WO2007108481A1 - Substrate cleaning method and substrate cleaning apparatus - Google Patents

Substrate cleaning method and substrate cleaning apparatus Download PDF

Info

Publication number
WO2007108481A1
WO2007108481A1 PCT/JP2007/055724 JP2007055724W WO2007108481A1 WO 2007108481 A1 WO2007108481 A1 WO 2007108481A1 JP 2007055724 W JP2007055724 W JP 2007055724W WO 2007108481 A1 WO2007108481 A1 WO 2007108481A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
substrate
water
ozone water
cleaning
Prior art date
Application number
PCT/JP2007/055724
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Matsumura
Nobuko Hagiwara
Original Assignee
Eiji Matsumura
Nobuko Hagiwara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiji Matsumura, Nobuko Hagiwara filed Critical Eiji Matsumura
Publication of WO2007108481A1 publication Critical patent/WO2007108481A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/26Cleaning or polishing of the conductive pattern

Definitions

  • the present invention relates to a substrate cleaning method and a substrate cleaning apparatus for cleaning a substrate such as a semiconductor substrate such as a semiconductor wafer, a glass substrate, an electronic circuit module, and a liquid crystal display using ozone water. .
  • Patent Document 1 discloses a technique for generating ozone water used for cleaning a semiconductor substrate by mixing ozone (ozone gas) generated by an ozone generator into water to be treated via an ejector (hereinafter referred to as “ 1st prior art ").
  • Patent Document 2 discloses a method of cleaning a semiconductor substrate using ozone water supplemented with an organic solvent such as ethanol or isopropyl alcohol (hereinafter referred to as “second prior art” as appropriate). The organic solvent is added to extend the ozone half-life in ozone water, which is said to be 2 to 5 minutes when stored in a container with a large opening such as a washing tank.
  • an organic solvent such as ethanol or isopropyl alcohol
  • Patent Document 3 describes a technique for removing a photoresist film from pure ozone-containing water under conditions including a temperature of approximately 22 ° C to 45 ° C and a dissolved ozone concentration of approximately 30 ppm or more (hereinafter referred to as “ 3rd prior art ”).
  • Ozone-containing pure water diffuses ozone through a porous tube with micropores of about 1 ⁇ m in ultrapure water.
  • the above temperature condition according to the third prior art is realized by a method of dissolving ozone in heated pure water.
  • Patent Document 4 an electrolyte containing iron bubbles, manganese, calcium, sodium, magnesium ions and other mineral ions is mixed in an aqueous solution containing ozone bubbles having a diameter of 10 to 50 m, and the mixed aqueous solution is submerged in water. It is described that nanobubbles of 50 to 500 nm can be obtained by discharging.
  • the aqueous solution containing the nanobubbles is referred to below as “conventional ozone water” and the conventional ozone water generation technique is referred to as “fourth conventional technique” as appropriate.
  • Patent Document 1 Japanese Patent Laid-Open No. 2006-49453 (see paragraph 0034)
  • Patent Document 2 JP 2004-79649 A (see paragraphs 0011 and 0018)
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-33300 (see paragraphs 0011, 0018, 0019, 0022)
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-246293 (see paragraphs 0016-0025, FIG. 1) Disclosure of the Invention
  • the ozone solubility of the generated ozone water cannot be sufficiently increased only by using the ejector. For this reason, a large amount of ozone is degassed, and the desired cleaning effect cannot be obtained.
  • the main reason why the ozone solubility cannot be increased is that the dissolved ozone bubbles have a particle size of approximately 1 m (micrometer mouth meter) or more, so the ozone bubbles receive buoyancy from the ozone water and rise to the water surface. In the point. In order to make it difficult for the ozone bubbles to rise to the surface of the water, the particle size of the dissolved ozone bubbles should be suppressed to approximately 500 nm or less.
  • the first to third prior arts described above do not realize ozone water that includes only ozone bubbles having a particle size of 500 nm or less.
  • the fourth technique described above is a force that seems to provide ozone water containing ozone bubbles with a particle size of 50-500. This requires electrolyte contamination.
  • Ozone water mixed with electrolytes (additives) such as iron, mangan, calcium, sodium, magnesium ions, and other mineral ions may adversely affect the semiconductor substrate. Suitable for cleaning! Needless to say, an organic solvent needs to be mixed into the ozone water provided by the second prior art, and such an organic solvent is not suitable for cleaning a semiconductor substrate.
  • the third prior art requires a solution to the adjustment of the amount of organic solvent added, but it is natural that the organic solvent should not be included as long as it is an additive.
  • ozone diffusion is performed through 3 micropores of about 1 ⁇ m, so the particle size of ozone bubbles contained in ozone-containing pure water is almost: L m It will never be smaller. Therefore, even with the third technology, it is not possible to realize ozone water containing only ozone bubbles having a particle size of 1000 nm (l ⁇ m) or less.
  • the problems to be solved by the present invention are a substrate cleaning method and a substrate which do not adversely affect the substrate and can obtain a sufficient cleaning effect by not easily degassing. It is to provide a cleaning device.
  • the substrate cleaning method according to the invention of claim 1 is a substrate cleaning method of cleaning a substrate using ozone water that is added and generated by a gas-liquid mixing method. is there.
  • the particle size R of the ozone bubbles contained in the ozone water is 0 ⁇ R ⁇ 50 ⁇ m. According to the experiments conducted by the inventors, the particle size R is almost 30 nm or less. Depending on the various conditions during gas-liquid mixing, the presence of ozone bubbles exceeding 30 nm and 50 nm or less was also confirmed.
  • ozone water is produced by a gas-liquid mixing method in which ozone is mixed with water
  • ozone bubbles with a particle size exceeding 50 nm are also present in addition to ozone bubbles with a particle size of 50 nm or less (for example, less than 1% of the total amount).
  • ozone bubbles with a particle size exceeding 50 nm should have a large particle size.
  • the amount of contribution to cleaning is extremely low, if any, because it is extremely small compared to the total amount of ozone water.
  • the ozone water in the part containing ozone bubbles having a particle size of more than 50 nm is not covered by the ozone water according to the present invention. That is, the ozone water used for substrate cleaning in the above case includes ozone bubbles having a particle size of 50 nm or less according to the present invention and ozone water according to the present invention and ozone bubbles having a particle size of more than 50 nm. It should be construed that the ozone water is simply mixed.
  • ozone water Examples of the substrate cleaning method used include a method of immersing the substrate in ozone water, or spraying or bathing the substrate with ozone water.
  • ozone or water cleaning with light or ultrasonic irradiation as described later. If there is a cleaning process other than ozone water cleaning before and after ozone water cleaning (for example, the substrate surface is made hydrophilic by irradiating excimer light in advance to promote ozone cleaning). Such a cleaning process and the like are included in the technical idea of the present invention.
  • the contained ozone is not easily degassed from the ozone water, so that the cleaning effect of the substrate can be reliably maintained for a long time. It is also a force that effectively suppresses ozone degassing.
  • the buoyancy that the ozone bubbles are subjected to the ozone hydropower is extremely small, so the ozone bubbles do not easily rise to the water surface. In other words, it stays stably in ozone water. Ozone bubbles that stay stably are very rarely degassed by impact when ozone water collides with the substrate.
  • the particle size is extremely small, irregularities having a nanometer (nm) level dimension (for example, 60 nm) are often formed on the surface of the substrate and the formed material on the substrate.
  • nm nanometer
  • the ozone water according to the present invention enables such ozone reaction.
  • cleaning is performed using ozone water with no additive, there is no possibility of adversely affecting the substrate due to the addition of additives.
  • no additive is mixed, the ozone water after washing does not adversely affect the environment caused by the additive.
  • ozone degassing is effectively suppressed, ozone does not degas or is very difficult to degas. In other words, if ozone is inhaled by humans, harmful substances will not come out of the ozone water.
  • cleaning method of claim 2 is performed by adding ozone water in which the particle size R of the contained ozone bubbles is 0 ⁇ R ⁇ 50 nm.
  • V an ozone water generation process generated by a gas-liquid mixing method
  • the nature of the ozone water generated in the ozone water generation process and the type of cleaning method used in the ozone water cleaning process are not different from those described in the description of the cleaning method in claim 1.
  • the cleaning effect of the substrate can be reliably maintained for a long time. It is also a force that effectively suppresses ozone degassing. In other words, by suppressing the particle size to 50 nm or less, the buoyancy that the ozone bubbles are subjected to the ozone hydropower is extremely small, so the ozone bubbles do not easily rise to the water surface. This achieves effective suppression of 1S ozone deaeration.
  • ozone bubbles must be able to enter the recess.
  • cleaning is performed using additive-free ozone water, there is no possibility of adversely affecting the substrate due to mixing of additives.
  • the ozone water after washing does not adversely affect the environment caused by the additive.
  • ozone degassing is effectively suppressed, ozone does not degas or is extremely difficult to degas. In other words, the harmful effect of ozone does not come out of the ozone water!
  • cleaning method of claim 3 As a preferred embodiment of the cleaning method of claim 1 or 2, it is used in the gas-liquid mixing method. Pure water or ultrapure water is used as raw water.
  • the use of pure water or ultrapure water increases the purity of ozone water. This can further eliminate the risk of adverse effects. That is, when water other than pure water or ultrapure water (for example, well water or tap water) is used as raw water for generating ozone water, there is a possibility that foreign substances are originally present in the raw water. A certain force If pure water or ultrapure water is used, even such foreign substances will be mixed in as long as the purity of the pure water or ultrapure water is reached. This is the reason why the risk of adverse effects on the substrate can be further eliminated. Na Oh.
  • the water obtained by filtering the tap water and well water in the above example using a reverse osmosis membrane, for example corresponds to the pure water or the like.
  • the cleaning method of claim 4 in the ozone water generating step, a small diameter is used.
  • the raw water is passed through a bench lily pipe having a channel, ozone is supplied to the bench lily pipe, and a magnetic force is applied to at least a small path of the bench lily pipe.
  • the bench lily tube is sometimes called an ejector.
  • the suctioned ozone is intricately intertwined with the above pressure change and the change in the flow of raw water (ozone water) as it passes through a small path, and is stirred and mixed at once.
  • This series of actions, combined with the action of magnetic force, is considered to be one of the factors that facilitate ozone water generation.
  • the inventor is currently elucidating the causal relationship that the particle size R of the ozone bubbles can be reduced to 50 nm or less, but this point will be clarified in the experimental results described later.
  • the magnetic force of the magnet is 1000-30000. It is set to Gauss.
  • the configuration of the magnet can be performed easily and economically.
  • a magnet with the above magnetic force is easy to procure on the market, so there is no need to prepare a special magnet. It's not a special magnet! The purpose is not to prevent the adoption of magnets with a magnetic force exceeding the above range.
  • cleaning method according to claim 6 ozone water (raw water) that has passed through the bench lily pipe is preferably used as the cleaning method according to claim 5. And is allowed to pass through the bench tube at least once while supplying ozone.
  • ozone injection into ozone water can be repeatedly performed by circulating ozone water. If ozone injection is repeated, the ozone solubility and the ozone concentration can be increased in the latter than in the former by re-injecting ozone into the ozone water that has been and has been injected. By making ozone bubbles once dissolved repeatedly pass through the small path of the bench lily tube, miniaturization of the ozone bubbles is promoted. The number of circulations should be determined by the user of the device according to the required ozone solubility and ozone concentration.
  • the circulated ozone water is supplied to a storage tank. Once stored. Additional raw water may be injected into the storage tank in which ozone water is stored. This is to increase the amount of ozone water that has been reduced by use.
  • ozone water can be stored in a storage tank, and ozone water can be stabilized by this storage. In this state, ozone dissolution in ozone water can be promoted by an action similar to aging. If ozone water is circulated while injecting raw water into the storage tank, a predetermined amount of ozone water can be stored in the storage tank while compensating for the decrease in usage. The ozone concentration is maintained by circulating ozone water.
  • the cleaning method of claim 8 As a preferred embodiment of the cleaning method of claim 7, ozone water stored in the storage tank is used. , Keep in the range of 0 to 15 ° C. To maintain the above temperature range for example, a method for directly adjusting the ozone water in the storage tank, a method for circulating the ozone water, and a method for returning the extracted ozone water to the storage tank after adjusting the temperature. Etc.
  • ozone water may contain newly injected raw water
  • the temperature can be maintained within the above range.
  • the raw water used to generate ozone water is often transported in long pipes.
  • the raw water transported in such cases is easily affected by the weather. In particular, the water temperature rises significantly in the summer.
  • energy for circulation is necessary, and for example, there is a pump as such an energy source.
  • the energy sources described above generally generate heat, and the heat may increase the temperature of ozone water (raw water). Ozone dissolution is affected by the water temperature.
  • ozone dissolution is promoted by keeping the temperature of raw water (ozone water) within a predetermined range.
  • a heater device may be provided to heat the ozone water (raw water) to be cleaned! ⁇ . If cooling of ozone water (raw water) or calorie temperature is not required, the temperature holding structure itself may be omitted, or the operation of the provided temperature holding structure may be stopped.
  • ozone water is dissolved as a preferred embodiment in the cleaning method of any of claims 2 to 8. It is stored and promotes ozone dissolution.
  • ozone dissolution in ozone water is promoted by the action of the dissolution accelerating tank.
  • the ozone water stored in the dissolution accelerating tank is placed in a stable state by the storage.
  • Ozone water placed in a stable state is promoted by aging-like action for ozone dissolution. That is, the solubility of the ozone supplied to the raw water and the ozone further supplied to the ozone water to the raw water or the ozone water can be increased.
  • cleaning method of claim 10 In the substrate cleaning method according to the invention of claim 10 (hereinafter, referred to as “cleaning method of claim 10” as appropriate), as a preferred embodiment of the cleaning method of claim 9, a reservoir is stored at the top of the dissolution promoting tank. The ozone deaerated from the ozone water is discharged.
  • ozone that has not been dissolved in ozone water in the process of circulating ozone water can be discharged to the outside.
  • undissolved ozone may exist.
  • Most undissolved ozone floats to the surface because the particle size is not small enough.
  • the cleaning method of claim 11 As a preferred embodiment of the cleaning method of any of claims 1 to 10, during ozone water cleaning, radicals are generated by decomposing ozone in the ozone water on the substrate surface or an object to be cleaned (for example, a resist film) formed on or attached to the substrate surface (for example, an insulating film).
  • the light having a wavelength that has a lower energy than the binding energy of the constituent material of the formed material on the substrate or the substrate is irradiated as necessary. Examples of light to be irradiated include an excimer laser, an excimer light, and a yag laser.
  • a radical is obtained by decomposing ozone into a cleaning object in which ozone water has permeated.
  • light having a wavelength having an energy lower than the binding energy of the constituent material of the insulating film is irradiated.
  • radicals are intensively generated in the object to be cleaned, and the decomposition reaction of the object to be cleaned is promoted in a state in which exposure of the substrate surface or the formation on the substrate surface to oxygen ions or oxygen radicals is suppressed. Can do.
  • the bond between the generated energy and the bond energy is prevented from being broken by light irradiation in the constituent material of the formed material on the substrate or the substrate surface. This As a result, damage to the substrate or the formed product is suppressed, and the cleaning efficiency of the object to be cleaned is dramatically increased.
  • the cleaning method of claim 12 As a preferred embodiment of the cleaning method of any one of claims 1 to 10, ozone water is applied to the substrate. Let it flow. That is, for example, by flowing ozone water, stirring the ozone water, or vibrating the ozone water by irradiating ultrasonic waves, the ozone water in contact with the substrate is made fluid.
  • ozone water (ozone bubbles) in contact with the substrate is constantly replaced by the flow of ozone water.
  • Ozone water with a high ozone concentration can be contacted efficiently.
  • ozone water (ozone) in contact with the substrate is decomposed by the reaction, but cleaning efficiency is increased by the reaction of new ozone water instead of the ozone water that has finished the reaction. Giving vibration to the object to be cleaned by running water also contributes to improving the cleaning efficiency.
  • the cleaning method of claim 13 As a preferred embodiment of the cleaning method of any of claims 1 to 12, ozone water before contacting the substrate is used.
  • Heat There are no restrictions on the heating method, but for example, there are heaters, electromagnetic induction and steam heating methods. The heating temperature will depend on the temperature at the time of production, but for example, a range of 30 ° C to 80 ° C would be possible.
  • the ozone bubbles are in a state where the ozone bubbles are likely to rise to the water surface due to buoyancy from the ozone water.
  • the particle size is further increased, and as a result, it is subjected to a greater buoyancy and is more likely to float.
  • the ozone bubbles contained in the ozone water according to the present invention have a particle size of 50 nm or less, the buoyancy that is received even when expanded due to heating is small. Therefore, the ozone bubbles still remain in the ozone water and cannot be easily degassed.
  • the reason why the ozone water according to the present invention could be raised to around 80 ° C. is presumed that the particle diameter of the ozone bubbles was sufficiently small.
  • the cleaning method of claim 14 As a preferred embodiment of the cleaning method of any one of claims 1 to 12, ozone water before contacting the substrate is used. Apply ultrasonic energy.
  • the ozone water obtained with the ultrasonic energy is more effective than the ozone water obtained with the effect of the cleaning method of any of claims 1 to 12, compared with the ozone water not obtained. Since the impact given to the substrate at the time of a collision is great, the cleaning effect can be enhanced by the magnitude of the impact.
  • energy is given to the ozone water or the conventional ozone water is shocked, it dissolves and the energy of ozone is easily degassed, but the ozone bubbles contained in the ozone water according to the present invention are 50 nm. Since it is below and is in a very stable state, it is not degassed, or even if it is degassed, there is very little.
  • the substrate to be cleaned is a semiconductor.
  • a semiconductor substrate represented by a wafer is used.
  • the semiconductor substrate can be cleaned extremely efficiently. Moreover, since it is additive-free ozone water, damage to the semiconductor substrate can be effectively suppressed. That is, the ozone water according to the cleaning method of claims 1 to 14 has a very small particle size of ozone bubbles contained therein, which is as small as 50 nm or less, so that ozone can be reacted even to small irregularities on the surface. Ideal for cleaning semiconductor substrates. [0035] (Characteristics of the invention according to claim 16)
  • the substrate to be cleaned is a liquid crystal A substrate is used.
  • the liquid crystal substrate can be cleaned extremely efficiently. Moreover, since it is additive-free ozone water, damage to the liquid crystal substrate can be effectively suppressed. That is, the ozone water according to the cleaning method of claims 1 to 14 has a very small particle size of ozone bubbles contained therein of 50 nm or less, so that the ozone can react even to small irregularities on the surface. This is ideal for cleaning liquid crystal substrates.
  • a substrate cleaning apparatus includes a cleaning tank for cleaning a substrate and ozone for supplying ozone water to the cleaning tank. And a water generator.
  • the ozone water generation apparatus includes a bench lily pipe having a small path and an ozone supply apparatus for supplying ozone to the water to be treated that passes through the small path of the bench lily pipe.
  • pure water that is supplied with ozone or a magnet that acts purely magnetically on the bench lily tube can be configured to generate ozone water in which the particle size R of the contained ozone bubbles is 0 ⁇ R ⁇ 50 nm It is.
  • the substrate cleaning is performed in the cleaning tank.
  • the ozone water generator supplies the ozone water for cleaning.
  • the bench lily pipe which is the main component of the ozone water generator, supplies ozone to the treated water (pure water, ultrapure water, or ozone water) that passes through the small path.
  • the ozone supply device performs ozone supply.
  • the pressure of the water to be treated passing through the bench lily pipe increases rapidly as it approaches the small path, and decreases rapidly after passing through the small path. When the pressure decreases, the inside of the bench lily tube is in a vacuum or a negative pressure state close to vacuum, and ozone supplied by this negative pressure state is sucked into the raw water.
  • the sucked ozone is agitated and mixed all at once, intricately intertwined with the change in pressure and the change in the flow of water to be treated as it passes through a small path.
  • This series of actions combined with the action of magnetic force, is considered to be one of the factors that facilitate ozone water generation.
  • the particle size of the ozone bubbles could be reduced to 50 nm or less.
  • the causal relationship is currently being clarified by the inventor, but this point will be clarified in the experimental results described later. Since ozone water used for cleaning is not added, there is no possibility of adversely affecting the substrate due to mixing of additives. In addition, since no additives are mixed in, the ozone water after washing does not adversely affect the environment caused by the added calories. According to the manufacturing apparatus of claim 16, the cleaning method of claims 1 to 16 can be carried out.
  • the magnet includes one magnet piece and the other magnet.
  • the one magnet piece and the other magnet piece are opposed to each other with the bench tube interposed therebetween.
  • a magnetic circuit is configured so that a magnetic force is applied intensively to a necessary portion inside the bench lily tube. it can. Intensive magnetic action increases the efficiency of ozone dissolution.
  • the magnetic force of the magnet is 1000 to 30000. It is set to Gauss.
  • the configuration of the magnet can be performed easily and economically.
  • the magnet has the above magnetic force, it is not necessary to prepare a special magnet because it is easy to procure on the market. Since it is not a special magnet, it is inexpensive. The purpose is not to prevent the use of magnets with a magnetic force exceeding the above range.
  • the cleaning apparatus of claim 20 As a preferable aspect of the cleaning apparatus of any one of claims 17 to 19, it passes through the venturi tube.
  • a circulation structure for circulating ozone water and passing it through the bench lily pipe is further included.
  • ozone injection is repeated, it is possible to increase the ozone solubility and the ozone concentration in the latter than in the former by re-injecting ozone into the ozone water that has been injected.
  • the number of circulations should be determined by the user of the device according to the desired ozone solubility and ozone concentration.
  • cleaning apparatus of claim 21 As a preferable aspect of the cleaning apparatus of claim 20, a substrate to be circulated is provided in the middle of the circulation structure.
  • a storage tank for temporarily storing the treated water is provided. It may be possible to inject raw water into the storage tank where ozone water is stored! This is to increase the amount of ozone water that has been reduced by use. The concentration of ozone is reduced by the raw water injection, but the concentration can be increased by circulating it.
  • ozone water can be stored in a storage tank, and this storage makes the ozone water stable. In this way, ozone dissolution in ozone water can be promoted by an action similar to aging. If ozone water is circulated while injecting raw water into the storage tank, a predetermined amount of ozone water can be stored in the storage tank while compensating for the decrease in usage. The ozone concentration is maintained by circulating ozone water.
  • the liquid to be treated in the storage tank is 0 to A temperature holding structure is provided for holding in the range of 15 ° C.
  • the temperature adjustment for maintaining the temperature range includes, for example, a method of directly applying ozone water in the storage tank or a method of returning the ozone water once taken out to the storage tank after temperature adjustment.
  • the temperature of ozone water (which may include newly injected pure water or ultrapure water) can be held in the above range.
  • the raw water used to generate ozone water is often transported in long pipes.
  • the raw water transported in such cases is easily affected by the weather. In particular, the water temperature rises significantly in the summer.
  • energy for circulation is necessary, and a source of such energy is, for example, a pump.
  • the energy sources described above generally generate heat, which may increase the temperature of ozone water (raw water). Ozone dissolution is affected by water temperature, and as water temperature rises, solubility decreases.
  • ozone dissolution is promoted by keeping the temperature of raw water (ozone water) within a specified range.
  • a heater device may be provided to warm the ozone water (raw water) to be cleaned! / ⁇ . If cooling or heating of ozone water (raw water) is not required, the temperature holding structure itself may be omitted or the operation of the provided temperature holding structure may be stopped.
  • cleaning apparatus of claim 23 As a preferred embodiment of the cleaning apparatus of any of claims 17 to 22, the substrate is supplied to the cleaning tank.
  • a heating means for heating the ozone water supplied to the cleaning tank is provided.
  • the heating temperature will be a force depending on the temperature at the time of production. For example, a range of 30 ° C to 80 ° C will be possible.
  • the ozone bubbles are in a state where they easily float to the water surface due to the ozone hydrodynamic buoyancy, and if heated there, the particle size becomes larger due to thermal expansion, and as a result, the buoyancy is further increased due to the larger buoyancy It is also a force that makes it easy to do.
  • the ozone bubbles contained in the ozone water according to the present invention have a particle size of 50 nm or less, so that the buoyancy that is received even when expanded by heating is small. Therefore, ozone bubbles still remain in the ozone water and do not easily deaerate.
  • the reason why the ozone water according to the present invention could be raised to around 80 ° C. is presumed that the particle size of the ozone bubbles is sufficiently small.
  • the cleaning apparatus of claim 24 As a preferred embodiment of the cleaning apparatus of any of claims 17 to 23, during the ozone water cleaning, Energy that generates radicals by decomposing ozone in the ozone water on the substrate surface or an object to be cleaned (for example, a resist film) formed on or adhered to a substrate surface or a formed material (for example, an insulating film). And a light source for irradiating light of a wavelength having energy lower than the binding energy of the constituent material of the substrate or the formed material on the surface of the substrate. Examples of the light emitted from the light source include an excimer laser, an excimer light, and a yag laser.
  • radicals are decomposed by decomposing ozone into the cleaning target in a state where ozone water has permeated.
  • light having a wavelength that has energy lower than the binding energy of the constituent material of the insulating film is irradiated.
  • radicals are intensively generated in the object to be cleaned, and the decomposition reaction of the object to be cleaned is promoted in a state where exposure of the substrate surface or the formation on the substrate surface to oxygen ions or oxygen radicals is suppressed.
  • the cleaning apparatus of claim 25 As a preferred embodiment of the cleaning apparatus of any of claims 17 to 24, ozone before contact with the substrate is used.
  • An ultrasonic vibration mechanism for providing ultrasonic energy is provided.
  • ozone water from which ultrasonic energy is also obtained by ultrasonic vibration mechanism force is not obtained. Since the impact given to the substrate at the time of substrate collision is larger than that of water, the cleaning effect can be enhanced by the magnitude of the impact.
  • the dissolved power of ozone is easy to degas V, but the ozone bubbles contained in the ozone water according to the present invention are Since it is 50 nm or less and is in a very stable state, even if it is not degassed or degassed, there is very little.
  • the substrate to be cleaned is A semiconductor substrate typified by a semiconductor wafer is used.
  • the semiconductor substrate can be cleaned extremely efficiently. Moreover, since it is additive-free ozone water, damage to the semiconductor substrate can be effectively suppressed.
  • the ozone water according to the cleaning device of claims 17 to 25 has a very small particle size of ozone bubbles contained therein, which is as small as 50 nm or less, so that ozone can be reacted even to small irregularities on the surface. Ideal for cleaning semiconductor substrates.
  • the substrate to be cleaned is A liquid crystal substrate is used.
  • the cleaning device of claim 27 it is possible to clean the liquid crystal substrate extremely efficiently. Moreover, since it is additive-free ozone water, damage to the liquid crystal substrate can be effectively suppressed. That is, the ozone water according to the cleaning device of claims 17 to 25 is contained in the ozone water. Since the Zon bubble has a very small particle size of 50nm or less, it can react with ozone even on small irregularities on the surface, making it ideal for cleaning liquid crystal substrates.
  • the substrate is not adversely affected! / And do not easily deaerate!
  • a substrate cleaning method and a substrate cleaning apparatus capable of obtaining a sufficient cleaning effect.
  • FIG. 1 is a block diagram showing an example of a substrate cleaning method.
  • FIG. 2 is a block diagram of a semiconductor substrate cleaning apparatus.
  • FIG. 3 is a partial block diagram of a semiconductor substrate cleaning apparatus provided with an excimer lamp.
  • FIG. 4 is a block diagram of an ozone water generator provided in a semiconductor substrate cleaning apparatus.
  • FIG. 5 is a front view of a gas-liquid mixing structure.
  • FIG. 6 is a left side view of the gas-liquid mixing structure.
  • FIG. 7 is an XX cross-sectional view of the gas-liquid mixing structure shown in FIG.
  • FIG. 8 is a schematic plan view of the gas-liquid mixing structure shown in FIG.
  • FIG. 9 is a longitudinal sectional view of a dissolution promoting structure.
  • FIG. 10 is a view showing a modification of the semiconductor substrate cleaning apparatus.
  • FIG. 11 is a schematic configuration diagram of an ozone water generator for performing a comparative experiment.
  • FIG. 12 is a diagram for explaining the action of ozone bubbles.
  • FIG. 13 is a diagram for explaining the action of ozone bubbles.
  • FIG. 14 is a diagram for explaining the action of ozone bubbles.
  • FIG. 1 is a block diagram illustrating an example of a substrate cleaning method.
  • Fig. 2 is a block diagram of the semiconductor substrate cleaning apparatus.
  • Fig. 3 is a partial block diagram of a semiconductor substrate cleaning apparatus provided with an excimer lamp.
  • FIG. 4 is a block diagram of an ozone water generator provided in the semiconductor substrate cleaning apparatus.
  • FIG. 5 is a front view of the gas-liquid mixing structure.
  • Fig. 6 is a left side view of the gas-liquid mixing structure.
  • FIG. 7 is an XX cross-sectional view of the gas-liquid mixing structure shown in FIG.
  • FIG. 8 is a schematic plan view of the gas-liquid mixing structure shown in FIG. Figure 9 shows the longitudinal profile of the dissolution promoting structure
  • FIG. 10 is a view showing a modification of the semiconductor substrate cleaning apparatus.
  • the semiconductor cleaning method begins with the ability to generate ozone water (Sl).
  • the generated ozone water is performed by a gas-liquid mixing method in which ozone is mixed with pure water or ultrapure water.
  • Ozone water is generated without adding any additives. The reason for not adding was to prevent the additive from adversely affecting the semiconductor substrate. Particle size of ozone bubbles contained in generated ozone water
  • R is set to 0 ⁇ R ⁇ 50 nm. This is to effectively suppress ozone degassing and dramatically increase cleaning efficiency.
  • a suitable ozone concentration is, for example, around 15 to 30 ppm.
  • the generated ozone water may be heated as necessary (S2). Although it depends on the nature of the object to be cleaned and other environments, the cleaning effect is enhanced by heating.
  • the heating temperature is a force depending on the temperature at the time of generation and other environments. This is not intended to exclude heating outside the temperature range, but if the temperature falls below 30 ° C, the cleaning efficiency is not improved sufficiently by heating. If the temperature exceeds 80 ° C, ozone will be easily degassed.
  • the generated ozone water and, if necessary, the heated ozone water are used to clean the semiconductor substrate.
  • the cleaning method can be appropriately selected according to the type of the semiconductor substrate and other environments. For example, a showering method in which ozone water is poured in a shower, a spin cleaning method in which ozone water is supplied onto a rotating semiconductor substrate, an immersion cleaning method in which the semiconductor substrate is relative to a batch cleaning tank containing ozone water, and the like.
  • a combination of these methods is a cleaning method using ozone water.
  • the ozone water can be made to flow by irradiating the ozone water with ultrasonic waves.
  • a reaction promoting step such as irradiating excimer light or the like can be included as needed during ozone water cleaning (S7).
  • methods other than those described above can be used in combination before and after ozone water cleaning as needed.
  • the cleaning apparatus 1 is generally composed of a cleaning tank 3, an ozone water generation apparatus 201, and the like.
  • the cleaning tank 3 is a tank for cleaning the semiconductor substrate W therein.
  • Inside the cleaning tank 3, a cleaning mechanism 7 for assisting the cleaning of the semiconductor substrate is arranged.
  • the ozone water generator 201 is an apparatus for supplying ozone water to the cleaning tank 3.
  • the cleaning tank 3 indicated by a two-dot chain line in FIG. 2 is configured to be substantially confidentially sealed and has an opening / closing mechanism (not shown) for entering and exiting the semiconductor substrate A.
  • the cleaning mechanism 7 installed in the cleaning tank 3 is generally composed of a motor 7m as a driving source and a rotary table 7t rotated by the motor 7m.
  • the turntable 7t is configured such that the semiconductor substrate A can be placed thereon, and the semiconductor substrate A is configured to be able to rotate integrally while holding the semiconductor substrate A downward.
  • the reason for rotating the semiconductor substrate A is to increase the cleaning efficiency by spreading the ozone water W evenly.
  • the rotation of the motor 7m is configured to be controllable by a rotation speed control device 7c outside the cleaning tank 3.
  • Reference numeral 11 indicates a nozzle for discharging the ozone water W supplied from the ozone water supply device 201 onto the surface of the semiconductor substrate A.
  • the nozzle 11 is movably held by a nozzle drive device 13 installed in the cleaning tank 3, and is configured to change the discharge position of the ozone water W with respect to the semiconductor substrate A by the movement.
  • the reason for changing the discharge position is to distribute the ozone water W more evenly by the position change.
  • the nozzle drive device 13 is controlled by a position control device 13c outside the cleaning tank 3.
  • the cleaning tank 3 and the cleaning mechanism 7 described above are configured for cleaning a semiconductor substrate.
  • the symbol R indicates the resist film (object to be cleaned) formed on the surface of the semiconductor substrate A! /
  • the cleaning apparatus 1 is provided with a light source 8 as necessary to irradiate an excimer laser (excimer light) 8L onto the semiconductor substrate A supplied with ozone water W. You can also.
  • Excimer laser is irradiated with ozone water by its energy. This is because radicals are generated by decomposing ozone in the atmosphere. The generation of radicals promotes breakage of bonds in the resist film R when, for example, the resist film R remains on the surface of the semiconductor substrate A.
  • the energy of the excimer laser needs to be lower than the binding energy of the semiconductor substrate A (or the insulating film when the insulating film is formed on the surface). This is to suppress damage to the semiconductor substrate A.
  • the light source 8 is configured so that excimer lamp power (not shown) can also be irradiated with excimer light guided through the light guide line 8a. You may comprise so that other light (for example, Jag light) which shows the effect similar to the said excimer light may be irradiated instead of an excimer light.
  • the nozzle 11 may be provided with an ultrasonic vibration mechanism 1 la so that the nozzle tip 1 lb is vibrated forward and backward along the discharge direction, thereby applying ultrasonic energy to the ozone water W. This is because the resist film R is easily peeled off by impacting the semiconductor substrate A with ultrasonic energy.
  • the light source 8 and the ultrasonic vibration mechanism 11a (nozzle tip l ib) function as a reaction promoting mechanism for ozone water (ozone).
  • the ozone water generation apparatus 201 includes a storage tank 202, an ozone supply apparatus 203 for generating and supplying ozone, a circulation structure 204 for returning treated water taken out from the storage tank 202 to the storage tank 202, a circulation
  • the gas-liquid mixing structure 205 and dissolution accelerating tank 206 provided in the middle of the structure 204, the temperature holding structure 207 attached to the storage tank 202, and the force are also generally configured.
  • the circulation structure 204 after the storage tank 202, the temperature holding structure 207, the ozone supply device 203, the gas-liquid mixing structure 205, and the dissolution promoting tank 206.
  • the storage tank 202 is configured to be able to inject raw water (pure water or ultrapure water) as treated water through a water intake valve 202v.
  • the storage tank 202 is for storing raw water taken and water to be treated (ozone water) circulated through a circulation structure 204 described later.
  • the water to be treated stored in the storage tank 202 is held in the range of 0 to 15 ° C. by the temperature holding structure 207, for example.
  • the temperature was set within the above range because ozone was dissolved efficiently and the dissolved ozone was easily degassed. It is a force that is suitable for not.
  • the reason why less than o ° c is not included in the above range is that ozone water freezes below o ° c.
  • the temperature holding structure 207 is generally composed of a pump 211 for taking out the treated water from the storage tank 202, a cooler 212 for cooling the taken out treated water, and a force.
  • the storage tank 202 and the pump 211, the pump 211 and the cooler 212, and the cooler 212 and the storage tank 202 are connected by a pipe 213 through which the water to be treated is passed.
  • the water to be treated (raw water and Z or ozone water) stored in the storage tank 202 is taken out of the storage tank 202 by the action of the pump 211 and sent to the cooler 212.
  • the cooler 212 cools the treated water sent to a temperature within a predetermined range and returns it to the storage tank 202.
  • the pump 211 operates only when the temperature of the water to be treated in the storage tank 202 measured by a thermometer outside the figure exceeds a predetermined range and needs to be cooled.
  • the reason for providing the storage tank 202 is that the water to be treated is stored once to enable the cooling, and the water to be treated is placed in a stable state, thereby aging ozone dissolution in the water to be treated. This is because it is promoted by a similar action. For example, when there is a possibility that the water to be treated will freeze in a cold district, etc., the water to be treated is heated using a heater device in place of the cooler or together with the cooler. You can also Note that ozone water is supplied to the cleaning device 1 via a pipe 213a branched from the pipe 213.
  • Reference numeral 213v indicates an adjustment valve for adjusting the flow rate of ozone water provided in the pipe 213a.
  • An ozone supply device 203 shown in FIG. 4 is a device for generating and supplying ozone.
  • the ozone supply device 203 operates as long as the necessary amount of ozone can be supplied.
  • a discharge method in which ozone is generated by causing discharge in oxygen gas, and an electrolysis method in which ozone is generated by electrolyzing water molecules in ultrapure water are known as ozone generation methods.
  • the ozone generated by the ozone supply device 203 is supplied to the gas-liquid mixing structure 205 through an electromagnetic valve 218 and a check valve 219 provided in the middle of the ozone supply pipe 217.
  • Gas-liquid mixing structure Gas-liquid mixing structure
  • the gas-liquid mixing structure 205 is generally constituted by a bench lily pipe 231, an ozone supply pipe 239, and a magnetic circuit 243.
  • the bench lily pipe 231 is used to pass the treated water (pure water, ultrapure water, ozone water) sent from the upstream side (right side as viewed in Fig. 5) to the downstream side (left side as shown in Fig. 5). It has a noise-like appearance (see Fig. 8).
  • the hollow space penetrating the bench lily pipe 231 in the longitudinal direction communicates from the upstream side to the downstream side in the order of the upstream large path 232, the throttle ramp 233, the small diameter path 234, the open ramp 235, and the downstream large path 236.
  • the upstream large path 2 32 is connected to a small-diameter path 234 via a throttle ramp 233 that is inclined in the throttle direction with a steep angle of about 50 degrees with respect to the axial direction. It opens with a gentle angle of around 30 degrees.
  • the open ramp 235 is connected to the downstream large path 236 having the same outer diameter as the upstream large path 232.
  • the open end of the ozone supply pipe 239 faces the small path 234.
  • An ozone supply pipe 217 communicating with the ozone supply device 203 is connected to the supply end of the ozone supply pipe 239.
  • the inside of the small path 234 or the vicinity thereof becomes a vacuum or a state close to a vacuum due to a change in the pressure of the water to be treated, so that ozone that has reached the open end is aspirated and diffused into the water to be turbulent. Is done.
  • Reference numeral 240 shown in FIG. 7 indicates a rib for reinforcing the space between the bench lily pipe 231 and the ozone supply pipe 239.
  • a magnetic circuit 243 is fixed to the bench lily tube 231 with a screw (not shown).
  • the magnetic circuit 243 connects one magnet piece 245 and the other magnet piece 246 facing each other with the bench lily pipe 231 therebetween, and connects the one magnet piece 245 and the other magnet piece 246 to the bench lily pipe 23 1.
  • a connecting member 248 having a U-shaped cross section (see FIG. 6) having a function of attaching a magnet piece.
  • the magnet piece 245 and the magnet piece 246 have a small path 234 (shown by a broken line in FIG. 8) (see also FIG. 7) and Z or its vicinity (especially the downstream side) through the most magnetic lines of force (magnetic field). It is good to arrange like this.
  • the magnet piece 245 and the magnet piece 246 are composed of neodymium magnets having a magnetic force of around 7,000 gauss. The stronger the magnetic force, the higher the ozone dissolution effect is. At least 1,000 gauss or more is desired. Here, 7,000 gauss magnets were used because of their ease of procurement and economy.
  • the connecting member 248 is configured by a member (for example, iron) having a large magnetic permeability () so that the magnetic flux action is concentrated as much as possible on the water to be treated and the like, while suppressing magnetic flux leakage.
  • the water to be treated that has passed through the upstream large path 232 is compressed when passing through the throttle ramp 233, and the water pressure increases rapidly, and at the same time, the passing speed also increases rapidly.
  • the high-pressure 'high-speed peak is when the small path 234 is reached.
  • the treated water that has passed through the small path 234 suddenly depressurizes and decelerates in the open ramp 235, and becomes turbulent due to the impact of collision with the subsequent treated water. Thereafter, the water to be treated passes through the large downstream path 236 and goes out of the gas-liquid mixing structure 205.
  • the diffused ozone is entrained in the turbulent flow of the water to be treated, becomes bubbles of various sizes, and is agitated.
  • the small path 234 and at least the water to be treated (ozone water) flowing downstream thereof are subjected to the magnetic action of the magnetic circuit 243 along with the stirring action.
  • the pressure of the water to be treated is increased to the pressure peak (peak), the pressure is reduced immediately after reaching the peak of pressure, and ozone is supplied to the water to be treated that has reached the peak of pressure. Will be done.
  • the stirring action and the magnetic action of the magnetic field produce a synergistic effect. As a result, ozone is dissolved in the water to be treated and high-concentration ozone water with high solubility is generated.
  • the dissolution accelerating tank 206 will be described with reference to FIGS.
  • the dissolution accelerating tank 206 is configured by a cylindrical outer wall 255 whose upper and lower ends are sealed by a top plate 253 and a bottom plate 254.
  • a cylindrical inner wall 256 is also provided on the lower surface of the top plate 253 so that the lower surface force also hangs down. Spatial force surrounded by inner wall 256 Storage chamber for storing treated water 25 8
  • the outer diameter of the inner wall 256 is set to be smaller than the outer diameter of the outer wall 255, whereby an inter-wall passage 259 having a predetermined width is formed between the inner wall 256 and the outer wall 255.
  • the lower end of the inner wall 256 does not reach the bottom plate 254 and forms a gap having a predetermined width with the bottom plate 254.
  • This gap functions as a lower end communication path 257. That is, the storage chamber 258 surrounded by the inner wall 256 communicates with the inter-wall passage 259 through the lower end communication passage 257.
  • a plurality of communication holes 256h, 256h, ... are penetrated in the vicinity of the top plate 253 of the inner wall 256, and the storage chamber 258 and the passageway 259 between the walls communicate with each other through each communication hole 256h.
  • RU In the center of the upper surface of the bottom plate 254, an elongated pumping pipe 261 is erected.
  • the lower end of the hollow portion of the pumping pipe 261 communicates with a water inlet hole 254h penetrating the bottom plate 254, and the upper end of the hollow portion communicates with a storage chamber 258 via a number of small holes 26 lh formed at the upper end of the pumping pipe 261. is doing.
  • the upper end of the pumping pipe 261 is positioned slightly below the position of the communication hole 256h where the inner wall 256 is provided.
  • a drainage hole 255h is penetrated in the vicinity of about a quarter from the top of the outer wall 255 in the height direction. That is, the inter-wall passage 259 communicates with the outside through the drain hole 255h.
  • a pumping hole 253h is passed through substantially the center of the top plate 253.
  • the pumping hole 253h communicates with the inside of the gas-liquid separator 265 disposed outside the top plate 253.
  • the gas-liquid separator 265 functions as a deaeration structure for separating and discharging the water to be treated pushed up from the storage chamber 258 through the pumping hole 253h and the ozone deaerated from the water to be treated.
  • the ozone separated by the gas-liquid separation device 265 is decomposed and detoxified by the ozone decomposition device 267, and then released to the outside of the device.
  • the ozone solubility in the water to be treated is extremely high.
  • the amount of ozone to be deaerated is extremely small, but an ozone decomposing device 267 and the like are provided for further safety.
  • the treated water sent into the storage chamber 258 by the pumping pipe 261 is pushed by the subsequent treated water and descends.
  • the treated water that has reached the lower end is folded back at the lower end communication passage 257, rises in the inter-wall passage 259, and is discharged to the outside through the drain hole 255h.
  • a part of the water to be treated is pushed up into the gas-liquid separator 265.
  • ozone dissolves in the water to be treated due to an aging-like action, producing highly soluble ozone water.
  • the gas-liquid separation device 265 and the ozonolysis device 267 can be provided in place of the dissolution promoting tank 206 or in the storage tank 202 and other places together with the dissolution promoting tank 206.
  • the circulation structure 204 has a function of circulating the water to be treated that has passed through the gas-liquid mixing structure 205 (which is already raw hydro-ozone water) and passing it again through the gas-liquid mixing structure 205.
  • the reason why the gas-liquid mixing structure 205 is passed again is to further increase the solubility and concentration of ozone by injecting ozone again into the water to be treated in which ozone has already been dissolved.
  • the circulation structure 204 has a pump 271 as a drive source and a storage tank 202 and a dissolution promoting tank 206 as main components.
  • the pump 271 pumps the water to be treated taken out from the storage tank 202 through the pipe 270 to the gas-liquid mixing structure 205 through the check valve 272 and the pipe 273.
  • the treated water that has passed through the gas-liquid mixing structure 205 by pressure feeding passes through the pipe 274 and the dissolution accelerating tank 206 and is returned to the storage tank 202 through the pipe 275.
  • the circulation structure 204 is configured such that the above-described steps can be repeated as necessary.
  • the number of circulations can be freely set in order to obtain ozone solubility, ozone concentration, etc. of ozone water to be generated.
  • Reference numeral 276 indicates a valve provided in the middle of the pipe 275.
  • the nozzle 276 is provided mainly for controlling the water pressure of the water to be treated that passes through the small path 234 (see FIG. 7) of the gas-liquid mixing structure 205 by opening and closing.
  • the ozone water generator 201 is provided with heating means for heating the generated ozone water before supplying it to the treatment tank 3. This is to increase the temperature of the ozone water before contacting the semiconductor substrate as necessary, thereby increasing the cleaning efficiency.
  • the heating means is constituted by a heater H.
  • the heater 8 can be composed of a heating element, an in-line induction heater using electromagnetic induction, a high-temperature steam generator, and the like.
  • the tank 53 is supplied with ozone water W from the ozone water generator 201 (not shown in FIG. 10) via the supply nozzles 54 and 54.
  • a wafer port 56 “is arranged so as to be movable up and down, and the wafer port 56,... Is a plurality of semiconductor substrates A,.
  • the semiconductor substrate A, ⁇ supported is immersed in ozone water W stored in the treatment tank 53 and cleaned.
  • the stored ozone water W is overflowed from the upper surface of the treatment tank 53 by the subsequent supply of the ozone water W, and is provided at the upper end of the overflowed ozone water Wha treatment tank 53.
  • the ozone water W is additionally supplied from the drainage channels 55 and 55.
  • the ozone water W is constantly flowed, so that the concentration of ozone water W is reduced instead of the ozone water W, which has been lowered after the reaction.
  • High ozone water W is brought into contact with the semiconductor substrate, and the surface of the semiconductor substrate A depends on the impact of flow.
  • the ozone water W drained from the drainage channels 55 and 55 is reused by, for example, filtering or remixing ozone. It can also be done.
  • FIG. 4 the ozone water generating device shown in FIG. 4 is used as the device according to the present invention, and the ozone water generating device (hereinafter referred to as “the device”) shown in FIG. Used as a comparison device).
  • the comparison device only the mounting position of the force magnetic circuit 243 provided with basically the same structure as that of the present device is different. Therefore, in FIG.
  • the same reference numerals as those used in FIG. 4 are used except for the magnetic circuit.
  • reference numeral 243a is assigned to the upstream side of the gas-liquid mixing structure 205, and Some are labeled 243b.
  • the present apparatus shown in FIG. 4 includes a gas-liquid mixing structure 205 integrated with a magnetic circuit 243
  • the comparison apparatus shown in FIG. 11 includes a magnetic circuit 243a in the upstream piping of the gas-liquid mixing structure 205.
  • the magnetic circuit 243b can be attached to or removed from the downstream pipes simultaneously or selectively.
  • MAJEIJIN INJECTOR CORPORATION MAJEIJIN INJECTOR CORPORATION
  • magnetic circuit of 7000 Gauss were used as the gas-liquid mixing structure 205.
  • Table 1 shows the relationship between the ozone concentration of ozone water and the concentration rise time.
  • Table 2 shows the time required for the ozone concentration shown in Table 1 to reach zero after the generator is shut down. The longer it takes to reach zero, the higher the ozone solubility.
  • the symbol “mouth” represents ozone water generated by using the present device (hereinafter referred to as “the present ozone water”), and the symbol “X” represents the atmosphere obtained by removing only the magnetic circuit from the comparison device.
  • Ozone water generated using a liquid-mixed structure hereinafter referred to as “magnetic-free ozone water”
  • the symbol “ ⁇ ” represents ozone water (hereinafter referred to as “water-free mixed water” 205 and magnetic circuit 243a) in the comparison device.
  • the symbol “ ⁇ ” indicates ozone water generated by the gas-liquid mixing structure 205 and the magnetic circuit 243b in the comparison device (hereinafter referred to as “downstream magnetic ozone water”)
  • the symbol “ ⁇ ” represents ozone water generated by the gas-liquid mixing structure 205 and both the magnetic circuit 243a and the magnetic circuit 243b in the comparison device (hereinafter referred to as “bilateral magnetic ozone water!”). It is shown.
  • the temperature of the treated water was 5 ° C
  • the ambient humidity was 36-43%
  • the ambient temperature was 17 ° C.
  • the ozone water reached an ozone concentration of 20 ppm after 35 minutes after the start of the generator operation.
  • the ozone water without magnetism had an ozone concentration of around 8 ppm and the downstream magnetic ozone.
  • Water has an ozone concentration of about l lppm.
  • the concentration of ozone was around 12 ppm, and the magnetic ozone water on both sides increased only to an ozone concentration of around 13 ppm. From this, it is possible to increase the ozone concentration by providing a magnetic circuit first, compared to the case where the magnetic circuit is not provided.
  • the former can generate ozone water at least 7 ppm higher than the latter.
  • the ozone concentration of this case was about 54% ((20-13) Z1 3 X 100) higher than the double-sided magnetic ozone water.
  • Tables 3 and 4 show the particle size distribution of the ozone bubbles contained in the ozone water (see vertical axis on the left).
  • Tables 3 and 4 show the particle size distribution of the ozone bubbles contained in the ozone water (see vertical axis on the left).
  • four types of ozone water were measured in the relationship between ozone concentration and ozone concentration retention time.
  • the ozone concentration is 3 ppm and 14 ppm.
  • ozone water immediately after reaching each concentration (hereinafter referred to as “3 ppm immediately after ozone water” and “14 ppm immediately after ozone water”), After reaching the concentration, it was divided into ozone water that was maintained for 15 minutes (hereinafter referred to as “3 ppm maintenance ozone water” and “14 ppm maintenance ozone water”, respectively).
  • 3 ppm maintenance ozone water ozone water that was maintained for 15 minutes
  • pure water obtained by filtering tap water through a reverse osmosis membrane of 0.05 m (50 nm) fine particle absolute filtration was used as the raw water of the ozone water used in this measurement experiment.
  • the equipment used for obtaining pure water in this experiment was an ultrapure water system (model name: Model) • UHP). Since tap water contains impurities of 50 nm or more (for example, iron and magnesium), even if ozone water generated from unfiltered raw water is measured, the impurities contained therein are measured, resulting in measurement errors. Therefore, it is possible to correctly measure the bubble size of ozone by removing impurities in advance by filtration. The same can be said for raw water other than tap water, such as well water and river water.
  • the measuring instrument used for measuring the particle size of ozone bubbles is a dynamic light scattering particle size distribution measuring device (HORIBA, Ltd .: model LB500). Needless to say, if there is a means that can correctly measure the particle size of ozone bubbles without filtering impurities from the raw water, that means can be used.
  • the first point clarified from the above experiment is that even with ozone water having the same concentration, ozone water immediately after reaching the concentration (immediately after ozone water) and the concentration are maintained for a predetermined time.
  • the ozone water (maintened ozone water) is different in the particle size of the ozone bubbles (hereinafter referred to as “bubble particle size” t).
  • bubble particle size the particle size of the ozone bubbles.
  • the minimum bubble size of ozone water immediately after is 260 times (1300Z5.0) the maximum bubble size of maintenance ozone water.
  • the 14ppm ozone water is about 400 times larger (2300Z5.8).
  • the bubble particle size is reduced by maintaining the concentration for a predetermined time, that is, by circulating ozone water as the water to be treated.
  • the bubble diameter is lOOOnm or less, preferably 500 nm or less, and more preferably ozone bubbles having a bubble diameter of less than 50 nm, they can be more stably suspended in the aqueous solution.
  • ozone water treatment method according to the present invention ozone water containing ozone bubbles having a particle size R force of less than 5 Onm (0 ⁇ R ⁇ 50 nm), that is, ozone water having high solubility, is generated. It turns out that it is obtained.
  • Ozone water containing ozone bubbles of 50 nm to 1000 nm can be obtained in the process of generating ozone water having a particle diameter of less than 50 nm.
  • ozone water generated without circulation or ozone water with reduced circulation time has a larger particle size than ozone water produced by circulation or longer circulation time and ozone water. It is advisable to adjust the presence / absence of circulation and the circulation time according to the particle size. In addition to the above, it may be fluctuated depending on the water pressure in the circulatory system, the strength of the magnets acting on the bench lily pipe, the concentration and amount of supplied ozone, and the atmosphere in which it is generated. This is the second point that became clear from the experiment.
  • the minimum measured value of the particle size R of ozone bubbles is 3.4 nm, and values below that are measured! This is probably due to the limitations of the measuring capability of the measuring device.
  • the particle size R of the ozone bubbles is smaller after the concentration is maintained than immediately after the concentration is achieved, the ozone bubbles having a particle size R that is almost zero on the extension line of particle size reduction. Can easily be imagined.
  • the above experimental results will be summarized.
  • the ozone water that was the subject of the experiment was generated by gas-liquid mixing in which ozone was mixed with the raw water without adding any additives. Furthermore, ozone is not easily degassed even under normal pressure because of high ozone solubility. Therefore, if this ozone water is used, it is possible to obtain a more efficient cleaning effect without adversely affecting the semiconductor substrate.
  • sample substrate 1 is a substrate that has been subjected to an in-batch calorie treatment by applying a novolac photoresist film on a silicon wafer substrate and baking it at 120 ° C. for 20 minutes.
  • the size of the sample substrate 1 was 25 mm ⁇ 25 mm, and the thickness of the photoresist film was 1 m.
  • sample substrate 1 five samples from sample substrates 1-1 to 1-5 were used as samples (see Table 5).
  • sample substrate 2 The other silicon wafer substrate (hereinafter referred to as “sample substrate 2”) is a substrate that is baked at 160 ° C. for 20 minutes after a novolac photoresist film is applied on the silicon wafer substrate.
  • the sample substrate 2 is not subjected to the imbracate treatment.
  • the size of the sample substrate 2 was 25 mm ⁇ 35 mm, and the film thickness of the photoresist film was also 1 ⁇ m.
  • Sample substrate 2 is sample substrate 2-1 to 2-6 with 3 samples as sample, sample substrate 2-1-2-3 is ozone water W, sample substrate 2-4-2-6 is Ozone water for comparison was included (see Table 6).
  • the particle size of ozone bubbles contained in the comparative ozone water is estimated to be: m or more.
  • the raw water of ozone water W is tap water, and the particle size R of ozone bubbles contained in ozone water W was 0 ⁇ R ⁇ 50nm.
  • Each sample substrate was immersed in a treatment tank (not shown) in which ozone water W was stored, and ozone water W with a water pressure of about 0. IMPa was jetted near its center.
  • Table 5 and Table 6 show the temperature change and stripping rate of ozone water W.
  • the amount of ozone (ozone gas) was 50 gZNm 3
  • the dissolved ozone concentration was 29 to 27 mg / L (g / Nm 3 ) as shown in Table 5 and Table 6.
  • sample substrate 1 is sufficiently practical by setting the ozone water temperature to 50 ° C or higher.
  • sample substrate 2-3 It was accelerated to (sample substrate 2-3) in 6 mZ (approximately 16 seconds until removal). From these facts, it was found that the sample substrate 2 was sufficiently practical when the ozone water temperature was set to 45 ° C or higher. However, for sample substrate 2, for example, if the removal time is set to around 1 minute using the same ozone water, even if it is 45 ° C or less (for example, 35 ° C or more), it is sufficiently practical. I can guess there is.
  • the peeling rate of Comparative Substrate 2-6 was 0.002 1117 minutes (7 ° 0, while ozone was cleaned by high-concentration ozone water of 130 mgZL, ozone concentration of 27% ZL (27 mgZL).
  • the separation rate was 10 times (0.025 + 0.002) or more compared to the peeling rate of sample substrate 2-3 cleaned with water W.
  • the peeling rate of comparative substrate 2-5 was changed to the sample substrate.
  • the peel rate of 2-2 there is almost three times the difference (1.85 ⁇ 0.65).
  • the peel rate of comparative substrate 2-4 From the results, it is very important to reduce the particle size of ozone bubbles in order to increase the peeling speed.
  • the dissolved ozone concentration was 29 to 27 mg / L (g / Nm 3 ) as shown in Table 5 and Table 6 as described above.
  • the ozone generation amount By changing the ozone generation amount to 200 gZNm 3 or 350 gZNm 3 , it is possible to achieve a dissolved ozone concentration of 130 mgZL or higher as shown in Table 6, and it is possible to achieve dissolved ozone over a range without damaging the substrate. This is because the higher the concentration, the faster the peeling speed.
  • the inventors speculate as follows about the causal relationship that the semiconductor substrate cleaning using ozone water with the particle size R force SO ⁇ R ⁇ 50 nm of the ozone bubbles contained is extremely suitable. This will be described with reference to FIGS.
  • the particle size D of the ozone bubbles Lz shown in Fig. 12 is, for example, 500 ⁇ m. Ozone bubbles! Z particle size For example, 700 ⁇ m. Ozone bubbles! Since z has a larger volume than the ozone bubble L, the buoyancy received from the ozone water W is larger by that amount, so it rises toward the water surface. For this reason, ozone bubbles! Z are less useful for cleaning because they are less likely to come into contact with resist HR. On the other hand, the ozone bubble L z has a relatively small buoyancy due to the ozone water W force, so it floats in the ozone water W.
  • the particle size R of the ozone bubbles Sz shown in Fig. 13 is 50 nm or less, most of which is 30 nm or less, and the buoyancy received from the ozone water W is extremely small. For this reason, there are almost no ozone bubbles Sz trying to rise to the surface of the ozone water W. For this reason, there are much more opportunities for contact with the resist HR compared to the ozone bubbles Lz shown in FIG. Also, since the normal ozone bubble is almost spherical, contact with the resist HR is close to point contact even if there is deformation due to contact. Therefore, there is no big difference between the contact area of the ozone bubbles Lz in contact with the resist film R and the contact area of the ozone bubbles Sz!
  • the resist HR also has a recess G having a width d of about 60 nm, for example.
  • a width d of about 60 nm for example.
  • the ozone bubbles that can pass through the width d of about 60 ⁇ m are not the ozone bubbles Lz shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

[PROBLEMS] To provide a substrate cleaning method wherein substrate is not adversely affected. [MEANS FOR SOLVING PROBLEMS] A substrate cleaning method is provided for cleaning a substrate by using ozone water produced by a gas-liquid mixing method without using additives. The method is characterized in that the diameter (R) of ozone bubbles contained in the ozone water is 0<R≤50nm. Since the diameter of the ozone bubble is within such range, buoyancy is not easily given from the ozone water. As a result, the ozone bubbles are prevented from moving up, and the ozone water is not easily degassed. Thus, sufficient cleaning effects are obtained by having the ozone water not easily degassed.

Description

基板洗浄方法及び基板洗浄装置  Substrate cleaning method and substrate cleaning apparatus
技術分野  Technical field
[0001] この発明は、オゾン水を用いて、半導体ウェハのような半導体基板、ガラス基板、電 子回路モジュール、液晶ディスプレイ等の基板を洗浄するための基板洗浄方法及び 基板洗浄装置に関するものである。  The present invention relates to a substrate cleaning method and a substrate cleaning apparatus for cleaning a substrate such as a semiconductor substrate such as a semiconductor wafer, a glass substrate, an electronic circuit module, and a liquid crystal display using ozone water. .
背景技術  Background art
[0002] 特許文献 1は、半導体基板の洗浄に用いるオゾン水を、オゾン発生器で発生させ たオゾン (オゾンガス)をェゼクタを介して被処理水に混入することによって生成する 技術 (以下、適宜「第 1の先行技術」という)を開示する。さらに特許文献 2は、ェタノ ールゃイソプロピルアルコールのような有機溶剤を添カ卩したオゾン水を用いた半導体 基板の洗浄方法 (以下、適宜「第 2の先行技術」という)を開示する。有機溶剤を添加 するのは、洗浄槽のような開口部の大きな容器に貯留した場合は 2〜5分と言われて いるオゾン水中のオゾン半減期を延長させるためである。他方において第 3の先行技 術は、必要以上の有機溶剤の添カ卩は残留する炭素成分による基板品質の劣化を招 くのでそれを防ぐために添加量の調整を求めている。特許文献 3は、オゾン含有純水 をほぼ 22°C〜45°C程度の温度とほぼ 30ppm以上の溶存オゾン濃度とを含む条件 の下でフォトレジスト膜を除去しょうとする技術 (以下、適宜「第 3の先行技術」という) を開示する。オゾン含有純水は、超純水の中に 1 μ m程度の微小孔を有する多孔性 チューブを介してオゾンを拡散するようになっている。また、第 3の先行技術に係る上 記温度条件は、加熱した純水にオゾンを溶解させる手法により実現させている。他方 、特許文献 4には、直径が 10〜50 mのオゾン気泡を含む水溶液に、鉄、マンガン 、カルシウム、ナトリウム、マグネシウムイオン、その他ミネラル類のイオン等の電解質 を混入し、混入した水溶液に水中放電を行うことによって 50〜500nmのナノバブル を得ることができる旨が記載されている。上記ナノバブルを含む水溶液のことを、以下 にお!/、て「従来のオゾン水」といい、従来のオゾン水の生成技術のことを適宜「第 4の 従来技術」という。 特許文献 1 :特開 2006— 49453号公報 (段落 0034参照) [0002] Patent Document 1 discloses a technique for generating ozone water used for cleaning a semiconductor substrate by mixing ozone (ozone gas) generated by an ozone generator into water to be treated via an ejector (hereinafter referred to as “ 1st prior art "). Further, Patent Document 2 discloses a method of cleaning a semiconductor substrate using ozone water supplemented with an organic solvent such as ethanol or isopropyl alcohol (hereinafter referred to as “second prior art” as appropriate). The organic solvent is added to extend the ozone half-life in ozone water, which is said to be 2 to 5 minutes when stored in a container with a large opening such as a washing tank. On the other hand, the third prior art requires the adjustment of the amount of addition to prevent the addition of organic solvent more than necessary because it causes deterioration of the substrate quality due to residual carbon components. Patent Document 3 describes a technique for removing a photoresist film from pure ozone-containing water under conditions including a temperature of approximately 22 ° C to 45 ° C and a dissolved ozone concentration of approximately 30 ppm or more (hereinafter referred to as “ 3rd prior art ”). Ozone-containing pure water diffuses ozone through a porous tube with micropores of about 1 μm in ultrapure water. Further, the above temperature condition according to the third prior art is realized by a method of dissolving ozone in heated pure water. On the other hand, in Patent Document 4, an electrolyte containing iron bubbles, manganese, calcium, sodium, magnesium ions and other mineral ions is mixed in an aqueous solution containing ozone bubbles having a diameter of 10 to 50 m, and the mixed aqueous solution is submerged in water. It is described that nanobubbles of 50 to 500 nm can be obtained by discharging. The aqueous solution containing the nanobubbles is referred to below as “conventional ozone water” and the conventional ozone water generation technique is referred to as “fourth conventional technique” as appropriate. Patent Document 1: Japanese Patent Laid-Open No. 2006-49453 (see paragraph 0034)
特許文献 2 :特開 2004— 79649号公報 (段落 0011、0018参照) Patent Document 2: JP 2004-79649 A (see paragraphs 0011 and 0018)
特許文献 3 :特開 2002— 33300号公報(段落 0011、 0018, 0019、 0022参照) 特許文献 4:特開 2005— 246293号公報(段落 0016〜0025、図 1参照) 発明の開示 Patent Document 3: Japanese Patent Laid-Open No. 2002-33300 (see paragraphs 0011, 0018, 0019, 0022) Patent Document 4: Japanese Patent Laid-Open No. 2005-246293 (see paragraphs 0016-0025, FIG. 1) Disclosure of the Invention
発明が解決しょうとする課題 Problems to be solved by the invention
ところで、本願発明者が行った実験によれば、単にェゼクタを用いただけでは、生 成したオゾン水のオゾン溶解度を充分に高めることができない。このため、オゾン水 力も大量のオゾンが脱気してしまい、求める洗浄効果を得られない。オゾン溶解度を 高めることができない主な理由は、溶解させたオゾン気泡の粒径が概ね 1 m (マイク 口メートル)以上であるため、オゾン気泡がオゾン水から浮力を受けて水面まで浮上し てしまう点にある。オゾン気泡を水面まで浮上させづらくするためには、溶解させたォ ゾン気泡の粒径を概ね 500nm以下に抑えるとよい。しかしながら、前述した第 1乃至 第 3の先行技術は、 、ずれも粒径 500nm以下のオゾン気泡のみを含むオゾン水を 実現したものではない。前述した第 4の技術は、粒径 50〜500のオゾン気泡を含む オゾン水を提供するもののようである力 これは、電解質混入を必須とする。鉄、マン ガン、カルシウム、ナトリウム、マグネシウムイオン、その他ミネラル類のイオン等の電 解質 (添加物)を混入したオゾン水は、これらの電解質が半導体基板に悪影響を与え る恐れがあるから半導体基板の洗浄には適さな!/、。第 2の従来技術が提供するォゾ ン水にも有機溶剤を混入させる必要があり、そのような有機溶剤も半導体基板の洗 浄に適さないことは言うまでもない。この点、第 3の先行技術は有機溶剤の添加量調 節に、その解決を求めているが、有機溶剤も添加物であるかぎり含まれないほうがよ いことは当然である。第 3の従来技術で 3では、オゾン拡散を 1 μ m程度の微小孔を 介して 3行うようになっているため、オゾン含有純水が含有するオゾン気泡の粒径そ のほとんどが: L mより小さくなることはない。したがって、第 3の技術をもってしても、 粒径 1000nm (l μ m)以下のオゾン気泡のみを含むオゾン水を実現することはでき ない。本発明が解決しょうとする課題は、基板に悪影響を与えることのない、かつ、容 易に脱気しな ヽことにより充分な洗浄効果を得ることのできる基板洗浄方法及び基板 洗浄装置を提供することにある。 By the way, according to experiments conducted by the inventors of the present application, the ozone solubility of the generated ozone water cannot be sufficiently increased only by using the ejector. For this reason, a large amount of ozone is degassed, and the desired cleaning effect cannot be obtained. The main reason why the ozone solubility cannot be increased is that the dissolved ozone bubbles have a particle size of approximately 1 m (micrometer mouth meter) or more, so the ozone bubbles receive buoyancy from the ozone water and rise to the water surface. In the point. In order to make it difficult for the ozone bubbles to rise to the surface of the water, the particle size of the dissolved ozone bubbles should be suppressed to approximately 500 nm or less. However, the first to third prior arts described above do not realize ozone water that includes only ozone bubbles having a particle size of 500 nm or less. The fourth technique described above is a force that seems to provide ozone water containing ozone bubbles with a particle size of 50-500. This requires electrolyte contamination. Ozone water mixed with electrolytes (additives) such as iron, mangan, calcium, sodium, magnesium ions, and other mineral ions may adversely affect the semiconductor substrate. Suitable for cleaning! Needless to say, an organic solvent needs to be mixed into the ozone water provided by the second prior art, and such an organic solvent is not suitable for cleaning a semiconductor substrate. In this regard, the third prior art requires a solution to the adjustment of the amount of organic solvent added, but it is natural that the organic solvent should not be included as long as it is an additive. In the third prior art 3, ozone diffusion is performed through 3 micropores of about 1 μm, so the particle size of ozone bubbles contained in ozone-containing pure water is almost: L m It will never be smaller. Therefore, even with the third technology, it is not possible to realize ozone water containing only ozone bubbles having a particle size of 1000 nm (l μm) or less. The problems to be solved by the present invention are a substrate cleaning method and a substrate which do not adversely affect the substrate and can obtain a sufficient cleaning effect by not easily degassing. It is to provide a cleaning device.
課題を解決するための手段  Means for solving the problem
[0004] 上記課題を解決するために鋭意研究を重ねた発明者は、水にオゾンを混合させて オゾン水を生成するに当たり、 50nm以下の直径のオゾン気泡を含むオゾン水を得る ことができた。このオゾン水には、電解質や有機溶剤のような添加物を、混入又は添 カロしていない。添加物を含まない点で上記オゾン水は、背景技術の欄で説明した従 来のオゾン水と大きく異なっている。本発明は、上記オゾン水を用いて基板洗浄を行 おうとするものである。発明の詳しい構成については、項を改めて説明する。なお、何 れかの請求項記載の発明を説明するに当たって行う用語の定義等は、発明のカテゴ リーの違いや記載の前後等に関わりなぐその性質上可能な範囲において他の請求 項記載の発明にも適用があるものとする。  [0004] The inventors who have conducted extensive research to solve the above problems were able to obtain ozone water containing ozone bubbles with a diameter of 50 nm or less when ozone was mixed with water to generate ozone water. . This ozone water does not contain or contain additives such as electrolytes or organic solvents. The ozone water is significantly different from the conventional ozone water described in the background section in that it does not contain additives. The present invention intends to clean the substrate using the ozone water. The detailed configuration of the invention will be described again. It should be noted that the definitions of terms used to describe an invention described in any claim are the inventions described in other claims as long as they are possible in terms of their nature regardless of the category of the invention or before and after the description. Shall also apply.
[0005] (請求項 1記載の発明の特徴) [0005] (Characteristics of the invention described in claim 1)
請求項 1記載の発明に係る基板洗浄方法 (以下、適宜「請求項 1の洗浄方法」という) は、気液混合方法によって無添加生成したオゾン水を用いて基板を洗浄する基板洗 浄方法である。ここで、当該オゾン水が含有するオゾン気泡の粒径 Rが 0<R≤ 50η mである。発明者らが行った実験によれば、粒径 Rはそのほとんどが 30nm以下であ ることが分力つた力 気液混合を行う際の諸条件によっては 30nmを超え 50nm以下 のオゾン気泡の存在も確認できた。水にオゾンを混合させる気液混合方法によって 生成するオゾン水であるから、粒径 50nm以下のオゾン気泡の他に 50nmを超える粒 径のオゾン気泡が僅かながら (たとえば、全体の 1%未満の量又は数だけ)偶発的に 含有される場合があることを完全には否定しきれな 、が、そのような場合が仮にあつ たとしても、粒径 50nmを超えるオゾン気泡は粒径が大き ヽことにカ卩ぇオゾン水全体 に比べて量的に極僅かであることから洗浄に対する貢献度は全くないかあるとしても 極めて低いものである。よって、粒径 50nmを超えるオゾン気泡を含有する部分のォ ゾン水は本願発明に係るオゾン水の対象外である。すなわち、上記場合に基板洗浄 に用いられるオゾン水は、本願発明に係る粒径 50nm以下のオゾン気泡を含有する 本願発明に係るオゾン水と、粒径 50nmを超えるオゾン気泡を含む本願発明の対象 外に係るオゾン水とが単に混在している、と解釈されるべきである。なお、オゾン水を 用いた基板の洗浄方法には、たとえば、基板をオゾン水に浸漬させたり、基板にォゾ ン水を散布したり、浴びせたり、する方法が挙げられる。無添加オゾン水の性質を害 するものでなければ、後述するように光や超音波の照射等をオゾン水洗浄に併用す ることを妨げない。オゾン水洗浄の前後に、オゾン水洗浄以外の洗浄工程等 (たとえ ば、オゾン洗浄を促進するために前もってエキシマ光を照射して基板表面を親水化 しておく)を行うことがあるなら、そのような洗浄工程等は、本願発明に係る技術思想 に含まれる。 The substrate cleaning method according to the invention of claim 1 (hereinafter referred to as “the cleaning method of claim 1” as appropriate) is a substrate cleaning method of cleaning a substrate using ozone water that is added and generated by a gas-liquid mixing method. is there. Here, the particle size R of the ozone bubbles contained in the ozone water is 0 <R≤50ηm. According to the experiments conducted by the inventors, the particle size R is almost 30 nm or less. Depending on the various conditions during gas-liquid mixing, the presence of ozone bubbles exceeding 30 nm and 50 nm or less Was also confirmed. Since ozone water is produced by a gas-liquid mixing method in which ozone is mixed with water, ozone bubbles with a particle size exceeding 50 nm are also present in addition to ozone bubbles with a particle size of 50 nm or less (for example, less than 1% of the total amount). (Although only a few) It cannot be completely denied that it may be contained accidentally, but even in such a case, ozone bubbles with a particle size exceeding 50 nm should have a large particle size. In addition, the amount of contribution to cleaning is extremely low, if any, because it is extremely small compared to the total amount of ozone water. Therefore, the ozone water in the part containing ozone bubbles having a particle size of more than 50 nm is not covered by the ozone water according to the present invention. That is, the ozone water used for substrate cleaning in the above case includes ozone bubbles having a particle size of 50 nm or less according to the present invention and ozone water according to the present invention and ozone bubbles having a particle size of more than 50 nm. It should be construed that the ozone water is simply mixed. In addition, ozone water Examples of the substrate cleaning method used include a method of immersing the substrate in ozone water, or spraying or bathing the substrate with ozone water. As long as it does not impair the properties of the additive-free ozone water, it does not prevent the use of ozone or water cleaning with light or ultrasonic irradiation as described later. If there is a cleaning process other than ozone water cleaning before and after ozone water cleaning (for example, the substrate surface is made hydrophilic by irradiating excimer light in advance to promote ozone cleaning). Such a cleaning process and the like are included in the technical idea of the present invention.
[0006] 請求項 1の洗浄方法によれば、含有されるオゾンがオゾン水から容易に脱気しな!ヽ ので、基板の洗浄効果を長く確実に保つことができる。オゾン脱気が有効に抑制され ている力もである。すなわち、粒径を 50nm以下に抑えたことによりオゾン気泡がォゾ ン水力 受ける浮力が極めて小さいので、オゾン気泡が水面まで上昇しづらい。つま り、オゾン水中に安定して滞留する。安定して滞留するオゾン気泡は、オゾン水が基 板等と衝突したときの衝撃により脱気することも極めて少ない。これらが、オゾン脱気 の有効抑制を実現する。さらに、粒径が極めて小さいから、基板表面や基板上形成 物の表面には、ナノメートル(nm)レベルの寸法(たとえば 60nm)の凹凸が形成され ていることが多いが、その例における 60nmの凹部においてオゾンを反応させるため にはその凹部の中にオゾン気泡が進入できなければならな 、ところ、本願発明に係 るオゾン水によればそのようなオゾン反応を可能にする。また、無添カ卩のオゾン水を 用いた洗浄であるから、添加物混入による悪影響を基板に与える恐れがない。また、 添加物を混入していないので、洗浄後のオゾン水が、その添加物により与える環境 への悪影響をもなくなる。さらに、オゾン脱気が有効抑制されているので、オゾンが脱 気しない、若しくは極めて脱気しづらい。つまり、オゾンという人間が吸引すると有害 なものがオゾン水から出な 、と 、うことである力も安全面でも極めて使 、勝手がょ 、。  [0006] According to the cleaning method of claim 1, the contained ozone is not easily degassed from the ozone water, so that the cleaning effect of the substrate can be reliably maintained for a long time. It is also a force that effectively suppresses ozone degassing. In other words, by suppressing the particle size to 50 nm or less, the buoyancy that the ozone bubbles are subjected to the ozone hydropower is extremely small, so the ozone bubbles do not easily rise to the water surface. In other words, it stays stably in ozone water. Ozone bubbles that stay stably are very rarely degassed by impact when ozone water collides with the substrate. These realize effective suppression of ozone deaeration. Furthermore, since the particle size is extremely small, irregularities having a nanometer (nm) level dimension (for example, 60 nm) are often formed on the surface of the substrate and the formed material on the substrate. In order for ozone to react in the recess, ozone bubbles must be able to enter the recess. However, the ozone water according to the present invention enables such ozone reaction. In addition, since cleaning is performed using ozone water with no additive, there is no possibility of adversely affecting the substrate due to the addition of additives. In addition, since no additive is mixed, the ozone water after washing does not adversely affect the environment caused by the additive. Furthermore, since ozone degassing is effectively suppressed, ozone does not degas or is very difficult to degas. In other words, if ozone is inhaled by humans, harmful substances will not come out of the ozone water.
[0007] (請求項 2記載の発明の特徴) [0007] (Characteristics of the invention described in claim 2)
請求項 2記載の発明に係る基板洗浄方法 (以下、適宜「請求項 2の洗浄方法」 t ヽ う)は、含有オゾン気泡の粒径 Rが 0<R≤50nmであるオゾン水を、添加物を含めな V、気液混合方法によって生成するオゾン水生成工程と、当該オゾン水生成工程にお V、て生成したオゾン水を用いて基板を洗浄するオゾン水洗浄工程と、を含めてなるも のである。オゾン水生成工程で生成するオゾン水の性質やオゾン水洗浄工程で洗浄 する方法の種類等については、請求項 1の洗浄方法の説明の中で行ったものと異な らない。 The substrate cleaning method according to the invention described in claim 2 (hereinafter referred to as “cleaning method of claim 2” t 適宜) is performed by adding ozone water in which the particle size R of the contained ozone bubbles is 0 <R ≦ 50 nm. V, an ozone water generation process generated by a gas-liquid mixing method, and an ozone water cleaning process for cleaning the substrate using the ozone water generated by V in the ozone water generation process. It is. The nature of the ozone water generated in the ozone water generation process and the type of cleaning method used in the ozone water cleaning process are not different from those described in the description of the cleaning method in claim 1.
[0008] 請求項 2の洗浄方法によれば、含有されるオゾンがオゾン水から容易に脱気しな ヽ ので、基板の洗浄効果を長く確実に保つことができる。オゾン脱気が有効に抑制され ている力もである。すなわち、粒径を 50nm以下に抑えたことによりオゾン気泡がォゾ ン水力 受ける浮力が極めて小さいので、オゾン気泡が水面まで上昇しづらい。これ 1S オゾン脱気の有効抑制を実現する。さらに、粒径が極めて小さいから、基板表面 や基板上形成物の表面には、ナノメートル (nm)レベルの寸法(たとえば 60nm)の凹 凸が形成されていることが多いが、その例における 60nmの凹部においてオゾンを反 応させるためにはその凹部の中にオゾン気泡が進入できなければならな 、ところ、本 願発明に係るオゾン水によればそのようなオゾン反応を可能にする。また、無添加の オゾン水を用いた洗浄であるから、添加物混入による悪影響を基板に与える恐れが ない。また、添加物を混入していないので、洗浄後のオゾン水が、その添加物により 与える環境への悪影響をもなくなる。さらに、オゾン脱気が有効抑制されているので、 オゾンが脱気しない、若しくは極めて脱気しづらい。つまり、オゾンという有害なものが オゾン水から出な 、と!/、うことである力 安全面でも極めて使 、勝手がょ 、。  [0008] According to the cleaning method of claim 2, since the contained ozone does not easily deaerate from the ozone water, the cleaning effect of the substrate can be reliably maintained for a long time. It is also a force that effectively suppresses ozone degassing. In other words, by suppressing the particle size to 50 nm or less, the buoyancy that the ozone bubbles are subjected to the ozone hydropower is extremely small, so the ozone bubbles do not easily rise to the water surface. This achieves effective suppression of 1S ozone deaeration. Furthermore, since the particle size is extremely small, concaves and convexes with a nanometer (nm) level dimension (for example, 60 nm) are often formed on the surface of the substrate or on the surface of the substrate formation. In order to react ozone in the recess, ozone bubbles must be able to enter the recess. However, according to the ozone water according to the present invention, such ozone reaction is possible. Moreover, since cleaning is performed using additive-free ozone water, there is no possibility of adversely affecting the substrate due to mixing of additives. In addition, since no additive is mixed, the ozone water after washing does not adversely affect the environment caused by the additive. Furthermore, since ozone degassing is effectively suppressed, ozone does not degas or is extremely difficult to degas. In other words, the harmful effect of ozone does not come out of the ozone water!
[0009] (請求項 3記載の発明の特徴)  [0009] (Characteristics of the invention described in claim 3)
請求項 3記載の発明に係る基板洗浄方法 (以下、適宜「請求項 3の洗浄方法」 t ヽ う)では、請求項 1又は 2の洗浄方法における好ましい態様として、前記気液混合方 法に使用する原水に、純水又は超純水を使用してある。  In the substrate cleaning method according to the invention of claim 3 (hereinafter referred to as “cleaning method of claim 3” as appropriate), as a preferred embodiment of the cleaning method of claim 1 or 2, it is used in the gas-liquid mixing method. Pure water or ultrapure water is used as raw water.
[0010] 請求項 3の洗浄方法によれば、請求項 1又は 2の洗浄方法の作用効果を前提とし て、純水又は超純水を使用することによって、オゾン水の純度が高まるため基板に対 する悪影響の恐れをさらになくすことができる。すなわち、純水や超純水以外の水( たとえば、井戸水や水道水)をオゾン水生成のための原水として用いた場合には、そ の原水の中にもともと異物が存在している可能性がある力 純水又は超純水を使用 すればその純水又は超純水の純度の限りにお 、てそのような異物さえも混入して!/、 ない。これが、基板に対する悪影響の恐れをさらになくすことのできる理由である。な お。上記例にいう水道水や井戸水を、たとえば、逆浸透膜を用いて濾過して得た水 は、上記純水等に該当する。 [0010] According to the cleaning method of claim 3, on the premise of the operational effect of the cleaning method of claim 1 or 2, the use of pure water or ultrapure water increases the purity of ozone water. This can further eliminate the risk of adverse effects. That is, when water other than pure water or ultrapure water (for example, well water or tap water) is used as raw water for generating ozone water, there is a possibility that foreign substances are originally present in the raw water. A certain force If pure water or ultrapure water is used, even such foreign substances will be mixed in as long as the purity of the pure water or ultrapure water is reached. This is the reason why the risk of adverse effects on the substrate can be further eliminated. Na Oh. The water obtained by filtering the tap water and well water in the above example using a reverse osmosis membrane, for example, corresponds to the pure water or the like.
[0011] (請求項 4記載の発明の特徴)  [0011] (Characteristics of the invention according to claim 4)
請求項 4記載の発明に係る基板洗浄方法 (以下、適宜「請求項 4の洗浄方法」 t ヽ う)では、請求項 2又は 3の洗浄方法における好ましい態様として、前記オゾン水生成 工程では、小径路を有するベンチユリ管に原水を通過させ、かつ、ベンチユリ管にォ ゾンを供給するとともに、当該ベンチユリ管の少なくとも小径路に磁力を作用させるよ うにしてある。ベンチユリ管はェジェクタ(ェゼクタ)と呼ばれることもある。  In the substrate cleaning method according to the invention of claim 4 (hereinafter referred to as “the cleaning method of claim 4” as appropriate), as a preferred embodiment of the cleaning method of claim 2 or 3, in the ozone water generating step, a small diameter is used. The raw water is passed through a bench lily pipe having a channel, ozone is supplied to the bench lily pipe, and a magnetic force is applied to at least a small path of the bench lily pipe. The bench lily tube is sometimes called an ejector.
[0012] 請求項 4の洗浄方法によれば、請求項 2又は 3の洗浄方法の作用効果を前提とし て、オゾンを供給するベンチユリ管の少なくとも小径路に磁力を作用させることが、含 有オゾン気泡の粒径 Rが 0<R≤ 50nmであるオゾン水生成を極めて容易にする。ベ ンチユリ管を通過する原水の圧力は、小径路に近づくにつれて一気に増加し、小径 路通過後に一気に減少する。圧力減少する際のベンチユリ管内部は真空又は真空 に近い負圧状態となり、この負圧状態によって供給されたオゾンが原水内に吸引され る。吸引されたオゾンは、上記圧力変化と、小径路通過に伴う原水 (オゾン水)の流れ の変化等が複雑に絡み合い、一気に攪拌混合される。この一連の作用が、磁力の作 用と相まってオゾン水生成を容易にする要因の一つと考えられる。オゾン気泡の粒径 Rを 50nm以下にすることができることについての因果関係は発明者において現在 解明中であるが、この点は、後述する実験結果において明らかになる。  [0012] According to the cleaning method of claim 4, on the premise of the operational effect of the cleaning method of claim 2 or 3, it is possible to cause a magnetic force to act on at least a small path of a bench lily tube supplying ozone. Ozone water generation with bubble size R 0 <R ≤ 50 nm is extremely easy. The pressure of the raw water passing through the venturi pipe increases at a stroke as it approaches the small path, and decreases at a stroke after passing through the small path. When the pressure decreases, the inside of the bench lily tube is in a vacuum or a negative pressure state close to vacuum, and ozone supplied by this negative pressure state is sucked into the raw water. The suctioned ozone is intricately intertwined with the above pressure change and the change in the flow of raw water (ozone water) as it passes through a small path, and is stirred and mixed at once. This series of actions, combined with the action of magnetic force, is considered to be one of the factors that facilitate ozone water generation. The inventor is currently elucidating the causal relationship that the particle size R of the ozone bubbles can be reduced to 50 nm or less, but this point will be clarified in the experimental results described later.
[0013] (請求項 5記載の発明の特徴)  [0013] (Characteristics of the invention described in claim 5)
請求項 5記載の発明に係る基板洗浄方法 (以下、適宜「請求項 5の洗浄方法」 t ヽ う)では、請求項 4の洗浄方法の好ましい態様として、前記磁石の磁力が、 1000〜3 0000ガウスに設定してある。  In the substrate cleaning method according to the invention of claim 5 (hereinafter referred to as “the cleaning method of claim 5” t as appropriate), as a preferred embodiment of the cleaning method of claim 4, the magnetic force of the magnet is 1000-30000. It is set to Gauss.
[0014] 請求項 5の洗浄方法によれば、請求項 4の洗浄方法の作用効果を前提として、磁 石の構成を簡単に、かつ、経済的に行うことができる。すなわち、上記磁力を持った 磁石であれば、市場調達が容易であるから特別な磁石を用意する必要がない。特別 な磁石ではな!/ヽから安価である。上記範囲を超える磁力を持った磁石の採用を妨げ る趣旨でな 、ことは 、うまでもな!/、。 [0015] (請求項 6記載の発明の特徴) [0014] According to the cleaning method of claim 5, on the premise of the action and effect of the cleaning method of claim 4, the configuration of the magnet can be performed easily and economically. In other words, a magnet with the above magnetic force is easy to procure on the market, so there is no need to prepare a special magnet. It's not a special magnet! The purpose is not to prevent the adoption of magnets with a magnetic force exceeding the above range. [0015] (Characteristics of the invention described in claim 6)
請求項 6記載の発明に係る基板洗浄方法 (以下、適宜「請求項 6の洗浄方法」 t ヽ う)では、請求項 5の洗浄方法における好ましい態様として、前記ベンチユリ管を通過 したオゾン水 (原水を含む場合もある)を循環させ、オゾンを供給しながら前記ベンチ ユリ管を少なくとも 1回再通過させるようにしてある。  In the substrate cleaning method according to the invention described in claim 6 (hereinafter referred to as “cleaning method according to claim 6” as appropriate), ozone water (raw water) that has passed through the bench lily pipe is preferably used as the cleaning method according to claim 5. And is allowed to pass through the bench tube at least once while supplying ozone.
[0016] 請求項 6の洗浄方法によれば、請求項 5の洗浄方法の作用効果を前提として、ォゾ ン水の循環によってオゾン水に対するオゾン注入を繰り返して行うことができる。繰り 返してオゾン注入を行えば、オゾン注入をー且終えたオゾン水に再度オゾン注入す ることによって、前者よりも後者のほうがオゾン溶解度並びにオゾン濃度を高めること が可能になる。一度溶解させたオゾン気泡を繰り返しベンチユリ管の小径路を通過さ せることによってオゾン気泡の微細化が促進される。循環させる回数は、求めるォゾ ン溶解度やオゾン濃度に応じて装置使用者が決定するとよい。  [0016] According to the cleaning method of claim 6, on the premise of the function and effect of the cleaning method of claim 5, ozone injection into ozone water can be repeatedly performed by circulating ozone water. If ozone injection is repeated, the ozone solubility and the ozone concentration can be increased in the latter than in the former by re-injecting ozone into the ozone water that has been and has been injected. By making ozone bubbles once dissolved repeatedly pass through the small path of the bench lily tube, miniaturization of the ozone bubbles is promoted. The number of circulations should be determined by the user of the device according to the required ozone solubility and ozone concentration.
[0017] (請求項 7記載の発明の特徴)  [0017] (Characteristics of the invention of claim 7)
請求項 7記載の発明に係る基板洗浄方法 (以下、適宜「請求項 7の洗浄方法」 t ヽ う)では、請求項 6の洗浄方法における好ましい態様として、前記循環させたオゾン水 を貯留タンクに一且貯留することを行う。オゾン水が貯留されている貯留タンク内に原 水を追加注入するようにしてもよい。使用等により減少したオゾン水の量を増カロさせる ためである。  In the substrate cleaning method according to the invention of claim 7 (hereinafter referred to as “the cleaning method of claim 7”), as a preferred embodiment of the cleaning method of claim 6, the circulated ozone water is supplied to a storage tank. Once stored. Additional raw water may be injected into the storage tank in which ozone water is stored. This is to increase the amount of ozone water that has been reduced by use.
[0018] 請求項 7の洗浄方法によれば、請求項 6の洗浄方法の作用効果を前提として、ォゾ ン水をー且、貯留タンクに貯留することができ、この貯留によってオゾン水を安定状 態に置き、これによつて、オゾン水に対するオゾン溶解を熟成類似の作用によって促 進させることができる。貯留タンク内に原水を注入しながらオゾン水の循環を行うと、 使用により減少した分を補いながら所定量のオゾン水を貯留タンク内に貯留すること ができる。オゾン濃度の維持は、オゾン水循環によって行う。  [0018] According to the cleaning method of claim 7, on the premise of the operational effect of the cleaning method of claim 6, ozone water can be stored in a storage tank, and ozone water can be stabilized by this storage. In this state, ozone dissolution in ozone water can be promoted by an action similar to aging. If ozone water is circulated while injecting raw water into the storage tank, a predetermined amount of ozone water can be stored in the storage tank while compensating for the decrease in usage. The ozone concentration is maintained by circulating ozone water.
[0019] (請求項 8記載の発明の特徴)  [0019] (Characteristics of the invention described in claim 8)
請求項 8記載の発明に係る基板洗浄方法 (以下、適宜「請求項 8の洗浄方法」 t ヽ う)では、請求項 7の洗浄方法における好ましい態様として、前記貯留タンクに貯留し たオゾン水を、 0〜15°Cの範囲に保持することを行う。上記温度範囲に保持するため の温度調整には、たとえば、貯留タンク内にあるオゾン水に対して直接行う方法や、 オゾン水を循環させる過程で行う方法、さらに、ー且取り出したオゾン水を温度調整 後に貯留タンクに戻す方法等がある。 In the substrate cleaning method according to the invention of claim 8 (hereinafter referred to as “the cleaning method of claim 8” as appropriate), as a preferred embodiment of the cleaning method of claim 7, ozone water stored in the storage tank is used. , Keep in the range of 0 to 15 ° C. To maintain the above temperature range For example, a method for directly adjusting the ozone water in the storage tank, a method for circulating the ozone water, and a method for returning the extracted ozone water to the storage tank after adjusting the temperature. Etc.
[0020] 請求項 8の洗浄方法によれば、請求項 7の洗浄方法の作用効果を前提として、温 度保持を行うことによって、オゾン水 (新たに注入された原水が含まれることもある)の 温度を上記範囲に保持することができる。オゾン水生成に使用する原水は長い配管 内を搬送される場合が多ぐそのような場合に搬送される原水は天候の影響を受け やすい。特に、夏季における水温上昇が著しい。また、オゾン水を循環させるために は循環のためのエネルギーが必要であり、そのようなエネルギー源として、たとえば、 ポンプがある。上記したエネルギー源は、一般に発熱を伴いその熱がオゾン水(原水 )の温度を高める場合がある。オゾン溶解は水温の影響を受け、水温が高くなるとォ ゾンの熱分解等による溶解度の低下が見られる。そこで、原水 (オゾン水)の温度を 所定範囲に保つことによって、オゾン溶解を促進させる。他方、たとえば、寒冷地に おいてオゾン水 (原水)が凍結する恐れがある場合は、ヒーター装置を設けてオゾン 水 (原水)被洗浄水を加温するように構成してもよ!ヽ。オゾン水 (原水)の冷却又はカロ 温を不要とするのであれば、温度保持構造自体を省略してもよいし、設けてある温度 保持構造の運転を停止してもよ 、。  [0020] According to the cleaning method of claim 8, on the premise of the function and effect of the cleaning method of claim 7, by maintaining the temperature, ozone water (may contain newly injected raw water) The temperature can be maintained within the above range. The raw water used to generate ozone water is often transported in long pipes. The raw water transported in such cases is easily affected by the weather. In particular, the water temperature rises significantly in the summer. Further, in order to circulate ozone water, energy for circulation is necessary, and for example, there is a pump as such an energy source. The energy sources described above generally generate heat, and the heat may increase the temperature of ozone water (raw water). Ozone dissolution is affected by the water temperature. When the water temperature rises, the solubility decreases due to thermal decomposition of the ozone. Therefore, ozone dissolution is promoted by keeping the temperature of raw water (ozone water) within a predetermined range. On the other hand, for example, if ozone water (raw water) is likely to freeze in cold regions, a heater device may be provided to heat the ozone water (raw water) to be cleaned!ヽ. If cooling of ozone water (raw water) or calorie temperature is not required, the temperature holding structure itself may be omitted, or the operation of the provided temperature holding structure may be stopped.
[0021] (請求項 9記載の発明の特徴)  [0021] (Features of the invention of claim 9)
請求項 9記載の発明に係る基板洗浄方法 (以下、適宜「請求項 9の洗浄方法」 t ヽ う)では、請求項 2乃至 8いずれかの洗浄方法における好ましい態様として、オゾン水 を溶解促進槽にー且貯留してオゾン溶解を促進することを行う。  In the substrate cleaning method according to the invention of claim 9 (hereinafter referred to as “the cleaning method of claim 9” as appropriate), ozone water is dissolved as a preferred embodiment in the cleaning method of any of claims 2 to 8. It is stored and promotes ozone dissolution.
[0022] 請求項 9の洗浄方法によれば、請求項 2乃至 8いずれかの洗浄方法の作用効果を 前提として、溶解促進槽の働きによってオゾン水に対するオゾン溶解が促進される。 溶解促進槽に貯留されたオゾン水は、その貯留によって安定状態に置かれる。安定 状態に置かれたオゾン水は、それに対するオゾン溶解が熟成類似の作用によって促 進される。すなわち、原水に供給されたオゾンや、オゾン水にさらに供給されたオゾン の、原水又はオゾン水に対する溶解度を高めることができる。  [0022] According to the cleaning method of claim 9, on the premise of the operational effect of any of the cleaning methods of claims 2 to 8, ozone dissolution in ozone water is promoted by the action of the dissolution accelerating tank. The ozone water stored in the dissolution accelerating tank is placed in a stable state by the storage. Ozone water placed in a stable state is promoted by aging-like action for ozone dissolution. That is, the solubility of the ozone supplied to the raw water and the ozone further supplied to the ozone water to the raw water or the ozone water can be increased.
[0023] (請求項 10記載の発明の特徴) 請求項 10記載の発明に係る基板洗浄方法 (以下、適宜「請求項 10の洗浄方法」と いう)では、請求項 9の洗浄方法における好ましい態様として、前記溶解促進槽の頂 部には、貯留してあるオゾン水から脱気したオゾンを排出する。 [0023] (Characteristics of the invention of claim 10) In the substrate cleaning method according to the invention of claim 10 (hereinafter, referred to as “cleaning method of claim 10” as appropriate), as a preferred embodiment of the cleaning method of claim 9, a reservoir is stored at the top of the dissolution promoting tank. The ozone deaerated from the ozone water is discharged.
[0024] 請求項 10の洗浄方法によれば、請求項 9の洗浄方法の作用効果を前提として、ォ ゾン水を循環する過程においてオゾン水に溶解しなかったオゾンを外部へ排出する ことができる。未溶解のオゾンを完全になくすことは必ずしも容易でないため、未溶解 オゾンが存在する場合もありうる。未溶解オゾンは、粒径が充分に小さくないため水 面に浮上してくるものがほとんどである。このように浮上してくる (粒径が比較的大きな )オゾン気泡を排出するとともに小径オゾン気泡を残すことにより、オゾン水が含むォ ゾンの溶解度の高いものとすることができる。この結果、真にオゾン溶解度の高いォ ゾン水が生成される。  [0024] According to the cleaning method of claim 10, on the premise of the operational effect of the cleaning method of claim 9, ozone that has not been dissolved in ozone water in the process of circulating ozone water can be discharged to the outside. . Since it is not always easy to completely eliminate undissolved ozone, undissolved ozone may exist. Most undissolved ozone floats to the surface because the particle size is not small enough. By discharging the ozone bubbles floating in this way (relatively large particle size) and leaving the small-diameter ozone bubbles, it is possible to increase the solubility of the ozone contained in the ozone water. As a result, ozone water with truly high ozone solubility is produced.
[0025] (請求項 11記載の発明の特徴)  [0025] (Characteristics of the invention according to claim 11)
請求項 11記載の発明に係る基板洗浄方法 (以下、適宜「請求項 11の洗浄方法」と いう)では、請求項 1乃至 10いずれかの洗浄方法における好ましい態様として、ォゾ ン水洗浄中において、基板表面又は基板表面上の形成物 (たとえば、絶縁膜)の上 に形成され又は付着した被洗浄体 (たとえば、レジスト膜)に、当該オゾン水中のォゾ ンを分解することでラジカルを発生させるエネルギーを有すると共に、当該基板又は 基板表面上の形成物の構成材料の結合エネルギーよりも低いエネルギーを有する 波長の光を必要に応じて照射する。照射する光として、たとえば、エキシマ (Excime r)レーザー、エキシマ光及びャグ (Yag)レーザーがある。  In the substrate cleaning method according to the invention of claim 11 (hereinafter referred to as “the cleaning method of claim 11” as appropriate), as a preferred embodiment of the cleaning method of any of claims 1 to 10, during ozone water cleaning, Then, radicals are generated by decomposing ozone in the ozone water on the substrate surface or an object to be cleaned (for example, a resist film) formed on or attached to the substrate surface (for example, an insulating film). The light having a wavelength that has a lower energy than the binding energy of the constituent material of the formed material on the substrate or the substrate is irradiated as necessary. Examples of light to be irradiated include an excimer laser, an excimer light, and a yag laser.
[0026] 請求項 11の洗浄方法によれば、請求項 1乃至 10いずれかの洗浄方法におけるォ ゾン水洗浄中において、オゾン水が浸透した状態の被洗浄体に、オゾンを分解する ことでラジカルを発生させるエネルギーを有するとともに、絶縁膜の構成材料の結合 エネルギーよりも低いエネルギーを有する波長の光が照射される。これにより被洗浄 体に集中的にラジカルを発生させるため基板表面又は基板表面上の形成物が酸素 イオンや酸素ラジカルに曝されるのを抑制した状態で、被洗浄体の分解反応を促進 することができる。他方、発生エネルギーと結合エネルギーとの差により、基板又は基 板表面上の形成物の構成材料における光照射による結合の切断が防止される。これ によって、基板又は形成物が受けるダメージが抑制され、被洗浄体の洗浄効率が飛 躍的に高まる。 [0026] According to the cleaning method of claim 11, during the ozone water cleaning in any of the cleaning methods of claims 1 to 10, a radical is obtained by decomposing ozone into a cleaning object in which ozone water has permeated. In addition, light having a wavelength having an energy lower than the binding energy of the constituent material of the insulating film is irradiated. As a result, radicals are intensively generated in the object to be cleaned, and the decomposition reaction of the object to be cleaned is promoted in a state in which exposure of the substrate surface or the formation on the substrate surface to oxygen ions or oxygen radicals is suppressed. Can do. On the other hand, the bond between the generated energy and the bond energy is prevented from being broken by light irradiation in the constituent material of the formed material on the substrate or the substrate surface. this As a result, damage to the substrate or the formed product is suppressed, and the cleaning efficiency of the object to be cleaned is dramatically increased.
[0027] (請求項 12記載の発明の特徴)  [0027] (Characteristics of the invention described in claim 12)
請求項 12記載の発明に係る基板洗浄方法 (以下、適宜「請求項 12の洗浄方法」と いう)では、請求項 1乃至 10いずれかの洗浄方法における好ましい態様として、基板 に対してオゾン水を流動させる。すなわち、たとえば、オゾン水を流したり、オゾン水を 攪拌したり、超音波を照射することによってオゾン水を振動させたり、することによって 、基板と接触するオゾン水に流動性を持たせる。  In the substrate cleaning method according to the invention of claim 12 (hereinafter referred to as “the cleaning method of claim 12” as appropriate), as a preferred embodiment of the cleaning method of any one of claims 1 to 10, ozone water is applied to the substrate. Let it flow. That is, for example, by flowing ozone water, stirring the ozone water, or vibrating the ozone water by irradiating ultrasonic waves, the ozone water in contact with the substrate is made fluid.
[0028] 請求項 12の洗浄方法によれば、請求項 1乃至 10いずれかの洗浄方法の作用効果 に加え、オゾン水の流動によって基板と接触するオゾン水 (オゾン気泡)が常に入れ 替わるため、オゾン濃度の高いオゾン水を効率よく接触させることができる。つまり、 基板と接触したオゾン水 (オゾン)は反応によって分解することになるが、反応を終え たオゾン水の代わりに新たなオゾン水が反応することによって洗浄効率が高まること になる。流水によって被洗浄体に振動を与えることも洗浄効率の向上に寄与する。  [0028] According to the cleaning method of claim 12, in addition to the operational effects of any of the cleaning methods of claims 1 to 10, ozone water (ozone bubbles) in contact with the substrate is constantly replaced by the flow of ozone water. Ozone water with a high ozone concentration can be contacted efficiently. In other words, ozone water (ozone) in contact with the substrate is decomposed by the reaction, but cleaning efficiency is increased by the reaction of new ozone water instead of the ozone water that has finished the reaction. Giving vibration to the object to be cleaned by running water also contributes to improving the cleaning efficiency.
[0029] (請求項 13記載の発明の特徴)  [0029] (Characteristics of the invention of claim 13)
請求項 13記載の発明に係る基板洗浄方法 (以下、適宜「請求項 13の洗浄方法」と いう)では、請求項 1乃至 12いずれかの洗浄方法における好ましい態様として、基板 接触前のオゾン水を加熱する。加熱方法に制限はないが、たとえば、ヒーター、電磁 誘導及び水蒸気による加熱方法がある。加熱温度は、生成時の温度にもよるが、たと えば、 30°C〜80°Cの範囲が可能となろう。  In the substrate cleaning method according to the invention of claim 13 (hereinafter referred to as “the cleaning method of claim 13” as appropriate), as a preferred embodiment of the cleaning method of any of claims 1 to 12, ozone water before contacting the substrate is used. Heat. There are no restrictions on the heating method, but for example, there are heaters, electromagnetic induction and steam heating methods. The heating temperature will depend on the temperature at the time of production, but for example, a range of 30 ° C to 80 ° C would be possible.
[0030] 請求項 13の洗浄方法によれば、請求項 1乃至 12いずれかの洗浄方法の作用効果 に加え、オゾン水の温度を洗浄のために適切な温度まで高めることによって、効率よ く洗浄を行うことができる。適切な温度は、被洗浄体の性質、局所洗浄か全体洗浄か の違い、洗浄時間の長短その他の環境等に左右される場合がある力 概ね高いほう が好ましい。他方、オゾンは水温が低いほうが溶解しやすいため、オゾン水を加熱す ると脱気や熱分解し易くなることも事実である。前掲の背景の技術の欄で紹介した第 3の先行技術 (特許文献 3)では、 45°Cまで高められている力 これまで知られている オゾン水ではそれが限度と思われる。なぜなら、粒径 1 m (lOOOnm)レベルのォゾ ン気泡は、前掲の発明が解決しょうとする課題の欄で述べたように、オゾン気泡がォ ゾン水から浮力を受けて水面まで浮上しやすい状態にあり、そこで加熱されれば、熱 膨張により粒径はさらに大きくなり、その結果、さらに大きな浮力を受けることになりよ り浮上し易い状態になる力もである。この点、本願発明に係るオゾン水が含有するォ ゾン気泡の粒径は 50nm以下であるから、加熱による膨張があってもなお受ける浮力 は小さくてすむ。したがって、オゾン気泡は依然としてオゾン水の中に滞留して容易 には脱気しな 、。本件発明に係るオゾン水を 80°C前後まで上昇させることができた のは、このオゾン気泡の粒径が充分に小さいからであると推測される。 [0030] According to the cleaning method of claim 13, in addition to the operational effects of any of the cleaning methods of claims 1 to 12, efficient cleaning is achieved by raising the temperature of the ozone water to an appropriate temperature for cleaning. It can be performed. It is preferable that the appropriate temperature is generally high, which may depend on the nature of the object to be cleaned, the difference between local cleaning or total cleaning, the length of cleaning time, and other environments. On the other hand, ozone is more easily dissolved at a lower water temperature, and it is also true that ozone water is easily degassed and thermally decomposed. In the third prior art (Patent Document 3) introduced in the background technology section above, the force increased to 45 ° C, so far, it seems to be the limit in ozone water known so far. Because the particle size is 1 m (lOOOnm) level As described in the section of the problem to be solved by the invention, the ozone bubbles are in a state where the ozone bubbles are likely to rise to the water surface due to buoyancy from the ozone water. The particle size is further increased, and as a result, it is subjected to a greater buoyancy and is more likely to float. In this regard, since the ozone bubbles contained in the ozone water according to the present invention have a particle size of 50 nm or less, the buoyancy that is received even when expanded due to heating is small. Therefore, the ozone bubbles still remain in the ozone water and cannot be easily degassed. The reason why the ozone water according to the present invention could be raised to around 80 ° C. is presumed that the particle diameter of the ozone bubbles was sufficiently small.
[0031] (請求項 14記載の発明の特徴)  [0031] (Characteristics of the invention according to claim 14)
請求項 14記載の発明に係る基板洗浄方法 (以下、適宜「請求項 14の洗浄方法」と いう)では、請求項 1乃至 12いずれかの洗浄方法における好ましい態様として、基板 接触前のオゾン水に超音波エネルギーを与えるとよい。  In the substrate cleaning method according to the invention of claim 14 (hereinafter referred to as “the cleaning method of claim 14” as appropriate), as a preferred embodiment of the cleaning method of any one of claims 1 to 12, ozone water before contacting the substrate is used. Apply ultrasonic energy.
[0032] 請求項 14の洗浄方法によれば、請求項 1乃至 12いずれかの洗浄方法の作用効果 にカロえ、超音波エネルギーを得たオゾン水は、得ていないオゾン水に比べて基板衝 突時に基板に与える衝撃が大き 、から、その衝撃の大きさの分だけ洗浄効果を高め ることができる。オゾン水にエネルギーが与えられたり、これまでのオゾン水は衝撃が 加えられたりすると溶存して 、るそこ力 オゾンが脱気しやす 、が、本願発明に係る オゾン水が含有するオゾン気泡は 50nm以下であって極めて安定した状態にあるか ら脱気しな 、か脱気したとしても極僅かである。  [0032] According to the cleaning method of claim 14, the ozone water obtained with the ultrasonic energy is more effective than the ozone water obtained with the effect of the cleaning method of any of claims 1 to 12, compared with the ozone water not obtained. Since the impact given to the substrate at the time of a collision is great, the cleaning effect can be enhanced by the magnitude of the impact. When energy is given to the ozone water or the conventional ozone water is shocked, it dissolves and the energy of ozone is easily degassed, but the ozone bubbles contained in the ozone water according to the present invention are 50 nm. Since it is below and is in a very stable state, it is not degassed, or even if it is degassed, there is very little.
[0033] (請求項 15記載の発明の特徴)  [0033] (Characteristics of the invention described in claim 15)
請求項 15記載の発明に係る基板洗浄方法 (以下、適宜「請求項 15の洗浄方法」と いう)では、請求項 1乃至 14いずれかの洗浄方法における好ましい態様として、洗浄 対象となる基板が半導体ウェハに代表される半導体基板とする。  In the substrate cleaning method according to the invention of claim 15 (hereinafter referred to as “the cleaning method of claim 15” as appropriate), as a preferred embodiment of the cleaning method of any one of claims 1 to 14, the substrate to be cleaned is a semiconductor. A semiconductor substrate represented by a wafer is used.
[0034] 請求項 15の洗浄方法によれば、半導体基板の洗浄を極めて効率よく行うことがで きる。また、無添加オゾン水であるから半導体基板に対するダメージを有効抑制する ことができる。すなわち、請求項 1乃至 14の洗浄方法に係るオゾン水は、その含有す るオゾン気泡の粒径が 50nm以下と極めて小さいことから、表面の小さな凹凸に対し てもオゾンを反応させることができるので半導体基板の洗浄に最適である。 [0035] (請求項 16記載の発明の特徴) [0034] According to the cleaning method of claim 15, the semiconductor substrate can be cleaned extremely efficiently. Moreover, since it is additive-free ozone water, damage to the semiconductor substrate can be effectively suppressed. That is, the ozone water according to the cleaning method of claims 1 to 14 has a very small particle size of ozone bubbles contained therein, which is as small as 50 nm or less, so that ozone can be reacted even to small irregularities on the surface. Ideal for cleaning semiconductor substrates. [0035] (Characteristics of the invention according to claim 16)
請求項 16記載の発明に係る基板洗浄方法 (以下、適宜「請求項 16の洗浄方法」と いう)では、請求項 1乃至 14いずれかの洗浄方法における好ましい態様として、洗浄 対象となる基板が液晶基板とする。  In the substrate cleaning method according to the invention of claim 16 (hereinafter referred to as “the cleaning method of claim 16” as appropriate), as a preferred embodiment of the cleaning method of any of claims 1 to 14, the substrate to be cleaned is a liquid crystal A substrate is used.
[0036] 請求項 16の洗浄方法によれば、液晶基板の洗浄を極めて効率よく行うことができる 。また、無添加オゾン水であるから液晶基板に対するダメージを有効抑制することが できる。すなわち、請求項 1乃至 14の洗浄方法に係るオゾン水は、その含有するォゾ ン気泡の粒径が 50nm以下と極めて小さいことから、表面の小さな凹凸に対してもォ ゾンを反応させることができるので液晶基板の洗浄に最適である。  [0036] According to the cleaning method of claim 16, the liquid crystal substrate can be cleaned extremely efficiently. Moreover, since it is additive-free ozone water, damage to the liquid crystal substrate can be effectively suppressed. That is, the ozone water according to the cleaning method of claims 1 to 14 has a very small particle size of ozone bubbles contained therein of 50 nm or less, so that the ozone can react even to small irregularities on the surface. This is ideal for cleaning liquid crystal substrates.
[0037] (請求項 17記載の発明の特徴)  [0037] (Characteristics of the invention described in claim 17)
請求項 17記載の発明に係る基板洗浄装置 (以下、適宜「請求項 17の洗浄装置」と いう)は、基板を洗浄するための洗浄槽と、当該洗浄槽にオゾン水を供給するための オゾン水生成装置と、を含めて構成してある。ここで、当該オゾン水生成装置が、小 径路を有するベンチユリ管と、当該ベンチユリ管の小径路を通過する被処理水にォゾ ンを供給するためのオゾン供給装置と、を含めて構成してあり、オゾン供給を受けた 純水又は超純粋に磁力を作用させる磁石を当該ベンチユリ管に設けることによって、 含有するオゾン気泡の粒径 Rが 0 < R≤ 50nmであるオゾン水を生成可能に構成して ある。  A substrate cleaning apparatus according to the invention of claim 17 (hereinafter referred to as “cleaning apparatus of claim 17” as appropriate) includes a cleaning tank for cleaning a substrate and ozone for supplying ozone water to the cleaning tank. And a water generator. Here, the ozone water generation apparatus includes a bench lily pipe having a small path and an ozone supply apparatus for supplying ozone to the water to be treated that passes through the small path of the bench lily pipe. Yes, pure water that is supplied with ozone or a magnet that acts purely magnetically on the bench lily tube can be configured to generate ozone water in which the particle size R of the contained ozone bubbles is 0 <R ≤ 50 nm It is.
[0038] 請求項 17の洗浄装置によれば、基板洗浄が洗浄槽の中で行われる。洗浄のため のオゾン水は、オゾン水生成装置が供給する。オゾン水生成装置の主要部品である ベンチユリ管は、その小径路を通過する被処理水(純水若しくは超純水又はオゾン水 )にオゾンを供給する。オゾン供給は、オゾン供給装置が行う。ベンチユリ管を通過す る被処理水の圧力は、小径路に近づくにつれて一気に増加し、小径路通過後に一 気に減少する。圧力減少する際のベンチユリ管内部は真空又は真空に近い負圧状 態となり、この負圧状態によって供給されたオゾンが原水内に吸引される。吸引され たオゾンは、上記圧力変化と、小径路通過に伴う被処理水の流れの変化等が複雑に 絡み合い、一気に攪拌混合される。この一連の作用が、磁力の作用と相まってオゾン 水生成を容易にする要因の一つと考えられる。小径路に磁力を作用させることによつ てオゾン気泡の粒径を、 50nm以下にすることができた。その因果関係は発明者に おいて現在解明中であるが、この点は、後述する実験結果において明らかになる。 洗浄に使用するオゾン水は無添加であるから、添加物混入による悪影響を基板に与 える恐れがない。また、添加物を混入していないので、洗浄後のオゾン水がその添カロ 物により与える環境への悪影響をもなくなる。請求項 16の製造装置によれば、請求 項 1乃至 16の洗浄方法を実施することができる。 According to the cleaning device of claim 17, the substrate cleaning is performed in the cleaning tank. The ozone water generator supplies the ozone water for cleaning. The bench lily pipe, which is the main component of the ozone water generator, supplies ozone to the treated water (pure water, ultrapure water, or ozone water) that passes through the small path. The ozone supply device performs ozone supply. The pressure of the water to be treated passing through the bench lily pipe increases rapidly as it approaches the small path, and decreases rapidly after passing through the small path. When the pressure decreases, the inside of the bench lily tube is in a vacuum or a negative pressure state close to vacuum, and ozone supplied by this negative pressure state is sucked into the raw water. The sucked ozone is agitated and mixed all at once, intricately intertwined with the change in pressure and the change in the flow of water to be treated as it passes through a small path. This series of actions, combined with the action of magnetic force, is considered to be one of the factors that facilitate ozone water generation. By applying a magnetic force to a small path As a result, the particle size of the ozone bubbles could be reduced to 50 nm or less. The causal relationship is currently being clarified by the inventor, but this point will be clarified in the experimental results described later. Since ozone water used for cleaning is not added, there is no possibility of adversely affecting the substrate due to mixing of additives. In addition, since no additives are mixed in, the ozone water after washing does not adversely affect the environment caused by the added calories. According to the manufacturing apparatus of claim 16, the cleaning method of claims 1 to 16 can be carried out.
[0039] (請求項 18記載の発明の特徴)  [0039] (Characteristics of the invention according to claim 18)
請求項 18記載の発明に係る基板洗浄装置 (以下、適宜「請求項 18の洗浄装置」と いう)では、請求項 17の洗浄装置の好ましい態様として、当該磁石が、一方の磁石片 と他方の磁石片とを含む磁気回路によって構成してあり、当該一方の磁石片と当該 他方の磁石片とを、前記ベンチユリ管を挟んで対向させてある。  In the substrate cleaning apparatus according to the invention of claim 18 (hereinafter referred to as “the cleaning apparatus of claim 18” as appropriate), as a preferred embodiment of the cleaning apparatus of claim 17, the magnet includes one magnet piece and the other magnet. The one magnet piece and the other magnet piece are opposed to each other with the bench tube interposed therebetween.
[0040] 請求項 18の洗浄装置によれば、請求項 17の洗浄装置の作用効果を前提として、 磁気回路を構成することによってベンチユリ管内部の必要な箇所に集中的に磁力を 作用させることができる。集中的な磁力作用が、オゾン溶解の効率をより高める。  [0040] According to the cleaning device of claim 18, on the premise of the function and effect of the cleaning device of claim 17, a magnetic circuit is configured so that a magnetic force is applied intensively to a necessary portion inside the bench lily tube. it can. Intensive magnetic action increases the efficiency of ozone dissolution.
[0041] (請求項 19記載の発明の特徴)  [0041] (Characteristic of the invention described in claim 19)
請求項 19記載の発明に係る基板洗浄装置 (以下、適宜「請求項 19の洗浄装置」と いう)では、請求項 17又は 18の洗浄装置の好ましい態様として、前記磁石の磁力が 、 1000〜30000ガウスに設定してある。  In the substrate cleaning apparatus according to the invention of claim 19 (hereinafter referred to as “the cleaning apparatus of claim 19” as appropriate), as a preferable aspect of the cleaning apparatus of claim 17 or 18, the magnetic force of the magnet is 1000 to 30000. It is set to Gauss.
[0042] 請求項 19の洗浄装置によれば、請求項 17又は 18の洗浄装置の作用効果を前提 として、磁石の構成を簡単に、かつ、経済的に行うことができる。すなわち、上記磁力 を持った磁石であれば、市場調達が容易であるから特別な磁石を用意する必要がな い。特別な磁石ではないから安価である。上記範囲を超える磁力を持った磁石の採 用を妨げる趣旨でな 、ことは 、うまでもな!/、。  [0042] According to the cleaning device of claim 19, on the premise of the operational effect of the cleaning device of claim 17 or 18, the configuration of the magnet can be performed easily and economically. In other words, if the magnet has the above magnetic force, it is not necessary to prepare a special magnet because it is easy to procure on the market. Since it is not a special magnet, it is inexpensive. The purpose is not to prevent the use of magnets with a magnetic force exceeding the above range.
[0043] (請求項 20記載の発明の特徴)  [0043] (Characteristics of the invention described in claim 20)
請求項 20記載の発明に係る基板洗浄装置 (以下、適宜「請求項 20の洗浄装置」と いう)では、請求項 17乃至 19いずれかの洗浄装置の好ましい態様として、前記ベン チユリ管を通過したオゾン水を循環させて当該ベンチユリ管を再度通過させるための 循環構造を、さらに含めて構成してある。 [0044] 請求項 20の洗浄装置によれば、請求項 17乃至 19いずれかの洗浄装置の作用効 果を前提として、循環構造を有することによって、オゾン水を循環させることができ、こ の循環によってオゾン水に対するオゾン注入を繰り返して行うことができる。繰り返し てオゾン注入を行えば、オゾン注入をー且終えたオゾン水に再度オゾン注入すること によって、前者よりも後者のほうがオゾン溶解度並びにオゾン濃度を高めることが可 能になる。循環させる回数は、求めるオゾン溶解度やオゾン濃度に応じて装置使用 者が決定するとよい。 In the substrate cleaning apparatus according to the invention of claim 20 (hereinafter, referred to as “the cleaning apparatus of claim 20” as appropriate), as a preferable aspect of the cleaning apparatus of any one of claims 17 to 19, it passes through the venturi tube. A circulation structure for circulating ozone water and passing it through the bench lily pipe is further included. [0044] According to the cleaning device of claim 20, on the premise of the operational effect of any of the cleaning devices of claims 17 to 19, by having a circulation structure, it is possible to circulate ozone water. Thus, ozone injection into ozone water can be repeated. If ozone injection is repeated, it is possible to increase the ozone solubility and the ozone concentration in the latter than in the former by re-injecting ozone into the ozone water that has been injected. The number of circulations should be determined by the user of the device according to the desired ozone solubility and ozone concentration.
[0045] (請求項 21記載の発明の特徴)  [0045] (Characteristic of the invention described in claim 21)
請求項 21記載の発明に係る基板洗浄装置 (以下、適宜「請求項 21の洗浄装置」と いう)では、請求項 20の洗浄装置の好ましい態様として、前記循環構造の途中には、 循環させる被処理水を一且貯留させるための貯留タンクを設けてある。オゾン水が貯 留されて!/ヽる貯留タンク内に原水を注入するようにしてもょ ヽ。使用等により減少した オゾン水の量を増カロさせるためである。原水注入によりオゾン濃度が低下することに なるが、循環させることによって濃度を高めることができる。  In the substrate cleaning apparatus according to the invention of claim 21 (hereinafter referred to as “cleaning apparatus of claim 21” as appropriate), as a preferable aspect of the cleaning apparatus of claim 20, a substrate to be circulated is provided in the middle of the circulation structure. A storage tank for temporarily storing the treated water is provided. It may be possible to inject raw water into the storage tank where ozone water is stored! This is to increase the amount of ozone water that has been reduced by use. The concentration of ozone is reduced by the raw water injection, but the concentration can be increased by circulating it.
[0046] 請求項 21の洗浄装置によれば、請求項 20の洗浄装置の作用効果を前提として、 オゾン水をー且、貯留タンクに貯留することができ、この貯留によってオゾン水を安定 状態に置き、これによつて、オゾン水に対するオゾン溶解を熟成類似の作用によって 促進させることができる。貯留タンク内に原水を注入しながらオゾン水の循環を行うと 、使用により減少した分を補いながら所定量のオゾン水を貯留タンク内に貯留するこ とができる。オゾン濃度の維持は、オゾン水循環によって行う。  [0046] According to the cleaning device of claim 21, on the premise of the function and effect of the cleaning device of claim 20, ozone water can be stored in a storage tank, and this storage makes the ozone water stable. In this way, ozone dissolution in ozone water can be promoted by an action similar to aging. If ozone water is circulated while injecting raw water into the storage tank, a predetermined amount of ozone water can be stored in the storage tank while compensating for the decrease in usage. The ozone concentration is maintained by circulating ozone water.
[0047] (請求項 22記載の発明の特徴)  [0047] (Feature of the invention of claim 22)
請求項 22記載の発明に係る基板洗浄装置 (以下、適宜「請求項 22の洗浄装置」と いう)では、請求項 21の洗浄装置の好ましい態様として、前記貯留タンク内の被処理 液を 0〜 15°Cの範囲に保持するための温度保持構造を設けてある。上記温度範囲 に保持するための温度調整には、たとえば、貯留タンク内にあるオゾン水に対して直 接行う方法や、一旦取り出したオゾン水を温度調整後に貯留タンクに戻す方法があ る。  In the substrate cleaning apparatus according to the invention of claim 22 (hereinafter referred to as “the cleaning apparatus of claim 22” as appropriate), as a preferable aspect of the cleaning apparatus of claim 21, the liquid to be treated in the storage tank is 0 to A temperature holding structure is provided for holding in the range of 15 ° C. The temperature adjustment for maintaining the temperature range includes, for example, a method of directly applying ozone water in the storage tank or a method of returning the ozone water once taken out to the storage tank after temperature adjustment.
[0048] 請求項 22の洗浄装置によれば、請求項 21の洗浄装置の作用効果を前提として、 温度保持構造を有することによって、オゾン水 (新たに注入された純水又は超純水が 含まれることもある)の温度を上記範囲に保持することができる。オゾン水生成に使用 する原水は長い配管内を搬送される場合が多ぐそのような場合に搬送される原水 は天候の影響を受けやすい。特に、夏季における水温上昇が著しい。また、オゾン 水を循環させるためには循環のためのエネルギーが必要であり、そのようなエネルギ 一源として、たとえば、ポンプがある。上記したエネルギー源は、一般に発熱を伴い その熱がオゾン水 (原水)の温度を高める場合がある。オゾン溶解は水温の影響を受 け、水温が高くなると溶解度の低下が見られる。そこで、原水 (オゾン水)の温度を所 定範囲に保つことによって、オゾン溶解を促進させる。他方、たとえば、寒冷地にお V、てオゾン水 (原水)が凍結する恐れがある場合は、ヒーター装置を設けてオゾン水( 原水)被洗浄水を加温するように構成してもよ!/ヽ。オゾン水 (原水)の冷却又は加温を 不要とするのであれば、温度保持構造自体を省略してもよいし、設けてある温度保持 構造の運転を停止してもよ ヽ。 [0048] According to the cleaning device of claim 22, on the premise of the function and effect of the cleaning device of claim 21, By having the temperature holding structure, the temperature of ozone water (which may include newly injected pure water or ultrapure water) can be held in the above range. The raw water used to generate ozone water is often transported in long pipes. The raw water transported in such cases is easily affected by the weather. In particular, the water temperature rises significantly in the summer. In addition, in order to circulate ozone water, energy for circulation is necessary, and a source of such energy is, for example, a pump. The energy sources described above generally generate heat, which may increase the temperature of ozone water (raw water). Ozone dissolution is affected by water temperature, and as water temperature rises, solubility decreases. Therefore, ozone dissolution is promoted by keeping the temperature of raw water (ozone water) within a specified range. On the other hand, for example, if there is a risk that ozone water (raw water) may freeze in cold regions, a heater device may be provided to warm the ozone water (raw water) to be cleaned! / ヽ. If cooling or heating of ozone water (raw water) is not required, the temperature holding structure itself may be omitted or the operation of the provided temperature holding structure may be stopped.
[0049] (請求項 23記載の発明の特徴)  [0049] (Characteristics of the invention described in claim 23)
請求項 23記載の発明に係る基板洗浄装置 (以下、適宜「請求項 23の洗浄装置」と いう)では、請求項 17乃至 22いずれかの洗浄装置における好ましい態様として、前 記洗浄槽に供給する、または、前記洗浄槽に供給したオゾン水を加熱するための加 熱手段を設けてある。加熱方法に制限はないが、たとえば、ヒーター、電磁誘導及び 水蒸気による加熱方法がある。加熱温度は、生成時の温度にもよる力 たとえば、 30 °C〜80°Cの範囲が可能となろう。  In the substrate cleaning apparatus according to the invention of claim 23 (hereinafter referred to as “cleaning apparatus of claim 23” as appropriate), as a preferred embodiment of the cleaning apparatus of any of claims 17 to 22, the substrate is supplied to the cleaning tank. Alternatively, a heating means for heating the ozone water supplied to the cleaning tank is provided. There are no restrictions on the heating method, but for example, there are heating methods using a heater, electromagnetic induction and water vapor. The heating temperature will be a force depending on the temperature at the time of production. For example, a range of 30 ° C to 80 ° C will be possible.
[0050] 請求項 23の洗浄装置によれば、請求項 17乃至 22いずれかの洗浄装置の作用効 果に加え、オゾン水の温度を洗浄のために適切な温度まで高めることによって、効率 よく洗浄を行うことができる。適切な温度は、被洗浄体の性質その他の環境等に左右 される場合がある力 概ね高いほうが好ましい。他方、オゾンは水温が低いほうが溶 解しやすいため、オゾン水を加熱すると脱気し易くなることも事実である。前掲の背景 の技術の欄で紹介した第 3の先行技術 (特許文献 3)では、 45°Cまで高められて!/、る 力 これまで知られているオゾン水ではそれが限度と思われる。なぜなら、粒径 1 μ m (lOOOnm)レベルのオゾン気泡は、前掲の発明が解決しょうとする課題の欄で述べ たように、オゾン気泡がオゾン水力 浮力を受けて水面まで浮上しやす 、状態にあり 、そこで加熱されれば、熱膨張により粒径はさらに大きくなり、その結果、さらに大きな 浮力を受けるからより浮上し易い状態になる力もである。この点、本願発明に係るォ ゾン水が含有するオゾン気泡の粒径は 50nm以下であるから、加熱による膨張があ つてもなお受ける浮力は小さくてすむ。したがって、オゾン気泡は依然としてオゾン水 の中に滞留して容易には脱気しな 、。本件発明に係るオゾン水を 80°C前後まで上 昇させることができたのは、このオゾン気泡の粒径が充分に小さいからであると推測さ れる。 [0050] According to the cleaning device of claim 23, in addition to the effect of the cleaning device of any of claims 17 to 22, efficient cleaning is achieved by raising the temperature of the ozone water to an appropriate temperature for cleaning. It can be performed. Appropriate temperature should be generally high as it may depend on the properties of the object to be cleaned and other environments. On the other hand, ozone is more easily dissolved when the water temperature is lower, so it is also true that ozone water is easily degassed. In the third prior art (Patent Document 3) introduced in the background technology section above, the temperature can be raised to 45 ° C! This is because ozone bubbles with a particle size of 1 μm (lOOOnm) are described in the column of problems to be solved by the above-mentioned invention. As described above, the ozone bubbles are in a state where they easily float to the water surface due to the ozone hydrodynamic buoyancy, and if heated there, the particle size becomes larger due to thermal expansion, and as a result, the buoyancy is further increased due to the larger buoyancy It is also a force that makes it easy to do. In this respect, the ozone bubbles contained in the ozone water according to the present invention have a particle size of 50 nm or less, so that the buoyancy that is received even when expanded by heating is small. Therefore, ozone bubbles still remain in the ozone water and do not easily deaerate. The reason why the ozone water according to the present invention could be raised to around 80 ° C. is presumed that the particle size of the ozone bubbles is sufficiently small.
[0051] (請求項 24記載の発明の特徴)  [0051] (Characteristic of the invention described in claim 24)
請求項 24記載の発明に係る基板洗浄装置 (以下、適宜「請求項 24の洗浄装置」と いう)では、請求項 17乃至 23いずれかの洗浄装置における好ましい態様として、ォ ゾン水洗浄中において、基板表面又は基板表面上の形成物 (たとえば、絶縁膜)の 上に形成され又は付着した被洗浄体 (たとえば、レジスト膜)に、当該オゾン水中のォ ゾンを分解することでラジカルを発生させるエネルギーを有すると共に、当該基板又 は基板表面上の形成物の構成材料の結合エネルギーよりも低いエネルギーを有す る波長の光を照射するための光源を必要に応じて併設してある。光源が照射する光 として、たとえば、エキシマ(Excimer)レーザー、エキシマ光、ャグ(Yag)レーザー がある。  In the substrate cleaning apparatus according to the invention of claim 24 (hereinafter referred to as “the cleaning apparatus of claim 24” as appropriate), as a preferred embodiment of the cleaning apparatus of any of claims 17 to 23, during the ozone water cleaning, Energy that generates radicals by decomposing ozone in the ozone water on the substrate surface or an object to be cleaned (for example, a resist film) formed on or adhered to a substrate surface or a formed material (for example, an insulating film). And a light source for irradiating light of a wavelength having energy lower than the binding energy of the constituent material of the substrate or the formed material on the surface of the substrate. Examples of the light emitted from the light source include an excimer laser, an excimer light, and a yag laser.
[0052] 請求項 24の洗浄装置によれば、請求項 17乃至 23いずれかの洗浄装置における オゾン水洗浄中において、オゾン水が浸透した状態の被洗浄体に、オゾンを分解す ることでラジカルを発生させるエネルギーを有するとともに、絶縁膜の構成材料の結 合エネルギーよりも低いエネルギーを有する波長の光が照射される。これにより被洗 浄体に集中的にラジカルを発生させるため基板表面又は基板表面上の形成物が酸 素イオンや酸素ラジカルに曝されるのを抑制した状態で、被洗浄体の分解反応を促 進することができる。他方、発生エネルギーと結合エネルギーとの差により、基板又は 基板表面上の形成物の構成材料における光照射による結合の切断が防止される。こ れによって、基板又は形成物が受けるダメージが抑制され、被洗浄体の洗浄効率が 飛躍的に高まる。 [0053] (請求項 25記載の発明の特徴) [0052] According to the cleaning apparatus of claim 24, during the ozone water cleaning in the cleaning apparatus of any of claims 17 to 23, radicals are decomposed by decomposing ozone into the cleaning target in a state where ozone water has permeated. In addition, light having a wavelength that has energy lower than the binding energy of the constituent material of the insulating film is irradiated. As a result, radicals are intensively generated in the object to be cleaned, and the decomposition reaction of the object to be cleaned is promoted in a state where exposure of the substrate surface or the formation on the substrate surface to oxygen ions or oxygen radicals is suppressed. Can advance. On the other hand, due to the difference between the generated energy and the binding energy, breakage of the bond due to light irradiation in the constituent material of the formed material on the substrate or the substrate surface is prevented. As a result, damage to the substrate or the formed product is suppressed, and the cleaning efficiency of the object to be cleaned is dramatically increased. [0053] (Characteristic of the invention described in claim 25)
請求項 25記載の発明に係る基板洗浄装置 (以下、適宜「請求項 25の洗浄装置」と いう)では、請求項 17乃至 24いずれかの洗浄装置における好ましい態様として、基 板接触前のオゾンに超音波エネルギーを与えるための超音波振動機構を設けてあ る。  In the substrate cleaning apparatus according to the invention of claim 25 (hereinafter referred to as “the cleaning apparatus of claim 25” as appropriate), as a preferred embodiment of the cleaning apparatus of any of claims 17 to 24, ozone before contact with the substrate is used. An ultrasonic vibration mechanism for providing ultrasonic energy is provided.
[0054] 請求項 25の洗浄装置によれば、請求項 17乃至 24いずれかの洗浄方法の作用効 果に加え、超音波振動機構力も超音波エネルギーを得たオゾン水は、得ていないォ ゾン水に比べて基板衝突時に基板に与える衝撃が大きいから、その衝撃の大きさの 分だけ洗浄効果を高めることができる。オゾン水にエネルギーが与えられたり、これま でのオゾン水は衝撃が加えられたりすると溶存しているそこ力 オゾンが脱気しやす V、が、本願発明に係るオゾン水が含有するオゾン気泡は 50nm以下であって極めて 安定した状態にあるから脱気しないか脱気したとしても極僅かである。  [0054] According to the cleaning device of claim 25, in addition to the operational effects of the cleaning method of any of claims 17 to 24, ozone water from which ultrasonic energy is also obtained by ultrasonic vibration mechanism force is not obtained. Since the impact given to the substrate at the time of substrate collision is larger than that of water, the cleaning effect can be enhanced by the magnitude of the impact. When energy is given to the ozone water or when the ozone water is impacted, the dissolved power of ozone is easy to degas V, but the ozone bubbles contained in the ozone water according to the present invention are Since it is 50 nm or less and is in a very stable state, even if it is not degassed or degassed, there is very little.
[0055] (請求項 26記載の発明の特徴)  [0055] (Characteristic of the invention described in claim 26)
請求項 26記載の発明に係る基板洗浄装置 (以下、適宜「請求項 26の洗浄装置」と いう)では、請求項 17乃至 25いずれかの洗浄装置における好ましい態様として、洗 浄対象となる基板が半導体ウェハに代表される半導体基板とする。  In the substrate cleaning apparatus according to the invention of claim 26 (hereinafter referred to as “the cleaning apparatus of claim 26” as appropriate), as a preferred aspect of the cleaning apparatus of any one of claims 17 to 25, the substrate to be cleaned is A semiconductor substrate typified by a semiconductor wafer is used.
[0056] 請求項 26の洗浄装置によれば、半導体基板の洗浄を極めて効率よく行うことがで きる。また、無添加オゾン水であるから半導体基板に対するダメージを有効抑制する ことができる。すなわち、請求項 17乃至 25の洗浄装置に係るオゾン水は、その含有 するオゾン気泡の粒径が 50nm以下と極めて小さいことから、表面の小さな凹凸に対 してもオゾンを反応させることができるので半導体基板の洗浄に最適である。  [0056] According to the cleaning apparatus of claim 26, the semiconductor substrate can be cleaned extremely efficiently. Moreover, since it is additive-free ozone water, damage to the semiconductor substrate can be effectively suppressed. In other words, the ozone water according to the cleaning device of claims 17 to 25 has a very small particle size of ozone bubbles contained therein, which is as small as 50 nm or less, so that ozone can be reacted even to small irregularities on the surface. Ideal for cleaning semiconductor substrates.
[0057] (請求項 27記載の発明の特徴)  [0057] (Characteristics of the invention according to claim 27)
請求項 27記載の発明に係る基板洗浄装置 (以下、適宜「請求項 27の洗浄装置」と いう)では、請求項 17乃至 25いずれかの洗浄装置における好ましい態様として、洗 浄対象となる基板が液晶基板とする。  In the substrate cleaning apparatus according to the invention of claim 27 (hereinafter referred to as “the cleaning apparatus of claim 27” as appropriate), as a preferable aspect of the cleaning apparatus of any one of claims 17 to 25, the substrate to be cleaned is A liquid crystal substrate is used.
[0058] 請求項 27の洗浄装置によれば、液晶基板の洗浄を極めて効率よく行うことができる 。また、無添加オゾン水であるから液晶基板に対するダメージを有効抑制することが できる。すなわち、請求項 17乃至 25の洗浄装置に係るオゾン水は、その含有するォ ゾン気泡の粒径が 50nm以下と極めて小さいことから、表面の小さな凹凸に対しても オゾンを反応させることができるので液晶基板の洗浄に最適である。 [0058] According to the cleaning device of claim 27, it is possible to clean the liquid crystal substrate extremely efficiently. Moreover, since it is additive-free ozone water, damage to the liquid crystal substrate can be effectively suppressed. That is, the ozone water according to the cleaning device of claims 17 to 25 is contained in the ozone water. Since the Zon bubble has a very small particle size of 50nm or less, it can react with ozone even on small irregularities on the surface, making it ideal for cleaning liquid crystal substrates.
発明の効果  The invention's effect
[0059] 本発明によれば、基板に悪影響を与えることのな!/、、かつ、容易に脱気しな!、こと により充分な洗浄効果を得ることのできる基板洗浄方法及び基板洗浄装置を提供す ることがでさる。  [0059] According to the present invention, the substrate is not adversely affected! / And do not easily deaerate! Thus, it is possible to provide a substrate cleaning method and a substrate cleaning apparatus capable of obtaining a sufficient cleaning effect.
図面の簡単な説明  Brief Description of Drawings
[0060] [図 1]基板洗浄方法の一例を示すブロック図である。 FIG. 1 is a block diagram showing an example of a substrate cleaning method.
[図 2]半導体基板洗浄装置のブロック図である。  FIG. 2 is a block diagram of a semiconductor substrate cleaning apparatus.
[図 3]エキシマランプを併設した半導体基板洗浄装置の部分ブロック図である。  FIG. 3 is a partial block diagram of a semiconductor substrate cleaning apparatus provided with an excimer lamp.
[図 4]半導体基板洗浄装置が備えるオゾン水生成装置のブロック図である。  FIG. 4 is a block diagram of an ozone water generator provided in a semiconductor substrate cleaning apparatus.
[図 5]気液混合構造の正面図である。  FIG. 5 is a front view of a gas-liquid mixing structure.
[図 6]気液混合構造の左側面図である。  FIG. 6 is a left side view of the gas-liquid mixing structure.
[図 7]図 6に示す気液混合構造の X—X断面図である。  7 is an XX cross-sectional view of the gas-liquid mixing structure shown in FIG.
[図 8]図 5に示す気液混合構造の概略平面図である。  8 is a schematic plan view of the gas-liquid mixing structure shown in FIG.
[図 9]溶解促進構造の縦断面図である。  FIG. 9 is a longitudinal sectional view of a dissolution promoting structure.
[図 10]半導体基板洗浄装置の変形例を示す図である。  FIG. 10 is a view showing a modification of the semiconductor substrate cleaning apparatus.
[図 11]比較実験を行うためのオゾン水生成装置の概略構成図である。  FIG. 11 is a schematic configuration diagram of an ozone water generator for performing a comparative experiment.
[図 12]オゾン気泡の作用を説明するための図である。  FIG. 12 is a diagram for explaining the action of ozone bubbles.
[図 13]オゾン気泡の作用を説明するための図である。  FIG. 13 is a diagram for explaining the action of ozone bubbles.
[図 14]オゾン気泡の作用を説明するための図である。  FIG. 14 is a diagram for explaining the action of ozone bubbles.
符号の説明  Explanation of symbols
[0061] 1, 51 半導体基板洗浄装置 [0061] 1, 51 Semiconductor substrate cleaning apparatus
3 洗浄槽  3 Washing tank
7 洗浄機構  7 Cleaning mechanism
201 オゾン水生成装置  201 Ozone water generator
202 貯留タンク  202 storage tank
203 オゾン供給装置 204 循環構造 203 Ozone supply device 204 Circulation structure
205 気液混合構造  205 Gas-liquid mixing structure
206 溶解促進槽  206 Dissolution accelerating tank
207 温度保持構造  207 Temperature holding structure
231 ベンチユリ管  231 bench lily tube
232 上流側大径路  232 Large upstream path
233 絞り傾斜路  233 Aperture ramp
234 小径路  234 Small path
235 開放傾斜路  235 Open ramp
236 下流側大径路  236 Downstream large path
239 オゾン供給パイプ  239 Ozone supply pipe
243 磁気回路  243 Magnetic circuit
245 一方の磁石片  245 One magnet piece
246 他方の磁石片  246 The other magnet piece
265 気液分離装置  265 Gas-liquid separator
267 オゾン分解装置  267 Ozonizer
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
各図を参照しながら、発明を実施するための最良の形態 (以下、適宜「本実施形態 」という)について説明する。本実施形態は、半導体基板の洗浄に係るものとした。半 導体基板表面の凹凸寸法は、現時点において少なくとも 60nm以下となっておりお そらく各種基板の中で最小であり、また、将来に向けてさらに縮小されるものと予想さ れるから、半導体基板に使用可能であれば、液晶その他の基板にも使用可能であろ うからである。図 1は、基板洗浄方法の一例を示すブロック図である。図 2は半導体基 板洗浄装置のブロック図である。図 3は、エキシマランプを併設した半導体基板洗浄 装置の部分ブロック図である。図 4は、半導体基板洗浄装置が備えるオゾン水生成 装置のブロック図である。図 5は、気液混合構造の正面図である。図 6は、気液混合 構造の左側面図である。図 7は、図 6に示す気液混合構造の X—X断面図である。図 8は、図 5に示す気液混合構造の概略平面図である。図 9は、溶解促進構造の縦断 面図である。図 10は、半導体基板洗浄装置の変形例を示す図である。図 11は、比 較実験を行うためのオゾン水生成装置の概略構成図である。図 12乃至 14は、オゾン 気泡の作用を説明するための図である。 The best mode for carrying out the invention (hereinafter referred to as “this embodiment” as appropriate) will be described with reference to the drawings. This embodiment relates to cleaning of a semiconductor substrate. The surface irregularities on the surface of the semiconductor substrate are currently at least 60 nm or less, and are probably the smallest of the various substrates, and are expected to be further reduced in the future. This is because if it can be used, it can be used for liquid crystal and other substrates. FIG. 1 is a block diagram illustrating an example of a substrate cleaning method. Fig. 2 is a block diagram of the semiconductor substrate cleaning apparatus. Fig. 3 is a partial block diagram of a semiconductor substrate cleaning apparatus provided with an excimer lamp. FIG. 4 is a block diagram of an ozone water generator provided in the semiconductor substrate cleaning apparatus. FIG. 5 is a front view of the gas-liquid mixing structure. Fig. 6 is a left side view of the gas-liquid mixing structure. FIG. 7 is an XX cross-sectional view of the gas-liquid mixing structure shown in FIG. FIG. 8 is a schematic plan view of the gas-liquid mixing structure shown in FIG. Figure 9 shows the longitudinal profile of the dissolution promoting structure FIG. FIG. 10 is a view showing a modification of the semiconductor substrate cleaning apparatus. FIG. 11 is a schematic configuration diagram of an ozone water generator for performing a comparison experiment. 12 to 14 are diagrams for explaining the action of ozone bubbles.
[0063] (基板洗浄方法) [0063] (Substrate cleaning method)
図 1を参照しながら、半導体基板洗浄方法の一例について説明する。半導体洗浄 方法は、まず、オゾン水の生成力 始まる(Sl)。ここで、生成するオゾン水は、純水 又は超純水にオゾンを混合させる気液混合方式によって行う。オゾン水生成は、添 加物を添加することなく無添加で行う。無添加としたのは、添加物による半導体基板 への悪影響を防止するためである。生成したオゾン水が含有するオゾン気泡の粒径 An example of the semiconductor substrate cleaning method will be described with reference to FIG. The semiconductor cleaning method begins with the ability to generate ozone water (Sl). Here, the generated ozone water is performed by a gas-liquid mixing method in which ozone is mixed with pure water or ultrapure water. Ozone water is generated without adding any additives. The reason for not adding was to prevent the additive from adversely affecting the semiconductor substrate. Particle size of ozone bubbles contained in generated ozone water
Rは、 0<R≤50nmとする。オゾン脱気を有効抑制するとともに、洗浄効率を飛躍的 に伸ばすためである。オゾン濃度は、たとえば、 15乃至 30ppm前後が適当である。 生成したオゾン水は、必要に応じて加熱するとよい(S2)。被洗浄体の性質その他の 環境にもよるが、加熱したほうが洗浄効果が高まるからである。加熱温度は、生成時 の温度その他の環境にもよる力 たとえば、 30°C〜80°Cの範囲がよい。この範囲の 温度を外れる加熱を排除する趣旨ではないが、 30°Cを下回ると加熱による洗浄効率 の向上が充分でなぐ 80°Cを超えるとオゾンが脱気し易くなるからである。 R is set to 0 <R≤50 nm. This is to effectively suppress ozone degassing and dramatically increase cleaning efficiency. A suitable ozone concentration is, for example, around 15 to 30 ppm. The generated ozone water may be heated as necessary (S2). Although it depends on the nature of the object to be cleaned and other environments, the cleaning effect is enhanced by heating. The heating temperature is a force depending on the temperature at the time of generation and other environments. This is not intended to exclude heating outside the temperature range, but if the temperature falls below 30 ° C, the cleaning efficiency is not improved sufficiently by heating. If the temperature exceeds 80 ° C, ozone will be easily degassed.
[0064] 生成したオゾン水、さらに、必要に応じて加熱したオゾン水は、これを用いて半導体 基板を洗浄する。洗浄方法は、半導体基板の種類その他の環境に応じて適宜選択 することができる。たとえば、オゾン水をシャワー等で掛け流すシャワリング法や、回転 する半導体基板上にオゾン水を供給するスピン洗浄法、半導体基板をオゾン水の入 つたバッチ式洗浄槽に親戚する浸漬洗浄法及びそれらの組み合わせた方法が、ォ ゾン水を用いた洗浄方法として挙げられる。また、併せて、オゾン水に超音波を照射 してオゾン水を流動させるようにすることもよ 、。オゾン水洗浄の最中に必要に応じて エキシマ光等を照射するなどの反応促進工程を含めることもできる(S7)。さらに、上 記以外の方法をオゾン水洗浄の前後、最中に必要に応じて併用することも可能であ る。 [0064] The generated ozone water and, if necessary, the heated ozone water are used to clean the semiconductor substrate. The cleaning method can be appropriately selected according to the type of the semiconductor substrate and other environments. For example, a showering method in which ozone water is poured in a shower, a spin cleaning method in which ozone water is supplied onto a rotating semiconductor substrate, an immersion cleaning method in which the semiconductor substrate is relative to a batch cleaning tank containing ozone water, and the like. A combination of these methods is a cleaning method using ozone water. At the same time, the ozone water can be made to flow by irradiating the ozone water with ultrasonic waves. A reaction promoting step such as irradiating excimer light or the like can be included as needed during ozone water cleaning (S7). Furthermore, methods other than those described above can be used in combination before and after ozone water cleaning as needed.
[0065] (半導体基板洗浄装置の概略構造)  [0065] (Schematic structure of semiconductor substrate cleaning apparatus)
図 2を参照しながら、本実施形態における半導体基板洗浄方法を実施するための 半導体基板洗浄装置装置 (以下、適宜「洗浄装置」という)について説明する。洗浄 装置 1は、洗浄槽 3と、オゾン水生成装置 201と、カゝら概ね構成してある。洗浄槽 3は 、その中で半導体基板 Wを洗浄するための槽である。洗浄槽 3の内部には、半導体 基板の洗浄を補助するための洗浄機構 7を配してある。オゾン水生成装置 201は洗 浄槽 3へオゾン水を供給するための装置である。 Referring to FIG. 2, the semiconductor substrate cleaning method according to this embodiment is performed. A semiconductor substrate cleaning apparatus (hereinafter referred to as “cleaning apparatus” as appropriate) will be described. The cleaning apparatus 1 is generally composed of a cleaning tank 3, an ozone water generation apparatus 201, and the like. The cleaning tank 3 is a tank for cleaning the semiconductor substrate W therein. Inside the cleaning tank 3, a cleaning mechanism 7 for assisting the cleaning of the semiconductor substrate is arranged. The ozone water generator 201 is an apparatus for supplying ozone water to the cleaning tank 3.
[0066] (洗浄槽及び洗浄機構の概略)  [0066] (Outline of cleaning tank and cleaning mechanism)
引き続き図 2を参照しながら、洗浄槽及び洗浄機構の概略について説明する。図 2 に 2点差線で示す洗浄槽 3は、略機密密閉可能に構成してあり、半導体基板 Aを入 れたり出したりするための開閉機構 (図示を省略)を有している。洗浄槽 3内に設置し た洗浄機構 7は、駆動源となるモータ 7mと、モータ 7mによって回転させられる回転 テーブル 7tと、カゝら概ね構成してある。回転テーブル 7tは、その上に半導体基板 Aを 載置可能に構成してあり、半導体基板 Aを下方力 保持して一体回転可能となるよう に構成してある。半導体基板 Aを回転させるのは、オゾン水 Wを満遍なく行き渡らせ ることによって洗浄効率を高めるためである。モータ 7mの回転は、洗浄槽 3の外部に ある回転速度制御装置 7cによって制御可能に構成してある。符号 11は、オゾン水供 給装置 201から供給されたオゾン水 Wを、半導体基板 Aの表面に吐出するためのノ ズルを示している。ノズル 11は、洗浄槽 3内に設置したノズル駆動装置 13によって移 動可能に保持され、その移動によって、半導体基板 Aに対するオゾン水 Wの吐出位 置を変化させられるように構成してある。吐出位置を変化させるのは、位置変化により オゾン水 Wをより満遍なく行き渡らせるためである。ノズル駆動装置 13の制御は、洗 浄槽 3の外部にある位置制御装置 13cによって行う。なお、上記した洗浄槽 3及び洗 浄機構 7は、半導体基板の洗浄用に構成してあるが、半導体基板以外の基板その他 の電子部品を洗浄する場合は、その洗浄部品の形態や個数等に合わせた洗浄槽及 び洗浄機構等を構成すべきであることは言うまでもない。符号 Rは、半導体基板 Aの 表面に形成されたレジスト膜 (被洗浄体)を示して!/、る。  The outline of the cleaning tank and the cleaning mechanism will be described with reference to FIG. The cleaning tank 3 indicated by a two-dot chain line in FIG. 2 is configured to be substantially confidentially sealed and has an opening / closing mechanism (not shown) for entering and exiting the semiconductor substrate A. The cleaning mechanism 7 installed in the cleaning tank 3 is generally composed of a motor 7m as a driving source and a rotary table 7t rotated by the motor 7m. The turntable 7t is configured such that the semiconductor substrate A can be placed thereon, and the semiconductor substrate A is configured to be able to rotate integrally while holding the semiconductor substrate A downward. The reason for rotating the semiconductor substrate A is to increase the cleaning efficiency by spreading the ozone water W evenly. The rotation of the motor 7m is configured to be controllable by a rotation speed control device 7c outside the cleaning tank 3. Reference numeral 11 indicates a nozzle for discharging the ozone water W supplied from the ozone water supply device 201 onto the surface of the semiconductor substrate A. The nozzle 11 is movably held by a nozzle drive device 13 installed in the cleaning tank 3, and is configured to change the discharge position of the ozone water W with respect to the semiconductor substrate A by the movement. The reason for changing the discharge position is to distribute the ozone water W more evenly by the position change. The nozzle drive device 13 is controlled by a position control device 13c outside the cleaning tank 3. The cleaning tank 3 and the cleaning mechanism 7 described above are configured for cleaning a semiconductor substrate. However, when cleaning a substrate other than the semiconductor substrate or other electronic components, the type, number, etc. of the cleaning components should be considered. Needless to say, a combined washing tank and washing mechanism should be constructed. The symbol R indicates the resist film (object to be cleaned) formed on the surface of the semiconductor substrate A! /
[0067] さらに、洗浄装置 1には、図 3に示すように、オゾン水 Wを供給した半導体基板 A上 にエキシマレーザー(エキシマ光) 8Lを照射するため光源 8を必要に応じて併設する こともできる。エキシマレーザーを照射するのは、そのエネルギーによってオゾン水 W の中のオゾンを分解することでラジカルを発生させるためである。ラジカル発生は半 導体基板 Aの表面に、たとえばレジスト膜 Rが残る場合に、そのレジスト膜 Rの結合の 破壊を促進する。エキシマレーザーのエネルギーは、半導体基板 A (又は、その表面 に、たとえば、絶縁膜が形成されているときはその絶縁膜)の結合エネルギーよりも低 いものである必要がある。半導体基板 Aが受けるダメージを抑制するためである。光 源 8は、図外のエキシマランプ力も導光ライン 8aを介して導光されたエキシマ光を照 射可能に構成してある。上記エキシマ光と同等の作用効果を示す他の光 (たとえば、 ャグ光)を、エキシマ光の代わりに照射するように構成してもよい。さらに、ノズル 11に 、超音波振動機構 1 laを設けてノズル先端部 1 lbを吐出方向に沿って進退振動させ 、これによりオゾン水 Wに超音波エネルギーを与えるように構成することもよい。超音 波エネルギーにより半導体基板 Aに衝撃を与えてレジスト膜 Rを剥離しやすくするた めである。上記した光源 8や超音波振動機構 11a (ノズル先端部 l ib)は、オゾン水( オゾン)の反応促進機構として機能する。 Further, as shown in FIG. 3, the cleaning apparatus 1 is provided with a light source 8 as necessary to irradiate an excimer laser (excimer light) 8L onto the semiconductor substrate A supplied with ozone water W. You can also. Excimer laser is irradiated with ozone water by its energy. This is because radicals are generated by decomposing ozone in the atmosphere. The generation of radicals promotes breakage of bonds in the resist film R when, for example, the resist film R remains on the surface of the semiconductor substrate A. The energy of the excimer laser needs to be lower than the binding energy of the semiconductor substrate A (or the insulating film when the insulating film is formed on the surface). This is to suppress damage to the semiconductor substrate A. The light source 8 is configured so that excimer lamp power (not shown) can also be irradiated with excimer light guided through the light guide line 8a. You may comprise so that other light (for example, Jag light) which shows the effect similar to the said excimer light may be irradiated instead of an excimer light. Further, the nozzle 11 may be provided with an ultrasonic vibration mechanism 1 la so that the nozzle tip 1 lb is vibrated forward and backward along the discharge direction, thereby applying ultrasonic energy to the ozone water W. This is because the resist film R is easily peeled off by impacting the semiconductor substrate A with ultrasonic energy. The light source 8 and the ultrasonic vibration mechanism 11a (nozzle tip l ib) function as a reaction promoting mechanism for ozone water (ozone).
[0068] (オゾン水生成装置の概略)  [0068] (Outline of ozone water generator)
図 4を参照しながら、オゾン水生成装置について説明する。オゾン水生成装置 201 は、貯留タンク 202と、オゾンを生成して供給するためのオゾン供給装置 203と、貯留 タンク 202から取り出した被処理水を貯留タンク 202に戻すための循環構造 204と、 循環構造 204の途中に設けた気液混合構造 205及び溶解促進槽 206と、貯留タン ク 202に付設した温度保持構造 207と、力も概ね構成してある。以下の説明は、説明 の都合上、貯留タンク 202、温度保持構造 207、オゾン供給装置 203、気液混合構 造 205、溶解促進槽 206を行った後、最後に循環構造 204について行う。  The ozone water generator will be described with reference to FIG. The ozone water generation apparatus 201 includes a storage tank 202, an ozone supply apparatus 203 for generating and supplying ozone, a circulation structure 204 for returning treated water taken out from the storage tank 202 to the storage tank 202, a circulation The gas-liquid mixing structure 205 and dissolution accelerating tank 206 provided in the middle of the structure 204, the temperature holding structure 207 attached to the storage tank 202, and the force are also generally configured. For convenience of explanation, the following explanation will be made for the circulation structure 204 after the storage tank 202, the temperature holding structure 207, the ozone supply device 203, the gas-liquid mixing structure 205, and the dissolution promoting tank 206.
[0069] (貯留タンク周辺の構造)  [0069] (Structure around the storage tank)
図 4に示すように、貯留タンク 202には取水バルブ 202vを介して被処理水としての 原水(純水又は超純水)を注入可能に構成してある。貯留タンク 202は取水した原水 、及び、後述する循環構造 204を介して循環させた被処理水 (オゾン水)を貯留する ためのものである。貯留タンク 202に貯留された被処理水は、温度保持構造 207によ つて、たとえば、 0〜15°Cの範囲に保持されるようになっている。上記範囲に温度設 定したのは、オゾン溶解を効率よく行い、かつ、溶解させたオゾンを容易に脱気させ ないために適当である力 である。 o°c未満が上記範囲に含まれないのは、 o°c未満 ではオゾン水が凍結してしまうからである。温度保持構造 207は、貯留タンク 202から 被処理水を取り出すためのポンプ 211と、取り出した被処理水を冷却するための冷 却機 212と、力ら概ね構成してあり、貯留タンク 202とポンプ 211、ポンプ 211と冷却 機 212、冷却機 212と貯留タンク 202の間は被処理水を通過させる配管 213によつ て連結してある。上記構成によって、貯留タンク 202に貯留された被処理水 (原水及 び Z又はオゾン水)は、ポンプ 211の働きによって貯留タンク 202から取り出され、冷 却機 212に送られる。冷却機 212は送られてきた被処理水を所定範囲の温度に冷却 して貯留タンク 202に戻す。ポンプ 211は、図外にある温度計によって計測された貯 留タンク 202内の被処理水の温度が所定範囲を超え冷却の必要があるときにのみ作 動するようになっている。貯留タンク 202を設けた理由は、被処理水を一且貯留する ことによって上記冷却を可能にするとともに、被処理水を安定状態に置き、これによつ て、被処理水に対するオゾン溶解を熟成類似の作用によって促進させるためである。 なお、たとえば、寒冷地等において被処理水が凍結する恐れがある場合は、上記冷 却機の代わりに、又は、上記冷却機とともにヒーター装置を用いて被処理水を加温す るように構成することもできる。なお、配管 213から分岐させた配管 213aを介して洗 浄装置 1にオゾン水を供給するように構成してある。すなわち、冷却機 212で所定温 度に冷却されたオゾン水は、ポンプ 211の働きにより配管 213aを介して洗浄装置 1 に供給される。符号 213vは、配管 213aに設けたオゾン水の流量を調整するための 調整バルブを示す。 As shown in FIG. 4, the storage tank 202 is configured to be able to inject raw water (pure water or ultrapure water) as treated water through a water intake valve 202v. The storage tank 202 is for storing raw water taken and water to be treated (ozone water) circulated through a circulation structure 204 described later. The water to be treated stored in the storage tank 202 is held in the range of 0 to 15 ° C. by the temperature holding structure 207, for example. The temperature was set within the above range because ozone was dissolved efficiently and the dissolved ozone was easily degassed. It is a force that is suitable for not. The reason why less than o ° c is not included in the above range is that ozone water freezes below o ° c. The temperature holding structure 207 is generally composed of a pump 211 for taking out the treated water from the storage tank 202, a cooler 212 for cooling the taken out treated water, and a force. The storage tank 202 and the pump 211, the pump 211 and the cooler 212, and the cooler 212 and the storage tank 202 are connected by a pipe 213 through which the water to be treated is passed. With the above configuration, the water to be treated (raw water and Z or ozone water) stored in the storage tank 202 is taken out of the storage tank 202 by the action of the pump 211 and sent to the cooler 212. The cooler 212 cools the treated water sent to a temperature within a predetermined range and returns it to the storage tank 202. The pump 211 operates only when the temperature of the water to be treated in the storage tank 202 measured by a thermometer outside the figure exceeds a predetermined range and needs to be cooled. The reason for providing the storage tank 202 is that the water to be treated is stored once to enable the cooling, and the water to be treated is placed in a stable state, thereby aging ozone dissolution in the water to be treated. This is because it is promoted by a similar action. For example, when there is a possibility that the water to be treated will freeze in a cold district, etc., the water to be treated is heated using a heater device in place of the cooler or together with the cooler. You can also Note that ozone water is supplied to the cleaning device 1 via a pipe 213a branched from the pipe 213. That is, the ozone water cooled to a predetermined temperature by the cooler 212 is supplied to the cleaning device 1 through the pipe 213a by the action of the pump 211. Reference numeral 213v indicates an adjustment valve for adjusting the flow rate of ozone water provided in the pipe 213a.
(オゾン供給装置) (Ozone supply device)
図 4に示すオゾン供給装置 203は、オゾンを生成供給するための装置である。必要 なオゾン量を供給可能なものであれば、オゾン供給装置 203が作用するオゾン発生 原理等に何ら制限はない。たとえば、酸素ガス中で放電を起こしてオゾンを発生させ る放電方式や、超純水中の水分子を電気分解してオゾンを発生させる電解方式が、 オゾン発生方式として知られて 、る。オゾン供給装置 203によって生成されたオゾン は、オゾン供給管 217の途中に設けた電磁バルブ 218と逆止弁 219を介して気液混 合構造 205に供給されるようになって ヽる。 [0071] (気液混合構造) An ozone supply device 203 shown in FIG. 4 is a device for generating and supplying ozone. There is no limitation on the principle of ozone generation that the ozone supply device 203 operates as long as the necessary amount of ozone can be supplied. For example, a discharge method in which ozone is generated by causing discharge in oxygen gas, and an electrolysis method in which ozone is generated by electrolyzing water molecules in ultrapure water are known as ozone generation methods. The ozone generated by the ozone supply device 203 is supplied to the gas-liquid mixing structure 205 through an electromagnetic valve 218 and a check valve 219 provided in the middle of the ozone supply pipe 217. [0071] (Gas-liquid mixing structure)
図 4乃至 8を参照しながら気液混合構造 205の詳細について説明する。気液混合 構造 205は、ベンチユリ管 231と、オゾン供給パイプ 239と、磁気回路 243と、により 概ね構成してある。ベンチユリ管 231は、上流側(図 5の向かって右側)から送られた 被処理水(純水、超純水、オゾン水)を下流側(図 5の向力つて左側)へ通過させるた めのノイブ状の外観を有している(図 8参照)。ベンチユリ管 231を長手方向に貫く中 空部は、上流側から下流側に向かって上流側大経路 232、絞り傾斜路 233、小径路 234、開放傾斜路 235及び下流側大経路 236の順に連通している。上流側大経路 2 32は、軸線方向に対して 50度前後の急角度をもって絞り方向に傾斜する絞り傾斜 路 233を介して小径路 234に繋げられ、その後、開放傾斜路 235によって同じく軸線 方向に対して 30度前後の緩やかな角度を持って開放される。開放傾斜路 235は、 上流側大経路 232と同じ外径の下流側大経路 236に繋がっている。他方、小径路 2 34には、そこにオゾン供給パイプ 239の開口端を臨ませてある。オゾン供給パイプ 2 39の供給端にはオゾン供給装置 203と連通するオゾン供給管 217が接続してある。 小径路 234の中、又は、その近傍は、被処理水の圧力変化によって真空又は真空 に近い状態になるため、開口端に及んだオゾンは吸引され乱流化した被処理水内に 散気される。なお、図 7に示す符号 240は、ベンチユリ管 231とオゾン供給パイプ 239 との間を補強するためのリブを示している。  Details of the gas-liquid mixing structure 205 will be described with reference to FIGS. The gas-liquid mixing structure 205 is generally constituted by a bench lily pipe 231, an ozone supply pipe 239, and a magnetic circuit 243. The bench lily pipe 231 is used to pass the treated water (pure water, ultrapure water, ozone water) sent from the upstream side (right side as viewed in Fig. 5) to the downstream side (left side as shown in Fig. 5). It has a noise-like appearance (see Fig. 8). The hollow space penetrating the bench lily pipe 231 in the longitudinal direction communicates from the upstream side to the downstream side in the order of the upstream large path 232, the throttle ramp 233, the small diameter path 234, the open ramp 235, and the downstream large path 236. ing. The upstream large path 2 32 is connected to a small-diameter path 234 via a throttle ramp 233 that is inclined in the throttle direction with a steep angle of about 50 degrees with respect to the axial direction. It opens with a gentle angle of around 30 degrees. The open ramp 235 is connected to the downstream large path 236 having the same outer diameter as the upstream large path 232. On the other hand, the open end of the ozone supply pipe 239 faces the small path 234. An ozone supply pipe 217 communicating with the ozone supply device 203 is connected to the supply end of the ozone supply pipe 239. The inside of the small path 234 or the vicinity thereof becomes a vacuum or a state close to a vacuum due to a change in the pressure of the water to be treated, so that ozone that has reached the open end is aspirated and diffused into the water to be turbulent. Is done. Reference numeral 240 shown in FIG. 7 indicates a rib for reinforcing the space between the bench lily pipe 231 and the ozone supply pipe 239.
[0072] ベンチユリ管 231には、磁気回路 243をネジ(図示を省略)固定してある。磁気回路 243は、ベンチユリ管 231を挟んで対向する一方の磁石片 245及び他方の磁石片 2 46と、一方の磁石片 245と他方の磁石片 246とを連結するとともに、ベンチユリ管 23 1への磁石片取り付けの機能を有する断面 U字状(図 6参照)の連結部材 248と、に より構成してある。磁石片 245と磁石片 246とは、小径路 234 (図 8では破線で示す。 図 7を併せて参照)及び Z又はその近傍 (特に、下流側)をその磁力線 (磁界)が最も 多く通過するように配するとよい。ただ、実際には、小径路 234のみに磁力線を集中 させることは技術的困難を伴うことから、小径路 234及び小径路 234の近傍の双方に 磁力線を通過させることになろう。被処理水とオゾンの双方に磁力を作用させることに よって、被処理水に対して最も効率よくオゾンを溶解させることができると考えられる 力もである。磁石片 245及び磁石片 246は、 7, 000ガウス前後の磁力を持つネオジ ユウム磁石によって構成してある。磁力は強いほうがオゾン溶解効果が高いと思われ る力 少なくとも 1, 000ガウス以上のものが望まれる。ここで、 7, 000ガウスの磁石を 採用したのは、その調達容易性と経済性にある。 7, 000ガウス以上の磁力を持つ磁 石 (天然磁石、電磁石等)の採用を妨げる趣旨ではない。また、磁石片 245と磁石片 246との間の距離は、可能な限り短くするとよい。磁力は距離の二乗に反比例するの で短くすればするほど強い磁力を得ることができるからである。連結部材 248は、磁 束漏れを抑制して磁力作用が被処理水等にできるだけ集中するように、磁力透磁率 ( )の大きい部材 (たとえば、鉄)によって構成してある。 A magnetic circuit 243 is fixed to the bench lily tube 231 with a screw (not shown). The magnetic circuit 243 connects one magnet piece 245 and the other magnet piece 246 facing each other with the bench lily pipe 231 therebetween, and connects the one magnet piece 245 and the other magnet piece 246 to the bench lily pipe 23 1. And a connecting member 248 having a U-shaped cross section (see FIG. 6) having a function of attaching a magnet piece. The magnet piece 245 and the magnet piece 246 have a small path 234 (shown by a broken line in FIG. 8) (see also FIG. 7) and Z or its vicinity (especially the downstream side) through the most magnetic lines of force (magnetic field). It is good to arrange like this. However, in practice, it is technically difficult to concentrate the magnetic lines of force only on the small path 234, so that the magnetic lines of force will pass through both the small path 234 and the vicinity of the small path 234. It is considered that ozone can be dissolved most efficiently in the water to be treated by applying a magnetic force to both the water to be treated and ozone. Power is also. The magnet piece 245 and the magnet piece 246 are composed of neodymium magnets having a magnetic force of around 7,000 gauss. The stronger the magnetic force, the higher the ozone dissolution effect is. At least 1,000 gauss or more is desired. Here, 7,000 gauss magnets were used because of their ease of procurement and economy. This is not to prevent the adoption of magnets (natural magnets, electromagnets, etc.) with a magnetic force of 7,000 Gauss or more. Further, the distance between the magnet piece 245 and the magnet piece 246 is preferably as short as possible. Because the magnetic force is inversely proportional to the square of the distance, the shorter the magnetic force, the stronger the magnetic force that can be obtained. The connecting member 248 is configured by a member (for example, iron) having a large magnetic permeability () so that the magnetic flux action is concentrated as much as possible on the water to be treated and the like, while suppressing magnetic flux leakage.
[0073] (気液混合構造の作用効果)  [0073] (Function and effect of gas-liquid mixing structure)
以上の構成により、上流側大経路 232を通過した被処理水は、絞り傾斜路 233を 通過するときに圧縮されて水圧が急激に高まり、同時に通過速度も急激に上昇する 。高圧'高速のピークは、小径路 234に達したときである。小径路 234を通過した被 処理水は、開放傾斜路 235の中で急激に減圧'減速し、後続する被処理水との衝突 の衝撃等を受け乱流化する。その後、被処理水は下流側大経路 236を抜け、気液 混合構造 205の外へ出る。散気されたオゾンは、被処理水の乱流に巻き込まれ大小 様々な大きさの気泡となり攪拌作用を受ける。小径路 234及び少なくともその下流を 流れる被処理水 (オゾン水)には、上記攪拌作用とともに磁気回路 243の働きによる 磁力作用を受ける。すなわち、被処理水の水圧を圧力頂点 (ピーク)に至るまで増圧 させ当該圧力頂点に至った直後に減圧させるとともに当該圧力頂点に至った被処理 水にオゾンを供給する、ことを磁界の中で行うことになる。攪拌作用と磁界の磁力作 用が相乗効果を生み、その結果、被処理水にオゾンが溶解し高溶解度を持った高濃 度オゾン水が生成される。  With the above configuration, the water to be treated that has passed through the upstream large path 232 is compressed when passing through the throttle ramp 233, and the water pressure increases rapidly, and at the same time, the passing speed also increases rapidly. The high-pressure 'high-speed peak is when the small path 234 is reached. The treated water that has passed through the small path 234 suddenly depressurizes and decelerates in the open ramp 235, and becomes turbulent due to the impact of collision with the subsequent treated water. Thereafter, the water to be treated passes through the large downstream path 236 and goes out of the gas-liquid mixing structure 205. The diffused ozone is entrained in the turbulent flow of the water to be treated, becomes bubbles of various sizes, and is agitated. The small path 234 and at least the water to be treated (ozone water) flowing downstream thereof are subjected to the magnetic action of the magnetic circuit 243 along with the stirring action. In other words, the pressure of the water to be treated is increased to the pressure peak (peak), the pressure is reduced immediately after reaching the peak of pressure, and ozone is supplied to the water to be treated that has reached the peak of pressure. Will be done. The stirring action and the magnetic action of the magnetic field produce a synergistic effect. As a result, ozone is dissolved in the water to be treated and high-concentration ozone water with high solubility is generated.
[0074] (溶解促進槽)  [0074] (Dissolution promotion tank)
図 4及び 9を参照しながら、溶解促進槽 206について説明する。溶解促進槽 206は 、天板 253と底板 254とによって上下端を密閉した円筒状の外壁 255によって、その 外観を構成してある。天板 253の下面には、その下面力も垂下する円筒状の内壁 25 6を設けてある。内壁 256に囲まれた空間力 被処理水を貯留するための貯留室 25 8となる。内壁 256の外径は外壁 255の外径よりも小さく設定してあり、これによつて、 内壁 256と外壁 255との間に所定幅の壁間通路 259が形成される。他方、内壁 256 の下端は、底板 254まで届かず、底板 254との間に所定幅の間隙を形成する。この 間隙は、下端連通路 257として機能する。すなわち、内壁 256が囲む貯留室 258は 、下端連通路 257を介して壁間通路 259と連通している。他方、内壁 256の天板 25 3の近傍には複数の連通孔 256h, 256h, · ·を貫通させてあり、貯留室 258と壁間 通路 259とは各連通孔 256hを介しても連通して 、る。底板 254の上面略中央には、 細長の揚水管 261を起立させてある。揚水管 261の中空部下端は、底板 254を貫通 する入水孔 254hと連通し、中空部上端は、揚水管 261上端に形成した多数の小孔 26 lh, · ·を介して貯留室 258と連通している。揚水管 261の上端は、内壁 256が有 する連通孔 256hの位置よりも僅か下に位置させてある。外壁 255の高さ方向上から 略 4分の 1付近には、排水孔 255hを貫通させてある。つまり、壁間通路 259は、排水 孔 255hを介して外部と連通して 、る。 The dissolution accelerating tank 206 will be described with reference to FIGS. The dissolution accelerating tank 206 is configured by a cylindrical outer wall 255 whose upper and lower ends are sealed by a top plate 253 and a bottom plate 254. A cylindrical inner wall 256 is also provided on the lower surface of the top plate 253 so that the lower surface force also hangs down. Spatial force surrounded by inner wall 256 Storage chamber for storing treated water 25 8 The outer diameter of the inner wall 256 is set to be smaller than the outer diameter of the outer wall 255, whereby an inter-wall passage 259 having a predetermined width is formed between the inner wall 256 and the outer wall 255. On the other hand, the lower end of the inner wall 256 does not reach the bottom plate 254 and forms a gap having a predetermined width with the bottom plate 254. This gap functions as a lower end communication path 257. That is, the storage chamber 258 surrounded by the inner wall 256 communicates with the inter-wall passage 259 through the lower end communication passage 257. On the other hand, a plurality of communication holes 256h, 256h, ... are penetrated in the vicinity of the top plate 253 of the inner wall 256, and the storage chamber 258 and the passageway 259 between the walls communicate with each other through each communication hole 256h. RU In the center of the upper surface of the bottom plate 254, an elongated pumping pipe 261 is erected. The lower end of the hollow portion of the pumping pipe 261 communicates with a water inlet hole 254h penetrating the bottom plate 254, and the upper end of the hollow portion communicates with a storage chamber 258 via a number of small holes 26 lh formed at the upper end of the pumping pipe 261. is doing. The upper end of the pumping pipe 261 is positioned slightly below the position of the communication hole 256h where the inner wall 256 is provided. A drainage hole 255h is penetrated in the vicinity of about a quarter from the top of the outer wall 255 in the height direction. That is, the inter-wall passage 259 communicates with the outside through the drain hole 255h.
天板 253の略中央には、揚水孔 253hを貫通させてある。揚水孔 253hは、天板 25 3の外部に配した気液分離装置 265の内部に連通している。気液分離装置 265は、 揚水孔 253hを介して貯留室 258から押し上げられる被処理水と、この被処理水から 脱気するオゾンとを分離排出するための脱気構造として機能する。気液分離装置 26 5によって分離されたオゾンは、オゾン分解装置 267によって分解して無害化した後 に装置外部に放出するようになっている。被処理水に対するオゾン溶解度はきわめ て高ぐしたがって、脱気するオゾンは極めて少ないが、より安全性を高めるためにォ ゾン分解装置 267等を設けてある。揚水管 261によって貯留室 258内に送り込まれ た被処理水は、後続する被処理水に押されて下降する。下端に達した被処理水は 下端連通路 257を折り返して壁間通路 259内を上昇し、排水孔 255hを介して外部 に排水される。また、一部の被処理水は気液分離装置 265内に押し上げられる。この 間、熟成類似の作用によってオゾンが被処理水に溶解して高溶解度のオゾン水を生 成する。他方、溶解し切れな力つたり、ー且は溶解したが脱気したオゾンがある場合 に、そのオゾンは気液分離装置 265内に上昇しそこで分離される。したがって、被処 理水から溶解しきれないオゾンは、そのほとんどを排除することができる。この結果、 溶解促進槽 206を通過した被処理水のオゾン溶解度は、飛躍的に高くなつて!/、る。 なお、気液分離装置 265及びオゾン分解装置 267は、これらを溶解促進槽 206の代 わりに、又は、溶解促進槽 206とともに貯留タンク 202その他の箇所に設けることもで きる。 A pumping hole 253h is passed through substantially the center of the top plate 253. The pumping hole 253h communicates with the inside of the gas-liquid separator 265 disposed outside the top plate 253. The gas-liquid separator 265 functions as a deaeration structure for separating and discharging the water to be treated pushed up from the storage chamber 258 through the pumping hole 253h and the ozone deaerated from the water to be treated. The ozone separated by the gas-liquid separation device 265 is decomposed and detoxified by the ozone decomposition device 267, and then released to the outside of the device. The ozone solubility in the water to be treated is extremely high. Therefore, the amount of ozone to be deaerated is extremely small, but an ozone decomposing device 267 and the like are provided for further safety. The treated water sent into the storage chamber 258 by the pumping pipe 261 is pushed by the subsequent treated water and descends. The treated water that has reached the lower end is folded back at the lower end communication passage 257, rises in the inter-wall passage 259, and is discharged to the outside through the drain hole 255h. A part of the water to be treated is pushed up into the gas-liquid separator 265. During this time, ozone dissolves in the water to be treated due to an aging-like action, producing highly soluble ozone water. On the other hand, if there is a force that cannot be completely dissolved, or there is ozone that has been dissolved but degassed, the ozone rises into the gas-liquid separator 265 and is separated there. Therefore, most of the ozone that cannot be completely dissolved from the treated water can be eliminated. As a result, The ozone solubility of the treated water that has passed through the dissolution accelerating tank 206 is dramatically increased! / The gas-liquid separation device 265 and the ozonolysis device 267 can be provided in place of the dissolution promoting tank 206 or in the storage tank 202 and other places together with the dissolution promoting tank 206.
[0076] (循環構造)  [0076] (Circulating structure)
図 4を参照しながら、循環構造について説明する。循環構造 204は、気液混合構造 205を通過した被処理水(既に原水力 オゾン水になっている)を循環させて再度、 気液混合構造 205を通過させる機能を有している。再度、気液混合構造 205を通過 させるのは、既にオゾンを溶解させた被処理水に再度オゾンを注入することによって 、オゾンの溶解度と濃度をさらに高めるためである。循環構造 204は、ポンプ 271を 駆動源とし、貯留タンク 202と溶解促進槽 206を主要な構成要素とする。すなわち、 ポンプ 271は、貯留タンク 202から配管 270を介して取り出した被処理水を逆止弁 2 72及び配管 273を介して気液混合構造 205に圧送する。圧送によって気液混合構 造 205を通過した被処理水は、配管 274及び溶解促進槽 206を抜け配管 275を介 して貯留タンク 202に戻される。循環構造 204は、上記した工程を必要に応じて繰り 返して実施可能に構成してある。循環させる回数は、生成しょうとするオゾン水のォゾ ン溶解度やオゾン濃度等を得るために自由に設定することができる。なお、符号 276 は、配管 275の途中に設けたバルブを示している。ノ レブ 276は、その開閉によって 気液混合構造 205の小径路 234 (図 7参照)を通過させる被処理水の水圧を制御す ることを主目的として設けてある。  The circulation structure will be described with reference to FIG. The circulation structure 204 has a function of circulating the water to be treated that has passed through the gas-liquid mixing structure 205 (which is already raw hydro-ozone water) and passing it again through the gas-liquid mixing structure 205. The reason why the gas-liquid mixing structure 205 is passed again is to further increase the solubility and concentration of ozone by injecting ozone again into the water to be treated in which ozone has already been dissolved. The circulation structure 204 has a pump 271 as a drive source and a storage tank 202 and a dissolution promoting tank 206 as main components. That is, the pump 271 pumps the water to be treated taken out from the storage tank 202 through the pipe 270 to the gas-liquid mixing structure 205 through the check valve 272 and the pipe 273. The treated water that has passed through the gas-liquid mixing structure 205 by pressure feeding passes through the pipe 274 and the dissolution accelerating tank 206 and is returned to the storage tank 202 through the pipe 275. The circulation structure 204 is configured such that the above-described steps can be repeated as necessary. The number of circulations can be freely set in order to obtain ozone solubility, ozone concentration, etc. of ozone water to be generated. Reference numeral 276 indicates a valve provided in the middle of the pipe 275. The nozzle 276 is provided mainly for controlling the water pressure of the water to be treated that passes through the small path 234 (see FIG. 7) of the gas-liquid mixing structure 205 by opening and closing.
[0077] (加熱手段) [0077] (Heating means)
オゾン水生成装置 201には、生成したオゾン水を処理槽 3に供給する前に、加熱す るための加熱手段を設けてある。半導体基板に接触する前のオゾン水の温度を必要 に応じて高め、これによつて、洗浄効率を高めるためである。加熱手段は、ヒーター H によって構成してある。ヒーター 8は、発熱体や、電磁誘導を利用したインライン 'イン ダクシヨンヒーター、さらに、高温水蒸気発生装置等により構成することができる。  The ozone water generator 201 is provided with heating means for heating the generated ozone water before supplying it to the treatment tank 3. This is to increase the temperature of the ozone water before contacting the semiconductor substrate as necessary, thereby increasing the cleaning efficiency. The heating means is constituted by a heater H. The heater 8 can be composed of a heating element, an in-line induction heater using electromagnetic induction, a high-temperature steam generator, and the like.
[0078] (洗浄装置の変形例) [0078] (Modification of Cleaning Device)
図 10を参照しながら、処理槽 3の変形例について説明する。本変形例に係る処理 槽 53は、図 10では図外のオゾン水生成装置 201から供給ノズル 54, 54を介してォ ゾン水 Wの供給を受けるようになつている。処理槽 53内には、ウェハポート 56, "が 昇降可能に配してあり、ウェハポート 56, · ·は、紙面厚み方向に並ぶ複数枚の半導 体基板 A, · · (図示は 1枚、他は裏に隠れている)を下方力も支持可能に構成してあ る。支持された半導体基板 A, · ·は、処理槽 53内に貯留されたオゾン水 Wに浸漬さ れ、洗浄されるようになっている。貯留されたオゾン水 Wは、後からオゾン水 Wが追供 給されることによって処理槽 53上面力 溢れさせ、溢れたオゾン水 Wha処理槽 53の 上端部に設けた排水路 55, 55から排水されるようにしてある。オゾン水 Wを追供給 するのは、オゾン水 Wを常に流動させることによって、反応後に濃度が下がったォゾ ン水 Wの代わりに濃度の高いオゾン水 Wを半導体基板と接触させるとともに、流動に よる衝撃によっては半導体基板 Aの表面に形成されたレジスト膜を剥離させ易くする ためである。なお、排水路 55, 55から排水したオゾン水 Wは、これを、たとえば、ろ過 したりオゾンを再混合したりすることによって再利用するようにすることもできる。 A modification of the treatment tank 3 will be described with reference to FIG. Processing according to this modification The tank 53 is supplied with ozone water W from the ozone water generator 201 (not shown in FIG. 10) via the supply nozzles 54 and 54. In the processing bath 53, a wafer port 56, “is arranged so as to be movable up and down, and the wafer port 56,... Is a plurality of semiconductor substrates A,. The semiconductor substrate A, ··· supported is immersed in ozone water W stored in the treatment tank 53 and cleaned. The stored ozone water W is overflowed from the upper surface of the treatment tank 53 by the subsequent supply of the ozone water W, and is provided at the upper end of the overflowed ozone water Wha treatment tank 53. The ozone water W is additionally supplied from the drainage channels 55 and 55. The ozone water W is constantly flowed, so that the concentration of ozone water W is reduced instead of the ozone water W, which has been lowered after the reaction. High ozone water W is brought into contact with the semiconductor substrate, and the surface of the semiconductor substrate A depends on the impact of flow. The ozone water W drained from the drainage channels 55 and 55 is reused by, for example, filtering or remixing ozone. It can also be done.
(実験例) (Experimental example)
図 4及び 11を参照しながら、実験例について説明する。ここで、示す実験例は、背 景技術の欄において説明した磁石の使用方法と本発明に係る磁石の使用方法の違 いによって、オゾンの溶解度や濃度に著しい差が生じることを主として示すためのも のである。本実験例では、本件発明に係る装置として図 4に示すオゾン水生成装置( 以下、「本件装置」という)を使用し、比較対象となる装置として図 11に示すオゾン水 生成装置 (以下、「比較装置」という)を使用した。比較装置には、本件装置の構造と 基本的に同じ構造を備えさせてある力 磁気回路 243の取付位置のみを異ならせて ある。このため、図 11では磁気回路を除き図 4で使用する符号と同じ符号を使用し、 図 11に示す磁気回路には気液混合構造 205の上流側にあるものに符号 243aを、 下流側にあるものに符号 243bを、それぞれ付してある。整理すると、図 4に示す本件 装置は、磁気回路 243と一体となった気液混合構造 205を備え、図 11に示す比較 装置は、気液混合構造 205の上流側配管に磁気回路 243aを、同じく下流側配管に 磁気回路 243bを、それぞれ同時に又は選択的に取り付け取り外しできるように構成 してある。なお、気液混合構造 205として、米国マジェーインジェクター社 (MAZZEI INJECTOR CORPORATION)製のモデル 384を、磁気回路には 7000ガウス のものを、それぞれ使用した。 An experimental example will be described with reference to FIGS. The experimental examples shown here are mainly intended to show that there is a significant difference in the solubility and concentration of ozone due to the difference in the method of using the magnet described in the background technology column and the method of using the magnet according to the present invention. It is. In this experimental example, the ozone water generating device (hereinafter referred to as “the present device”) shown in FIG. 4 is used as the device according to the present invention, and the ozone water generating device (hereinafter referred to as “the device”) shown in FIG. Used as a comparison device). In the comparison device, only the mounting position of the force magnetic circuit 243 provided with basically the same structure as that of the present device is different. Therefore, in FIG. 11, the same reference numerals as those used in FIG. 4 are used except for the magnetic circuit. In the magnetic circuit shown in FIG. 11, reference numeral 243a is assigned to the upstream side of the gas-liquid mixing structure 205, and Some are labeled 243b. In summary, the present apparatus shown in FIG. 4 includes a gas-liquid mixing structure 205 integrated with a magnetic circuit 243, and the comparison apparatus shown in FIG. 11 includes a magnetic circuit 243a in the upstream piping of the gas-liquid mixing structure 205. Similarly, the magnetic circuit 243b can be attached to or removed from the downstream pipes simultaneously or selectively. As the gas-liquid mixing structure 205, MAJEIJIN INJECTOR CORPORATION) model 384 and magnetic circuit of 7000 Gauss were used.
[0080] (濃度比較実験) [0080] (Concentration comparison experiment)
表 1及び 2を参照しながら、濃度比較実験について説明する。表 1は、オゾン水のォ ゾン濃度と濃度上昇時間との関係を示している。表 2は、表 1に示すオゾン水のォゾ ン濃度が生成装置の運転停止後にゼロになるまでに要する時間を示している。ゼロ になるまでの時間が長ければ長いほどオゾン溶解度が高いことを示す。表 1及び 2に おいて、記号「口」は本件装置を用いて生成したオゾン水(以下、「本件オゾン水」と いう)を、記号「 X」は比較装置から磁気回路のみを取り外した気液混合構造を用い て生成したオゾン水(以下、「磁気なしオゾン水」という)を、記号「△」は比較装置にお いて気液混合構造 205と磁気回路 243aとにより生成したオゾン水(以下、「上流側磁 気オゾン水」という)を、記号「〇」は比較装置において気液混合構造 205と磁気回路 243bとにより生成したオゾン水(以下、「下流側磁気オゾン水」という)を、そして、記 号「◊」は比較装置において気液混合構造 205と磁気回路 243a及び磁気回路 243 bの双方とにより生成したオゾン水(以下、「両側磁気オゾン水」と!、う)を、それぞれ示 している。被処理水の温度は 5°C、周囲湿度は 36〜43%、周囲温度は 17°Cであつ た。  The concentration comparison experiment will be described with reference to Tables 1 and 2. Table 1 shows the relationship between the ozone concentration of ozone water and the concentration rise time. Table 2 shows the time required for the ozone concentration shown in Table 1 to reach zero after the generator is shut down. The longer it takes to reach zero, the higher the ozone solubility. In Tables 1 and 2, the symbol “mouth” represents ozone water generated by using the present device (hereinafter referred to as “the present ozone water”), and the symbol “X” represents the atmosphere obtained by removing only the magnetic circuit from the comparison device. Ozone water generated using a liquid-mixed structure (hereinafter referred to as “magnetic-free ozone water”), and the symbol “△” represents ozone water (hereinafter referred to as “water-free mixed water” 205 and magnetic circuit 243a) in the comparison device. The symbol “◯” indicates ozone water generated by the gas-liquid mixing structure 205 and the magnetic circuit 243b in the comparison device (hereinafter referred to as “downstream magnetic ozone water”), The symbol “◊” represents ozone water generated by the gas-liquid mixing structure 205 and both the magnetic circuit 243a and the magnetic circuit 243b in the comparison device (hereinafter referred to as “bilateral magnetic ozone water!”). It is shown. The temperature of the treated water was 5 ° C, the ambient humidity was 36-43%, and the ambient temperature was 17 ° C.
[0081] [表 1] [0081] [Table 1]
Figure imgf000032_0001
Figure imgf000032_0001
[0082] [表 2] [0082] [Table 2]
Figure imgf000033_0001
Figure imgf000033_0001
E u¾ o m o m o  E u¾ o m o m o
表 1が示すように、生成装置運転開始後の生成時間 35分で本件オゾン水はオゾン 濃度 20ppmに到達したが、同条件下において、磁気なしオゾン水はオゾン濃度 8pp m前後、下流側磁気オゾン水はオゾン濃度 l lppm前後、上流側磁気オゾン水はォ ゾン濃度 12ppm前後、両側磁気オゾン水はオゾン濃度 13ppm前後までしか上昇し なかった。このことから、まず、磁気回路を設けることにより設けない場合に比べてォ ゾン濃度を高められること、次に、同じ磁気回路を設けるとしても気液混合構造と一 体化させた場合と気液混合構造以外の箇所に設けた場合とでは前者の方が後者よ りも少なくとも 7ppm高いオゾン水を生成可能であること、が分力つた。つまり、オゾン 濃度について本件オゾン水は、両側磁気オゾン水に比べて略 54% ( (20— 13) Z1 3 X 100)高い、という結果を得た。 As Table 1 shows, the ozone water reached an ozone concentration of 20 ppm after 35 minutes after the start of the generator operation. Under the same conditions, the ozone water without magnetism had an ozone concentration of around 8 ppm and the downstream magnetic ozone. Water has an ozone concentration of about l lppm. The concentration of ozone was around 12 ppm, and the magnetic ozone water on both sides increased only to an ozone concentration of around 13 ppm. From this, it is possible to increase the ozone concentration by providing a magnetic circuit first, compared to the case where the magnetic circuit is not provided. In the case where it is installed in a place other than the mixed structure, it was found that the former can generate ozone water at least 7 ppm higher than the latter. In other words, the ozone concentration of this case was about 54% ((20-13) Z1 3 X 100) higher than the double-sided magnetic ozone water.
[0084] 表 2が示すように、オゾン濃度 20ppmに達した本件オゾン水のオゾン濃度がゼロに なるまでに 32時間以上要したのに対し、比較対象となるオゾン水のうち最も長くかか つた両側磁気オゾン水のオゾン濃度は 13ppm力もゼロになるまでの時間は略 3. 5時 間しか要しな力つた。したがって、本件オゾン水は両側磁気オゾン水に比べて 10倍 近い時間オゾンを含有していたことになる。換言すると、両側磁気オゾン水に比べて 本件オゾン水は、同じ時間をかけて同量のオゾンを注入し溶解させたオゾンを 10倍 近 ヽ時間保持して 、たことになる。本件オゾン水のオゾン溶解度の高さを端的に示し ている。 [0084] As shown in Table 2, it took 32 hours or more for the ozone concentration of the ozone water that reached 20 ppm to reach zero, whereas it was the longest among the ozone waters to be compared. The concentration of ozone on both sides of the magnetic ozone water was about 3.5 hours. Therefore, the ozone water contained ozone for approximately 10 times longer than the two-sided magnetic ozone water. In other words, compared with the magnetic ozone water on both sides, the present ozone water kept the ozone dissolved by injecting the same amount of ozone over the same time for about 10 times. This shows the high ozone solubility of the ozone water.
[0085] (オゾン気泡の粒径測定実験)  [0085] (Ozone bubble particle size measurement experiment)
表 3及び 4を参照しながら、本件オゾン水が含有するオゾン気泡の粒径測定実験に ついて説明する。表 3及び 4は、本件オゾン水に含まれるオゾン気泡の粒径分布を示 す (左側縦軸参照)。本測定実験では、オゾン濃度とオゾン濃度保持時間との関係か ら 4種類の本件オゾン水を測定対象とした。まず、オゾン濃度を 3ppmと 14ppmの 2 種類とし、次に、各濃度それぞれ当該濃度に達した直後のオゾン水(以下、各々「3p pm直後オゾン水」「14ppm直後オゾン水」という)と、当該濃度に達した後その濃度 を 15分間維持させたオゾン水(以下、各々「3ppm維持オゾン水」「14ppm維持ォゾ ン水」という)と、に分けた。つまり、「3ppm直後オゾン水」「3ppm維持オゾン水」「14 ppm直後オゾン水」「14ppm維持オゾン水」の 4種類力 本測定実験に係る測定対 象である。ここで、本測定実験に使用した本件オゾン水の原水には、水道水を 0. 05 m (50nm)の微粒子絶対濾過の逆浸透膜で濾過して得た純水を用いた。本実験 で純水を得るために使用した装置は、セナー株式会社製超純水装置 (型名: Model •UHP)である。水道水には 50nm以上の不純物(たとえば、鉄分やマグネシウム)が 含まれているため、濾過してない原水から生成したオゾン水を測定対象としても、そこ に含まれる不純物を測定してしまい測定誤差が生じかねないので、濾過によって予 め不純物を取り除いておくことによってオゾンの気泡粒径の正しい測定ができるよう にするためである。水道水以外の原水、たとえば、井戸水や河川水についても同じこ とがいえる。オゾン気泡の粒径測定に使用した測定器は、動的光散乱式粒径分布測 定装置 (株式会社堀場製作所 (HORIBA, Ltd):型式 LB500) )である。原水から不 純物を濾過せずともオゾン気泡の粒径を正しく測定できる手段があれば、その手段を 用いて測定可能であることは 、うまでもな 、。 With reference to Tables 3 and 4, the particle size measurement experiment of ozone bubbles contained in the ozone water will be explained. Tables 3 and 4 show the particle size distribution of the ozone bubbles contained in the ozone water (see vertical axis on the left). In this measurement experiment, four types of ozone water were measured in the relationship between ozone concentration and ozone concentration retention time. First, the ozone concentration is 3 ppm and 14 ppm. Next, ozone water immediately after reaching each concentration (hereinafter referred to as “3 ppm immediately after ozone water” and “14 ppm immediately after ozone water”), After reaching the concentration, it was divided into ozone water that was maintained for 15 minutes (hereinafter referred to as “3 ppm maintenance ozone water” and “14 ppm maintenance ozone water”, respectively). In other words, it is the measurement target for the four types of measurement experiments: “Ozone water immediately after 3 ppm”, “Ozone water after 3 ppm”, “Ozone water immediately after 14 ppm”, and “14 ppm ozone water”. Here, pure water obtained by filtering tap water through a reverse osmosis membrane of 0.05 m (50 nm) fine particle absolute filtration was used as the raw water of the ozone water used in this measurement experiment. The equipment used for obtaining pure water in this experiment was an ultrapure water system (model name: Model) • UHP). Since tap water contains impurities of 50 nm or more (for example, iron and magnesium), even if ozone water generated from unfiltered raw water is measured, the impurities contained therein are measured, resulting in measurement errors. Therefore, it is possible to correctly measure the bubble size of ozone by removing impurities in advance by filtration. The same can be said for raw water other than tap water, such as well water and river water. The measuring instrument used for measuring the particle size of ozone bubbles is a dynamic light scattering particle size distribution measuring device (HORIBA, Ltd .: model LB500). Needless to say, if there is a means that can correctly measure the particle size of ozone bubbles without filtering impurities from the raw water, that means can be used.
[0086] [表 3] [0086] [Table 3]
Figure imgf000035_0001
Figure imgf000035_0001
. ( )03 0. 010 0. 100 1. 000 6. ( )00  () 03 0. 010 0. 100 1. 000 6. () 00
粒子径 (i m)  Particle size (i m)
[0087] [表 4]
Figure imgf000036_0001
[0087] [Table 4]
Figure imgf000036_0001
0.003 0.010 0.100 1.000 6.000  0.003 0.010 0.100 1.000 6.000
粒子径 (ium)  Particle size (ium)
[0088] まず、表 3に基づいて、 3ppm直後オゾン水と 3ppm維持オゾン水について考察す る。表 5右端のグラフが 3ppm直後オゾン水を示し、同じく左端のグラフが 3ppm維持 オゾン水を示している。 3ppm直後オゾン水は、 1. 3 πι(1300ηπι)〜6. 0^πι(60 OOnm)の粒径を持ったオゾン気泡を含有していることが分力つた。他方、 3ppm維持 オゾン水は、 0. 0034nm(3.40nm)〜0. 0050 m (5. OOnm)の粒径を持ったォ ゾン気泡を含有して ヽることが分力ゝつた。 [0088] First, based on Table 3, the ozone water immediately after 3 ppm and the 3 ppm maintained ozone water will be considered. The rightmost graph in Table 5 shows the ozone water immediately after 3ppm, and the leftmost graph shows the ozone water maintained at 3ppm. It was found that the ozone water immediately after 3 ppm contained ozone bubbles having a particle size of 1.3 πι (1300ηπι) to 6.0 ^ πι (60 OOnm). On the other hand, it was found that the ozone water maintained at 3 ppm contained ozone bubbles having a particle size of 0.0033 nm (3.40 nm) to 0.0050 m (5. OOnm).
[0089] 次に、表 4に基づいて 14ppm直後オゾン水と 14ppm維持オゾン水について考察 する。表 6右端のグラフが 14ppm直後オゾン水を示し、同じく左端のグラフが 14ppm 維持オゾン水を示している。 14ppm直後オゾン水は、 2. 3 m(2300nm)〜6. Ομ m(6000nm)の粒径を持ったオゾン気泡を含有していることが分かった。他方、 14p pm維持オゾン水は、 0. 0034nm(3. 40應)〜0. 0058 m(5. 80應)の粒径を 持ったオゾン気泡を含有して 、ることが分力つた。  [0089] Next, based on Table 4, the ozone water immediately after 14 ppm and the ozone water that maintains 14 ppm are considered. The rightmost graph in Table 6 shows ozone water just after 14ppm, and the leftmost graph shows 14ppm maintained ozone water. It was found that the ozone water immediately after 14 ppm contained ozone bubbles having a particle size of 2.3 m (2300 nm) to 6. μm (6000 nm). On the other hand, it was found that the 14 ppm maintenance ozone water contained ozone bubbles having a particle size of 0.0033 nm (3.40 °) to 0.0054 m (5.80 °).
[0090] 上記実験から明らかになった第 1の点は、同じ濃度を持ったオゾン水であっても、当 該濃度に達した直後のオゾン水 (直後オゾン水)と当該濃度を所定時間維持したォゾ ン水 (維持オゾン水)とでは含有されるオゾン気泡の粒径 (以下、「気泡粒径」 t 、う) が異なるということである。 3ppmオゾン水の場合、直後オゾン水の気泡粒径最小値 は、維持オゾン水の気泡粒径最大値の、 260倍(1300Z5.0)の大きさを持っている 。同様に 14ppmオゾン水の場合は、約 400倍(2300Z5. 8)の大きさを持っている。 つまり、当該濃度を所定時間維持すること、すなわち、被処理水であるオゾン水を循 環させることによって気泡粒径を小さくすることができるということである。気泡粒径が lOOOnm以下であること、好ましくは 500nm以下であること、さらに好ましくは気泡粒 径 50nm未満のオゾン気泡であればより安定して水溶液中に浮遊させることができる 。本願発明に係るオゾン水処理方法によれば、生成されるオゾン気泡の粒径 R力 5 Onm未満(0<R< 50nm)のオゾン気泡を含有するオゾン水、すなわち、溶解度の 高 、オゾン水を得られることが分かった。含有するオゾン気泡が 50nm〜1000nmの オゾン水は、上記した含有するオゾン気泡の粒径 50nm未満のオゾン水を生成する 過程で得ることができる。すなわち、循環させることなく生成したオゾン水や循環させ る時間を短くしたオゾン水は、循環させて生成したオゾン水や循環時間の長 、オゾン 水に比べて、より粒径が大きいから、必要な粒径に併せて循環の有無や循環時間を 調整するとよい。また、これら以外にも、循環系の水圧やベンチユリ管に作用させる磁 石の強弱、供給オゾンの濃度や供給量、その他、生成する際の雰囲気等により変動 することが考えられる。これが、実験から明らかになった第 2の点である。なお、本実 験によれば、オゾン気泡の粒径 Rの実測最低値は 3. 4nmであり、それ以下の値は 計測されて!、な 、。計測されな!、のは測定装置の測定能力の限界に起因すると思わ れる。他方、オゾン気泡の粒径 Rは、濃度達成直後に比べ濃度維持後の方が小さく なっていることから、粒径小型化の延長線上には限りなくゼロに近い粒径 Rを持った オゾン気泡が存在しうることが容易に想像できる。 [0090] The first point clarified from the above experiment is that even with ozone water having the same concentration, ozone water immediately after reaching the concentration (immediately after ozone water) and the concentration are maintained for a predetermined time. The ozone water (maintened ozone water) is different in the particle size of the ozone bubbles (hereinafter referred to as “bubble particle size” t). In the case of 3ppm ozone water, the minimum bubble size of ozone water immediately after is 260 times (1300Z5.0) the maximum bubble size of maintenance ozone water. . Similarly, the 14ppm ozone water is about 400 times larger (2300Z5.8). That is, it is possible to reduce the bubble particle size by maintaining the concentration for a predetermined time, that is, by circulating ozone water as the water to be treated. If the bubble diameter is lOOOnm or less, preferably 500 nm or less, and more preferably ozone bubbles having a bubble diameter of less than 50 nm, they can be more stably suspended in the aqueous solution. According to the ozone water treatment method according to the present invention, ozone water containing ozone bubbles having a particle size R force of less than 5 Onm (0 <R <50 nm), that is, ozone water having high solubility, is generated. It turns out that it is obtained. Ozone water containing ozone bubbles of 50 nm to 1000 nm can be obtained in the process of generating ozone water having a particle diameter of less than 50 nm. In other words, ozone water generated without circulation or ozone water with reduced circulation time has a larger particle size than ozone water produced by circulation or longer circulation time and ozone water. It is advisable to adjust the presence / absence of circulation and the circulation time according to the particle size. In addition to the above, it may be fluctuated depending on the water pressure in the circulatory system, the strength of the magnets acting on the bench lily pipe, the concentration and amount of supplied ozone, and the atmosphere in which it is generated. This is the second point that became clear from the experiment. In addition, according to this experiment, the minimum measured value of the particle size R of ozone bubbles is 3.4 nm, and values below that are measured! This is probably due to the limitations of the measuring capability of the measuring device. On the other hand, since the particle size R of the ozone bubbles is smaller after the concentration is maintained than immediately after the concentration is achieved, the ozone bubbles having a particle size R that is almost zero on the extension line of particle size reduction. Can easily be imagined.
(pH測定実験) (pH measurement experiment)
なお、上記 4種類のオゾン水、すなわち、「3ppm直後オゾン水」「3ppm維持オゾン 水」「14ppm直後オゾン水」及び「14ppm維持オゾン水」について pH測定実験を行 つた。その結果は、表 5及び 6に線グラフで示してある(右側縦軸参照)。いずれのォ ゾン水についても、オゾン溶解の前後において pH7. 3前後を示した。すなわち、ォ ゾン溶解は原水の PHにほとんど変化を与えないことがわ力つた。井戸水や水道水は 概ね中性 (pH6. 5〜7. 5)を示すことから、気液混合方式によって生成した本件ォゾ ン水は、 pHを調整するための添加物を添加しなくても中性を示すことがゎカゝつた。も つとも、原水がアルカリ性である場合は、オゾン溶解がオゾン水の pHを変化させない ことからアルカリ性のオゾン水が生成される場合もあり得よう。 A pH measurement experiment was conducted on the above four types of ozone water, namely “3 ppm ozone water”, “3 ppm maintenance ozone water”, “14 ppm ozone water” and “14 ppm maintenance ozone water”. The results are shown as line graphs in Tables 5 and 6 (see right vertical axis). All ozone waters showed a pH of around 7.3 before and after ozone dissolution. In other words, it may O zon dissolution does not give little change in P H of the raw water ChikaraTsuta. Well water and tap water are almost neutral (pH 6.5-7.5), so the zonal water produced by the gas-liquid mixing method does not require any additives to adjust the pH. The neutrality was confirmed. Also In any case, if the raw water is alkaline, it may be possible to produce alkaline ozone water because ozone dissolution does not change the pH of the ozone water.
[0092] 上記実験結果を総括する。上記実験対象となった本件オゾン水は、何ら添加物を 加えることなく原水にオゾンを混合させるという気液混合によって生成されたものであ る。さらに、オゾン溶解度が高いため常圧下においても容易にオゾンが脱気しない。 したがって、本件オゾン水を使用すれば、半導体基板に悪影響を与えることなぐか つ、効率のより洗浄効果を得ることができる。  [0092] The above experimental results will be summarized. The ozone water that was the subject of the experiment was generated by gas-liquid mixing in which ozone was mixed with the raw water without adding any additives. Furthermore, ozone is not easily degassed even under normal pressure because of high ozone solubility. Therefore, if this ozone water is used, it is possible to obtain a more efficient cleaning effect without adversely affecting the semiconductor substrate.
[0093] (レジスト膜洗浄実験)  [0093] (Resist film cleaning experiment)
図 10に示す処理槽 53を簡略ィ匕した実験装置を作成し、オゾン水 Wを用いたレジス ト膜洗浄 (剥離)実験を行った。洗浄実験は、 2種類のシリコンウェハ基板を用いて行 つた。一方のシリコンウェハ基板 (以下、「試料基板 1」という。)は、シリコンウェハ基 板上にノボララック系フォトレジスト膜を塗布後、 120°Cで 20分間焼成したインブラカロ ェ処理済みの基板である。試料基板 1の大きさは 25mm X 25mmであり、フォトレジ スト膜の膜厚は 1 mであった。試料基板 1は、試料基板 1— 1〜1— 5までの 5枚を 試料とした (表 5参照)。また、他方のシリコンウェハ基板 (以下、「試料基板 2」という) は、シリコンウェハ基板上にノボララック系フォトレジスト膜を塗布後、 160°Cで 20分 間焼成した基板である。試料基板 2にはインブラカ卩ェ処理を施していない。試料基板 2の大きさは 25mmX 35mmであり、フォトレジスト膜の膜厚は同じく 1 μ mであった。 試料基板 2は、試料基板 2— 1〜2— 6までの 3枚を試料とし、試料基板 2—1―〜 2— 3までをオゾン水 Wの、試料基板 2— 4〜2— 6までを比較用オゾン水の、それぞれ対 象とした (表 6参照)。比較用オゾン水が含有するオゾン気泡の粒径は、: m以上と 推定される。オゾン水 Wの原水は水道水であり、オゾン水 Wに含有されるオゾン気泡 の粒径 Rは、 0<R≤50nmであった。オゾン水 Wを貯留した処理槽(図示を省略)内 に各試料基板を浸漬させた上で、その中央部付近に水圧約 0. IMPaのオゾン水 W を噴出した。オゾン水 Wの温度変化及び剥離速度等は、表 5及び表 6に示すとおりで ある。なお、オゾン (オゾンガス)発生量を 50gZNm3とした結果、溶存オゾン濃度は 、表 5及び表 6に示すとおり 29〜27mg/L (g/Nm3)となった。 An experimental apparatus with a simplified treatment tank 53 shown in FIG. 10 was created, and a resist film cleaning (peeling) experiment using ozone water W was performed. The cleaning experiment was conducted using two types of silicon wafer substrates. One silicon wafer substrate (hereinafter referred to as “sample substrate 1”) is a substrate that has been subjected to an in-batch calorie treatment by applying a novolac photoresist film on a silicon wafer substrate and baking it at 120 ° C. for 20 minutes. The size of the sample substrate 1 was 25 mm × 25 mm, and the thickness of the photoresist film was 1 m. As sample substrate 1, five samples from sample substrates 1-1 to 1-5 were used as samples (see Table 5). The other silicon wafer substrate (hereinafter referred to as “sample substrate 2”) is a substrate that is baked at 160 ° C. for 20 minutes after a novolac photoresist film is applied on the silicon wafer substrate. The sample substrate 2 is not subjected to the imbracate treatment. The size of the sample substrate 2 was 25 mm × 35 mm, and the film thickness of the photoresist film was also 1 μm. Sample substrate 2 is sample substrate 2-1 to 2-6 with 3 samples as sample, sample substrate 2-1-2-3 is ozone water W, sample substrate 2-4-2-6 is Ozone water for comparison was included (see Table 6). The particle size of ozone bubbles contained in the comparative ozone water is estimated to be: m or more. The raw water of ozone water W is tap water, and the particle size R of ozone bubbles contained in ozone water W was 0 <R≤50nm. Each sample substrate was immersed in a treatment tank (not shown) in which ozone water W was stored, and ozone water W with a water pressure of about 0. IMPa was jetted near its center. Table 5 and Table 6 show the temperature change and stripping rate of ozone water W. As a result of setting the amount of ozone (ozone gas) to 50 gZNm 3 , the dissolved ozone concentration was 29 to 27 mg / L (g / Nm 3 ) as shown in Table 5 and Table 6.
[0094] [表 5] オゾン; ks¾ オゾン 才ゾン 膜剥^^ [0094] [Table 5] Ozone; ks¾
。c し/分 p pm: m g/し 分 . c / min p pm: mg / min
70 0. 3 29 1. 90070 0. 3 29 1. 900
60 0. 4 29 1. 10060 0. 4 29 1. 100
I5S*4S¾1 -3 50 0. 6 29 0. 400I5S * 4S¾1 -3 50 0. 6 29 0. 400
Ii¾«¾1-4 35 0. 6 29 0. 040Ii¾ «¾1-4 35 0. 6 29 0. 040
IS*«*5l-5 7 0. 6 29 0. 003 IS * «* 5l-5 7 0. 6 29 0. 003
[0095] [表 6] [0095] [Table 6]
Figure imgf000039_0001
Figure imgf000039_0001
[0096] まず、表 5を参照しながら、試料基板 1の実験結果につ!ヽて検討する。オゾン水温 度が 7°Cのときの膜剥離速度 (膜溶解速度、膜洗浄速度)は、 0.003 mZ分であつ たことから、膜厚 1 μ mのレジスト膜を除去するためには 333時間以上を要することが 分力つた (試料基板 1— 5)。次に、オゾン水温度を 35°Cとすると膜剥離速度は 0.04 mZ分 (除去まで約 25分)に (試料基板 1—4))、さらに、同じく 50°Cとすると 0.4 μ mZ分 (除去まで約 2分 30秒)に (試料基板 1 - 3)、まで速まった。さら〖こ、オゾン 水温度を 60°Cまで上昇させると膜剥離速度が 1. 1 μ mZ分 (除去まで約 55秒)とな り、除去時間力 S1分を切ることが確認できた (試料基板 1 2))。温度水温を 70°Cまで 上昇させたときの膜剥離速度は、 1. 9 mZ分 (除去まで約 32秒)であった (試料基 板 1— 1)。これらのことから、試料基板 1については、オゾン水温度を 50°C以上とす ることで充分に実用性があることが分力つた。 [0096] First, referring to Table 5, the experimental results of the sample substrate 1 will be discussed. When the ozone water temperature was 7 ° C, the film removal rate (film dissolution rate, film cleaning rate) was 0.003 mZ, so it took 333 hours or more to remove the 1 μm thick resist film. It took a lot of time (Sample substrate 1-5). Next, when the ozone water temperature is 35 ° C, the film peeling rate is 0.04 mZ (approximately 25 minutes until removal) (sample substrate 1-4)), and when it is 50 ° C, 0.4 μmZ (removal) Until about 2 minutes and 30 seconds) (sample substrate 1-3). Furthermore, when the ozone water temperature was raised to 60 ° C, the film removal rate became 1.1 μmZ (approximately 55 seconds until removal), and it was confirmed that the removal time force was less than S1 minutes (sample Board 1 2)). When the temperature and water temperature were raised to 70 ° C, the film peeling rate was 1.9 mZ (approximately 32 seconds until removal) (sample substrate 1-1). From these facts, it was found that the sample substrate 1 is sufficiently practical by setting the ozone water temperature to 50 ° C or higher.
[0097] 次に、表 6を参照しながら、試料基板 2の実験結果にっ ヽて検討する。オゾン水温 度が 6°Cのときの膜剥離速度 (膜溶解速度、膜洗浄速度)は、 0.025 mZ分であつ たことから、膜厚 1 μ mのレジスト膜を除去するためには 40時間以上を要することが分 力つた (試料基板 2— 3)。ほぼ同条件下における試料基板 1と比べて除去時間が大 幅に短くなつているのは、インブラ力卩ェの有無による差であろう。次に、オゾン水温度 を 45°Cとすると膜剥離速度は 1. 85 /z mZ分 (除去まで約 32秒)に (試料基板 2— 2) )、さらに、同じく 75°Cとすると 3. 6 mZ分(除去まで約 16秒)に (試料基板 2— 3)、 まで速まった。これらのことから、試料基板 2については、オゾン水温度を 45°C以上と することで充分に実用性があることが分力 た。もっとも、試料基板 2については、たと えば、同じオゾン水を用いて除去時間を 1分前後に設定するなら、 45°C以下 (たとえ ば、 35°C以上)であっても、充分に実用性があることが推測できょう。 [0097] Next, referring to Table 6, the experimental results of the sample substrate 2 will be examined. When the ozone water temperature is 6 ° C, the membrane removal rate (membrane dissolution rate, membrane cleaning rate) is 0.025 mZ. As a result, it was found that it takes more than 40 hours to remove the 1 μm thick resist film (Sample Substrate 2-3). The reason why the removal time is significantly shorter than that of the sample substrate 1 under almost the same conditions may be due to the presence or absence of the inbra force. Next, when the ozone water temperature is 45 ° C, the film peeling rate is 1.85 / z mZ (approximately 32 seconds until removal) (sample substrate 2-2)). It was accelerated to (sample substrate 2-3) in 6 mZ (approximately 16 seconds until removal). From these facts, it was found that the sample substrate 2 was sufficiently practical when the ozone water temperature was set to 45 ° C or higher. However, for sample substrate 2, for example, if the removal time is set to around 1 minute using the same ozone water, even if it is 45 ° C or less (for example, 35 ° C or more), it is sufficiently practical. I can guess there is.
[0098] 比較基板 2— 6の剥離速度は、 130mgZLの高濃度オゾン水で洗浄していながら 0 . 002 1117分(7°0でぁり、ほぼ 5分の 1のオゾン濃度(27mgZL)のオゾン水 Wで 洗浄した試料基板 2— 3の剥離速度と比べて 10倍 (0. 025 + 0. 002)以上となること が分力つた。同様にして比較基板 2— 5の剥離速度を試料基板 2— 2の剥離速度と比 ベると、ほぼ 3倍(1. 85÷0. 65)の開きがあり、比較基板 2— 4の剥離速度を試料基 板 2—1の剥離速度と比べるとほぼ 2. 5倍(3. 8÷ 1. 5)の開きがあることが分力つた 。これらの結果から、剥離速度を速めるためにはオゾン気泡の粒径を小さくすることが 極めて重要であることが分力つた。さらに、オゾン発生量を 50gZNm3とした結果、溶 存オゾン濃度は、表 5及び表 6に示すとおり 29〜27mg/L (g/Nm3)となったことは 前述したとおりであるところ、このオゾン発生量を高めることによって、今回の実験で は行つて ヽな 、が、オゾン水 Wの溶存オゾン濃度をさらに高めることによってさらに効 果的に洗浄することが可能になろう。すなわち、オゾン発生量を 200gZNm3としたり 、 350gZNm3としたりすることによって、表 6に示す 130mgZL又はそれ以上の溶存 オゾン濃度を実現可能であり、基板にダメージを与えな 、範囲にぉ 、て溶存オゾン 濃度が高いほうが剥離速度が速まると考えられるからである。 [0098] The peeling rate of Comparative Substrate 2-6 was 0.002 1117 minutes (7 ° 0, while ozone was cleaned by high-concentration ozone water of 130 mgZL, ozone concentration of 27% ZL (27 mgZL). The separation rate was 10 times (0.025 + 0.002) or more compared to the peeling rate of sample substrate 2-3 cleaned with water W. Similarly, the peeling rate of comparative substrate 2-5 was changed to the sample substrate. Compared with the peel rate of 2-2, there is almost three times the difference (1.85 ÷ 0.65). Compared with the peel rate of sample substrate 2-1, the peel rate of comparative substrate 2-4 From the results, it is very important to reduce the particle size of ozone bubbles in order to increase the peeling speed. Furthermore, as a result of setting the ozone generation amount to 50 gZNm 3 , the dissolved ozone concentration was 29 to 27 mg / L (g / Nm 3 ) as shown in Table 5 and Table 6 as described above. Is However, by increasing the amount of ozone generated, it will be possible to clean more effectively by increasing the concentration of dissolved ozone in the ozone water W, which should be performed in this experiment. By changing the ozone generation amount to 200 gZNm 3 or 350 gZNm 3 , it is possible to achieve a dissolved ozone concentration of 130 mgZL or higher as shown in Table 6, and it is possible to achieve dissolved ozone over a range without damaging the substrate. This is because the higher the concentration, the faster the peeling speed.
[0099] 以上のとおり、含有されるオゾン気泡の粒径 R力 O<R≤50nmであるオゾン水を用 いてシリコンウェハ基板 (半導体基板)を洗浄すると、特に、オゾン水の温度を高める ことにより、フォトレジスト膜を効率よく剥離できるであることが分力つた。  [0099] As described above, when the silicon wafer substrate (semiconductor substrate) is cleaned using ozone water having a particle size R force O <R≤50 nm of the contained ozone bubbles, particularly by increasing the temperature of the ozone water. It was found that the photoresist film can be efficiently peeled off.
[0100] (実験結果による推察) 含有されるオゾン気泡の粒径 R力 SO <R≤ 50nmであるオゾン水を用いた半導体基 板洗浄が極めて好適であることの因果関係を、発明者らは、次のとおり推察する。図 12乃至 14を参照しながら、説明する。図 12に示すオゾン気泡 Lzの粒径 Dは、たとえ ば、 500 μ mとする。オゾン気泡! zの粒径 ま、たとえば、 700 μ mとする。オゾン 気泡! zはオゾン気泡 Lよりも体積が大き 、ので、その分オゾン水 Wから受ける浮力 が大きいため水面に向力つて上昇する。このためオゾン気泡! zはレジスト HRと接 触する可能性が低ぐそのため洗浄にはほとんど役に立たない。他方、オゾン気泡 L zは、オゾン水 W力 受ける浮力が比較的小さ!、ためオゾン水 W中に浮 [0100] (Inference based on experimental results) The inventors speculate as follows about the causal relationship that the semiconductor substrate cleaning using ozone water with the particle size R force SO <R≤50 nm of the ozone bubbles contained is extremely suitable. This will be described with reference to FIGS. The particle size D of the ozone bubbles Lz shown in Fig. 12 is, for example, 500 μm. Ozone bubbles! Z particle size For example, 700 μm. Ozone bubbles! Since z has a larger volume than the ozone bubble L, the buoyancy received from the ozone water W is larger by that amount, so it rises toward the water surface. For this reason, ozone bubbles! Z are less useful for cleaning because they are less likely to come into contact with resist HR. On the other hand, the ozone bubble L z has a relatively small buoyancy due to the ozone water W force, so it floats in the ozone water W.
遊する確率が高ぐしたがって、レジスト HRと接触する可能性がある。レジスト HRと 接触したオゾン気泡 Lz内のオゾンは反応してレジスト膜 Rの剥離に貢献する。 Therefore, there is a possibility of contact with the resist HR. The ozone bubbles in contact with the resist HR react with ozone in the Lz and contribute to the peeling of the resist film R.
図 13に示すオゾン気泡 Szの粒径 Rは、 50nm以下、そのほとんどが 30nm以下で ある力ら、オゾン水 Wから受ける浮力は極小さい。このため、オゾン水 Wの水面に上 昇しょうとするオゾン気泡 Szはほとんどない。このため、レジスト HRと接触する機会 が図 13に示すオゾン気泡 Lzと比べて格段に多い。し力も、通常時のオゾン気泡はほ ぼ球形であるから、接触による変形はあるとしてもレジスト HRとの接触は点接触に近 い。したがって、レジスト膜 Rに接触したオゾン気泡 Lzの接触面積と、同じくオゾン気 泡 Szの接触面積との間に大きな差はな!/、。図 12と図 13を比較すれば直ちに理解さ れるように、レジスト HRとの接触面積に大差がないのであれば、図 13に示すオゾン 気泡 Szのほうが図 12に示すオゾン気泡 Szよりも同時接触可能な気泡数が多いだけ 総接触面積が広いことになる。し力も、図 14に示すように、レジスト HRには、たとえ ば、 60nm程度の幅寸法 dを持った凹部 Gがあり、その凹部 G内においてレジスト膜 R の側壁と反応させるためには、凹部 G内にオゾン気泡を進入させる必要がある。 60η m程度の幅寸法 dを通過できるオゾン気泡は、図 12に示すオゾン気泡 Lzではなく図 13に示すオゾン気泡 Szである。このように、オゾン水 Wが含有する粒径 50nm以下 のオゾン気泡であれば、レジスト膜 Rの凹部ゃ凸部の側壁と接触して反応可能である から、洗浄効果が飛躍的に高いのである。  The particle size R of the ozone bubbles Sz shown in Fig. 13 is 50 nm or less, most of which is 30 nm or less, and the buoyancy received from the ozone water W is extremely small. For this reason, there are almost no ozone bubbles Sz trying to rise to the surface of the ozone water W. For this reason, there are much more opportunities for contact with the resist HR compared to the ozone bubbles Lz shown in FIG. Also, since the normal ozone bubble is almost spherical, contact with the resist HR is close to point contact even if there is deformation due to contact. Therefore, there is no big difference between the contact area of the ozone bubbles Lz in contact with the resist film R and the contact area of the ozone bubbles Sz! /. As can be readily understood by comparing FIG. 12 and FIG. 13, if there is no significant difference in the contact area with the resist HR, the ozone bubble Sz shown in FIG. 13 is more simultaneous than the ozone bubble Sz shown in FIG. As the number of possible bubbles is large, the total contact area is wide. As shown in FIG. 14, the resist HR also has a recess G having a width d of about 60 nm, for example. In order to react with the sidewall of the resist film R in the recess G, It is necessary to allow ozone bubbles to enter G. The ozone bubbles that can pass through the width d of about 60 ηm are not the ozone bubbles Lz shown in FIG. 12 but the ozone bubbles Sz shown in FIG. In this way, ozone bubbles with a particle size of 50 nm or less contained in the ozone water W can react with the recesses of the resist film R in contact with the side walls of the projections, so the cleaning effect is remarkably high. .

Claims

請求の範囲 The scope of the claims
[1] 気液混合方法によって無添加生成したオゾン水を用いて基板を洗浄する基板洗浄 方法であって、  [1] A substrate cleaning method in which a substrate is cleaned using ozone water that has been produced without addition by a gas-liquid mixing method,
当該オゾン水が含有するオゾン気泡の粒径 Rが 0 < R≤ 50nmである  The particle size R of the ozone bubbles contained in the ozone water is 0 <R ≤ 50 nm
ことを特徴とする基板洗浄方法。  And a substrate cleaning method.
[2] 含有オゾン気泡の粒径 Rが 0<R≤50nmであるオゾン水を、添力卩物を含めない気 液混合方法によって生成するオゾン水生成工程と、 [2] Ozone water generation step of generating ozone water with a particle size R of the contained ozone bubbles 0 <R ≤ 50 nm by a gas-liquid mixing method that does not include the added waste,
当該オゾン水生成工程にぉ 、て生成したオゾン水を用いて基板を洗浄するオゾン 水洗浄工程と、を含めてなる  The ozone water generation step includes an ozone water cleaning step of cleaning the substrate using the generated ozone water.
ことを特徴とする基板洗浄方法。  And a substrate cleaning method.
[3] 前記気液混合方法に使用する原水が、純水又は超純水である [3] The raw water used in the gas-liquid mixing method is pure water or ultrapure water.
ことを特徴とする請求項 1又は 2記載の基板洗浄方法。  3. The substrate cleaning method according to claim 1, wherein the substrate is cleaned.
[4] 前記オゾン水生成工程では、小径路を有するベンチユリ管に原水を通過させ、かつ 、ベンチユリ管にオゾンを供給するとともに、当該ベンチユリ管の少なくとも小径路に 磁力を作用させる [4] In the ozone water generating step, raw water is passed through a bench lily pipe having a small path, ozone is supplied to the bench lily pipe, and a magnetic force is applied to at least the small path of the bench lily pipe.
ことを特徴とする請求項 2又は 3記載の基板洗浄方法。  4. The substrate cleaning method according to claim 2, wherein the substrate is cleaned.
[5] 前記磁石の磁力が、 1000〜30000ガウスに設定してある [5] Magnetic force of the magnet is set to 1000-30000 gauss
ことを特徴とする請求項 4記載の基板洗浄方法。  5. The substrate cleaning method according to claim 4, wherein:
[6] 前記ベンチユリ管を通過したオゾン水を循環させ、オゾンを供給しながら前記ベン チユリ管を少なくとも 1回再通過させる [6] The ozone water that has passed through the bench lily pipe is circulated and re-passed through the venturi pipe at least once while supplying ozone.
ことを特徴とする請求項 5記載の基板洗浄方法。  6. The substrate cleaning method according to claim 5, wherein:
[7] 前記循環させたオゾン水を貯留タンクに一且貯留する [7] Temporarily store the circulated ozone water in a storage tank
ことを特徴とする請求項 6記載の基板洗浄方法。  The substrate cleaning method according to claim 6.
[8] 前記貯留タンクに貯留したオゾン水を、 0〜15°Cの範囲に保持する [8] The ozone water stored in the storage tank is maintained in the range of 0 to 15 ° C.
ことを特徴とする請求項 7記載の基板洗浄方法。  The substrate cleaning method according to claim 7.
[9] オゾン水を溶解促進槽にー且貯留してオゾン溶解を促進する [9] Promote ozone dissolution by storing ozone water in dissolution accelerating tank
ことを特徴とする請求項 2乃至 8いずれか記載の基板洗浄方法。  9. The substrate cleaning method according to claim 2, wherein the substrate is cleaned.
[10] 前記溶解促進槽又は前記貯留タンクに貯留したオゾン水から脱気したオゾンを、当 該溶解促進槽外部へ排出する [10] The ozone degassed from the ozone water stored in the dissolution accelerating tank or the storage tank Discharge outside the dissolution accelerating tank
ことを特徴とする請求項 9記載の基板洗浄方法。  The substrate cleaning method according to claim 9.
[11] オゾン水洗浄中において、基板表面又は基板表面上の形成物の上に形成され又 は付着した被洗浄体に、当該オゾン水中のオゾンを分解することでラジカルを発生さ せるエネルギーを有すると共に、当該基板又は基板表面上の形成物の構成材料の 結合エネルギーよりも低いエネルギーを有する波長の光を照射する [11] During cleaning with ozone water, the object to be cleaned formed on or adhered to the substrate surface or the substrate surface has energy to generate radicals by decomposing ozone in the ozone water. And irradiating light of a wavelength having energy lower than the binding energy of the constituent material of the substrate or the formation on the substrate surface.
ことを特徴とする請求項 1乃至 10いずれか記載の基板洗浄方法。  The substrate cleaning method according to claim 1, wherein
[12] 基板に対してオゾン水を流動させる [12] Flowing ozone water against the substrate
ことを特徴とする請求項 1乃至 10いずれか記載の基板洗浄方法。  The substrate cleaning method according to claim 1, wherein
[13] 基板接触前のオゾン水を加熱する [13] Heat ozone water before substrate contact
ことを特徴とする請求項 1乃至 12いずれか記載の基板洗浄方法。  The substrate cleaning method according to any one of claims 1 to 12, wherein the substrate is cleaned.
[14] 基板接触前のオゾン水に超音波エネルギーを与える [14] Giving ultrasonic energy to ozone water before substrate contact
ことを特徴とする請求項 1乃至 12いずれか記載の基板洗浄方法。  The substrate cleaning method according to any one of claims 1 to 12, wherein the substrate is cleaned.
[15] 前記基板が、半導体基板である [15] The substrate is a semiconductor substrate
ことを特徴とする請求項 1乃至 14いずれか記載の基板洗浄方法。  15. The substrate cleaning method according to claim 1, wherein the substrate cleaning method is performed.
[16] 前記基板が、液晶基板である [16] The substrate is a liquid crystal substrate
ことを特徴とする請求項 1乃至 14いずれか記載の基板洗浄方法。  15. The substrate cleaning method according to claim 1, wherein the substrate cleaning method is performed.
[17] 基板を洗浄するための洗浄槽と、 [17] a cleaning tank for cleaning the substrate;
当該洗浄槽にオゾン水を供給するためのオゾン水生成装置と、を含めて構成して あり、  And an ozone water generator for supplying ozone water to the cleaning tank,
当該オゾン水生成装置が、小径路を有するベンチユリ管と、当該ベンチユリ管の小 径路を通過する純水又は超純水にオゾンを供給するためのオゾン供給装置と、を含 めて構成してあり、  The ozone water generator includes a bench lily pipe having a small path and an ozone supply apparatus for supplying ozone to pure water or ultrapure water passing through the small path of the bench lily pipe. ,
オゾン供給を受けた純水又は超純粋に磁力を作用させる磁石を当該ベンチユリ管 に設けることによって、含有するオゾン気泡の粒径 Rが 0<R≤ 50nmであるオゾン水 を生成可能に構成してある  The bench lily tube is provided with pure water that has been supplied with ozone or a magnet that applies ultra-pure magnetic force, so that it can be configured to generate ozone water in which the particle size R of the ozone bubbles contained is 0 <R ≤ 50 nm. is there
ことを特徴とする基板洗浄装置。  A substrate cleaning apparatus.
[18] 前記磁石が、一方の磁石片と他方の磁石片とを含む磁気回路によって構成してあ り、 [18] The magnet is constituted by a magnetic circuit including one magnet piece and the other magnet piece. The
当該一方の磁石片と当該他方の磁石片とを、前記ベンチユリ管を挟んで対向させ てある  The one magnet piece and the other magnet piece are opposed to each other across the bench lily tube.
ことを特徴とする請求項 17記載の基板洗浄装置。  18. The substrate cleaning apparatus according to claim 17, wherein:
[19] 前記磁石の磁力が、 1000〜30000ガウスに設定してある [19] The magnetic force of the magnet is set to 1000-30000 gauss
ことを特徴とする請求項 17又は 18記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 17 or 18, wherein
[20] 前記ベンチユリ管を通過したオゾン水を循環させて当該ベンチユリ管を再度通過さ せるための循環構造を、さらに含めて構成してある [20] The circulation structure for circulating ozone water that has passed through the bench lily pipe and passing the bench lily pipe again is further configured.
ことを特徴とする請求項 17乃至 19いずれか記載の基板洗浄装置。  20. The substrate cleaning apparatus according to any one of claims 17 to 19, wherein
[21] 前記循環構造の途中には、循環させるオゾン水を一且貯留させるための貯留タン クを設けてある [21] A storage tank is provided in the middle of the circulation structure to temporarily store the ozone water to be circulated.
ことを特徴とする請求項 20記載の基板洗浄装置。  21. The substrate cleaning apparatus according to claim 20, wherein:
[22] 前記貯留タンク内のオゾン水を 0〜15°Cの範囲に保持するための温度保持構造を 設けてある [22] A temperature holding structure for holding the ozone water in the storage tank in a range of 0 to 15 ° C is provided.
ことを特徴とする請求項 21記載の基板洗浄装置。  The substrate cleaning apparatus according to claim 21, wherein
[23] 前記洗浄槽に供給する、又は、前記洗浄槽に供給したオゾン水を加熱するための 加熱手段を設けてある [23] A heating means for heating the ozone water supplied to the cleaning tank or supplied to the cleaning tank is provided.
ことを特徴とする請求項 17乃至 22いずれか記載の基板洗浄装置。  The substrate cleaning apparatus according to any one of claims 17 to 22, wherein
[24] 前記洗浄槽内には、基板表面又は基板表面上の形成物の上に形成され又は付着 した被洗浄体に、当該オゾン水中のオゾンを分解することでラジカルを発生させるェ ネルギーを有すると共に、当該基板又は基板表面上の形成物の構成材料の結合ェ ネルギ一よりも低いエネルギーを有する波長の光を照射するための光源を併設して ある [24] The cleaning tank has energy for generating radicals by decomposing ozone in the ozone water on the substrate surface or an object to be cleaned formed on or attached to the substrate surface. In addition, a light source for irradiating light having a wavelength lower than the binding energy of the constituent material of the substrate or the formed material on the substrate surface is also provided.
ことを特徴とする請求項 17乃至 23いずれか記載の基板洗浄装置。  24. The substrate cleaning apparatus according to any one of claims 17 to 23.
[25] 基板接触前のオゾン水に超音波エネルギーを与えるための超音波振動機構を設 けてある [25] An ultrasonic vibration mechanism is installed to give ultrasonic energy to the ozone water before substrate contact
ことを特徴とする請求項 17乃至 24いずれか記載の基板洗浄装置。  The substrate cleaning apparatus according to any one of claims 17 to 24, wherein:
[26] 前記基板が、半導体基板である ことを特徴とする請求項 17乃至 25いずれか記載の基板洗浄装置。 前記基板が、液晶基板である [26] The substrate is a semiconductor substrate The substrate cleaning apparatus according to any one of claims 17 to 25, wherein The substrate is a liquid crystal substrate
ことを特徴とする請求項 17乃至 25いずれか記載の基板洗浄装置。 The substrate cleaning apparatus according to any one of claims 17 to 25, wherein
PCT/JP2007/055724 2006-03-20 2007-03-20 Substrate cleaning method and substrate cleaning apparatus WO2007108481A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006077184 2006-03-20
JP2006-077184 2006-03-20
JP2006-316253 2006-11-22
JP2006316253 2006-11-22

Publications (1)

Publication Number Publication Date
WO2007108481A1 true WO2007108481A1 (en) 2007-09-27

Family

ID=38522509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055724 WO2007108481A1 (en) 2006-03-20 2007-03-20 Substrate cleaning method and substrate cleaning apparatus

Country Status (3)

Country Link
JP (2) JP2008153605A (en)
TW (1) TW200802575A (en)
WO (1) WO2007108481A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060319A1 (en) * 2006-08-21 2009-05-20 Eiji Matsumura Gas/liquid mixing device
WO2009099138A1 (en) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology Method for cleaning semiconductor wafer and device for cleaning semiconductor wafer
WO2016182057A1 (en) * 2015-05-13 2016-11-17 株式会社日立製作所 Organic matter decomposition device and organic matter decomposition method
CN112435938A (en) * 2020-11-11 2021-03-02 深圳市华星光电半导体显示技术有限公司 Substrate cleaning apparatus and substrate cleaning method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153475A (en) * 2008-12-24 2010-07-08 Sokudo Co Ltd Substrate treatment apparatus and substrate treatment method
JP6168271B2 (en) 2012-08-08 2017-07-26 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6062712B2 (en) * 2012-10-30 2017-01-18 三菱電機株式会社 Solar cell manufacturing method and solar cell manufacturing apparatus used therefor
JP5977727B2 (en) 2013-11-13 2016-08-24 東京エレクトロン株式会社 Substrate cleaning method, substrate cleaning system, and storage medium
WO2015137484A1 (en) * 2014-03-14 2015-09-17 株式会社ピーシーエス Micro bubble cleaning method using liquid containing micro bubbles, apparatus therefor, and dissolved air floatation apparatus
CN108452593B (en) * 2018-03-05 2023-11-17 国网浙江省电力有限公司台州供电公司 Low-resistance high-efficiency fluidization demister device and demisting method thereof
JP7441620B2 (en) 2019-08-29 2024-03-01 株式会社Screenホールディングス Substrate processing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000579A (en) * 1998-06-16 2000-01-07 Ishimori Seisakusho:Kk Ozone water making apparatus
JP2001269631A (en) * 2000-03-27 2001-10-02 Dainippon Screen Mfg Co Ltd Substrate cleaning device
JP2002231677A (en) * 2001-01-31 2002-08-16 Kurita Water Ind Ltd Cleaning method of electronic material
JP2003142445A (en) * 2001-11-08 2003-05-16 Mitsubishi Electric Corp Washing apparatus and method therefor
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP2004241726A (en) * 2003-02-07 2004-08-26 Sharp Corp Method and device for treating resist
JP2005305219A (en) * 2004-04-19 2005-11-04 Kyowa Kogyo Kk Gas-liquid mixed bubble generating apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523682A (en) * 1990-12-27 1993-02-02 Shinji Kashiwabara Device for reforming water quality using ozone aqueous solution
JP3485215B2 (en) * 1995-05-29 2004-01-13 徹 工藤 Cleaning equipment
JP2000012500A (en) * 1998-04-20 2000-01-14 Dainippon Screen Mfg Co Ltd Method and system for processing substrate
JP2001351893A (en) * 2000-06-05 2001-12-21 Sumitomo Precision Prod Co Ltd Method for treating substrate
JP2003086560A (en) * 2001-09-12 2003-03-20 Dainippon Screen Mfg Co Ltd Substrate treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000000579A (en) * 1998-06-16 2000-01-07 Ishimori Seisakusho:Kk Ozone water making apparatus
JP2001269631A (en) * 2000-03-27 2001-10-02 Dainippon Screen Mfg Co Ltd Substrate cleaning device
JP2002231677A (en) * 2001-01-31 2002-08-16 Kurita Water Ind Ltd Cleaning method of electronic material
JP2003142445A (en) * 2001-11-08 2003-05-16 Mitsubishi Electric Corp Washing apparatus and method therefor
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP2004241726A (en) * 2003-02-07 2004-08-26 Sharp Corp Method and device for treating resist
JP2005305219A (en) * 2004-04-19 2005-11-04 Kyowa Kogyo Kk Gas-liquid mixed bubble generating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060319A1 (en) * 2006-08-21 2009-05-20 Eiji Matsumura Gas/liquid mixing device
EP2060319A4 (en) * 2006-08-21 2014-01-01 Eiji Matsumura Gas/liquid mixing device
WO2009099138A1 (en) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology Method for cleaning semiconductor wafer and device for cleaning semiconductor wafer
JP5540351B2 (en) * 2008-02-07 2014-07-02 独立行政法人産業技術総合研究所 Semiconductor wafer cleaning method and cleaning apparatus
WO2016182057A1 (en) * 2015-05-13 2016-11-17 株式会社日立製作所 Organic matter decomposition device and organic matter decomposition method
CN112435938A (en) * 2020-11-11 2021-03-02 深圳市华星光电半导体显示技术有限公司 Substrate cleaning apparatus and substrate cleaning method

Also Published As

Publication number Publication date
JP2008153605A (en) 2008-07-03
TW200802575A (en) 2008-01-01
JP2011066389A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
WO2007108481A1 (en) Substrate cleaning method and substrate cleaning apparatus
JP5681944B2 (en) Gas mixture production method and gas mixture
US20090020474A1 (en) Wastewater treatment equipment and method of wastewater treatment
US8999069B2 (en) Method for producing cleaning water for an electronic material
WO2009113682A1 (en) Gas-dissolved water supply system
KR101209463B1 (en) Micro-bubble solution generating device using turbine pump
JP2008192630A (en) Electromechanical component cleaning method and electromechanical component cleaning device
JP2004217814A (en) Washing composition for device substrate and washing method and washing apparatus each using the same composition
TWI601695B (en) Method for producing ozone gas dissolved water and washing method of electronic material
JP4838227B2 (en) Cleaning device and cleaning method
JP2007326101A (en) Ozone water treating method
JPWO2017149758A1 (en) Membrane filtration apparatus, filtration membrane cleaning method, and filtration membrane manufacturing method
KR102435639B1 (en) System and method for generating High concentration nanobubble using degassing apparatus and ultrasonic
JP5412135B2 (en) Ozone water supply device
WO2017195764A1 (en) Method and device for treating wastewater containing organic matter
KR101191562B1 (en) System to decrease residual ozone gas and to increase dissolved ozone in the water
KR20150056182A (en) Apparatus for cleaning organic matter using fine ozone bubble
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP2008093607A (en) Organic waste water treatment device and organic waste water treatment method
JP2002177956A (en) Water cleaning method and water cleaning plant
JP3639102B2 (en) Wet processing equipment
JP2010046570A (en) Apparatus for manufacturing feed liquid for ultrasonic treatment apparatus, method for manufacturing feed liquid for ultrasonic treatment apparatus and ultrasonic treatment system
JP5209357B2 (en) Processing liquid manufacturing apparatus, manufacturing method, substrate processing apparatus, processing method
JP2006179764A (en) Substrate processing apparatus and particle removing method
JP2004122066A (en) Degassing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP