WO2007109554A2 - Systèmes de visualisation et manipulation de tissus - Google Patents
Systèmes de visualisation et manipulation de tissus Download PDFInfo
- Publication number
- WO2007109554A2 WO2007109554A2 PCT/US2007/064195 US2007064195W WO2007109554A2 WO 2007109554 A2 WO2007109554 A2 WO 2007109554A2 US 2007064195 W US2007064195 W US 2007064195W WO 2007109554 A2 WO2007109554 A2 WO 2007109554A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hood
- tissue
- imaging
- fluid
- deployment catheter
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/04—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00082—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00085—Baskets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00089—Hoods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/005—Flexible endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/012—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
- A61B1/015—Control of fluid supply or evacuation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/012—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
- A61B1/018—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/02007—Evaluating blood vessel condition, e.g. elasticity, compliance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3417—Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
- A61B17/3421—Cannulas
- A61B2017/3445—Cannulas used as instrument channel for multiple instruments
- A61B2017/3447—Linked multiple cannulas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
Definitions
- the present invention relates generally to medical devices used for visualizing and/or manipulating regions of tissue within a body. More particularly, the present invention relates to apparatus and methods for visualizing and/or manipulating tissue regions within a body lumen, e.g., tissue surrounding or adjacent to valves within a heart, which are generally difficult to image because of surrounding opaque bodily fluids such as blood or the tissue of the inter-atrial septum for trans-septal procedures.
- a body lumen e.g., tissue surrounding or adjacent to valves within a heart
- tissue surrounding opaque bodily fluids such as blood or the tissue of the inter-atrial septum for trans-septal procedures.
- the systems described herein may be used in various parts of the anatomy.
- Another conventional device utilizes an inflatable balloon which is typically introduced intravascularly in a deflated state and then inflated against the tissue region to be examined. Imaging is typically accomplished by an optical fiber or other apparatus such as electronic chips for viewing the tissue through the membrane(s) of the inflated balloon. Moreover, the balloon must generally be inflated for imaging.
- Other conventional ball utilize a cavity or depression formed at a distal end of the inflated balloon. This cavity or depression is pressed against the tissue to be examined and is flushed with a clear fluid to provide a clear pathway through the blood. Imaging may also use a fluorescence or gamma adapted visualization elements. Such elements may be able to distinguish between healthy and diseased tissue (e.g., infracted heart tissue).
- such imaging balloons have many inherent disadvantages. For instance, such balloons generally require that the balloon be inflated to a relatively large size which may undesirably displace surrounding tissue and interfere with fine positioning of the imaging system against the tissue. Moreover, the working area created by such inflatable balloons are generally cramped and limited in size. Furthermore, inflated balloons may be susceptible to pressure changes in the surrounding fluid. For example, if the environment surrounding the inflated balloon undergoes pressure changes, e.g., during systolic and diastolic pressure cycles in a beating heart, the constant pressure change may affect the inflated balloon volume and its positioning to produce unsteady or undesirable conditions for optimal tissue imaging.
- CT computed tomography
- MRI magnetic resonance imaging
- Fluoroscopic imaging for instance, is widely used to identify anatomic landmarks within the heart and other regions of the body ⁇ However, fluoroscopy fails to provide an accurate image of the tissue quality or surface and also fails to provide for instrumentation for performing tissue manipulation or other therapeutic procedures upon the visualized tissue regions. In addition, fluoroscopy provides a shadow of the intervening tissue onto a plate or sensor when it may be desirable to view the intraluminal surface c ; to diagnose pathologies or to perform some form of therapy on it.
- a tissue imaging system which is able to provide real-time in vivo images of tissue regions within body lumens such as the heart through opaque media s" blood and which also provide instruments for therapeutic procedures upon the visualized tissue are desirable.
- a tissue imaging and manipulation apparatus that may be utilized for procedures within a body lumen, such as the heart, in which visualization of the surrounding tissue is made difficult, if not impossible, by medium contained within the lumen such as blood, is described below.
- a tissue imaging and manipulation apparatus comprises an optional delivery catheter or sheath through which a deployment catheter and imaging hood may be advanced for placement against or adjacent to the tissue to be imaged.
- the deployment catheter may define a fluid delivery lumen therethrough as well as an imaging lumen within which an optical imaging fiber or assembly may be disposed for imaging tissue.
- the deployment catheter may have additional lumens for various functions.
- the imaging hood may be expanded into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field is defined by the imaging hood.
- the open area is the area within which the tissue region of interest may be imaged.
- the imaging hood may also define an atraumatic contact lip or edge for placement or abutment against the tissue region of interest.
- the distal end of the deployment catheter or separate manipulatable catheters may be articulated through various controlling mechanisms such as push-pull wires manually or via computer control [0012]
- the deployment catheter may also be stabilized relative to the tissue surface through various methods.
- fluid may be pumped at a positive pressure through the fluid delivery lumen until the fluid fills the open area completely and displaces any blood from within the open area.
- the fluid may comprise any biocompatible fluid, e.g., saline, water, plasma, FluorinertTM, etc., which is sufficiently transpare- 1 - + ⁇ -"—v for relatively undistorted visualization through the fluid.
- the fluid may be pump ously or intermittently to allow for image capture by an optional processor which may be in communication with the assembly.
- the imaging hood may be formed into any number of configurations and the imaging assembly may also be utilized with any number of therapeutic tools which may be deployed through the deployment catheter.
- Variations of the inventive assemblies and their features described herein may be used with other devices that provide bounded regions.
- US Patent No. 6,755,811 and US Published Patent Application No. 2005/0059954, both to Constantz describe methods and devices for reducing mineral content of a region of non-intimal vascular tissue. The entirety of each of which is incorporated by reference herein.
- Fig. IA shows a side view of one variation of a tissue imaging apparatus during deployment from a sheath or delivery catheter.
- Fig. IB shows the deployed tissue imaging apparatus of Fig. IA having an optionally expandable hood or sheath attached to an imaging and/or diagnostic catheter.
- Fig. 1C shows an end view of a deployed imaging apparatus.
- Figs. ID to IF show the apparatus of Figs. IA to 1C with an additional lumen, e.g., for passage of a guidewire therethrough.
- Figs. 1 G-IJ illustrate additional variations of the assembly having visualization elements as well as illumination elements.
- FIGs. 2A and 2B show one example of a deployed tissue imager positioned against or adjacent to the tissue to be imaged and a flow of fluid, such as saline, displacing blood from within the expandable hood.
- a flow of fluid such as saline
- Fig. 3 A shows an articulatable imaging assembly which may be manipulated via push-pull wires or by computer control.
- Figs. 3B and 3 C show steerable instruments, respectively, where an articulatable delivery catheter may be steered within the imaging hood or a distal portion of the deployment catheter itself may be steered.
- Figs. 4A to 4C show side and cross-sectional end views, respectively, of another variation having an off-axis imaging capability.
- FIGs. 4D-4G illustrates cross-sectional views of a variation of a tissue imaging and man : — 1 ⁇ ssembly with off-axis visualization capabilities.
- FIG. 5 shows an illustrative view of an example of a tissue imager advanced intravascularly within a heart for imaging tissue regions within an atrial chamber.
- FIGs. 6A to 6C illustrate deployment catheters having one or more optional inflatable balloons or anchors for stabilizing the device during a procedure.
- FIGs. 7A and 7B illustrate a variation of an anchoring mechanism such as a helical tissue piercing device for temporarily stabilizing the imaging hood relative to a tissue surface.
- Fig. 7C shows another variation for anchoring the imaging hood having one or more tubular support members integrated with the imaging hood; each support members may define a lumen therethrough for advancing a helical tissue anchor within.
- Fig. 8 A shows an illustrative example of one variation of how a tissue imager may be utilized with an imaging device.
- FIG. 8B shows a further illustration of a hand-held variation of the fluid delivery and tissue manipulation system.
- Figs. 9A to 9C illustrate an example of capturing several images of the tissue at multiple regions.
- Figs. 1OA and 1OB show charts illustrating how fluid pressure within the imaging hood may be coordinated with the surrounding blood pressure; the fluid pressure in the imaging hood may be coordinated with the blood pressure or it may be regulated based upon pressure feedback from the blood.
- Fig. 1 IA shows a side view of another variation of a tissue imager having an imaging balloon within an expandable hood.
- Fig. 1 IB shows another variation of a tissue imager utilizing a translucent or transparent imaging balloon.
- Fig. 12A shows another variation in which a flexible expandable or distensible membrane may be incorporated within the imaging hood to alter the volume of fluid dispensed.
- Figs. 12B and 12C show another variation in which the imaging hood may be partially or selectively deployed from the catheter to alter the area of the tissue being visualized as well as the volume of the dispensed fluid.
- Figs. 12D-12F show variations of the imaging hood with an inflatable members that displace fluids or other materials from the hood.
- Figs. 13A and 13B show exemplary side and cross-sectional views, respectrv ther variation in which the injected fluid may be drawn back into the device fc ng fluid input into a body being treated.
- Figs. 14A to 14D show various configurations and methods for configu imaging hood into a low-profile for delivery and/or deployment.
- FIGs. 15A and 15B show an imaging hood having an helically expanding frame or support.
- Figs. 16 A and 16B show another imaging hood having one or more hood support members, which are pivotably attached at their proximal ends to deployment catheter, integrated with a hood membrane.
- FIGs. 17A and 17B show yet another variation of the imaging hood having at least two or more longitudinally positioned support members supporting the imaging hood membrane where the support members are movable relative to one another via a torquing or pulling or pushing force.
- Figs. 18 A and 18B show another variation where a distal portion of the deployment catheter may have several pivoting members which form a tubular shape in its low profile configuration.
- Figs. 19A and 19B show another variation where the distal portion of deployment catheter may be fabricated from a flexible metallic or polymeric material to form a radially expanding hood.
- Figs. 2OA and 2OB show another variation where the imaging hood may be formed from a plurality of overlapping hood members which overlie one another in an overlapping pattern.
- Fig. 20C shows a variation of a hood having a conforming section at the distal end.
- Figs. 21 A and 21B show another example of an expandable hood which is highly conformable against tissue anatomy with varying or non-uniform surfaces.
- Fig. 22A shows yet another example of an expandable hood having a number of optional electrodes placed about the contact edge or lip of the hood for sensing tissue contact or detecting arrhythmias.
- Fig. 22B shows another variation for conforming the imaging hood against the underlying tissue where an inflatable contact edge may be disposed around the circumference of the imaging hood.
- Fig. 23 shows a variation of the system which may be instrumented with a transducer for detecting the presence of blood seeping back into the imaging hood.
- . 24A and 24B show variations of the imaging hood instrumented with sensors J g various physical parameters; the sensors may be instrumented around the outer surface of the imaging hood and also within the imaging hood.
- Figs. 25A and 25B show a variation where the imaging hood may have one or more LEDs over the hood itself for providing illumination of the tissue to be visualized.
- Figs. 26A and 26B show another variation in which a separate illumination tool having one or more LEDs mounted thereon may be utilized within the imaging hood.
- Fig. 27 shows one example of how a therapeutic tool may be advanced through the tissue imager for treating a tissue region of interest.
- Fig. 28 shows another example of a helical therapeutic tool for treating the tissue region of interest.
- Fig. 29 shows a variation of how a therapeutic tool may be utilized with an expandable imaging balloon.
- Figs. 3OA and 30B show alternative configurations for therapeutic instruments which may be utilized; one variation is shown having an angled instrument arm and another variation is shown with an off-axis instrument arm.
- Figs. 3 IA to 31 C show side and end views, respectively, of an imaging system which may be utilized with an ablation probe.
- FIGs. 32A and 32B show side and end views, respectively, of another variation of the imaging hood with an ablation probe, where the imaging hood may be enclosed for regulating a temperature of the underlying tissue.
- Figs. 33 A and 33B show an example in which the imaging fluid itself may be altered in temperature to facilitate various procedures upon the underlying tissue.
- Fig. 33C illustrates a variation of a system using ultrasound to treat the tissue under the hood.
- Figs. 34A and 34B show an example of a laser ring generator which may be utilized with the imaging system and an example for applying the laser ring generator within the left atrium of a heart for treating atrial fibrillation.
- Fig. 34C illustrates a variation of the system having a visualization element located at the end of the catheter and/or on the hood.
- Fig. 34D illustrates another variation of a system according to the present invention using an inflatable member for advancing the device to a site.
- Figs. 35A to 35C show an example of an extendible cannula generally comprising an elongate tubular member which may be positioned within the deployment catheter very and then projected distally through the imaging hood and optionally beyond.
- Figs. 36A and 36B show side and end views, respectively, of an imagir having one or more tubular support members integrated with the hood for passing instruments or tools therethrough for treatment upon the underlying tissue.
- FIGs. 37A and 37B illustrate how an imaging device may be guided within a heart chamber to a region of interest utilizing a lighted probe positioned temporarily within, e.g., a lumen of the coronary sinus.
- FIGs. 38A and 38B show an imaging hood having a removable disk-shaped member for implantation upon the tissue surface.
- Figs. 39A to 39C show one method for implanting the removable disk of Figs. 38A and 38B.
- Figs. 4OA and 40B illustrate an imaging hood having a deployable anchor assembly attached to the tissue contact edge and an assembly view of the anchors and the suture or wire connected to the anchors, respectively
- Figs. 41 A to 41D show one method for deploying the anchor assembly of Figs. 4OA and 4OB for closing an opening or wound.
- Figs. 41E-41F illustrates tissue imaging and manipulation assemblies configured to deliver implants.
- Fig. 42 shows another variation in which the imaging system may be fluidly coupled to a dialysis unit for filtering a patient's blood.
- Figs. 43 A and 43B show a variation of the deployment catheter having a first deployable hood and a second deployable hood positioned distal to the first hood; the deployment catheter may also have a side-viewing imaging element positioned between the first and second hoods for imaging tissue between the expanded hoods.
- Fig. 43 C illustrates another variation of a deployment catheter 480 having a series of deployable hoods arranged to produce a clear visual field.
- Figs. 44A and 44B show side and end views, respectively, of a deployment catheter having a side-imaging balloon in an un-inflated low-profile configuration.
- Figs. 45A to 45C show side, top, and end views, respectively, of the inflated halloon of Figs. 44A and 44B defining a visualization field in the inflated balloon.
- Figs. 46A and 46B show side and cross-sectional end views, respectively, for one method of use in visualizing a lesion upon a vessel wall within the visualization field of the inflated balloon from Figs. 45A to 45C.
- i. 47A-47B illustrate a variation of a device according to the present inventio mponents of the system allow for blunt dissection of tissue.
- Fig. 48 A show a variation of a tissue imaging and manipulation assemb including an elongate bypass portion.
- Figs. 48B-48C show the variation of Fig. 48A with a tissue support flap.
- Fig. 48D illustrates an off-center hood located about a catheter.
- Fig. 48E shows a variation of a tissue imaging and manipulation assembly including an elongate portion that supplies fluid to an area of tissue.
- Fig. 48F shows a tissue imaging and manipulation assembly including an occlusion member or balloon.
- Fig. 49 A-49E illustrate the use of an elongate member having a plurality of openings to produce flow patterns within the hood.
- Figs. 50A-50C illustrate variations of a tissue imaging and manipulation assembly designed to translate or "walk” across tissue surfaces when inserted within the body.
- a tissue-imaging and manipulation apparatus described below is able to provide real-time images in vivo of tissue regions within a body lumen such as a heart, which is filled with blood flowing dynamically therethrough and is also able to provide intravascular tools and instruments for performing various procedures upon the imaged tissue regions.
- Such an apparatus may be utilized for many procedures, e.g., facilitating trans-septal access to the left atrium, cannulating the coronary sinus, diagnosis of valve regurgitation/stenosis, valvuloplasty, atrial appendage closure, arrhythmogenic focus ablation, among other procedures.
- One variation of a tissue access and imaging apparatus is shown in the detail perspective views of Figs. IA to 1C. As shown in Fig.
- tissue imaging and manipulation assembly 10 may be delivered intravascularly through the patient's body in a low-profile configuration via a delivery catheter or sheath 14.
- tissue such as the mitral valve located at the outflow tract of the left atrium of the heart
- one conventional approach involves puncturing the intra-atrial septum from the right atrial chamber to the left atrial chamber in a procedure commonly called a trans-sep + " 1 ⁇ n " ⁇ A VIQ or septostomy.
- percutaneous valve repair and replacen septal access to the left atrial chamber of the heart may allow for larger devices to be introduced into the venous system than can generally be introduced percutaneously into the arterial system.
- imaging hood 12 When the imaging and manipulation assembly 10 is ready to be utilized for imaging tissue, imaging hood 12 may be advanced relative to catheter 14 and deployed from a distal opening of catheter 14, as shown by the arrow. Upon deployment, imaging hood 12 may be unconstrained to expand or open into a deployed imaging configuration, as shown in Fig. IB. Imaging hood 12 may be fabricated from a variety of pliable or conformable biocompatible material including but not limited to, e.g., polymeric, plastic, or woven materials. One example of a woven material is Kevlar® (E. I.
- imaging hood 12 may be fabricated from a translucent or opaque material and in a variety of different colors to optimize or attenuate any reflected lighting from surrounding fluids or structures, i.e., anatomical or mechanical structures or instruments. In either case, imaging hood 12 may be fabricated into a uniform structure or a scaffold- supported structure, in which case a scaffold made of a shape memory alloy, such as Nitinol, or a spring steel, or plastic, etc., may be fabricated and covered with the polymeric, plastic, or woven material.
- a shape memory alloy such as Nitinol, or a spring steel, or plastic, etc.
- Imaging hood 12 may be attached at interface 24 to a deployment catheter 16 which may be translated independently of deployment catheter or sheath 14. Attachment of interface 24 may be accomplished through any number of conventional methods.
- Deployment catheter 16 may define a fluid delivery lumen 18 as well as an imaging lumen 20 within which an optical imaging fiber or assembly may be disposed for imaging tissue.
- imaging hood 12 When deployed, imaging hood 12 may expand into any number of shapes, e.g., cylindrical, conical as shown, semi-spherical, etc., provided that an open area or field 26 is defined by imaging hood 12. The open area 26 is the area within which the tissue region of interest may be imaged.
- Imaging hood 12 may also define an atraumatic contact lip or edge 22 for placement or abutment against the tissue region of interest.
- the diameter of imaging hood 12 at its maximum fully deployed diameter is typically greater relative to a diameter of the deployment catheter 16 (although a diameter of contact lip or edge 22 may be made to have a smaller or equal diameter of deployment catheter 16).
- the contact edge diameter may range anywhere from 1 to 5 times (or eve as practicable) a diameter of deployment catheter 16.
- Fig. 1C shows an end view o ng hood 12 in its deployed configuration. Also shown are the contact lip or edge 22 and fluid delivery lumen 18 and imaging lumen 20.
- the imaging and manipulation assembly 10 may additionally define a guidewire lumen therethrough, e.g., a concentric or eccentric lumen, as shown in the side and end views, respectively, of Figs. ID to IF.
- the deployment catheter 16 may define guidewire lumen 19 for facilitating the passage of the system over or along a guidewire 17, which may be advanced intravascularly within a body lumen. The deployment catheter 16 may then be advanced over the guidewire 17, as generally known in the art.
- the displacing fluid may be pumped at positive pressure through fluid delivery lumen 18 until the fluid fills open area 26 completely and displaces any fluid 28 from within open area 26.
- the displacing fluid flow may be laminarized to improve its clearing effect and to help prevent blood from re-entering the imaging hood 12. Alternatively, fluid flow may be started before the deployment takes place.
- the displacing fluid also described herein as imaging fluid, may comprise any biocompatible fluid, e.g., saline, water, plasma, etc., which is sufficiently transparent to allow for relatively undistorted visualization through the fluid.
- Fig. 1 G illustrates another variation of a tissue imaging and manipulation assembly 10.
- the assembly 10 comprises one or more visualization element 52 located in an "off-axis" position within the hood 12.
- the benefits of the "off-axis" configuration are discussed below.
- the assemblies of the present invention may comprise anywhere from a single visualization element 52 to several elements 52.
- some variations of the assembly 10 may include at least two visualization elements 52 to enable 3 -dimensional imaging of the open area within the hood 12.
- the elements 52 may be sufficiently spaced around the perimeter of the hood 12 to allow generation of a 3 -dimensional image. It is contemplated that optical fibers may be used in place of or in addition to the visualization elements shown in Fig. IG. Additional means of obtaining a 3D image includes separating a single imaging element into two or more segments that can look at a target zone from two different angles.
- such a stereoscopic visualization element may include a lenticular lens layer and light sensor array, the len ; layer includes a plurality of lenticular elements, the sight sensor array includi ty of light sensors, where selected light sensors detect light at a predetermined range of wavelengths and where other light sensors detect light at anotl predetermined range of wavelengths, and where each of the lenticular elements is located in front of a selected group of the light sensors, to direct light from different directions to different light sensors within the selected group of the light sensors.
- the views are processed producing a 3D image. Examples of such 3D imaging equipment is found in U.S. Patent Nos. 6,396,873 and 6,704,043 both to Goldstein et al.
- Fig. IH illustrates a cross-sectional view taken along the line IH- IH of Fig.
- a variation of the catheter 16 may include co-extruded channels 32 to carry wires or optical fibers running along the length or a portion of a length of the catheter 16.
- the channels 32 may permit connection of a visualization element to imaging equipment without taking up space from the remaining lumens 32.
- These channels can also contain electrical wires that carry the signal from an imaging detector to a sensor/processor outside the patient.
- the channels 32 may provide a light source or supply.
- Fig. II illustrates anther variation of a distal end of a catheter according to the present invention.
- the catheter will include a variety of lumens 32.
- the lumens 32 may be used for visualization, working channels, aspiration, delivery of tools, etc.
- the variation of Fig. II also illustrates the catheter 16 as having a number of illumination sources 36.
- the illumination sources may small illumination optical fibers or any other illumination source as commonly used.
- the lumens 38 may provide irrigation or other fluids.
- Fig. 1 J illustrates another variation of a tissue imaging and manipulation assembly 10.
- the hood 12 includes both a visualization component 52 and an illumination source 36 positioned on the interior surface of the hood 12.
- the hood 12 includes both a visualization component 52 and an illumination source 36 positioned on the interior surface of the hood 12.
- a single visualization element 52 and a single illumination source 36 such as a fiber, a LED, other light emitting source
- deployment catheter 16 may be manipul ition deployed imaging hood 12 against or near the underlying tissue region o ) be imaged, in this example a portion of annulus A of mitral valve MV within the left atrial chamber.
- the underlying annulus A is obstructed by the opaque blood 30 and is difficult to view through the imaging lumen 20.
- the translucent fluid 28, such as saline may then be pumped through fluid delivery lumen 18, intermittently or continuously, until the blood 30 is at least partially, and preferably completely, displaced from within open area 26 by fluid 28, as shown in Fig. 2B.
- contact edge 22 need not directly contact the underlying tissue, it is at least preferably brought into close proximity to the tissue such that the flow of clear fluid 28 from open area 26 may be maintained to inhibit significant backflow of blood 30 back into open area 26.
- Contact edge 22 may also be made of a soft elastomeric material such as certain soft grades of silicone or polyurethane, as typically known, to help contact edge 22 conform to an uneven or rough underlying anatomical tissue surface.
- a soft elastomeric material such as certain soft grades of silicone or polyurethane, as typically known, to help contact edge 22 conform to an uneven or rough underlying anatomical tissue surface.
- a number of articulation and manipulation controls may be utilized.
- one or more push-pull wires 42 may be routed through deployment catheter 16 for steering the distal end portion of the device in various directions 46 to desirably position the imaging hood 12 adjacent to a region of tissue to be visualized.
- deployment catheter 16 and imaging hood 12 may be articulated into any number of configurations 44.
- the push-pull wire or wires 42 may be articulated via their proximal ends from outside the patient body manually utilizing one or more controls.
- deployment catheter 16 may be articulated by computer control, as further described below.
- an articulatable delivery catheter 48 which may be articulated via one or more push-pull wires and having an imaging lumen and one or more workir may be delivered through the deployment catheter 16 and into imaging hood
- the clear displacing fluid may be pumped through delivery catheter 48 or deployment c ⁇ 16 to clear the field within imaging hood 12.
- the articulatable delivery catheter 48 may be articulated within the imaging hood to obtain a better image of tissue adjacent to the imaging hood 12.
- articulatable delivery catheter 48 maybe articulated to direct an instrument or tool passed through the catheter 48, as described in detail below, to specific areas of tissue imaged through imaging hood 12 without having to reposition deployment catheter 16 and re-clear the imaging field within hood 12.
- a distal portion of the deployment catheter 16 itself may comprise a distal end 49 which is articulatable within imaging hood 12, as shown in Fig. 3 C.
- Directed imaging, instrument delivery, etc. may be accomplished directly through one or more lumens within deployment catheter 16 to specific regions of the underlying tissue imaged within imaging hood 12.
- Visualization within the imaging hood 12 may be accomplished through an imaging lumen 20 defined through deployment catheter 16, as described above. In such a configuration, visualization is available in a straight-line manner, i.e., images are generated from the field distally along a longitudinal axis defined by the deployment catheter 16.
- an articulatable imaging assembly having a pivotable support member 50 may be connected to, mounted to, or otherwise passed through deployment catheter 16 to provide for visualization off-axis relative to the longitudinal axis defined by deployment catheter 16, as shown in Fig. 4A.
- Support member 50 may have an imaging element 52, e.g., a CCD or CMOS imager or optical fiber, attached at its distal end with its proximal end connected to deployment catheter 16 via a pivoting connection 54.
- an imaging element 52 e.g., a CCD or CMOS imager or optical fiber
- the optical fibers 58 may be passed through deployment catheter 16, as shown in the cross-section of Fig. 4B, and routed through the support member 50.
- the use of optical fibers 58 may provide for increased diameter sizes of the one or several lumens 56 through deployment catheter 16 for the passage of diagnostic and/or therapeutic tools therethrough.
- CMOS imager may be utilized in place of the optical fibers 58, in which case the electronic imager maybe positioned in the distal portion of the deployment catheter 16 with electric wires being routed proximally through the deployment catheter 16.
- the electronic image wirelessly coupled to a receiver for the wireless transmission of images.
- Addit ⁇ fibers or light emitting diodes can be used to provide lighting for the image or operative theater, as described below in further detail.
- Support membei y be pivoted via connection 54 such that the member 50 can be positioned in a low-profile configuration within channel or groove 60 defined in a distal portion of catheter 16, as shown in the cross-section of Fig. 4C.
- imaging hood 12 During intravascular delivery of deployment catheter 16 through the patient body, support member 50 can be positioned within channel or groove 60 with imaging hood 12 also in its low-profile configuration.
- imaging hood 12 may be expanded into its deployed configuration and support member 50 may be deployed into its off-axis configuration for imaging the tissue adjacent to hood 12, as in Fig. 4A.
- Other configurations for support member 50 for off-axis visualization may be utilized, as desired.
- FIG. 4D illustrates another variation of a tissue imaging and manipulation assembly 10 with off-axis visualization capabilities.
- the visualization element 52 is adapted such that it may align with an axis of the assembly 10 especially during placement of the assembly 10 at a desired site.
- Fig. 4E illustrates the assembly 10 of Fig. 4D when the device reaches the target site.
- the hood 12 expands to define the open area.
- the visualization element 52 may articulate out of alignment with the catheter 16. This configuration permits the device to have a low profile delivery state during delivery and subsequently expand to define the open area.
- the ability of the visualization element 52 to reposition "off-axis" allows the assembly 10 to accommodate large working instruments through the catheter 16 and substantially reduce the space requirements to accommodate the visualization element.
- the invention also contemplates placing optical fibers in a similar manner so that the fibers may reposition "off-axis" in a similar manner to the visualization element 52 as depicted.
- the off-axis visualization allows a more natural operating view akin to how a primate's eyes and hands are positioned relative to one another.
- FIG. 4F and Fig. 4G illustrates the assembly 10 where the visualization element 52 is slidable in and out of the hood 12.
- the visualization element 52 is located along the interior of the hood 12.
- the visualization element 52 extends out of the hood 12. This variation is useful to allow the hood 12 to compress or collapse to a smaller size withou f i ""' « " ⁇ « accommodate the visualization element 52.
- the visualization element 52 maj r hen navigating the device 10 to a desired site.
- j. 5 shows an illustrative cross-sectional view of a heart H having tissue regions of interest being viewed via an imaging assembly 10.
- delivi catheter assembly 70 may be introduced percutaneously into the patient's vasculature and advanced through the superior vena cava SVC and into the right atrium RA.
- the delivery catheter or sheath 72 may be articulated through the atrial septum AS and into the left atrium LA for viewing or treating the tissue, e.g., the annulus A, surrounding the mitral valve MV.
- deployment catheter 16 and imaging hood 12 maybe advanced out of delivery catheter 72 and brought into contact or in proximity to the tissue region of interest.
- delivery catheter assembly 70 may be advanced through the inferior vena cava IVC, if SO desired.
- other regions of the heart H e.g., the right ventricle RV or left ventricle LV, may also be accessed and imaged or treated by imaging assembly 10.
- the delivery catheter or sheath 14 may comprise a conventional intra-vascular catheter or an endoluminal delivery device.
- robotically-controlled delivery catheters may also be optionally utilized with the imaging assembly described herein, in which case a computer- controller 74 may be used to control the articulation and positioning of the delivery catheter 14.
- An example of a robotically-controlled delivery catheter which may be utilized is described in further detail in US Pat. Pub. 2002/0087169 Al to Brock et al. entitled "Flexible Instrument", which is incorporated herein by reference in its entirety.
- Other robotically- controlled delivery catheters manufactured by Hansen Medical, Inc. may also be utilized with the delivery catheter 14.
- one or more inflatable balloons or anchors 76 may be positioned along the length of catheter 16, as shown in Fig. 6A.
- the inflatable balloons 76 may be inflated from a low- profile into their expanded configuration to temporarily anchor or stabilize the catheter 16 position relative to the heart H.
- Fig. 6B shows a first balloon 78 inflated while Fig. 6C also shows a second balloon 80 inflated proximal to the first balloon 78.
- the septal wall AS may be wedged or sandwiched between the balloons 78, 80 to temporarily stabilize the catheter 16 and imaging hood 12.
- a single balloon 78 or both balloons 78, 80 may be used. Other alternatives may utilize expandable mesh members, malecots, or any other temporary expandable structure.
- the balloon assembly 76 may be deflated or re-configured into a low-profile for removal of the deplo) ;ter 16.
- various anchoring mechanisms may be optionally employed fo temporarily holding the imaging hood 12 against the tissue.
- Such anchoring mechanisms may be particularly useful for imaging tissue which is subject to movement, e.g., when imaging tissue within the chambers of a beating heart.
- a tool delivery catheter 82 having at least one instrument lumen and an optional visualization lumen may be delivered through deployment catheter 16 and into an expanded imaging hood 12.
- an anchoring mechanisms such as a helical tissue piercing device 84 may be passed through the tool delivery catheter 82, as shown in Fig. 7A, and into imaging hood 12.
- the helical tissue engaging device 84 may be torqued from its proximal end outside the patient body to temporarily anchor itself into the underlying tissue surface T. Once embedded within the tissue T, the helical tissue engaging device 84 maybe pulled proximally relative to deployment catheter 16 while the deployment catheter 16 and imaging hood 12 are pushed distally, as indicated by the arrows in Fig. 7B, to gently force the contact edge or lip 22 of imaging hood against the tissue T. The positioning of the tissue engaging device 84 maybe locked temporarily relative to the deployment catheter 16 to ensure secure positioning of the imaging hood 12 during a diagnostic or therapeutic procedure within the imaging hood 12.
- tissue engaging device 84 may be disengaged from the tissue by torquing its proximal end in the opposite direction to remove the anchor form the tissue T and the deployment catheter 16 may be repositioned to another region of tissue where the anchoring process may be repeated or removed from the patient body.
- the tissue engaging device 84 may also be constructed from other known tissue engaging devices such as vacuum-assisted engagement or grasper-assisted engagement tools, among others.
- a helical anchor 84 is shown, this is intended to be illustrative and other types of temporary anchors may be utilized, e.g., hooked or barbed anchors, graspers, etc.
- the tool delivery catheter 82 may be omitted entirely and the anchoring device may be delivered directly through a lumen defined through the deployment catheter 16.
- FIG. 7C shows an imaging hood 12 having one or more tubular support members 86, e.g., four support members 86 as shown, integrated with the imaging hood 12.
- the tubular support members 86 may define lumens therethrough each hi al tissue engaging devices 88 positioned within.
- the helical tissue engaging devices 88 may be urged distally to extend from imaging hood 12 and each may be t from its proximal end to engage the underlying tissue T.
- Each of the helical tissue engaging devices 88 may be advanced through the length of deployment catheter 16 or they may be positioned within tubular support members 86 during the delivery and deployment of imaging hood 12. Once the procedure within imaging hood 12 is finished, each of the tissue engaging devices 88 may be disengaged from the tissue and the imaging hood 12 may be repositioned to another region of tissue or removed from the patient body.
- FIG. 8A An illustrative example is shown in Fig. 8A of a tissue imaging assembly connected to a fluid delivery system 90 and to an optional processor 98 and image recorder and/or viewer 100.
- the fluid delivery system 90 may generally comprise a pump 92 and an optional valve 94 for controlling the flow rate of the fluid into the system.
- a fluid reservoir 96 fluidly connected to pump 92, may hold the fluid to be pumped through imaging hood 12.
- An optional central processing unit or processor 98 may be in electrical communication with fluid delivery system 90 for controlling flow parameters such as the flow rate and/or velocity of the pumped fluid.
- the processor 98 may also be in electrical communication with an image recorder and/or viewer 100 for directly viewing the images of tissue received from within imaging hood 12.
- Imager recorder and/or viewer 100 may also be used not only to record the image but also the location of the viewed tissue region, if so desired.
- processor 98 may also be utilized to coordinate the fluid flow and the image capture.
- processor 98 may be programmed to provide for fluid flow from reservoir 96 until the tissue area has been displaced of blood to obtain a clear image. Once the image has been determined to be sufficiently clear, either visually by a practitioner or by computer, an image of the tissue may be captured automatically by recorder 100 and pump 92 may be automatically stopped or slowed by processor 98 to cease the fluid flow into the patient.
- Other variations for fluid delivery and image capture are, of course, possible and the aforementioned configuration is intended only to be illustrative and not limiting.
- Fig. 8B shows a further illustration of a hand-held variation of the fluid delivery and tissue manipulation system 110.
- system 110 may have a housing or handle assembly 112 which can be held or manipulated by the physician from outside the patient body.
- the fluid reservoir 114 shown in this variation as a syringe, can be fluidly coupled to the handle assembly 112 and actuated via a pumping mechanism 116, e.g., lead screw.
- Fluid reservoir 114 may be a simple reservoir separated from the handle assen ⁇ i fluidly coupled to handle assembly 112 via one or more tubes.
- the fluid flow n er mechanisms may be metered by the electronic controller 118.
- Deployment of imaging hood 12 may be actuated by a hood deployme switch 120 located on the handle assembly 112 while dispensation of the fluid from reservoir 114 may be actuated by a fluid deployment switch 122, which can be electrically coupled to the controller 118.
- Controller 118 may also be electrically coupled to a wired or wireless antenna 124 optionally integrated with the handle assembly 112, as shown in the figure.
- the wireless antenna 124 can be used to wirelessly transmit images captured from the imaging hood 12 to a receiver, e.g., via Bluetooth® wireless technology (Bluetooth SIG, Inc., Bellevue, WA), RF, etc., for viewing on a monitor 128 or for recording for later viewing.
- Articulation control of the deployment catheter 16, or a delivery catheter or sheath 14 through which the deployment catheter 16 may be delivered may be accomplished by computer control, as described above, in which case an additional controller may be utilized with handle assembly 112.
- handle assembly 112 may incorporate one or more articulation controls 126 for manual manipulation of the position of deployment catheter 16.
- Handle assembly 112 may also define one or more instrument ports 130 through which a number of intravascular tools may be passed for tissue manipulation and treatment within imaging hood 12, as described further below.
- fluid or debris may be sucked into imaging hood 12 for evacuation from the patient body by optionally fluidly coupling a suction pump 132 to handle assembly 112 or directly to deployment catheter 16.
- fluid may be pumped continuously into imaging hood 12 to provide for clear viewing of the underlying tissue.
- fluid may be pumped temporarily or sporadically only until a clear view of the tissue is available to be imaged and recorded, at which point the fluid flow may cease and the blood may be allowed to seep or flow back into imaging hood 12.
- Figs. 9 A to 9C illustrate an example of capturing several images of the tissue at multiple regions.
- Deployment catheter 16 may be desirably positioned and imaging hood 12 deployed and brought into position against a region of tissue to be imaged, in this example the tissue surrounding a mitral valve MV within the left atrium of a patient's heart.
- the imaging hood 12 may be optionally anchored to the tissue, as described above, and then cleared by pumping the imaging fluid into the hood 12. Once sufficiently clear, the tissue may be visualized and the image captured by control electronics 118.
- the first captured image 140 may be stored and/or transmitted wirelessly 124 to a monitor 128 for viewing h ⁇ ' ⁇ * " ⁇ ysician, as shown in Fig. 9A.
- e deployment catheter 16 may be then repositioned to an adjacent portion of mitral ⁇ as shown in Fig. 9B, where the process may be repeated to capture a second image 142 for viewing and/or recording.
- the deployment catheter 16 may again be repositioned to another region of tissue, as shown in Fig. 9C, where a third image 144 may be captured for viewing and/or recording. This procedure may be repeated as many times as necessary for capturing a comprehensive image of the tissue surrounding mitral valve MV, or any other tissue region.
- the pump may be stopped during positioning and blood or surrounding fluid may be allowed to enter within imaging hood 12 until the tissue is to be imaged, where the imaging hood 12 may be cleared, as above.
- the imaging hood 12 is cleared by pumping the imaging fluid within for clearing the blood or other bodily fluid, the fluid may be pumped continuously to maintain the imaging fluid within the hood 12 at a positive pressure or it may be pumped under computer control for slowing or stopping the fluid flow into the hood 12 upon detection of various parameters or until a clear image of the underlying tissue is obtained.
- the control electronics 118 may also be programmed to coordinate the fluid flow into the imaging hood 12 with various physical parameters to maintain a clear image within imaging hood 12.
- FIG. 1OA shows a chart 150 illustrating how fluid pressure within the imaging hood 12 may be coordinated with the surrounding blood pressure.
- Chart 150 shows the cyclical blood pressure 156 alternating between diastolic pressure 152 and systolic pressure 154 over time T due to the beating motion of the patient heart.
- the fluid pressure of the imaging fluid, indicated by plot 160, within imaging hood 12 may be automatically timed to correspond to the blood pressure changes 160 such that an increased pressure is maintained within imaging hood 12 which is consistently above the blood pressure 156 by a slight increase ⁇ P, as illustrated by the pressure difference at the peak systolic pressure 158.
- Fig. 1OB shows a chart 162 illustrating another variation for maintaining a clear view of the underlying tissue where one or more sensors within the imaging hood 12, as described in further detail below, maybe configured to sense pressure changes within the imaging Ld to correspondingly increase the imaging fluid pressure within imaging hood 12.
- ⁇ T time delay
- Predictive software algorithms can also be used to substantially eliminate this time delay by predicting when the next pressure wave peak will arrive and by increasing the pressure ahead of the pressure wave's arrival by an amount of time substantially equal to the aforementioned time delay to essentially cancel the time delay out.
- imaging hood 12 The variations in fluid pressure within imaging hood 12 may be accomplished in part due to the nature of imaging hood 12.
- An inflatable balloon which is conventionally utilized for imaging tissue, may be affected by the surrounding blood pressure changes.
- an imaging hood 12 retains a constant volume therewithin and is structurally unaffected by the surrounding blood pressure changes, thus allowing for pressure increases therewithin.
- the material that hood 12 is made from may also contribute to the manner in which the pressure is modulated within this hood 12.
- a stiffer hood material such as high durometer polyurethane or Nylon, may facilitate the maintaining of an open hood when deployed.
- a relatively lower durometer or softer material such as a low durometer PVC or polyurethane, may collapse from the surrounding fluid pressure and may not adequately maintain a deployed or expanded hood.
- FIG. 1 IA shows another variation comprising an additional imaging balloon 172 within an imaging hood 174.
- an expandable balloon 172 having a translucent skin may be positioned within imaging hood 174.
- Balloon 172 may be made from any distensible biocompatible material having sufficient translucent properties which allow for visualization therethrough.
- balloon 172 may be filled with a fluid, such as saline, or less preferably a gas, until balloon 172 has been expanded until the blood has been sufficiently displaced. The balloon 172 may thus be expanded proximal to or into contact against the tissue region to be viewed.
- the balloon 172 can also be filled with contrast media to allow it to be viewed on fluoroscopy to aid in its positioning.
- the imager e.g., fiber optic, positioned within deployment catheter 170 may then be utilized to view the tissue region through the balloon 172 and any additional fluid which may be pumped into imaging hood 174 via one or more optional fluid ports 176, which may be positioned proximally of balloon 172 along a portion of deployment catheter 170.
- Alternati on 172 may define one or more holes over its surface which allow for seepage i of the fluid contained therein to escape and displace the blood from within imaging hood 174.
- Fig. 1 IB shows another alternative in which balloon 180 may be utilized alone.
- Balloon 180, attached to deployment catheter 178, may be filled with fluid, such as saline or contrast media, and is preferably allowed to come into direct contact with the tissue region to be imaged.
- FIG. 12A shows another alternative in which deployment catheter 16 incorporates imaging hood 12, as above, and includes an additional flexible membrane 182 within imaging hood 12.
- Flexible membrane 182 may be attached at a distal end of catheter 16 and optionally at contact edge 22.
- Imaging hood 12 may be utilized, as above, and membrane 182 may be deployed from catheter 16 in vivo or prior to placing catheter 16 within a patient to reduce the volume within imaging hood 12. The volume may be reduced or minimized to reduce the amount of fluid dispensed for visualization or may be reduced depending upon the area of tissue to be visualized.
- FIGs. 12B and 12C show yet another alternative in which imaging hood 186 may be withdrawn proximally within deployment catheter 184 or deployed distally from catheter 186, as shown, to vary the volume of imaging hood 186 and thus the volume of dispensed fluid.
- Imaging hood 186 maybe seen in Fig. 12B as being partially deployed from, e.g., a circumferentially defined lumen within catheter 184, such as annular lumen 188. The underlying tissue may be visualized with imaging hood 186 only partially deployed. Alternatively, imaging hood 186' may be fully deployed, as shown in Fig. 12C, by urging hood 186' distally out from annular lumen 188.
- Fig 12D illustrates another variation of a tissue imaging and manipulation assembly 10.
- the hood 12 includes an inflatable member 520 (e.g., a balloon, bladder, or fillable membrane) that is coupled to a fluid source 522.
- the inflatable member 520 maybe constructed from a clear material.
- the inflatable member 520 fills with a clear fluid as shown in Fig. 12E. As the inflatable member 520 expands, it displaces fluids and other substances from within the hood 12 (as shown by the arrows).
- Fig. 12E illustrates yet another principle of an assembly 10 as described herein.
- the hood 12 includes two or more inflatable members 520, 524.
- the inflatable members 520, 524 function to displace fluids fr ⁇ d 12 while permitting visualization.
- use of two or more inflatabl 520, 524 permits advancement of a tool or device 526 between the inflatable members.
- the inflatable member(s) is constructed from material having an index of refraction close to or matching that of the displacement liquid. This selection of the index of essentially allows the membrane to 'disappear" and not interfere with visualization. [0131] Figs.
- FIGS. 13A and 13B show perspective and cross-sectional side views, respectively, of yet another variation of imaging assembly which may utilize a fluid suction system for minimizing the amount of fluid injected into the patient's heart or other body lumen during tissue visualization.
- Deployment catheter 190 in this variation may define an inner tubular member 196 which may be integrated with deployment catheter 190 or independently translatable. Fluid delivery lumen 198 defined through member 196 may be fluidly connected to imaging hood 192, which may also define one or more open channels 194 over its contact lip region. Fluid pumped through fluid delivery lumen 198 may thus fill open area 202 to displace any blood or other fluids or objects therewithin. As the clear fluid is forced out of open area 202, it may be sucked or drawn immediately through one or more channels 194 and back into deployment catheter 190.
- Tubular member 196 may also define one or more additional working channels 200 for the passage of any tools or visualization devices.
- the imaging hood may take on any number of configurations when positioned or configured for a low- profile delivery within the delivery catheter, as shown in the examples of Figs. 14A to 14D. These examples are intended to be illustrative and are not intended to be limiting in scope.
- Fig. 14A shows one example in which imaging hood 212 may be compressed within catheter 210 by folding hood 212 along a plurality of pleats.
- Hood 212 may also comprise scaffolding or frame 214 made of a super-elastic or shape memory material or alloy, e.g., Nitinol, Elgiloy, shape memory polymers, electroactive polymers, or a spring stainless steel.
- the shape memory material may act to expand or deploy imaging hood 212 into its expanded configuration when urged in the direction of the arrow from the constraints of catheter 210.
- Fig. 14B shows another example in which imaging hood 216 may be expanded or deployed from catheter 210 from a folded and overlapping configuration. Frame or scaffolding 214 may also be utilized in this example.
- Fig. 14C shows yet another example in which imaging hood 218 may be rolled, inverted, or everted upon itself for deployment.
- Fig. 14D shows a configuration in which imaging hood 220 may be fabricate extremely compliant material which allows for hood 220 to be simply compres: ow-profile shape.
- hood 220 may allow for it to expand into its deployed configuration, especi i scaffold or frame of a shape memory or superelastic material, e.g., Nitinol, is utilized in its construction.
- a shape memory or superelastic material e.g., Nitinol
- FIGs. 15 A and 15B illustrates a helically expanding frame or support 230.
- helical frame 230 may be integrated with the imaging hood 12 membrane.
- helical frame 230 may expand into a conical or tapered shape.
- Helical frame 230 may alternatively be made out of heat-activated Nitinol to allow it to expand upon application of a current.
- Figs. 16 A and 16B show yet another variation in which imaging hood 12 may comprise one or more hood support members 232 integrated with the hood membrane.
- These longitudinally attached support members 232 may be pivotably attached at their proximal ends to deployment catheter 16.
- One or more pullwires 234 may be routed through the length of deployment catheter 16 and extend through one or more openings 238 defined in deployment catheter 16 proximally to imaging hood 12 into attachment with a corresponding support member 232 at a pullwire attachment point 236.
- the support members 232 may be fabricated from a plastic or metal, such as stainless steel.
- the support members 232 may be made from a superelastic or shape memory alloy, such as Nitinol, which may self-expand into its deployed configuration without the use or need of pullwires.
- a heat- activated Nitinol may also be used which expands upon the application of thermal energy or electrical energy.
- support members 232 may also be constructed as inflatable lumens utilizing, e.g., PET balloons.
- the one or more pullwires 234 may be tensioned from their proximal ends outside the patient body to pull a corresponding support member 232 into a deployed configuration, as shown in Fig. 16B, to expand imaging hood 12.
- deployment catheter 16 maybe pulled proximally into a constraining catheter or the pullwires 234 may be simply pushed distally to collapse imaging hood 12.
- FIGs. 17A and 17B show yet another variation of imaging hood 240 having at least two or more longitudinally positioned support members 242 supporting the imaging hood membrane.
- the support members 242 each have cross-support members 244 which extend diagonally between and are pivotably attached to the support members 242.
- Each of the cro members 244 may be pivotably attached to one another where they intersect betwee Drt members 242.
- a jack or screw member 246 may be coupled to each cross-support member 244 at this intersection point and a torquing member, such as a torqueable wire 248, may be coupled to each jack or screw member 246 and extend proximally through deployment catheter 16 to outside the patient body.
- the torqueable wires 248 may be torqued to turn the jack or screw member 246 which in turn urges the cross-support members 244 to angle relative to one another and thereby urge the support members 242 away from one another.
- the imaging hood 240 maybe transitioned from its low-profile, shown in Fig. 17A, to its expanded profile, shown in Fig. 17B, and back into its low-profile by torquing wires 248.
- Figs. 18 A and 18B show yet another variation on the imaging hood and its deployment.
- a distal portion of deployment catheter 16 may have several pivoting members 250, e.g., two to four sections, which form a tubular shape in its low profile configuration, as shown in Fig. 18A.
- pivoting members 250 When pivoted radially about deployment catheter 16, pivoting members 250 may open into a deployed configuration having distensible or expanding membranes 252 extending over the gaps in-between the pivoting members 250, as shown in Fig. 18B.
- the distensible membrane 252 may be attached to the pivoting members 250 through various methods, e.g., adhesives, such that when the pivoting members 250 are fully extended into a conical shape, the pivoting members 250 and membrane 252 form a conical shape for use as an imaging hood.
- the distensible membrane 252 may be made out of a porous material such as a mesh or PTFE or out of a translucent or transparent polymer such as polyurethane, PVC, Nylon, etc.
- Figs. 19A and 19B show yet another variation where the distal portion of deployment catheter 16 may be fabricated from a flexible metallic or polymeric material to form a radially expanding hood 254.
- a plurality of slots 256 may be formed in a uniform pattern over the distal portion of deployment catheter 16, as shown in Fig. 19 A.
- the slots 256 may be formed in a pattern such that when the distal portion is urged radially open, utilizing any of the methods described above, a radially expanded and conically-shaped hood 254 may be formed by each of the slots 256 expanding into an opening, as shown in Fig. 19B.
- a distensible membrane 258 may overlie the exterior surface or the interior surface of the hood 254 to form a fluid-impermeable hood 254 such that the hood 254 may be utilized as an imaging hood.
- the distensible membrane 258 may alternatively be formed in each opening 258 to form the fluid-impermeable hood 254.
- 2OB whe jing hood may be formed from a plurality of overlapping hood members 260 which overlie one another in an overlapping pattern. When expanded, each of the members 260 may extend radially outward relative to deployment catheter 16 to form a conically-shaped imaging hood, as shown in Fig. 2OB. Adjacent hood members 260 may overlap one another along an overlapping interface 262 to form a fluid-retaining surface within the imaging hood. Moreover, the hood members 260 may be made from any number of biocompatible materials, e.g., Nitinol, stainless steel, polymers, etc., which are sufficiently strong to optionally retract surrounding tissue from the tissue region of interest. [0140] Fig. 20C illustrates another variation of a hood 12 under the present invention.
- the hood 12 includes a plurality of sections 264 that overlap on at least one side.
- the overlapping sections 264 aid in conforming the distal end of the hood against irregularly shaped tissue.
- the overlapping sections 264 may be affixed to the end of the hood 12.
- the overlapping sections may extend a substantial length of the hood (not shown). Any number of sections 264 may be used with the hood.
- the device when used against tissue having an irregular surface, the device may include a large number of sections such that the end of the hood 12 has a "brush-like" appearance.
- a variation of the device may have fewer sections (as few as 2). Such a variation may be appropriately configured for use against relatively a smooth tissue surface.
- the sections 264 may be fabricated from a polymer, cloth, or membrane filled structure. Regardless of construction, the sections 264 improve conformation of the hood against tissue. [0141] Although it is generally desirable to have an imaging hood contact against a tissue surface in a normal orientation, the imaging hood may be alternatively configured to contact the tissue surface at an acute angle. An imaging hood configured for such contact against tissue may also be especially suitable for contact against tissue surfaces having an unpredictable or uneven anatomical geography. For instance, as shown in the variation of Fig. 21 A, deployment catheter 270 may have an imaging hood 272 that is configured to be especially compliant.
- imaging hood 272 maybe comprised of one or more sections 274 that are configured to fold or collapse, e.g., by utilizing a pleated surface.
- sections 274 are able to conform closely against the tissue.
- These sections 274 may be individually collapsible by utilizing an accordion style construction to allow conformation, e.g., to the trabeculae in the heart or the uneven anatomy that may be found inside the various body lumens.
- Fig. 22A shows another variation in which an imaging s attached to deployment catheter 280.
- the contact lip or edge 284 may comprise one or more electrical contacts 286 positioned circumferentially around cont ⁇ edge 284.
- the electrical contacts 286 may be configured to contact the tissue and indicate affirmatively whether tissue contact was achieved, e.g., by measuring the differential impedance between blood and tissue.
- a processor e.g., processor 98, in electrical communication with contacts 286 may be configured to determine what type of tissue is in contact with electrical contacts 286.
- the processor 98 may be configured to measure any electrical activity that may be occurring in the underlying tissue, e.g., accessory pathways, for the purposes of electrically mapping the cardiac tissue and subsequently treating, as described below, any arrhythmias which may be detected.
- Fig. 22B Another variation for ensuring contact between imaging hood 282 and the underlying tissue may be seen in Fig. 22B.
- This variation may have an inflatable contact edge 288 around the circumference of imaging hood 282.
- the inflatable contact edge 288 may be inflated with a fluid or gas through inflation lumen 289 when the imaging hood 282 is to be placed against a tissue surface having an uneven or varied anatomy.
- the inflated circumferential surface 288 may provide for continuous contact over the hood edge by conforming against the tissue surface and facilitating imaging fluid retention within hood 282.
- various instrumentation may be utilized with the imaging and manipulation system. For instance, after the field within imaging hood 12 has been cleared of the opaque blood and the underlying tissue is visualized through the clear fluid, blood may seep back into the imaging hood 12 and obstruct the view.
- One method for automatically maintaining a clear imaging field may utilize a transducer, e.g., an ultrasonic transducer 290, positioned at the distal end of deployment catheter within the imaging hood 12, as shown in Fig. 23.
- the transducer 290 may send an energy pulse 292 into the imaging hood 12 and wait to detect back-scattered energy 294 reflected from debris or blood within the imaging hood 12.
- the pump may be actuated - automatically to dispense more fluid into the imaging hood until the debris or blood is no longer detected.
- one or more sensors 300 may be positioned on the imaging hood 12 itself, as shown in Fig. 24A, to detect a number of different parameters.
- sensors 300 may be configured to detect for the presence of oxygen in the surrounding blood, blood and/or imaging fluid pressure, color of the fluid within the imaging hood, etc lor may be particularly useful in detecting the presence of blood within the imaging ' utilizing a reflective type sensor to detect back reflection from blood.
- Any reflected light from blood which may be present within imaging hood 12 may be optically or electrically transmitted through deployment catheter 16 and to a red colored filter within control electronics 118. Any red color which may be detected may indicate the presence of blood and trigger a signal to the physician or automatically actuate the pump to dispense more fluid into the imaging hood 12 to clear the blood.
- Alternative methods for detecting the presence of blood within the hood 12 may include detecting transmitted light through the imaging fluid within imaging hood 12. If a source of white light, e.g., utilizing LEDs or optical fibers, is illuminated inside imaging hood 12, the presence of blood may cause the color red to be filtered through this fluid. The degree or intensity of the red color detected may correspond to the amount of blood present within imaging hood 12.
- a red color sensor can simply comprise, in one variation, a phototransistor with a red transmitting filter over it which can establish how much red light is detected, which in turn can indicate the presence of blood within imaging hood 12. Once blood is detected, the system may pump more clearing fluid through and enable closed loop feedback control of the clearing fluid pressure and flow level.
- Any number of sensors may be positioned along the exterior 302 of imaging hood 12 or within the interior 304 of imaging hood 12 to detect parameters not only exteriorly to imaging hood 12 but also within imaging hood 12. Such a configuration, as shown in Fig. 24B, may be particularly useful for automatically maintaining a clear imaging field based upon physical parameters such as blood pressure, as described above for Figs. 1OA and 1OB.
- one or more light emitting diodes may be utilized to provide lighting within the imaging hood 12.
- illumination may be provided by optical fibers routed through deployment catheter 16, the use of LEDs over the imaging hood 12 may eliminate the need for additional optical fibers for providing illumination.
- the electrical wires connected to the one or more LEDs may be routed through or over the hood 12 and along an exterior surface or extruded within deployment catheter 16.
- One or more LEDs may be positioned in a circumferential pattern 306 around imaging hood 12, as shown in Fig. 25A, or in a linear longitudinal pattern 308 along imaging hood 12, as shown in Fig. 25B.
- Other patterns such as a helical or spiral pattern, may also be utilized.
- LEDs may be positioned along a support member forming part of imaging hood 12.
- a separate illuminai .0 may be utilized, as shown in Fig. 26A.
- An example of such a tool may comprise intravascular delivery member 312 having a carrier member 314 pivotably connected 316 to a distal end of delivery member 312.
- One or more LEDs 3 may be mounted along carrier member 314.
- delivery member 312 may be advanced through deployment catheter 16 until carrier member 314 is positioned within imaging hood 12.
- carrier member 314 may be pivoted in any number of directions to facilitate or optimize the illumination within the imaging hood 12, as shown in Fig. 26B.
- the LEDs may comprise a single LED color, e.g., white light.
- LEDs of other colors e.g., red, blue, yellow, etc.
- sources of infrared or ultraviolet light may be employed to enable imaging beneath the tissue surface or cause fluorescence of tissue for use in system guidance, diagnosis, or therapy.
- the imaging assembly may also be utilized to provide a therapeutic platform for treating tissue being visualized.
- deployment catheter 320 may have imaging hood 322, as described above, and fluid delivery lumen 324 and imaging lumen 326.
- a therapeutic tool such as needle 328 may be delivered through fluid delivery lumen 324 or in another working lumen and advanced through open area 332 for treating the tissue which is visualized.
- needle 328 may define one or several ports 330 for delivering drugs therethrough.
- needle 328 may be advanced and pierced into the underlying tissue where a therapeutic agent may be delivered through ports 330.
- needle 328 may be in electrical communication with a power source 334, e.g., radio-frequency, microwave, etc., for ablating the underlying tissue area of interest.
- FIG. 28 shows another alternative in which deployment catheter 340 may have imaging hood 342 attached thereto, as above, but with a therapeutic tool 344 in the configuration of a helical tissue piercing device 344. Also shown and described above in Figs. 7A and 7B for use in stabilizing the imaging hood relative to the underlying tissue, the helical tissue piercing device 344 may also be utilized to manipulate the tissue for a variety of therapeutic procedures.
- the helical portion 346 may also define one or several ports for delivery of therapeutic agents therethrough.
- FIG. 29 shows a deployment catheter 350 having an expandal ⁇ balloon 352 filled with, e.g., saline 356.
- a therapeutic tool 344 as above, may be translatable relative to balloon 352.
- a stop 354 may be formed on balloon 352 to prevent the proximal passage of portion 346 past stop 354.
- FIG. 3OA shows one variation of an angled instrument 360, such as a tissue grasper, which may be configured to have an elongate shaft for intravascular delivery through deployment catheter 16 with a distal end which may be angled relative to its elongate shaft upon deployment into imaging hood 12.
- the elongate shaft may be configured to angle itself automatically, e.g., by the elongate shaft being made at least partially from a shape memory alloy, or upon actuation, e.g., by tensioning a pullwire.
- Fig. 3OA shows one variation of an angled instrument 360, such as a tissue grasper, which may be configured to have an elongate shaft for intravascular delivery through deployment catheter 16 with a distal end which may be angled relative to its elongate shaft upon deployment into imaging hood 12.
- the elongate shaft may be configured to angle itself automatically, e.g., by the elongate shaft being made at least partially from a shape memory alloy, or upon actuation, e.g., by
- 3OB shows another configuration for an instrument 362 being configured to reconfigure its distal portion into an off-axis configuration within imaging hood 12.
- the instruments 360, 362 may be reconfigured into a low-profile shape upon withdrawing them proximally back into deployment catheter 16.
- Fig. 3 IA shows a probe 370 having a distal end effector 372, which may be reconfigured from a low-profile shape to a curved profile.
- the end effector 372 may be configured as an ablation probe utilizing radio- frequency energy, microwave energy, ultrasound energy, laser energy or even cryo-ablation. Alternatively, the end effector 372 may have several electrodes upon it for detecting or mapping electrical signals transmitted through the underlying tissue.
- an additional temperature sensor such as a thermocouple or thermistor 374 positioned upon an elongate member 376 may be advanced into the imaging hood 12 adjacent to the distal end effector 372 for contacting and monitoring a temperature of the ablated tissue.
- Fig. 3 IB shows an example in the end view of one configuration for the distal end effector 372 which may be simply angled into a perpendicular configuration for contacting the tissue.
- Fig. 31 C - shows another example where the end effector may be reconfigured into a curved end effector 378 for increased tissue contact.
- Figs. 32A and 32B show another variation of an ablation tool utilized with an imaging hood 12 having an enclosed bottom portion.
- an ablation probe such as a lation probe 380 having a distal end effector 382
- the shaft of prot may pass through an opening 386 defined through the membrane 384.
- the clear fluid may be pumped into imaging hood 12, as described above, and the distal end effector 382 may be placed against a tissue region to be ablated with the imaging hood 12 and the membrane 384 positioned atop or adjacent to the ablated tissue.
- the imaging fluid may be warmed prior to dispensing into the imaging hood 12 such that the tissue contacted by the membrane 384 may be warmed during the cryo-ablation procedure.
- the fluid dispensed into the imaging hood 12 may be cooled such that the tissue contacted by the membrane 384 and adjacent to the ablation probe during the ablation procedure is likewise cooled.
- the imaging fluid may be varied in its temperature to facilitate various procedures to be performed upon the tissue.
- the imaging fluid itself may be altered to facilitate various procedures.
- a deployment catheter 16 and imaging hood 12 may be advanced within a hollow body organ, such as a bladder filled with urine 394, towards a lesion or tumor 392 on the bladder wall.
- the imaging hood 12 may be placed entirely over the lesion 392, or over a portion of the lesion.
- a cryo-fluid i.e., a fluid which has been cooled to below freezing temperatures of, e.g., water or blood, may be pumped into the imaging hood 12 to cryo-ablate the lesion 390, as shown in Fig. 33B while avoiding the creation of ice on the instrument or surface of tissue.
- the fluid may be warmed naturally by the patient body and ultimately removed.
- the cryo-fluid may be a colorless and translucent fluid which enables visualization therethrough of the underlying tissue.
- An example of such a fluid is FluorinertTM (3M, St. Paul, MN), which is a colorless and odorless perfluorinated liquid.
- FluorinertTM 3M, St. Paul, MN
- the use of a liquid such as FluorinertTM enables the cryo- ablation procedure without the formation of ice within or outside of the imaging hood 12.
- hyperthermic treatments may also be effected by heating the FluorinertTM liquid to elevated temperatures for ablating the lesion 392 within the imaging hood 12.
- FluorinertTM may be utilized in various other parts of the body, such as within the heart.
- Fig. 33C illustrates another variation of a system according to the present invention.
- an unltrasound beam 598 for example, high frequency ultraso ionly referred to as HIFU
- the beam 598 focuses on a region of interest in the tissue. This allows cauterization or welding of tissue via the ultrasound beam.
- the clear solution assists tl operator in focusing the beam 598 accurately on the target tissue surface.
- a laser pointer, LED or other pointing device/indicator 602 that coincides with the focal point 604 of the beam 598 can be used as a guide to ensure accurate placement of the beam 598 on the tissue surface.
- Fig. 34A shows another variation of an instrument which may be utilized with the imaging system.
- a laser ring generator 400 may be passed through the deployment catheter 16 and partially into imaging hood 12.
- a laser ring generator 400 is typically used to create a circular ring of laser energy 402 for generating a conduction block around the pulmonary veins typically in the treatment of atrial fibrillation.
- the circular ring of laser energy 402 may be generated such that a diameter of the ring 402 is contained within a diameter of the imaging hood 12 to allow for tissue ablation directly upon tissue being imaged.
- Signals which cause atrial fibrillation typically come from the entry area of the pulmonary veins into the left atrium and treatments may sometimes include delivering ablation energy to the ostia of the pulmonary veins within the atrium.
- the ablated areas of the tissue may produce a circular scar which blocks the impulses for atrial fibrillation.
- This may be accomplished, for example, by cooling the imaging fluid to a temperature below the body temperature of the patient but which is above the freezing point of blood (e.g., 2° C to 35° C).
- the cooled imaging fluid may thus maintain the surface tissue at the cooled fluid temperature while the deeper underlying tissue remains at the patient body temperature.
- the laser energy or other types of energy such as radio frequency energy, microwave energy, ultrasound energy, etc.
- both the cooled tissue surface as well as the deeper underlying tissue will rise in temperature uniformly.
- the deeper underlying tissue, which was maintained at the body temperature will increase to temperatures which are sufficiently high to destroy the underlying tissue. Meanwhile, the temperature of the cooled surface tissue will also rise but only to temperat ⁇ near body temperature or slightly above.
- one example for treatment may include passing deployment catheter 16 across the atrial septum AS and into the left atrium LA patient's heart H. Other methods of accessing the left atrium LA may also be utilized.
- the imaging hood 12 and laser ring generator 400 may be positioned adjacent to or over one or more of the ostium OT of the pulmonary veins PV and the laser generator 400 may ablate the tissue around the ostium OT with the circular ring of laser energy 402 to create a conduction block. Once one or more of the tissue around the ostium OT have been ablated, the imaging hood 12 may be reconfigured into a low profile for removal from the patient heart H. [0165] Fig.
- the device 10 also includes a fiber 606 coupled to a laser source 608.
- the fiber 606 is optionally moveable so that the laser beam may be focused on desired areas to treat tissue (e.g., the injury of the tissue leads to healing over time).
- the fiber 606 can direct the laser energy invarious patterns (e.g., spot treatment, rings, various geometries, etc.).
- the laser may be collimated or non- collimated (where a collimated laser beam will propagate with the lowest possible beam divergence for a given beam size).
- Fig. 34D illustrates another variation of a system according to the present invention.
- an inflatable member 520 the hood 12 to be expanded so that the device 10 may be advanced and pushed against tissue.
- This variation prevents the excessive use of saline or other fluid when the hood is not properly or partially sealed against a tissue surface.
- the inflatable member 520 may be fabricated to permit energy (e.g., such as laser or ultrasound as shown by line 521) to be transmitted therethrough.
- the inflatable member may be fabricated from silicone and a low thermal conductivity liquid is used to inflate the member 520.
- ⁇ One of the difficulties in treating tissue in or around the ostium OT is the dynamic fluid flow of blood through the ostium OT. The dynamic forces make cannulation or entry of the ostium OT difficult.
- an extendible cannula 410 having a cannula lumen 412 defined therethrough, as shown in Fig. 35 A.
- the extendible cannula 410 may generally comprise an elongate tubular member which may be positioned within the deployment catheter 16 during delivery and then projected distally through the imaging hood 12 and optionally beyond, as shown in Fig. 35B.
- the extendib 410 may be projected distally from the deployment catheter 16 while optionally imaging the tissue through the imaging hood 12, as described above.
- the extendible cannula 410 may be projected distally until its distal end is extended at least partially into the ostium OT.
- an instrument or energy ablation device may be extended through and out of the cannula lumen 412 for treatment within the ostium OT.
- the cannula 410 may be withdrawn proximally and removed from the patient body.
- the extendible cannula 410 may also include an inflatable occlusion balloon at or near its distal end to block the blood flow out of the PV to maintain a clear view of the tissue region.
- the extendible cannula 410 may define a lumen therethrough beyond the occlusion balloon to bypass at least a portion of the blood that normally exits the pulmonary vein PV by directing the blood through the cannula 410 to exit proximal of the imaging hood.
- imaging hood 12 may have one or more tubular support members 420 integrated with the hood 12.
- Each of the tubular support members 420 may define an access lumen 422 through which one or more instruments or tools may be delivered for treatment upon the underlying tissue.
- One particular example is shown and described above for Fig. 7C.
- a separate guiding probe 430 may be utilized, as shown in Figs. 37A and 37B.
- Guiding probe 430 may, for example, comprise an optical fiber through which a light source 434 may be used to illuminate a distal tip portion 432.
- the tip portion 432 may be advanced into the heart through, e.g., the coronary sinus CS, until the tip is positioned adjacent to the mitral valve MV.
- the tip 432 may be illuminated, as jshown in Fig. 37A, and imaging assembly 10 may then be guided towards the illuminated tip 432, which is visible from within the atrial chamber, towards mitral valve MV.
- the imaging system may be utilized to facilitate various other procedures.
- the imaging hood of the device in particular may be utilized.
- a collapsible membrane or disk-shaped member 440 may be temporarily secured around the contact edge or lip of )od 12.
- the imaging hood 12 and the attached 40 may both be in a collapsed configuration to maintain a low profile for delivery.
- both the imaging hood 12 and the member 440 may exter their expanded configurations.
- the disk-shaped member 440 may be comprised of a variety of materials depending upon the application.
- member 440 may be fabricated from a porous polymeric material infused with a drug eluting medicament 442 for implantation against a tissue surface for slow infusion of the medicament into the underlying tissue.
- the member 440 may be fabricated from a non-porous material, e.g., metal or polymer, for implantation and closure of a wound or over a cavity to prevent fluid leakage.
- the member 440 may be made from a distensible material which is secured to imaging hood 12 in an expanded condition. Once implanted or secured on a tissue surface or wound, the expanded member 440 may be released from imaging hood 12. Upon release, the expanded member 440 may shrink to a smaller size while approximating the attached underlying tissue, e.g., to close a wound or opening.
- One method for securing the disk-shaped member 440 to a tissue surface may include a plurality of tissue anchors 444, e.g., barbs, hooks, projections, etc., which are attached to a surface of the member 440. Other methods of attachments may include adhesives, suturing, etc.
- the imaging hood 12 may be deployed in its expanded configuration with member 440 attached thereto with the plurality of tissue anchors 444 projecting distally.
- the tissue anchors 444 may be urged into a tissue region to be treated 446, as seen in Fig. 39 A, until the anchors 444 are secured in the tissue and member 440 is positioned directly against the tissue, as shown in Fig.
- FIG. 39B A pullwire may be actuated to release the member 440 from the imaging hood 12 and deployment catheter 16 may be withdrawn proximally to leave member 440 secured against the tissue 446.
- FIG. 4OA Another variation for tissue manipulation and treatment may be seen in the variation of Fig. 4OA, which illustrates an imaging hood 12 having a deployable anchor assembly 450 attached to the tissue contact edge 22.
- Fig. 40B illustrates the anchor assembly 450 detached from the imaging hood 12 for clarity.
- the anchor assembly 450 may be seen as having a plurality of discrete tissue anchors 456, e.g., barbs, hooks, projections, etc., each having a suture retaining end, e.g., an eyelet or opening 458 in a proximal end of the anchors 456.
- a suture member or wire 452 may be slidingly connected to each anchor 456 through the openings 458 and through a cinching element 454, which may be configured to slide uni- directior lie suture or wire 452 to approximate each of the anchors 456 towards one another.
- ie anchors 456 may be temporarily attached to the imaging hood 12 through a variety of methods.
- a pullwire or retaining wire may hold each anchors within a receiving ring around the circumference of the imaging hood 12.
- the pullwire or retaining wire may be tensioned from its proximal end outside the patient body to thereby free the anchors 456 from the imaging hood 12.
- FIGs. 41 A to 41D One example for use of the anchor assembly 450 is shown in Figs. 41 A to 41D for closure of an opening or wound 460, e.g., patent foramen ovale (PFO).
- the deployment catheter 16 and imaging hood 12 may be delivered intravascularly into, e.g., a patient heart.
- the imaging hood 12 may be positioned adjacent to the opening or wound 460, as shown in Fig. 41 A.
- deployment catheter 16 may be directed to urge the contact edge of imaging hood 12 and anchor assembly 450 into the region surrounding the tissue opening 460, as shown in Fig. 41 B.
- the anchors may be released from imaging hood 12 leaving the anchor assembly 450 and suture member 452 trailing from the anchors, as shown in Fig. 41 C.
- the suture or wire member 452 may be tightened by pulling it proximally from outside the patient body to approximate the anchors of anchor assembly 450 towards one another in a purse-string manner to close the tissue opening 462, as shown in Fig. 4 ID.
- the cinching element 454 may also be pushed distally over the suture or wire member 452 to prevent the approximated anchor assembly 450 from loosening or widening.
- Fig. 41 E illustrates a tissue imaging and manipulation assembly 10 configured to deliver an implant 464.
- the implant comprises a shaft having a plurality of thrombogenic fibers 466.
- the implant 464 further includes a tissue attachment member 468.
- the assembly 10 delivers the implant 464 to a tissue area or cavity.
- the implant may be rotated into tissue (or otherwise attached) using the attachment member 468.
- the implant 464 may be combined with other procedures discussed herein, especially where occlusion of a cavity or opening is required.
- Fig. 41F illustrates another variation of an assembly 10 according to the present invention.
- the implant 474 may comprise a stent, coil, patch, suture, or other such implant.
- the implant 474 may be delivered using a delivery catheter 473 or similar means.
- FIG. 42 Another example for an alternative use is shown in Fig. 42, where the deploym r 16 and deployed imaging hood 12 may be positioned within a patient body for lood 472 into deployment catheter 16.
- the drawn blood 472 may be pumped through a dialysis unit 470 located externally of the patient body for filtering 1 drawn blood 472 and the filtered blood may be reintroduced back into the patient.
- Figs. 43 A and 43B show a variation of the deployment catheter 480 having a first deployable hood 482 and a second deployable hood 484 positioned distal to the first hood 482.
- the deployment catheter 480 may also have a side- viewing imaging element 486 positioned between the first and second hoods 482, 484 along the length of the deployment catheter 480.
- a side- viewing imaging element 486 positioned between the first and second hoods 482, 484 along the length of the deployment catheter 480.
- such a device may be introduced through a lumen 488 of a vessel VS, where one or both hoods 482, 484 may be expanded to gently contact the surrounding walls of vessel VS.
- the clear imaging fluid may be pumped in the space defined between the hoods 482, 484 to displace any blood and to create an imaging space 490, as shown in Fig. 43B.
- the imaging element 486 may be used to view the surrounding tissue surface contained between hoods 482, 484.
- Other instruments or tools may be passed through deployment catheter 480 and through one or more openings defined along the catheter 480 for additionally performing therapeutic procedures upon the vessel wall.
- Fig. 43C illustrates another variation of a deployment catheter 480 having a series of deployable hoods 482, 484 spaced close together.
- the deployment catheter 480 will include at least two fluid supply lumens 476, 478, where each lumen is fluidly coupled to an open area within the outer 482 and inner 484 hoods.
- the fluid running between the outer and inner hoods 482, 484 clears the blood, debris or other obstructions from around the inside hood 484.
- One benefit is that this allows the device to have better visualization within the inner hood 484 by preventing bodily fluids from entering the open area. This is especially useful when the inner hood 484 abuts tissue and fluid from the outer hood 482 creates a flow pattern that opposes bodily fluids from entering the open area of the inner hood 484.
- Visualization elements may be placed within one or both hoods.
- the inner hood 484 maybe fabricated from a clear material so that one or more visualization elements may be placed within the outer hood 482. Alternatively, or in combination, the visualization elements may be placed to visualize the open area of the inner hood 484. It should be noted that any number of hoods may be used.
- Another variation of a deployment catheter 500 which may be used for imaging ie side of the instrument may be seen in Figs. 44A to 45B. Figs. 44A and
- a side-imaging element 504 may be positi within a distal portion of the catheter 500 where the balloon 502 is disposed.
- balloon 502 When balloon 502 is inflated, it may expand radially to contact the surrounding tissue, but where the imaging element 504 is located, a visualization field 506 may be created by the balloon 502, as shown in the side, top, and end views of Figs. 45A to 45B, respectively.
- the visualization field 506 may simply be a cavity or channel which is defined within the inflated balloon 502 such that the visualization element 504 is provided an image of the area within field 506 which is clear and unobstructed by balloon 502.
- deployment catheter 500 may be advanced intravascularly through vessel lumen 488 towards a lesion or tumor 508 to be visualized and/or treated.
- deployment catheter 500 maybe positioned adjacently to the lesion 508 and balloon 502 may be inflated such that the lesion 508 is contained within the visualization field 506.
- clear fluid may be pumped into visualization field 506 through deployment catheter 500 to displace any blood or opaque fluids from the field 506, as shown in the side and end views of Figs. 46A and 46B, respectively.
- the lesion 508 may then be visually inspected and treated by passing any number of instruments through deployment catheter 500 and into field 506.
- Figs. 47A-47B illustrate a variation of a device according to the present invention where components of the system 560 allow for dissection/blunt dissection of tissue.
- a hood 564 extends from a catheter 562, where the hood 564 comprises a plurality of rigid sections 566 or leaflets.
- the leaflets 566, 568, 570 may be fabricated from a stiff metal or polymer.
- a variation of the device may include leaflets 566, 568, 570 having alternating constructions (e.g., a flexible leaflet interspaced between stiff leaflets, a soft leaflet interspaced between stiff or hard leaflets, etc.) Although the leaflets are illustrated as having tapered profiles towards a tip 572 of the device 560, the tip 572 of the device may be sufficiently blunted so as to avoid unnecessary trauma to the tissue.
- Fig. 47A illustrates the device 560 as it approaches adjacent layers of tissue 2
- Fig. 47B As illustrated in Fig. 47B, once appropriately positioned, the device 560 dissects tissue by opening or repeatedly opening and closing to separate the layers of tissue 2, 4.
- Fig. 47B also illustrates the dissector hood 564 as having a flexible material or webbing 576 located between adjacent leaflets 566, 568, 570. This flexible material/webbing 576 permits the hood to form i the hood is placed adjacent to a tissue surface. As illustrated, the leaflets
- Fig. 48A illustrates a variation of a tissue imaging and manipulation ass
- the elongate bypass portion 580 includes at least one bypass lumen 582 that allows a fluid path between proximal opening 584 in the catheter 16 and a distal opening 586 located distally of the hood 16.
- the bypass lumen 582 allows fluid to pass around the open area during a surgical procedure.
- the hood 12 may include one or more visualization element 52 to allow visualization of the open area.
- a variation of the assembly 10 may include a pump-type device 578 to assist in moving fluid through the assembly 10.
- the elongate bypass portion 580 may be moveable relative to the hood 12 or catheter 16.
- the elongate bypass portion 580 may include one or more structures to facilitate various procedures.
- Fig. 48B illustrates a variation of the system 10 of Fig. 48A with the addition of a support flap 588.
- the support flap 588 is preferably fabricated from a material that allows the flap 588 to assume a reduced profile for delivery.
- the flap 588 Upon expansion, the flap 588 provides a semi-rigid support when placed against tissue, hi one application of this configuration, the assembly 10 may be passed through a valve (e.g., a mitral valve), such that the hood 12 creates a first open area over the valve.
- a valve e.g., a mitral valve
- the flap 588 may then support the distal surface of the valve. Accordingly, devices may be advanced through the catheter 16 and to within the open area to perform surgical repair of the valve.
- the region between proximal openings 584 and the distal end of the catheter 586 contains a valve (e.g., a one-way valve) to control the flow of fluid (in the case of a one-way valve fluid would only flow in a single direction).
- Fig. 48C illustrates a cross-sectional view of the flap 588 placed against a distal surface of tissue (or a valve). As shown, the hood 16 creates an open area over the tissue so that devices 592 may be advanced through the catheter 16 to repair or treat the tissue. As discussed above, the elongate portion 580 may be withdrawn relative to the catheter 16 to secure the tissue between the hood 12 and flap 588.
- Fig. 48C also illustrates a variation of an assembly 10 where the elongate portion 580 further includes a tissue attachment member 590. hi this variation, the tissue attachment member 590 comprises a helical member. [0189] Fig.
- FIG. 48D illustrates a variation of an assembly 10 according to the present invention where the expanded hood 12 is off-center relative to the catheter 16. Variations include assemblies where the elongate portion 580 is also be off-center relative to the hood 12 when The visualization element 52 may be placed on a side of the hood 12 to give opt ig of the open area. However, the invention also contemplates placement of one or more visualization elements at any location and on any structure within the area. It is also contemplated that variations of the assembly with an off-set hood configuration, such as that shown in Fig. 48D, may or may not incorporate a support flap as shown in Figs. 48A-48C. [0190] Fig. 48E illustrates another variation of an assembly 10 with an elongate portion 580.
- the elongate portion 580 supplies fluid that is ultimately evacuated through the catheter 16.
- the hood 12 prevents the fluid from escaping beyond the open area.
- a lumen in fluid communication with the open area evacuates the fluid and may also aspirate blood located in the left atrial appendage LAA.
- a variation of the assembly 10 may include a tissue attachment member 590 to stabilize the assembly 10 at the target site. In use, the device is advanced through the right atrium RA through the heart wall and into the left atrial appendage LAA in the left atrium LA.
- Fig. 48F illustrates another variation of tissue imaging and manipulation assembly 10.
- the assembly 10 includes an elongate member 580 having a balloon 594 coupled to a balloon lumen 596.
- the balloon 594 may function as an occlusion balloon.
- the elongate member 580 maybe configured to permit passage of a guidewire or other guiding means.
- the elongate portion 580 may also be configured to have a bypass lumen as shown in Fig. 48A to allow fluid to move from an area proximally to the hood 12 to an area distally of the balloon.
- Fig. 49A-49E illustrate the use of an elongate member 528 having a plurality of ⁇ peningS"5d ⁇ r ⁇ f IgT 4 ⁇ A snows-an elongate member sz ⁇ an ⁇ -e ⁇ enings 55» xhai aei as an i ⁇ igator/aspirator to circulate fluid between the catheter 16 and open area of the hood 12.
- the elongate member may have a tissue attaching member, as discussed herein, attached to a distal end.
- the catheter may have a flow distributor 532 to encourage laminar flow of fluid.
- a pump may be used in any of the described systems to allow t ; member 528 or catheter 16 to aspirate fluid out of the open area of the hood 1 tions of the assembly 10, the elongate member 528 may move in and out of the catheter.
- the floi fluid may be the reverse of that shown. In such cases, the hood or other structure may require a slight structural change to handle any vacuum forces.
- Fig. 49B illustrates another variation of an assembly 10.
- the hood 12 comprises a double layer with a plurality of openings 534 in the interior layer.
- 49C illustrates a similar assembly to 49B.
- the base of the hood 12 contains the openings 534 that provide fluid into the open area of the hood 12. Fluid returns through the catheter 16.
- Fig. 49D illustrates another variation of a hood 12 under the present invention.
- the hood 12 includes a plurality of elongate members 528 each having openings 530 that allow for circulation of fluid.
- One or more of the elongate members 528 are attached to the surface of the hood while a separate elongate member 528 extends through the catheter 16.
- Fig. 49E illustrates a similar variation where two elongate members 528 extend through the catheter 16 rather than being attached to the hood.
- Figs. 50A-50C illustrate variations of a tissue imaging and manipulation assembly 10 designed to translate or "walk” across tissue surfaces when inserted within the body.
- the assembly 10 includes an outer sheath 536 having an articulating section or joint 538 allowing for at least one degree of motion.
- the assembly 10 further includes a catheter 16 being axially moveable, as shown by arrows 540, relative to the sheath 536.
- the catheter 16 may further include a second joint 542 that allows for angular rotation of the hood 12, as shown by arrows 544. Accordingly, the joints of the assembly 10 allow for repositioning of the hood 12 as it sweeps or walks across tissue.
- FIG. 5OB illustrates another variation of a tissue imaging and manipulation assembly 10 designed to translate or "walk” across tissue surfaces.
- one or more “fingers” 546, 548 are moveably located within the hood 12.
- Each finger 546, 548 is designed to move axially relative to the hood 12, as illustrated by arrows 550, as well as angularly relative to the hood 12, as illustrated by arrows 552. Accordingly, as one finger extends beyond the hood 12, the finger 548 raises it off of the tissue surface, as shown in Fig. 5OC. Once raised off of the tissue, the second finger 546 advances in the desired direction and extends to contact tissue as the first finger 548 retracts. Thus, this walking motion of the fingers precise movement of the hood across tissue.
- e user controls to actuate and control movement are not illustrated but may be those controls conventionally used by medical practitioner.
- the a y 10 may be coupled to a robotic manipulation system as described above.
- the applications of the disclosed invention discussed above are not limited to certain treatments or regions of the body, but may include any number of other treatments and areas of the body. Modification of the above-described methods and devices for carrying out the invention, and variations of aspects of the invention that are obvious to those of skill in the arts are intended to be within the scope of this disclosure. Moreover, various combinations of aspects between examples are also contemplated and are considered to be within the scope of this disclosure as well.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Optics & Photonics (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Endoscopes (AREA)
- Surgical Instruments (AREA)
Abstract
L'invention concerne des systèmes de visualisation et manipulation de tissus. Un système selon l'invention peut comprendre un cathéter de déploiement auquel est attachée une jupe d'imagerie pouvant être déployée en une configuration étendue. En cours d'emploi, la jupe d'imagerie est placée contre ou adjacente à une région d'un tissu à visualiser dans une lumière corporelle qui est normalement remplie d'un liquide corporel opaque tel que du sang. Un liquide translucide ou transparent, une solution saline par exemple, peut être pompé dans la jupe d'imagerie jusqu'à ce que le liquide ait déplacé le sang, laissant de la sorte une région dégagée de tissu, qui sera visualisée via un élément d'imagerie situé dans le cathéter de déploiement. On peut en outre faire passer un nombre d'instruments thérapeutiques à travers le cathéter de déploiement et dans la jupe d'imagerie afin de traiter la région tissulaire d'intérêt.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009500630A JP4828633B2 (ja) | 2006-03-17 | 2007-03-16 | 組織可視化および操作システム |
EP07758716A EP1996065A4 (fr) | 2006-03-17 | 2007-03-16 | Systèmes de visualisation et manipulation de tissus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78349406P | 2006-03-17 | 2006-03-17 | |
US60/783,494 | 2006-03-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007109554A2 true WO2007109554A2 (fr) | 2007-09-27 |
WO2007109554A3 WO2007109554A3 (fr) | 2008-03-06 |
Family
ID=38523194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/064195 WO2007109554A2 (fr) | 2006-03-17 | 2007-03-16 | Systèmes de visualisation et manipulation de tissus |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1996065A4 (fr) |
JP (1) | JP4828633B2 (fr) |
WO (1) | WO2007109554A2 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010187744A (ja) * | 2009-02-16 | 2010-09-02 | Hoya Corp | 内視鏡アクセサリおよび内視鏡 |
WO2012051292A1 (fr) * | 2010-10-13 | 2012-04-19 | Ethicon Endo-Surgery, Inc. | Procédés et dispositifs pour la création d'un espace mécanique au niveau d'un site chirurgical |
US8603078B2 (en) | 2010-10-13 | 2013-12-10 | Ethicon Endo-Surgery, Inc. | Methods and devices for guiding and supporting surgical instruments |
US9014789B2 (en) | 2011-09-22 | 2015-04-21 | The George Washington University | Systems and methods for visualizing ablated tissue |
US9084611B2 (en) | 2011-09-22 | 2015-07-21 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10143517B2 (en) | 2014-11-03 | 2018-12-04 | LuxCath, LLC | Systems and methods for assessment of contact quality |
US10722301B2 (en) | 2014-11-03 | 2020-07-28 | The George Washington University | Systems and methods for lesion assessment |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
US11096584B2 (en) | 2013-11-14 | 2021-08-24 | The George Washington University | Systems and methods for determining lesion depth using fluorescence imaging |
US11172807B2 (en) | 2016-05-23 | 2021-11-16 | Olympus Corporation | Endoscope device and endoscope system with deforming insertion portion wire |
US11457817B2 (en) | 2013-11-20 | 2022-10-04 | The George Washington University | Systems and methods for hyperspectral analysis of cardiac tissue |
US12076081B2 (en) | 2020-01-08 | 2024-09-03 | 460Medical, Inc. | Systems and methods for optical interrogation of ablation lesions |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010092518A1 (fr) * | 2009-02-12 | 2010-08-19 | Koninklijke Philips Electronics N.V. | Instrument pour intervention doté d'un moyen d'éclairage |
JP5267999B2 (ja) * | 2009-10-26 | 2013-08-21 | 国立大学法人金沢大学 | 血管内視鏡システム |
JP2012223443A (ja) * | 2011-04-21 | 2012-11-15 | Olympus Corp | ガイドシース |
JP5754630B2 (ja) * | 2011-05-24 | 2015-07-29 | オリンパス株式会社 | 内視鏡用フード |
FR2977135B1 (fr) * | 2011-06-29 | 2014-10-10 | Univ Paris Curie | Instrument endoscopique a pied d'appui |
JP5975257B2 (ja) * | 2012-03-08 | 2016-08-23 | 国立大学法人 香川大学 | 領域確保用器具および領域確保用器具を備えた内視鏡 |
JP6315379B2 (ja) * | 2014-05-23 | 2018-04-25 | 株式会社トップ | 内視鏡用フード |
JP6401098B2 (ja) * | 2015-03-30 | 2018-10-03 | 富士フイルム株式会社 | 内視鏡診断装置および内視鏡診断装置の作動方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4976710A (en) | 1987-01-28 | 1990-12-11 | Mackin Robert A | Working well balloon method |
US20040097788A1 (en) | 2002-05-30 | 2004-05-20 | Mourlas Nicholas J. | Apparatus and methods for coronary sinus access |
US6755811B1 (en) | 1999-08-25 | 2004-06-29 | Corazon Technologies, Inc. | Methods and devices for reducing the mineral content of a region of non-intimal vascular tissue |
US20050119523A1 (en) | 2003-09-03 | 2005-06-02 | Guided Delivery Systems, Inc. | Cardiac visualization devices and methods |
WO2006083794A2 (fr) | 2005-02-02 | 2006-08-10 | Voyage Medical, Inc. | Systeme de visualisation et de manipulation de tissu |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6068865A (ja) * | 1983-09-26 | 1985-04-19 | 住友電気工業株式会社 | カテ−テル |
JPS60129055A (ja) * | 1983-12-16 | 1985-07-10 | 井上 清 | 血栓溶解カテ−テル |
US4619247A (en) * | 1983-03-31 | 1986-10-28 | Sumitomo Electric Industries, Ltd. | Catheter |
JPS59181315A (ja) * | 1983-03-31 | 1984-10-15 | Kiyoshi Inoue | フアイバスコ−プ |
US4784133A (en) * | 1987-01-28 | 1988-11-15 | Mackin Robert A | Working well balloon angioscope and method |
JPH02130601A (ja) * | 1988-11-11 | 1990-05-18 | Hitachi Ltd | 機器保護ユニット |
DE69432148T2 (de) * | 1993-07-01 | 2003-10-16 | Boston Scientific Ltd., St. Michael | Katheter zur bilddarstellung, zur anzeige elektrischer signale und zur ablation |
US5908445A (en) * | 1996-10-28 | 1999-06-01 | Ep Technologies, Inc. | Systems for visualizing interior tissue regions including an actuator to move imaging element |
JP2001258822A (ja) * | 2000-03-14 | 2001-09-25 | Olympus Optical Co Ltd | 内視鏡 |
-
2007
- 2007-03-16 JP JP2009500630A patent/JP4828633B2/ja active Active
- 2007-03-16 EP EP07758716A patent/EP1996065A4/fr not_active Withdrawn
- 2007-03-16 WO PCT/US2007/064195 patent/WO2007109554A2/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4976710A (en) | 1987-01-28 | 1990-12-11 | Mackin Robert A | Working well balloon method |
US6755811B1 (en) | 1999-08-25 | 2004-06-29 | Corazon Technologies, Inc. | Methods and devices for reducing the mineral content of a region of non-intimal vascular tissue |
US20050059954A1 (en) | 1999-08-25 | 2005-03-17 | Constantz Brent R. | Methods and devices for reducing the mineral content of a region of non-intimal vascular tissue |
US20040097788A1 (en) | 2002-05-30 | 2004-05-20 | Mourlas Nicholas J. | Apparatus and methods for coronary sinus access |
US20050119523A1 (en) | 2003-09-03 | 2005-06-02 | Guided Delivery Systems, Inc. | Cardiac visualization devices and methods |
WO2006083794A2 (fr) | 2005-02-02 | 2006-08-10 | Voyage Medical, Inc. | Systeme de visualisation et de manipulation de tissu |
Non-Patent Citations (1)
Title |
---|
See also references of EP1996065A4 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010187744A (ja) * | 2009-02-16 | 2010-09-02 | Hoya Corp | 内視鏡アクセサリおよび内視鏡 |
WO2012051292A1 (fr) * | 2010-10-13 | 2012-04-19 | Ethicon Endo-Surgery, Inc. | Procédés et dispositifs pour la création d'un espace mécanique au niveau d'un site chirurgical |
US8603078B2 (en) | 2010-10-13 | 2013-12-10 | Ethicon Endo-Surgery, Inc. | Methods and devices for guiding and supporting surgical instruments |
US10736512B2 (en) | 2011-09-22 | 2020-08-11 | The George Washington University | Systems and methods for visualizing ablated tissue |
US9014789B2 (en) | 2011-09-22 | 2015-04-21 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10076238B2 (en) | 2011-09-22 | 2018-09-18 | The George Washington University | Systems and methods for visualizing ablated tissue |
US12075980B2 (en) | 2011-09-22 | 2024-09-03 | The George Washington University | Systems and methods for visualizing ablated tissue |
US11559192B2 (en) | 2011-09-22 | 2023-01-24 | The George Washington University | Systems and methods for visualizing ablated tissue |
US10716462B2 (en) | 2011-09-22 | 2020-07-21 | The George Washington University | Systems and methods for visualizing ablated tissue |
US9084611B2 (en) | 2011-09-22 | 2015-07-21 | The George Washington University | Systems and methods for visualizing ablated tissue |
US11096584B2 (en) | 2013-11-14 | 2021-08-24 | The George Washington University | Systems and methods for determining lesion depth using fluorescence imaging |
US11457817B2 (en) | 2013-11-20 | 2022-10-04 | The George Washington University | Systems and methods for hyperspectral analysis of cardiac tissue |
US10722301B2 (en) | 2014-11-03 | 2020-07-28 | The George Washington University | Systems and methods for lesion assessment |
US10682179B2 (en) | 2014-11-03 | 2020-06-16 | 460Medical, Inc. | Systems and methods for determining tissue type |
US11559352B2 (en) | 2014-11-03 | 2023-01-24 | The George Washington University | Systems and methods for lesion assessment |
US11596472B2 (en) | 2014-11-03 | 2023-03-07 | 460Medical, Inc. | Systems and methods for assessment of contact quality |
US10143517B2 (en) | 2014-11-03 | 2018-12-04 | LuxCath, LLC | Systems and methods for assessment of contact quality |
US10779904B2 (en) | 2015-07-19 | 2020-09-22 | 460Medical, Inc. | Systems and methods for lesion formation and assessment |
US11172807B2 (en) | 2016-05-23 | 2021-11-16 | Olympus Corporation | Endoscope device and endoscope system with deforming insertion portion wire |
US12076081B2 (en) | 2020-01-08 | 2024-09-03 | 460Medical, Inc. | Systems and methods for optical interrogation of ablation lesions |
Also Published As
Publication number | Publication date |
---|---|
WO2007109554A3 (fr) | 2008-03-06 |
EP1996065A4 (fr) | 2011-03-30 |
JP2009531081A (ja) | 2009-09-03 |
JP4828633B2 (ja) | 2011-11-30 |
EP1996065A2 (fr) | 2008-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240032776A1 (en) | Precision control systems for tissue visualization and manipulation assemblies | |
US11337594B2 (en) | Coronary sinus cannulation | |
US7918787B2 (en) | Tissue visualization and manipulation systems | |
US11889982B2 (en) | Electrophysiology mapping and visualization system | |
US20220338712A1 (en) | Methods and apparatus for treatment of atrial fibrillation | |
US20190014975A1 (en) | Tissue visualization and manipulation system | |
US10278588B2 (en) | Electrophysiology mapping and visualization system | |
US8419613B2 (en) | Tissue visualization device | |
US9192287B2 (en) | Tissue visualization device and method variations | |
WO2007109554A2 (fr) | Systèmes de visualisation et manipulation de tissus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07758716 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009500630 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007758716 Country of ref document: EP |