WO2007108534A1 - 電圧制御発振回路 - Google Patents

電圧制御発振回路 Download PDF

Info

Publication number
WO2007108534A1
WO2007108534A1 PCT/JP2007/056025 JP2007056025W WO2007108534A1 WO 2007108534 A1 WO2007108534 A1 WO 2007108534A1 JP 2007056025 W JP2007056025 W JP 2007056025W WO 2007108534 A1 WO2007108534 A1 WO 2007108534A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
circuit
temperature
oscillation
frequency
Prior art date
Application number
PCT/JP2007/056025
Other languages
English (en)
French (fr)
Inventor
Mineyuki Iwaida
Yasuo Oba
Takeshi Fujii
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2007800100455A priority Critical patent/CN101405941B/zh
Priority to JP2008506346A priority patent/JP4542598B2/ja
Priority to US12/294,177 priority patent/US7982551B2/en
Publication of WO2007108534A1 publication Critical patent/WO2007108534A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/023Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/10Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range
    • H03L7/113Details of the phase-locked loop for assuring initial synchronisation or for broadening the capture range using frequency discriminator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop

Definitions

  • the present invention relates to a voltage controlled oscillation circuit (hereinafter referred to as a VCO (Voltage Contaminated Oiled Oscillator) circuit) including temperature detection means, and a wireless communication apparatus including the same.
  • VCO Voltage Contaminated Oiled Oscillator
  • Patent Document 1 discloses a phase locked loop circuit (hereinafter referred to as a PLL (Phase Locked Loop) circuit) using a VCO circuit having a wide oscillation frequency range.
  • PLL Phase Locked Loop
  • FIG. 11 is a block diagram showing a configuration of a PLL circuit 100 according to the prior art described in Patent Document 1.
  • the resonant circuit formed by the variable capacitance diode CV, the capacitors C2 and C3, and the inductor L1 connected in parallel to each other is a variable capacitance diode CV and a capacitor C2.
  • C 3 and the inductor L 1 have a predetermined resonance frequency, and the oscillator 6 generates and outputs an oscillation signal having an oscillation frequency corresponding to the resonance frequency using a resonance circuit.
  • the resonant frequency of the VCO circuit 200 is roughly adjusted by first applying the output voltage V of the constant voltage source 18 to the variable capacitance diode CV by the switch SW3 and controlling the switches SW1 and SW2 to select a band,
  • the voltage is finely adjusted by the PLL circuit 100 by applying a voltage from a low-pass filter (hereinafter referred to as LPF) 11 to the variable capacity diode CV via the voltage application terminal Tin by the switch SW3.
  • LPF low-pass filter
  • FIG. 12 and FIG. 13 show the voltage V applied to the variable capacitance diode CV (hereinafter referred to as “V”) which indicates the temperature change from low temperature to high temperature and high temperature to low temperature in the PLL circuit 100 of FIG.
  • V variable capacitance diode CV
  • the initial lock range which is the initial voltage range locked to the OSC, is set.
  • f to f indicate the lower limit or upper limit of each band B1 to B4.
  • variable capacitance applied voltage V is above the initial lock range ⁇
  • the PLL circuit 100 locks in the low temperature lock position P11. after that,
  • f to f are the lower limits or the respective bands B1 to B4.
  • variable capacitance applied voltage V is the lower limit ⁇ of the initial lock range
  • the PLL circuit 100 locks at the high temperature lock position P13. After that, when the temperature drops, the characteristics of the oscillation frequency f generally increase.
  • Patent document 1 Patent 3488180.
  • the PLL circuit 100 forces a predetermined temperature margin on both sides of the initial locking range in order to take into account the temperature fluctuation after the initial locking.
  • the problem is that the oscillation frequency range is narrowed by the temperature margin.
  • the oscillation frequency range is, for example, by increasing each set of switches SW1 and SW2 and capacitors CI and C2 connected in series to switches SW1 and SW2, respectively, in the resonance circuit of VCO circuit 200 in FIG. Expandable Force
  • the size of the resonant circuit is increased, and when the VCO circuit is incorporated into a semiconductor integrated circuit, the parasitic capacitance added to the resonant circuit is increased and the phase noise of the VCO circuit is degraded.
  • the current of the VCO circuit it is possible to suppress the influence of the phase noise deterioration due to the increase of the parasitic capacitance. In this case, the power consumption increases.
  • the frequency control sensitivity f / V
  • the oscillation frequency range can be expanded by setting the OSC T high, but in this case, the variable capacitance applied voltage
  • An object of the present invention is to solve the above problems and to provide a voltage controlled oscillation circuit having a wide oscillation frequency range that does not deteriorate phase noise, and a wireless communication apparatus including the same.
  • a voltage control oscillation circuit detects temperature and generates and outputs a first control voltage for coarse adjustment corresponding to the detected temperature; Switching means for selecting one of the second control voltage for fine adjustment and the first control voltage for coarse adjustment, and adjustment based on the control voltage selected by the switch means.
  • Oscillation circuit having an oscillation frequency corresponding to the resonance frequency using a resonance circuit having a predetermined resonance frequency and including a variable capacitance element having a capacitance value, at least one capacitor, and an inductor, and using the resonance circuit And an oscillating means for generating and outputting a signal.
  • the temperature detection means is operated by a power supply voltage, and the applied power supply voltage is controlled according to a power supply control signal inputted.
  • the voltage controlled oscillation circuit further includes current control means for controlling the current of the oscillation means in accordance with the temperature detected by the temperature detection means.
  • the temperature detection means holds the first control voltage constant when the switch means selects the first control voltage. It features.
  • the voltage controlled oscillator circuit further includes a phase locked loop circuit that generates the second control voltage based on an oscillation signal output from the voltage controlled oscillator circuit.
  • a wireless communication apparatus is a wireless communication apparatus that transmits and receives a wireless signal. And a frequency conversion means for frequency-converting a radio signal using the control type oscillation circuit and an oscillation signal from the voltage control oscillation circuit.
  • the temperature is detected and the first control voltage for coarse adjustment corresponding to the detected temperature is generated. Since the temperature detection means to output is provided, the temperature margin of the oscillation frequency can be reduced, and if the wide oscillation frequency range can be obtained without deteriorating the phase noise, an advantageous effect is produced.
  • FIG. 1 is a block diagram showing a configuration of a PLL circuit 1 according to a first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an example of a detailed configuration of a temperature detection circuit 4 and a voltage generation circuit 5 of FIG.
  • FIG. 3 A characteristic diagram showing the relationship between a variable capacitance applied voltage V and an oscillation frequency f, which shows temperature change to low temperature power and high temperature in the PLL circuit 1 of FIG.
  • FIG. 4 is a characteristic diagram showing the relationship between a variable capacitance applied voltage V and an oscillation frequency f, which shows temperature change to high temperature power and low temperature in the PLL circuit 1 of FIG.
  • FIG. 5 is a flowchart showing a channel selection process in the PLL circuit 1 of FIG. 1;
  • FIG. 6 is a block diagram showing a configuration of a PLL circuit 1A according to a second embodiment of the present invention.
  • FIG. 7 is a block diagram showing a configuration of a PLL circuit 1B according to a third embodiment of the present invention.
  • FIG. 8 is a block diagram showing a configuration of a PLL circuit 1C according to a fourth embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing an example of a detailed configuration of a temperature detection circuit 4C and a voltage generation circuit 5 of FIG.
  • FIG. 10 is a block diagram showing a configuration of a wireless communication apparatus provided with the PLL circuit 1 of FIG.
  • FIG. 11 is a block diagram showing a configuration of a PLL circuit 100 according to the prior art.
  • FIG. 12 is a characteristic diagram showing the relationship between the variable capacitance applied voltage V and the oscillation frequency f, which shows the temperature change from low temperature to high temperature in the PLL circuit 100 of FIG.
  • FIG. 13 is a characteristic diagram showing the relationship between the variable capacitance applied voltage V and the oscillation frequency f, in which the high-temperature force in the PLL circuit 100 of FIG. 11 also indicates the temperature change to a low temperature. Explanation of sign
  • LNA low noise amplifier
  • Tvc Power control terminal.
  • FIG. 1 is a block diagram showing a configuration of a PLL circuit 1 according to a first embodiment of the present invention.
  • a PLL circuit 1 is used, for example, to generate a local oscillation signal in a tuner or the like, and a VCO circuit 2, a reference frequency divider 7, an oscillation frequency divider 8, and a phase comparator 9 , A charge pump 10, a low pass filter (hereinafter referred to as "LPF") 11, a frequency adjustment controller 12, and a reference frequency generator 19.
  • LPF low pass filter
  • Each component in PLL circuit 1 is formed on one IC chip.
  • the reference frequency generator 19 generates a reference frequency signal having a predetermined reference frequency, and outputs the reference frequency signal to the reference frequency divider 7.
  • the reference frequency divider 7 divides the input reference frequency signal by a predetermined dividing ratio, and divides the divided reference frequency signal f into a phase comparator 9 and a frequency divider.
  • the oscillation frequency divider 8 receives the input oscillation frequency signal f
  • the OSC is divided by a predetermined division ratio, and the oscillation frequency signal f after division
  • the DIV is output to the phase comparator 9 and the frequency adjustment controller 12.
  • the phase comparator 9 compares the phase of the input reference frequency signal f after division and the phase of the oscillation frequency signal f after division, and
  • the DC voltage is output to the VCO circuit 2 through the charge pump 10 and the LPF 11 as the comparison result signal.
  • the frequency adjustment controller 12 receives the frequency-divided reference frequency signal f
  • the difference with the DIV frequency is detected, and according to the detected difference, selection of coarse adjustment and fine adjustment and selection of bands (details will be described later) are performed.
  • the VCO circuit 2 includes a temperature detection circuit 4, a voltage generation circuit 5, an oscillator 6, switches SW 1, SW 2, SW 3, capacitors CI, C 2, C 3, a variable capacitance diode CV, an inductance It comprises with LI.
  • the capacitors C2 and C3, the variable capacitance diode CV, the switches SW1 and SW2, and the inductance L1 are the capacitance values of the variable capacitance diode CV and the capacitors C2 and C3, and the inductance value of the inductor L1.
  • the temperature detection circuit 4 detects a temperature, and outputs a signal of a temperature detection result corresponding to the detected temperature to the voltage generation circuit 5.
  • the voltage generation circuit 5 generates and outputs a voltage corresponding to the signal of the temperature detection result from the temperature detection circuit 4.
  • the switch SW3 selects the contact a or the contact b according to the control signal input through the control terminal Tel, and applies the output voltage from the voltage generation circuit 5 to the variable capacitance diode CV when the contact a is selected.
  • the contact point b is selected, the DC voltage from the LPF 11 is applied to the variable capacitance diode CV via the voltage application terminal Tin.
  • the capacitor C1 and the variable capacitance diode CV are connected in series with each other to form a series circuit, and the series circuit is provided between the oscillator 6 and the ground potential.
  • the connection point of capacitor C1 and variable capacitance diode CV is connected to the common terminal of switch SW3.
  • the capacitance value of the variable capacitance diode CV is determined by the bias voltage applied via the switch SW3.
  • the capacitor C1 separates the DC bias voltage applied to the variable capacitance diode CV from the bias
  • the switches SW1 and SW2 are controlled by respective control signals inputted from the frequency adjustment controller 12 via the control terminals Tc2 and Tc3 respectively, and when turned on, the capacitors C2 and C3 are connected in series with the capacitor C1 and the variable capacitance diode CV. Connect in parallel with the circuit, and when off, disconnect capacitors C2 and C3, respectively, in series with capacitor C1 and capacitive diode CV.
  • the inductance L1 is connected in parallel with the series circuit of the capacitor C1 and the variable capacitance diode CV.
  • the oscillator 6 has an oscillation frequency f corresponding to the resonance frequency using the above-described resonance circuit.
  • the oscillation signal f output from the oscillation signal output terminal Tout is input to the oscillation frequency divider 8, and the phase comparator 9, the charge pump
  • FIG. 2 is a circuit diagram showing an example of a detailed configuration of temperature detection circuit 4 and voltage generation circuit 5 of FIG.
  • the temperature detection circuit 4 includes current sources 13 and 14, resistors R1 and R2, and a comparator 15.
  • the voltage generation circuit 5 includes constant voltage sources 21 and 22 and a switch SW4. To be configured.
  • Current source 13 is connected to power supply potential Vdd, and changes with a predetermined temperature characteristic of voltage V between base emitter of bipolar transistor constituting current source 13
  • the voltage source 14 is connected to the power supply potential Vdd, and outputs a constant current regardless of temperature change.
  • the resistors Rl and R2 respectively convert the current supplied by the current sources 13 and 14 into a voltage and apply them to the non-inverted input terminal (+) and the inverted input terminal (one) of the comparator 15, respectively.
  • a predetermined threshold determined by the resistance ratio of the resistors R1 and R2 is obtained.
  • the output voltage of the comparator 15 can be changed according to whether it is less than the value temperature.
  • the comparator 15 has a voltage level that is lower than a predetermined threshold temperature and OV at a low temperature, and is a predetermined power supply voltage at a temperature higher than a predetermined threshold! /. Output a signal having a voltage level.
  • the switch SW4 of the voltage generation circuit 5 outputs the output voltage V of the constant voltage source 21 through the contact a and the contact a of the switch SW3 of FIG. Is applied to the variable capacitance diode CV as a control voltage for coarse adjustment, and the output of the comparator 15 is
  • the output voltage V of the constant voltage source 22 is used as the control voltage for coarse adjustment through the contact b and the contact a of the switch SW3 in FIG.
  • FIG. 3 is a characteristic diagram showing the temperature change from low temperature to high temperature in the PLL circuit 1 of FIG. 1 and showing the relationship between the variable capacitance applied voltage V and the oscillation frequency f.
  • the solid line is
  • the temperature detected by the temperature detection circuit 4 is lower than or equal to a predetermined threshold temperature
  • the relationship between the variable capacitance applied voltage V and the oscillation frequency f is shown, and the alternate long and short dash line indicates
  • V and V are the output lower limit voltage and output upper limit charge of charge pump 10 respectively
  • bands B1 to B4 Indicates pressure.
  • the characteristics of bands B1 to B4 are the relationship between the variable capacitance applied voltage V and the oscillation frequency f by the combination of the switches SWl and SW2 of the VCO circuit 2 in FIG.
  • switch SW1 and SW2 are both on in band B1, only switch SW1 is on in band B2, only switch SW2 is on in band B3, and switch SW1 and SW2 are both off in band B4. It is. f to f
  • ALl AL5 indicates the lower limit or upper limit oscillation frequency in each band B1 to B4, and oscillates from oscillation frequency f to oscillation frequency f in band B1, and oscillation frequency f in band B2
  • ALl AL2 AL2 oscillates from oscillation frequency f, and in band B3, oscillation frequency f to oscillation frequency f
  • AL3 AL3 It oscillates at AL4 and oscillates from oscillation frequency f to oscillation frequency f in band B4.
  • the VCO circuit 2 in Fig. 1 is in the frequency range from the oscillation frequency f to the oscillation frequency f.
  • V is the output voltage of the constant voltage source 22
  • V is the output voltage of the constant voltage source 21
  • V is the lower limit value of the initial lock range.
  • the DC voltage from the LPF 11 is applied to the variable capacitance diode CV by W 3, and the oscillation frequency f is finely adjusted and locked by the PLL circuit 1. In addition, because of the fine adjustment operation,
  • T 2 OSC is locked at the cold lock position PI, which is f. After that, if the temperature rises, oscillation
  • the characteristic of the frequency f is totally reduced.
  • variable capacitance application voltage V decreases.
  • variable capacitance diode cv The temperature of the low-voltage side of the variable capacitance applied voltage V is applied to the variable capacitance diode cv.
  • the initial lock range can be expanded by the reduced temperature margin, that is, the oscillation frequency range can be expanded.
  • the temperature margin is reduced, and the initial lock range and the oscillation frequency range are expanded as compared with FIG. 12 describing the operation of the conventional PLL circuit 100.
  • FIG. 4 is a characteristic diagram showing the relationship between the variable capacitance applied voltage V and the oscillation frequency f, which shows temperature change to high temperature power and low temperature in the PLL circuit 1 of FIG.
  • the solid line is
  • V and V and bands B1 to B4 are the same as in FIG. f ⁇ f is each band B1
  • Circuit 2 has an oscillation frequency in the frequency range from oscillation frequency f to oscillation frequency f
  • V is the output voltage of the constant voltage source 22 and V indicates the upper limit value of the initial lock range when the lower limit value of the initial lock range is the voltage V
  • the DC voltage from the LPF 11 is applied to the variable capacitance diode CV, and the oscillation frequency f is finely adjusted and locked by the PLL circuit 1.
  • the fine adjustment operation at the time of coarse adjustment The states of the set switches SW1 and SW2 are not changed.
  • the variable capacitance application voltage V is the lower limit V of the initial lock range, and the oscillation frequency f is f
  • the characteristics increase as a whole, but the PLL circuit 1 changes the variable capacitance applied voltage V to the voltage V.
  • variable capacitance application voltage V increases.
  • the voltage V is applied to the variable capacity diode CV by the switch SW4 of the voltage generation circuit 5, and the temperature margin on the high voltage side of the variable capacity applied voltage V is determined.
  • the initial lock range can be expanded by the reduced temperature margin, that is, the oscillation frequency range can be expanded.
  • the temperature margin is reduced, and the initial lock range and the oscillation frequency range are expanded! / Sl compared to FIG. 13 which describes the operation of the PLL circuit 100 according to the prior art.
  • FIG. 5 is a flowchart showing a tuning process when the PLL circuit 1 of FIG. 1 is used as a tuner.
  • the target oscillation frequency is f.
  • step S50 of FIG. 5 the temperature is detected by the temperature detection circuit 4, and it is determined in step S51 whether the detected temperature is lower than a predetermined threshold temperature. At this time, the process proceeds to step S52, and when NO, the process proceeds to step S53. In step S52, after the output voltage V of the constant voltage source 21 is selected and output by the switch SW4, the step is performed.
  • step S54 After the output voltage V of the constant voltage source 22 is selected and output by the switch SW4 in step S53, the process proceeds to step S54. Note that steps S50 to S53 are temperature determination processing.
  • step S 54 the control voltage for coarse adjustment from voltage generation circuit 5 is applied to variable capacitance diode CV by switch SW 3, and in step S 55, for example, band B 3 is selected as an initial value by switches SW 1 and SW 2. .
  • step S56 the frequency adjustment controller 12 divides the reference frequency f and the divided oscillation frequency f.
  • a control signal for reselecting an appropriate band according to the difference is applied to switches SW1 and SW2 to detect an oscillation frequency f.
  • step S59 the oscillation frequency f is equal to or higher than the lower limit frequency f and the upper limit
  • step S60 a DC voltage which is a control voltage for fine adjustment from the LPF 11 is applied to the variable capacitance diode CV by the switch SW 3 to thereby form a closed loop with the PLL circuit 1 and the VCO circuit 2, step S6 1 So that the oscillation frequency f becomes the target oscillation frequency f by the PLL circuit 1
  • FIG. 10 is a block diagram showing a configuration of a wireless communication apparatus provided with the PLL circuit 1 of FIG.
  • the wireless communication apparatus includes a PLL circuit 1, an antenna 30, a circulator 31, a low noise amplifier (hereinafter referred to as LNA) 32, and a band pass filter (hereinafter referred to as BPF) 33, 36. , Mixers 34 and 37, a power amplifier (hereinafter PA) 35, and a non-base processing circuit 38.
  • PLL circuit 1 an antenna 30, a circulator 31, a low noise amplifier (hereinafter referred to as LNA) 32, and a band pass filter (hereinafter referred to as BPF) 33, 36.
  • BPF band pass filter
  • the radio reception signal received by antenna 30 is amplified to a level necessary for low-pass frequency conversion via circulator 31 and LNA 32, and then desired by BPF 33. It filters out the radio reception signal in the reception band and outputs it.
  • the mixer 34 receives the oscillation signal f from the PLL circuit 1 and the desired reception band from the BPF 33.
  • the signal is mixed with the radio reception signal of the frequency converter to convert the frequency to an intermediate frequency signal having a predetermined intermediate frequency and output to the baseband processing circuit 38.
  • the transmission signal from the baseband processing circuit 38 is mixed with the oscillation signal f from the PLL circuit 1 by the mixer 37 and transmitted with a predetermined transmission frequency.
  • the transmission signal in the desired transmission band is band pass filtered by the BPF 36 and transmitted wirelessly via the PA 35, the circulator 31 and the antenna 30.
  • the temperature detection circuit 4 for detecting a temperature, and a control voltage for coarse adjustment corresponding to the detected temperature are generated and output. Since the voltage generation circuit 5 is provided, the temperature margin of the oscillation frequency can be reduced, and a wide oscillation frequency range which does not deteriorate the phase noise can be obtained.
  • a force having two temperature divisions at low temperature and high temperature in the temperature detection circuit 4 and the voltage generation circuit 5, a force having two temperature divisions at low temperature and high temperature.
  • the present invention is not limited to this configuration, and three or more temperatures may be used. It may have a degree division.
  • temperature detection circuit 4 outputs a plurality of different temperature detection signals depending on the temperature, and voltage generation circuit 5 operates so as to switch a plurality of output voltages according to the input temperature detection signal. Good. At this time, the output voltage of the voltage generation circuit 5 may be continuously changed according to the temperature detected by the temperature detection circuit 4.
  • temperature detection circuit 4 and voltage generation circuit 5 have the configuration shown in FIG. 2, the present invention is not limited to this configuration, and any other configuration can be used as long as it can output a voltage corresponding to temperature. A little
  • the present invention is not limited to this configuration, and one or three capacitors may be provided to obtain a desired oscillation frequency range and frequency control sensitivity. More than one capacitor may be connected in parallel with the variable capacitance diode CV.
  • the resonance circuit includes a variable capacitance diode CV, capacitors C2 and C3, and switches SW1 and SW2.
  • the present invention is not limited to this configuration.
  • a capacitive element using a gate capacitance of a MOS transistor or the like may be used. It may be another configuration.
  • VCO circuit 2 is an unbalanced type.
  • the present invention is not limited to this configuration, and may be a balanced type using, for example, a differential circuit.
  • the current source 13 outputs a current that changes according to the temperature characteristic of the voltage V between the base and the emitter of the bipolar transistor that constitutes the current source 13.
  • the voltage source 14 outputs a constant current regardless of the temperature change.
  • the present invention is not limited to this configuration, and the current source 14 is set to output a current that changes in the temperature characteristic of the voltage V between the base and the emitter of the bipolar transistor that constitutes the current source 14.
  • FIG. 6 is a block diagram showing a configuration of a PLL circuit 1A according to a second embodiment of the present invention.
  • a PLL circuit 1A according to the present embodiment includes a VCO circuit 2A in place of the VCO circuit 2 of FIG. 1 in comparison with the PLL circuit 1 according to the first embodiment shown in FIG. Is different.
  • the VCO circuit 2A differs from the VCO circuit 2 of FIG. 1 in that the temperature detection circuit 4A and the voltage generation circuit 5A are provided instead of the temperature detection circuit 4 and the voltage generation circuit 5.
  • the PLL circuit 1A is the same as the PLL circuit 1 according to the first embodiment shown in FIG. 1 in the other points, and the detailed description of the components denoted by the same reference numerals is omitted.
  • temperature detection circuit 4A and voltage generation circuit 5A are operated by the power supply voltage, and the applied power supply voltage is controlled in accordance with the power supply control signal inputted through power supply control terminal Tvc. Ru. Specifically, at the time of coarse adjustment, that is, when the output voltage of the voltage generation circuit 5A is selected by the switch SW3, the temperature detection circuit 4A and the voltage generation circuit 5A are applied with predetermined power supply voltages, and at the time of fine adjustment That is, when the DC voltage from the LPF 11 is selected by the switch SW3 via the voltage application terminal Tin, the power supply voltage of the temperature detection circuit 4A and the voltage generation circuit 5A is cut off or the current is reduced by the power control signal.
  • the other operations are the same as those of the PLL circuit 1 of FIG. 1 according to the first embodiment, and therefore the description thereof is omitted.
  • the power supply voltage is applied to the temperature detection circuit 4A and the voltage generation circuit 5A at the time of coarse adjustment of the oscillation frequency, and the temperature at the time of fine adjustment. Since the power supply voltage of the detection circuit 4A and the voltage generation circuit 5A is cut off or the current is reduced, power consumption can be reduced compared to the PLL circuit 1 according to the first embodiment.
  • FIG. 7 is a block diagram showing a configuration of a PLL circuit 1B according to a third embodiment of the present invention.
  • a PLL circuit 1B according to the present embodiment includes a VCO circuit 2B instead of the VCO circuit 2 of FIG. 1 in comparison with the PLL circuit 1 according to the first embodiment shown in FIG. Is different.
  • VCO circuit 2B includes oscillator 6B instead of oscillator 6 in comparison with VCO circuit 2 of FIG. 1, and a current control circuit connected between temperature detection circuit 4 and oscillator 6B.
  • the difference is that the road 20 is further provided.
  • the PLL circuit 1B is the same as the PLL circuit 1 according to the first embodiment shown in FIG. 1 in the other points, and the detailed description of the components given the same reference numerals is omitted. .
  • current control circuit 20 controls the current of oscillator 6 B according to the signal of the temperature detection result from temperature detection circuit 4. Specifically, when the signal of the temperature detection result of the temperature detection circuit 4 indicates that it is higher than the predetermined temperature, the current of the oscillator 6B is increased, and the signal of the temperature detection result of the temperature detection circuit 4 is When it is indicated that the temperature is below the predetermined threshold temperature, the current of the oscillator 6 B is decreased, thereby optimizing the current flowing to the oscillator 6 according to the operating temperature. In this case, since the signal of the temperature detection result of the temperature detection circuit 4 is shared by the voltage generation circuit 5 and the current control circuit 20, the current flowing to the oscillator 6B according to the operating temperature is increased with little increase in circuit scale. It can be optimized to maintain good phase noise characteristics over a wide range of temperatures and reduce the current consumption of oscillator 6B.
  • the temperature detection result of the temperature detection circuit 4 is used to optimize the current flowing to the oscillator 6B in accordance with the operating temperature. Power consumption can be reduced as compared to the PLL circuit 1 according to the first embodiment.
  • FIG. 8 is a block diagram showing a configuration of a PLL circuit 1C according to a fourth embodiment of the present invention.
  • a PLL circuit 1C according to the present embodiment includes a VCO circuit 2C instead of the VCO circuit 2 of FIG. 1 in comparison with the PLL circuit 1 according to the first embodiment shown in FIG. Is different.
  • the VCO circuit 2C is different from the VCO circuit 2 of FIG. 1 in that a temperature detection circuit 4C is provided instead of the temperature detection circuit 4 of FIG.
  • the PLL circuit 1C is the same as the PLL circuit 1 according to the first embodiment shown in FIG. 1 in the other points, and the detailed description of the components given the same reference numerals is omitted.
  • FIG. 9 is a circuit diagram showing a detailed configuration of temperature detection circuit 4 C and voltage generation circuit 5.
  • a temperature detection circuit 4C is different from the temperature detection circuit 4 of the PLL circuit 1 according to the first embodiment shown in FIG. 2 in the resistance R3 connected between the resistance R2 and the ground potential.
  • it further comprises a switch SW5 controlled on and off by the output signal of the comparator 15 and connected in parallel to the resistor R3.
  • the temperature detection circuit 4 C is controlled by the output signal from the comparator 15, and the value of the resistor connected to the current source 14 by the switch SW 5 is the resistance value of the resistor R 2 and the resistor R 2. It switches with the sum of resistance value of resistance and resistance value of resistance R3.
  • the reference voltage on the current source 14 side can be switched by the output signal from the comparator 15, and the same operation as that of the hysteresis comparator becomes possible. Since a lockup time of several milliseconds or less is generally required for channel selection, the resistance value of resistor R3 should be set to have a hysteresis width that is equal to or greater than the temperature fluctuation range within this time.
  • the temperature detection circuit 4C has hysteresis characteristics.
  • the output voltage of the voltage generation circuit 5 changes during execution of the channel selection process.
  • the output voltage of the voltage generation circuit 5 is coarsely adjusted when the switch SW3 in FIG. 8 selects the output voltage of the voltage generation circuit 5 Can be held constant. Also, since the resistance value is switched by the switch SW5! /, Only the current consumption does not increase.
  • the voltage generation circuit can be used during coarse adjustment of the oscillation frequency without increasing the current consumption.
  • the output voltage of 5 can be held constant.
  • the temperature detection circuit 4C has the circuit configuration of FIG. 9 as an example of the configuration for realizing the hysteresis characteristic, but the present invention is not limited to this configuration, and the other configurations are not limited. It may be a configuration. Further, although the output voltage of the voltage generation circuit 5 is held constant by the hysteresis characteristics, the output logic of the temperature detection circuit 4C may be held using a logic circuit or the like.
  • each PLL circuit 1, 1A, IB, 1C When a radio apparatus using each PLL circuit 1, 1A, IB, 1C according to the first to fourth embodiments is used as a tuner or the like, broadcasts in a wide frequency range can be received and good. High-quality video and audio signals can be reproduced by the proper phase noise characteristics.
  • the first control voltage for rough adjustment corresponding to the detected temperature is detected. Since the temperature detection means for generating and outputting pressure is provided, the temperature margin of the oscillation frequency can be reduced, and a wide oscillation frequency range can be obtained without deteriorating the phase noise.
  • the voltage controlled oscillation circuit according to the present invention and the wireless communication apparatus provided with the same can be used, for example, in a communication system or the like.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

 VCO回路(2)は温度検出回路(4)と電圧発生回路(5)とスイッチ(SW3)と共振回路と発振器(6)とを含む。温度検出回路(4)は温度を検出し、電圧発生回路(5)は検出された温度に対応する粗調整用の電圧を発生して出力する。スイッチ(SW3)は、微調整用のDC電圧及び粗調整用の電圧の一方を選択する。共振回路は、スイッチ(SW3)により選択された電圧に基づいて調整される容量値を有する可変容量ダイオード(CV)とコンデンサ(C2,C3)とインダクタ(L1)とを含み、所定の共振周波数を有する。発振器(6)は共振回路を用いて共振周波数に対応する発振周波数(fOSC)を有する発振信号を発生して出力する。

Description

明 細 書
電圧制御発振回路
技術分野
[0001] 本発明は、温度検出手段を備えた電圧制御発振回路 (以下、 VCO (Voltage Contr oiled Oscillator)回路という。)及びそれ備えた無線通信装置に関する。
背景技術
[0002] 近年、放送のディジタルィ匕により移動端末での受信が可能となったが、移動端末で の受信に用いられる VCO回路には、小型かつ低消費電力等の特性に加えて、広い 周波数範囲の放送信号を受信し、車載等の使用温度範囲が広い環境でも安定に動 作することが求められる。これに対して、広い発振周波数範囲を有する VCO回路を 用いた位相同期ループ回路(以下、 PLL (Phase Locked Loop)回路という。)が特許 文献 1に開示されている。
[0003] 図 11は特許文献 1に記載された従来技術に係る PLL回路 100の構成を示すプロ ック図である。図 11の PLL回路 100の VCO回路 200において、互いに並列接続さ れた、可変容量ダイオード CVと、コンデンサ C2及び C3と、インダクタ L1とによって構 成された共振回路は、可変容量ダイオード CV、コンデンサ C2, C3及びインダクタ L 1の各値によって決定される所定の共振周波数を有し、発振器 6は、共振回路を用い て共振周波数に対応する発振周波数を有する発振信号を発生して出力する。 VCO 回路 200の共振周波数は、まず、スィッチ SW3により定電圧源 18の出力電圧 Vを 可変容量ダイオード CVに印加し、スィッチ SW1, SW2を制御してバンドを選択する ことにより粗調整された後、スィッチ SW3により電圧印加端子 Tinを介して低域通過 フィルタ(以下、 LPFという。) 11からの電圧を可変容量ダイオード CVに印加すること により PLL回路 100によって微調整される。
[0004] 図 12及び図 13は、それぞれ図 11の PLL回路 100における、低温から高温及び高 温から低温への温度変化を示す、可変容量ダイオード CVへの印加電圧 V (以下、
T
可変容量印加電圧 V
T t ヽぅ。 )と発振周波数 f との
OSC 関係を表す特性図である。発振 回路は一般的に温度特性を持っため、温度特性に応じて PLL回路 100を所望の周 波数範囲内の発振周波数 f
OSCにロックさせた初期の電圧範囲である初期ロック範囲 が設定される。図 12において、 f 〜f は、各バンド B1〜B4における下限又は上
BLl BL5
限発振周波数を示す。低温時、例えば可変容量印加電圧 Vが初期ロック範囲の上 τ
限値 Vであるとき低温ロック位置 P11において PLL回路 100がロックする。その後、
2
温度が上昇した場合、発振周波数 f の特性が全体的に低下するが、 PLL回路 10
OSC
0によって可変容量印加電圧 Vが電圧 V になる高温ロック位置 P12までロック状態
T H
を維持する。また、図 13において、 f 〜f は、各バンド B1〜B4における下限又
BH1 BH5
は上限発振周波数を示す。高温時、可変容量印加電圧 Vが初期ロック範囲の下限 τ
値 Vであるとき高温ロック位置 P13において PLL回路 100がロックする。その後、温 度が低下した場合、発振周波数 f の特性が全体的に上昇するが、 PLL回路 100
OSC
によって可変容量印加電圧 Vが電圧 Vになる低温ロック位置 P14までロック状態を
T L
維持する。
[0005] 特許文献 1:特許第 3488180号公報。
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記従来技術に係る PLL回路 100は、図 12及び図 13に示すように 、初期ロック後の温度変動を考慮するために、初期ロック範囲の両側に所定の温度 マージンを確保しておく必要があり、温度マージンの分だけ発振周波数範囲が狭く なるという問題点があつた。
[0007] 発振周波数範囲は、例えば図 11の VCO回路 200の共振回路において、スィッチ SW1, SW2と、それぞれスィッチ SW1, SW2に直列に接続されるコンデンサ CI, C 2との各組を増やすことで広げることができる力 共振回路の規模が増大し、それによ り、 VCO回路を半導体集積回路に組み込んだとき、共振回路に付加される寄生容 量が増大して VCO回路の位相雑音が劣化する。 VCO回路の電流を増加させること によって、寄生容量の増大による位相雑音の劣化の影響を抑制することができる力 その場合、消費電力が増加する。また、周波数制御感度 (f /V )
OSC Tを高く設定する ことによって発振周波数範囲を広げることができるが、その場合、可変容量印加電圧
Vに重畳された電圧雑音に対する発振周波数 f の変動が大きくなり、 VCO回路 の位相雑音が劣化する。位相雑音が劣化した VCO回路を用いた無線通信装置に おいて、多値の位相変調された信号を扱うと、ビットエラーレートが低下し、高品位な 映像及び音声やデータの再生が困難になるという問題点があった。
[0008] 本発明の目的は、以上の問題点を解決し、位相雑音を劣化させることなぐ広い発 振周波数範囲を有する電圧制御発振回路及びそれを備えた無線通信装置を提供 することにある。
課題を解決するための手段
[0009] 第 1の発明に係る電圧制御発振回路は、温度を検出して前記検出された温度に対 応する粗調整用の第 1の制御電圧を発生して出力する温度検出手段と、入力された 微調整用の第 2の制御電圧及び前記粗調整用の第 1の制御電圧のいずれか一方を 選択するためのスィッチ手段と、前記スィッチ手段により選択された制御電圧に基づ いて調整される容量値を有する可変容量素子と、少なくとも 1つのコンデンサと、イン ダクタとを含み、所定の共振周波数を有する共振回路と、前記共振回路を用いて前 記共振周波数に対応する発振周波数を有する発振信号を発生して出力する発振手 段とを備えたことを特徴とする。
[0010] 上記電圧制御発振回路において、前記温度検出手段は電源電圧により動作し、入 力される電源制御信号に応じて、印加される電源電圧を制御されることを特徴とする
[0011] また、上記電圧制御発振回路において、前記温度検出手段により検出された温度 に応じて、前記発振手段の電流を制御する電流制御手段をさらに備えたことを特徴 とする。
[0012] さらに、上記電圧制御発振回路において、前記温度検出手段は、前記スィッチ手 段が前記第 1の制御電圧を選択しているとき、前記第 1の制御電圧を一定に保持す ることを特徴とする。
[0013] またさらに、上記電圧制御発振回路において、当該電圧制御発振回路により出力 される発振信号に基づいて前記第 2の制御電圧を発生する位相同期ループ回路を さらに備えたことを特徴とする。
[0014] 第 2の発明に係る無線通信装置は、無線信号を送受信する無線通信装置におい て、前記上記制御型発振回路と、前記電圧制御発振回路からの発振信号を用いて 、無線信号を周波数変換する周波数変換手段とを備えたことを特徴とする。
発明の効果
[0015] 従って、本発明に係る電圧制御発振回路及びそれを備えた無線通信装置によれ ば、温度を検出して検出された温度に対応する粗調整用の第 1の制御電圧を発生し て出力する温度検出手段を備えたので、発振周波数の温度マージンを削減でき、位 相雑音を劣化させることなく広!ヽ発振周波数範囲を得られると!ヽぅ有利な効果を奏す る。
図面の簡単な説明
[0016] [図 1]本発明の第 1の実施形態に係る PLL回路 1の構成を示すブロック図である。
[図 2]図 1の温度検出回路 4及び電圧発生回路 5の詳細構成の一例を示す回路図で ある。
[図 3]図 1の PLL回路 1における低温力 高温への温度変化を示す、可変容量印加 電圧 Vと発振周波数 f との関係を表す特性図である。
T OSC
[図 4]図 1の PLL回路 1における高温力 低温への温度変化を示す、可変容量印加 電圧 Vと発振周波数 f との関係を表す特性図である。
T OSC
[図 5]図 1の PLL回路 1における選局処理を示すフローチャートである。
[図 6]本発明の第 2の実施形態に係る PLL回路 1Aの構成を示すブロック図である。
[図 7]本発明の第 3の実施形態に係る PLL回路 1Bの構成を示すブロック図である。
[図 8]本発明の第 4の実施形態に係る PLL回路 1Cの構成を示すブロック図である。
[図 9]図 8の温度検出回路 4C及び電圧発生回路 5の詳細構成の一例を示す回路図 である。
[図 10]図 1の PLL回路 1を備えた無線通信装置の構成を示すブロック図である。
[図 11]従来技術に係る PLL回路 100の構成を示すブロック図である。
[図 12]図 11の PLL回路 100における低温から高温への温度変化を示す、可変容量 印加電圧 Vと発振周波数 f との関係を表す特性図である。
T OSC
[図 13]図 11の PLL回路 100における高温力も低温への温度変化を示す、可変容量 印加電圧 Vと発振周波数 f との関係を表す特性図である。 符号の説明
1, 1A, IB, lC 'PLL回路、 2, 2A, 2B, 2C- VCO回路、
4, 4A, 4C…温度検出回路、
5, 5A…電圧発生回路、
6, 6B…発振器、
7…基準周波数分周器、
8…発振周波数分周器、
9···位相比較器、
10···チャージポンプ、
11---LPF,
12…周波数調整コントローラ、
13, 14···電流源、
15···比較器、
19···基準周波数発生器、
20···電流制御回路、
21, 22···定電圧源、
30···アンテナ、
31···サーキユレータ、
32…低雑音増幅器 (LNA)、
33, 36…帯域通過フィルタ(BPF)、
34, 37· "混合器、
35"'電カ増幅器 八)、
38…ベースバンド処理回路、 CI, C2, C3"'コンデンサ、 CV…可変容量ダイオード、
L1…インダクタンス、
Rl, R2, R3"-抵抗、 SW1, SW2, SW3, SW4, SW5- "スィッチ、
Tin…電圧印加端子、
Tel, Tc2, Tc3"-制御端子、
Tout…発振信号出力端子、
Tvc…電源制御端子。
発明を実施するための最良の形態
[0018] 以下、本発明に係る実施形態について図面を参照して説明する。なお、以下の各 実施形態にぉ 、て、同様の構成要素につ 、ては同一の符号を付して 、る。
[0019] 第 1の実施形態.
図 1は、本発明の第 1の実施形態に係る PLL回路 1の構成を示すブロック図である 。図 1において、 PLL回路 1は、例えばチューナ等において局部発振信号を発生す るために用いられ、 VCO回路 2と、基準周波数分周器 7と、発振周波数分周器 8と、 位相比較器 9と、チャージポンプ 10と、低域通過フィルタ(以下、 LPFという。) 11と、 周波数調整コントローラ 12と、基準周波数発生器 19とを備えて構成される。 PLL回 路 1内の各構成要素は、 1つの ICチップ上に形成される。
[0020] 基準周波数発生器 19は、所定の基準周波数を有する基準周波数信号を発生して 基準周波数分周器 7に出力する。基準周波数分周器 7は、入力された基準周波数信 号を、所定の分周比で分周し、分周後の基準周波数信号 f を位相比較器9及び周
REF
波数調整コントローラ 12に出力する。発振周波数分周器 8は、入力された発振周波 数信号 f
OSCを所定の分周比で分周し、分周後の発振周波数信号 f
DIVを位相比較器 9 及び周波数調整コントローラ 12に出力する。位相比較器 9は、入力された分周後の 基準周波数信号 f の位相と分周後の発振周波数信号 f の位相とを比較して、比
REF DIV
較結果の信号をチャージポンプ 10及び LPF 11を介して DC電圧を VCO回路 2に出 力する。周波数調整コントローラ 12は、入力された分周後の基準周波数信号 f の
REF
周波数と分周後の発振周波数信号 f
DIVの周波数との差を検出し、検出された差に応 じて、粗調整及び微調整の選択及びバンドの選択 (詳細は後述)を行う。
[0021] VCO回路 2は、温度検出回路 4と、電圧発生回路 5と、発振器 6と、スィッチ SW1, SW2, SW3と、コンデンサ CI, C2, C3と、可変容量ダイオード CVと、インダクタンス LIとを備えて構成される。 VCO回路 2において、コンデンサ C2, C3と、可変容量ダ ィオード CVと、スィッチ SW1, SW2と、インダクタンス L1とは、可変容量ダイオード C V及びコンデンサ C2, C3の各容量値、及び、インダクタ L1のインダクタンス値により 決定される共振周波数を有する共振回路を構成する。温度検出回路 4は、温度を検 出し、検出された温度に対応する温度検出結果の信号を電圧発生回路 5に出力す る。電圧発生回路 5は、温度検出回路 4からの温度検出結果の信号に対応する電圧 を発生して出力する。スィッチ SW3は、制御端子 Telを介して入力された制御信号 に応じて接点 a又は接点 bを選択し、接点 aが選択されたとき、電圧発生回路 5からの 出力電圧を可変容量ダイオード CVに印加し、接点 bが選択されたとき、電圧印加端 子 Tinを介して LPF11からの DC電圧を可変容量ダイオード CVに印加する。コンデ ンサ C1及び可変容量ダイオード CVは、互いに直列に接続されて直列回路を構成し 、直列回路は発振器 6及び接地電位との間に設けられる。コンデンサ C1及び可変容 量ダイオード CVの接続点はスィッチ SW3の共通端子に接続される。可変容量ダイ オード CVの容量値は、スィッチ SW3を介して印加されるバイアス電圧によって決定 される。コンデンサ C1は可変容量ダイオード CVに印加された直流バイアス電圧と発 振器 6のバイアス電圧とを切り離して 、る。
スィッチ SW1及び SW2は、周波数調整コントローラ 12からそれぞれ制御端子 Tc2 及び Tc3を介して入力される各制御信号によって制御され、オンのとき、それぞれコ ンデンサ C2及び C3をコンデンサ C1及び可変容量ダイオード CVの直列回路と並列 に接続する一方、オフのとき、それぞれコンデンサ C2及び C3をコンデンサ C1及び 可変容量ダイオード CVの直列回路カゝら切り離す。インダクタンス L1は、コンデンサ C 1及び可変容量ダイオード CVの直列回路と並列に接続される。発振器 6は、上記共 振回路を用いて共振周波数に対応する発振周波数 f
OSCを有する発振信号を発生し
、発振信号出力端子 Toutを介して出力する。発振信号出力端子 Toutカゝら出力され る発振信号 f は、発振周波数分周器 8に入力され、位相比較器 9、チャージポンプ
OSC
:^及び!^ :!:!を介して、再び VCO回路 2の電圧印加端子 Tinに微調整用の制御 電圧である DC電圧として印加され、これ〖こより、可変容量ダイオード CVの容量値が 所定値に維持されるようにループ制御が行われ、 PLL回路 1はロックされる。 [0023] 図 2は、図 1の温度検出回路 4及び電圧発生回路 5の詳細構成の一例を示す回路 図である。図 2において、温度検出回路 4は、電流源 13, 14と、抵抗 Rl, R2と、比較 器 15とを備えて構成され、電圧発生回路 5は、定電圧源 21, 22と、スィッチ SW4とを 備えて構成される。電流源 13は、電源電位 Vddに接続され、電流源 13を構成する バイポーラトランジスタのベースーェミッタ間電圧 V の所定の温度特性で変化する
BE
電流を出力するように設定され、電圧源 14は、電源電位 Vddに接続され、温度変化 に拘わらず一定の電流を出力する。抵抗 Rl, R2はそれぞれ電流源 13, 14により供 給される電流を電圧に変換して、それぞれ比較器 15の非反転入力端子(+ )及び反 転入力端子(一)に印加する。比較器 15に入力される各電圧は、一方が所定の温度 特性に基づいて変化し、他方が一定の基準電圧に維持されるため、温度が抵抗 R1 , R2の抵抗比によって決まる所定のしきい値温度未満であるか否かに応じて比較器 15の出力電圧を変化させることができる。例えば、比較器 15は、所定のしきい値温 度よりも低 、低温時には OVである電圧レベルを有し、所定のしき!/、値温度よりも高!ヽ 高温時には所定の電源電圧である電圧レベルを有する信号を出力する。電圧発生 回路 5のスィッチ SW4は、比較器 15の出力信号の電圧レベルが OVであるとき、即ち 低温時、接点 a及び図 1のスィッチ SW3の接点 aを介して定電圧源 21の出力電圧 V を粗調整用の制御電圧として可変容量ダイオード CVに印加し、比較器 15の出力 し
信号の電圧レベルが電源電圧であるとき、即ち高温時、接点 b及び図 1のスィッチ S W3の接点 aを介して定電圧源 22の出力電圧 Vを粗調整用の制御電圧として可変 容量ダイオード CVに印加する。なお、出力電圧 V と出力電圧 Vとの間には、次式(
1し 1
1)で表される関係式が成り立つ。
[0024] [数 1]
V <V (1)
1L 1
[0025] 以上のように構成された PLL回路 1につ 、て、以下、図 3〜図 5を参照して、その動 作を説明する。
[0026] 図 3は、図 1の PLL回路 1における低温から高温への温度変化を示す、可変容量 印加電圧 Vと発振周波数 f との関係を表す特性図である。図 3において、実線は
T OSC
、温度検出回路 4により検出された温度が所定のしきい値温度以下である低温時の 可変容量印加電圧 Vと発振周波数 f との関係を示し、一点鎖線は、低温時よりも
T OSC
温度が上昇した場合の高温時の可変容量印加電圧 Vと発振周波数 f との関係を
T OSC
示す。 V及び Vは、それぞれチャージポンプ 10の出力下限電圧及び出力上限電
L H
圧を示す。バンド B1〜: B4の特性は、図 1の VCO回路 2のスィッチ SWl, SW2のォ ン及びオフの各組み合わせによる可変容量印加電圧 Vと発振周波数 f との関係
T OSC
を表し、例えば、バンド B1においてスィッチ SW1及び SW2が共にオンであり、バンド B2においてスィッチ SW1のみがオンであり、バンド B3においてスィッチ SW2のみが オンであり、バンド B4においてスィッチ SW1及び SW2が共にオフである。 f 〜f
ALl AL5 は、各バンド B1〜B4における下限又は上限発振周波数を示し、バンド B1において 発振周波数 f から発振周波数 f で発振し、バンド B2において発振周波数 f か
ALl AL2 AL2 ら発振周波数 f で発振し、バンド B3において発振周波数 f から発振周波数 f
AL3 AL3 AL4 で発振し、バンド B4において発振周波数 f から発振周波数 f で発振する。従つ
AL4 AL5
て、図 1の VCO回路 2は、発振周波数 f から発振周波数 f までの周波数範囲内
ALl AL5
である発振周波数 f
OSCを有する発振信号を出力する。また、 V
1は定電圧源 22の出 力電圧であり、 V は定電圧源 21の出力電圧であり、 Vは初期ロック範囲の下限値
1し 2
が電圧 V であるときの初期ロック範囲の上限値を示す。
1し
図 3において、まず、低温時、温度発生回路 5のスィッチ SW4により電圧発生回路 5の定電圧源 21の出力電圧 V が可変容量ダイオード CVに印加され、その後、スィ
1し
ツチ SWl, SW2によりコンデンサ C2, C3を制御信号に応じた組み合わせで可変容 量ダイオード CVへ並列接続することによってバンド B1〜: B4のうちいずれかの 1つの バンドを選択する。これにより、発振周波数 f が粗調整される。その後、スィッチ S
OSC
W3により LPF11からの DC電圧が可変容量ダイオード CVに印加され、 PLL回路 1 により発振周波数 f が微調整されてロックされる。なお、微調整の動作にぉ ヽて、
OSC
粗調整時に設定されたスィッチ SWl, SW2の状態は変更されない。温度が充分低 いとき、可変容量印加電圧 Vは初期ロック範囲の上限値 Vであり、発振周波数 f
T 2 OSC は f である低温ロック位置 PIでロックされる。その後、温度が上昇した場合、発振
AL2
周波数 f の特性が全体的に低下する力 PLL回路 1によって可変容量印加電圧 V
OSC
が電圧 V になる高温ロック位置 P2までロック状態を維持する。
T H [0028] 従って、ロック直後の温度が充分低いとき、可変容量印加電圧 Vは低下する方向
T
にはほとんど変化しないと判断し、電圧発生回路 5のスィッチ SW4により電圧 V を
1し 可変容量ダイオード cvに印加して、可変容量印加電圧 Vの低電圧側の温度マー
T
ジンを削減する。それにより、削減された温度マージン分だけ初期ロック範囲を拡大 し、即ち、発振周波数範囲を拡大することができる。図 3において、従来技術に係る P LL回路 100の動作を説明した図 12に比較して、温度マージンが低減され、初期ロッ ク範囲及び発振周波数範囲が拡大して ヽる。
[0029] 図 4は、図 1の PLL回路 1における高温力 低温への温度変化を示す、可変容量 印加電圧 Vと発振周波数 f との関係を表す特性図である。図 4において、実線は
T OSC
、温度検出回路 4により検出された温度が所定のしきい値温度よりも高い高温時の可 変容量印加電圧 Vと発振周波数 f との関係を示し、一点鎖線は、高温時よりも温
T OSC
度が低下した場合の低温時の可変容量印加電圧 Vと発振周波数 f との関係を示
T OSC
す。 V及び V及びバンド B1〜B4は、図 3と同様である。 f 〜f は、各バンド B1
L H AH1 AH5
〜B4における下限又は上限発振周波数を示し、バンド B1において発振周波数 f
AH1 から発振周波数 f で発振し、バンド B2において発振周波数 f から発振周波数 f
AH2 AH2 A で発振し、バンド B3において発振周波数 f から発振周波数 f で発振し、バン
H3 AH3 AH4
ド B4において発振周波数 f から発振周波数 f で発振する。従って、図 1の VCO
AH4 AH5
回路 2は、発振周波数 f から発振周波数 f までの周波数範囲内である発振周波
AH1 AH5
数 f
OSCを有する発振信号を出力する。また、 V
1は、定電圧源 22の出力電圧であり、 V は、初期ロック範囲の下限値が電圧 Vであるときの初期ロック範囲の上限値を示す
2H
[0030] 図 4において、まず、高温時、温度発生回路 5のスィッチ SW4により電圧発生回路 の定電圧源 22の出力電圧 Vが可変容量ダイオード CVに印加され、その後、スイツ チ SWl, SW2によりコンデンサ C2, C3を制御信号に応じた組み合わせで可変容量 ダイオード CVへ並列接続することによってバンド B1〜: B4のうちいずれ力 1つのバン ドを選択する。これにより、発振周波数 f が粗調整される。その後、スィッチ SW3で
OSC
LPF11からの DC電圧が可変容量ダイオード CVに印加され、 PLL回路 1により発振 周波数 f が微調整されてロックされる。なお、微調整の動作において、粗調整時に 設定されたスィッチ SW1, SW2の状態は変更されない。温度が充分高いとき、可変 容量印加電圧 Vは初期ロック範囲の下限値 Vであり、発振周波数 f は f である
T 1 OSC AH1 高温ロック位置 P3でロックされる。その後、温度が低下した場合、発振周波数 f の
OSC
特性が全体的に上昇するが、 PLL回路 1によって可変容量印加電圧 Vが電圧 Vに
T L
なる低温ロック位置 P4までロック状態を維持する。
[0031] 従って、ロック直後の温度が充分高いとき、可変容量印加電圧 Vは上昇する方向
T
にはほとんど変化しないと判断し、電圧発生回路 5のスィッチ SW4により電圧 Vを可 変容量ダイオード CVに印加して、可変容量印加電圧 Vの高電圧側の温度マージン
T
を削減する。それにより、削減された温度マージン分だけ初期ロック範囲を拡大し、 即ち、発振周波数範囲を拡大することができる。図 4において、従来技術に係る PLL 回路 100の動作を説明した図 13に比較して、温度マージンが低減され、初期ロック 範囲及び発振周波数範囲が拡大して!/ヽる。
[0032] 従って、図 3及び図 4のように各バンド B1〜B4の初期ロック範囲を広げることで、位 相雑音を劣化させることなぐ広い発振周波数範囲を実現することができる。
[0033] 図 5は、図 1の PLL回路 1をチューナに用いた場合の選局処理を示すフローチヤ一 トである。図 5において、一例として、目標発振周波数が f である場合について説
AL2
明する。
[0034] まず、図 5の S50において、温度検出回路 4により温度を検出し、ステップ S51にお いて、検出された温度が所定のしきい値温度よりも低いか否かが判断され、 YESのと きはステップ S52に進む一方、 NOのときはステップ S53に進む。ステップ S52におい て、スィッチ SW4により定電圧源 21の出力電圧 V を選択して出力した後、ステップ
1L
S54に進む。ステップ S53において、スィッチ SW4により定電圧源 22の出力電圧 V を選択して出力した後、ステップ S54に進む。なお、ステップ S50〜S53を温度判定 処理とする。
[0035] ステップ S54において、スィッチ SW3により電圧発生回路 5からの粗調整用の制御 電圧を可変容量ダイオード CVに印加し、ステップ S55において、スィッチ SW1, SW 2により初期値として例えばバンド B3を選択する。次に、ステップ S56において、周波 数調整コントローラ 12により、分周された基準周波数 f と分周された発振周波数 f
REF DI との差を検出し、ステップ S57において、周波数調整コントローラ 12により、検出さ
V
れた差に応じて適切なバンドを再選択するような制御信号を、スィッチ SW1, SW2 へ与え、発振周波数 f を検出する。次に、ステップ S58において、周波数調整コン
OSC
トローラ 12により、分周された基準周波数 f と分周された発振周波数 f との差を
REF DIV
検出し、ステップ S59において、発振周波数 f が下限周波数 f 以上かつ上限周
OSC AL1
波数 f 以下であるか否かが判断され、 YESのときはステップ S60に進む一方、 NO
AL2
のときはステップ S57に戻って処理を繰り返す。ステップ S60において、スィッチ SW 3により、 LPF 11からの微調整用の制御電圧である DC電圧を可変容量ダイオード C Vに印加し、それにより PLL回路 1と VCO回路 2で閉ループが構成され、ステップ S6 1において、 PLL回路 1によって発振周波数 f が目標発振周波数 f となるように
OSC AL2
可変容量印加電圧 Vを調整する。
T
[0036] 図 10は、図 1の PLL回路 1を備えた無線通信装置の構成を示すブロック図である。
図 10において、無線通信装置は、 PLL回路 1と、アンテナ 30と、サーキユレータ 31と 、低雑音増幅器 (以下、 LNAという。) 32と、帯域通過フィルタ(以下、 BPFという。) 3 3, 36と、混合器 34, 37と、電力増幅器(以下、 PAと 、う。) 35と、ベースノンド処理 回路 38とを備えて構成される。
[0037] 図 10において、無線信号の受信時、アンテナ 30により受信された無線受信信号は 、サーキユレータ 31及び LNA32を介して低域周波数変換に必要なレベルに増幅さ れた後、 BPF33により所望の受信帯域の無線受信信号を帯域通過ろ波して出力す る。混合器 34は、 PLL回路 1からの発振信号 f と、 BPF33からの所望の受信帯域
OSC
の無線受信信号とを混合することにより所定の中間周波数を有する中間周波信号に 周波数変換してベースバンド処理回路 38に出力する。
[0038] また、無線信号の送信時、ベースバンド処理回路 38からの送信信号は、混合器 37 により、 PLL回路 1からの発振信号 f と混合されて所定の送信周波数を有する送
OSC
信周波信号に周波数変換された後、 BPF36により所望の送信帯域の送信信号を帯 域通過ろ波し、 PA35、サーキユレータ 31及びアンテナ 30を介して無線送信される。
[0039] 以上説明したように、本実施形態に係る PLL回路 1によれば、温度を検出する温度 検出回路 4と、検出された温度に対応する粗調整用の制御電圧を発生して出力する 電圧発生回路 5とを備えたので、発振周波数の温度マージンを削減でき、位相雑音 を劣化させることなぐ広い発振周波数範囲を得ることができる。
[0040] なお、本実施形態においては、温度検出回路 4及び電圧発生回路 5で、低温時及 び高温時の 2つの温度区分を有する力 本発明はこの構成に限らず、 3つ以上の温 度区分を有してもよい。その場合、温度検出回路 4は温度に応じてそれぞれ異なる 複数の温度検出信号を出力し、電圧発生回路 5は、入力される温度検出信号に応じ て、複数の出力電圧を切り替えるように動作すればよい。また、このとき、温度検出回 路 4によって検出された温度によって電圧発生回路 5の出力電圧が連続的に変化す るように構成されてもよい。
[0041] また、温度検出回路 4及び電圧発生回路 5は図 2に示した構成を有するが、本発明 はこの構成に限らず、温度に対応した電圧を出力できる構成であれば、他の構成で ちょい。
[0042] さらに、可変容量ダイオード CVと並列に 2つのコンデンサ CI, C2を接続した力 本 発明はこの構成に限らず、所望の発振周波数範囲と周波数制御感度を得られるよう に、 1個若しくは 3個以上のコンデンサを可変容量ダイオード CVと並列に接続しても よい。
[0043] またさらに、共振回路は、可変容量ダイオード CV、コンデンサ C2, C3及びスィッチ SW1及び SW2を含む力 本発明はこの構成に限らず、例えば MOSトランジスタの ゲート容量を利用した容量素子等を用いた他の構成であってもよい。
[0044] また、 VCO回路 2は不平衡型であった力 本発明はこの構成に限らず、例えば差 動回路を用いて平衡型としてもょ ヽ。
[0045] またさらに、温度検出回路 4において、電流源 13は電流源 13を構成するバイポー ラトランジスタのベースーェミッタ間電圧 V の温度特性で変化する電流を出力する
BE
ように設定され、電圧源 14は、温度変化に拘わらず一定の電流を出力した。しかし、 本発明はこの構成に限らず、電流源 14が電流源 14を構成するバイポーラトランジス タのベースーェミッタ間電圧 V の温度特性で変化する電流を出力するように設定さ
BE
れ、電圧源 13が温度変化に拘わらず一定の電流を出力してもよぐ電流源 13, 14が 互いに異なる温度特性で変化する電流を出力する構成であれば、他の構成であつ てもよい。
[0046] 第 2の実施形態.
図 6は、本発明の第 2の実施形態に係る PLL回路 1Aの構成を示すブロック図であ る。図 6において、本実施形態に係る PLL回路 1Aは、図 1に示した第 1の実施形態 に係る PLL回路 1と比較して、図 1の VCO回路 2に代えて VCO回路 2Aを備えた点 が異なる。 VCO回路 2Aは、図 1の VCO回路 2に比較して、温度検出回路 4及び電 圧発生回路 5に代えて温度検出回路 4A及び電圧発生回路 5Aを備えた点が異なる 。それ以外の点については、 PLL回路 1Aは、図 1に示した第 1の実施形態に係る PL L回路 1と同様であり、同一符号を付した構成要素についての詳細な説明は省略す る。
[0047] 図 6において、温度検出回路 4A及び電圧発生回路 5Aは、電源電圧により動作し 、電源制御端子 Tvcを介して入力される電源制御信号に応じて、印加される電源電 圧を制御される。具体的には、粗調整時、即ちスィッチ SW3により電圧発生回路 5A 力もの出力電圧が選択されているとき、温度検出回路 4A及び電圧発生回路 5Aは 所定の電源電圧を印加され、微調整時、即ちスィッチ SW3により電圧印加端子 Tin を介して LPFl 1からの DC電圧が選択されているとき、電源制御信号により温度検出 回路 4Aと電圧発生回路 5Aの電源電圧を遮断又は電流を減少させる。その他の動 作は第 1の実施形態に係る図 1の PLL回路 1と同様であるため説明を省略する。
[0048] 以上説明したように、本実施形態に係る PLL回路 1Aによれば、発振周波数の粗調 整時に温度検出回路 4A及び電圧発生回路 5Aに電源電圧が印加され、微調整時 には温度検出回路 4Aと電圧発生回路 5Aの電源電圧を遮断又は電流を減少させる ため、第 1の実施形態に係る PLL回路 1と比較して消費電力を低減できる。
[0049] 第 3の実施形態.
図 7は、本発明の第 3の実施形態に係る PLL回路 1Bの構成を示すブロック図であ る。図 7において、本実施形態に係る PLL回路 1Bは、図 1に示した第 1の実施形態 に係る PLL回路 1と比較して、図 1の VCO回路 2に代えて VCO回路 2Bを備えた点 が異なる。 VCO回路 2Bは、図 1の VCO回路 2に比較して、発振器 6に代えて発振器 6Bを備えた点、及び、温度検出回路 4と発振器 6Bとの間に接続された電流制御回 路 20をさらに備えた点が異なる。それ以外の点については、 PLL回路 1Bは、図 1に 示した第 1の実施形態に係る PLL回路 1と同様であり、同一符号を付した構成要素 につ 、ての詳細な説明は省略する。
[0050] 図 7において、電流制御回路 20は、温度検出回路 4からの温度検出結果の信号に 応じて発振器 6Bの電流を制御する。具体的には、温度検出回路 4の温度検出結果 の信号が所定のしき 、値温度よりも高 、ことを示すとき、発振器 6Bの電流を増加させ 、温度検出回路 4の温度検出結果の信号が所定のしきい値温度以下であることを示 すとき、発振器 6Bの電流を減少させ、それにより、発振器 6に流す電流を使用温度 によって最適化する。この場合、温度検出回路 4の温度検出結果の信号を電圧発生 回路 5と電流制御回路 20とで兼用するので、回路規模をほとんど増大させずに、使 用温度に応じて発振器 6Bに流す電流を最適化し、良好な位相雑音特性を広!ヽ温度 範囲で維持するとともに発振器 6Bの消費電流を減少させることができる。
[0051] 以上説明したように、本実施形態に係る PLL回路 1Bによれば、温度検出回路 4の 温度検出結果を用 、て使用温度に応じて発振器 6Bに流す電流を最適化するので、 第 1の実施形態に係る PLL回路 1と比較して消費電力を低減することができる。
[0052] 第 4の実施形態.
図 8は、本発明の第 4の実施形態に係る PLL回路 1Cの構成を示すブロック図であ る。図 8において、本実施形態に係る PLL回路 1Cは、図 1に示した第 1の実施形態 に係る PLL回路 1と比較して、図 1の VCO回路 2に代えて VCO回路 2Cを備えた点 が異なる。 VCO回路 2Cは、図 1の VCO回路 2に比較して、図 1の温度検出回路 4に 代えて温度検出回路 4Cを備えた点が異なる。それ以外の点については、 PLL回路 1Cは、図 1に示した第 1の実施形態に係る PLL回路 1と同様であり、同一符号を付し た構成要素についての詳細な説明は省略する。
[0053] 図 9は、温度検出回路 4C及び電圧発生回路 5の詳細構成を示す回路図である。
図 9において、温度検出回路 4Cは、図 2に示した第 1の実施形態に係る PLL回路 1 の温度検出回路 4と比較して、抵抗 R2と接地電位との間に接続された抵抗 R3をさら に備え、比較器 15の出力信号によってオン及びオフを制御されかつ抵抗 R3に並列 に接続されたスィッチ SW5をさらに備える。 [0054] 図 9において、温度検出回路 4Cは、比較器 15からの出力信号によって制御される スィッチ SW5によって、電流源 14に接続される抵抗の値を、抵抗 R2の抵抗値と、抵 抗 R2の抵抗値及び抵抗 R3の抵抗値の和とで切替える。従って、比較器 15からの出 力信号によって、電流源 14側の基準電圧を切替えることができ、ヒステリシスコンパレ ータと同様の動作が可能になる。一般に選局時には数ミリ秒以下のロックアップ時間 を必要とするため、この時間内の温度変動幅以上のヒステリシス幅を有するように、抵 抗 R3の抵抗値を設定しておけばょ 、。
[0055] このような構成であれば、仮に温度検出回路 4Cが所定のしきい値温度付近で動作 していても、温度検出回路 4Cがヒステリシス特性を有するため、ヒステリシス幅以下の 温度変動であれば、選局処理実行中に電圧発生回路 5の出力電圧が変化すること はなぐ図 8のスィッチ SW3が電圧発生回路 5の出力電圧を選択している粗調整時、 電圧発生回路 5の出力電圧を一定に保持することができる。またスィッチ SW5により 抵抗値を切替えて!/、るだけなので、消費電流の増加もな 、。
[0056] 以上説明したように、本実施形態に係る PLL回路 1Cによれば、温度検出回路 4C がヒステリシス特性を有するので、消費電流を増加させることなぐ発振周波数の粗調 整時、電圧発生回路 5の出力電圧を一定に保持することができる。
[0057] なお、本実施形態にぉ 、て、温度検出回路 4Cは、ヒステリシス特性を実現するため の構成の一例として図 9の回路構成を有するが、本発明はこの構成に限らず、他の 構成でもよい。また、ヒステリシス特性によって電圧発生回路 5の出力電圧を一定に 保持する構成としたが、ロジック回路等を用いて温度検出回路 4Cの出力論理を保持 する構成でもよい。
[0058] なお、第 1乃至第 4の実施形態に係る各 PLL回路 1, 1A, IB, 1Cを用いた無線装 置をチューナ等に用いた場合、広い周波数範囲の放送を受信できるとともに、良好 な位相雑音特性によって高品位な映像信号及び音声信号を再生することができる。
[0059] また、第 1乃至第 4の実施形態に係る各 PLL回路 1, 1A, IB, 1Cを用いた無線装 置を通信システム等に用いた場合、異なる周波数帯域を有する通信規格に対応でき ると共に、良好な位相雑音特性によって高品位な映像信号、音声信号及びデータ信 号を受送信することができる。 産業上の利用可能性
[0060] 以上説明したように、本発明に係る電圧制御発振回路及びそれを備えた無線通信 装置によれば、温度を検出して検出された温度に対応する粗調整用の第 1の制御電 圧を発生して出力する温度検出手段を備えたので、発振周波数の温度マージンを 削減でき、位相雑音を劣化させることなく広い発振周波数範囲を得られる。
[0061] 本発明に係る電圧制御発振回路及びそれを備えた無線通信装置は、例えば、チュ ーナゃ通信システム等に利用することができる。

Claims

請求の範囲
[1] 温度を検出して前記検出された温度に対応する粗調整用の第 1の制御電圧を発生 して出力する温度検出手段と、
入力された微調整用の第 2の制御電圧及び前記粗調整用の第 1の制御電圧のい ずれか一方を選択するためのスィッチ手段と、
前記スィッチ手段により選択された制御電圧に基づいて調整される容量値を有する 可変容量素子と、少なくとも 1つのコンデンサと、インダクタとを含み、所定の共振周 波数を有する共振回路と、
前記共振回路を用いて前記共振周波数に対応する発振周波数を有する発振信号 を発生して出力する発振手段とを備えたことを特徴とする電圧制御発振回路。
[2] 前記温度検出手段は電源電圧により動作し、入力される電源制御信号に応じて、 印加される電源電圧を制御されることを特徴とする請求項 1記載の電圧制御発振回 路。
[3] 前記温度検出手段により検出された温度に応じて、前記発振手段の電流を制御す る電流制御手段をさらに備えたことを特徴とする請求項 1又は 2記載の電圧制御発振 回路。
[4] 前記温度検出手段は、前記スィッチ手段が前記第 1の制御電圧を選択しているとき
、前記第 1の制御電圧を一定に保持することを特徴とする請求項 1乃至 3のうちのい ずれか 1つに記載の電圧制御発振回路。
[5] 当該電圧制御発振回路により出力される発振信号に基づいて前記第 2の制御電圧 を発生する位相同期ループ回路をさらに備えたことを特徴とする請求項 1乃至 4のう ちのいずれか 1つに記載の電圧制御発振回路。
[6] 無線信号を送受信する無線通信装置にお!、て、
請求項 1乃至 5のうちのいずれ力 1つに記載の電圧制御発振回路と、
前記電圧制御発振回路からの発振信号を用いて、無線信号を周波数変換する周 波数変換手段とを備えたことを特徴とする無線通信装置。
PCT/JP2007/056025 2006-03-23 2007-03-23 電圧制御発振回路 WO2007108534A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800100455A CN101405941B (zh) 2006-03-23 2007-03-23 电压控制振荡电路
JP2008506346A JP4542598B2 (ja) 2006-03-23 2007-03-23 電圧制御発振回路
US12/294,177 US7982551B2 (en) 2006-03-23 2007-03-23 Voltage controlled oscillator having temperature detecting circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006080292 2006-03-23
JP2006-080292 2006-03-23

Publications (1)

Publication Number Publication Date
WO2007108534A1 true WO2007108534A1 (ja) 2007-09-27

Family

ID=38522558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056025 WO2007108534A1 (ja) 2006-03-23 2007-03-23 電圧制御発振回路

Country Status (4)

Country Link
US (1) US7982551B2 (ja)
JP (1) JP4542598B2 (ja)
CN (1) CN101405941B (ja)
WO (1) WO2007108534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104891A1 (en) * 2009-03-09 2010-09-16 Qualcomm Incorporated Vco tuning with temperature compensation

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110260761A1 (en) * 2008-10-17 2011-10-27 Freescale Semiconductor, Inc. Temperature compensation in a phase-locked loop
KR101541706B1 (ko) * 2009-01-19 2015-08-05 삼성전자주식회사 온도 감지 발진 회로 및 이를 포함하는 반도체 메모리 장치
US8140040B1 (en) * 2009-09-11 2012-03-20 Qualcomm Atheros, Inc Method and apparatus for a temperature compensated phase locked loop supporting a continuous stream receiver in an integrated circuit
CN102118160B (zh) * 2009-12-30 2013-10-23 意法半导体研发(深圳)有限公司 产生时钟信号的电路和方法
JP2011155489A (ja) * 2010-01-27 2011-08-11 Toshiba Corp 半導体集積回路装置および発振周波数較正方法
US8248167B2 (en) * 2010-06-28 2012-08-21 Mstar Semiconductor, Inc. VCO frequency temperature compensation system for PLLs
TWI408526B (zh) * 2010-11-19 2013-09-11 Richtek Technology Corp 具自動溫度補償之多段式電壓調節電路及方法
US8674772B2 (en) * 2011-04-01 2014-03-18 Mediatek Inc. Oscillating signal generator utilized in phase-locked loop and method for controlling the oscillating signal generator
US20120326795A1 (en) * 2011-06-27 2012-12-27 Broadcom Corporation Vco calibration scheme
US9004756B2 (en) 2012-04-10 2015-04-14 Freescale Semiconductor, Inc. Temperature sensor
JP5306512B1 (ja) * 2012-04-27 2013-10-02 ラピスセミコンダクタ株式会社 半導体装置、計測機器、及び補正方法
US9344094B2 (en) * 2013-03-15 2016-05-17 Intel Corporation Temperature compensated PLL calibration
US9407199B2 (en) * 2014-08-27 2016-08-02 Freescale Semiconductor, Inc. Integrated circuit comprising a frequency dependent circuit, wireless device and method of adjusting a frequency
US9515666B2 (en) 2014-08-27 2016-12-06 Freescale Semiconductor, Inc. Method for re-centering a VCO, integrated circuit and wireless device
CN106130544B (zh) * 2016-06-15 2021-10-29 上海兆芯集成电路有限公司 自动频带校准方法与系统
EP3340467B1 (en) * 2016-12-22 2022-10-05 NXP USA, Inc. Digitally controlled oscillator with temperature compensation
CN107356348B (zh) * 2017-07-20 2019-07-05 京东方科技集团股份有限公司 一种温度传感器及其温度检测方法
CN111756371A (zh) * 2020-07-03 2020-10-09 上海奥令科电子科技有限公司 温度补偿方法和辅助电路、压控振荡装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144922U (ja) * 1984-08-27 1986-03-25 日本電信電話株式会社 デイジタル制御形温度補償水晶発振器
JPH05304467A (ja) * 1992-04-24 1993-11-16 Ricoh Co Ltd 発振回路
JPH07106960A (ja) * 1993-10-05 1995-04-21 Fujitsu Ltd 位相ロックループ回路
JPH09246958A (ja) * 1996-03-04 1997-09-19 Matsushita Electron Corp 電圧制御発振回路の周波数調整装置
JPH11220872A (ja) * 1998-02-03 1999-08-10 Oki Electric Ind Co Ltd チャージポンプ回路の駆動回路
JP3488180B2 (ja) * 2000-05-30 2004-01-19 松下電器産業株式会社 周波数シンセサイザ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55118207A (en) 1979-03-05 1980-09-11 Toshiba Corp Non-linear type characteristic compensation system
JPH0714996B2 (ja) 1984-08-09 1995-02-22 東レ株式会社 ポリエステルの製造方法
JPH01192205A (ja) 1988-01-27 1989-08-02 Kinseki Ltd 圧電発振器の温度補償回路
JP3901693B2 (ja) * 2003-03-28 2007-04-04 沖電気工業株式会社 発振回路及び発振回路制御方法
JP4514485B2 (ja) * 2004-03-19 2010-07-28 パナソニック株式会社 高周波電力増幅器
US7164325B2 (en) * 2004-03-30 2007-01-16 Qualcomm Incorporated Temperature stabilized voltage controlled oscillator
US7463097B2 (en) * 2006-12-20 2008-12-09 Nxp B.V. Systems involving temperature compensation of voltage controlled oscillators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144922U (ja) * 1984-08-27 1986-03-25 日本電信電話株式会社 デイジタル制御形温度補償水晶発振器
JPH05304467A (ja) * 1992-04-24 1993-11-16 Ricoh Co Ltd 発振回路
JPH07106960A (ja) * 1993-10-05 1995-04-21 Fujitsu Ltd 位相ロックループ回路
JPH09246958A (ja) * 1996-03-04 1997-09-19 Matsushita Electron Corp 電圧制御発振回路の周波数調整装置
JPH11220872A (ja) * 1998-02-03 1999-08-10 Oki Electric Ind Co Ltd チャージポンプ回路の駆動回路
JP3488180B2 (ja) * 2000-05-30 2004-01-19 松下電器産業株式会社 周波数シンセサイザ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104891A1 (en) * 2009-03-09 2010-09-16 Qualcomm Incorporated Vco tuning with temperature compensation

Also Published As

Publication number Publication date
JPWO2007108534A1 (ja) 2009-08-06
CN101405941A (zh) 2009-04-08
US7982551B2 (en) 2011-07-19
US20090231044A1 (en) 2009-09-17
CN101405941B (zh) 2011-06-22
JP4542598B2 (ja) 2010-09-15

Similar Documents

Publication Publication Date Title
WO2007108534A1 (ja) 電圧制御発振回路
US6683509B2 (en) Voltage controlled oscillators
US7689191B2 (en) Semiconductor integrated circuit having built-in PLL circuit
US6639474B2 (en) Adjustable oscillator
JP5036966B2 (ja) 広帯域同調範囲および低位相ノイズをもつlc発振器
US7599673B2 (en) Receiver architectures utilizing coarse analog tuning and associated methods
US20100207693A1 (en) Frequency synthesizer with multiple tuning loops
US20100203848A1 (en) Fixed bandwidth lo-gen
US20120142283A1 (en) Wireless communication apparatus
US7479824B2 (en) Dual mode voltage supply circuit
US20070146082A1 (en) Frequency synthesizer, wireless communications device, and control method
JP2842847B2 (ja) Pllシンセサイザ回路
US7098747B2 (en) Precision tunable voltage controlled oscillation and applications thereof
US7394329B2 (en) Analog varactor
US7126430B2 (en) PLL circuit
EP1689083B1 (en) Am/fm radio receiver and local oscillator circuit used therein
US10826432B2 (en) Quadrature oscillator
US7782144B2 (en) Active filter in PLL circuit
US7573970B2 (en) Prescaler and buffer
US20090036080A1 (en) Multiple PLL high frequency receiver
JP2005285938A (ja) 容量可変回路、発振回路、及び無線通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739466

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008506346

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780010045.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12294177

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739466

Country of ref document: EP

Kind code of ref document: A1