WO2007105670A1 - Method for fabricating film-formed body by aerosol deposition - Google Patents

Method for fabricating film-formed body by aerosol deposition Download PDF

Info

Publication number
WO2007105670A1
WO2007105670A1 PCT/JP2007/054778 JP2007054778W WO2007105670A1 WO 2007105670 A1 WO2007105670 A1 WO 2007105670A1 JP 2007054778 W JP2007054778 W JP 2007054778W WO 2007105670 A1 WO2007105670 A1 WO 2007105670A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
fine particles
substrate
material fine
film
Prior art date
Application number
PCT/JP2007/054778
Other languages
French (fr)
Japanese (ja)
Inventor
Seiichi Yokoyama
Michiyori Miura
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Publication of WO2007105670A1 publication Critical patent/WO2007105670A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching

Definitions

  • the present invention relates to a method for forming a thick film-forming body using an aerosol deposition method.
  • the aerosol deposition method (hereinafter referred to as the AD method) is a ceramic having a particle size of several tens of nanometers to several ⁇ m, or a mixture of raw materials such as fine metal particle particles mixed with gas.
  • a film is formed by spraying onto a substrate through a nozzle.
  • the AD method has attracted attention as a method capable of forming a dense film having the same crystal structure as that of fine particles as a raw material at a low substrate temperature and at a high film formation rate.
  • FIG. 7 is a schematic diagram showing the basic configuration of the film forming apparatus.
  • 71 is a deposition substrate
  • 72 is an XY stage that moves the deposition substrate 71
  • 73 is a nozzle
  • 74 is a deposition channel
  • 75 is a classifier
  • 76 is an aerosol generator
  • 77 is a high-pressure gas supply 78, a mass flow controller, 79 a pipeline, and arrows in the figure schematically indicate the substrate scanning direction.
  • the raw material fine particles that also have ceramics or metal power are mixed with a carrier gas (not shown) supplied through the mass flow controller 78 inside the aerosol generator 76 to be aerosolized.
  • a carrier gas not shown
  • the inside of the film forming chamber 74 is depressurized to about 50 Pa by a vacuum pump (not shown), and the raw material aerosolized by the gas flow generated by the pressure difference between this pressure and the pressure inside the aerosol generator 76.
  • the fine particles are introduced into the film forming chamber 74 through the classifier 75 and sprayed to the film forming substrate 71 through the nozzle 73 at a high speed.
  • the raw material particles transported by the gas are accelerated to several hundred mZs by passing through a nozzle with a fine opening of 1 mm or less.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-73855
  • the first means provided by the present invention is:
  • the raw material fine particles are mixed with the carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a plurality of nozzles arranged in parallel and sprayed toward the surface of the substrate to be deposited.
  • the raw material fine particles accelerated and jetted from the plurality of nozzles enter substantially the same location on the deposition surface of the deposition substrate and are accelerated and jetted from each nozzle.
  • the incident direction of the raw material fine particles on the substrate to be deposited is different, and the substrate incident angle of the raw material fine particles that are accelerated and jetted from at least one of the plurality of nozzles is set to an angle at which the etching effect becomes apparent.
  • the second means provided by the present invention includes
  • the raw material fine particles are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a plurality of nozzles arranged in parallel and sprayed toward the surface of the substrate to be deposited.
  • an aerosol deposition method for forming a film body raw material particles accelerated and ejected from the plurality of nozzles are incident on substantially the same location on the deposition surface of the deposition substrate and are accelerated and ejected from each nozzle.
  • the incident direction of the raw material fine particles to the substrate to be deposited is different, and the substrate incident angle of the raw material fine particles that are accelerated and jetted from at least one of the plurality of nozzles is set to an angle that exhibits only the etching effect.
  • the third means provided by the present invention includes
  • Nozzle force Manufacture of a film-forming body by the above-described aerosol deposition method which is different from the flow rate of the carrier gas containing the aerosolized raw material fine particles or the concentration of the raw material fine particles in the carrier gas Is the method.
  • the fourth means provided by the present invention includes:
  • a carrier gas containing the aerosolized raw material fine particles is intermittently injected from at least one of the plurality of nozzles. It is a manufacturing method of a film body.
  • the fifth means provided by the present invention includes:
  • an angle formed by one of incident directions of the raw material fine particles accelerated and jetted from the plurality of nozzles on the deposition target substrate and a deposition target surface of the deposition target substrate is This is a method for producing a film-deposited body by the aerosol deposition method, characterized by being approximately 90 degrees.
  • any one of the first to fourth means an incident direction of the raw material fine particles acceleratedly jetted from the plurality of nozzles to the deposition target substrate and a deposition target surface of the deposition target substrate are formed.
  • the present invention it is possible to stably form a film-forming body having a high film thickness, for example, an ultra-thickness of 30 m, and excellent in denseness by using the AD method.
  • FIG. 8 is a schematic diagram schematically showing a cross-sectional structure of a film formed under a condition where the carrier gas flow rate is constant, in which 81 is a substrate, 82 is a film formation layer, and 83 is a green compact layer. It is.
  • a dense film is formed in the film formation layer 82, and the diameter of the particles constituting the film formation layer 82 is about 1/10 to 1 of the particle diameter of the raw material fine particles. / 5.
  • the green compact layer 83 as the distance from the substrate 81 increases (as the film thickness increases), the number and size of voids increase, and the diameter of the particles constituting the green compact layer increases.
  • the cause of the formation of the green compact layer 83 is that the raw material fine particles are crushed as the film thickness is increased. It means that both the crushing of itself and the crushing of the raw material fine particles already attached to the substrate surface) are difficult to occur.
  • the cause of the crushing of the raw material fine particles is an impact force accompanying the release of the kinetic energy of the raw material fine particles at the time of the substrate collision, and the kinetic energy of the raw material fine particles is included.
  • Lugi is determined by the substrate collision speed.
  • the substrate collision speed of the raw material fine particles is determined by the flow rate of the carrier gas. The collision speed is always constant, and the kinetic energy released at the time of collision is also constant. Therefore, ideally, crushing of the raw material fine particles should occur as well regardless of the film thickness formed.
  • FIG. 9 is a diagram schematically showing the relationship between the pressure generated by the substrate collision of the raw material fine particles and the strain generated in the film forming body layer and the green compact layer.
  • the pressure (stress) and strain increase linearly according to the pressure in the region where the pressure is low (in the figure, the elastic deformation region).
  • the strain does not follow the pressure increase, and eventually breaks up (breaking point in the figure).
  • the pressure required for the occurrence of crushing hereinafter referred to as the following
  • the critical pressure is also increasing.
  • uncrushed raw material fine particles adhering to the substrate surface or fine particles that are not sufficiently crushed are used as the source of the green compact layer formation. It needs to be removed. Such uncrushed raw material fine particles or fine particles that are not sufficiently crushed are considered to have low adhesion to the surface of the substrate or the film formed on the substrate, and can be removed relatively easily. It is done.
  • the present invention pays attention to the etching effect of the raw material fine particles incident on the substrate, which will be described below, and forms a dense film body while removing uncrushed raw material fine particles or fine particles that are not sufficiently crushed. It is something to be done. 4 to 6 show the influence of the incident direction of the raw material fine particles, in other words, the incident angle of the substrate.
  • FIG. 4a is a schematic diagram showing the relationship between the incident direction of the raw material fine particles and the substrate incident angle, in which 41 is the substrate, 42 is the film formed, 43 is the nozzle, 44 is the nozzle opening, and 45 is Raw material fine particles ejected from the nozzle opening 44.
  • Figure 4b schematically shows the shape of the film formed for a fixed time with the substrate position fixed.
  • 46 is the shape of the film formation body
  • 47 is a uniform film thickness line
  • P is the point where the thickest point is projected onto the substrate.
  • the incident direction of the raw material fine particles is a direction parallel to a straight line connecting the point P and the center of the nozzle opening 44 and directed from the nozzle opening 44 to the point P.
  • the substrate incident angle here means the angle between the substrate surface normal direction and the incident direction, ⁇ , and the angle between the deposition surface and the incident direction is ( 90— ⁇ ) degrees.
  • FIG. 5 shows the relationship between the substrate incident angle and the film thickness of the film-deposited film formed for a certain period of time.
  • the arrow in the figure corresponds to the case where the carrier gas flow rate is small, and the mouth mark corresponds to the case where the carrier gas flow rate is large.
  • the film thickness is standardized by the film thickness obtained when the film is formed with a substrate incident angle of 0 degrees (that is, the angle between the deposition surface and the incident direction of the raw material fine particles is 90 degrees).
  • the substrate incident angle exceeds 20 degrees, the film thickness of the film formation starts to decrease sharply, and when the carrier gas flow rate is small, the decrease amount is when the flow rate is large. Smaller than that.
  • FIG. 6 shows the relationship between the amount of decrease in film thickness and the incident angle of the substrate after the raw material fine particles are incident on the substrate for a certain period of time after forming the film-forming body having a certain thickness. It is. As in Fig. 5, the arrow in the figure corresponds to the case where the carrier gas flow rate is small, and the mouth mark corresponds to the case where the carrier gas flow rate is large. Also, in the figure, when the film thickness reduction amount is 0, no film thickness reduction occurs. And when the raw material fine particles incident on the substrate are deposited and the film thickness is increased.
  • the angle at which the film thickness phenomenon becomes apparent is referred to as “the angle at which only the etching effect appears”.
  • the angle at which only the etching effect appears depends on both the substrate incident angle of the raw material fine particles and the carrier gas flow rate.
  • the etching effect of the raw material fine particles can be controlled by appropriately selecting the substrate incident angle of the raw material fine particles and the carrier gas flow rate in the AD method.
  • the present invention has been made based on the above-mentioned knowledge obtained by the inventors. That is, according to the present invention, by forming a film using a plurality of nozzles, the above-described etching effect and the deposition effect are harmonized, and the unadhered to the substrate surface, which is the source of the formation of the green compact layer. While removing raw material fine particles for crushing or fine particles that are not sufficiently crushed, a film formed with a large film thickness and excellent density is formed.
  • 1 to 3 are schematic views showing an embodiment of the present invention, and schematically show the relationship between a substrate position and a nozzle.
  • FIG. 1 schematically shows a case where a film-forming body is formed by raw material fine particles ejected from the first and second nozzle caps.
  • 11 is the first nozzle
  • 12 is the second nozzle
  • 13 is the raw material fine particles that are also injected with the first nozzle force
  • 14 is the raw material fine particles that are injected from the second nozzle.
  • the arrows and block arrows in the figure indicate the incident directions of the raw material fine particles 13 and 14 on the substrate.
  • the incident direction of the raw material fine particles 13 is substantially parallel to the normal of the substrate surface (the substrate incident angle is approximately 0 degrees), and is mainly responsible for the formation of the film formation body 42.
  • the raw material fine particles 14 mainly have a function of removing uncrushed raw material fine particles adhering to the surface of the film formation body or particles that are not sufficiently crushed, so that the incident direction is limited to the normal of the substrate surface.
  • the substrate incident angle is not zero
  • the value is the angle at which the etching effect is manifested (the “etching effect is manifested” here)
  • the “incident angle” is a substrate incident angle in which both the etching effect and the film deposition effect coexist.
  • the substrate incident angle is an angle of about 20 degrees or more.
  • the substrate collision speed of the raw material fine particles ejected from the nozzles 11 and 12, in other words, the carrier gas flow rate, or the concentration of the raw material fine particles in the carrier gas is a condition that a dense film formation 42 is formed. Can be selected as appropriate. Further, it is possible to select the same for the force for continuously injecting the raw material fine particles from each of the nozzles 11 and 12 or intermittently.
  • FIG. 2 schematically shows a case where a film-forming body is formed by the raw material fine particles that are ejected by the first, second, and third nozzle forces.
  • 21 is the first nozzle
  • 22 is the second nozzle
  • 23 is the third nozzle
  • 24 is the raw material particles injected from the first nozzle
  • 25 is the raw material particles injected from the second nozzle
  • 26 is a raw material fine particle injected from the third nozzle cover.
  • the arrows and block arrows in the figure indicate the substrate incident directions of the respective raw material fine particles 24, 25, and 26.
  • the configuration shown in the figure corresponds to the configuration of the nomination of the configuration shown in FIG. That is, the incident direction of the raw material fine particles 24 is substantially parallel to the normal line of the substrate surface (substrate incident angle is approximately 0 degrees), and is mainly responsible for the formation of the film formation body 42.
  • the raw material fine particles 25 and 26 mainly have a function of removing uncrushed raw material fine particles adhering to the surface of the film forming body or particles that are not sufficiently crushed, the incident direction is the normal line of the substrate surface. A finite angle is formed, and the value is set to an angle at which the etching effect becomes apparent.
  • the dense film formation 42 is formed according to the substrate collision speed of the raw material fine particles injected from each nozzle 21, 22, 23, in other words, the carrier gas flow rate, or the concentration of the raw material fine particles in the carrier gas. This can be selected as appropriate. In addition, it is possible to select the same for the nozzle 21, 22, 23 from which the raw material fine particles are sprayed continuously or intermittently.
  • FIG. 3 schematically shows a case where a film-forming body is formed by raw material fine particles ejected from the first and second nozzle caps.
  • 31 is the first nozzle
  • 32 is the second nozzle
  • 33 is a raw material fine particle that is also injected by the first nozzle force
  • 34 is a raw material fine particle that is injected from the second nozzle.
  • the arrows and block arrows in the figure indicate the incident directions of the raw material fine particles 33 and 34 on the substrate.
  • the configuration shown in the figure has the same force as the configuration shown in FIG. 1 in that the first and second nozzle forces are configured.
  • the substrate incident direction of the raw material fine particles 33 and the raw material fine particles 34 are different in that both form a certain angle with the normal of the substrate surface.
  • the substrate incident angle of the raw material fine particles 33 and 34 is clearly recognized as an etching effect, but the film deposition effect is excellent (for example, the substrate incident angle is in the range of 20 to 30 degrees).
  • the film forming body is formed while etching is performed.
  • the film-forming speed decreases, and it is not suitable as a method for forming a particularly thick film.
  • raw material fine particles having a force only in one direction may not be uniformly etched by the already formed film particles. Therefore, if the number of nozzles is increased to 2 or more in the configuration shown in FIG. 3, a relatively thick film can be formed in a relatively short time.
  • Alumina particles having an average particle diameter of 0.7 ⁇ m were used as raw material fine particles, and air was used as a carrier gas.
  • the substrate and nozzle arrangement are substantially the same as those shown in FIG.
  • the first nozzle (corresponding to the nozzle 11 in FIG. 1) force of the alumina fine particles (corresponding to the raw material fine particles 13 in FIG. 1) is also injected with a substrate incident angle of approximately 0 degrees,
  • the substrate incident angle of alumina fine particles (corresponding to raw material fine particles 14 in FIG. 1) ejected from the nozzle (corresponding to nozzle 12 in FIG. 1) was set to approximately 30 degrees.
  • the nozzle openings of the first and second nozzles are both 5 nm ⁇ 0.3 nm, and the substrate used is quartz glass.
  • the gas flow rate injected from the first and second nozzles was both set to 3 lZmin.
  • the substrate collision speed of the alumina fine particles into which the first and second nozzle forces were also injected was 220 mZs, and the obtained film formation speed was ⁇ 5 mZmin.
  • the above-described carrier gas flow rate was maintained, and an aluminum film formation body having a film thickness of ⁇ 30 m was formed.
  • the first nozzle (corresponding to nozzle 11 in FIG. 1) Although we attempted to form a film only with lumina fine particles (corresponding to raw material fine particle 13 in Fig. 1), formation of a green compact was observed from around the film thickness force S 15 m. It could not be formed.
  • Example 1 Under the same conditions as in Example 1, an alumina film-forming body having a thickness of up to 30 ⁇ m was formed.
  • the carrier gas flow rate at which the force of the first nozzle (corresponding to nozzle 11 in FIG. 1) is also injected is a force of 3 lZmin, as in Example 1.
  • the second nozzle The flow rate of the carrier gas injected from the nozzle 12 in FIG. 1 was set to 5 lZmin.
  • the substrate collision speed of the alumina fine particles injected from the second nozzle was 300 mZs, and the film formation speed obtained was ⁇ 3 / z mZmin.
  • the above-described carrier gas flow rate was maintained to form a 30 m thick alumina film.
  • Example 2 Under the same conditions as in Example 2, a 40 ⁇ m-thick alumina film was formed. However, the carrier gas flow rate at which the first nozzle (corresponding to nozzle 11 in FIG. 1) force is also injected is a force of 3 lZmin, as in Example 2. In this example, the second nozzle ( The carrier gas type injected from the nozzle 12 in FIG. 1 is He, and its flow rate is 4 lZmin. At this time, the substrate collision speed of the alumina fine particles injected from the second nozzle was 450 m / s, and no alumina film deposition was observed.
  • the carrier gas flow rate at which the first nozzle (corresponding to nozzle 11 in FIG. 1) force is also injected is a force of 3 lZmin, as in Example 2.
  • the second nozzle The carrier gas type injected from the nozzle 12 in FIG. 1 is He, and its flow rate is 4 lZmin.
  • the substrate collision speed of the alumina fine particles injected from the second nozzle was 450 m
  • the alumina fine particles were ejected intermittently from the second nozzle while the alumina fine particles were continuously ejected from the first nozzle.
  • Figure 10 shows the injection scheme. In other words, every two minutes, alumina fine particles having a thickness of ⁇ 40 / ⁇ ⁇ were formed by repeating a cycle of spraying alumina fine particles from the second nozzle cover for about 20 seconds. .
  • FIG. 11 shows the injection scheme. In other words, after the alumina fine particles are injected from the first nozzle for 2 minutes, the injection is stopped, and then the second nozzle for about 20 seconds. By repeating the cycle of spraying alumina fine particles, a 30 m thick alumina film was formed.
  • Alumina particles having an average particle size of 0.7 ⁇ m were used as raw material fine particles, and air was used as a carrier gas.
  • the substrate and nozzle arrangement are substantially the same as those shown in FIG.
  • the substrate incident angle of the alumina fine particles (corresponding to the raw material fine particles 24 in FIG. 2) ejected from the first nozzle (corresponding to the nozzle 21 in FIG. 2) is approximately 0 degrees, and the second nozzle (in FIG. 2).
  • the substrate incident angle of alumina fine particles (corresponding to raw material fine particles 25 in Fig. 2) injected from the nozzle 22) is approximately 30 degrees, and is injected from the third nozzle (corresponding to nozzle 23 in Fig. 2).
  • the substrate incident angle of alumina fine particles (corresponding to raw material fine particles 26 in FIG.
  • the substrate incident angles of the alumina fine particles injected from the second and third nozzle caps have substantially the same absolute values and different signs (ie, the angles are substantially the same but the incident directions are different).
  • the nozzle openings of the first, second, and third nozzles are all 5 nm ⁇ 0.3 nm, and the substrate used is quartz glass.
  • the gas flow rates injected from the first, second and third nozzles were both set to 3 lZmin.
  • the substrate collision speed of the alumina fine particles injected from the first, second, and third nozzles was 220 mZs, and the obtained film formation speed was ⁇ 7 mZmin.
  • the carrier gas flow rate described above was maintained, and an alumina film body having a thickness of ⁇ 30 ⁇ m was formed.
  • Alumina particles having an average particle diameter of 0.7 ⁇ m were used as raw material fine particles, and air was used as a carrier gas.
  • the substrate and nozzle arrangement are substantially the same as those shown in FIG.
  • the substrate incident angle of the alumina fine particles (corresponding to the raw material fine particles 33 in FIG. 3) ejected from the first nozzle (corresponding to the nozzle 31 in FIG. 3) is about 30 degrees, and the second nozzle (nozzle in FIG. 3).
  • the substrate incident angle of alumina fine particles (corresponding to raw material fine particles 34 in Fig. 3) ejected from (corresponding to 32) was set to approximately 30 degrees.
  • the substrate incident angles of the alumina fine particles ejected from the first and second nozzles are substantially the same in absolute value and different in sign (ie, the angles are substantially the same but the incident directions are different).
  • the nozzle openings of the first and second nozzles are both 5 nm ⁇ 0.3 nm, and the substrate used is quartz glass.
  • the first and second nozzles spray Both gas flow rates were set to 3 lZmin.
  • the substrate collision speed of the alumina fine particles to which the first and second nozzle forces were also injected was 220 mZs, and the obtained film formation speed was ⁇ 3 mZmin.
  • the carrier gas flow rate described above was maintained, and an alumina film body having a thickness of ⁇ 30 ⁇ m was formed.
  • the present invention has been described in detail with reference to the examples, the present invention is not limited to the above-described transport gas type, flow rate, transport gas injection scheme, or raw material fine particle material, and the number of nozzles. It is not limited to the substrate incident angle of the raw material fine particles.
  • the film forming method according to the present invention is useful for forming a thick film-forming body using the AD method, and industrial fields relating to parts and materials using the film-forming body. It is available in
  • FIG. 1 is a schematic diagram showing the relationship between a substrate position and a nozzle.
  • FIG. 2 is a schematic diagram showing a relationship between a substrate position and a nozzle.
  • FIG. 3 is a schematic diagram showing a relationship between a substrate position and a nozzle.
  • FIG. 4 is a schematic diagram for explaining a substrate incident angle.
  • FIG. 5 is a diagram showing the relationship between the film thickness of a film-formed body and the substrate incident angle.
  • FIG. 6 is a diagram showing the relationship between the film thickness reduction amount and the substrate incident angle.
  • FIG. 7 is a schematic diagram showing a basic configuration of a film forming apparatus using the AD method.
  • FIG. 8 is a schematic view schematically showing a cross-sectional structure of a sample formed by the AD method.
  • FIG. 9 is a diagram schematically showing the relationship between the pressure generated by substrate collision of raw material fine particles and the strain generated in the film formation layer and the green compact layer.
  • FIG. 10 shows a carrier gas injection scheme
  • FIG. 11 shows a carrier gas injection scheme

Abstract

There is provided a method for stably fabricating a film-formed body having a thick film by aerosol deposition. Raw material microparticles are sprayed from a plurality of nozzles toward a substantially identical area on a deposition substrate and the incident angle on the substrate is controlled, thereby forming the film-formed body while etching the deposited film.

Description

明 細 書  Specification
エアロゾルデポジション法による成膜体の製造方法  Method for producing film-forming body by aerosol deposition method
技術分野  Technical field
[0001] 本発明は、エアロゾルデポジション法を用いて膜厚の厚 ヽ成膜体を形成する方法 に関する。  [0001] The present invention relates to a method for forming a thick film-forming body using an aerosol deposition method.
背景技術  Background art
[0002] エアロゾルデポジション法(以下、 AD法と記す)は、粒径が数十 nm〜数 μ mのセラ ミックスある 、は金属の微粒子カゝら成る原料をガスと混合してエアロゾルィ匕し、ノズル を通して基板に噴射して、被膜を形成する技術である。近年、 AD法は、低基板温度 で、かつ高成膜速度で、原料である微粒子と同様の結晶構造を有する緻密な被膜が 形成できる方法として着目されて ヽる。  [0002] The aerosol deposition method (hereinafter referred to as the AD method) is a ceramic having a particle size of several tens of nanometers to several μm, or a mixture of raw materials such as fine metal particle particles mixed with gas. In this technique, a film is formed by spraying onto a substrate through a nozzle. In recent years, the AD method has attracted attention as a method capable of forming a dense film having the same crystal structure as that of fine particles as a raw material at a low substrate temperature and at a high film formation rate.
[0003] AD法を用いた成膜装置について図 7を用いて説明する。図 7は、成膜装置の基本 構成を示した概略図である。図中、 71は被成膜基板、 72は被成膜基板 71を移動せ しめる XYステージ、 73はノズル、 74は成膜チャンノ 、 75は分級器、 76はエアロゾル 発生器、 77は高圧ガス供給源、 78はマスフロー制御器、 79はパイプライン、図中矢 印は基板走査方向を模式的に示したものである。セラミックスあるいは金属力もなる 原料微粒子は、エアロゾル発生器 76の内部でマスフロー制御器 78を介して供給さ れる搬送ガス(図示せず)と混合されてエアロゾルィ匕される。成膜チャンバ 74の内部 は、真空ポンプ(図示せず)で〜 50Pa程度に減圧されており、この圧力とエアロゾル 発生器 76内部の圧力との差圧によって生じるガス流によってエアロゾルィ匕された原 料微粒子は、分級器 75を介して成膜チャンバ 74内に導かれ、ノズル 73を通してカロ 速、被成膜基板 71に噴射される。ガスによって搬送された原料微粒子は、 1mm以下 の微小開口のノズルを通すことで数百 mZsまでに加速される。  A film forming apparatus using the AD method will be described with reference to FIG. FIG. 7 is a schematic diagram showing the basic configuration of the film forming apparatus. In the figure, 71 is a deposition substrate, 72 is an XY stage that moves the deposition substrate 71, 73 is a nozzle, 74 is a deposition channel, 75 is a classifier, 76 is an aerosol generator, and 77 is a high-pressure gas supply 78, a mass flow controller, 79 a pipeline, and arrows in the figure schematically indicate the substrate scanning direction. The raw material fine particles that also have ceramics or metal power are mixed with a carrier gas (not shown) supplied through the mass flow controller 78 inside the aerosol generator 76 to be aerosolized. The inside of the film forming chamber 74 is depressurized to about 50 Pa by a vacuum pump (not shown), and the raw material aerosolized by the gas flow generated by the pressure difference between this pressure and the pressure inside the aerosol generator 76. The fine particles are introduced into the film forming chamber 74 through the classifier 75 and sprayed to the film forming substrate 71 through the nozzle 73 at a high speed. The raw material particles transported by the gas are accelerated to several hundred mZs by passing through a nozzle with a fine opening of 1 mm or less.
[0004] 加速された原料微粒子は被成膜基板 71に衝突し、その運動エネルギーは一気に 解放され、皮膜が形成されること〖こなる。しかし、加速された原料微粒子が有する運 動エネルギーが全て基板に衝突した原料微粒子の温度上昇に費やされたとしても、 その温度は、例えばセラミックスの焼結に必要な温度等と比べると一桁程度低ぐ緻 密な成膜体が得られるメカニズムについては不明な点が多い。しかし、その成膜過程 には、原料微粒子の基板衝突時に発生する破砕が重要な役割担って ヽると考えら れている。なお、 "原料微粒子の破砕"とは、基板に飛来した原料微粒子自体の破砕 と、既に基板表面に付着して ヽる原料微粒子の破砕の両者を意味する。 [0004] The accelerated raw material fine particles collide with the deposition target substrate 71, and the kinetic energy is released at a stroke, so that a film is formed. However, even if all of the kinetic energy of the accelerated raw material fine particles is spent on raising the temperature of the raw material fine particles that have collided with the substrate, the temperature is, for example, an order of magnitude higher than the temperature necessary for sintering ceramics. Too low There are many unclear points regarding the mechanism by which a dense film is obtained. However, it is considered that the crushing generated when the raw material particles collide with the substrate plays an important role in the film formation process. “Fracture of the raw material fine particles” means both of the crushing of the raw material fine particles that have come to the substrate and the crushing of the raw material fine particles that have already adhered to the substrate surface.
[0005] すなわち、特開 2003— 73855号公報においては、脆性材料から成る原料微粒子 の場合、その微粒子の平均粒径が 50nm以上で、かつその形状が非球形の不定形 形状で、少なくとも一力所以上、角を持つ形状とすることにより、当該角の部分に基板 衝突時の衝撃力が集中し、原料微粒子の破砕が促進される結果、緻密な成膜体が 得られることが開示されて 、る。 [0005] That is, in Japanese Patent Application Laid-Open No. 2003-73855, in the case of raw material fine particles made of a brittle material, the average particle size of the fine particles is 50 nm or more, and the shape thereof is a non-spherical amorphous shape. As described above, it has been disclosed that by forming a shape with corners, the impact force at the time of substrate collision is concentrated on the corner portions, and the crushing of the raw material fine particles is promoted, resulting in a dense film formation. RU
特許文献 1:特開 2003 - 73855号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-73855
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかし、我々の AD法による膜厚の大きい成膜体を形成するための系統的な検討の 結果、〜 10 m程度の成膜体は比較的容易に形成されるものの、それ以上の膜厚 、例えば 30 mを超える膜厚の成膜体を安定に形成することが困難であることが判 明した。すなわち、成膜初期過程、換言すると膜厚が 20 w m程度以下と薄い状態に おいては、緻密な成膜体が得られるものの、膜厚が増大するにつれ緻密な成膜体は 形成されず、圧粉体のみが形成される、と云う問題があることが明らかとなった。 課題を解決するための手段 [0006] However, as a result of systematic examination for forming a film-forming body having a large film thickness by our AD method, a film-forming body of about 10 m is formed relatively easily, but more than that It was found that it is difficult to stably form a film with a film thickness exceeding, for example, 30 m. That is, in the initial film formation process, in other words, in a thin film thickness of about 20 wm or less, a dense film body can be obtained, but as the film thickness increases, a dense film body is not formed. It became clear that there was a problem that only the green compact was formed. Means for solving the problem
[0007] 上記課題を解決するために、 [0007] In order to solve the above problems,
本発明により提供される第 1の手段は、  The first means provided by the present invention is:
原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子 を並列配置された複数のノズルを通して加速して被堆積基板表面に向けて噴射せし めることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であつ て、該複数のノズルから加速噴射された原料微粒子が、該被堆積基板の被堆積表 面の略同一箇所に入射し、かつ各ノズルから加速噴射された原料微粒子の該被堆 積基板への入射方向が異なると共に、該複数のノズルの少なくとも 1から加速噴射さ れた原料微粒子の基板入射角度が、エッチング効果が顕在化する角度に設定され ていることを特徴とするエアロゾルデポジション法による成膜体の製造方法である。 The raw material fine particles are mixed with the carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a plurality of nozzles arranged in parallel and sprayed toward the surface of the substrate to be deposited. In the aerosol deposition method for forming a film body, the raw material fine particles accelerated and jetted from the plurality of nozzles enter substantially the same location on the deposition surface of the deposition substrate and are accelerated and jetted from each nozzle. The incident direction of the raw material fine particles on the substrate to be deposited is different, and the substrate incident angle of the raw material fine particles that are accelerated and jetted from at least one of the plurality of nozzles is set to an angle at which the etching effect becomes apparent. A method for producing a film-forming body by an aerosol deposition method.
[0008] また、本発明により提供される第 2の手段は、  [0008] The second means provided by the present invention includes
原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子 を並列配置された複数のノズルを通して加速して被堆積基板表面に向けて噴射せし めることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であつ て、該複数のノズルから加速噴射された原料微粒子が、該被堆積基板の被堆積表 面の略同一箇所に入射し、かつ各ノズルから加速噴射された原料微粒子の該被堆 積基板への入射方向が異なると共に、該複数のノズルの少なくとも一から加速噴射さ れた原料微粒子の基板入射角度が、エッチング効果のみが発現する角度に設定さ れていることを特徴とするエアロゾルデポジション法による成膜体の製造方法である。  The raw material fine particles are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a plurality of nozzles arranged in parallel and sprayed toward the surface of the substrate to be deposited. In an aerosol deposition method for forming a film body, raw material particles accelerated and ejected from the plurality of nozzles are incident on substantially the same location on the deposition surface of the deposition substrate and are accelerated and ejected from each nozzle. The incident direction of the raw material fine particles to the substrate to be deposited is different, and the substrate incident angle of the raw material fine particles that are accelerated and jetted from at least one of the plurality of nozzles is set to an angle that exhibits only the etching effect. A method for producing a film-forming body by an aerosol deposition method.
[0009] また、本発明により提供される第 3の手段は、  [0009] The third means provided by the present invention includes
前記第 1、若しくは第 2の手段において、該複数のノズルの少なくとも一力 噴射さ れる、該エアロゾルィ匕された原料微粒子を含む搬送ガスの流量、若しくは搬送ガス中 の原料微粒子の密度力 他のノズル力 噴射される該エアロゾルィ匕された原料微粒 子を含む搬送ガスの流量、若しくは搬送ガス中の原料微粒子の濃度と異なることを特 徴とする前述したエアロゾルデポジション法による成膜体の製造方法である。  In the first or second means, the flow rate of the carrier gas containing the aerosolized raw material fine particles injected by at least one force of the plurality of nozzles, or the density force of the raw material fine particles in the carrier gas, etc. Nozzle force Manufacture of a film-forming body by the above-described aerosol deposition method, which is different from the flow rate of the carrier gas containing the aerosolized raw material fine particles or the concentration of the raw material fine particles in the carrier gas Is the method.
[0010] また、本発明により提供される第 4の手段は、  [0010] The fourth means provided by the present invention includes:
前記第 1乃至第 3のいずれかの手段において、該複数のノズルの少なくとも一から 間欠的に該エアロゾル化された原料微粒子を含む搬送ガスが噴射されることを特徴 とするエアロゾルデポジション法による成膜体の製造方法である。  In any one of the first to third means, a carrier gas containing the aerosolized raw material fine particles is intermittently injected from at least one of the plurality of nozzles. It is a manufacturing method of a film body.
また、本発明により提供される第 5の手段は、  The fifth means provided by the present invention includes:
前記第 1乃至第 4のいずれかの手段において、該複数のノズルから加速噴射され た原料微粒子の該被堆積基板への入射方向の一と該被堆積基板の被堆積面とのな す角度が略 90度であることを特徴とするエアロゾルデポジション法による成膜体の製 造方法である。  In any one of the first to fourth means, an angle formed by one of incident directions of the raw material fine particles accelerated and jetted from the plurality of nozzles on the deposition target substrate and a deposition target surface of the deposition target substrate is This is a method for producing a film-deposited body by the aerosol deposition method, characterized by being approximately 90 degrees.
更に、本発明により提供される第 6の手段は  Further, the sixth means provided by the present invention is
前記第 1乃至第 4のいずれかの手段において、該複数のノズルから加速噴射され た原料微粒子の該被堆積基板への入射方向と該被堆積基板の被堆積面とのなす 角度の少なくとも一が略同一で、かつ該角度が 90度以下であることを特徴とするエア 口ゾルデポジション法による成膜体の製造方法である。 In any one of the first to fourth means, an incident direction of the raw material fine particles acceleratedly jetted from the plurality of nozzles to the deposition target substrate and a deposition target surface of the deposition target substrate are formed. A method for producing a film-formed body by an air sol deposition method, wherein at least one of the angles is substantially the same and the angle is 90 degrees or less.
発明の効果  The invention's effect
[0011] 本発明により、 AD法を用いて膜厚の厚い、例えば超 30 m厚であり、緻密性に優 れた成膜体を安定して形成することが可能となる。  [0011] According to the present invention, it is possible to stably form a film-forming body having a high film thickness, for example, an ultra-thickness of 30 m, and excellent in denseness by using the AD method.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 発明者等は、上記課題を解決するために鋭意研究を行い、以下に述べる知見を得 るに至った。以下に、発明者等が得た知見について説明する。  [0012] The inventors have conducted extensive research to solve the above-mentioned problems, and have obtained the following knowledge. Hereinafter, the knowledge obtained by the inventors will be described.
[0013] AD法で形成された膜であって、成膜初期段階では緻密な成膜体で、膜厚の増加 と共に圧粉体となった膜の組織を電子顕微鏡で観察した結果、例えば図 8に模式的 に示すような組織を有していることが明ら力となった。図 8は、搬送ガス流量が一定の 条件下で形成した膜の断面組織を模式的に示した概略図であり、図中 81は基板、 8 2は成膜体層、 83は圧粉体層である。すなわち、搬送ガス流量が一定で、原料微粒 子の基板入射角度が基板 81の表面の法線方向と略一致する条件下で、唯一のノズ ルから噴射された原料微粒子によって形成された膜の組織は、同図に示したように、 成膜体層 82では緻密な膜が形成されており、かつ成膜体層 82を構成する粒子の径 は原料微粒子の粒径の約 1/10〜1/5であった。一方、圧粉体層 83においては、 基板 81からの距離が大きくなるにつれ (膜厚が増加するにつれ)、空隙部の数、大き さ共に増大し、かつ圧粉体層を構成する粒子の径も増大し、最終的には原料微粒子 の粒径と同程度になることが明らかとなった。また、成膜体層 82と圧粉体層 83との境 界は明瞭に区別できるものではなぐ成膜体層から圧粉体層への組織変化は連続的 に発生して 、ることも明らかとなつた。  [0013] As a result of observing, with an electron microscope, the structure of a film formed by the AD method, which is a dense film-forming body at the initial stage of film formation and becomes a green compact as the film thickness increases. Clearly, having an organization as shown schematically in Fig. 8 became a powerful force. FIG. 8 is a schematic diagram schematically showing a cross-sectional structure of a film formed under a condition where the carrier gas flow rate is constant, in which 81 is a substrate, 82 is a film formation layer, and 83 is a green compact layer. It is. In other words, the structure of the film formed by the raw material fine particles ejected from a single nozzle under the condition that the carrier gas flow rate is constant and the substrate incident angle of the raw material fine particles substantially coincides with the normal direction of the surface of the substrate 81. As shown in the figure, a dense film is formed in the film formation layer 82, and the diameter of the particles constituting the film formation layer 82 is about 1/10 to 1 of the particle diameter of the raw material fine particles. / 5. On the other hand, in the green compact layer 83, as the distance from the substrate 81 increases (as the film thickness increases), the number and size of voids increase, and the diameter of the particles constituting the green compact layer increases. As a result, it was clarified that the particle size of the raw material particles was about the same. It is also clear that the boundary between the film formation layer 82 and the green compact layer 83 is not clearly distinguishable, and the structural change from the film formation layer to the green compact layer occurs continuously. It was.
[0014] この観察結果より、圧粉体層 83が形成される原因は、膜厚の増加につれて原料微 粒子の破砕 (前述したように、 "原料微粒子の破砕"とは基板に飛来した原料微粒子 自体の破砕と既に基板表面に付着した原料微粒子の破砕の両者を意味する)が発 生し難くなつていることにあることが判った。  From this observation result, the cause of the formation of the green compact layer 83 is that the raw material fine particles are crushed as the film thickness is increased. It means that both the crushing of itself and the crushing of the raw material fine particles already attached to the substrate surface) are difficult to occur.
[0015] 一方、原料微粒子が破砕される原因は、その基板衝突時における原料微粒子の有 する運動エネルギーの解放に伴う衝撃力であり、係る原料微粒子の有する運動エネ ルギ一は基板衝突速度によって決定される。ところで、原料微粒子の基板衝突速度 は、搬送ガス種が同一の場合、搬送ガスの流量によって決定されることから、搬送ガ ス流量が一定の条件下で成膜する場合には、原料微粒子の基板衝突速度は常に一 定であり、衝突時に解放される運動エネルギーも一定になる。従って、理想的には、 形成された膜厚の如何を問わず、原料微粒子の破砕は同様に発生して然るべきで ある。 [0015] On the other hand, the cause of the crushing of the raw material fine particles is an impact force accompanying the release of the kinetic energy of the raw material fine particles at the time of the substrate collision, and the kinetic energy of the raw material fine particles is included. Lugi is determined by the substrate collision speed. By the way, when the carrier gas species is the same, the substrate collision speed of the raw material fine particles is determined by the flow rate of the carrier gas. The collision speed is always constant, and the kinetic energy released at the time of collision is also constant. Therefore, ideally, crushing of the raw material fine particles should occur as well regardless of the film thickness formed.
[0016] しかし、前述したように、 AD法で形成した膜の断面組織を電子顕微鏡で観察した 結果、膜厚の増加と共に、空隙部の数及びその大きさが共に増大していることから、 以下に述べるような現象が発生しているものと想定される。  However, as described above, as a result of observing the cross-sectional structure of the film formed by the AD method with an electron microscope, as the film thickness increases, both the number of voids and the size thereof increase. It is assumed that the following phenomenon has occurred.
[0017] 図 9は、原料微粒子の基板衝突によって発生する圧力と成膜体層及び圧粉体層に 発生する歪みとの関係を模式的に示した図である。一般的に、圧力 (応力)と歪みと は、同図に示したように、圧力が小さい領域では、圧力に応じて歪みは線形的に増 加するが(図中、弾性変形領域)、その後圧力の上昇に歪み量は追従しなくなり、最 終的には破砕に至る(図中破砕発生点)。圧粉体層においては、空隙部が多数存在 するため、緻密な成膜体層に比べて変形し易ぐ弾性変形領域が広いと考えられ、 結果として破砕が発生するために要する圧力(以下、臨界圧力と記す)も大きくなつて いると推定される。すなわち、原料微粒子の基板衝突によって発生する圧力が、成膜 体層における臨界圧力は超える力 圧粉体層の臨界圧力を下回る場合には、ー且 圧粉体層が形成されると、最早基板に付着した原料微粒子の破砕は発生せず、圧 粉体層が形成され続けることになる。  FIG. 9 is a diagram schematically showing the relationship between the pressure generated by the substrate collision of the raw material fine particles and the strain generated in the film forming body layer and the green compact layer. Generally, as shown in the figure, the pressure (stress) and strain increase linearly according to the pressure in the region where the pressure is low (in the figure, the elastic deformation region). The strain does not follow the pressure increase, and eventually breaks up (breaking point in the figure). In the green compact layer, since there are many voids, it is considered that the elastic deformation region that is easily deformed compared to the dense film formation layer is wide, and as a result, the pressure required for the occurrence of crushing (hereinafter referred to as the following) It is estimated that the critical pressure is also increasing. That is, when the pressure generated by the substrate collision of the raw material fine particles is lower than the critical pressure of the green compact layer exceeding the critical pressure in the film formation layer, and once the green compact layer is formed, the substrate The raw material fine particles adhering to the surface are not crushed, and the green compact layer continues to be formed.
[0018] 係る圧粉体層の形成を阻止するためには、圧粉体層の形成の源となる、基板表面 に付着して ヽる未破砕の原料微粒子、若しくは破砕が不充分な微粒子を除去するこ とが必要となる。係る未破砕原料微粒子、若しくは破砕が不充分な微粒子は、基板 表面、あるいは基板に既に形成されている成膜体との密着力が低いと考えられ、比 較的容易に除去され得るものと考えられる。  [0018] In order to prevent the formation of the green compact layer, uncrushed raw material fine particles adhering to the substrate surface or fine particles that are not sufficiently crushed are used as the source of the green compact layer formation. It needs to be removed. Such uncrushed raw material fine particles or fine particles that are not sufficiently crushed are considered to have low adhesion to the surface of the substrate or the film formed on the substrate, and can be removed relatively easily. It is done.
[0019] すなわち、本発明は、以下に説明する基板に入射する原料微粒子のエッチング効 果に着目し、未破砕原料微粒子、若しくは破砕が不充分な微粒子を除去しつつ緻密 な成膜体を形成せんとするものである。 [0020] 図 4〜6に原料微粒子の入射方向、換言すると基板入射角度の影響を示す。 That is, the present invention pays attention to the etching effect of the raw material fine particles incident on the substrate, which will be described below, and forms a dense film body while removing uncrushed raw material fine particles or fine particles that are not sufficiently crushed. It is something to be done. 4 to 6 show the influence of the incident direction of the raw material fine particles, in other words, the incident angle of the substrate.
[0021] 図 4aは原料微粒子の入射方向と基板入射角度との関係を示す模式図で、図中 41 は基板、 42は成膜された膜、 43はノズル、 44はノズル開口部、 45はノズル開口部 4 4から噴射された原料微粒子である。図 4bは基板位置を固定して一定時間形成され た成膜体の形状を模式的に示したものである。図中、 46は成膜体の形状、 47は等 膜厚線、 Pは最も膜厚の厚い点を基板に投影した点である。基板 41を固定し、一定 時間原料微粒子を基板表面に向けて噴射せしめた場合、原料微粒子 45は、ある程 度の方向分布を持って基板に入射するため、形成された成膜体は成膜体 46に示す ような山型の形状となる。ここで云う、原料微粒子の入射方向とは点 Pとノズル開口部 44の中心と結ぶ直線に平行で、かつノズル開口部 44から点 Pに向かう方向の意であ る。大略的には、図 4aに示した矢印、及びブロック矢印で示した方向と理解される。 また、ここで云う基板入射角度とは、図 4aに示すように、基板表面法線方向と入射方 向とのなす角度、 Θの意であり、被堆積表面と入射方向とのなす角度は(90— Θ)度 に相当する。 [0021] FIG. 4a is a schematic diagram showing the relationship between the incident direction of the raw material fine particles and the substrate incident angle, in which 41 is the substrate, 42 is the film formed, 43 is the nozzle, 44 is the nozzle opening, and 45 is Raw material fine particles ejected from the nozzle opening 44. Figure 4b schematically shows the shape of the film formed for a fixed time with the substrate position fixed. In the figure, 46 is the shape of the film formation body, 47 is a uniform film thickness line, and P is the point where the thickest point is projected onto the substrate. When the substrate 41 is fixed and the raw material fine particles are sprayed toward the substrate surface for a certain period of time, the raw material fine particles 45 are incident on the substrate with a certain degree of directional distribution. It has a mountain shape as shown in the body 46. Here, the incident direction of the raw material fine particles is a direction parallel to a straight line connecting the point P and the center of the nozzle opening 44 and directed from the nozzle opening 44 to the point P. In general, it is understood as the direction indicated by the arrow shown in FIG. 4a and the block arrow. In addition, as shown in FIG. 4a, the substrate incident angle here means the angle between the substrate surface normal direction and the incident direction, Θ, and the angle between the deposition surface and the incident direction is ( 90—Θ) degrees.
[0022] 図 5は基板入射角度と一定時間成膜した成膜体の膜厚との関係を示す。図中參印 は、搬送ガス流量が小さい場合、口印は搬送ガス流量が大きい場合に対応する。い ずれの場合も、基板入射角度が 0度 (すなわち被堆積表面と原料微粒子の入射方向 とのなす角度が 90度)で成膜した場合に得られる膜厚で規格化されている。同図に 示したように、基板入射角度が 20度を超えた辺りから、成膜体の膜厚は急激に減少 しはじめ、搬送ガス流量が小さい場合の減少量は、同流量が大きい場合に比べて小 さい。この原因は、基板入射角度の増大と共に、基板に入射する粒子のエッチング 効果が顕在化することにあると推定される。また、エッチング効果の大小は基板入射 角度と搬送ガス流量の両者に依存し、このことからエッチング効果が顕在化する入射 角度は、搬送ガスの流量によって変化することになる。  FIG. 5 shows the relationship between the substrate incident angle and the film thickness of the film-deposited film formed for a certain period of time. The arrow in the figure corresponds to the case where the carrier gas flow rate is small, and the mouth mark corresponds to the case where the carrier gas flow rate is large. In both cases, the film thickness is standardized by the film thickness obtained when the film is formed with a substrate incident angle of 0 degrees (that is, the angle between the deposition surface and the incident direction of the raw material fine particles is 90 degrees). As shown in the figure, when the substrate incident angle exceeds 20 degrees, the film thickness of the film formation starts to decrease sharply, and when the carrier gas flow rate is small, the decrease amount is when the flow rate is large. Smaller than that. It is estimated that this is because the etching effect of particles incident on the substrate becomes obvious as the substrate incident angle increases. In addition, the magnitude of the etching effect depends on both the substrate incident angle and the carrier gas flow rate. From this, the incident angle at which the etching effect becomes apparent changes depending on the carrier gas flow rate.
[0023] 図 6は、一定の膜厚の成膜体を形成した後、一定時間の間、原料微粒子を基板に 入射せしめた後の膜厚減少量と基板入射角度との関係を示したものである。図 5と同 様に、図中參印は、搬送ガス流量が小さい場合、口印は搬送ガス流量が大きい場合 に対応する。また、同図において、膜厚減少量が 0とは、膜厚の減少が発生しない場 合、及び基板に入射された原料微粒子が堆積されて膜厚が増カロした場合の両者を 意味する。 [0023] FIG. 6 shows the relationship between the amount of decrease in film thickness and the incident angle of the substrate after the raw material fine particles are incident on the substrate for a certain period of time after forming the film-forming body having a certain thickness. It is. As in Fig. 5, the arrow in the figure corresponds to the case where the carrier gas flow rate is small, and the mouth mark corresponds to the case where the carrier gas flow rate is large. Also, in the figure, when the film thickness reduction amount is 0, no film thickness reduction occurs. And when the raw material fine particles incident on the substrate are deposited and the film thickness is increased.
[0024] 同図に示したように、搬送ガス流量が大きい場合、基板入射角度が 25度を超えた 辺りから、膜厚減少が顕在化するのに対し、搬送ガス流量力小さい場合には基板入 射角度が 40度を超えた辺りから膜厚減少が顕在化する(以下、膜厚現象が顕在化 する角度を「エッチング効果のみが発現する角度」と記す)。エッチング効果のみが発 現する角度は、原料微粒子の基板入射角度と搬送ガス流量の両者に依存する。  [0024] As shown in the figure, when the carrier gas flow rate is large, the decrease in film thickness becomes apparent when the substrate incident angle exceeds 25 degrees, whereas when the carrier gas flow force is small, the substrate The decrease in film thickness becomes apparent when the incident angle exceeds 40 degrees (hereinafter, the angle at which the film thickness phenomenon becomes apparent is referred to as “the angle at which only the etching effect appears”). The angle at which only the etching effect appears depends on both the substrate incident angle of the raw material fine particles and the carrier gas flow rate.
[0025] 以上の結果から、 AD法にぉ ヽては、原料微粒子の基板入射角度、及び搬送ガス 流量を適当に選定することにより、原料微粒子のエッチング効果を制御できることが 理解される。  From the above results, it is understood that the etching effect of the raw material fine particles can be controlled by appropriately selecting the substrate incident angle of the raw material fine particles and the carrier gas flow rate in the AD method.
[0026] 本発明は、発明者等が得た上述の知見にもとづいてなされたものである。すなわち 、本発明は、複数のノズルを用いて成膜することにより、前述したエッチング効果と堆 積効果とを調和させ、圧粉体層の形成の源となる、基板表面に付着している未破砕 の原料微粒子、若しくは破砕が不充分な微粒子を除去しつつ、膜厚が厚ぐかつ緻 密性に優れた成膜体を形成せんとするものである。  [0026] The present invention has been made based on the above-mentioned knowledge obtained by the inventors. That is, according to the present invention, by forming a film using a plurality of nozzles, the above-described etching effect and the deposition effect are harmonized, and the unadhered to the substrate surface, which is the source of the formation of the green compact layer. While removing raw material fine particles for crushing or fine particles that are not sufficiently crushed, a film formed with a large film thickness and excellent density is formed.
[0027] 以下、本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described.
図 1乃至図 3は本発明の実施の形態を示す模式図で、基板位置とノズルとの関係を 模式的に示したものである。  1 to 3 are schematic views showing an embodiment of the present invention, and schematically show the relationship between a substrate position and a nozzle.
[0028] 図 1は、第 1と第 2の 2つのノズルカゝら噴射される原料微粒子によって成膜体が形成 される場合を模式的に示したものである。図中、 11は第 1のノズル、 12は第 2のノズ ル、 13は第 1のノズル力も噴射される原料微粒子、 14は第 2のノズルから噴射される 原料微粒子である。また、図中の矢印、及びブロック矢印は、各々の原料微粒子 13 、 14の基板入射方向を示す。同図に示した構成においては、原料微粒子 13の入射 方向は基板表面の法線と略平行 (基板入射角度は略 0度)であり、主に成膜体 42の 形成を担う。一方、原料微粒子 14は、主に成膜体表面に付着した未破砕原料微粒 子、あるいは破砕が不充分な粒子を除去する機能を担うことから、その入射方向は、 基板表面の法線と有限の角度をなし (基板入射角度が零ではない)、その値はエツ チング効果が顕在化する角度 (ここで云う"エッチング効果が顕在化する"とは、必ず しも膜の堆積が全く発生しな 、ことを意味するのではなく、堆積速度が減少しはじめ ることを意味し、 "エッチング効果が顕在化する角度"とは、前述した「エッチング効果 のみが発現する角度」ではなぐエッチング効果と膜堆積効果の両者が併存する基 板入射角度であり、例えば、基板入射角度が略 20度若しくはそれ以上の角度を云う 。以下同様)に設定される。また、各々のノズル 11、 12から噴射される原料微粒子の 基板衝突速度、換言すると搬送ガス流量、あるいは搬送ガス中の原料微粒子の濃度 等は、緻密な成膜体 42が形成されることを条件として、適宜選定することができる。ま た、各ノズル 11、 12から、連続的に原料微粒子を噴射させるか、それとも間歇的に噴 射させる力、等についても同様に選定することができる。 FIG. 1 schematically shows a case where a film-forming body is formed by raw material fine particles ejected from the first and second nozzle caps. In the figure, 11 is the first nozzle, 12 is the second nozzle, 13 is the raw material fine particles that are also injected with the first nozzle force, and 14 is the raw material fine particles that are injected from the second nozzle. In addition, the arrows and block arrows in the figure indicate the incident directions of the raw material fine particles 13 and 14 on the substrate. In the configuration shown in the figure, the incident direction of the raw material fine particles 13 is substantially parallel to the normal of the substrate surface (the substrate incident angle is approximately 0 degrees), and is mainly responsible for the formation of the film formation body 42. On the other hand, the raw material fine particles 14 mainly have a function of removing uncrushed raw material fine particles adhering to the surface of the film formation body or particles that are not sufficiently crushed, so that the incident direction is limited to the normal of the substrate surface. (The substrate incident angle is not zero), and the value is the angle at which the etching effect is manifested (the “etching effect is manifested” here) However, it does not mean that film deposition does not occur at all, but it means that the deposition rate starts to decrease, and the “angle at which the etching effect becomes apparent” is the above-mentioned “only the etching effect”. The “incident angle” is a substrate incident angle in which both the etching effect and the film deposition effect coexist. For example, the substrate incident angle is an angle of about 20 degrees or more. The same shall apply hereinafter. Further, the substrate collision speed of the raw material fine particles ejected from the nozzles 11 and 12, in other words, the carrier gas flow rate, or the concentration of the raw material fine particles in the carrier gas is a condition that a dense film formation 42 is formed. Can be selected as appropriate. Further, it is possible to select the same for the force for continuously injecting the raw material fine particles from each of the nozzles 11 and 12 or intermittently.
[0029] 図 2は、第 1、第 2及び第 3の 3つのノズル力 噴射される原料微粒子によって成膜 体が形成される場合を模式的に示したものである。図中、 21は第 1のノズル、 22は第 2のノズル、 23は第 3のノズル、 24は第 1のノズルから噴射される原料微粒子、 25は 第 2のノズルから噴射される原料微粒子、 26は第 3のノズルカゝら噴射される原料微粒 子である。また、図中の矢印、及びブロック矢印は、各々の原料微粒子 24、 25、 26 の基板入射方向を示す。  FIG. 2 schematically shows a case where a film-forming body is formed by the raw material fine particles that are ejected by the first, second, and third nozzle forces. In the figure, 21 is the first nozzle, 22 is the second nozzle, 23 is the third nozzle, 24 is the raw material particles injected from the first nozzle, 25 is the raw material particles injected from the second nozzle, 26 is a raw material fine particle injected from the third nozzle cover. In addition, the arrows and block arrows in the figure indicate the substrate incident directions of the respective raw material fine particles 24, 25, and 26.
[0030] 同図に示した構成は、図 1に示した構成のノリエーシヨンの構成に対応する。すな わち、原料微粒子 24の入射方向は基板表面の法線と略平行 (基板入射角度は略 0 度)であり、主に成膜体 42の形成を担う。一方、原料微粒子 25、 26は、主に成膜体 表面に付着した未破砕原料微粒子、あるいは破砕が不充分な粒子を除去する機能 を担うことから、その入射方向は、基板表面の法線と有限の角度をなし、その値はェ ツチング効果が顕在化する角度に設定される。また、各々のノズル 21、 22、 23から 噴射される原料微粒子の基板衝突速度、換言すると搬送ガス流量、あるいは搬送ガ ス中の原料微粒子の濃度等は、緻密な成膜体 42が形成されることを条件として、適 宜選定することができる。また、各ノズル 21、 22、 23から、連続的に原料微粒子を噴 射させるか、それとも間歇的に噴射させる力 等についても同様に選定することがで きる。  [0030] The configuration shown in the figure corresponds to the configuration of the nomination of the configuration shown in FIG. That is, the incident direction of the raw material fine particles 24 is substantially parallel to the normal line of the substrate surface (substrate incident angle is approximately 0 degrees), and is mainly responsible for the formation of the film formation body 42. On the other hand, since the raw material fine particles 25 and 26 mainly have a function of removing uncrushed raw material fine particles adhering to the surface of the film forming body or particles that are not sufficiently crushed, the incident direction is the normal line of the substrate surface. A finite angle is formed, and the value is set to an angle at which the etching effect becomes apparent. In addition, the dense film formation 42 is formed according to the substrate collision speed of the raw material fine particles injected from each nozzle 21, 22, 23, in other words, the carrier gas flow rate, or the concentration of the raw material fine particles in the carrier gas. This can be selected as appropriate. In addition, it is possible to select the same for the nozzle 21, 22, 23 from which the raw material fine particles are sprayed continuously or intermittently.
[0031] 図 3は、第 1と第 2の 2つのノズルカゝら噴射される原料微粒子によって成膜体が形成 される場合を模式的に示したものである。図中、 31は第 1のノズル、 32は第 2のノズ ル、 33は第 1のノズル力も噴射される原料微粒子、 34は第 2のノズルから噴射される 原料微粒子である。また、図中の矢印、及びブロック矢印は、各々の原料微粒子 33 、 34の基板入射方向を示す。同図に示した構成は、第 1と第 2の 2つのノズル力ゝら構 成される点においては、図 1に示した構成と共通する力 原料微粒子 33及び原料微 粒子 34の基板入射方向が、共に基板表面の法線と一定の角度をなす点にお 、て異 なる。本構成は、原料微粒子 33、 34の基板入射角度を、エッチング効果が明らかに 認められるが、なお、膜の堆積効果が優っている角度 (例えば、基板入射角度が 20 度〜 30度の範囲)に設定し、エッチングを行いつつ成膜体を形成する、と云う構成で ある。勿論、一のノズルで、エッチングを行いつつ成膜体を形成することは可能であ るが、係る場合には成膜速度が減少し、特に膜厚の厚い膜を形成する方法としては 適さず、また、一方向のみ力もの原料微粒子の入射では既成膜粒子により均一にェ ツチングされない場合も生じる。従って、図 3に示した構成で、ノズルの数を 2個以上 と増加すれば、その分短時間で比較的膜厚の厚!、緻密な成膜体の形成が可能とな る。 FIG. 3 schematically shows a case where a film-forming body is formed by raw material fine particles ejected from the first and second nozzle caps. In the figure, 31 is the first nozzle, 32 is the second nozzle , 33 is a raw material fine particle that is also injected by the first nozzle force, and 34 is a raw material fine particle that is injected from the second nozzle. In addition, the arrows and block arrows in the figure indicate the incident directions of the raw material fine particles 33 and 34 on the substrate. The configuration shown in the figure has the same force as the configuration shown in FIG. 1 in that the first and second nozzle forces are configured. The substrate incident direction of the raw material fine particles 33 and the raw material fine particles 34 However, they are different in that both form a certain angle with the normal of the substrate surface. In this configuration, the substrate incident angle of the raw material fine particles 33 and 34 is clearly recognized as an etching effect, but the film deposition effect is excellent (for example, the substrate incident angle is in the range of 20 to 30 degrees). The film forming body is formed while etching is performed. Of course, it is possible to form a film-forming body while performing etching with one nozzle. However, in such a case, the film-forming speed decreases, and it is not suitable as a method for forming a particularly thick film. In addition, in some cases, raw material fine particles having a force only in one direction may not be uniformly etched by the already formed film particles. Therefore, if the number of nozzles is increased to 2 or more in the configuration shown in FIG. 3, a relatively thick film can be formed in a relatively short time.
[0032] 以下、実施例を用いて、本発明の実施の形態について、更に詳細に説明する。  Hereinafter, embodiments of the present invention will be described in more detail using examples.
実施例 1  Example 1
[0033] 原料微粒子として平均粒径が 0. 7 μ mのアルミナ粒子を用い、搬送ガスとして空気 を用いて成膜した。基板とノズル配置は、図 1に示した構成と略同一である。第 1のノ ズル(図 1にお 、てノズル 11に対応)力も噴射されるアルミナ微粒子(図 1にお ヽて原 料微粒子 13に対応)の基板入射角度は略 0度で、第 2のノズル(図 1においてノズル 12に対応)から噴射されるアルミナ微粒子(図 1において原料微粒子 14に対応)の基 板入射角度は略 30度に設定した。第 1、第 2のノズルのノズル開口は、共に 5nm X 0 . 3nmで、用いた基板は石英ガラスである。また、第 1、第 2のノズルら噴射されるガス 流量を、共に、 3lZminに設定した。このとき、第 1、第 2のノズル力も噴射されたアル ミナ微粒子の基板衝突速度は、共に 220mZsであり、得られた成膜速度は〜 5 m Zminであった。成膜中、前述した搬送ガス流量を保持し、膜厚が〜 30 m厚のァ ルミナ成膜体を形成した。  [0033] Alumina particles having an average particle diameter of 0.7 μm were used as raw material fine particles, and air was used as a carrier gas. The substrate and nozzle arrangement are substantially the same as those shown in FIG. The first nozzle (corresponding to the nozzle 11 in FIG. 1) force of the alumina fine particles (corresponding to the raw material fine particles 13 in FIG. 1) is also injected with a substrate incident angle of approximately 0 degrees, The substrate incident angle of alumina fine particles (corresponding to raw material fine particles 14 in FIG. 1) ejected from the nozzle (corresponding to nozzle 12 in FIG. 1) was set to approximately 30 degrees. The nozzle openings of the first and second nozzles are both 5 nm × 0.3 nm, and the substrate used is quartz glass. The gas flow rate injected from the first and second nozzles was both set to 3 lZmin. At this time, the substrate collision speed of the alumina fine particles into which the first and second nozzle forces were also injected was 220 mZs, and the obtained film formation speed was ˜5 mZmin. During film formation, the above-described carrier gas flow rate was maintained, and an aluminum film formation body having a film thickness of ˜30 m was formed.
[0034] なお、比較例として、第 1のノズル(図 1においてノズル 11に対応)から噴射されるァ ルミナ微粒子(図 1において原料微粒子 13に対応)のみによる成膜も試みたが、膜厚 力 S 15 mを超えた辺りから圧粉体の形成が認められ、 30 μ m厚の成膜体を形成す ることは出来なかった。 As a comparative example, the first nozzle (corresponding to nozzle 11 in FIG. 1) Although we attempted to form a film only with lumina fine particles (corresponding to raw material fine particle 13 in Fig. 1), formation of a green compact was observed from around the film thickness force S 15 m. It could not be formed.
実施例 2  Example 2
[0035] 実施例 1と同様の条件で〜 30 μ m厚のアルミナ成膜体を形成した。ただし、第 1の ノズル(図 1にお 、てノズル 11に対応)力も噴射される搬送ガス流量は、実施例 1と同 様の、 3lZminである力 本実施例においては、第 2のノズル(図 1においてノズル 12 に対応)から噴射される搬送ガスの流量を、 5lZminとした。このとき、第 2のノズルか ら噴射されたアルミナ微粒子の基板衝突速度は、 300mZsであり、得られた成膜速 度は〜 3 /z mZminであった。成膜中、前述した搬送ガス流量を保持して、〜30 m 厚のアルミナ成膜体を形成した。  [0035] Under the same conditions as in Example 1, an alumina film-forming body having a thickness of up to 30 μm was formed. However, the carrier gas flow rate at which the force of the first nozzle (corresponding to nozzle 11 in FIG. 1) is also injected is a force of 3 lZmin, as in Example 1. In this example, the second nozzle ( The flow rate of the carrier gas injected from the nozzle 12 in FIG. 1 was set to 5 lZmin. At this time, the substrate collision speed of the alumina fine particles injected from the second nozzle was 300 mZs, and the film formation speed obtained was ˜3 / z mZmin. During the film formation, the above-described carrier gas flow rate was maintained to form a 30 m thick alumina film.
実施例 3  Example 3
[0036] 実施例 2と同様の条件で〜 40 μ m厚のアルミナ成膜体を形成した。ただし、第 1の ノズル(図 1にお 、てノズル 11に対応)力も噴射される搬送ガス流量は、実施例 2と同 様の、 3lZminである力 本実施例においては、第 2のノズル(図 1においてノズル 12 に対応)から噴射される搬送ガス種を Heとして、その流量を 4lZminとした。このとき 、第 2のノズルから噴射されたアルミナ微粒子の基板衝突速度は、 450m/sであり、 アルミナ膜の堆積は認められなかった。  [0036] Under the same conditions as in Example 2, a 40 μm-thick alumina film was formed. However, the carrier gas flow rate at which the first nozzle (corresponding to nozzle 11 in FIG. 1) force is also injected is a force of 3 lZmin, as in Example 2. In this example, the second nozzle ( The carrier gas type injected from the nozzle 12 in FIG. 1 is He, and its flow rate is 4 lZmin. At this time, the substrate collision speed of the alumina fine particles injected from the second nozzle was 450 m / s, and no alumina film deposition was observed.
[0037] 本実施例においては、第 1のノズルからのアルミナ微粒子の噴射を連続的して行い つつ、第 2のノズルからのアルミナ微粒子の噴射を間歇的に行った。その噴射スキー ムを図 10に示す。すなわち、 2分経過する毎に、約 20秒間、第 2のノズルカゝらアルミ ナ微粒子を噴射する、と云うサイクルを複数回繰り返すことにより、〜40 /ζ πι厚のァ ルミナ微粒子を成膜した。  [0037] In this example, the alumina fine particles were ejected intermittently from the second nozzle while the alumina fine particles were continuously ejected from the first nozzle. Figure 10 shows the injection scheme. In other words, every two minutes, alumina fine particles having a thickness of ˜40 / ζ πι were formed by repeating a cycle of spraying alumina fine particles from the second nozzle cover for about 20 seconds. .
実施例 4  Example 4
[0038] 実施例 3とほぼ同様の条件で、〜30 μ m厚のアルミナ成膜体を形成した。ただし、 本実施例の場合、第 1及び第 2のノズル共に、そこからなされるアルミナ微粒子の噴 射を間歇的に行った。その噴射スキームを図 11に示す。すなわち、第 1のノズルから アルミナ微粒子を2分間噴射した後に噴射を停止し、その後、約 20秒間第 2のノズル 力もアルミナ微粒子を噴射する、と云うサイクルを繰り返して〜 30 m厚のアルミナ成 膜体を形成した。 [0038] Under approximately the same conditions as in Example 3, an alumina film-forming body having a thickness of -30 μm was formed. However, in the case of the present example, both the first and second nozzles were intermittently sprayed with alumina fine particles formed therefrom. Figure 11 shows the injection scheme. In other words, after the alumina fine particles are injected from the first nozzle for 2 minutes, the injection is stopped, and then the second nozzle for about 20 seconds. By repeating the cycle of spraying alumina fine particles, a 30 m thick alumina film was formed.
実施例 5  Example 5
[0039] 原料微粒子として平均粒径が 0. 7 μ mのアルミナ粒子を用い、搬送ガスとして空気 を用いて成膜した。基板とノズル配置は、図 2に示した構成と略同一である。第 1のノ ズル(図 2においてノズル 21に対応)から噴射されるアルミナ微粒子(図 2において原 料微粒子 24に対応)の基板入射角度は略 0度で、第 2のノズル(図 2にお 、てノズル 22に対応)から噴射されるアルミナ微粒子(図 2において原料微粒子 25に対応)の基 板入射角度は略 30度で、第 3のノズル(図 2においてノズル 23に対応)から噴射され るアルミナ微粒子(図 2において原料微粒子 26に対応)の基板入射角度は略 30度 に設定した。第 2及び第 3のノズルカゝら噴射されるアルミナ微粒子の基板入射角度は 、その絶対値が略同一で符号が正負で異なる(すなわち、角度は略同一であるが入 射方向が異なる)。第 1、第 2及び第 3のノズルのノズル開口は、共に 5nm X 0. 3nm で、用いた基板は石英ガラスである。また、第 1、第 2及び第 3のノズルら噴射されるガ ス流量を、共に、 3lZminに設定した。このとき、第 1、第 2及び第 3のノズルから噴射 されたアルミナ微粒子の基板衝突速度は、共に 220mZsであり、得られた成膜速度 は〜 7 mZminであった。成膜中、前述した搬送ガス流量を保持し、膜厚が〜 30 μ m厚のアルミナ成膜体を形成した。  [0039] Alumina particles having an average particle size of 0.7 μm were used as raw material fine particles, and air was used as a carrier gas. The substrate and nozzle arrangement are substantially the same as those shown in FIG. The substrate incident angle of the alumina fine particles (corresponding to the raw material fine particles 24 in FIG. 2) ejected from the first nozzle (corresponding to the nozzle 21 in FIG. 2) is approximately 0 degrees, and the second nozzle (in FIG. 2). The substrate incident angle of alumina fine particles (corresponding to raw material fine particles 25 in Fig. 2) injected from the nozzle 22) is approximately 30 degrees, and is injected from the third nozzle (corresponding to nozzle 23 in Fig. 2). The substrate incident angle of alumina fine particles (corresponding to raw material fine particles 26 in FIG. 2) was set to approximately 30 degrees. The substrate incident angles of the alumina fine particles injected from the second and third nozzle caps have substantially the same absolute values and different signs (ie, the angles are substantially the same but the incident directions are different). The nozzle openings of the first, second, and third nozzles are all 5 nm × 0.3 nm, and the substrate used is quartz glass. In addition, the gas flow rates injected from the first, second and third nozzles were both set to 3 lZmin. At this time, the substrate collision speed of the alumina fine particles injected from the first, second, and third nozzles was 220 mZs, and the obtained film formation speed was ˜7 mZmin. During the film formation, the carrier gas flow rate described above was maintained, and an alumina film body having a thickness of ˜30 μm was formed.
実施例 6  Example 6
[0040] 原料微粒子として平均粒径が 0. 7 μ mのアルミナ粒子を用い、搬送ガスとして空気 を用いて成膜した。基板とノズル配置は、図 3に示した構成と略同一である。第 1のノ ズル(図 3においてノズル 31に対応)から噴射されるアルミナ微粒子(図 3において原 料微粒子 33に対応)の基板入射角度は略 30度で、第 2のノズル(図 3においてノズ ル 32に対応)から噴射されるアルミナ微粒子(図 3にお ヽて原料微粒子 34に対応)の 基板入射角度は略 30度に設定した。第 1及び第 2のノズルカゝら噴射されるアルミナ 微粒子の基板入射角度は、その絶対値が略同一で符号が正負で異なる(すなわち、 角度は略同一であるが入射方向が異なる)。第 1、第 2のノズルのノズル開口は、共に 5nm X 0. 3nmで、用いた基板は石英ガラスである。また、第 1、第 2のノズルら噴射 されるガス流量を、共に、 3lZminに設定した。このとき、第 1、第 2のノズル力も噴射 されたアルミナ微粒子の基板衝突速度は、共に 220mZsであり、得られた成膜速度 は〜 3 mZminであった。成膜中、前述した搬送ガス流量を保持し、膜厚が〜 30 μ m厚のアルミナ成膜体を形成した。 [0040] Alumina particles having an average particle diameter of 0.7 μm were used as raw material fine particles, and air was used as a carrier gas. The substrate and nozzle arrangement are substantially the same as those shown in FIG. The substrate incident angle of the alumina fine particles (corresponding to the raw material fine particles 33 in FIG. 3) ejected from the first nozzle (corresponding to the nozzle 31 in FIG. 3) is about 30 degrees, and the second nozzle (nozzle in FIG. 3). The substrate incident angle of alumina fine particles (corresponding to raw material fine particles 34 in Fig. 3) ejected from (corresponding to 32) was set to approximately 30 degrees. The substrate incident angles of the alumina fine particles ejected from the first and second nozzles are substantially the same in absolute value and different in sign (ie, the angles are substantially the same but the incident directions are different). The nozzle openings of the first and second nozzles are both 5 nm × 0.3 nm, and the substrate used is quartz glass. Also, the first and second nozzles spray Both gas flow rates were set to 3 lZmin. At this time, the substrate collision speed of the alumina fine particles to which the first and second nozzle forces were also injected was 220 mZs, and the obtained film formation speed was ˜3 mZmin. During the film formation, the carrier gas flow rate described above was maintained, and an alumina film body having a thickness of ˜30 μm was formed.
[0041] 以上、実施例を用いて、本発明について詳細に説明したが、本発明は前述した搬 送ガス種、流量、搬送ガスの噴射スキーム、あるいは原料微粒子の材料、更にはノズ ルの数、原料微粒子の基板入射角度等に限定されるものではな 、。 [0041] Although the present invention has been described in detail with reference to the examples, the present invention is not limited to the above-described transport gas type, flow rate, transport gas injection scheme, or raw material fine particle material, and the number of nozzles. It is not limited to the substrate incident angle of the raw material fine particles.
産業上の利用可能性  Industrial applicability
[0042] 本発明により成る成膜方法は、 AD法を用いて、膜厚の厚!ヽ成膜体を形成する上で 有用であり、係る成膜体を用いた部品、材料に係る産業分野において利用可能であ る。 [0042] The film forming method according to the present invention is useful for forming a thick film-forming body using the AD method, and industrial fields relating to parts and materials using the film-forming body. It is available in
図面の簡単な説明  Brief Description of Drawings
[0043] [図 1]基板位置とノズルとの関係を示す模式図である。 FIG. 1 is a schematic diagram showing the relationship between a substrate position and a nozzle.
[図 2]基板位置とノズルとの関係を示す模式図である。  FIG. 2 is a schematic diagram showing a relationship between a substrate position and a nozzle.
[図 3]基板位置とノズルとの関係を示す模式図である。  FIG. 3 is a schematic diagram showing a relationship between a substrate position and a nozzle.
[図 4]基板入射角度を説明するための模式図である。  FIG. 4 is a schematic diagram for explaining a substrate incident angle.
[図 5]成膜体の膜厚と基板入射角度との関係を示す図である。  FIG. 5 is a diagram showing the relationship between the film thickness of a film-formed body and the substrate incident angle.
[図 6]膜厚減少量と基板入射角度との関係を示す図である。  FIG. 6 is a diagram showing the relationship between the film thickness reduction amount and the substrate incident angle.
[図 7]AD法を用いた成膜装置の基本構成を示した概略図である。  FIG. 7 is a schematic diagram showing a basic configuration of a film forming apparatus using the AD method.
[図 8]AD法で形成した試料の断面組織を模式的に示した概略図である。  FIG. 8 is a schematic view schematically showing a cross-sectional structure of a sample formed by the AD method.
[図 9]原料微粒子の基板衝突によって発生する圧力と成膜体層及び圧粉体層に発 生する歪みとの関係を模式的に示した図である  FIG. 9 is a diagram schematically showing the relationship between the pressure generated by substrate collision of raw material fine particles and the strain generated in the film formation layer and the green compact layer.
[図 10]搬送ガスの噴射スキームを示す図である。  FIG. 10 shows a carrier gas injection scheme.
[図 11]搬送ガスの噴射スキームを示す図である。  FIG. 11 shows a carrier gas injection scheme.
符号の説明  Explanation of symbols
[0044] 11 第 1のノズル [0044] 11 First nozzle
12 第 2のノズル  12 Second nozzle
13 第 1のノズル力 噴射される原料微粒子 第 2のノズル力も噴射される原料微粒子 第 1のノズル 13 First nozzle force Raw material particles to be injected Raw material particles that are also injected with the second nozzle force First nozzle
第 2のノズル Second nozzle
第 3のノズル 3rd nozzle
第 1のノズル力も噴射される原料微粒子 第 2のノズル力 噴射される原料微粒子 第 2のノズル力 噴射される原料微粒子 第 3のノズル力 噴射される原料微粒子 第 1のノズル Raw material fine particles that are also injected with the first nozzle force Second nozzle force Raw material fine particles that are injected Second nozzle force Raw material fine particles that are injected Third nozzle force Raw material fine particles that are injected First nozzle
第 2のノズル Second nozzle
第 1のノズル力 噴射される原料微粒子 第 2のノズル力も噴射される原料微粒子 基板 1st nozzle force Raw material fine particles to be injected 2nd Nozzle force raw material fine particles to be injected Substrate
成膜された膜 Deposited film
ノズル Nozzle
ノズル開口咅 Nozzle opening
ノズル開口部 44が噴射された原料微粒子 成膜体の形状 Raw material fine particles sprayed from nozzle opening 44 Shape of film formation
等膜厚線 Equal film thickness
被成膜基板 Deposition substrate
XYステージ XY stage
ノズル Nozzle
成膜チャンバ Deposition chamber
分級器 Classifier
エアロゾル発生器 Aerosol generator
高圧ガス供給源 High pressure gas supply source
マスフロー制御器 Mass flow controller
パイプライン 81 基板 pipeline 81 board
82 成膜体層 82 Deposition layer
83 圧粉体層 83 Green compact layer
P 最も膜厚の厚い点を基板に投影した点  P Point where the thickest point is projected onto the substrate

Claims

請求の範囲 The scope of the claims
[1] 原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子 を並列配置された複数のノズルを通して加速して被堆積基板表面に向けて噴射せし めることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であつ て、  [1] Raw material fine particles are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a plurality of nozzles arranged in parallel and sprayed toward the surface of the substrate to be deposited. An aerosol deposition method for forming a film-forming body in
該複数のノズルから加速噴射された原料微粒子が、該被堆積基板の被堆積表面 の略同一箇所に入射し、かつ各ノズルから加速噴射された原料微粒子の該被堆積 基板への入射方向が異なると共に、該複数のノズルの少なくとも一から加速噴射され た原料微粒子の基板入射角度が、エッチング効果が顕在化する角度に設定されて いることを特徴とするエアロゾルデポジション法による成膜体の製造方法。  The raw material particles accelerated and ejected from the plurality of nozzles enter substantially the same location on the surface of the substrate to be deposited, and the incident directions of the raw material particles accelerated and ejected from the nozzles on the substrate to be deposited are different. In addition, the substrate incident angle of the raw material fine particles accelerated and ejected from at least one of the plurality of nozzles is set to an angle at which the etching effect becomes apparent. .
[2] 原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子 を並列配列された複数のノズルを通して加速して被堆積基板表面に向けて噴出せし めることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であつ て、 [2] The raw material fine particles are mixed with the carrier gas to be aerosolized, and together with the carrier gas, the raw material fine particles are accelerated through a plurality of nozzles arranged in parallel and ejected toward the surface of the substrate to be deposited. An aerosol deposition method for forming a film-forming body in
該複数のノズルから加速噴射された原料微粒子が、該被堆積基板の被堆積表面 の略同一箇所に入射し、かつ各ノズルから加速噴射された原料微粒子の該被堆積 基板への入射方向が異なると共に、該複数のノズルの少なくとも一から加速噴射され た原料微粒子の基板入射角度が、エッチング効果のみが発現する角度に設定され ていることを特徴とするエアロゾルデポジション法による成膜体の製造方法。  The raw material particles accelerated and ejected from the plurality of nozzles enter substantially the same location on the surface of the substrate to be deposited, and the incident directions of the raw material particles accelerated and ejected from the nozzles on the substrate to be deposited are different. In addition, the substrate incidence angle of the raw material fine particles accelerated and ejected from at least one of the plurality of nozzles is set to an angle at which only the etching effect appears, and the method for producing a film-forming body by the aerosol deposition method .
[3] 該複数のノズルの少なくとも一力ゝら噴射される、該エアロゾル化された原料微粒子 を含む搬送ガスの流量、若しくは搬送ガス中の原料微粒子の密度が、他のノズルか ら噴射される該エアロゾルィ匕された原料微粒子を含む搬送ガスの流量、若しくは搬 送ガス中の原料微粒子の濃度と異なることを特徴とする請求項 1若しくは 2に記載の エアロゾルデポジション法による成膜体の製造方法。 [3] The flow rate of the carrier gas containing the aerosolized raw material fine particles or the density of the raw material fine particles in the carrier gas injected from at least one of the plurality of nozzles is injected from other nozzles. 3. The production of a film-forming body by the aerosol deposition method according to claim 1, wherein the flow rate of the carrier gas containing the aerosolized raw material fine particles is different from the concentration of the raw material fine particles in the carrier gas. Method.
[4] 該複数のノズルの少なくとも一力ゝら間欠的に該エアロゾル化された原料微粒子を含 む搬送ガスが噴射されることを特徴とする請求項 1乃至 3のいずれかに記載のエア口 ゾルデポジション法による成膜体の製造方法。  [4] The air port according to any one of claims 1 to 3, wherein the carrier gas containing the aerosolized raw material fine particles is intermittently ejected at least once by the plurality of nozzles. A method for producing a film-formed body by a sol deposition method.
[5] 該複数のノズルから加速噴射された原料微粒子の該被堆積基板への入射方向の 一と該被堆積基板の被堆積表面とのなす角度が略 90度であることを特徴とする請求 項 1乃至 4のいずれかに記載のエアロゾルデポジション法による成膜体の形成方法。 該複数のノズルから加速噴射された原料微粒子の該被堆積基板への入射方向と 該被堆積基板の被堆積表面とのなす角度の少なくとも一が略同一で、かつ該角度が 90度以下であることを特徴とする請求項 1乃至 4のいずれかに記載のエアロゾルデ ポジション法による成膜体の製造方法。 [5] The direction of incidence of the raw material fine particles sprayed from the plurality of nozzles on the deposition target substrate 5. The method of forming a film-forming body by the aerosol deposition method according to claim 1, wherein an angle between the surface of the substrate to be deposited and a deposition surface of the deposition substrate is approximately 90 degrees. At least one of the incident direction of the raw material fine particles acceleratedly jetted from the plurality of nozzles to the deposition target substrate and the deposition target surface of the deposition target substrate is substantially the same, and the angle is 90 degrees or less. The method for producing a film-forming body by the aerosol deposition method according to any one of claims 1 to 4.
PCT/JP2007/054778 2006-03-13 2007-03-12 Method for fabricating film-formed body by aerosol deposition WO2007105670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006068424A JP2009132945A (en) 2006-03-13 2006-03-13 Method for forming film-formed body by aerosol deposition process
JP2006-068424 2006-03-13

Publications (1)

Publication Number Publication Date
WO2007105670A1 true WO2007105670A1 (en) 2007-09-20

Family

ID=38509491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054778 WO2007105670A1 (en) 2006-03-13 2007-03-12 Method for fabricating film-formed body by aerosol deposition

Country Status (3)

Country Link
JP (1) JP2009132945A (en)
TW (1) TW200801237A (en)
WO (1) WO2007105670A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545481A (en) * 2015-12-18 2017-06-21 Rolls Royce Plc An assembly and a method of using the assembly
JP2019199627A (en) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 Surface treatment method and surface treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7204276B2 (en) * 2018-12-06 2023-01-16 エルジー・ケム・リミテッド DISCHARGED APPARATUS, FORMING APPARATUS, AND METHOD FOR MANUFACTURING MOLDED BODY

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001038274A (en) * 1999-05-21 2001-02-13 Agency Of Ind Science & Technol Method for leveled film formation of superfine particle material
JP2005076104A (en) * 2003-09-02 2005-03-24 Toto Ltd Manufacturing device of composite structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001003180A (en) * 1999-04-23 2001-01-09 Agency Of Ind Science & Technol Low temperature forming method of superfine particle molding of brittle material
JP2001038274A (en) * 1999-05-21 2001-02-13 Agency Of Ind Science & Technol Method for leveled film formation of superfine particle material
JP2005076104A (en) * 2003-09-02 2005-03-24 Toto Ltd Manufacturing device of composite structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545481A (en) * 2015-12-18 2017-06-21 Rolls Royce Plc An assembly and a method of using the assembly
EP3181237A1 (en) * 2015-12-18 2017-06-21 Rolls-Royce plc A cold spray nozzle assembly and a method of depositing a powder material onto a surface of a component using the assembly
US10155236B2 (en) 2015-12-18 2018-12-18 Rolls-Royce Plc Cold spray nozzle assembly and a method of depositing a powder material onto a surface of a component using the assembly
JP2019199627A (en) * 2018-05-14 2019-11-21 トヨタ自動車株式会社 Surface treatment method and surface treatment apparatus
JP6992673B2 (en) 2018-05-14 2022-01-13 トヨタ自動車株式会社 Surface treatment method and surface treatment equipment

Also Published As

Publication number Publication date
JP2009132945A (en) 2009-06-18
TW200801237A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
KR100966132B1 (en) Plasma-Resistant Ceramic Coated Substrate
KR101257177B1 (en) Method for forming zirconia film
KR101110371B1 (en) Plasma resistant crystal ceramic coating film and manufacturing method of the same
US9180519B2 (en) Three-dimensional nanostructures and method for fabricating the same
CN1837406A (en) Applying bond coat to engine components using cold spray
EP3382059B1 (en) Method for producing laminate
Lee et al. Thin film coatings of WO 3 by cold gas dynamic spray: A technical note
WO2007105670A1 (en) Method for fabricating film-formed body by aerosol deposition
KR20100011586A (en) Method of forming ceramic coating layer having the resistant plasma
JP5649026B2 (en) Method for forming zirconia film
JP2008111154A (en) Method for forming coating film
JP2003213451A (en) Method of fabricating composite structure
JP2005279953A (en) Ceramic structure and its manufacturing method
WO2007105674A1 (en) Method for fabricating film-formed body by aerosol deposition
JP2007246943A (en) Method for making body having formed from brittle material by aerosol deposition method
JP5656036B2 (en) Composite structure
JP2000313970A (en) Formation of ceramic thin film layer
KR101336755B1 (en) Thin film coating method of hard metal
JP5066682B2 (en) Low temperature molding method for brittle material fine particle film
JP5649023B2 (en) Method for forming zirconia film
JP5649028B2 (en) Method for forming zirconia film
JP5561743B2 (en) Brittle material fine particle film
JP2008069399A (en) Film deposition method
Park et al. Microstructural features correlated with the electrical properties and plasticity-based deposition of silver particles through the vacuum kinetic spray process
KR20080065079A (en) Synthesis of thin film of tube type materials and products thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP