WO2007110258A1 - Ammoniaksensor - Google Patents

Ammoniaksensor Download PDF

Info

Publication number
WO2007110258A1
WO2007110258A1 PCT/EP2007/050791 EP2007050791W WO2007110258A1 WO 2007110258 A1 WO2007110258 A1 WO 2007110258A1 EP 2007050791 W EP2007050791 W EP 2007050791W WO 2007110258 A1 WO2007110258 A1 WO 2007110258A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
catalyst
measuring electrode
sensor
gas sensor
Prior art date
Application number
PCT/EP2007/050791
Other languages
English (en)
French (fr)
Inventor
Berndt Cramer
Bernd Schumann
Mario Roessler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US12/294,383 priority Critical patent/US20090308747A1/en
Publication of WO2007110258A1 publication Critical patent/WO2007110258A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • G01N27/4074Composition or fabrication of the solid electrolyte for detection of gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0054Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a gas sensor, in particular an ammonia sensor according to the preamble of claim 1.
  • Internal combustion engines are known to have various influences on the composition of the resulting exhaust gases. Among other things, this composition of the exhaust gases is monitored, so that a feedback for the input and adjustment of various operating components and / or parameters of the combustion device can be provided.
  • the exhaust gas with ammonia NH 3 for the purpose of reduction with the nitrogen oxides NO x occurring therein acted upon.
  • NO and NO2 react almost completely with NH 3 to H 2 O and N 2 .
  • ammonia sensors used to control the so-called “ammonia slip”, that is to say the quantity deviating from the optimum have in some cases a high NO x cross-sensitivity.
  • sensors that work according to the mixed potential principle such as in the DE 40 21 929 A1 described mixed potential sensor, which is based on a solid electrolyte, the first surface is exposed to the exhaust gas and the second surface with a reference gas and at least one, the exhaust gas ausiquede first electrode and a second electrode for forming a sensor cell.
  • the object of the present invention is therefore to reduce the NO x cross sensitivity of gas sensors, in particular ammonia sensors.
  • the present invention relates to a gas sensor, in particular an ammonia sensor, with a first sensor cell, consisting of a solid electrolyte, a measuring gas to be exposed to a first measuring electrode and a second measuring electrode.
  • a gas sensor in particular an ammonia sensor, with a first sensor cell, consisting of a solid electrolyte, a measuring gas to be exposed to a first measuring electrode and a second measuring electrode.
  • This gas sensor is characterized in that the first measuring electrode, in the flow direction of the measuring gas to the electrode, is covered with a catalyst for the chemical conversion of nitrogen oxides with another substance.
  • the proposal of such a sensor structure is based on the finding that a catalyst upstream of a measuring electrode in the gas flow direction ensures that in the presence of NO x and NH 3 in the test gas to be tested, ie in particular in an exhaust gas of a diesel engine, deviating from the optimum mixing ratio involved gas components only the excess gas component passes to the measuring electrode.
  • the catalyst used is preferably a so-called "SCR” (Selective Catalytic Reduction) Catalyst used. This is catalytically effective for a chemical reaction between nitrogen oxides such as NO, NO 2 and ammonia NH 3 .
  • SCR Selective Catalytic Reduction
  • the signal of a sensor provided with such a catalyst is directly a measure of the excess of one of the two gas components NO 2 and NH 3 .
  • Titanium dioxide TiC> 2
  • V2O5 vanadium pentoxide
  • Zeolites also have good properties in this regard.
  • an electrically insulating layer can furthermore be formed between the first measuring electrode and the catalyst. It electrically decouples the electrode from the catalyst so that no disturbing influences on the measurement signal that are not related to the gas concentration can penetrate from the outside.
  • At least one measuring electrode is preferably the use of a metal or a metal oxide z.
  • both electrodes can be constructed of identical materials.
  • the second measuring electrode can either also be arranged exposed to the measuring gas or a reference gas.
  • the arrangement of a third electrode may also be provided which is correspondingly electrically connected to one or both of the other measuring electrodes.
  • the second measuring electrode is also exposed to the measuring gas, it may also be additionally covered with a catalyst, preferably also with an intermediate, electrically insulating layer.
  • a catalyst preferably also with an intermediate, electrically insulating layer.
  • the second measuring electrode could also be covered with an oxidation catalyst.
  • the NO x or NH 3 excess was measured at one electrode.
  • any ammonia which may be present on the second electrode is oxidized by the oxidation catalyst arranged upstream in the gas flow direction, so that it can not supply a signal component.
  • a third electrode preferably also a reference air channel is provided in the gas sensor, so that by appropriate connection with one of the other two electrodes, for example, the oxygen content in the measurement gas can be determined as an additional sensor signal due to a known oxygen content in the reference gas. This, in turn, makes it possible to take into account or correct a possibly present sour-gas cross-sensitivity of the sensor.
  • the gas sensor 1 comprises a first sensor cell 2, which consists of a solid electrolyte 3, a first measuring electrode 4 to be exposed to a measuring gas and a second measuring electrode 5.
  • the first measuring electrode 4 is covered with a catalyst 6.
  • This catalyst 6 is catalytically effective at least for a chemical reaction between nitrogen oxides and ammonia.
  • NO x nitrogen oxides
  • NH3 ammonia
  • the corresponding parameterized amplitude of the signal or the signal change can thus z. B. are evaluated as a control parameter for setting a so-called "ammonia slip" for the treatment of diesel exhaust gas by adding urea-water solution in the exhaust gas of a diesel internal combustion engine.
  • the nitrogen oxides present in the exhaust gas are converted to nitrogen and water almost without residues by the selective catalytic reaction (SCR) with ammonia.
  • SCR selective catalytic reaction
  • the gas sensor which may be constructed in particular as an ammonia sensor can, then delivers a constant signal. Signal disturbances that would falsify the sensor signal, in particular due to a reduction of nitrogen oxides which has not yet occurred with ammonia components likewise present in the measurement gas, are prevented according to the invention by the catalyst arranged in front of the measuring electrode 4 in the gas flow direction.
  • Titanium dioxide with vanadium pentoxide is also suitable as active catalyst materials, but zeolites are also outstandingly suitable for such applications.
  • an electrically insulating layer 7 is formed between these two sensor components 4, 6.
  • this can be constructed, for example, porous.
  • the structure of the measuring electrodes 4, 5 may be e.g. in the form of a so-called “mixed potential electrode", which is preferably based on metal and / or metal oxide. Particularly suitable for this purpose are platinum (Pt), platinum-gold compounds (Pt-Au) or the like.
  • the second measuring electrode 5 is likewise exposed here to the measuring gas and can be constructed from the same material or material mixture as the first measuring electrode 4. If this second measuring electrode 5 is likewise covered with a catalyst 8, however, a material composition deviating from the first measuring electrode 4 must be provided. This takes into account that substantially the same gas composition prevails with respect to the ammonia content NH3 to be monitored or the nitrogen oxide component NO x at both electrodes 4, 5. Therefore, the choice of different material components for the two measuring electrodes 4, 5 is a way to parameterize the sensor, based on known electrochemical reactions of gases at the 3-phase boundary of a solid electrolyte gas sensor. In a modified embodiment thereof, for example, instead of the reduction catalytic converter 8, an oxidation catalytic converter 10 may be provided.
  • the ammonia excess or a non-reduced proportion of nitrogen oxide in the measurement gas is measured at the first electrode 4.
  • any ammonia present in the measuring gas is simply oxidized.
  • the sensor 1 measures only the pure ammonia excess.
  • the catalyst 8 is also separated from the second measuring electrode 5 by an electrically insulating layer 7, corresponding to the arrangement with respect to the catalytic converter 6. The same applies to the oxidation catalytic converter 10.
  • a third electrode 11 in an air reference channel 12 is also shown by way of example in this schematic representation.
  • the interconnection of the individual electrodes 4, 5, 11 can take place through the connections 13, 14, 15 in a correspondingly designed control unit 16.
  • the gas sensor 1 is a simple 2-electrode sensor having an exhaust gas-side mixed potential electrode and an electrode in an air reference channel, which according to the invention has at least greatly reduced, if not almost completely eliminated, NO x cross sensitivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Gassensor 1, insbesondere einen Ammoniaksensor, mit einer ersten Sensorzelle 2, bestehend aus einem Festkörperelektrolyten 3, einer einem Messgas auszusetzenden ersten Messelektrode 4 und einer zweiten Messelektrode 5. Zur Reduzierung einer NOx- Querempfindlichkeit des Sensors zeichnet sie sich dadurch aus, dass die erste Messelektrode 4 mit einem Katalysator 6 zur chemischen Umsetzung von Stickoxiden überdeckt ist.

Description

Beschreibung
Titel
AMMONIAKSENSOR
Die vorliegende Erfindung betrifft einen Gassensor, insbesondere einen Ammoniaksensor nach dem Oberbegriff des Anspruchs 1.
Stand der Technik
Zur Reduzierung des Schadstoffausstoßes von Verbrennungsvorrichtungen, insbesondere von
Verbrennungsmotoren sind verschiedene Einflussnahmen auf die Zusammensetzung der daraus hervorgehenden Abgase bekannt. Unter anderem wird diese Zusammensetzung der Abgase überwacht, so dass eine Ruckmeldung zur Ein- bzw. Verstellung verschiedener Betriebskomponenten und/oder -parameter der Verbrennungsvorrichtung zur Verfugung gestellt werden kann.
So wird beispielsweise zur Reduzierung des Stickstoffausstoßes von Verbrennungsvorrichtungen, insbesondere von Dieselverbrennungsmotoren, deren Abgas mit Ammoniak NH3 zum Zwecke der Reduktion mit den darin auftretenden Stickoxiden NOx beaufschlagt. Bei richtig eingestelltem Verhältnis reagieren NO und NO2 nahezu vollständig mit NH3 zu H2O und N2.
Die zur Kontrolle des sogenannten "Ammoniakschlupfs", also der vom Optimum abweichenden Uberdosiermenge, verwendeten Ammoniaksensoren weisen zum Teil jedoch eine hohe NOx- Querempfindlichkeit auf. Dies gilt auch für Sensoren, die nach dem Mischpotenzialprinzip arbeiten, wie z.B. der in der DE 40 21 929 Al beschriebene Mischpotenzialsensor, welcher auf einem Festkorperelektrolyten aufbaut, dessen erste Oberflache mit dem Abgas und dessen zweiten Oberflache mit einem Referenzgas beaufschlagt ist und wenigstens eine, dem Abgas auszusetzende erste Elektrode und eine zweite Elektrode zur Ausbildung einer Sensorzelle umfasst.
Aufgabe und Vorteile der Erfindung
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde die NOx-Querempfindlichkeit von Gassensoren, insbesondere Ammoniaksensoren zu reduzieren.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelost. Durch die in den Unteranspruchen angegebenen Merkmale sind vorteilhafte und zweckmäßige Weiterbildungen möglich.
Dementsprechend betrifft die vorliegende Erfindung einen Gassensor, insbesondere einen Ammoniaksensor, mit einer ersten Sensorzelle, bestehend aus einem Festkorperelektrolyten, einer einem Messgas auszusetzenden ersten Messelektrode und einer zweiten Messelektrode. Diese Gassensor zeichnet sich dadurch aus, dass die erste Messelektrode, in Fließrichtung des Messgases zur Elektrode hin, mit einem Katalysator zur chemischen Umsetzung von Stickoxiden mit einem weiteren Stoff überdeckt ist.
Dem Vorschlag eines solchen Sensoraufbaus liegt die Erkenntnis zugrunde, dass ein einer Messelektrode in Gasflussrichtung vorgeschalteter Katalysator dafür sorgt, dass bei Anwesenheit von NOx und NH3 in dem zu prüfenden Messgas, also insbesondere in einem Abgas eines Dieselmotors, bei Abweichen vom optimalen Mischungsverhältnis der beteiligten Gaskomponenten nur die im Uberschuss vorliegende Gaskomponente zur Messelektrode gelangt .
Als Katalysator kommt vorzugsweise ein sogenannter "SCR"- (Selective-Catalytic-Reduction) Katalysator zum Einsatz. Dieser ist bezuglich einer chemischen Reaktion zwischen Stickoxiden wie NO, NO2 und Ammoniak NH3 katalytisch wirksam.
Da ein derart aufgebauter Sensor auf NO2 und NH3 mit unterschiedlichem Vorzeichen reagiert, ist das Signal eines mit einem derartigen Katalysator versehenen Sensors unmittelbar ein Maß für den Uberschuss einer der beiden Gaskomponenten NO2 bzw. NH3.
Als bevorzugte Materialien zum Aufbau eines solchen Katalysators werden Titandioxid (TiC>2) und/oder Vanadiumpentoxid (V2O5) oder auch eine Mischung daraus angesehen. Auch Zeolithe haben diesbezüglich gut wirksame Eigenschaften .
In bevorzugter Weise kann im Weiteren zwischen der ersten Messelektrode und dem Katalysator eine elektrisch isolierende Schicht ausgebildet sein. Sie entkoppelt die Elektrode elektrisch gegenüber dem Katalysator, so dass von außen keine, nicht mit der Gaskonzentration in Zusammenhang stehenden, störenden Einflüsse auf das Messsignal durchdringen können.
Zum Aufbau mindestens einer Messelektrode wird bevorzugt die Verwendung eines Metalls oder eines Metalloxids z. B. zur Bildung einer Mischpotenzialelektrode vorgeschlagen. Je nach Anwendungsfall können auch beide Elektroden aus identischen Materialien aufgebaut sein.
Abhangig davon, welche Signale gegebenenfalls zusatzlich mit dem Gassensor erfasst werden sollen, z.B. eine Sauerstoff- und/oder Wasserstoffkonzentration, kann die zweite Messelektrode entweder ebenfalls dem Messgas oder auch einem Referenzgas ausgesetzt angeordnet sein. Je nach interessierendem Gasanteil kann aber auch die Anordnung einer dritten Elektrode vorgesehen sein, die entsprechend mit einer oder auch beiden der anderen Messelektroden elektrisch verschaltend ist. Sofern die zweite Messelektrode ebenfalls dem Messgas ausgesetzt ist, kann diese ebenfalls zusatzlich mit einem Katalysator überdeckt sein, vorzugsweise ebenfalls mit einer zwischengeschalteten, elektrisch isolierenden Schicht. Ein solcher Sensor ist durch den vergleichsweise einfachen Aufbau sehr kostengünstig herzustellen. Aufgrund der Verwendung zweier Katalysatoren ist es jedoch erforderlich, die beiden Messelektroden aus unterschiedlichen Materialien oder Materialgemischen herzustellen, so dass aufgrund entsprechend angepasster Materialkombinationen bei gleichem Gasgemisch ein Potenzialunterschied zwischen den beiden Elektroden entstehen kann .
Anstelle eines Reduktinskatalysators konnte die zweite Messelektrode aber auch mit einem Oxidationskatalysator überdeckt sein. Bei einem so aufgebauten Sensor wurde an der einen Elektrode der NOx- bzw. NH3-Uberschuss gemessen. An der zweiten Elektrode wird demgegenüber durch den in der Gasstromrichtung vorgeschalteten Oxidationskatalysator gegebenenfalls vorhandener Ammoniak aufoxidiert, so dass er keinen Signalanteil liefern kann.
Bei der Anordnung einer dritten Elektrode ist vorzugsweise auch ein Referenzluftkanal im Gassensor vorgesehen, so dass durch entsprechende Verschaltung mit einer der beiden übrigen Elektroden beispielsweise der Sauerstoffgehalt im Messgas aufgrund eines bekannten Sauerstoffgehaltes in dem Referenzgas als zusatzliches Sensorsignal ermittelt werden kann. Damit ist wiederum eine Berücksichtigung bzw. Korrektur einer ggf. vorliegenden Sauertoff-Querempfindlichkeit des Sensors möglich.
Ausfuhrungsbeispiel
Die Erfindung wird anhand der Zeichnung und der nachfolgend darauf Bezug nehmenden Beschreibung naher erläutert. Es zeigt die beigefugte Figur eine schematische Schnittdarstellung durch einen Gassensor, insbesondere einen Ammoniaksensor, bei dem erfindungsgemaß zur Reduzierung der NOx-Querempfindlichkeit eine Elektrode mit einem Katalysator überdeckt ist.
Im Detail umfasst der Gassensor 1 eine erste Sensorzelle 2, die aus einem Festkorperelektrolyten 3, einer einem Messgas auszusetzenden ersten Messelektrode 4 und einer zweiten Messelektrode 5 besteht. Zur Reduzierung der NOx- Querempfindlichkeit der mit diesem Sensor erfassten Signale ist die erste Messelektrode 4 mit einem Katalysator 6 überdeckt. Dieser Katalysator 6 ist zumindest bezuglich einer chemischen Reaktion zwischen Stickoxiden und Ammoniak katalytisch wirksam. So kann bei Vorhandensein eines Ungleichgewichtes zwischen Stickoxiden (NOx) und Ammoniak (NH3) im Messgas, durch die vom Katalysator bewirkte, selektive katalytische Reaktion dieser Gaskomponenten, nur die im Uberschuss vorliegende Gaskomponente bis zur Messelektrode gelangen und damit eine Signalveranderung des Sensors bewirken .
Aufgrund der unterschiedlichen Vorzeichen der durch einen Uberschuss an NOx bzw. NH3 hervorgerufenen Signalanderung ist eine eindeutige Zuordnung zu der im Uberschuss vorliegenden Gaskomponente möglich. Die entsprechend parametrierte Amplitude des Signals bzw. der Signalanderung kann damit z. B. als Regelparameter zur Einstellung eines sogenannten "Ammoniakschlupfs" für die Behandlung von Dieselabgas durch Beimengung von Harnstoff-Wasser-Losung in das Abgas einer Dieselverbrennungsmaschine ausgewertet werden.
Bei einer optimal eingestellten Beimengung von Ammoniak in das Dieselabgas werden die im Abgas vorhandenen Stickoxide durch die selektive katalytische Reaktion (SCR) mit Ammoniak nahezu ruckstandsfrei zu Stickstoff und Wasser umgesetzt. Der Gassensor, der insbesondere als Ammoniaksensor aufgebaut sein kann, liefert dann ein konstantes Signal. Signalstörungen, die insbesondere aufgrund einer noch nicht erfolgten Reduktion von Stickoxiden mit ebenfalls im Messgas vorhandenen Ammoniakanteilen das Sensorsignal verfälschen würden, werden erfindungsgemäß durch den in Gasflussrichtung vor der Messelektrode 4 angeordneten Katalysator verhindert.
Als aktive Katalysatormaterialien kommen beispielsweise Titandioxid mit Vanadiumpentoxid in Frage, aber auch Zeolithe sind für solchen Anwendungsfälle hervorragend geeignet.
Zur Vermeidung anderer Störungseinflüsse, die beispielsweise durch katalytische Reaktionen im Katalysator 6 auf die Messelektrode 4 einwirken könnten, ist zwischen diesen beiden Sensorkomponenten 4, 6 eine elektrisch isolierende Schicht 7 ausgebildet. Zur Wahrung der Gasdurchlässigkeit, hin zur Messelektrode, kann diese beispielsweise porös aufgebaut sein.
Der Aufbau der Messelektroden 4, 5 kann z.B. in der Form einer sogenannten "Mischpotenzialelektrode" ausgeführt sein, der vorzugsweise auf Metall und/oder Metalloxid beruht. Besonders geeignet sind hierzu Platin (Pt) , Platin-Gold-Verbindungen (Pt-Au) oder dgl .
Die zweiten Messelektrode 5 ist hier ebenfalls dem Messgas ausgesetzt und kann aus dem gleichen Material bzw. Materialgemisch wie die erste Messelektrode 4 aufgebaut sein. Wenn diese zweite Messelektrode 5 ebenfalls mit einem Katalysator 8 überdeckt ist, muss jedoch eine von der ersten Messelektrode 4 abweichende Materialzusammensetzung vorgesehen sein. Dies berücksichtigt, dass an beiden Elektroden 4, 5 im Wesentlichen die gleiche Gaszusammensetzung bezüglich des zu überwachenden Ammoniakgehalts NH3 bzw. des Stickoxidanteils NOx vorherrscht. Daher stellt die Wahl unterschiedlicher Materialkomponenten für die beiden Messelektroden 4, 5 eine Möglichkeit dar, den Sensor zu parametrisieren, und zwar auf der Basis bekannter elektrochemischer Reaktionen von Gasen an der 3-Phasen-Grenze eines Festkörperelektrolyt-Gassensors. In einer davon abgewandelten Ausfuhrungsform kann z.B. anstelle des Reduktionskatalysators 8 ein Oxidations- katalysator 10 vorgesehen sein. Bei einem derartigen Aufbau wird an der ersten Elektrode 4 der Ammoniak-Uberschuss bzw. ein nicht reduzierter Stickoxidanteil im Messgas gemessen. An der vom Oxidationskatalysator 10 überdeckten zweiten Messelektrode 5 wird gegebenenfalls im Messgas vorhandener Ammoniak einfach aufoxidiert. Je nach NOx-Empfindlichkeit der vom Oxidationskatalysator 10 überdeckten zweiten Messelektrode 5 misst der Sensor 1 dann nur den reinen Ammoniak-Uberschuss.
Der Vollständigkeit halber wird noch angemerkt, dass auch der Katalysator 8 durch eine elektrisch isolierende Schicht 7 von der zweiten Messelektrode 5 getrennt ist, entsprechend der Anordnung zum Katalysator 6. Gleiches kann für den Oxidationskatalysator 10 gelten.
Um die bisher beschriebenen Ausfuhrungsformen eines Gassensors 1 mit der Möglichkeit einer Sauerstoffkonzentrationsermittlung im Messgas zu erweitern, ist in dieser schematischen Darstellung beispielhaft auch noch eine dritte Elektrode 11 in einem Luftreferenzkanal 12 dargestellt. Die Verschaltung der einzelnen Elektroden 4, 5, 11 kann durch die Anschlüsse 13, 14, 15 in einer entsprechend ausgebildeten Kontrolleinheit 16 erfolgen .
In einer weiter abgewandelten Ausfuhrungsform kann beispielsweise aber auch auf die Ausbildung der zweiten Elektrode 5 verzichtet werden. Dann handelt es sich bei dem Gassensor 1 um einen einfachen 2-Elektroden-Sensor mit einer abgasseitigen Mischpotenzialelektrode und einer Elektrode in einem Luftreferenzkanal, welcher erfindungsgemaß eine zumindest stark reduzierte, wenn nicht sogar fast vollständig eliminierte NOx-Querempfindlichkeit aufweist.

Claims

Ansprüche
1. Gassensor (1), insbesondere Ammoniaksensor, mit einer ersten Sensorzelle (2), bestehend aus einem
Festkörperelektrolyten (3), einer einem Messgas auszusetzenden ersten Messelektrode (4) und einer zweiten Messelektrode (5), dadurch gekennzeichnet, dass die erste Messelektrode (4) mit einem Katalysator (6) zur chemischen Umsetzung von Stickoxiden überdeckt ist.
2. Gassensor nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysator (6) bezüglich einer chemischen Reaktion zwischen Stickoxiden wie NO, NO2 und Ammoniak (NH3) katalytisch wirksam ist.
3. Gassensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Katalysator (6) Anteile von Titandioxid (TiC>2) und/oder Vanadiumpentoxid (V2O5) aufweist.
4. Gassensor nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der Katalysator (6) Anteile von Zeolith aufweist .
5. Gassensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen der ersten Messelektrode (4) und dem Katalysator (6) eine elektrisch isolierende Schicht (7) ausgebildet ist.
6. Gassensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Messelektrode (4, 5) aus Metall und/oder Metalloxid aufgebaut ist.
7. Gassensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Messelektrode (5) dem Messgas ausgesetzt angeordnet ist.
8. Gassensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Messelektrode (5) mit einem Katalysator (8) überdeckt ist.
9. Gassensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Messelektrode (5) mit einem Oxidationskatalysator (10) überdeckt ist.
10. Gassensor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine dritte Elektrode (11) in einem Referenzluftkanal (12) vorgesehen ist.
PCT/EP2007/050791 2006-03-24 2007-01-26 Ammoniaksensor WO2007110258A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/294,383 US20090308747A1 (en) 2006-03-24 2007-01-26 Ammonia sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006013698.5 2006-03-24
DE102006013698A DE102006013698A1 (de) 2006-03-24 2006-03-24 Gassensor

Publications (1)

Publication Number Publication Date
WO2007110258A1 true WO2007110258A1 (de) 2007-10-04

Family

ID=37891828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050791 WO2007110258A1 (de) 2006-03-24 2007-01-26 Ammoniaksensor

Country Status (3)

Country Link
US (1) US20090308747A1 (de)
DE (1) DE102006013698A1 (de)
WO (1) WO2007110258A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098495A1 (en) 2009-02-26 2010-09-02 Eisai R&D Management Co., Ltd. Imidazolylpyrazine derivatives
CN104730108A (zh) * 2013-12-20 2015-06-24 纳米新能源(唐山)有限责任公司 基于氧化锌的氨气传感器及氨气检测装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204160B2 (ja) * 2009-09-03 2013-06-05 日本特殊陶業株式会社 マルチガスセンサの制御方法及びマルチガスセンサの制御装置
US8669131B1 (en) 2011-09-30 2014-03-11 Silicon Laboratories Inc. Methods and materials for forming gas sensor structures
US8852513B1 (en) 2011-09-30 2014-10-07 Silicon Laboratories Inc. Systems and methods for packaging integrated circuit gas sensor systems
US8691609B1 (en) * 2011-09-30 2014-04-08 Silicon Laboratories Inc. Gas sensor materials and methods for preparation thereof
CN103336041B (zh) * 2013-06-09 2016-03-30 华瑞科学仪器(上海)有限公司 一种hcn电化学传感器
US10670554B2 (en) 2015-07-13 2020-06-02 International Business Machines Corporation Reconfigurable gas sensor architecture with a high sensitivity at low temperatures
JP6523144B2 (ja) * 2015-11-17 2019-05-29 日本碍子株式会社 ガスセンサ
US20190204263A1 (en) * 2016-03-30 2019-07-04 Cometnetwork Co., Ltd. Sensor for measuring concentration of nitrogen oxides and detecting ammonia slip
KR101851277B1 (ko) * 2017-09-19 2018-06-12 주식회사 코멧네트워크 NOx 센서
KR101851281B1 (ko) * 2017-09-19 2018-06-12 주식회사 코멧네트워크 암모니아 센서

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241751A2 (de) * 1986-03-27 1987-10-21 ROTH-Technik GmbH & Co. Forschung für Automobil- und Umwelttechnik Verfahren zum kontinuierlichen Überwachen von gasförmigen Bestandteilen in Gasgemischen, ausgenommen O2
DE4021929A1 (de) * 1990-07-10 1992-01-23 Abb Patent Gmbh Sensor
DE4333006A1 (de) * 1993-09-28 1995-03-30 Siemens Ag Detektor zum Nachweis von Stickstoffmonoxid NO und Ammoniak NH3
EP1008847A2 (de) * 1998-12-07 2000-06-14 Siemens Aktiengesellschaft Resistiver Gassensor und Verfahren zu dessen Herstellung
WO2002065113A1 (de) * 2001-02-10 2002-08-22 Robert Bosch Gmbh Gassensor und verfahren zur messung einer gaskomponente in einem gasgemisch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294252B2 (en) * 2005-10-07 2007-11-13 Delphi Technologies, Inc. NOx sensor and methods of using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241751A2 (de) * 1986-03-27 1987-10-21 ROTH-Technik GmbH & Co. Forschung für Automobil- und Umwelttechnik Verfahren zum kontinuierlichen Überwachen von gasförmigen Bestandteilen in Gasgemischen, ausgenommen O2
DE4021929A1 (de) * 1990-07-10 1992-01-23 Abb Patent Gmbh Sensor
DE4333006A1 (de) * 1993-09-28 1995-03-30 Siemens Ag Detektor zum Nachweis von Stickstoffmonoxid NO und Ammoniak NH3
EP1008847A2 (de) * 1998-12-07 2000-06-14 Siemens Aktiengesellschaft Resistiver Gassensor und Verfahren zu dessen Herstellung
WO2002065113A1 (de) * 2001-02-10 2002-08-22 Robert Bosch Gmbh Gassensor und verfahren zur messung einer gaskomponente in einem gasgemisch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098495A1 (en) 2009-02-26 2010-09-02 Eisai R&D Management Co., Ltd. Imidazolylpyrazine derivatives
CN104730108A (zh) * 2013-12-20 2015-06-24 纳米新能源(唐山)有限责任公司 基于氧化锌的氨气传感器及氨气检测装置

Also Published As

Publication number Publication date
DE102006013698A1 (de) 2007-09-27
US20090308747A1 (en) 2009-12-17

Similar Documents

Publication Publication Date Title
WO2007110258A1 (de) Ammoniaksensor
EP2029260B2 (de) Katalysator zur verminderung stickstoff-haltiger schadgase aus dem abgas von dieselmotoren
DE19703796C2 (de) Sensor zum selektiven Nachweis von Ammoniak in NO¶x¶-haltigen, sauerstoffreichen Gasen
DE69825347T2 (de) Gassensor
DE112017003119T5 (de) Gassensor und Verfahren zum Messen von Konzentrationen einer Vielzahl von Sollkomponenten in zu messendem Gas
DE19851949C5 (de) Sensor für die Untersuchung von Abgasen und Untersuchungsverfahren
EP0698208A1 (de) Sensor zur bestimmung der konzentration von gaskomponenten in gasgemischen
DE2907106A1 (de) Katalysator zur reinigung der abgase von verbrennungskraftmaschinen
WO2007036454A1 (de) Gassensor
DE10106171A1 (de) Gassensor
DE19846487C2 (de) Meßsonde für die Detektion der Momentankonzentrationen mehrerer Gasbestandteile eines Gases
EP0652435A2 (de) Sensor zur Bestimmung des Verlaufs der Konzentration
WO1999014586A1 (de) Gassensor
DE102008043706A1 (de) Verfahren zur Reduktion von Stickoxiden in Abgasen
EP0779096B1 (de) Verfahren und Anlage zur katalytischen Gasreinigung
DE69733509T2 (de) Sensoranordnung zur Bestimmung von Stickstoffoxiden
WO2009053187A1 (de) Speichervorrichtung, sensorelement und verfahren zur qualitativen und/oder quantitativen bestimmung mindestens einer gaskomponente, insbesondere von stickoxiden, in einem gas
DE19856369C2 (de) Resistiver Gassensor und Verfahren zu dessen Herstellung
DE19919472C2 (de) Vorrichtung und Verfahren zur Detektion von Ammoniak
WO2008080730A1 (de) Sensorelement mit zusätzlicher diagnosefunktion
EP0239106B1 (de) Verfahren zum Verringern des NOX-Gehaltes in Gasen, bei welchem dem Gasstrom kontinuierlich NH3 zugesetzt wird
DE10124550B4 (de) Sensor und Verfahren zur Überwachung und Steuerung von Katalysatoren, insbesondere von Kraftfahrzeugkatalysatoren
DE10064667A1 (de) Mehrstufiger, Gassensor, Betriebs- und Herstellungsverfahren
DE10023062B4 (de) Messeinrichtung zur Konzentrationsbestimmung von Gaskomponenten im Abgas einer Brennkraftmaschine und Verfahren zur Steuerung eines Betriebs der Messeinrichtung
EP1452860B1 (de) Verfahren zur Bestimmung von Ammoniak

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07704180

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 07704180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12294383

Country of ref document: US