agent of the present invention is a diisocyanate compound represented by the general formula (4).
  • R 9 is an alkylene group having 6 to 24 carbon atoms or an alkylphenylene group having 6 to 24 carbon atoms.
  • 1,6-hexamethylene diisocyanate, 2, 2, 4_trimethyltetramethylene of alkylene disiocyanates 1,6-hexamethylene diisocyanate, 2, 2, 4_trimethyltetramethylene of alkylene disiocyanates.
  • decanoic acid, dodecanoic acid, stearic acid, decanoic acid chloride, dodecanoic acid chloride, stearic acid chloride, and cured beef tallow alkyl (carbon number 14 to 18) ketene are preferred as hydrophobizing agents.
  • stearic acid chloride, stearyl ketene dimer, and tolylene diisocyanate are more preferable. These can be used alone or in combination of two or more.
  • dimethylpolysiloxane a dimethylpolysiloxane having a terminal reactive hydroxyl group
  • hydrogenmethylpolysiloxane trimethylchlorosilane which has been conventionally used as long as it does not interfere with the effects of the present invention.
  • a silane coupling agent such as
  • the mixing ratio of the hydrophilic silica treated with the hydrophobizing agent and the aminoalkylsilane compound is determined based on the carboxylic acid compound, alkyl ketene dimer, diisocyanate compound that is the hydrophobizing agent.
  • the ratio of the total number of moles of reactive functional groups to the number of moles of reactive amino groups in the aminoalkyl silane compound is 1 ::! To 2: 1, preferably 1.1: 1 to 1: 1.5: 1 It is.
  • the number of moles of reactive functional groups per mole of carboxylic acid compound, alkyl ketene dimer, and diisocyanate compound is 1 mole for carboxylic acid compounds, 1 mole for alkyl ketene dimers, and diisocyanate. For compounds, it is 2 moles.
  • Molar ratio power of reactive amino groups in aminoalkylsilane compounds Range of the ratio If it is smaller than 1, sufficient hydrophobicity cannot be obtained due to the amino group remaining in the reaction. In addition, even if the total number of moles of the hydrophobizing agent exceeds the range of the ratio, there is no economic merit that the hydrophobicity cannot be improved enough to meet the increase.
  • the method of using the hydrophobizing agent includes the method of using the hydrophobizing agent as it is, the method of using the hydrophobizing agent as a solution by dissolving it in an organic solvent or water-soluble organic solvent having a concentration of! Any method may be used.
  • organic solvents or water-soluble organic solvents include toluene, xylene, methyl ethyl ketone, and butyl cellosolve.
  • the method for adding the hydrophobizing agent is not particularly limited. Usually, a method is used in which a hydrophilic silica treated with an aminoalkylsilane compound is placed in a mixer or a blender, and the hydrophobizing agent is directly added while stirring, or There is a method of spraying a solvent dilution of a hydrophobizing agent, and any method may be used.
  • reaction time between the hydrophobizing agent and the hydrophilic silica treated with the aminoalkylsilane compound is appropriately selected depending on the intended use of the hydrophobic silica and the degree of hydrophobicity, but cannot be determined uniformly. ⁇ : 120 minutes, preferably 30 to 90 minutes.
  • hydrophobic silica with excellent dispersibility can be obtained by adding a fluorosurfactant during the hydrophobization reaction between the hydrophobizing agent and hydrophilic silica treated with an aminoalkylsilane compound.
  • fluorine-based surfactant to be added there are fluorine-based compounds represented by the general formulas (5) to (7).
  • R 1Q is a perfluoroalkyl group having 5 to 22 carbon atoms
  • X is COM
  • SO M group M is Na, K, L
  • R 11 is a perfluoroalkyl group having 5 to 22 carbon atoms
  • Y is H (hydrogen atom)
  • -OPO (OH) phosphoric acid residue
  • p is an integer of:! To 15 It is.
  • R 12 is a perfluoroalkyl group having 5 to 22 carbon atoms
  • Z is a chlorine atom, bromine atom, iodine atom, sulfuric acid residue, phosphoric acid residue, or a carboxylic acid residue having 1 to 6 carbon atoms.
  • the number of carbon atoms is 4 or less, the surface tension of the fluorine compound is low and it volatilizes, making it difficult to handle immediately. In addition, when the number of carbon atoms exceeds 22, it becomes difficult to obtain industrially.
  • the addition amount of the fluorosurfactant represented by the general formulas (5) to (7) may be appropriately determined according to the degree of requirement for preventing aggregation of the hydrophobic silica powder. It is 0.01-2 wt% with respect to hydrophilic silica, Preferably it is 0.05-: 1.5 wt%. 0. If less than Olwt%, the aggregation preventing effect may not be sufficiently obtained. On the other hand, the effect of the present invention can be obtained even when the addition amount of the fluorosurfactant exceeds 2 wt%, but the improvement degree of the effect obtained for the addition amount may be small, which is not preferable.
  • a polyalkylene glycol-based nonionic surfactant and naphthalene sulfonate-based surfactant that have been used conventionally are used.
  • a high molecular weight anionic surfactant such as lignin sulfonate or maleic acid copolymer may be used in combination with silicone oil.
  • silicone oils generally include non-reactive silicone oils having a linear siloxane structure, methylphenyl silicone oils, alkyl-modified silicone oils, polyether-modified silicones, and fatty acid ester-modified silicone oils.
  • Its kinematic viscosity is usually 1 to 100,000 mm 2 / s.
  • the loading amount of the surfactant and the silicone oil is usually 0.5 to 5 wt% with respect to the hydrophilic silica treated with the aminoalkylsilane compound.
  • A-1 N- (2-Aminoethyl) _3-aminominovir trimethoxysilane [Toray Silicone SH6020 (trade name), manufactured by Toray Dow Co. Silicone Co., Ltd.]
  • A-2 3-Aminopropyltriethoxysilane [Toray Silicone SS1040 (trade name), manufactured by Toray Dow Co., Ltd. Silicone Co., Ltd.]
  • AKD emulsion (AKD20wt% concentration) [made by Hakuto Co., Ltd.]
  • N Silicone oil emulsion (dimethylpolysiloxane 10wt% concentration) (Hakuto Co., Ltd.)
  • M Sodium perfluorooctyl sulfonate C F SO Na
  • a hydration reaction was performed. After 30 minutes, filtration was performed to obtain an aminoalkylsilane-treated product of hydrophilic silica. Next, add 300 g of beaker, 0.8 g of lauric acid (C), 0.5 g of dimethyl silicone oil (K), and lOOmL of toluene, stir, mix, and add hydrophilic silica treated with aminoalkylsilane. The mixture was stirred and stirred for 2 hours, and then heated to 90 to 110 ° C. to remove toluene-water azeotropically to obtain hydrophobic silica 1.
  • C lauric acid
  • K dimethyl silicone oil
  • hydrophilic silica treated with aminoalkylsilane The mixture was stirred and stirred for 2 hours, and then heated to 90 to 110 ° C. to remove toluene-water azeotropically to obtain hydrophobic silica 1.
  • hydrophilic silica treated with aminoalkylsilane prepared in the same manner as in Example 1 was added and azeotroped at 90 to 110 ° C. for 2 hours to obtain hydrophobic silica 2.
  • Example 2 2.5 g of stearic acid (D) was replaced with 2.5 g of alkyl ketene dimer (F) and added, and hydrophobic silica 3 was obtained in the same manner as in Example 2.
  • Example 5 In Example 4, 25 g of stearic acid emulsion (E) was replaced with 30 g of AKD emulsion (G), and hydrophobic silica 5 was obtained in the same manner as in Example 4.
  • Example 4 2 g of N— (2-aminoethyl) 1-3-aminopropyltrimethoxysilane (A) (0.4 g) (hydrophilic silica: 2 wt%), 5 g of stearic acid emulsion (E) 5 g, Hydrophobic silica 6 was obtained in the same manner as in Example 4 by adding 10 g of silicone oil emulsion (N) in place of 20 g.
  • Example 4 2 g of N— (2-aminoethyl) 1-3-aminopropyltrimethoxysilane (A) (4 g) (hydrophilic silica: 20 wt%), 50 g of 25 g of stearic acid emulsion (E), silicone 10 g of oil emulsion (N) was added in place of 5 g, and hydrophobic silica 7 was obtained in the same manner as in Example 4.
  • hydrophobic silica 8 Heated at 110 ° C. for 2 hours, and water and toluene were distilled off azeotropically to obtain hydrophobic silica 8.
  • the obtained hydrophobic silica 8 was put in a glass container and allowed to stand indoors at room temperature for 1 month. One month later, the glass container containing the hydrophobic silica 8 was shaken, and the aggregation state of the hydrophobic silica 8 was examined.
  • Hydrophobic silica 9 was hydrophobized in the same manner as in Example 8 without adding sodium perfluorooctyl sulfonate (M) 0.2 in Example 8, to obtain hydrophobic silica 9 .
  • the obtained hydrophobic silica 9 was placed in a glass container and allowed to stand indoors at room temperature for 1 month. 1 month Later, the glass container containing the hydrophobic silica 9 was shaken, and the aggregation state of the hydrophobic silica 9 was examined. As a result, several easily disintegrating lumps were observed.
  • Example 8 2.25 g of diisocyanate 4,4-diphenylmethane (1) was added instead of tolylene diisocyanate (H) to obtain hydrophobic silica 10.
  • hydrophobic silica 12 was obtained in the same manner as in Example 1.
  • a 500 mL three-necked flask equipped with a stirrer, thermometer and condenser is charged with 20 g of hydrophilic silica (B) and 2 g of dimethylpolysiloxane (K) and heated to 150 ° C for 1 hour under a nitrogen atmosphere. Thereafter, the mixture was cooled to obtain hydrophobic silica 13.
  • Comparative Example 1 instead of dimethylpolysiloxane (K) 1 .2 g, methylhydroxypolysiloxane (L) 1 .2 g was used and heated to 150 ° C. for 1 hour in a nitrogen atmosphere, and then cooled. Hydrophobic silica 14 was obtained.
  • reaction was performed for 2 hours. Subsequently, the mixture was heated at 90 to 110 ° C. for 2 hours to distill off water and toluene by azeotropic distillation, and then cooled to obtain hydrophobic silica 17.
  • hydrophobicity of hydrophobic silica was measured using the transmittance method described in JP-A-5-97423. Hydrophobic silica (lg) and water (lOOg) were placed in a 200mL separatory funnel, stirred for 5 minutes, and allowed to stand for 1 minute. 10 mL of suspended water was taken from the lower aqueous phase of the separatory funnel, and the transmittance at a wavelength of 550 nm was measured with an absorptiometer. The degree of hydrophobicity was determined by the following formula based on pure transmittance (100), and this value was used as the hydrophobicity of hydrophobic silica. The higher the degree of hydrophobicity, the higher the hydrophobicity.
  • hydrophobic silica of the present invention exhibits superior hydrophobicity as compared with conventional hydrophobic silica. It can also be seen that using a fluorosurfactant at the time of hydrophobization is effective in preventing aggregation of hydrophobic silica.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Silicon Compounds (AREA)

Abstract

[PROBLEMS] To provide highly hydrophobic silica which can be used for improving anti-photoaging performance and water resistance/oil resistance in general coating materials, improving fouling (shell) attachment prevention performance in ship bottom paints, improving the surface slip properties and wearing resistance of rubbers and resins and enhancing the mechanical strength of these, improving toner flowability in electrostatic copiers, improving the antifoaming properties of antifoamers, and improving antiblocking properties in papermaking. [MEANS FOR SOLVING PROBLEMS] The hydrophobic silica is characterized by being obtained by treating hydrophilic silica with an aminoalkylsilane compound and then reacting the silica with one or more members selected among specific carboxylic acid compounds, alkylketene dimmers, and diisocyanate compounds.

Description

明 細 書  Specification
疎水性シリカ 技術分野  Hydrophobic silica Technical Field
[0001] 本発明は、塗料、ゴム、樹脂、農薬、紙などに用レ、られる疎水性シリカに関する。  [0001] The present invention relates to hydrophobic silica used in paints, rubbers, resins, agricultural chemicals, papers and the like.
背景技術  Background art
[0002] 疎水性シリカはその疎水性を生力、して、従来から一般塗料用の艷消剤、光老化防 止剤、耐水化剤、耐油化剤、耐薬品化剤および充填剤、船底塗料の汚れ (貝殻)付 着防止添加剤、ゴムや樹脂の表面滑り性改善剤ゃ耐磨耗性向上剤および機械的強 度補強剤、静電複写機用トナーなどの微細粉体の流動化剤、農薬の疎水性成分の 担体、消泡剤成分、紙用の撥水剤、撥油化剤、ブロッキング剤などに使用されている 疎水性シリカの製造は、主に親水性シリカを疎水化剤で処理して製造され、従来よ り種々の方法が提案されてきた。例えば、親水性シリカとメチルクロロシランゃシラン カップリグ剤を反応させて疎水性シリカを得る方法、親水性シリカと高分子量オルガノ ポリシロキサンで疎水化する方法、親水性シリカをへキサメチルジシラザン(HMDS) とオノレガノポリシロキサンで疎水化する方法 (例えば特許文献 1参照)等がある。 これらの方法によって容易に疎水性シリカを得ることができる力 その疎水性シリカ の修飾疎水度(特許文献 2参照)は 70%前後を限度としている。さらに、親水性シリカ とシラン力ップリグ剤および/又はオルガノポリシロキサンの場合、シラン力ップリグ剤 および/又はオルガノポリシロキサンがシリカの表面と反応している部分と単にシリカ の表面に付着しているだけの部分があり、使用環境によって親水性シリカとのシラン カップリグ剤および Z又はオノレガノポリシロキサンとの分離が生じる欠点がある。近年 、一般塗料における光老化防止性能の向上や耐水性'耐油性向上の要求、船底塗 料においては従来の有機鉛化合物や有機錫化合物を使用することなぐより環境に 適した汚れ (貝殻)付着防止性能の要求、ゴムや樹脂の表面滑り性改善ゃ耐磨耗性 向上および機械的強度の補強の要求、静電複写機におけるトナーの流動性向上、 消泡剤の性能向上、成紙のブロッキング性能向上が要望され、その方法としてより高 い疎水性シリカが求められている。 [0002] Hydrophobic silica has made use of its hydrophobicity, and has traditionally been used as a general paint matting agent, photoaging inhibitor, water-proofing agent, oil-proofing agent, chemical-proofing agent and filler, ship bottom Antifouling additives for paint stains (shells), surface slipperiness improvers for rubber and resin, wear resistance improvers and mechanical strength reinforcing agents, fluidization of fine powders such as toner for electrostatic copying machines Hydrophobic silica is mainly used to make hydrophobic silica, which is used as a carrier for hydrophobic components of chemicals, pesticides, antifoam components, water repellents, oil repellents, and blocking agents for paper. Various methods have been proposed in the past. For example, a method of obtaining hydrophobic silica by reacting hydrophilic silica with methylchlorosilane or silane coupling agent, a method of hydrophobizing with hydrophilic silica and high molecular weight organopolysiloxane, hexamethyldisilazane (HMDS) And a method of hydrophobizing with onoreganopolysiloxane (for example, see Patent Document 1). The ability to easily obtain hydrophobic silica by these methods The modified hydrophobicity of the hydrophobic silica (see Patent Document 2) is limited to around 70%. Furthermore, in the case of hydrophilic silica and silane-powered primer and / or organopolysiloxane, the silane-powered primer and / or organopolysiloxane is only attached to the surface of the silica where it reacts with the silica surface. There is a disadvantage that separation of silane coupling agent from hydrophilic silica and Z or onoleganopolysiloxane occurs depending on the use environment. In recent years, there has been a demand for improvement in photoaging prevention performance and water resistance and oil resistance in general paints, and adhesion of dirt (shells) more suitable for the environment than using conventional organic lead compounds and organic tin compounds in ship bottom coatings. Requirement of prevention performance, improvement of surface slipperiness of rubber and resin, improvement of abrasion resistance and reinforcement of mechanical strength, improvement of toner fluidity in electrostatic copying machine, improvement of antifoaming agent performance, blocking of paper There is a demand for improved performance, and the method is higher. Hydrophobic silica is needed.
そこで、高い疎水性シリカを得る改善方法として、塗料用艷出剤に親水性シリカを ポリエチレンワックスで表面処理する方法 (例えば特許文献 3参照)、親水性シリカを 水蒸気、アンモニアゃァミン等の塩基性ガスの存在下でへキサメチルジシラザン(H MDS)と反応させる方法 (例えば特許文献 4参照)等が提案されてきた。しかし、依然 満足する高い疎水性を得るには至っていない。  Therefore, as an improvement method to obtain highly hydrophobic silica, surface treatment of hydrophilic silica with polyethylene wax is used as an exuding agent for paints (see, for example, Patent Document 3), and hydrophilic silica is basic such as water vapor and ammonia A method of reacting with hexamethyldisilazane (H MDS) in the presence of gas has been proposed (for example, see Patent Document 4). However, satisfactory high hydrophobicity has not been achieved.
特許文献 1 :特開平 5— 97423号公報  Patent Document 1: JP-A-5-97423
特許文献 2 :特開平 8— 259216号公報  Patent Document 2: JP-A-8-259216
特許文献 3 :特開平 7— 166091号公報  Patent Document 3: Japanese Patent Laid-Open No. 7-166091
特許文献 4 :特開平 8— 259216号公報  Patent Document 4: JP-A-8-259216
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] 本発明の目的は、一般塗料における光老化防止性能の向上や耐水性 ·耐油性向 上、船底塗料における汚れ (貝殻)付着防止性能の向上、ゴムや樹脂の表面滑り性 改善ゃ耐磨耗性向上および機械的強度の補強性向上、静電複写機におけるトナー の流動性向上、消泡剤の消泡性能向上、成紙のブロッキング性能向上を得るための 高い疎水性を有する疎水性シリカを提供することにある。 [0003] The purpose of the present invention is to improve the photo-aging prevention performance of general paints, improve water resistance and oil resistance, improve the dirt (shell) adhesion prevention performance of ship bottom paint, and improve the surface slipperiness of rubber and resin. Hydrophobic silica with high hydrophobicity to improve wear and mechanical strength, improve toner fluidity in electrostatic copiers, improve defoaming performance of antifoaming agent, and improve blocking performance of paper Is to provide.
課題を解決するための手段  Means for solving the problem
[0004] 本発明は、親水性シリカとアミノアルキルシランィヒ合物を反応させて親水性シリカ表 面に反応性のアミノ基を導入した後、さらに当該アミノ基と特定の化合物と反応させ て得られる高い疎水性を有する疎水性シリカである。 [0004] In the present invention, after reacting hydrophilic silica and an aminoalkylsilane compound to introduce a reactive amino group on the surface of the hydrophilic silica, the amino group is further reacted with a specific compound. The resulting hydrophobic silica has high hydrophobicity.
即ち、請求項 1記載の発明は、親水性シリカを一般式(1) (式中、
Figure imgf000003_0001
R2はそれぞ れ独立に炭素数 1〜4のアルキレン基、 R3
Figure imgf000003_0002
R5はそれぞれ独立に水素原子、炭 素数 1〜3のアルキル基、炭素数 1〜3のアルコキシ基、 nは 0〜5の整数である。)で 表されるアミノアルキルシランィ匕合物で処理し、さらに一般式(2) (式中、 R6は炭素数 2〜21の直鎖あるいは分岐鎖のアルキル基、炭素数 2〜21の直鎖あるいは分岐鎖 のアルケニル基、 Xは水酸基、塩素原子、臭素原子である。)で表されるカルボン酸 化合物、一般式(3) (式中、 R8は共に炭素数 1〜20の直鎖あるいは分岐鎖のァ ルキル基、炭素数 1〜21の直鎖あるいは分岐鎖のアルケニル基、炭素数 6〜24のァ ルキルフエニル基である。)で表されるアルキルケテンダイマー、一般式(4) (式中、 R 9は炭素数 6〜24のアルキレン基、炭素数 6〜24のアルキルフエ二レン基である。)で 表されるジイソシァネートィヒ合物から選ばれた 1種以上を含む疎水化剤と反応させて 得られることを特徴とする疎水性シリカである。
That is, the invention according to claim 1 is characterized in that the hydrophilic silica is represented by the general formula (1) (wherein
Figure imgf000003_0001
R 2 is independently an alkylene group having 1 to 4 carbon atoms, R 3 ,
Figure imgf000003_0002
R 5 is independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and n is an integer of 0 to 5. ) And an aminoalkylsilane compound represented by general formula (2) (wherein R 6 is a linear or branched alkyl group having 2 to 21 carbon atoms, and having 2 to 21 carbon atoms) A carboxylic acid compound represented by a straight or branched alkenyl group, X is a hydroxyl group, a chlorine atom, or a bromine atom), general formula (3) (wherein R 8 is a straight chain having 1 to 20 carbon atoms) Chain or branched chain An alkyl group, a linear or branched alkenyl group having 1 to 21 carbon atoms, and an alkylphenyl group having 6 to 24 carbon atoms. ) Alkylketene dimer represented by general formula (4) (wherein R 9 is an alkylene group having 6 to 24 carbon atoms and an alkylphenylene group having 6 to 24 carbon atoms). It is a hydrophobic silica obtained by reacting with a hydrophobizing agent containing one or more selected from cyanate compounds.
[0005] [化 5]  [0005] [Chemical 5]
H2N- (R -NH) n— R2— S i - (R3) (R4) (R 1 ) H 2 N- (R -NH) n — R 2 — S i-(R 3 ) (R 4 ) (R 1)
[0006] [化 6] [0006] [Chemical 6]
R6— COX (2) R 6 — COX (2)
[0007] [化 7] [0007] [Chemical 7]
R — C H = -*— C H— Tx R — CH = -* — CH— Tx
(3)  (3)
O― C O  O― C O
[0008] [化 8] [0008] [Chemical 8]
OCN— R9— N CO (4) OCN— R 9 — N CO (4)
請求項 2に係る発明は、請求項 1記載の疎水性シリカであり、アミノアルキルシラン 化合物が 2—アミノエチルトリエトキシシラン、 3—ァミノプロピルトリエトキシシラン、 N - (2—アミノエチル)_ 3—ァミノプロピルトリメトキシシランの 1種以上であることを特 徴とする。 The invention according to claim 2 is the hydrophobic silica according to claim 1, wherein the aminoalkylsilane compound is 2-aminoethyltriethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) _ It is characterized by being one or more of 3-aminopropyltrimethoxysilane.
請求項 3に係る発明は、請求項 1記載の疎水性シリカであり、疎水化剤がデカン酸 、ドデカン酸、ステアリン酸、デカン酸塩化物、ドデカン酸塩化物、ステアリン酸塩化 物、硬化牛脂アルキル (炭素数 14〜 18)ケテンダイマー、ステアリルケテンダイマー、 ベへニノレケテンダイマー、 1 , 6—へキサメチレンジイソシァネート、 4, 4 'ージフエ二 ルメタンジイソシァネート、キシリレンジイソシァネート、トリレンジイソシァネートの 1種 以上であることを特徴とする。 The invention according to claim 3 is the hydrophobic silica according to claim 1, wherein the hydrophobizing agent is decanoic acid, dodecanoic acid, stearic acid, decanoic acid chloride, dodecanoic acid chloride, stearic acid salt Hardened beef tallow alkyl (carbon number 14-18) ketene dimer, stearyl ketene dimer, beninole ketene dimer, 1,6-hexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, It is one or more of xylylene diisocyanate and tolylene diisocyanate.
請求項 4に係る発明は、請求項 1乃至 3のいずれか記載の疎水性シリカであり、親 水性シリカをァミノアルキルシラン化合物で処理した後、フッ素系界面活性剤の存在 下で疎水化剤によりアミノアルキルシラン化合物で処理した親水性シリカを疎水化さ せることを特徴とする。  The invention according to claim 4 is the hydrophobic silica according to any one of claims 1 to 3, wherein the hydrophilic silica is treated with an aminoalkylsilane compound and then the hydrophobizing agent in the presence of a fluorosurfactant. Hydrophilic silica treated with an aminoalkylsilane compound is hydrophobized by the above.
発明の効果  The invention's effect
[0009] 本発明の疎水性シリカは、従来の方法で製造された疎水性シリカに比べて高い疎 水度を得ることができ、一般塗料における光老化防止性能の向上や耐水性 *耐油性 向上、船底塗料における汚れ (貝殻)付着防止性能の向上、ゴムや樹脂の表面滑り 性改善ゃ耐磨耗性向上および機械的強度の補強性向上、静電複写機におけるトナ 一の流動性向上、消泡剤の消泡性能向上、成紙のブロッキング性能向上に大きく寄 与することが可能となる。  [0009] The hydrophobic silica of the present invention can obtain a higher water repellency than the hydrophobic silica produced by the conventional method, and can improve the anti-aging property and water resistance * oil resistance of general paints. Improves dirt (shell) adhesion prevention performance on ship bottom paint, improves surface slipperiness of rubber and resin, improves wear resistance and mechanical strength, improves fluidity of toner in electrostatic copier, It is possible to greatly contribute to improving the defoaming performance of the foaming agent and the blocking performance of the paper.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明は、親水性シリカとアミノアルキルシランィ匕合物を反応させて、親水性シリカ 表面に反応性のアミノ基を有する疎水性基を導入した後、さらに当該ァミノ基と、特 定のカルボン酸化合物、アルキルケテンダイマー又はアルケニルケテンダイマー、ジ イソシァネートィヒ合物から選ばれた 1種以上の疎水化剤と反応させて得られた高い 疎水性を有する疎水性シリカである。 [0010] In the present invention, hydrophilic silica and an aminoalkylsilane compound are reacted to introduce a hydrophobic group having a reactive amino group on the surface of the hydrophilic silica, and then the amino group and It is a hydrophobic silica having a high hydrophobicity obtained by reacting with one or more hydrophobizing agents selected from certain carboxylic acid compounds, alkyl ketene dimers or alkenyl ketene dimers, and diisocyanate compounds.
本発明で使用する親水性シリカは、特に限定されるものではなぐ湿式沈殿法シリ 力、湿式ゲルィ匕法シリカ、乾式シリカ(クロロシランの火炎熱分解によって製造される フュームドシリカを含む)等のいずれのシリカを単独あるいは複数組合せて用いても 良い。  The hydrophilic silica used in the present invention is not particularly limited, and may be any of wet precipitation silica, wet gel silica, dry silica (including fumed silica produced by flame pyrolysis of chlorosilane), etc. These silicas may be used alone or in combination.
[0011] 本発明で使用するァミノアルキルシラン化合物は、前記一般式(1)で表されるァミノ アルキルシラン化合物である。一般式(1)において、
Figure imgf000005_0001
R2は炭素数 1〜4のアルキ レン基であり、例えばメチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチ レン基、イソブチレン基である。 R3、 R4、 R5、 R6は、それぞれ独立に水素原子、炭素 数 1〜3のアルキル基、炭素数 1〜3のアルコキシ基であり、例えば水素原子、メチル 基、ェチル基、プロピル基、イソプロピル基、メトキシ基、エトキシ基、プロポキシ基、ィ ソプロポキシ基である。 nは 0〜5の整数である。具体的なアミノアルキルシラン化合物 としては、 2 _アミノエチルトリメトキシシラン、 2 _アミノエチルトリエトキシシラン、 2— アミノエチルェチルジェトキシシラン、 3—ァミノプロピルトリエトキシシラン、 N— (2 - アミノエチル)一2—アミノエチルトリエトキシシラン、 N— (2—アミノエチル)一2—アミ ノエチルェチルジェトキシシラン、 N- (2—アミノエチル)_ 3—ァミノプロピルメチル ジメトキシシラン、 N— (2—アミノエチル)一3—ァミノプロピルトリメトキシシラン、 N— ( 2—アミノエチル)一3—ァミノプロピルトリエトキシシラン、 N— (2—アミノエチル)一3 —ァミノプロピルェチルジェトキシシランがあり、好ましくは 2 _アミノエチルトリエトキシ シラン、 3—ァミノプロピルトリエトキシシラン、 N— (2—アミノエチル)一3—ァミノプロ ピルトリメトキシシランである。これらの単独あるいは 2種以上を組合せて用いることが できる。
[0011] The aminoaminosilane compound used in the present invention is an aminoaminosilane compound represented by the general formula (1). In general formula (1),
Figure imgf000005_0001
R 2 is an alkylene group having 1 to 4 carbon atoms such as methylene group, ethylene group, propylene group, isopropylene group, butylene. A len group and an isobutylene group. R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an alkoxy group having 1 to 3 carbon atoms, such as a hydrogen atom, a methyl group, an ethyl group, or a propyl group. Group, isopropyl group, methoxy group, ethoxy group, propoxy group, isopropoxy group. n is an integer of 0-5. Specific aminoalkylsilane compounds include 2_aminoethyltrimethoxysilane, 2_aminoethyltriethoxysilane, 2-aminoethylethylethyloxysilane, 3-aminopropyltriethoxysilane, N- (2- Aminoethyl) 1-2-aminoethyltriethoxysilane, N- (2-aminoethyl) 1-2-aminoethylethylethyloxysilane, N- (2-aminoethyl) _3-aminopropylmethyldimethoxysilane, N— (2-aminoethyl) 1-3-aminopropyltrimethoxysilane, N— (2-aminoethyl) 1-3-aminopropyltriethoxysilane, N— (2-aminoethyl) 1-3-aminominopropyl Ethyl ethoxysilane, preferably 2_aminoethyltriethoxysilane, 3-aminopropyltriethoxysilane, N— (2-aminoethyl ) Is one 3- Aminopuro pills trimethoxysilane. These can be used alone or in combination of two or more.
親水性シリカとアミノアルキルシラン化合物との反応は、特に限定されるものではな ぐ通常の疎水化反応に準じて行われる。アミノアルキルシラン化合物の使用量は下 式に従って算出することができる。  The reaction between the hydrophilic silica and the aminoalkylsilane compound is not particularly limited and is performed according to a normal hydrophobizing reaction. The amount of aminoalkylsilane compound used can be calculated according to the following formula.
a= (b X c) /d a = (b X c) / d
a:アミノアルキルシランィヒ合物重量 (g) a: Weight of aminoalkylsilane compound (g)
b :親水性シリカ重量 (g) b: Weight of hydrophilic silica (g)
c :シリカ比表面積 (m2/g) c: Specific surface area of silica (m 2 / g)
d :アミノアルキルシラン化合物の最小被覆面積 (m2/g) d: Minimum covering area of aminoalkylsilane compound (m 2 / g)
ここで、最小被覆面積は Stuart-Brieglebの分子モデルから計算される。 Here, the minimum coverage is calculated from the Stuart-Briegleb molecular model.
アミノアルキルシラン化合物の使用量は、 目的とする疎水性シリカの用途、疎水性の 要求度によって適宜選択されるものであり、通常、親水性シリカに対して 2〜20wt%The amount of aminoalkylsilane compound used is appropriately selected depending on the intended use of hydrophobic silica and the degree of hydrophobicity required, and is usually 2 to 20 wt% with respect to hydrophilic silica.
、好ましくは 4〜: 10wt%である。アミノアルキルシラン化合物の使用量がシリカの 2wt, Preferably 4 to 10 wt%. The amount of aminoalkylsilane compound used is 2wt of silica.
%以下である場合には、親水性シリカの疎水化反応率が低くなる場合があり、生成し た疎水性シリカの疎水化度が十分に高くないため、好ましくない場合がある。アミノア ルキルシランィ匕合物の使用量が親水性シリカの 20wt%以上になると、使用するアミ ノアルキルシラン化合物のコストが高くて、不経済であり、さらに生成した疎水性シリカ が凝集し易くなり、乾燥分散し難くなり、好ましくない場合がある。 If it is less than or equal to%, the hydrophobization rate of the hydrophilic silica may be low, and the degree of hydrophobization of the produced hydrophobic silica may not be sufficiently high, which may be undesirable. Aminoa If the amount of the alkylsilan compound used is 20 wt% or more of the hydrophilic silica, the cost of the aminoalkylsilane compound used is high and uneconomical, and the produced hydrophobic silica tends to aggregate, resulting in dry dispersion. It may be difficult to do so and may not be preferable.
[0013] アミノアルキルシラン化合物の使用方法には、アミノアルキルシラン化合物をそのま ま使用する方法、 0. 5〜2wt%濃度の希薄水溶液を調製して使用する方法、水溶性 有機溶剤に溶解して使用する方法、非水溶性有機溶剤に溶解して使用する方法等 があり、いずれの方法を用いても良い。 [0013] The aminoalkylsilane compound is used as it is, a method of using an aminoalkylsilane compound as it is, a method of preparing and using a dilute aqueous solution having a concentration of 0.5 to 2 wt%, and a solution in a water-soluble organic solvent. And a method of dissolving and using in a water-insoluble organic solvent, and any method may be used.
アミノアルキルシラン化合物の親水性シリカへの添加方法は、特に限定されるのも ではなぐ通常、ミキサーゃブレンダ一の中に親水性シリカを入れ、攪拌しながらアミ ノアルキルシラン化合物を直接入れる方法、あるいはアミノアルキルシランィヒ合物の 水溶液又は有機溶媒希釈液をスプレー塗布する方法などがあり、いずれを用いても 良い。  The method of adding the aminoalkylsilane compound to the hydrophilic silica is not particularly limited. Usually, the mixer is mixed with the hydrophilic silica in a blender, and the aminoalkylsilane compound is directly added while stirring. Alternatively, there is a method of spray-coating an aqueous solution of an aminoalkylsilane compound or a diluted organic solvent, and any of them may be used.
[0014] 親水性シリカとアミノアルキルシラン化合物との反応時間は、 目的とする疎水性シリ 力の用途、疎水性の要求度によって適宜選択され一律に決定できないが、通常、 5 〜100分間、好ましく 20〜60分間で反応はほぼ完全に進み、アミノアルキルシラン 化合物は外に反応性アミノ基を向けて親水性シリカ表面の OH基と反応して結合す る。  [0014] The reaction time between the hydrophilic silica and the aminoalkylsilane compound is appropriately selected depending on the intended use of the hydrophobic silica force and the required level of hydrophobicity, and cannot be determined uniformly, but is usually preferably 5 to 100 minutes. The reaction proceeds almost completely in 20 to 60 minutes, and the aminoalkylsilane compound reacts with the OH group on the hydrophilic silica surface with the reactive amino group facing outward and binds.
[0015] 本発明の疎水化剤で用いるカルボン酸化合物は、前記一般式(2)で表されるカル ボン酸、カルボン酸ハロゲン化物である。一般式(2)の R6は、炭素数 2〜21の直鎖あ るいは分岐鎖のアルキル基、炭素数 2〜21の直鎖あるいは分岐鎖のアルケニル基 であり、 Xは水酸基、塩素原子、臭素原子である。具体的にはカルボン酸としては、プ ロピオン酸、ブタン酸、へキサン酸、デカン酸、ドデカン酸、ミリスチン酸、イソミリスチ ン酸、パルミチン酸、イソパルミチン酸、ステアリン酸、イソステアリン酸、ォレイン酸、 1 2—ヒドロキシステアリン酸、ベへニル酸等である。また、炭素数 3〜22のカルボン酸 ハロゲン化物としては、前記のカルボン酸の酸塩化物、酸臭化物であり、具体的には プロピオン酸塩化物、プロピオン酸臭化物、ブタン酸塩化物、へキサン酸塩化物、デ カン酸塩化物、ドデカン酸塩化物、ミリスチン酸塩化物、イソミリスチン酸塩化物、パ ルミチン酸塩化物、イソパルミチン酸塩化物、ステアリン酸塩ィ匕物、ステアリン酸臭化 物、イソステアリン酸塩化物、イソステアリン酸臭化物、ォレイン酸塩化物、 12—ヒドロ キシステアリン酸塩ィヒ物、ベへニル酸塩化物等がある。これらの単独あるいは 2種以 上を組合せて用いることができる。 [0015] The carboxylic acid compound used in the hydrophobizing agent of the present invention is a carboxylic acid or a carboxylic acid halide represented by the general formula (2). R 6 in the general formula (2) is a linear or branched alkyl group having 2 to 21 carbon atoms or a linear or branched alkenyl group having 2 to 21 carbon atoms, and X is a hydroxyl group or a chlorine atom. A bromine atom. Specific examples of the carboxylic acid include propionic acid, butanoic acid, hexanoic acid, decanoic acid, dodecanoic acid, myristic acid, isomyristic acid, palmitic acid, isopalmitic acid, stearic acid, isostearic acid, oleic acid, 1 2-hydroxystearic acid, behenylic acid and the like. Examples of the carboxylic acid halide having 3 to 22 carbon atoms include acid chlorides and acid bromides of the above carboxylic acids. Specifically, propionate chloride, propionate bromide, butanoic acid chloride, and hexanoic acid. Chloride, decanoic acid chloride, dodecanoic acid chloride, myristic acid chloride, isomyristic acid chloride, palmitic acid chloride, isopalmitic acid chloride, stearic acid salt, stearic acid bromide Products, isostearic acid chloride, isostearic acid bromide, oleic acid chloride, 12-hydroxystearic acid chloride, behenyl acid chloride and the like. These can be used alone or in combination of two or more.
[0016] 本発明の疎水化剤で用いるアルキルケテンダイマーは、前記一般式(3)で表され るアルキルケテンダイマーである。一般式(3)の式中、 R7、 R8はそれぞれ炭素数:!〜 20の直鎖あるいは分岐鎖のアルキル基、アルケニル基、アルキルフヱニル基である 。例えば、プロピレン基、ブチル基、ォクチル基、 2 _ェチルへキシル基、デシル基、 ドデシル基、ヤシアルキル (炭素数 10〜12)基、テトラドデシル基、ステアリル基、イソ ステアリル基、硬化牛脂アルキル (炭素数 14〜 18)基、牛脂アルキル (炭素数 14〜1 8)基、ォレイル基、ベへニル基、ェチルフヱニル基、イソプロピルフヱニル基、ブチル フエニル基、ォクチルフエニル、ノユルフェニル、デシルフェニル基、ドデシルフェニ ル基などがある。具体的なアルキルケテンダイマーには、プロピレンケテンダイマー、 ブチレンケテンダイマー、ォクチルケテンダイマー、 2—ェチルへキシルケテンダイマ 一、デシルケテンダイマー、ドデシルケテンダイマー、ヤシアルキル(炭素数 10〜12 )ケテンダイマー、テトラデシルケテンダイマー、へキサデシルケテンダイマー、ステア リルケテンダイマー、イソステアリノレケテンダイマー、ベへ二ルケテンダイマー、硬化 牛脂アルキル (炭素数 14〜 18)ケテンダイマー、牛脂アルキル (炭素数 14〜 18)ケ テンダイマー、ォレイルケテンダイマー、ブチルフエ二ルケテンダイマー、ォクチルフ ェニルケテンダイマー、ノニルフエ二ルケテンダイマー、ドデシルフェニルケテンダイ マー、さらには製紙産業でサイズ剤として用レ、られてレ、る製紙用アルキル (炭素数 8 〜 18)ケテンダイマー(AKD)などがある。これらの単独あるいは 2種以上を組合せて 用いることができる。炭素数 10未満のアルキルケテンダイマーでは得られる疎水化の 程度が十分でない場合があり、炭素数 48を越えるアルキルケテンダイマーは工業的 に入手が困難な場合がある。 [0016] The alkyl ketene dimer used in the hydrophobizing agent of the present invention is an alkyl ketene dimer represented by the general formula (3). In the general formula (3), R 7 and R 8 are each a straight chain or branched chain alkyl group, alkenyl group, or alkylphenyl group having carbon numbers:! -20. For example, propylene group, butyl group, octyl group, 2_ethylhexyl group, decyl group, dodecyl group, cocoalkyl (10 to 12 carbon atoms) group, tetradodecyl group, stearyl group, isostearyl group, cured beef tallow alkyl (carbon Number 14-18) group, beef tallow alkyl (carbon number 14-18) group, oleyl group, behenyl group, ethylphenyl group, isopropylphenyl group, butylphenyl group, octylphenyl, noylphenyl, decylphenyl group, dodecylpheny group There are ru groups. Specific alkyl ketene dimers include propylene ketene dimer, butylene ketene dimer, octyl ketene dimer, 2-ethyl hexyl ketene dimer, decyl ketene dimer, dodecyl ketene dimer, coco alkyl (10 to 12 carbon atoms) ketene dimer, Tetradecyl ketene dimer, hexadecyl ketene dimer, stearyl ketene dimer, isostearino ketene dimer, vinyl ketene dimer, cured beef tallow alkyl (carbon number 14-18) ketene dimer, tallow alkyl (carbon number 14-18) ) Ketene dimer, oleyl ketene dimer, butyl phenyl ketene dimer, octyl phenyl ketene dimer, nonyl phenyl ketene dimer, dodecyl phenyl ketene dimer, and as a sizing agent in the paper industry. Alkyl (8-18 carbon atoms) ketene dimer (AKD). These can be used alone or in combination of two or more. An alkyl ketene dimer having less than 10 carbon atoms may not be sufficiently hydrophobized, and an alkyl ketene dimer having more than 48 carbon atoms may be difficult to obtain industrially.
[0017] 本発明の疎水化剤で用いるジイソシァネートイ匕合物は、前記一般式 (4)で表される ジイソシァネート化合物である。一般式(4)の式中、 R9は炭素数 6〜24のアルキレン 基、炭素数 6〜24のアルキルフエ二レン基である。具体的には、アルキレンジィソシ ァネート類の 1, 6—へキサメチレンジイソシァネート、 2、 2、 4_トリメチルテトラメチレ ンジイソシァネート、 2、 4、 4—トリメチルテトラメチレンジイソシァネート、メチレンビス 一(4、 1ーシクロへキシレン)ジイソシァネート、イソホロンジイソシァネート、ノルボノレ [0017] The diisocyanate compound used in the hydrophobizing agent of the present invention is a diisocyanate compound represented by the general formula (4). In the general formula (4), R 9 is an alkylene group having 6 to 24 carbon atoms or an alkylphenylene group having 6 to 24 carbon atoms. Specifically, 1,6-hexamethylene diisocyanate, 2, 2, 4_trimethyltetramethylene of alkylene disiocyanates. Diisocyanate, 2, 4, 4-trimethyltetramethylene diisocyanate, methylenebis mono (4,1-cyclohexylene) diisocyanate, isophorone diisocyanate, norbornole
—キシリレンジイソシァネートの混合物)、アルキルフエ二レンジイソシァネート類の 4, 4'—ジフヱニルメタンジイソシァネート、トリレンジイソシァネート(トルエン一 2、 4—ジ イソシァネート、トルエン一 2、 6—ジイソシァネートの混合物)などがある。これらの単 独あるいは 2種以上を組合せて用いることができる。ジイソシァネートイ匕合物は、炭素 数が 6未満では得られる疎水化の程度が十分でない場合があり、炭素数が 24を越え るものは工業的に入手が困難な場合がある。 —Mixture of xylylene diisocyanate), 4,4′-diphenylmethane diisocyanate, alkyl diylene diisocyanate, tolylene diisocyanate (toluene-1,4-diisocyanate, toluene 1 2 , 6-diisocyanate mixtures). These can be used alone or in combination of two or more. Diisocyanate compounds may not be sufficiently hydrophobized when the number of carbon atoms is less than 6, and those with more than 24 carbon atoms may be difficult to obtain industrially.
[0018] これらの中で疎水化剤として好ましくは、デカン酸、ドデカン酸、ステアリン酸、デカ ン酸塩化物、ドデカン酸塩化物、ステアリン酸塩化物、硬化牛脂アルキル (炭素数 14 〜 18)ケテンダイマー、ステアリノレケテンダイマー、ベへニノレケテンダイマー、 1, 6 _ へキサメチレンジイソシァネート、 4, 4 'ージフエニルメタンジイソシァネート、キシリレ ンジイソシァネート、トリレンジイソシァネートがあり、より好ましくはステアリン酸塩化物 、ステアリルケテンダイマー、トリレンジイソシァネートである。これらの単独あるいは 2 種以上を組合せて用いることができる。  Of these, decanoic acid, dodecanoic acid, stearic acid, decanoic acid chloride, dodecanoic acid chloride, stearic acid chloride, and cured beef tallow alkyl (carbon number 14 to 18) ketene are preferred as hydrophobizing agents. Dimer, stearinoreketene dimer, beheninoreketene dimer, 1,6_hexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, tolylene diisocyanate And stearic acid chloride, stearyl ketene dimer, and tolylene diisocyanate are more preferable. These can be used alone or in combination of two or more.
[0019] また、本発明の効果を妨げない範囲内で従来から使用されてきた疎水化剤である ジメチルポリシロキサン、末端反応性ヒドロキシル基を持ったジメチルポリシロキサン、 ハイドロジェンメチルポリシロキサン、トリメチルクロロシラン等のシランカップリング剤 を併用しても良い。  [0019] Further, dimethylpolysiloxane, a dimethylpolysiloxane having a terminal reactive hydroxyl group, hydrogenmethylpolysiloxane, trimethylchlorosilane which has been conventionally used as long as it does not interfere with the effects of the present invention. A silane coupling agent such as
[0020] 親水性シリカの疎水化にぉレ、て、疎水化剤とアミノアルキルシラン化合物で処理し た親水性シリカの混合比率は、疎水化剤であるカルボン酸化合物、アルキルケテン ダイマー、ジイソシァネート化合物の反応性官能基の合計モル数と、アミノアルキル シラン化合物中の反応性ァミノ基のモル数の比率として 1 ::!〜 2 : 1、好ましくは 1. 1 : 1〜: 1. 5 : 1である。カルボン酸化合物、アルキルケテンダイマー、ジイソシァネートイ匕 合物の各 1モルに対しての反応性官能基のモル数は、カルボン酸化合物の場合は 1 モル、アルキルケテンダイマーでは 1モル、ジイソシァネート化合物では 2モルである 。アミノアルキルシラン化合物中の反応性ァミノ基のモル数比率力 当該比率の範囲 よりも小さいと反応で残存するァミノ基により十分な疎水性が得られない。また、疎水 化剤の合計モル数が当該比率の範囲を超えて混合しても、増加に見合うだけの疎水 性の向上が得られなぐ経済的メリットが得られない。 [0020] When the hydrophilic silica is hydrophobized, the mixing ratio of the hydrophilic silica treated with the hydrophobizing agent and the aminoalkylsilane compound is determined based on the carboxylic acid compound, alkyl ketene dimer, diisocyanate compound that is the hydrophobizing agent. The ratio of the total number of moles of reactive functional groups to the number of moles of reactive amino groups in the aminoalkyl silane compound is 1 ::! To 2: 1, preferably 1.1: 1 to 1: 1.5: 1 It is. The number of moles of reactive functional groups per mole of carboxylic acid compound, alkyl ketene dimer, and diisocyanate compound is 1 mole for carboxylic acid compounds, 1 mole for alkyl ketene dimers, and diisocyanate. For compounds, it is 2 moles. Molar ratio power of reactive amino groups in aminoalkylsilane compounds Range of the ratio If it is smaller than 1, sufficient hydrophobicity cannot be obtained due to the amino group remaining in the reaction. In addition, even if the total number of moles of the hydrophobizing agent exceeds the range of the ratio, there is no economic merit that the hydrophobicity cannot be improved enough to meet the increase.
[0021] 疎水化剤の使用方法には、疎水化剤をそのまま使用する方法、疎水化剤を:!〜 40 wt%濃度の有機溶剤あるいは水溶性有機溶剤に溶解して溶液として使用する方法 等があり、いずれの方法を用いても良い。有機溶剤あるいは水溶性有機溶剤として は、トルエン、キシレン、メチルェチルケトン、ブチルセルソルブなどがある。  [0021] The method of using the hydrophobizing agent includes the method of using the hydrophobizing agent as it is, the method of using the hydrophobizing agent as a solution by dissolving it in an organic solvent or water-soluble organic solvent having a concentration of! Any method may be used. Examples of organic solvents or water-soluble organic solvents include toluene, xylene, methyl ethyl ketone, and butyl cellosolve.
疎水化剤の添加方法は、特に限定されるのもではなぐ通常、ミキサーやプレンダ 一の中にアミノアルキルシラン化合物で処理した親水性シリカを入れ、攪拌しながら 疎水化剤を直接入れる方法、あるいは疎水化剤の溶媒希釈液をスプレー塗布する 方法などがあり、いずれを用いても良い。  The method for adding the hydrophobizing agent is not particularly limited. Usually, a method is used in which a hydrophilic silica treated with an aminoalkylsilane compound is placed in a mixer or a blender, and the hydrophobizing agent is directly added while stirring, or There is a method of spraying a solvent dilution of a hydrophobizing agent, and any method may be used.
疎水化剤とアミノアルキルシランィヒ合物で処理した親水性シリカとの反応時間は、 目的とする疎水性シリカの用途、疎水性の要求度によって適宜選択され一律に決定 できないが、通常、 20〜: 120分間、好ましく 30〜90分間である。  The reaction time between the hydrophobizing agent and the hydrophilic silica treated with the aminoalkylsilane compound is appropriately selected depending on the intended use of the hydrophobic silica and the degree of hydrophobicity, but cannot be determined uniformly. ~: 120 minutes, preferably 30 to 90 minutes.
[0022] 本発明の疎水化シリカの製造において、疎水性シリカの微粒子を製造してから使 用するまでに長時間保管する場合があり、この間に疎水性シリカの粉体の凝集が生 じる場合がある。これを防止するために疎水化剤と、アミノアルキルシラン化合物で処 理した親水性シリカとの疎水化反応時にフッ素系界面活性剤を添加することにより、 分散性に優れた疎水性シリカが得られる。添加するフッ素系界面活性剤としては、一 般式(5)〜(7)で表されるフッ素系化合物がある。一般式 (5)において、 R1Qは炭素 数 5〜22のパーフルォロアルキル基であり、 Xは CO〇M、 SO M基、 Mは Na、 K、 L [0022] In the production of the hydrophobized silica of the present invention, there is a case where the hydrophobic silica fine particles are stored for a long time from the production to use, during which the aggregation of the hydrophobic silica powder occurs. There is a case. To prevent this, hydrophobic silica with excellent dispersibility can be obtained by adding a fluorosurfactant during the hydrophobization reaction between the hydrophobizing agent and hydrophilic silica treated with an aminoalkylsilane compound. . As the fluorine-based surfactant to be added, there are fluorine-based compounds represented by the general formulas (5) to (7). In the general formula (5), R 1Q is a perfluoroalkyl group having 5 to 22 carbon atoms, X is COM, SO M group, M is Na, K, L
3  Three
iである。一般式(6)において、 R11は炭素数 5〜22のパーフルォロアルキル基、 Yは H (水素原子)、 -OPO (OH) (燐酸残基)、 pは:!〜 15の整数である。一般式(7)に i. In general formula (6), R 11 is a perfluoroalkyl group having 5 to 22 carbon atoms, Y is H (hydrogen atom), -OPO (OH) (phosphoric acid residue), p is an integer of:! To 15 It is. In general formula (7)
2  2
おいて、 R12は炭素数 5〜22のパーフルオアルキル基、 Zは塩素原子、臭素原子、ョ ゥ素原子、硫酸残基、燐酸残基、炭素数 1〜6のカルボン酸残基である。炭素数 4以 下になると、フッ素系化合物の表面張力低くて揮発しやすぐ取扱が困難になる。ま た、炭素数 22を超えると工業的に入手が困難となる。 R 12 is a perfluoroalkyl group having 5 to 22 carbon atoms, Z is a chlorine atom, bromine atom, iodine atom, sulfuric acid residue, phosphoric acid residue, or a carboxylic acid residue having 1 to 6 carbon atoms. . When the number of carbon atoms is 4 or less, the surface tension of the fluorine compound is low and it volatilizes, making it difficult to handle immediately. In addition, when the number of carbon atoms exceeds 22, it becomes difficult to obtain industrially.
[0023] [化 9] R10— X (5) [0023] [Chemical 9] R 10 — X (5)
[0024] [化 10] [0024] [Chemical 10]
R" - S02N (C2H5) (CzH40) p Y (6) R "-S0 2 N (C 2 H 5 ) (C z H 4 0) p Y (6)
[0025] [化 11] [0025] [Chemical 11]
[R12-S02N HC3H6N+ CCH3) 3]Z- (7) [R 12 -S0 2 N HC 3 H 6 N + CCH 3 ) 3 ] Z- (7)
一般式(5)〜(7)で表されるフッ素系界面活性剤の添加量は、疎水性シリカ粉体の 凝集防止の要求程度に応じて適宜その添加量を決定すれば良いが、通常、親水性 シリカに対して 0.01〜2wt%であり、好ましくは 0. 05〜: 1. 5wt%である。 0. Olwt %未満では、凝集防止効果が十分に得られない場合がある。一方、フッ素系界面活 性剤の添加量が 2wt%を超えても本発明の効果は得られるが、添加量の割りに得ら れる効果の向上度合いが小さぐ好ましくない場合がある。 The addition amount of the fluorosurfactant represented by the general formulas (5) to (7) may be appropriately determined according to the degree of requirement for preventing aggregation of the hydrophobic silica powder. It is 0.01-2 wt% with respect to hydrophilic silica, Preferably it is 0.05-: 1.5 wt%. 0. If less than Olwt%, the aggregation preventing effect may not be sufficiently obtained. On the other hand, the effect of the present invention can be obtained even when the addition amount of the fluorosurfactant exceeds 2 wt%, but the improvement degree of the effect obtained for the addition amount may be small, which is not preferable.
[0026] また、本発明の効果を妨げない範囲内で疎水性シリカの分散性を向上させるため に、従来から使用されてきたポリアルキレングリコール系の非イオン性界面活性剤、 ナフタレンスルフォン酸塩系、リグニンスルフォン酸塩系やマレイン酸共重合体系等 の高分子系ァニオン性界面活性剤ゃシリコーンオイル等を併用しても良い。シリコー ンオイルとしては、通常、直鎖状シロキサン構造を持っている非反応性シリコーンオイ ノレ、メチルフエニルシリコーンオイル、アルキル変性シリコーンオイル、ポリエーテル変 性シリコーンおよび脂肪酸エステル変性シリコーンオイルなどが挙げられ、その動粘 度は通常、 1〜: 10万 mm2/sである。界面活性剤およびシリコーンオイルの添力卩量は 、通常、アミノアルキルシランィヒ合物で処理した親水性シリカに対して通常、 0. 5〜5 wt%である。 [0026] Further, in order to improve the dispersibility of the hydrophobic silica within a range not impeding the effect of the present invention, a polyalkylene glycol-based nonionic surfactant and naphthalene sulfonate-based surfactant that have been used conventionally are used. Further, a high molecular weight anionic surfactant such as lignin sulfonate or maleic acid copolymer may be used in combination with silicone oil. Examples of silicone oils generally include non-reactive silicone oils having a linear siloxane structure, methylphenyl silicone oils, alkyl-modified silicone oils, polyether-modified silicones, and fatty acid ester-modified silicone oils. Its kinematic viscosity is usually 1 to 100,000 mm 2 / s. The loading amount of the surfactant and the silicone oil is usually 0.5 to 5 wt% with respect to the hydrophilic silica treated with the aminoalkylsilane compound.
実施例 以下、実施例によって、本発明をさらに詳細に説明するが、本発明はこれら実施例 に限定されるものではない。 Example EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(ァミノアルキルシラン化合物)  (Aminoalkylsilane compounds)
A- 1 : N- (2—アミノエチル)_ 3—ァミノプロビルトリメトキシシラン〔「トーレシリコー ン SH6020」(商品名)、東レ'ダウコーユングシリコーン (株)製〕 A-1: N- (2-Aminoethyl) _3-aminominovir trimethoxysilane [Toray Silicone SH6020 (trade name), manufactured by Toray Dow Co. Silicone Co., Ltd.]
A— 2 : 3—ァミノプロピルトリエトキシシラン〔「トーレシリコーン SS1040」(商品名)、東 レ.ダウコーユングシリコーン (株)製〕 A-2: 3-Aminopropyltriethoxysilane [Toray Silicone SS1040 (trade name), manufactured by Toray Dow Co., Ltd. Silicone Co., Ltd.]
A- 3 -. 2 -アミノエチルトリエトキシシラン (試薬、東京化成 (株))  A- 3-. 2-Aminoethyltriethoxysilane (Reagent, Tokyo Chemical Industry Co., Ltd.)
(親水性シリカ)  (Hydrophilic silica)
8 :親水性シリカ〔「2£〇31し200」(商品名)、 J. M. Huber (株)製〕  8: Hydrophilic silica ["2 £ 031 200" (trade name), manufactured by J. M. Huber Co., Ltd.]
(疎水化剤)  (Hydrophobicizing agent)
C :ラウリン酸〔花王 (株)製〕 C: Lauric acid (manufactured by Kao Corporation)
D:ステアリン酸〔旭電化工業 (株)製〕 D: Stearic acid [Asahi Denka Kogyo Co., Ltd.]
E:ステアリン酸エマルシヨン (ステアリン酸: 20wt%濃度)〔伯東 (株)製〕  E: Stearic acid emulsion (stearic acid: 20wt% concentration) [manufactured by Hakuto Co., Ltd.]
F:アルキルケテンダイマー (AKD)〔中国蘇州天馬化工 (株)製〕 F: Alkyl ketene dimer (AKD) [manufactured by Suzhou Tianma Chemical Co., Ltd., China]
G: AKDエマルシヨン (AKD20wt%濃度)〔伯東(株)製〕 G: AKD emulsion (AKD20wt% concentration) [made by Hakuto Co., Ltd.]
H:トリレンジイソシァネート〔旭化成 (株)製〕 H: Tolylene diisocyanate [Asahi Kasei Co., Ltd.]
1 : 4, 4,ージフヱニルメタンジイソシァネート〔旭化成 (株)製〕 1: 4, 4, Diphenylmethane diisocyanate (Asahi Kasei Co., Ltd.)
(その他)  (Other)
J:パーフルォロォクチルスルフォン酸フッ化物 C F SO F〔中国武漢海徳化工(株)  J: Perfluorooctyl sulfonic acid fluoride C F SO F [China Wuhan Haitoku Chemical Co., Ltd.
8 17 2  8 17 2
製〕 Made)
K :ジメチルポリシロキサン〔「SH200」(商品名)、動粘度 1000mm2Zs、東レ'ダウコ 一ユングシリコーン (株)製〕 K: Dimethylpolysiloxane ["SH200" (trade name), kinematic viscosity 1000mm 2 Zs, manufactured by Toray Dowko Iyung Silicone Co., Ltd.]
L :メチルヒドロキシポリシロキサン〔「KF99」(商品名)、動粘度 20mm2/s、信越シリ コーン (株)製〕 L: methyl hydroxy polysiloxane [ "KF99" (trade name), kinematic viscosity of 20mm 2 / s, Shin-Etsu Siri corn Co., Ltd.]
N :シリコーンオイルエマルシヨン (ジメチルポリシロキサン 10wt%濃度)〔伯東 (株)〕 M :パーフルォロォクチルスルフォン酸ナトリウム C F SO Na〔中国武漢海徳化ェ(  N: Silicone oil emulsion (dimethylpolysiloxane 10wt% concentration) (Hakuto Co., Ltd.) M: Sodium perfluorooctyl sulfonate C F SO Na
8 17 3  8 17 3
株)製〕 P :両末端シラノール化ジメチルポリシロキサン〔「BY16— 873」(商品名)、東レ'ダウ コーユングシリコーン (株)製〕 Made by Co., Ltd.) P: Silanolated dimethylpolysiloxane at both ends ["BY16-873" (trade name), manufactured by Toray Dow Cowing Silicone Co., Ltd.]
[0028] (実施例 1)  [0028] (Example 1)
撹拌機、温度計およびコンデンサーを付けた 500mL三つ口フラスコに脱イオン水 100mL、 N— (2—アミノエチル)一3—ァミノプロピルトリメトキシシラン (A) lgを添カロ し、攪拌下、親水性シリカ(B) 20gをゆっくり添加し、室温で 30分間、疎  To a 500 mL three-necked flask equipped with a stirrer, thermometer and condenser, add 100 mL of deionized water and N— (2-aminoethyl) -1-3-aminopropyltrimethoxysilane (A) lg. Slowly add 20 g of hydrophilic silica (B) and loosen it at room temperature for 30 minutes.
水化反応を行った。 30分後、ろ過して親水性シリカのアミノアルキルシラン処理物を 得た。次に 300mLのビーカーにラウリン酸(C) l . 8g、ジメチルシリコーンオイル(K) 0. 5g、トルエン lOOmLを添カロ、攪拌、混合し、これにアミノアルキルシラン処理をし た親水性シリカを添カ卩し、 2時間攪拌した後、 90〜110°Cに加熱してトルエン—水を 共沸させて除外し、疎水性シリカ 1を得た。  A hydration reaction was performed. After 30 minutes, filtration was performed to obtain an aminoalkylsilane-treated product of hydrophilic silica. Next, add 300 g of beaker, 0.8 g of lauric acid (C), 0.5 g of dimethyl silicone oil (K), and lOOmL of toluene, stir, mix, and add hydrophilic silica treated with aminoalkylsilane. The mixture was stirred and stirred for 2 hours, and then heated to 90 to 110 ° C. to remove toluene-water azeotropically to obtain hydrophobic silica 1.
[0029] (実施例 2)  [0029] (Example 2)
撹拌機、温度計およびコンデンサーを付けた 500mL三つ口フラスコにステアリン酸 (D) 2. 5g、ジメチルシリコーンオイル(Κ) 0· 5g、トルエン lOOmLを添加して攪拌し ながら 60°Cに加熱し、溶解した。次ぎに実施例 1と同様にして調製したアミノアルキ ルシラン処理をした親水性シリカを加え、 90〜: 110°Cで 2時間共沸させて、疎水性シ リカ 2を得た。  To a 500 mL three-necked flask equipped with a stirrer, thermometer and condenser, add 2.5 g of stearic acid (D), 0.5 g of dimethyl silicone oil (Κ), and lOOmL of toluene, and heat to 60 ° C with stirring. Dissolved. Next, hydrophilic silica treated with aminoalkylsilane prepared in the same manner as in Example 1 was added and azeotroped at 90 to 110 ° C. for 2 hours to obtain hydrophobic silica 2.
[0030] (実施例 3)  [0030] (Example 3)
実施例 2において、ステアリン酸(D) 2· 5gをアルキルケテンダイマー(F) 2· 5gに 置き換えて添加し、実施例 2と同様にして疎水性シリカ 3を得た。  In Example 2, 2.5 g of stearic acid (D) was replaced with 2.5 g of alkyl ketene dimer (F) and added, and hydrophobic silica 3 was obtained in the same manner as in Example 2.
[0031] (実施例 4)  [Example 4]
撹拌機、温度計およびコンデンサーを付けた 500mL三つ口フラスコに脱イオン水 100mL、 N— (2—アミノエチル)一3—ァミノプロピルトリメトキシシラン (A) 2gを添加 し、攪拌下、親水性シリカ(B) 20gをゆっくり添カ卩し、室温で 30分間、アミノアルキル シラン処理を行った。 30分後、フラスコにステアリン酸エマルシヨン(E) 25g、シリコー ンオイルエマルシヨン (L) 10g、脱イオン水 5 OmLを添加して、さらに 1時間、攪拌した 。水をろ別し、得られた固体物を 110°Cで乾燥して、疎水性シリカ 4を得た。  To a 500 mL three-necked flask equipped with a stirrer, thermometer, and condenser, add 100 mL of deionized water and 2 g of N— (2-aminoethyl) -1-3-aminopropyltrimethoxysilane (A). Silica (B) (20 g) was slowly added and treated with an aminoalkyl silane at room temperature for 30 minutes. After 30 minutes, 25 g of stearic acid emulsion (E), 10 g of silicone oil emulsion (L), and 5 OmL of deionized water were added to the flask, and the mixture was further stirred for 1 hour. Water was filtered off, and the resulting solid was dried at 110 ° C. to obtain hydrophobic silica 4.
[0032] (実施例 5) 実施例 4において、ステアリン酸エマルシヨン(E) 25gを AKDエマルシヨン(G) 30g に置き換えて添加し、実施例 4と同様にして疎水性シリカ 5を得た。 [Example 5] In Example 4, 25 g of stearic acid emulsion (E) was replaced with 30 g of AKD emulsion (G), and hydrophobic silica 5 was obtained in the same manner as in Example 4.
[0033] (実施例 6) [0033] (Example 6)
実施例 4において、 N— (2—アミノエチル)一3—ァミノプロピルトリメトキシシラン (A ) 2gを 0. 4g (対親水性シリカ: 2wt%)、ステアリン酸エマルシヨン(E) 25gを 5g、シリ コーンオイルエマルシヨン (N) 10gを 20gにそれぞれ置き換えて添加し、実施例 4と 同様にして疎水'性シリカ 6を得た。  In Example 4, 2 g of N— (2-aminoethyl) 1-3-aminopropyltrimethoxysilane (A) (0.4 g) (hydrophilic silica: 2 wt%), 5 g of stearic acid emulsion (E) 5 g, Hydrophobic silica 6 was obtained in the same manner as in Example 4 by adding 10 g of silicone oil emulsion (N) in place of 20 g.
[0034] (実施例 7) [Example 7]
実施例 4において、 N— (2—アミノエチル)一3—ァミノプロピルトリメトキシシラン (A ) 2gを 4g (対親水性シリカ: 20wt%)、ステアリン酸エマルシヨン(E) 25gを 50g、シリ コーンオイルエマルシヨン (N) 10gを 5gにそれぞれ置き換えて添加し、実施例 4と同 様にして疎水性シリカ 7を得た。  In Example 4, 2 g of N— (2-aminoethyl) 1-3-aminopropyltrimethoxysilane (A) (4 g) (hydrophilic silica: 20 wt%), 50 g of 25 g of stearic acid emulsion (E), silicone 10 g of oil emulsion (N) was added in place of 5 g, and hydrophobic silica 7 was obtained in the same manner as in Example 4.
[0035] (実施例 8) [Example 8]
撹拌機、温度計およびコンデンサーを付けた 500mL三つ口フラスコに脱イオン水 100mL、 N— (2 アミノエチル) 3 ァミノプロピルトリメトキシシラン (A) 2gを添加 し、攪拌下、親水性シリカ(B) 20gをゆっくり添加し、室温で 30分間、攪拌した。その 後、反応物をろ過し、親水性シリカのアミノシラン処理物を得た。次に 300mLのビー カーにトリレンジイソシァネート(H) l . 53g、パーフルォロォクチルスルフォン酸ナトリ ゥム(Μ) 0· 2g、トルエン lOOmLを添加し、撹拌混合し、アミノアルキルシラン処理を した親水性シリカを加え、 50°Cで 2時間反応を行った。次い  To a 500 mL three-necked flask equipped with a stirrer, thermometer and condenser, add 100 mL of deionized water and 2 g of N— (2 aminoethyl) 3 aminopropyltrimethoxysilane (A). B) 20 g was slowly added and stirred at room temperature for 30 minutes. Thereafter, the reaction product was filtered to obtain an aminosilane-treated product of hydrophilic silica. Next, to a 300 mL beaker, add 53 g of tolylene diisocyanate (H), 0.2 g of sodium perfluorooctyl sulfonate (Μ), lOOmL of toluene, mix with stirring, and treat with aminoalkylsilane. Hydrophilic silica was added and reacted at 50 ° C for 2 hours. Next
で 90〜: 110°Cで 2時間加熱して水分、トルエンを共沸により留去して疎水性シリカ 8 を得た。得られた疎水性シリカ 8をガラス容器に入れ、室温下、屋内で 1ヶ月静置した 。 1ヶ月後に疎水性シリカ 8の入ったガラス容器を振り、疎水性シリカ 8の凝集状態を 調べて結果、さらつとした状態を維持していた。  90 to: Heated at 110 ° C. for 2 hours, and water and toluene were distilled off azeotropically to obtain hydrophobic silica 8. The obtained hydrophobic silica 8 was put in a glass container and allowed to stand indoors at room temperature for 1 month. One month later, the glass container containing the hydrophobic silica 8 was shaken, and the aggregation state of the hydrophobic silica 8 was examined.
[0036] (実施例 9) [Example 9]
実施例 8において、パーフルォロォクチルスルフォン酸ナトリウム(M) 0. 2を添加せ ずに実施例 8と同様の手順で親水性シリカの疎水化を行レ、、疎水性シリカ 9を得た。 得られた疎水性シリカ 9をガラス容器に入れ、室温下、屋内で 1ヶ月静置した。 1ヶ月 後に疎水性シリカ 9の入ったガラス容器を振り、疎水性シリカ 9の凝集状態を調べて 結果、数個の容易に崩壊する塊状物が見られた。 Hydrophobic silica 9 was hydrophobized in the same manner as in Example 8 without adding sodium perfluorooctyl sulfonate (M) 0.2 in Example 8, to obtain hydrophobic silica 9 . The obtained hydrophobic silica 9 was placed in a glass container and allowed to stand indoors at room temperature for 1 month. 1 month Later, the glass container containing the hydrophobic silica 9 was shaken, and the aggregation state of the hydrophobic silica 9 was examined. As a result, several easily disintegrating lumps were observed.
[0037] (実施例 10) [0037] (Example 10)
実施例 8において、トリレンジイソシァネート(H)に代えてジイソシアン酸 4,4—ジフ ェニルメタン(1) 2. 25gを添加して、疎水性シリカ 10を得た。  In Example 8, 2.25 g of diisocyanate 4,4-diphenylmethane (1) was added instead of tolylene diisocyanate (H) to obtain hydrophobic silica 10.
[0038] (実施例 11) [0038] (Example 11)
実施例 1において、 N— (2—アミノエチル)一3—ァミノプロピルトリメトキシシラン (A In Example 1, N— (2-aminoethyl) 1-3-aminopropyltrimethoxysilane (A
— l) lgを 3—ァミノプロピルトリエトキシシラン (A— 2) lgに置き換えて添加し、実施 例 1と同様にして疎水性シリカ 11を得た。 — L) Replacing lg with 3-aminopropyltriethoxysilane (A-2) lg and adding, and the hydrophobic silica 11 was obtained in the same manner as in Example 1.
[0039] (実施例 12)  [Example 12]
実施例 1において、 N— (2—アミノエチル)一3—ァミノプロピルトリメトキシシラン (A In Example 1, N— (2-aminoethyl) 1-3-aminopropyltrimethoxysilane (A
— l) lgを 2—アミノエチルトリエトキシシラン (A— 3) 0. 93gに置き換えて添カ卩し、実 施例 1と同様にして疎水性シリカ 12を得た。 — L) Replacing lg with 2-aminoethyltriethoxysilane (A-3) 0.93 g, and adding the mixture, hydrophobic silica 12 was obtained in the same manner as in Example 1.
[0040] (比較例 1)  [0040] (Comparative Example 1)
撹拌機、温度計およびコンデンサーを付けた 500mL三つ口フラスコに親水性シリ 力(B) 20g、ジメチルポリシロキサン(K) l . 2gを入れ、窒素雰囲気下、 150°Cに 1時 間加熱し、その後、冷却して疎水性シリカ 13を得た。  A 500 mL three-necked flask equipped with a stirrer, thermometer and condenser is charged with 20 g of hydrophilic silica (B) and 2 g of dimethylpolysiloxane (K) and heated to 150 ° C for 1 hour under a nitrogen atmosphere. Thereafter, the mixture was cooled to obtain hydrophobic silica 13.
[0041] (比較例 2) [0041] (Comparative Example 2)
比較例 1において、ジメチルポリシロキサン(K) l . 2gに代えてメチルヒドロキシポリ シロキサン (L) l . 2gを用いて、窒素雰囲気下、 150°Cに 1時間加熱し、その後、冷 却して疎水性シリカ 14を得た。  In Comparative Example 1, instead of dimethylpolysiloxane (K) 1 .2 g, methylhydroxypolysiloxane (L) 1 .2 g was used and heated to 150 ° C. for 1 hour in a nitrogen atmosphere, and then cooled. Hydrophobic silica 14 was obtained.
[0042] (比較例 3) [0042] (Comparative Example 3)
比較例 1において、ジメチルポリシロキサン (K) l . 2gに代えて両末端シラノール化 ジメチルポリシロキサン(P) l . 2gを用いて、窒素雰囲気下、 150°Cに 1時間加熱し、 その後、冷却して疎水性シリカ 15を得た。  In Comparative Example 1, instead of dimethylpolysiloxane (K) 1 .2 g, silanolated dimethylpolysiloxane (P) 1 .2 g at both ends was heated to 150 ° C. for 1 hour in a nitrogen atmosphere, and then cooled. Thus, hydrophobic silica 15 was obtained.
[0043] (比較例 4) [0043] (Comparative Example 4)
比較例 1において、ジメチルポリシロキサン (K) l . 2gに代えて両末端シラノール化 ジメチルポリシロキサン (P) l . 2g及びトリエチレンテトラミン 0. lgを用いて、窒素雰囲 気下、 150°Cに 1時間加熱し、その後、冷却して疎水性シリカ 16を得た。 In Comparative Example 1, instead of dimethylpolysiloxane (K) 1 .2 g, silanolated both ends dimethylpolysiloxane (P) 1 .2 g and triethylenetetramine 0. The mixture was heated to 150 ° C. for 1 hour under air, and then cooled to obtain hydrophobic silica 16.
[0044] (比較例 5)  [0044] (Comparative Example 5)
撹拌機、温度計およびコンデンサーを付けた 500mL三つ口フラスコに親水性シリ 力(B) 20g、トリレンジイソシァネート(H) l . 53g、パーフルォロォクチルスルフォン酸 ナトリウム(M) 0. 2g、トルエン l OOmLを入れ、 50°Cにカロ温、撹拌混  In a 500 mL three-necked flask equipped with a stirrer, thermometer and condenser, hydrophilic silicic acid (B) 20 g, tolylene diisocyanate (H) 53 g, sodium perfluorooctyl sulfonate (M) 0. Add 2 g of toluene l OOmL and mix with stirring at 50 ° C.
合して 2時間反応させた。次いで 90〜1 10°Cで 2時間加熱して水分、トルエンを共沸 により留去し、冷却して疎水性シリカ 17を得た。  The reaction was performed for 2 hours. Subsequently, the mixture was heated at 90 to 110 ° C. for 2 hours to distill off water and toluene by azeotropic distillation, and then cooled to obtain hydrophobic silica 17.
[0045] (疎水化度評価試験)  [0045] (Hydrophobicity evaluation test)
特開平 5— 97423公報に記載される透過率法を用いて疎水性シリカの疎水化度を 測定した。疎水性シリカ lg、水 l OOgを 200mL分液ロートに入れ、 5分間しんとうした 後、 1分間静置した。分液ロートの下部水相から懸濁した水 10mLを取り、吸光光度 計にて波長 550nmの透過率を測定した。純粋の透過率を基準(100とする)に次式 により疎水化度を求め、この数値を疎水性シリカの疎水化度とした。疎水化度が高い ほど、疎水性が高いことを示す。  The hydrophobicity of hydrophobic silica was measured using the transmittance method described in JP-A-5-97423. Hydrophobic silica (lg) and water (lOOg) were placed in a 200mL separatory funnel, stirred for 5 minutes, and allowed to stand for 1 minute. 10 mL of suspended water was taken from the lower aqueous phase of the separatory funnel, and the transmittance at a wavelength of 550 nm was measured with an absorptiometer. The degree of hydrophobicity was determined by the following formula based on pure transmittance (100), and this value was used as the hydrophobicity of hydrophobic silica. The higher the degree of hydrophobicity, the higher the hydrophobicity.
(疎水化度) (%) = ( a / i3 ) X 100  (Hydrophobicity) (%) = (a / i3) X 100
a:疎水性シリカにおける水相の透過率(%)  a: Permeability (%) of aqueous phase in hydrophobic silica
β:水の透過率(%)  β: Water permeability (%)
結果を表 1に示した。  The results are shown in Table 1.
[0046] [表 1] [0046] [Table 1]
例 No. 疎水化度 (%) Example No. Hydrophobicity (%)
1 9 6  1 9 6
2 9 4  2 9 4
3 9 5  3 9 5
4 9 7  4 9 7
5 9 6  5 9 6
6 9 0  6 9 0
実施例  Example
7 9 8  7 9 8
8 9 4  8 9 4
9 9 3  9 9 3
1 0 9 1  1 0 9 1
1 1 9 0  1 1 9 0
1 2 9 1  1 2 9 1
1 6 8  1 6 8
2 7 3  2 7 3
比較例 3 3 1  Comparative Example 3 3 1
4 5 8  4 5 8
5 4 6  5 4 6
本発明の疎水性シリカは、従来の疎水性シリカと比較して、優れた疎水性を示すこ とが分かる。また、疎水化の際にフッ素系界面活性剤を用いることにより疎水性シリカ の凝集の防止に有効であることが分かる。 It can be seen that the hydrophobic silica of the present invention exhibits superior hydrophobicity as compared with conventional hydrophobic silica. It can also be seen that using a fluorosurfactant at the time of hydrophobization is effective in preventing aggregation of hydrophobic silica.

Claims

請求の範囲 親水性シリカを一般式(1) (式中、 R1は炭素数 1〜4のアルキレン基、 R2は炭素数 1 〜4のアルキレン基、 R3、 R4、 R5はそれぞれ独立に水素原子、炭素数:!〜 3のアルキ ル基、炭素数 1〜3のアルコキシ基、 nは 0〜5の整数である。)で表されるアミノアルキ ルシラン化合物で処理し、さらに一般式(2) (式中、 R6は炭素数 2〜21の直鎖あるい は分岐鎖のアルキル基、炭素数 2〜21の直鎖あるいは分岐鎖のアルケニル基、 Xは 水酸基、塩素原子、臭素原子である。)で表されるカルボン酸化合物、一般式(3) ( 式中、 R7、 は共に炭素数 1〜20の直鎖あるいは分岐鎖のアルキル基、炭素数:!〜 20の直鎖あるいは分岐鎖のアルケニル基、炭素数 6〜24のアルキルフエニル基であ る。)で表されるアルキルケテンダイマー、一般式 (4) (式中、 R9は炭素数 6〜24のァ ルキレン基、炭素数 6〜24のアルキルフエ二レン基である。)で表されるジイソシァネ ート化合物から選ばれた 1種以上を含む疎水化剤と反応させて得られることを特徴と する疎水性シリカ。 Claims Hydrophilic silica is represented by the general formula (1) (wherein R1 is an alkylene group having 1 to 4 carbon atoms, R2 is an alkylene group having 1 to 4 carbon atoms, R3, R4 and R5 are each independently a hydrogen atom, Treatment with an aminoalkylsilane compound represented by general formula (2) (formula (2) (formula 2) R6 is a linear or branched alkyl group having 2 to 21 carbon atoms, a linear or branched alkenyl group having 2 to 21 carbon atoms, and X is a hydroxyl group, a chlorine atom, or a bromine atom. Carboxylic acid compound represented by the general formula (3) (wherein R7 and R7 are both linear or branched alkyl groups having 1 to 20 carbon atoms, linear or branched alkenyl groups having! An alkyl ketene dimer represented by the general formula (4) (wherein R9 is carbon). An alkylphenylene group having 6 to 24 carbon atoms and an alkylphenylene group having 6 to 24 carbon atoms.) Obtained by reacting with a hydrophobizing agent containing at least one selected from diisocyanate compounds represented by the following formula: Hydrophobic silica characterized by
[化 1] [Chemical 1]
H2N- (R1 - ΝΗ) Π - R2 - S i - (R3) (R4) (R5) (1 ) H 2 N- (R 1 -ΝΗ) Π -R 2 -S i-(R 3 ) (R 4 ) (R 5 ) (1)
[化 2] [Chemical 2]
R6— COX (2) R 6 — COX (2)
[化 3] [Chemical 3]
R — H =し H— r\ R — H = then H— r \
(3)  (3)
O— CO  O— CO
[化 4] [Chemical 4]
OCN— R9— NCO (4) [2] アミノアルキルシラン化合物が 2—アミノエチルトリエトキシシラン、 3 ァミノプロピノレ トリエトキシシラン、 N— (2 アミノエチル) 3 ァミノプロピルトリメトキシシランの 1 種以上である特許請求項 1記載の疎水性シリカ。 OCN— R 9 — NCO (4) [2] The hydrophobic group according to claim 1, wherein the aminoalkylsilane compound is at least one of 2-aminoethyltriethoxysilane, 3-aminopropynoletriethoxysilane, and N- (2aminoethyl) 3-aminopropyltrimethoxysilane. silica.
[3] 疎水化剤がデカン酸、ドデカン酸、ステアリン酸、デカン酸塩化物、ドデカン酸塩化 物、ステアリン酸塩ィ匕物、硬化牛脂アルキル (炭素数 14〜18)ケテンダイマー、ステ ァリルケテンダイマー、ベへ二ルケテンダイマー、 1 , 6—へキサメチレンジイソシァネ ート、 4, 4 '—ジフヱニルメタンジイソシァネート、キシリレンジイソシァネート、トリレン ジイソシァネートの 1種以上である特許請求項 1記載の疎水性シリ力。  [3] Hydrophobizing agents are decanoic acid, dodecanoic acid, stearic acid, decanoic acid chloride, dodecanoic acid chloride, stearic acid salt, hardened tallow alkyl (carbon number 14-18) ketene dimer, stearyl ketene One or more of dimer, benzylketene dimer, 1,6-hexamethylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xylylene diisocyanate, tolylene diisocyanate The hydrophobic shear force according to claim 1.
[4] 親水性シリカをァミノアルキルシランィ匕合物で処理した後、フッ素系界面活性剤の 存在下で疎水化剤によりアミノアルキルシラン化合物で処理した親水性シリカを疎水 化させる請求項 1乃至 3のいずれか記載の疎水性シリカ。  [4] The hydrophilic silica treated with an aminoalkylsilane compound is hydrophobized with a hydrophobizing agent in the presence of a fluorosurfactant after the hydrophilic silica is treated with the aminoaminosilane compound. 4. The hydrophobic silica according to any one of items 1 to 3.
PCT/JP2006/306224 2006-03-28 2006-03-28 Hydrophobic silica WO2007110920A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/306224 WO2007110920A1 (en) 2006-03-28 2006-03-28 Hydrophobic silica
JP2008507308A JPWO2007110920A1 (en) 2006-03-28 2006-03-28 Hydrophobic silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/306224 WO2007110920A1 (en) 2006-03-28 2006-03-28 Hydrophobic silica

Publications (1)

Publication Number Publication Date
WO2007110920A1 true WO2007110920A1 (en) 2007-10-04

Family

ID=38540860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306224 WO2007110920A1 (en) 2006-03-28 2006-03-28 Hydrophobic silica

Country Status (2)

Country Link
JP (1) JPWO2007110920A1 (en)
WO (1) WO2007110920A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139502A1 (en) * 2008-05-16 2009-11-19 キヤノン株式会社 Hydrophobic inorganic fine particle and toner
JP2016020942A (en) * 2014-07-14 2016-02-04 株式会社トクヤマ Positive charging silica particle and production method thereof
JP2018104866A (en) * 2016-12-28 2018-07-05 日華化学株式会社 Water-repellent composition, water-repellent fiber product and method for producing water-repellent fiber product
WO2020175159A1 (en) * 2019-02-25 2020-09-03 日産化学株式会社 Inorganic oxide particle, inorganic oxide particle dispersion and preparation method thereof, and method for producing surface modifier
JP2020172564A (en) * 2019-04-08 2020-10-22 ナトコ株式会社 Filler particle, composition for film formation, article including film, resin material for molding and molded article
WO2020255731A1 (en) * 2019-06-19 2020-12-24 石原産業株式会社 Surface-coated inorganic particles and method for manufacturing same, and organic solvent dispersion containing same
WO2021075174A1 (en) * 2019-10-16 2021-04-22 富士フイルム株式会社 Dispersion liquid, composition, cured film, color filter, optical element, solid-state imaging element, and headlight unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240769A (en) * 1984-05-16 1985-11-29 Nippon Steel Chem Co Ltd Production of inorganic material having hydrophobic surface
JP2001527599A (en) * 1997-05-22 2001-12-25 バイエル・インコーポレーテツド Methods for rendering particles hydrophobic and their use as fillers in polymer masterbatches
JP2002530195A (en) * 1998-11-20 2002-09-17 バイエル・インコーポレーテツド Method for hydrophobizing particles and its use in polymer dispersions
JP2002363438A (en) * 2001-06-04 2002-12-18 Wakayama Prefecture Inorganic reinforcing filler and thermoplastic resin composition containing the same
JP2005307176A (en) * 2004-03-25 2005-11-04 Fuji Photo Film Co Ltd Fine particle dispersion, coating composition, optical film and antireflection film formed from the composition, polarizing plate and image display device using the film
JP2006117445A (en) * 2004-10-19 2006-05-11 Hakuto Co Ltd Hydrophobic silica

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60240769A (en) * 1984-05-16 1985-11-29 Nippon Steel Chem Co Ltd Production of inorganic material having hydrophobic surface
JP2001527599A (en) * 1997-05-22 2001-12-25 バイエル・インコーポレーテツド Methods for rendering particles hydrophobic and their use as fillers in polymer masterbatches
JP2002530195A (en) * 1998-11-20 2002-09-17 バイエル・インコーポレーテツド Method for hydrophobizing particles and its use in polymer dispersions
JP2002363438A (en) * 2001-06-04 2002-12-18 Wakayama Prefecture Inorganic reinforcing filler and thermoplastic resin composition containing the same
JP2005307176A (en) * 2004-03-25 2005-11-04 Fuji Photo Film Co Ltd Fine particle dispersion, coating composition, optical film and antireflection film formed from the composition, polarizing plate and image display device using the film
JP2006117445A (en) * 2004-10-19 2006-05-11 Hakuto Co Ltd Hydrophobic silica

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139502A1 (en) * 2008-05-16 2009-11-19 キヤノン株式会社 Hydrophobic inorganic fine particle and toner
US7811734B2 (en) 2008-05-16 2010-10-12 Canon Kabushiki Kaisha Hydrophobic inorganic fine particles and toner
JP4590486B2 (en) * 2008-05-16 2010-12-01 キヤノン株式会社 Hydrophobic inorganic fine particles and toner
JPWO2009139502A1 (en) * 2008-05-16 2011-09-22 キヤノン株式会社 Hydrophobic inorganic fine particles and toner
JP2016020942A (en) * 2014-07-14 2016-02-04 株式会社トクヤマ Positive charging silica particle and production method thereof
JP2018104866A (en) * 2016-12-28 2018-07-05 日華化学株式会社 Water-repellent composition, water-repellent fiber product and method for producing water-repellent fiber product
KR20180077033A (en) * 2016-12-28 2018-07-06 닛카카가쿠가부시키가이샤 Water repellent agent composition, water repellent textile product and method for producing water repellent textile product
KR102576864B1 (en) * 2016-12-28 2023-09-12 닛카카가쿠가부시키가이샤 Water repellent agent composition, water repellent textile product and method for producing water repellent textile product
JP6995477B2 (en) 2016-12-28 2022-01-14 日華化学株式会社 Method for manufacturing water repellent composition, water repellent fiber product and water repellent fiber product
JPWO2020175159A1 (en) * 2019-02-25 2020-09-03
JP7464913B2 (en) 2019-02-25 2024-04-10 日産化学株式会社 Inorganic oxide particles, inorganic oxide particle dispersion and method for producing same, and method for producing surface modifier
CN113474288B (en) * 2019-02-25 2023-11-17 日产化学株式会社 Inorganic oxide particles, inorganic oxide particle dispersion, method for producing same, and method for producing surface modifier
CN113474288A (en) * 2019-02-25 2021-10-01 日产化学株式会社 Inorganic oxide particles, inorganic oxide particle dispersion liquid, method for producing inorganic oxide particle dispersion liquid, and method for producing surface modifier
WO2020175159A1 (en) * 2019-02-25 2020-09-03 日産化学株式会社 Inorganic oxide particle, inorganic oxide particle dispersion and preparation method thereof, and method for producing surface modifier
JP2020172564A (en) * 2019-04-08 2020-10-22 ナトコ株式会社 Filler particle, composition for film formation, article including film, resin material for molding and molded article
JP7266858B2 (en) 2019-04-08 2023-05-01 ナトコ株式会社 Filler particles, film-forming composition, article with film, molding resin material and molded article
WO2020255731A1 (en) * 2019-06-19 2020-12-24 石原産業株式会社 Surface-coated inorganic particles and method for manufacturing same, and organic solvent dispersion containing same
CN114080428A (en) * 2019-06-19 2022-02-22 石原产业株式会社 Surface-coated inorganic particles, method for producing same, and organic solvent dispersion containing same
JP7288515B2 (en) 2019-10-16 2023-06-07 富士フイルム株式会社 Dispersion liquid, composition, cured film, color filter, optical element, solid-state imaging device and headlight unit
JPWO2021075174A1 (en) * 2019-10-16 2021-04-22
WO2021075174A1 (en) * 2019-10-16 2021-04-22 富士フイルム株式会社 Dispersion liquid, composition, cured film, color filter, optical element, solid-state imaging element, and headlight unit
TWI840614B (en) * 2019-10-16 2024-05-01 日商富士軟片股份有限公司 Dispersion, composition, hardened film, color filter, optical element, solid-state imaging element, and headlight unit

Also Published As

Publication number Publication date
JPWO2007110920A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
WO2007110920A1 (en) Hydrophobic silica
CN100556964C (en) The preparation method of hydrophobic silica
JP2006117445A (en) Hydrophobic silica
US7829647B2 (en) Process for the preparation of branched polyorganosiloxanes
US7811540B2 (en) Method of preparing hydrophobic silica directly from an aqueous colloidal silica dispersion
US20110282024A1 (en) catalysts for the cross-linking of functional silanes or functional siloxanes, particularly with substrates
JP2008105919A (en) Polymer-coated silica
JP2006316276A (en) Method for producing cross-linked organosiloxane dispersion, such dispersion, formed article obtained from the dispersion, method for coating support and method for impregnating or penetrating support
US9278298B2 (en) Oil compound and defoamer composition
EP2998360B1 (en) Curable silicone emulsion composition
JP5085469B2 (en) Hydrophobic inorganic oxide and rubber composition using the same
US20070203316A1 (en) Film-forming silicone emulsion composition
JP2008105918A (en) Hydrophobic silica
CN113165887A (en) Metal oxide particles surface-modified with quaternary ammonium groups and method for producing same
CN101531727A (en) Post-crosslinking wax and method for producing the same
JP2011174011A (en) Rubber composition for tire and pneumatic tire
JP3676042B2 (en) Foam suppressant composition
JPH06313167A (en) Emulsion composition based on organosilicon compound
JP5146644B2 (en) Method for modifying ammonium polyphosphate
JP2008106205A (en) Rubber composition
JP6848057B2 (en) Compositions Containing Beta-Ketcarbonyl Functional Organosilicon Compounds
WO2012145636A1 (en) Aqueous stable compositions of alkali metal alkyl siliconates with arylsilanes, silsesquioxanes, or fluorinated alkylsilanes, and surface treatment methods using the compositions
JP2010059269A (en) Pneumatic tire
JP3778847B2 (en) Aqueous silicone composition
JP6075459B2 (en) Method for producing an antifoam oil compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06730172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008507308

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06730172

Country of ref document: EP

Kind code of ref document: A1