WO2007105330A1 - Glow plasma generator and method for generating glow plasma - Google Patents

Glow plasma generator and method for generating glow plasma Download PDF

Info

Publication number
WO2007105330A1
WO2007105330A1 PCT/JP2006/317652 JP2006317652W WO2007105330A1 WO 2007105330 A1 WO2007105330 A1 WO 2007105330A1 JP 2006317652 W JP2006317652 W JP 2006317652W WO 2007105330 A1 WO2007105330 A1 WO 2007105330A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
container
glow plasma
distance
liquid
Prior art date
Application number
PCT/JP2006/317652
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuhisa Kitano
Hironori Aoki
Satoshi Hamaguchi
Original Assignee
Juridical Foundation Osaka Industrial Promotion Organization
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juridical Foundation Osaka Industrial Promotion Organization, Osaka University filed Critical Juridical Foundation Osaka Industrial Promotion Organization
Priority to JP2008504972A priority Critical patent/JP4590528B2/en
Publication of WO2007105330A1 publication Critical patent/WO2007105330A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/2465Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/15Ambient air; Ozonisers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • H05H2245/36Sterilisation of objects, liquids, volumes or surfaces

Definitions

  • the present invention relates to a glow plasma generating apparatus and a glow plasma generating method that are suitably used for plasma polymerization, sterilization, water purification, and the like. More specifically, the present invention relates to a liquid surface or a liquid in a liquid. TECHNICAL FIELD The present invention relates to an apparatus for generating a plasma and a method for generating a glow plasma.
  • JP-T-2005-529455, JP-A-2004-268003, JP-A-2005-21869, etc. disclose an apparatus for generating plasma in a liquid.
  • the device described in JP-T-2005-529455 is a device that inserts a pair of metal electrodes into an electrically conductive liquid and generates plasma in the bubble region using the gas generated by electrolysis as an atmospheric gas. It is.
  • an electrically conductive aqueous solution is electrolyzed using a high-voltage DC power source to generate hydrogen and oxygen bubbles on the electrode surface. Since bubbles have a higher resistance than aqueous solutions, a high voltage is divided into the bubbles so that discharge occurs in the bubble region.
  • the technical problem to be solved by the present invention is to solve the above-mentioned problems by making globular plasma steady in a gas phase in contact with the liquid phase in a state where the liquid and the atmospheric gas are mixed. It is an object of the present invention to provide a glow plasma generating apparatus and a globe plasma generating method that can be generated in an automatic manner.
  • the present invention provides a glow plasma generating apparatus having the following configuration.
  • a glow plasma generator comprising a storage unit configured to store an atmospheric gas, a first electrode, and a second electrode,
  • At least a part of the storage part is a dielectric part made of a dielectric
  • a glow plasma generating apparatus in which a distance between the first electrode side and the second electrode side of the at least part of the atmospheric gas is partially different.
  • the dielectric part of the storage part has a first part and a second part.
  • the first electrode is provided so as to cover at least a part of the first portion of the storage portion
  • the second electrode is provided so as to cover at least a part of the second portion of the storage portion
  • the at least part of the atmospheric gas, the first part of the storage part and the second part are interposed,
  • a glow plasma generator according to a first aspect is provided, wherein the distance between the first portion of the reservoir and the second portion of the reservoir is partially different.
  • the first electrode is provided so as to cover the dielectric portion of the storage portion
  • the at least part of the atmospheric gas and the dielectric portion of the storage portion are interposed,
  • a glow plasma generator according to a first aspect is provided in which a distance between the dielectric portion of the reservoir and the second electrode side is partially different.
  • the storage section has a partition wall that defines an interior for storing the atmospheric gas and an exterior that does not store the atmospheric gas.
  • the first electrode is provided on the outer side of the partition wall of the storage part, and the second electrode is provided on the inner side of the partition wall of the storage part.
  • a plasma generator is provided.
  • the glow plasma generating apparatus according to the fourth aspect, wherein the second electrode is provided at a position eccentric from the inner center of the reservoir. .
  • the glove plasma generating device according to the fourth aspect, wherein the second electrode is spiral.
  • the glow plasma generating apparatus according to the fourth aspect, wherein the second electrode comes into contact with an inner side surface of the partition wall of the storage section.
  • the distance between the first electrode side and the second electrode side is different in part so as to be distributed discretely.
  • No glow plasma Provide raw equipment.
  • the storage section is configured to store a liquid.
  • the fourth aspect of the present invention provides a glow plasma generator.
  • the glow plasma generator comprises:
  • a storage portion configured to store an atmospheric gas, a first electrode, and a second electrode, wherein at least a part of the storage portion is a dielectric portion formed of a dielectric;
  • the distance between the first electrode side and the second electrode side of the at least part of the atmospheric gas is partially different
  • the glow plasma generation method includes:
  • a plasma generation method is provided.
  • At least a part of the atmospheric gas and the at least a part of the storage part are interposed between the first electrode and the second electrode.
  • the distance between the first electrode side and the second electrode side in the region where at least a part of the atmospheric gas intervenes is partially different.
  • an appropriate interval that can maintain the glow plasma in accordance with various conditions (such as pressure) in the reservoir is automatically selected, and the first electrode side and the second electrode are selected. Dielectric barrier discharge occurs between the two sides. As a result, it is possible to set the conditions in the storage section within a wide range.
  • the first part and the second part of the storage part are dielectrics, and the distance between the first part of the storage part and the second part of the storage part is partially different. The same effect can be obtained in the present embodiment (both-side barrier configuration).
  • the internal electrode and the external electrode provided on the outer peripheral surface of the container are used with the container made of the dielectric material interposed therebetween, and the internal electrode of the container provided with the external electrode is used.
  • a dielectric barrier discharge is generated between the side surface and the internal electrode.
  • the interval between the inner electrode and the inner surface of the portion of the container where the outer electrode is provided is configured to be partially different. Therefore, it is possible to generate and maintain plasma by automatically selecting a region where appropriate glow plasma can be maintained according to various conditions such as pressure in the container. That is, as the pressure increases, the plasma is maintained in a region having a short interval.
  • the glow plasma can be maintained regardless of the atmospheric pressure state in the container, the pressure in the container can be set in a wide range.
  • a container made of a dielectric material has two functions of a pressure container and a dielectric barrier, and the structure can be simplified.
  • the reservoir which is a dielectric material existing between the two electrodes, causes the high-frequency discharge to be streamered. It functions as a direct current blocking device to maintain a glow plasma without growing into a shape. Therefore, it is easy to generate and maintain the glow plasma on a regular basis, and it is possible to generate the glow plasma over a long period of time.
  • the glow plasma can be generated and maintained in a steady and stable state in a state where the liquid and the atmospheric gas are stored in the storage section, the liquid and the plasma are prolonged. Can be contacted over time. Therefore, when used as a liquid processing apparatus, the efficiency can be increased.
  • the electrode area can be increased, and plasma can be generated over a wide range. Also, by configuring the storage part in a cylindrical shape, the distribution of the distance between the electrodes with the external electrodes provided in the periphery becomes substantially uniform, and the condition range for maintaining plasma generation can be widened.
  • the distance between the internal electrodes and the external electrodes can be made extremely small, and the range of the distance between the electrodes can be widened. That's right.
  • a usable atmospheric gas can be freely selected by using an apparatus that supplies the atmospheric gas into the storage unit. It becomes possible to select appropriately.
  • the atmospheric pressure in the storage part is made lower than the vapor pressure of the liquid stored in the storage part, the liquid vapor in the storage part can be used as the atmospheric gas, so Impurities are not mixed, and the configuration of the apparatus can be simplified.
  • the second electrode is formed in a spiral shape, in addition to the above effects, bubbles of atmospheric gas are entangled in the spiral second electrode, and a gas phase tends to exist around the second electrode, Plasma can be generated with higher efficiency.
  • the electrode area can be increased, and plasma can be generated and maintained in a wider range.
  • FIG. 1 is a diagram showing a schematic configuration of a glow plasma generating apparatus that works on the first embodiment of the present invention
  • FIG. 2A is a diagram showing a configuration of one chamber member used in the glow plasma generator of FIG. Is a schematic diagram showing
  • FIG. 2B is a cross-sectional view taken along the line ⁇ in FIG. 2A.
  • FIG. 3A is a diagram showing a modification of the arrangement relationship between the internal electrode and the external electrode
  • FIG. 3B is a diagram showing a modification of the arrangement relationship between the internal electrode and the external electrode
  • FIG. 4 is a diagram showing a configuration of a rectifier used for rectification adjustment.
  • FIG. 5 is a view showing another embodiment of a chamber member used in the glow plasma generator of FIG.
  • FIG. 6 is a cross-sectional view taken along line VI—VI in FIG.
  • FIG. 7 is a view showing still another embodiment of a chamber member used in the glow plasma generator of FIG.
  • FIG. 8 is a partially enlarged cross-sectional view of FIG.
  • FIG. 9 is a graph showing the relationship between time and concentration as an experimental result when methylene blue was decomposed using the glow plasma generator according to this embodiment.
  • FIG. 10A is a schematic view showing a modified example of one member of a chamber used in the glow plasma generator of FIG.
  • FIG. 10B is a schematic diagram showing a further modification of a chamber member used in the glow plasma generator of FIG.
  • FIG. 10C is a schematic diagram showing a further modification of a chamber member used in the glow plasma generator of FIG.
  • FIG. 10D is a schematic view showing a further modification of one member of the chamber used in the glow plasma generator of FIG.
  • FIG. 11A is a schematic view showing a further modification of a chamber member used in the glow plasma generator of FIG.
  • FIG. 11B is a schematic view showing a further modification of a chamber member used in the glow plasma generator of FIG.
  • FIG. 12 is a schematic view showing a further modification of a chamber member used in the glow plasma generator of FIG.
  • FIG. 1 is a diagram showing a schematic configuration of a glow plasma generator according to a first embodiment of the present invention.
  • the glow plasma generator 1 includes a chamber member 2 and a voltage applying device 3, and an atmosphere gas tank 4, which is an example of a gas atmosphere generation device for supplying the atmosphere gas stored in the chamber member 2.
  • the atmospheric gas tank 4 and the liquid tank 5 are connected to the chamber member 2 through a valve 8 so as to be openable and closable, and can supply atmospheric gas and liquid into the chamber member as necessary.
  • the chamber member 2 may include a discharge port that can discharge the liquid stored in the inside. That is, while supplying the liquid from the liquid tank 5 and discharging the discharge loca liquid, the plasma may be generated while continuously supplying and discharging the liquid.
  • the chamber member 2 has a cylindrical container 10 made of a dielectric material as an example of a reservoir.
  • a glass member having a diameter of 40 mm is used.
  • the container 10 used as a member of the chamber is entirely made of glass, but may be configured such that a dielectric material is partially provided. For example, only a portion where an external electrode 12 described later is provided can be used as a dielectric material.
  • the container 10 may have a prismatic shape in addition to the cylindrical shape.
  • the container 10 has a structure that is substantially sealed by an upper wall 13a and a lower wall 13b positioned above and below the peripheral wall 14.
  • the upper wall 13a and the lower wall 13b may be configured by members such as lids provided as separate members on the upper and lower sides of the container, or may be configured integrally with the container 10.
  • the upper wall 13a and the lower wall 13b are not necessarily made of a dielectric material. For example, a metal or the like can be used.
  • Liquid and atmospheric gas can be stored inside the sealed container.
  • Liquid and atmosphere The gas gas storage ratio is not particularly limited, but it is preferable to store about half of the capacity of the container and to use half of the gas as the atmospheric gas.
  • the liquid 100 stored in the chamber member 2 is not particularly limited, and can store the liquid to be processed when the glow plasma generator is used in a liquid processing apparatus or the like as will be described later. As will be described later, since the liquid stores the target liquid used for liquid processing, for example, when the liquid processing is not performed, that is, when only glow plasma is generated. Need not store liquid in the container. It should be noted that, without storing liquid, as described later, according to the glow plasma generator that works on this embodiment, it is possible to generate and maintain a steady globe plasma!
  • the atmospheric gas 101 can be subjected to a plasma process using various gases such as a monomer gas and a reactive gas that are not particularly limited.
  • gases such as a monomer gas and a reactive gas that are not particularly limited.
  • noble gases such as helium and argon have a particularly high quasi-stable excited state compared to other molecular gases, the mixed gas can be efficiently dissociated and the subsequent chemical reaction can be easily caused.
  • water vapor generated by boiling a liquid (for example, water) stored by lowering the pressure in the container can be used as the atmospheric gas.
  • the atmospheric gas is supplied from the liquid tank, it is not necessary to provide a separate fuel tank.
  • the chamber member 2 is provided with an internal electrode 11 as an example of a second electrode arranged so as to penetrate the upper wall 13a and the lower wall 13b.
  • the internal electrode has a circular cross-section and is composed of straight wire rods!
  • the material of the internal electrode is not particularly limited as long as it is a metal, and can be appropriately selected according to the application. For example, tanta- sten or stainless steel that is relatively hard and resistant to corrosion can be used. Further, a material having a large secondary electron emission coefficient may be applied to the surface.
  • the internal electrode 11 is provided at a position eccentric to the central axis of the container so as to be parallel to the central axis.
  • the distance in the height direction of the container 10 between the internal electrode and the inside of the peripheral wall 14 of the container 10 is the same regardless of the position in the extending direction of the internal electrode 11.
  • the distance in the circumferential direction between the internal electrode and the peripheral wall of the container 10 varies depending on the circumferential direction around the internal electrode.
  • a stainless steel wire
  • the electrode 1 1 By disposing the internal electrode 1 1 in contact with the inner surface of the peripheral wall 14 of the container, the electrode The range of the distance can be widened, and the discharge path can be made very short to make it easy to generate globe plasma even at high pressure.
  • an external electrode 12 as an example of a first electrode is provided on the outer surface of the peripheral wall 14 of the container 10.
  • the external electrode 12 is a plate-like electrode provided along the outer peripheral surface of the peripheral wall 14.
  • the container is provided in an intermediate part in the height direction of the container and in a part of the peripheral wall 14 in the circumferential direction over a half circumference.
  • the external electrode is partially provided, it is preferable that at least a part of the electrode is arranged so as to be higher than the liquid level of the liquid stored in the container 10.
  • the external electrode may be provided over the entire circumference of the peripheral wall 14 in the circumferential direction, or may be provided over the entire height direction of the container 10.
  • FIG. 2B is a cross-sectional view taken along line ⁇ - ⁇ in FIG. 2A.
  • the external electrode 12 covers a part (dielectric part) of the container 10. Between the external electrode 12 (first electrode) and the internal electrode 11 (second electrode), at least a part of the atmospheric gas and at least a part of the container 10 (reservoir) are interposed.
  • the internal electrode 11 is disposed so as to be positioned near the end of the external electrode 12.
  • the distance between the electrodes is changed from a very short distance (closely in the shortest state) as shown by symbol A to a long distance (maximum at maximum) as shown by symbol B.
  • Various electrode distances can also be realized, up to approximately the diameter of the container 10).
  • a steady glow plasma can be generated and maintained under various conditions as described later.
  • the interelectrode distance in the present embodiment refers to the distance between the internal electrode 11 and the inner side surface of the peripheral wall of the container 10 (at least a part of the atmospheric gas) rather than the distance between the internal electrode and the external electrode. It is essential to mean the distance between the outer electrode 12 side and the inner electrode 11 side of the existing region. Details will be described later.
  • the glow plasma generator that works on the first embodiment of the present invention has been described with reference to FIGS. 1, 2A, and 2B.
  • the container 10 corresponds to the “reservoir”, and the dielectric portion of the container 10 corresponds to the “dielectric portion of the reservoir”.
  • the external electrode 12 corresponds to the “first electrode”, and the internal electrode 11 corresponds to the “second electrode”. Further, the distance between the side of the external electrode 12 and the side of the internal electrode 11 (symbol A, symbol B shown in FIG. 2B) of at least a part of the atmospheric gas is partially different.
  • the glow plasma generator of the first embodiment of the present invention is not limited to the contact between the external electrode 12 and the dielectric portion of the container 10. Between the external electrode (first electrode) and the internal electrode (second electrode), at least a part of the atmospheric gas and the dielectric part of the container 10 (reservoir) are interposed. As long as the distance between the first electrode side and the second electrode side is partially different, the external electrode 12 and the induction portion of the container 10 may be non-contact.
  • the container 10 is a dielectric. As long as at least a part of the atmospheric gas and at least a part of the container 10 are interposed between the external electrode and the internal electrode, at least a part of the container 10 may be a dielectric part.
  • FIG. 3A and FIG. 3B show a modification of the arrangement relationship between the internal electrode and the external electrode.
  • the external electrode 12 is arranged over the entire circumference of the container 10 and two internal electrodes 11 are used.
  • the range of the distance between the electrodes can be widened, but the surface area ratio between the internal electrode and the external electrode is greatly different, so that a plurality of internal electrodes are used and a large number of discharge paths are secured.
  • the external electrode is provided about half a circumference with respect to the circumferential direction of the container 10, but the internal electrode 11 is located in the circumferential intermediate portion of the external electrode 12.
  • the range of the distance between the electrodes cannot be widened, but it is possible to take discharge paths that are separated by the same distance between the electrodes in various directions with respect to the internal electrodes, thereby generating more plasma. be able to.
  • the voltage application device 3 is a power source 3 for supplying high frequency power to the internal electrode 11 and the external electrode 12.
  • 13.56 MHz is used because of the usable frequency, and high frequency power of 20-100 W and 1000 V is used.
  • the frequency used as a high-frequency power supply is preferably about 10 kHz to 100 MHz, and if it deviates significantly from these ranges, it may easily adversely affect the generation of steady glow discharge. .
  • the glow plasma generator 1 which is effective in this embodiment can also generate glow plasma in a state where the liquid phase and the gas phase coexist, and the water content of the liquid phase can be generated. Since the load inductance of the high frequency power supply changes due to the influence, it is preferable to perform rectification adjustment.
  • Fig. 4 shows the configuration of a rectifier used for rectification adjustment.
  • the matching is V ⁇ , all energy is not consumed by the load, but is reflected and returned to the high frequency power supply 30. This is not only inefficient in energy but can also lead to destruction of the power supply.
  • a reactance component of the load can be obtained by inserting a matching box that also includes lossless circuit element force, such as variable capacity capacitors 33, 34 and variable capacity coil 32, between the high frequency power supply and the load. Is canceled and impedance matching is performed.
  • the output terminal 36 for the matching box force is connected to the electrode of the chamber member 2.
  • the glow plasma generating apparatus 1 that is effective in the present embodiment is characterized in that the distance between the internal electrode and the internal electrode has a different configuration depending on the location of the external electrode.
  • a voltage is applied between both electrodes by voltage application device 3.
  • the distance between the electrodes has a distribution and is not constant as described above, the distance between the rod-shaped internal electrode and the inner surface of the container where the external electrode is provided depends on the pressure state in the chamber member.
  • a discharge path is determined spontaneously, and a dielectric barrier discharge is generated from the determined specific discharge path.
  • the generated discharge is generated between the inner electrode and the inner surface of the peripheral wall of the container in contact with the outer electrode.
  • the force is in a DC-insulated relationship.
  • the container which is a dielectric material, is brought into a high electrical energy state by the external electrode, and the dielectric barrier discharge is generated. Therefore, the distance between the electrodes in this embodiment is not the distance between the internal electrode and the external electrode, but the distance between the internal electrode and the inner surface of the peripheral wall of the container that touches the external electrode (atmospheric gas). Is essentially the distance between the external electrode side and the internal electrode side of at least a part of the above.
  • the generated barrier discharge is the globe It spreads in the region of the discharge path with a distance between the electrodes that can be maintained as a laser, and discharge is continuously performed over the region.
  • a Paschen condition that is a condition for starting a discharge is generally required as a requirement for generating a plasma discharge.
  • this law is not completely satisfied under special conditions such as high-pressure discharge under high pressure, the discharge starting voltage is minimized when the product of the pressure and the distance between electrodes is a certain value. That is, for example, the distance between the electrodes needs to be extremely small under high atmospheric pressure such as atmospheric pressure. Therefore, since the glow plasma generator that is useful in this embodiment has a wide range of distances between the electrodes, the conditions for starting the discharge are automatically selected, and the discharge generated in the selected discharge path gradually increases. It spreads.
  • a glow plasma can be generated and maintained constantly under conditions of about 0.01 to 10.0 atm.
  • the glow plasma generator that works in the present embodiment has an advantage that it can constantly generate glow plasma in a wide pressure range. Therefore, it is preferable to appropriately design the chamber member 2 according to the purpose based on the property that the distance between the electrodes that can be maintained as a glow plasma varies depending on various conditions such as the pressure inside the chamber member 2. For example, if the diameter of the container 10 is increased, the range of the distance between the internal electrode and the external electrode is naturally widened. Therefore, a large amount of plasma can be generated using the large container if the purpose is to be used only in an environment where the atmospheric pressure is low so that the glow plasma can be generated even at the large distance between the electrodes.
  • the glow plasma generator according to the present embodiment has an internal electrode that is wide and wide in the height direction in the container 10, and is therefore very close to the liquid level of the liquid in the container.
  • Plasma is generated over a wide area in the height direction of the container, that is, a wide area in the gas phase in contact with the liquid phase. Therefore, for example, by lowering the atmospheric pressure in the container 10, the liquid 10 in the container boils and the internal electrode 11 is partially wetted. Even when the plasma is extinguished, the glow plasma spreads and is maintained by the discharge generated by the partial force of the internal electrode not wetted. Therefore, even if the electrode is somewhat wet, the discharge can be maintained and the glow plasma can be maintained, which is advantageous when used for plasma treatment to liquids. Therefore, the development of new plasma processes for plasma chemistry and bioscience can be expected.
  • FIG. 5 is a view showing another embodiment of a chamber member used in the glow plasma generator of FIG. Unlike the chamber member shown in FIGS. 2A and 2B, the chamber member 2A is supplied while flowing the liquid in a state where the atmosphere gas is published in the liquid that does not store the liquid in the container.
  • the configuration is such that glow plasma is generated in the atmospheric gas phase in the container.
  • the chamber 1A 2A shown in FIG. 5 is composed of a cylindrical container 10a made of a dielectric material arranged in the horizontal direction.
  • the liquid is continuously supplied from the right side in FIG. 5 to the container 10a and flows to the left side in the figure. It is preferable to prevent the liquid flow at this time from becoming laminar.
  • a baffle plate is provided in the container to disturb the liquid flow.
  • the container 10a is connected to an atmosphere gas supply pipe 16 for supplying an atmosphere gas, and the atmosphere gas is supplied into the container 10a from a nozzle 17 provided at the end of the atmosphere gas supply pipe 16. Further, since the nozzle is provided on the lower surface of the container 10a, the liquid is easily disturbed by bubbles of the atmospheric gas.
  • the nozzle 17 is provided only at one location. However, a plurality of nozzles 17 may be provided, and a large number of fine bubbles are generated.
  • a hole nozzle or various bubblers may be used. Examples of bubblers include those that stir bubbles with a probe, those that use lapar nozzles, and those that create microbubbles using the shearing force of fluid. Increasing the number of bubbles discharged into the liquid disturbs the flow of the liquid, and can increase the contact between the plasma and the liquid in the plasma processing described later.
  • an internal electrode 11a is arranged along the extending direction of the container.
  • the internal electrode 11a is provided on the upper side with respect to the center of the container 10, specifically, at the highest position on the inner wall of the container 10a so as to extend in parallel with the central axis, and is provided through the container 10a. Connected to the outside through hole 18.
  • an outer electrode 12a which is a plate-like electrode provided along the outer peripheral surface, is provided on the outer peripheral surface of the container 10a.
  • the external electrode 12a is disposed so as to cover the outer peripheral surface 14 at a position where the internal electrode 11a is provided.
  • the internal electrode 11a is located at an intermediate position between the external electrodes.
  • the external electrode is provided on a part of the peripheral wall 14 in the circumferential direction of the container 10a over a half circumference.
  • the external electrode 14a may be provided over the entire circumference of the peripheral wall 14 in the circumferential direction of the container 10a! /.
  • FIG. 6 is a cross-sectional view taken along line VI-VI in FIG.
  • the liquid 100 flows in the container 10a, that is, the atmosphere gas from the nozzle 17 is upstream of the internal electrode 11a in the liquid supplied to the container 10a. Is supplied, becomes bubbles 102 in the liquid 100, and flows in the container as the liquid 100 flows.
  • the interelectrode distance from the internal electrode 11a is characterized in that it has a different configuration depending on the location of the external electrode 12a.
  • the distance between the electrodes is not constant as described above. Therefore, the outer surfaces of the rod-shaped internal electrode 11a and the container 10a are changed according to the pressure state in one member of the chamber. A discharge path is spontaneously determined between the external electrodes 12a provided along the line, and a dielectric barrier discharge is generated from the determined specific discharge path.
  • the pressure in the container 10a is substantially equal to the atmospheric pressure, so it is difficult for a portion having a large interelectrode distance to be a discharge path. Therefore, bubble size It is preferable that the bubble 102 of this size exists between the electrodes. Therefore, it is preferable to reduce the diameter of the container 10a so that the surface of the liquid flowing in the container 10a contacts the glow plasma. Specifically, the inner diameter of the container 10a is preferably kept at about ⁇ 20 mm.
  • the glow plasma apparatus can generate and maintain glow plasma in a steady manner inside the bubbles present in the container.
  • the contact area between the gas phase and the liquid phase can be increased, which is advantageous when used for applications such as plasma treatment to liquids.
  • the glow plasma generator according to the present embodiment allows the liquid phase to flow only in a part of the inside of the container so that the gas phase exists around the internal electrode 11a in the container.
  • the internal electrode 11a is provided extending in the direction of the central axis in the container 10a, the internal electrode 11a is partially wetted, and as a result, the supply of secondary electrons from the electrode surface is reduced.
  • the glow plasma is spread and maintained by the discharge generated by the partial force that is not wetted of the internal electrode. Therefore, even if the electrode is slightly wet, the discharge can be maintained and the globular plasma can be maintained, which is advantageous when used for applications such as plasma treatment to liquids. Therefore, the development of new plasma processes for plasma chemistry and bioscience can be expected.
  • FIG. 7 is a diagram showing a schematic configuration of a glow plasma generator according to the second embodiment of the present invention.
  • This glow plasma generator includes a chamber member 2B. Similarly to the one chamber member shown in FIG. 5, the one-chamber member 2B supplies the liquid and the atmospheric gas in a mixed state while flowing and supplies the globe plasma into the atmospheric gas gas phase in the container. It is the structure which is generated.
  • the chamber apparatus 2B in FIG. 7 includes a cylindrical container 10b made of a dielectric material arranged in a vertical direction.
  • an atmospheric gas supply pipe 22 that supplies atmospheric gas from the lower side and a liquid supply pipe 24 that supplies liquid are connected to the inside 10b of the container.
  • a fine nozzle 23 is provided to form fine bubbles in the liquid supplied from the liquid supply pipe 24.
  • the configuration is not limited to the single nozzle 23, and various configurations used as a bubbler can be used. Examples of bubblers include those that stir bubbles with a propeller, those that use a rubber nozzle, and those that create microbubbles using the shearing force of a fluid.
  • the internal electrode unit 20 is disposed in the container 10b.
  • the internal electrode unit 20 has a structure in which the internal electrode Lib is fixed in a spiral manner along the outer peripheral surface of a rod-shaped support member 19 made of a dielectric material.
  • the internal electrode unit 20 preferably has an outer diameter dimension substantially equal to the inner diameter of the container 10b. Specifically, it may be designed such that the sum of the outer dimensions of the support member 19 and the diameter of the wire constituting the internal electrode l ib is approximately equal to the inner diameter of the container 10b.
  • a space formed between the container 10b and the support member 19 of the internal electrode unit is a flow space 20 in which the liquid and the atmospheric gas supplied to the container 10b flow as described above.
  • the interelectrode distance with the external electrode is different from the circumferential direction of the internal electrode 1 lb. . That is, the distance between the electrodes is the shortest at the location where the internal electrode l ib is in contact with the inner peripheral surface of the container 10b, and the distance between the electrodes with the external electrode 12b increases as the positional force also increases in the vertical direction. Constructed. As described above, the distance between the electrodes is configured to have a range for each portion of the external electrode, and as described above, the distance between the electrodes is provided along the outer peripheral surface of the internal electrode and the container according to the pressure state of the gas phase. A discharge path is spontaneously determined between the external electrodes, and a dielectric barrier discharge is generated from the determined specific discharge path.
  • an outer electrode 12b which is a plate-like electrode provided along the outer peripheral surface, is provided on the outer peripheral surface of the container 10b.
  • the external electrode is at the position where the internal electrode 11a is provided. It arrange
  • the inner electrode l ib is provided on a part of the peripheral wall 14 in the circumferential direction of the container 10a so as to cover the height direction region of the container 10b, and is provided over about a half circumference.
  • the external electrode 14b may be provided over the entire circumference of the peripheral wall 14 in the circumferential direction of the container 10b! /.
  • FIG. 8 is a partially enlarged cross-sectional view of FIG.
  • the liquid and the atmospheric gas supplied into the container 10b rise through the flow space 21.
  • the bubbles 102 of the atmospheric gas 101 rise while entangled with the internal electrode l ib, the surroundings of the internal electrode l ib tend to be in a gas phase.
  • the internal electrode l ib is circular in cross section, the distance from the inner peripheral surface of the container 10b differs in the circumferential direction.
  • a discharge path is spontaneously determined between the external electrodes 12b provided along the line, and a dielectric barrier discharge is generated from the determined specific discharge path.
  • the generated discharge is generated between the inner electrode and the inner surface of the peripheral wall of the container in contact with the outer electrode.
  • the force is in a DC-insulated relationship.
  • the container which is a dielectric material, is brought into a high electrical energy state by the external electrode, and the dielectric barrier discharge is generated.
  • the generated barrier discharge spreads in the region of the discharge path having a distance between the electrodes that can be maintained as a glow plasma, and discharge is continuously performed in the region.
  • the glow plasma generator since the internal electrode rib is in the container 10b and the electrode area is large, the plasma is generated over a wide area in the gas phase. appear.
  • the gas phase is in contact with the liquid, and the liquid and the plasma come into contact with each other. Therefore, even if the electrode is somewhat wet, the discharge can be sustained and the glow plasma can be maintained, and the contact area between the gas phase and the liquid phase can be increased.
  • This is advantageous when used in Therefore, it is possible to supply radicals, high-energy atoms, ultraviolet rays, etc. into water-soluble substances when the plasma comes into contact with the liquid, and new developments in plasma chemistry, biosciences, etc. are expected to develop plasma processes. so wear.
  • the glow plasma generator that is useful in this embodiment can generate plasma even when the pressure inside the container is high, and is also compatible with biological materials and the like because it does not require evacuation.
  • an internal electrode is provided inside the container, In the above description, the external electrode is provided outside the container.
  • the position force of each of the two electrodes is not limited to being positioned inside and outside the container. At least part of the atmospheric gas and the dielectric part of the container (reservoir) are interposed between one (first electrode) and the other (second electrode) of the two electrodes. As long as the distance between the first electrode side and the second electrode side of the part is partially different, the two electrodes may be located outside the container, or located inside the container. May be.
  • FIG. 12 shows one embodiment of the present invention (glow plasma generator 120).
  • the glow plasma generator 120 includes a first electrode 102, a second electrode 104, and a container 106. An atmosphere gas is stored inside the container 106. The first electrode 102 and the second electrode 104 are provided outside the container 106.
  • the container 106 has a first portion 108 and a second portion 110.
  • the first portion 108 and the second portion 110 of the container 106 are dielectrics.
  • the first electrode 102 is provided so as to cover at least a part of the first part 108 of the container 106
  • the second electrode 104 is provided so as to cover at least a part of the second part 110 of the container 106. It is provided.
  • first electrode 102 and the second electrode 104 Between the first electrode 102 and the second electrode 104, at least a part of the atmospheric gas and the first portion 108 and the second portion 110 of the container 106 are interposed.
  • the wall of the first part 108 of the container 106 The thickness varies depending on the location.
  • the wall thickness of the second part 110 of the container 106 does not vary depending on the location.
  • the first electrode 102 and the second electrode 104 are parallel to each other. As a result, the distance between the side 108a of the first electrode 102 and the side 110a of the second electrode 104 of the container 106 is partially different.
  • aqueous solution in which methylene blue was dissolved at an initial concentration of 20 gZml as a liquid phase was stored in a container, and helium was used as an atmospheric gas at 0.1 atm.
  • a high frequency voltage of 13.56 MHz, 80 W, 2000 V was applied from the voltage application device.
  • Glow plasma was generated between the internal and external electrodes, and plasma in contact with the liquid phase surface was confirmed.
  • the voltage application was stopped every 10 minutes, the methylene blue solution was sampled, and the concentration of the methylene blue solution was measured with a spectrophotometer. The result is shown in Fig. 9.
  • the liquid is It is possible to create a Xinjiang reaction field that is in contact with ma.
  • Examples of the application range of the plasma process include biopolymers. Since biopolymers are inseparable from the water environment, it has been difficult to apply the low-pressure plasma process that is performed under the conventional vapor pressure. Since the glow plasma generator that works in this embodiment can generate plasma in a controllable form at atmospheric pressure, the glow plasma can be brought into constant contact with water over a long period of time. A plasma process for liquids can be performed.
  • the present invention is not limited to the above-described embodiment, and can be implemented in various other modes.
  • the wall thickness of the container made of the dielectric material is constant, and the distance between the electrodes (at least part of the atmosphere gas of the external electrode is set by shifting the position of the internal electrode from the center).
  • the distance between the inner electrode and the side of the internal electrode The distance between the internal electrode and the surface of the container by changing the wall thickness of the container.
  • the distance between the electrode side and the internal electrode side may be different.
  • the internal electrode 1 lc and the external electrode 12c are plate electrodes arranged in parallel to each other, and the wall 22c wall thickness of the container 10c arranged therebetween is partially different.
  • the distance between the internal electrode (the internal electrode side of the atmospheric gas) and the inner surface 23c of the container (the external electrode side of the atmospheric gas) can be made different.
  • the distance between the internal electrode and the inner surface 23c of the container has a distribution.
  • a plate-like external electrode 12 d may be provided along the outer wall of the container 10 d having a rectangular cross section, and a plate-like internal electrode may be provided diagonally in the container interior 25. .
  • a container 10e having the same configuration as the container 10 used for the chamber member 2 shown in FIG. 2A is used, and the internal electrode l ie is also inclined with the central axial force of the container 10e. It may be arranged.
  • a container 10f having a configuration similar to that of the chamber partial member 2 shown in FIG. 2A may be used, and the external electrode 12f provided intermittently in the circumferential direction may be provided over the entire circumference. .
  • the interelectrode distance between the internal electrode 1 If and the external electrode 12f is discrete. Distributed.
  • FIG. 11A and FIG. 1IB may be used. Similar to the chamber member 2b shown in FIG. 7, this chamber member is configured to allow liquid and bubbles to flow inside. Specifically, the inside of a flat container 10g having a rectangular cross section is defined as a flow space 2 lg of bubbles of liquid and atmospheric gas, and a bent wire-like internal electrode l lg is disposed in the flow space 2 lg.
  • the plate-like external electrode 12g is provided along the outer peripheral wall of the container 10g.
  • the diameter of the internal electrode 1 lg is configured to be approximately equal to the width in the short direction of the flow space 21g. Bubbles sent together with the liquid into the flow space 21g are entangled with the internal electrode l lg, and the periphery of the internal electrode l lg is a gas phase. It becomes easy to become.
  • the glow plasma generating apparatus of the present invention depending on the shape of the internal electrode itself, the location of the internal electrode, the location of the external electrode, or a combination of these plural configurations.
  • the distance between the internal electrode and the inner periphery of the container is partially different. Therefore, it is possible to spontaneously select the distance between the electrodes according to the use environment and start the discharge, and then the glow plasma can be widened and constantly maintained in the region.
  • the glow plasma generator according to the present invention can generate glow plasma even when the pressure in the container is high, and the glow plasma can be brought into contact with a liquid.
  • it can be suitably used as a sterilization apparatus that sterilizes precision medical instruments and the like using hydroxy radicals generated by contact with plasma water.
  • each chamber member can be realized in a small size, it is possible to process a large amount of liquid by modularly arranging the chamber members in series or in parallel. You can select the process.
  • the target liquid can be continuously processed, and can be suitably used for a circulating water treatment apparatus. It can also be used to synthesize biopolymers with new functions.

Abstract

There is provided a glow plasma generator capable of constantly generating glow plasma in a vapor phase contacting with a liquid phase under a condition where a liquid (100) and an ambient gas (101) are mixed with each other. The glow plasma generator (1) comprises a storage (10), which is composed of a dielectric material and capable of internally storing the liquid (100) and the ambient gas (101), gas atmosphere creation apparatuses (4, 6) for having the inside of the storage in a state where the ambient gas is present; a rod-shaped internal electrode (11) provided inside the storage (10); a board-like external electrode (12) provided on the outer peripheral wall (14) of the storage (10) and disposed such that the distance from the internal electrode (11) disposed so as to sandwich the storage (10) varies locally; and a voltage application device (3) for applying a high frequency voltage between the internal and external electrodes and inducing a dielectric barrier discharge between the internal and external electrodes.

Description

明 細 書  Specification
グロ一プラズマ発生装置及びグロ一プラズマ発生方法  Glow plasma generator and glow plasma generation method
技術分野  Technical field
[0001] 本発明は、プラズマ重合、殺菌、水質浄ィ匕などに好適に用いられるグロ一プラズマ 発生装置及びグロ一プラズマ発生方法に関するものであり、さらに詳しくは、液体表 面や液中でグロ一プラズマを発生させる装置及びグロ一プラズマ発生方法に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a glow plasma generating apparatus and a glow plasma generating method that are suitably used for plasma polymerization, sterilization, water purification, and the like. More specifically, the present invention relates to a liquid surface or a liquid in a liquid. TECHNICAL FIELD The present invention relates to an apparatus for generating a plasma and a method for generating a glow plasma.
[0002] 従来、主に高電圧パルス放電を用いて水中にプラズマを発生させることは可能であ つた。例えば、特表 2005— 529455号公報、特開 2004— 268003号公報、特開 2 005— 21869号公報などは、液中にプラズマを発生させる装置について開示してい る。例えば、特表 2005— 529455号公報に記載された装置は、一対の金属電極を 電気伝導性の液体中に挿入し、電気分解により生成したガスを雰囲気ガスとして気 泡領域にプラズマを発生させる装置である。すなわち、高電圧直流電源を用いて電 気伝導性水溶液を電気分解し、電極表面に水素と酸素の気泡を発生させる。気泡は 水溶液よりも抵抗が大きいため気泡に高電圧が分圧されて放電が気泡領域で起こる ようにした装置である。  Conventionally, it has been possible to generate plasma in water mainly using high-voltage pulse discharge. For example, JP-T-2005-529455, JP-A-2004-268003, JP-A-2005-21869, etc. disclose an apparatus for generating plasma in a liquid. For example, the device described in JP-T-2005-529455 is a device that inserts a pair of metal electrodes into an electrically conductive liquid and generates plasma in the bubble region using the gas generated by electrolysis as an atmospheric gas. It is. In other words, an electrically conductive aqueous solution is electrolyzed using a high-voltage DC power source to generate hydrogen and oxygen bubbles on the electrode surface. Since bubbles have a higher resistance than aqueous solutions, a high voltage is divided into the bubbles so that discharge occurs in the bubble region.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかし、特表 2005— 529455号公報に力かる装置では、電気分解により生成した ガス気泡領域にプラズマを生成させる必要があるため、任意の液体を対象とすること ができな!/、と!/、う問題がある。  [0003] However, in the device that is described in JP-T-2005-529455, it is necessary to generate plasma in the gas bubble region generated by electrolysis, so it is not possible to target any liquid! /, There is a problem!
[0004] また、液相と接触する気相中にお 、てプラズマを生成することにより、プラズマ化学 やバイオサイエンス等への新し 、プラズマプロセスの展開が期待できる。このために は、長時間にわたりプラズマを液体接触させるために、低温非平衡のグロ一状の放 電を用いることが好ましい。しかし、上記の装置は、基本的にストリーマー放電やそれ が成長したアーク放電が主なものであり、それらの放電が作り出すプラズマのパラメ ータは本質的に制御が困難であるという問題があった。また、局所的に高温、高密度 を発生させるものであるために、その応用範囲は殺菌などに制限されていた。 [0004] In addition, by generating plasma in the gas phase in contact with the liquid phase, new developments in plasma chemistry, bioscience, and the like can be expected. For this purpose, it is preferable to use a low temperature non-equilibrium glow discharge in order to bring the plasma into liquid contact for a long time. However, the above-mentioned devices are mainly streamer discharges and arc discharges in which they are grown, and the plasma parameters produced by these discharges. The data was inherently difficult to control. In addition, since it generates locally high temperature and high density, its application range was limited to sterilization.
[0005] 一方、水が雰囲気ガスと混在した状態でグロ一プラズマを発生させようとすると、一 般には、容器内の気圧を低くすることが好ましい。しかし、容器内の気圧を下げると、 容器内の液体が沸騰して液面が乱れ、電極に液体が接触して電極からの二次電子 供給が阻害されるため、プラズマの発生が阻害されるという新たな問題が発生する可 能性もある。また、液体の蒸気が雰囲気ガスに混入することにより雰囲気ガスへの不 純物混入が起こるという問題もある。したがって、水が沸騰しないように蒸気圧以上の 圧力で放電を行う大気圧プラズマも検討されて ヽる。  [0005] On the other hand, in order to generate a glow plasma in a state where water is mixed with atmospheric gas, it is generally preferable to lower the atmospheric pressure in the container. However, if the atmospheric pressure in the container is lowered, the liquid in the container will boil and the liquid level will be disturbed, and the liquid will come into contact with the electrode and the secondary electron supply from the electrode will be obstructed. There is a possibility that a new problem will occur. In addition, there is a problem that impurities are mixed into the atmospheric gas when liquid vapor is mixed into the atmospheric gas. Therefore, atmospheric pressure plasma, which discharges at a pressure higher than the vapor pressure so that water does not boil, is also being considered.
[0006] また、水と雰囲気ガスとが混在した状態では、水の蒸発などにより内部気圧などの 条件が刻々と変化する。したがって、プラズマを発生させるための条件設定が困難で あり、大気圧状態において定常的にグロ一プラズマを発生させることはきわめて困難 であるという問題があった。  [0006] In a state where water and atmospheric gas coexist, conditions such as internal atmospheric pressure change every moment due to water evaporation. Therefore, it is difficult to set conditions for generating plasma, and it is extremely difficult to constantly generate glow plasma at atmospheric pressure.
[0007] したがって、本発明が解決しょうとする技術的課題は、上記問題点を解決するため に、液体と雰囲気ガスとが混在した状態で液相と接触する気相中において、グローブ ラズマを定常的に発生させることができるグロ一プラズマ発生装置及びグローブラズ マ発生方法を提供することである。  [0007] Therefore, the technical problem to be solved by the present invention is to solve the above-mentioned problems by making globular plasma steady in a gas phase in contact with the liquid phase in a state where the liquid and the atmospheric gas are mixed. It is an object of the present invention to provide a glow plasma generating apparatus and a globe plasma generating method that can be generated in an automatic manner.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、上記技術的課題を解決するために、以下の構成のグロ一プラズマ発生 装置を提供する。 In order to solve the above technical problem, the present invention provides a glow plasma generating apparatus having the following configuration.
[0009] 本発明の第 1態様によれば、雰囲気ガスを貯留するように構成された貯留部と第 1 電極と第 2電極とを備えたグロ一プラズマ発生装置であって、  [0009] According to a first aspect of the present invention, there is provided a glow plasma generator comprising a storage unit configured to store an atmospheric gas, a first electrode, and a second electrode,
前記貯留部の少なくとも一部は誘電体で構成された誘電部分であり、  At least a part of the storage part is a dielectric part made of a dielectric,
前記第 1電極と前記第 2電極との間には、前記雰囲気ガスの少なくとも一部と前記 貯留部の前記誘電部分とが介在しており、  Between the first electrode and the second electrode, at least a part of the atmospheric gas and the dielectric part of the reservoir are interposed,
前記雰囲気ガスの前記少なくとも一部の前記第 1電極の側と前記第 2電極の側との 間の距離が、部分的に異なっている、グロ一プラズマ発生装置を提供する。  There is provided a glow plasma generating apparatus in which a distance between the first electrode side and the second electrode side of the at least part of the atmospheric gas is partially different.
[0010] 本発明の第 2態様によれば、前記貯留部の誘電部分は、第 1部分と第 2部分を有し ており、 [0010] According to the second aspect of the present invention, the dielectric part of the storage part has a first part and a second part. And
前記第 1電極は、前記貯留部の前記第 1部分の少なくとも一部を覆うように設けられ ており、  The first electrode is provided so as to cover at least a part of the first portion of the storage portion,
前記第 2電極は、前記貯留部の前記第 2部分の少なくとも一部を覆うように設けられ ており、  The second electrode is provided so as to cover at least a part of the second portion of the storage portion,
前記第 1電極と前記第 2電極との間には、前記雰囲気ガスの前記少なくとも一部と 前記貯留部の前記第 1部分と前記第 2部分とが介在しており、  Between the first electrode and the second electrode, the at least part of the atmospheric gas, the first part of the storage part and the second part are interposed,
前記貯留部の前記第 1部分と前記貯留部の前記第 2部分との間の距離が、部分的 に異なるように設けられている、第 1態様のグロ一プラズマ発生装置を提供する。  A glow plasma generator according to a first aspect is provided, wherein the distance between the first portion of the reservoir and the second portion of the reservoir is partially different.
[0011] 本発明の第 3態様によれば、前記第 1電極は、前記貯留部の前記誘電部分を覆う ように設けられており、 [0011] According to the third aspect of the present invention, the first electrode is provided so as to cover the dielectric portion of the storage portion,
前記第 1電極と前記第 2電極との間には、前記雰囲気ガスの前記少なくとも一部と 前記貯留部の前記誘電部分とが介在しており、  Between the first electrode and the second electrode, the at least part of the atmospheric gas and the dielectric portion of the storage portion are interposed,
前記貯留部の前記誘電部分と前記第 2電極の側との間の距離が、部分的に異なつ ている、第 1態様のグロ一プラズマ発生装置を提供する。  A glow plasma generator according to a first aspect is provided in which a distance between the dielectric portion of the reservoir and the second electrode side is partially different.
[0012] 本発明の第 4態様によれば、前記貯留部は、前記雰囲気ガスを貯留する内部と前 記雰囲気ガスを貯留しな!ヽ外部とを画定する区画壁を有し、 [0012] According to a fourth aspect of the present invention, the storage section has a partition wall that defines an interior for storing the atmospheric gas and an exterior that does not store the atmospheric gas.
前記第 1電極は、前記貯留部の前記区画壁の外部側に設けられており、 前記第 2電極は、前記貯留部の前記区画壁の内部側に設けられている、第 3態様 のグロ一プラズマ発生装置を提供する。  The first electrode is provided on the outer side of the partition wall of the storage part, and the second electrode is provided on the inner side of the partition wall of the storage part. A plasma generator is provided.
[0013] 本発明の第 5態様によれば、前記第 2電極が前記貯留部の前記内部の中心から偏 心した位置に設けられて 、る、第 4態様のグロ一プラズマ発生装置を提供する。  [0013] According to a fifth aspect of the present invention, there is provided the glow plasma generating apparatus according to the fourth aspect, wherein the second electrode is provided at a position eccentric from the inner center of the reservoir. .
[0014] 本発明の第 6態様によれば、前記第 2電極は螺旋状である、第 4態様のグローブラ ズマ発生装置を提供する。 [0014] According to a sixth aspect of the present invention, there is provided the glove plasma generating device according to the fourth aspect, wherein the second electrode is spiral.
[0015] 本発明の第 7態様によれば、前記第 2電極は、前記貯留部の前記区画壁の内部側 面に接触して ヽる、第 4態様のグロ一プラズマ発生装置を提供する。 [0015] According to a seventh aspect of the present invention, there is provided the glow plasma generating apparatus according to the fourth aspect, wherein the second electrode comes into contact with an inner side surface of the partition wall of the storage section.
[0016] 本発明の第 8態様によれば、前記第 1電極の側と前記第 2電極の側との間の距離 力 離散的に分布するように、部分的に異なっている、第 1態様のグロ一プラズマ発 生装置を提供する。 [0016] According to the eighth aspect of the present invention, the distance between the first electrode side and the second electrode side is different in part so as to be distributed discretely. No glow plasma Provide raw equipment.
[0017] 本発明の第 9態様によれば、前記貯留部は、液体を貯留するように構成されている [0017] According to the ninth aspect of the present invention, the storage section is configured to store a liquid.
、第 4態様のグロ一プラズマ発生装置を提供する。 The fourth aspect of the present invention provides a glow plasma generator.
[0018] 本発明の第 10態様によれば、グロ一プラズマ発生装置によってグロ一プラズマを 発生する方法であって、 [0018] According to a tenth aspect of the present invention, there is provided a method of generating glow plasma by a glow plasma generator,
前記グロ一プラズマ発生装置は、  The glow plasma generator comprises:
雰囲気ガスを貯留するように構成された貯留部と第 1電極と第 2電極とを備え、 前記貯留部の少なくとも一部は誘電体で構成された誘電部分であり、  A storage portion configured to store an atmospheric gas, a first electrode, and a second electrode, wherein at least a part of the storage portion is a dielectric portion formed of a dielectric;
前記第 1電極と前記第 2電極との間には、前記雰囲気ガスの少なくとも一部と前記 貯留部の前記誘電部分とが介在しており、  Between the first electrode and the second electrode, at least a part of the atmospheric gas and the dielectric part of the reservoir are interposed,
前記雰囲気ガスの前記少なくとも一部の前記第 1電極の側と前記第 2電極の側との 間の距離が、部分的に異なっており、  The distance between the first electrode side and the second electrode side of the at least part of the atmospheric gas is partially different,
前記グロ一プラズマ発生方法は、  The glow plasma generation method includes:
前記第 1電極と前記第 2電極との間に電圧を印加することによって、前記第 1電極 の側と前記第 2電極の側との間で放電を発生する放電発生ステップを包含する、グロ 一プラズマ発生方法を提供する。  Including a discharge generating step of generating a discharge between the first electrode side and the second electrode side by applying a voltage between the first electrode and the second electrode. A plasma generation method is provided.
[0019] 上記構成において、前記放電を発生させる過程においては、前記貯留部内の圧力 を下げておく一方、前記放電が発生した後は前記貯留部内の圧力を高くすることが 好ましい。 [0019] In the configuration described above, in the process of generating the discharge, it is preferable to reduce the pressure in the storage unit while increasing the pressure in the storage unit after the discharge has occurred.
発明の効果  The invention's effect
[0020] 本発明のグロ一プラズマ発生装置によれば、第 1電極と第 2電極との間には、雰囲 気ガスの少なくとも一部と貯留部の前記少なくとも一部とが介在しており、雰囲気ガス の少なくとも一部が介在する領域の第 1電極の側と第 2電極の側との間の距離が、部 分的に異なっている。  [0020] According to the glow plasma generator of the present invention, at least a part of the atmospheric gas and the at least a part of the storage part are interposed between the first electrode and the second electrode. The distance between the first electrode side and the second electrode side in the region where at least a part of the atmospheric gas intervenes is partially different.
[0021] したがって、部分的に異なる間隔のうち、貯留部内の諸条件 (圧力など)に応じた適 切なグロ一プラズマの維持できる間隔が自動的に選択され、第 1電極の側と第 2電極 の側との間で誘電体バリア放電が発生する。その結果、貯留部内の諸条件を幅広い 範囲とすることが可能となる。 [0022] また、貯留部の第 1部分と第 2部分とが誘電体であり、貯留部の第 1部分と貯留部の 第 2部分との間の距離が部分的に異なるように設けられている形態(両側バリアの形 態)においても、同様の効果を得ることができる。 [0021] Accordingly, among the partially different intervals, an appropriate interval that can maintain the glow plasma in accordance with various conditions (such as pressure) in the reservoir is automatically selected, and the first electrode side and the second electrode are selected. Dielectric barrier discharge occurs between the two sides. As a result, it is possible to set the conditions in the storage section within a wide range. [0022] Further, the first part and the second part of the storage part are dielectrics, and the distance between the first part of the storage part and the second part of the storage part is partially different. The same effect can be obtained in the present embodiment (both-side barrier configuration).
[0023] さらに、貯留部の一部が誘電体であり、貯留部の一部と第 2電極の側との間の距離 力 部分的に異なっている形態 (片側バリアの形態)においても、同様の効果を得る ことができる。 [0023] Furthermore, the same applies to a configuration in which a part of the reservoir is a dielectric, and the distance force between the part of the reservoir and the second electrode side is partially different (a one-side barrier configuration). The effect of can be obtained.
[0024] また、本発明によれば、誘電体材料で構成された容器を挟んで内部電極と容器の 外周面に設けられた外部電極とを用いており、外部電極が設けられた容器の内側面 と内部電極との間で誘電体バリア放電が発生する。ここで、内部電極と容器の外部電 極が設けられた部分の内側面との間隔は部分的に異なるように構成される。したがつ て、容器内の圧力などの諸条件に応じて、適切なグロ一プラズマが維持できる領域を 自動的に選択して、プラズマを発生 ·維持することができる。すなわち、圧力が高くな るほど短い間隔を有する領域でプラズマが維持されることになる。よって、容器内の 気圧状態にかかわらずグロ一プラズマを維持することができるので、容器内の圧力を 幅広い範囲とすることが可能となる。また、誘電体材料で構成された容器は、圧力容 器と誘電体バリアの 2つの機能を兼ね備えるものであり、構成を単純ィ匕することができ る。  [0024] Further, according to the present invention, the internal electrode and the external electrode provided on the outer peripheral surface of the container are used with the container made of the dielectric material interposed therebetween, and the internal electrode of the container provided with the external electrode is used. A dielectric barrier discharge is generated between the side surface and the internal electrode. Here, the interval between the inner electrode and the inner surface of the portion of the container where the outer electrode is provided is configured to be partially different. Therefore, it is possible to generate and maintain plasma by automatically selecting a region where appropriate glow plasma can be maintained according to various conditions such as pressure in the container. That is, as the pressure increases, the plasma is maintained in a region having a short interval. Accordingly, since the glow plasma can be maintained regardless of the atmospheric pressure state in the container, the pressure in the container can be set in a wide range. In addition, a container made of a dielectric material has two functions of a pressure container and a dielectric barrier, and the structure can be simplified.
[0025] なお、放電を発生させるために両電極間に印加する電圧の電源として高周波電源 を用いれば、両電極間に存在している誘電体材料である貯留部が、高周波による放 電をストリーマー状に成長させずにグロ一プラズマを維持するための直流ブロッキン グ素子として機能する。したがって、グロ一プラズマを定常的に発生 ·維持させやすく 、長時間にわたるグロ一プラズマの生成を可能とすることができる。  [0025] If a high-frequency power source is used as a power source for the voltage applied between the two electrodes in order to generate discharge, the reservoir, which is a dielectric material existing between the two electrodes, causes the high-frequency discharge to be streamered. It functions as a direct current blocking device to maintain a glow plasma without growing into a shape. Therefore, it is easy to generate and maintain the glow plasma on a regular basis, and it is possible to generate the glow plasma over a long period of time.
[0026] また、上記効果に加えて、貯留部内に液体と雰囲気ガスとを貯留した状態でグロ一 プラズマを定常的に安定した状態で発生 '維持させることができれば、液体とプラズ マとを長時間にわたり接触させることができる。したがって、液体の処理装置として用 いる場合に、効率を高くすることができる。  [0026] Further, in addition to the above effects, if the glow plasma can be generated and maintained in a steady and stable state in a state where the liquid and the atmospheric gas are stored in the storage section, the liquid and the plasma are prolonged. Can be contacted over time. Therefore, when used as a liquid processing apparatus, the efficiency can be increased.
[0027] また、貯留部の高さ方向全体にわたって内部電極が維持することによって、電極面 積を大きくすることができ、広範囲にわたってプラズマを発生させることができる。また 、貯留部を円筒形に構成することで、周囲に設けられた外部電極との電極間距離の 分布がほぼ一様になり、プラズマ発生锥持のための条件範囲を広くすることができ る。 [0027] Further, by maintaining the internal electrode over the entire height direction of the reservoir, the electrode area can be increased, and plasma can be generated over a wide range. Also By configuring the storage part in a cylindrical shape, the distribution of the distance between the electrodes with the external electrodes provided in the periphery becomes substantially uniform, and the condition range for maintaining plasma generation can be widened.
[0028] また、内部電極を容器の周壁に接触するように配置することによって、内部電極と 外部電極との電極間距離をごく小さくすることができ、また、電極間距離のレンジを広 くすることがでさる。  [0028] Further, by arranging the internal electrodes so as to contact the peripheral wall of the container, the distance between the internal electrodes and the external electrodes can be made extremely small, and the range of the distance between the electrodes can be widened. That's right.
[0029] また、上記構成によれば、電極間距離のレンジを広くすることができるため、 0. 01 力も 10. 0気圧と 、う広 、圧力範囲にぉ 、てプラズマを発生 '維持させることができる  [0029] Further, according to the above configuration, since the range of the distance between the electrodes can be widened, it is possible to generate and maintain plasma over a wide pressure range of 0.01 atm. Can
[0030] また、貯留部内に雰囲気ガスを外部から供給するために、雰囲気ガスを貯留部内 に供給する装置を用いることで、使用可能な雰囲気ガスを自由に選択することができ 、条件に応じて適宜選択することが可能となる。 [0030] Further, in order to supply the atmospheric gas from the outside into the storage unit, a usable atmospheric gas can be freely selected by using an apparatus that supplies the atmospheric gas into the storage unit. It becomes possible to select appropriately.
[0031] また、貯留部内の気圧を前記貯留部内に貯留された液体の蒸気圧よりも低くなるよ うにすれば、貯留部中の液体の蒸気を雰囲気ガスとすることができるため、液体内に 不純物が混入することがなぐまた、装置の構成を簡単にすることができる。  [0031] Further, if the atmospheric pressure in the storage part is made lower than the vapor pressure of the liquid stored in the storage part, the liquid vapor in the storage part can be used as the atmospheric gas, so Impurities are not mixed, and the configuration of the apparatus can be simplified.
[0032] また、第 2電極を螺旋状に構成すれば、上記効果に加えて、螺旋状の第 2電極に 雰囲気ガスの気泡がからみつき、第 2電極の周りに気相が存在しやすくなり、プラズ マをより高効率で発生させることができる。また、電極面積を大きくすることができ、よ り広範囲でのプラズマの発生 ·維持をすることができる。  [0032] Further, if the second electrode is formed in a spiral shape, in addition to the above effects, bubbles of atmospheric gas are entangled in the spiral second electrode, and a gas phase tends to exist around the second electrode, Plasma can be generated with higher efficiency. In addition, the electrode area can be increased, and plasma can be generated and maintained in a wider range.
[0033] また、上記構成において、電圧印加装置から ΙΟΚΗζから 100MHzの高周波電圧 を印加することによって、ストリーマー放電やそれが成長したアーク放電よりもグロ一 プラズマを維持しやすくなる。  [0033] In addition, in the above configuration, by applying a high frequency voltage of 100 MHz from ζ to the voltage application device, it becomes easier to maintain the glow plasma than the streamer discharge or the arc discharge in which it is grown.
図面の簡単な説明  Brief Description of Drawings
[0034] 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形 態に関連した次の記述から明らかになる。この図面においては、  [0034] These and other objects and features of the invention will become apparent from the following description taken in conjunction with the preferred embodiments with reference to the accompanying drawings. In this drawing,
[図 1]図 1は、本発明の第 1実施形態に力かるグロ一プラズマ発生装置の概略構成を 示す図であり、  [FIG. 1] FIG. 1 is a diagram showing a schematic configuration of a glow plasma generating apparatus that works on the first embodiment of the present invention,
[図 2A]図 2Aは、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材の構成 を示す概略図であり、 [FIG. 2A] FIG. 2A is a diagram showing a configuration of one chamber member used in the glow plasma generator of FIG. Is a schematic diagram showing
[図 2B]図 2Bは、図 2Aの ΠΒ— ΠΒにおける断面図であり、  [FIG. 2B] FIG. 2B is a cross-sectional view taken along the line ΠΒ in FIG. 2A.
[図 3A]図 3Aは、内部電極と外部電極の配置関係の変形例を示す図であり、  [FIG. 3A] FIG. 3A is a diagram showing a modification of the arrangement relationship between the internal electrode and the external electrode,
[図 3B]図 3Bは、内部電極と外部電極の配置関係の変形例を示す図であり、  [FIG. 3B] FIG. 3B is a diagram showing a modification of the arrangement relationship between the internal electrode and the external electrode,
[図 4]図 4は、整流調整のために用いられる整流器の構成を示す図であり、  [FIG. 4] FIG. 4 is a diagram showing a configuration of a rectifier used for rectification adjustment.
[図 5]図 5は、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材の他の実 施形態を示す図であり、  FIG. 5 is a view showing another embodiment of a chamber member used in the glow plasma generator of FIG.
[図 6]図 6は、図 5の線 VI— VIにおける断面図であり、  [FIG. 6] FIG. 6 is a cross-sectional view taken along line VI—VI in FIG.
[図 7]図 7は、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材のさらに他 の実施形態を示す図であり、  FIG. 7 is a view showing still another embodiment of a chamber member used in the glow plasma generator of FIG.
[図 8]図 8は、図 7の一部断面部分拡大図であり、  [FIG. 8] FIG. 8 is a partially enlarged cross-sectional view of FIG.
[図 9]図 9は、本実施形態にカゝかるグロ一プラズマ発生装置を用いてメチレンブルー を分解処理した場合の実験結果として、時間と濃度との関係を示すグラフであり、 [図 10A]図 10Aは、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材の変 形例を示す概略図であり、  [FIG. 9] FIG. 9 is a graph showing the relationship between time and concentration as an experimental result when methylene blue was decomposed using the glow plasma generator according to this embodiment. [FIG. 10A] FIG. 10A is a schematic view showing a modified example of one member of a chamber used in the glow plasma generator of FIG.
[図 10B]図 10Bは、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材のさ らなる変形例を示す概略図であり、  [FIG. 10B] FIG. 10B is a schematic diagram showing a further modification of a chamber member used in the glow plasma generator of FIG.
[図 10C]図 10Cは、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材のさ らなる変形例を示す概略図であり、  [FIG. 10C] FIG. 10C is a schematic diagram showing a further modification of a chamber member used in the glow plasma generator of FIG.
[図 10D]図 10Dは、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材のさ らなる変形例を示す概略図であり、  [FIG. 10D] FIG. 10D is a schematic view showing a further modification of one member of the chamber used in the glow plasma generator of FIG.
[図 11A]図 11Aは、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材のさ らなる変形例を示す概略図であり、  [FIG. 11A] FIG. 11A is a schematic view showing a further modification of a chamber member used in the glow plasma generator of FIG.
[図 11B]図 11Bは、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材のさ らなる変形例を示す概略図であり、  [FIG. 11B] FIG. 11B is a schematic view showing a further modification of a chamber member used in the glow plasma generator of FIG.
[図 12]図 12は、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材のさらな る変形例を示す概略図である。  FIG. 12 is a schematic view showing a further modification of a chamber member used in the glow plasma generator of FIG.
発明を実施するための最良の形態 [0035] 本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号 を付している。以下、図面を参照して本発明における第 1実施形態を詳細に説明す る。 BEST MODE FOR CARRYING OUT THE INVENTION Before the description of the present invention is continued, the same reference numerals are given to the same components in the accompanying drawings. Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
[0036] 図 1は、本発明の第 1実施形態にカゝかるグロ一プラズマ発生装置の概略構成を示 す図である。グロ一プラズマ発生装置 1は、チャンバ一部材 2と、電圧印加装置 3とを 備え、チャンバ一部材 2内に貯留される雰囲気ガスを供給するためのガス雰囲気生 成装置の一例である雰囲気ガスタンク 4と、チャンバ一部材 2に貯留される液体をチ ヤンバー部材内に供給する液体タンク 5と、チャンバ一部材 2内の圧力を測定する圧 力計 7と、チャンバ一部材 2内の圧力を調整するためのガス雰囲気生成装置の一例 である真空ポンプ 8と連結されている。雰囲気ガスタンク 4と液体タンク 5は、バルブ 8 を介してチャンバ一部材 2と開閉可能に連結されており、必要に応じて雰囲気ガス及 び液体をチャンバ一部材内に供給することができる。なお、チャンバ一部材 2は、内 部に貯留されている液体を排出可能な排出口を備えていてもよい。すなわち、液体 タンク 5から液体を供給する一方、排出ロカ 液体を排出することにより、液体の供給 と排出を連続的に行 ヽながらプラズマを発生させるようにしてもょ ヽ。  [0036] FIG. 1 is a diagram showing a schematic configuration of a glow plasma generator according to a first embodiment of the present invention. The glow plasma generator 1 includes a chamber member 2 and a voltage applying device 3, and an atmosphere gas tank 4, which is an example of a gas atmosphere generation device for supplying the atmosphere gas stored in the chamber member 2. A liquid tank 5 for supplying the liquid stored in the chamber member 2 into the chamber member, a pressure gauge 7 for measuring the pressure in the chamber member 2, and adjusting the pressure in the chamber member 2 It is connected to a vacuum pump 8 which is an example of a gas atmosphere generating device for the purpose. The atmospheric gas tank 4 and the liquid tank 5 are connected to the chamber member 2 through a valve 8 so as to be openable and closable, and can supply atmospheric gas and liquid into the chamber member as necessary. The chamber member 2 may include a discharge port that can discharge the liquid stored in the inside. That is, while supplying the liquid from the liquid tank 5 and discharging the discharge loca liquid, the plasma may be generated while continuously supplying and discharging the liquid.
[0037] チャンバ一部材 2は図 2Aに示すように、貯留部の一例としての誘電体材料で構成 された円筒形の容器 10を有する。本実施形態では、 φ 40mmのガラス製の部材が 用いられている。チャンバ一部材に用いられる容器 10は、本実施形態においては、 全体がガラスで構成されているが、部分的に誘電体材料が設けられているような構成 であってもよい。例えば、後述する外部電極 12が設けられている部分のみを誘電体 材料とすることもできる。なお、容器 10は円筒形の他、角柱形に構成されていてもよ い。  [0037] As shown in FIG. 2A, the chamber member 2 has a cylindrical container 10 made of a dielectric material as an example of a reservoir. In the present embodiment, a glass member having a diameter of 40 mm is used. In the present embodiment, the container 10 used as a member of the chamber is entirely made of glass, but may be configured such that a dielectric material is partially provided. For example, only a portion where an external electrode 12 described later is provided can be used as a dielectric material. The container 10 may have a prismatic shape in addition to the cylindrical shape.
[0038] 容器 10は、周壁 14の上下に位置する上壁 13a、下壁 13bによって実質的に密閉さ れた構造を有している。上壁 13a、下壁 13bは容器の上下に別部材として設けられた 蓋のような部材で構成されて 、てもよ 、し、容器 10と一体的に構成されて 、てもよ ヽ 。また、必ずしも上壁 13a、下壁 13bは誘電体材料で構成されている必要はなぐ例 えば、金属などを用いることもできる。  The container 10 has a structure that is substantially sealed by an upper wall 13a and a lower wall 13b positioned above and below the peripheral wall 14. The upper wall 13a and the lower wall 13b may be configured by members such as lids provided as separate members on the upper and lower sides of the container, or may be configured integrally with the container 10. Further, the upper wall 13a and the lower wall 13b are not necessarily made of a dielectric material. For example, a metal or the like can be used.
[0039] 密閉された容器の内部には液体と雰囲気ガスを貯留することができる。液体と雰囲 気ガスの貯留割合は特に限定はな ヽが、容器の容量の半分程度の液体を貯留し、 半分を雰囲気ガスとすることが好ましい。チャンバ一部材 2内に貯留される液体 100 は、特に制限はなぐ後述するように当該グロ一プラズマ発生装置を液体処理装置な どに用いた場合、当該処理対象の液体を貯留させることができる。なお、液体は後述 するように、液体処理に用いられる対象の液体を貯留することになるため、例えば、 液体処理を行わな 、場合、すなわち単にグロ一プラズマを発生させた 、だけのような 場合は、容器内に液体を貯留する必要はない。なお、液体を貯留しなくても、後述の 通り、本実施形態に力かるグロ一プラズマ発生装置によれば、定常的なグローブラズ マの発生'維持ができることは 、うまでもな!/、。 [0039] Liquid and atmospheric gas can be stored inside the sealed container. Liquid and atmosphere The gas gas storage ratio is not particularly limited, but it is preferable to store about half of the capacity of the container and to use half of the gas as the atmospheric gas. The liquid 100 stored in the chamber member 2 is not particularly limited, and can store the liquid to be processed when the glow plasma generator is used in a liquid processing apparatus or the like as will be described later. As will be described later, since the liquid stores the target liquid used for liquid processing, for example, when the liquid processing is not performed, that is, when only glow plasma is generated. Need not store liquid in the container. It should be noted that, without storing liquid, as described later, according to the glow plasma generator that works on this embodiment, it is possible to generate and maintain a steady globe plasma!
[0040] また、雰囲気ガス 101は特に制限はなぐモノマーガス、反応性ガスなどの種々の ガスを用いてプラズマプロセスを行うことができる。ただし、ヘリウムやアルゴンなどの 希ガスは他の分子ガスに比べて特に高 ヽ準安定励起状態を持つので、混入された ガスを効率よく解離し、後続する化学反応を容易に起こさせることができる。また、例 えば、容器内の圧力を下げることによって貯留されている液体 (例えば水)が沸騰す ることによって生じる水蒸気を雰囲気ガスとすることもできる。なお、この場合、雰囲気 ガスは液体タンクから供給されるため、別途燃料タンクを設けなくてもよい。  [0040] The atmospheric gas 101 can be subjected to a plasma process using various gases such as a monomer gas and a reactive gas that are not particularly limited. However, since noble gases such as helium and argon have a particularly high quasi-stable excited state compared to other molecular gases, the mixed gas can be efficiently dissociated and the subsequent chemical reaction can be easily caused. . For example, water vapor generated by boiling a liquid (for example, water) stored by lowering the pressure in the container can be used as the atmospheric gas. In this case, since the atmospheric gas is supplied from the liquid tank, it is not necessary to provide a separate fuel tank.
[0041] チャンバ一部材 2には、上壁 13aと下壁 13bを貫通するように配置された第 2電極 の一例としての内部電極 11が設けられている。内部電極は断面円形でありまつすぐ な棒状の針金で構成されて!ヽる。内部電極の材質は金属であれば特に制限はなぐ 用途に応じて適宜選択することができる。例えば、比較的硬くて腐食に強いタンダス テンやステンレスなどを用いることもできる。また、二次電子放出係数の大きな材料を 表面に塗布してもよい。内部電極 11は、容器の中心軸に対して偏心した位置に中心 軸に平行になるように設けられる。したがって、内部電極と容器 10の周壁 14内側との 容器 10の高さ方向の距離は、内部電極 11の延在方向位置にかかわらず等しくなつ ている。一方、内部電極と容器 10の周壁との周方向の距離は、内部電極を中心とし た周方向に応じて異なることとなる。本実施形態においては、ステンレス製の針金( Φ [0041] The chamber member 2 is provided with an internal electrode 11 as an example of a second electrode arranged so as to penetrate the upper wall 13a and the lower wall 13b. The internal electrode has a circular cross-section and is composed of straight wire rods! The material of the internal electrode is not particularly limited as long as it is a metal, and can be appropriately selected according to the application. For example, tanta- sten or stainless steel that is relatively hard and resistant to corrosion can be used. Further, a material having a large secondary electron emission coefficient may be applied to the surface. The internal electrode 11 is provided at a position eccentric to the central axis of the container so as to be parallel to the central axis. Therefore, the distance in the height direction of the container 10 between the internal electrode and the inside of the peripheral wall 14 of the container 10 is the same regardless of the position in the extending direction of the internal electrode 11. On the other hand, the distance in the circumferential direction between the internal electrode and the peripheral wall of the container 10 varies depending on the circumferential direction around the internal electrode. In the present embodiment, a stainless steel wire (Φ
5mm)で構成され、周壁 14内側に接触する程度に近接して配置される。内部電極 1 1を容器の周壁 14の内側面に接触させるように配置することにより、後述する電極間 距離のレンジを広くすることができ、放電経路をごく短くして高圧においてもグローブ ラズマを発生させやすくすることができる。 5 mm), and is arranged close enough to contact the inside of the peripheral wall 14. By disposing the internal electrode 1 1 in contact with the inner surface of the peripheral wall 14 of the container, the electrode The range of the distance can be widened, and the discharge path can be made very short to make it easy to generate globe plasma even at high pressure.
[0042] また、容器 10の周壁 14の外側面には、第 1電極の一例としての外部電極 12が設 けられる。外部電極 12は、周壁 14の外周面に沿って設けられた板状の電極である。 本実施形態では、容器の高さ方向には中間部分に、周方向には周壁 14の一部に約 半周にわたって設けられている。外部電極を部分的に設ける場合には、少なくとも電 極の一部分が容器 10内に貯留される液体の液面よりも高くなるように配置されること が好ましい。なお、外部電極は、周方向に周壁 14の全周にわたって設けられていて もよいし、容器 10の高さ方向に全体にわたって設けられていてもよい。外部電極 12 を設けることによって、内部電極 11と外部電極 12との電極間距離は連続的に分布す る。  In addition, an external electrode 12 as an example of a first electrode is provided on the outer surface of the peripheral wall 14 of the container 10. The external electrode 12 is a plate-like electrode provided along the outer peripheral surface of the peripheral wall 14. In the present embodiment, the container is provided in an intermediate part in the height direction of the container and in a part of the peripheral wall 14 in the circumferential direction over a half circumference. When the external electrode is partially provided, it is preferable that at least a part of the electrode is arranged so as to be higher than the liquid level of the liquid stored in the container 10. The external electrode may be provided over the entire circumference of the peripheral wall 14 in the circumferential direction, or may be provided over the entire height direction of the container 10. By providing the external electrode 12, the distance between the internal electrode 11 and the external electrode 12 is continuously distributed.
[0043] 内部電極 11と外部電極 12との位置関係を図 2Bに示す。図 2Bは、図 2Aの線 ΠΒ— ΠΒにおける断面図である。本実施形態では、外部電極 12は、容器 10の一部 (誘電 部分)を覆う。外部電極 12 (第 1電極)と内部電極 11 (第 2電極)との間には、雰囲気 ガスの少なくとも一部と容器 10 (貯留部)の少なくとも一部とが介在している。内部電 極 11は、外部電極 12の端部近傍に位置するように配置されている。このように両電 極を配置することにより、両電極の電極間距離を、符号 Aに示すようにごく短い距離( 最短では、密着した状態)から、符号 Bに示すように長い距離 (最大では、容器 10の 直径とほぼ等しくすることができる。)まで、種々の電極間距離を実現することもできる 。このように外部電極の部分ごとに内部電極との電極間距離のレンジを広くすること ができることによって、後述するように種々の条件によっても定常的なグロ一プラズマ を生成、維持させることができる。  [0043] The positional relationship between the internal electrode 11 and the external electrode 12 is shown in FIG. 2B. 2B is a cross-sectional view taken along line ΠΒ-ΠΒ in FIG. 2A. In the present embodiment, the external electrode 12 covers a part (dielectric part) of the container 10. Between the external electrode 12 (first electrode) and the internal electrode 11 (second electrode), at least a part of the atmospheric gas and at least a part of the container 10 (reservoir) are interposed. The internal electrode 11 is disposed so as to be positioned near the end of the external electrode 12. By arranging both electrodes in this way, the distance between the electrodes is changed from a very short distance (closely in the shortest state) as shown by symbol A to a long distance (maximum at maximum) as shown by symbol B. Various electrode distances can also be realized, up to approximately the diameter of the container 10). As described above, since the range of the distance between the inner electrode and the inner electrode can be widened for each portion of the outer electrode, a steady glow plasma can be generated and maintained under various conditions as described later.
[0044] なお、本実施形態における電極間距離というのは、内部電極と外部電極との間隔よ りも、内部電極 11と容器 10の周壁の内側面との距離 (雰囲気ガスの少なくとも一部が 存在する領域の外部電極 12の側と内部電極 11の側との間の距離)を意味するのが 本質的である。詳細は、後述される。  Note that the interelectrode distance in the present embodiment refers to the distance between the internal electrode 11 and the inner side surface of the peripheral wall of the container 10 (at least a part of the atmospheric gas) rather than the distance between the internal electrode and the external electrode. It is essential to mean the distance between the outer electrode 12 side and the inner electrode 11 side of the existing region. Details will be described later.
[0045] 以上、図 1、図 2Aおよび図 2Bを参照して、本発明の第 1実施形態に力かるグロ一 プラズマ発生装置を説明した。 [0046] 本発明の第 1実施形態に力かるグロ一プラズマ発生装置においては、容器 10は「 貯留部」に対応し、容器 10のうちの誘電部分は「貯留部の誘電部分」に対応し、外部 電極 12は「第 1電極」に対応し、内部電極 11は「第 2電極」に対応する。さら〖こ、雰囲 気ガスの少なくとも一部の外部電極 12の側と内部電極 11の側との間の距離(図 2B に示されている符号 A、符号 B)力 部分的に異なる。 [0045] As described above, the glow plasma generator that works on the first embodiment of the present invention has been described with reference to FIGS. 1, 2A, and 2B. In the glow plasma generating apparatus according to the first embodiment of the present invention, the container 10 corresponds to the “reservoir”, and the dielectric portion of the container 10 corresponds to the “dielectric portion of the reservoir”. The external electrode 12 corresponds to the “first electrode”, and the internal electrode 11 corresponds to the “second electrode”. Further, the distance between the side of the external electrode 12 and the side of the internal electrode 11 (symbol A, symbol B shown in FIG. 2B) of at least a part of the atmospheric gas is partially different.
[0047] なお、本発明の第 1実施形態のグロ一プラズマ発生装置においては、外部電極 12 と容器 10の誘電部分とが接触することに限定されない。外部電極 (第 1電極)と内部 電極 (第 2電極)との間に雰囲気ガスの少なくとも一部と容器 10 (貯留部)の誘電部分 とが介在しており、雰囲気ガスの少なくとも一部のうちの第 1電極の側と第 2電極の側 との間の距離が、部分的に異なっている限りにおいては、外部電極 12と容器 10の誘 電部分とが非接触でも良い。  Note that the glow plasma generator of the first embodiment of the present invention is not limited to the contact between the external electrode 12 and the dielectric portion of the container 10. Between the external electrode (first electrode) and the internal electrode (second electrode), at least a part of the atmospheric gas and the dielectric part of the container 10 (reservoir) are interposed. As long as the distance between the first electrode side and the second electrode side is partially different, the external electrode 12 and the induction portion of the container 10 may be non-contact.
[0048] さらに、容器 10の全てが誘電体であることに限定されない。外部電極と内部電極と の間に雰囲気ガスの少なくとも一部と容器 10の少なくとも一部とが介在している限り は、容器 10の少なくとも一部が誘電部分であればよい。  [0048] Furthermore, it is not limited that all of the container 10 is a dielectric. As long as at least a part of the atmospheric gas and at least a part of the container 10 are interposed between the external electrode and the internal electrode, at least a part of the container 10 may be a dielectric part.
[0049] 図 3A,図 3Bに内部電極と外部電極の配置関係の変形例を示す。図 3Aにおいて は、外部電極 12が容器 10の全周にわたって配置されており、また、内部電極 11を 2 本用いている状態である。この例では、電極間距離のレンジを広くすることができる一 方、内部電極と外部電極との表面積比が大きく異なるため、内部電極を複数用い、 放電経路を多数確保したものである。また、図 3Bにおいては、外部電極は、容器 10 の周方向に対し約半周にわたつて設けられて ヽるが、内部電極 11が外部電極 12の 周方向中間部分に位置している。これにより、電極間距離のレンジを広くすることは できないが、内部電極に対して種々の方向に同じ程度の電極間距離だけ離れた放 電経路をとることができ、より多くのプラズマを発生させることができる。  FIG. 3A and FIG. 3B show a modification of the arrangement relationship between the internal electrode and the external electrode. In FIG. 3A, the external electrode 12 is arranged over the entire circumference of the container 10 and two internal electrodes 11 are used. In this example, the range of the distance between the electrodes can be widened, but the surface area ratio between the internal electrode and the external electrode is greatly different, so that a plurality of internal electrodes are used and a large number of discharge paths are secured. In FIG. 3B, the external electrode is provided about half a circumference with respect to the circumferential direction of the container 10, but the internal electrode 11 is located in the circumferential intermediate portion of the external electrode 12. As a result, the range of the distance between the electrodes cannot be widened, but it is possible to take discharge paths that are separated by the same distance between the electrodes in various directions with respect to the internal electrodes, thereby generating more plasma. be able to.
[0050] 電圧印加装置 3は、内部電極 11及び外部電極 12に高周波電力を供給するための 電源 3である。本実施形態においては、使用可能周波数の関係より 13. 56MHzを 使用し、 20-100W, 1000Vの高周波電力を用いている。高周波電源として用いら れる周波数は概ね 10kHz〜100MHz程度であることが好ましぐこれらの範囲から 大幅に外れると定常的なグロ一放電の生成に悪影響を及ぼしやすくなる場合がある 。また、後述するように本実施形態に力かるグロ一プラズマ発生装置 1は、液相と気 相とが共存した状態でグロ一プラズマを発生させることも可能であり、当該液相の水 分の影響で高周波電源の負荷インダクタンスが変化するため、整流調整を行うことが 好ましい。 The voltage application device 3 is a power source 3 for supplying high frequency power to the internal electrode 11 and the external electrode 12. In this embodiment, 13.56 MHz is used because of the usable frequency, and high frequency power of 20-100 W and 1000 V is used. The frequency used as a high-frequency power supply is preferably about 10 kHz to 100 MHz, and if it deviates significantly from these ranges, it may easily adversely affect the generation of steady glow discharge. . Further, as will be described later, the glow plasma generator 1 which is effective in this embodiment can also generate glow plasma in a state where the liquid phase and the gas phase coexist, and the water content of the liquid phase can be generated. Since the load inductance of the high frequency power supply changes due to the influence, it is preferable to perform rectification adjustment.
[0051] 整流調整のために用いられる整流器の構成を図 4に示す。高周波電源 30から出力 されたエネルギーを、効率良く負荷となる電極に印加するためには、負荷のインピー ダンスと電源のインピーダンスとをマッチングさせる必要がある。マッチングが取れて Vヽな 、と、負荷で全てのエネルギーが消費されずに反射され高周波電源 30へと戻る 。これは、エネルギー効率が悪いのみならず、電源の破壊につながる恐れがある。そ のために、容量可変のコンデンサ 33, 34や容量可変のコイル 32などの無損失な回 路素子力も構成されるマッチングボックスを、高周波電源と負荷の間に挿入すること により、負荷のリアクタンス成分をキャンセルして、インピーダンスのマッチングを行う。 なお、マッチングボックス力もの出力端子 36は、チャンバ一部材 2の電極にそれぞれ 接続される。  [0051] Fig. 4 shows the configuration of a rectifier used for rectification adjustment. In order to efficiently apply the energy output from the high-frequency power supply 30 to the electrode serving as a load, it is necessary to match the impedance of the load with the impedance of the power supply. If the matching is V ヽ, all energy is not consumed by the load, but is reflected and returned to the high frequency power supply 30. This is not only inefficient in energy but can also lead to destruction of the power supply. For this purpose, a reactance component of the load can be obtained by inserting a matching box that also includes lossless circuit element force, such as variable capacity capacitors 33, 34 and variable capacity coil 32, between the high frequency power supply and the load. Is canceled and impedance matching is performed. The output terminal 36 for the matching box force is connected to the electrode of the chamber member 2.
[0052] 次に本実施形態に力かるグロ一プラズマ発生装置の動作について説明する。本実 施形態に力かるグロ一プラズマ発生装置 1は、上述の通り、内部電極との電極間距 離は外部電極の場所により異なる構成を有している点に特徴を有する。電圧印加装 置 3により両電極間に電圧を印加する。このとき、上述の通り電極間距離は分布を有 し一定でないため、当該チャンバ一部材内の圧力状態に応じて、棒状の内部電極と 外部電極が設けられている箇所の容器内側面との間で自発的に放電経路が決定さ れ、当該決定された特定の放電経路から誘電体バリア放電が発生する。  [0052] Next, the operation of the glow plasma generating apparatus that works according to the present embodiment will be described. As described above, the glow plasma generating apparatus 1 that is effective in the present embodiment is characterized in that the distance between the internal electrode and the internal electrode has a different configuration depending on the location of the external electrode. A voltage is applied between both electrodes by voltage application device 3. At this time, since the distance between the electrodes has a distribution and is not constant as described above, the distance between the rod-shaped internal electrode and the inner surface of the container where the external electrode is provided depends on the pressure state in the chamber member. Thus, a discharge path is determined spontaneously, and a dielectric barrier discharge is generated from the determined specific discharge path.
[0053] 当該発生した放電は、内部電極と当該外部電極に接触している容器の周壁の内側 面との間で発生する。両者は直流的に絶縁した関係となっている力 外部電極によつ て誘電体材料である容器が、電気的エネルギーが高い状態となり、誘電体バリア放 電を発生させる。したがって、本実施形態における電極間距離というのは、内部電極 と外部電極との間隔よりも、内部電極と当該外部電極に接触して!/ヽる容器の周壁の 内側面との距離 (雰囲気ガスの少なくとも一部のうちの外部電極の側と内部電極の側 との間の距離)を意味するのが本質的である。当該発生したバリア放電は、グローブ ラズマとして維持できる電極間距離の放電経路の領域において広がり、当該領域に ぉ ヽて継続的に放電が行われる。 [0053] The generated discharge is generated between the inner electrode and the inner surface of the peripheral wall of the container in contact with the outer electrode. The force is in a DC-insulated relationship. The container, which is a dielectric material, is brought into a high electrical energy state by the external electrode, and the dielectric barrier discharge is generated. Therefore, the distance between the electrodes in this embodiment is not the distance between the internal electrode and the external electrode, but the distance between the internal electrode and the inner surface of the peripheral wall of the container that touches the external electrode (atmospheric gas). Is essentially the distance between the external electrode side and the internal electrode side of at least a part of the above. The generated barrier discharge is the globe It spreads in the region of the discharge path with a distance between the electrodes that can be maintained as a laser, and discharge is continuously performed over the region.
[0054] すなわち、プラズマ放電が発生する要件としては、一般的に放電が開始する条件 であるパッシェン条件を満たす必要があると考えられている。この法則も高気圧下、 高周波放電などの特殊な条件下では完全に満たすとは限らないが、圧力と電極間 距離の積がある一定の値の時に放電開始電圧は最小となるというものである。すなわ ち、例えば、大気圧などの高気圧下では、電極間距離はごく小さなものとする必要が ある。よって、本実施形態に力かるグロ一プラズマ発生装置は、電極間距離のレンジ が広いため、放電開始のための条件を自動的に選択し、当該選択された放電経路 で発生した放電が徐々に広がっていく。したがって、一般にプラズマが発生しやすい 真空度の高 、状態から高気圧下の状態まで、広 、幅広 、レンジでのグロ一プラズマ の定常的な発生を維持することができる。具体的には、 0. 01から 10. 0気圧程度の 条件下においてグロ一プラズマを定常的に発生、維持させることができる。  [0054] That is, it is considered that a Paschen condition that is a condition for starting a discharge is generally required as a requirement for generating a plasma discharge. Although this law is not completely satisfied under special conditions such as high-pressure discharge under high pressure, the discharge starting voltage is minimized when the product of the pressure and the distance between electrodes is a certain value. That is, for example, the distance between the electrodes needs to be extremely small under high atmospheric pressure such as atmospheric pressure. Therefore, since the glow plasma generator that is useful in this embodiment has a wide range of distances between the electrodes, the conditions for starting the discharge are automatically selected, and the discharge generated in the selected discharge path gradually increases. It spreads. Therefore, it is possible to maintain the steady generation of glow plasma in a wide, wide, and range from a high vacuum state where plasma is generally generated to a high pressure state. Specifically, a glow plasma can be generated and maintained constantly under conditions of about 0.01 to 10.0 atm.
[0055] なお、上述のパッシ ン則によると、大気圧下で適当な印加電圧により放電を開始 させるためには、電極間距離をミリメートルオーダーにする必要があり、プラズマも極 めて小さくなる。よって、グロ一放電開示において、ポンプ 6によって、容器 10内の気 圧を若干下げた状態でプラズマを点火し、その後、雰囲気ガスタンク 4から雰囲気ガ スを供給してガス圧を上昇させるように操作してもよ 、。  [0055] According to the above-mentioned Passing Law, in order to start discharge with an appropriate applied voltage under atmospheric pressure, the distance between the electrodes needs to be in the millimeter order, and the plasma becomes extremely small. Therefore, in the Glow Discharge Disclosure, the plasma is ignited by the pump 6 with the pressure inside the container 10 slightly lowered, and then the atmosphere gas is supplied from the atmosphere gas tank 4 to increase the gas pressure. Even so.
[0056] なお、本実施形態に力かるグロ一プラズマ発生装置は、広い圧力レンジにおいてグ ロープラズマを定常的に発生させることができるという利点を有する。よって、グロ一 プラズマとして維持できる電極間距離がチャンバ一部材 2内部の圧力などの諸条件 によって異なるという性質に基づいて、目的に応じて適宜チャンバ一部材 2を設計す ることが好ましい。例えば、容器 10の径を大きくすれば、内部電極と外部電極との距 離のレンジは当然広くなる。したがって、当該大きい電極間距離でもグロ一プラズマ が発生しうるような気圧の低い環境下においてのみ使用する目的であれば、当該大 きな容器を用いて大量のプラズマを発生させることができる。しかし、大気圧近くの高 圧での使用を目的とする場合であれば、大きい容器を用いたとしてもプラズマは一部 の放電経路でのみの放電しか実現できず、その結果、容器内の一部でしかプラズマ が発生しない可能性がある。なお、この場合においても、高周波電力の電力量を調 整することで、放電経路を長くすることは可能である。 It should be noted that the glow plasma generator that works in the present embodiment has an advantage that it can constantly generate glow plasma in a wide pressure range. Therefore, it is preferable to appropriately design the chamber member 2 according to the purpose based on the property that the distance between the electrodes that can be maintained as a glow plasma varies depending on various conditions such as the pressure inside the chamber member 2. For example, if the diameter of the container 10 is increased, the range of the distance between the internal electrode and the external electrode is naturally widened. Therefore, a large amount of plasma can be generated using the large container if the purpose is to be used only in an environment where the atmospheric pressure is low so that the glow plasma can be generated even at the large distance between the electrodes. However, if it is intended to be used at high pressures near atmospheric pressure, even if a large vessel is used, plasma can only be discharged through a part of the discharge path, and as a result, one plasma in the vessel can be obtained. Plasma only in the department May not occur. Even in this case, it is possible to lengthen the discharge path by adjusting the amount of high-frequency power.
[0057] また、本実施形態に力かるグロ一プラズマ発生装置は、内部電極が容器 10内の高 さ方向に広 、範囲で設けられて 、るため、容器内の液体の液面のごく近くから容器 の高さ方向の広範囲、すなわち液相と接触する気相中の広 、領域にぉ ヽてプラズマ が発生する。したがって、例えば、容器 10内の気圧を低くすることによって、容器内 の液体 10が沸騰して内部電極 11が部分的に濡れ、その結果電極表面からの二次 電子供給が少なくなることによって当該部分でのプラズマが消滅した場合であっても 、内部電極の濡れていない部分力 発生した放電によりグロ一プラズマが広がり、維 持されることとなる。したがって、電極が多少濡れても放電が持続し、グロ一プラズマ を維持することできるため、液体へのプラズマ処理などの適用に用いる場合に有利と なる。よって、プラズマ化学やバイオサイエンス等への新しいプラズマプロセスの展開 が期待できる。 [0057] In addition, the glow plasma generator according to the present embodiment has an internal electrode that is wide and wide in the height direction in the container 10, and is therefore very close to the liquid level of the liquid in the container. Plasma is generated over a wide area in the height direction of the container, that is, a wide area in the gas phase in contact with the liquid phase. Therefore, for example, by lowering the atmospheric pressure in the container 10, the liquid 10 in the container boils and the internal electrode 11 is partially wetted. Even when the plasma is extinguished, the glow plasma spreads and is maintained by the discharge generated by the partial force of the internal electrode not wetted. Therefore, even if the electrode is somewhat wet, the discharge can be maintained and the glow plasma can be maintained, which is advantageous when used for plasma treatment to liquids. Therefore, the development of new plasma processes for plasma chemistry and bioscience can be expected.
[0058] 図 5は、図 1のグロ一プラズマ発生装置に用いられるチャンバ一部材の他の実施形 態を示す図である。このチャンバ一部材 2Aは、図 2A,図 2Bに示すチャンバ一部材 と異なり、容器内に液体を雰囲気ガスとを貯留させることがなぐ液体中に雰囲気ガス をパブリングさせた状態で流動させながら供給し、当該容器内の雰囲気ガス気相中 にグロ一プラズマを発生させるような構成である。  FIG. 5 is a view showing another embodiment of a chamber member used in the glow plasma generator of FIG. Unlike the chamber member shown in FIGS. 2A and 2B, the chamber member 2A is supplied while flowing the liquid in a state where the atmosphere gas is published in the liquid that does not store the liquid in the container. The configuration is such that glow plasma is generated in the atmospheric gas phase in the container.
[0059] 図 5のチャンバ一装置 2Aは、水平方向に配置された誘電体材料で構成された筒 状の容器 10aで構成されている。容器 10aには、図 5において右側から液体が連続 的に供給され図示左側へ流動する。このときの液体の流れが、層流とならないように することが好ましぐ例えば、容器に邪魔板などを設け、液体の流れを乱すようにして ちょい。  [0059] The chamber 1A 2A shown in FIG. 5 is composed of a cylindrical container 10a made of a dielectric material arranged in the horizontal direction. The liquid is continuously supplied from the right side in FIG. 5 to the container 10a and flows to the left side in the figure. It is preferable to prevent the liquid flow at this time from becoming laminar. For example, a baffle plate is provided in the container to disturb the liquid flow.
[0060] 容器 10aは、雰囲気ガスを供給する雰囲気ガス供給管 16と接続されており、当該 雰囲気ガス供給管 16の終端に設けられたノズル 17より雰囲気ガスが容器 10a内に 供給される。また、ノズルを容器 10aの下面に設けているため、雰囲気ガスの気泡に より液体が乱されやすくなる。なお、図 5においては、ノズル 17は 1箇所にのみ設けら れているが、複数設けるようにしてもよぐまた、微細な気泡が多数発生するために多 孔ノズルや種々のバブラ一を用いるようにしてもよい。バブラ一の例としては、プロべ ラで気泡を攪拌するもの、ラパールノズルを用いるもの、流体の剪断力を用いて微小 気泡を創出するものなどが例示できる。液体中に吐出される気泡を多くすると、液体 の流れを乱し、後述するプラズマ処理において、プラズマと液体との接触を多くする ことができる。 [0060] The container 10a is connected to an atmosphere gas supply pipe 16 for supplying an atmosphere gas, and the atmosphere gas is supplied into the container 10a from a nozzle 17 provided at the end of the atmosphere gas supply pipe 16. Further, since the nozzle is provided on the lower surface of the container 10a, the liquid is easily disturbed by bubbles of the atmospheric gas. In FIG. 5, the nozzle 17 is provided only at one location. However, a plurality of nozzles 17 may be provided, and a large number of fine bubbles are generated. A hole nozzle or various bubblers may be used. Examples of bubblers include those that stir bubbles with a probe, those that use lapar nozzles, and those that create microbubbles using the shearing force of fluid. Increasing the number of bubbles discharged into the liquid disturbs the flow of the liquid, and can increase the contact between the plasma and the liquid in the plasma processing described later.
[0061] 容器 10aの内部には、内部電極 11aがその容器の延在方向に沿って配置されてい る。内部電極 11aは、容器 10の中心に対して上側、具体的には、容器 10aの内壁の 最も高い位置に中心軸に平行になるように延在して設けられ、容器 10aに設けられた 貫通孔 18を通して外部につながつている。  [0061] Inside the container 10a, an internal electrode 11a is arranged along the extending direction of the container. The internal electrode 11a is provided on the upper side with respect to the center of the container 10, specifically, at the highest position on the inner wall of the container 10a so as to extend in parallel with the central axis, and is provided through the container 10a. Connected to the outside through hole 18.
[0062] また、容器 10aの外周面には外周面に沿って設けられる板状電極である外部電極 12aが設けられている。外部電極 12aは、内部電極 11aが設けられている位置にお ける外周面 14を被覆するように配置される。本実施形態では、外部電極の中間位置 に内部電極 11aが位置する。また、外部電極は容器 10aの周方向には周壁 14の一 部に約半周にわたって設けられている。なお、外部電極 14aは、容器 10aの周方向 には周壁 14の全周にわたつて設けられてもよ!/、。  [0062] Further, an outer electrode 12a, which is a plate-like electrode provided along the outer peripheral surface, is provided on the outer peripheral surface of the container 10a. The external electrode 12a is disposed so as to cover the outer peripheral surface 14 at a position where the internal electrode 11a is provided. In the present embodiment, the internal electrode 11a is located at an intermediate position between the external electrodes. In addition, the external electrode is provided on a part of the peripheral wall 14 in the circumferential direction of the container 10a over a half circumference. The external electrode 14a may be provided over the entire circumference of the peripheral wall 14 in the circumferential direction of the container 10a! /.
[0063] 図 6は、図 5の線 VI— VIにおける断面図である。本実施形態においては容器 10a内 を液体 100が流動する構成となっているが、すなわち、容器 10aに供給された液体 中に、内部電極 11aが存在するよりも上流側において、ノズル 17から雰囲気ガスが 供給され、液体 100中を気泡 102となって液体 100の流れに伴って、容器内を流動 する。  FIG. 6 is a cross-sectional view taken along line VI-VI in FIG. In the present embodiment, the liquid 100 flows in the container 10a, that is, the atmosphere gas from the nozzle 17 is upstream of the internal electrode 11a in the liquid supplied to the container 10a. Is supplied, becomes bubbles 102 in the liquid 100, and flows in the container as the liquid 100 flows.
[0064] また、本実施形態においても、内部電極 11aとの電極間距離は、外部電極 12aの 場所により異なる構成を有している点に特徴を有する。電圧印加装置 3により両電極 間に電圧が印加されると、上述の通り電極間距離は一定でないため、当該チャンバ 一部材内の圧力状態に応じて、棒状の内部電極 11aと容器 10aの外周面に沿って 設けられた外部電極 12aの間で自発的に放電経路が決定され、当該決定された特 定の放電経路から誘電体バリア放電が発生する。  [0064] Also in the present embodiment, the interelectrode distance from the internal electrode 11a is characterized in that it has a different configuration depending on the location of the external electrode 12a. When a voltage is applied between the two electrodes by the voltage application device 3, the distance between the electrodes is not constant as described above. Therefore, the outer surfaces of the rod-shaped internal electrode 11a and the container 10a are changed according to the pressure state in one member of the chamber. A discharge path is spontaneously determined between the external electrodes 12a provided along the line, and a dielectric barrier discharge is generated from the determined specific discharge path.
[0065] 本実施形態においては、容器 10a内の圧力は、ほぼ大気圧に等しくなるため、電 極間距離が大きい部分が放電経路となることは困難である。したがって、気泡サイズ を小さくし、電極間にこのサイズの気泡 102が存在するようにすることが好ましい。し たがって、容器 10aの径を小さくし、容器中 10aを流れる液体の表面とグロ一プラズマ とが接触するようにすることが好ましい。具体的には、容器 10aの内径は φ 20mm程 度に留めておくことが好ましい。 [0065] In the present embodiment, the pressure in the container 10a is substantially equal to the atmospheric pressure, so it is difficult for a portion having a large interelectrode distance to be a discharge path. Therefore, bubble size It is preferable that the bubble 102 of this size exists between the electrodes. Therefore, it is preferable to reduce the diameter of the container 10a so that the surface of the liquid flowing in the container 10a contacts the glow plasma. Specifically, the inner diameter of the container 10a is preferably kept at about φ20 mm.
[0066] 本実施形態に力かるグロ一プラズマ装置は、容器内に存在する気泡内部に定常的 にグロ一プラズマを発生 ·維持させることができる。また、上述のように気泡サイズは小 さくすることが好ましいため、気相と液相との接触面積を大きくすることができ、液体へ のプラズマ処理などの適用に用いる場合に有利となる。 [0066] The glow plasma apparatus according to the present embodiment can generate and maintain glow plasma in a steady manner inside the bubbles present in the container. In addition, since it is preferable to reduce the bubble size as described above, the contact area between the gas phase and the liquid phase can be increased, which is advantageous when used for applications such as plasma treatment to liquids.
[0067] なお、本実施形態に力かるグロ一プラズマ発生装置は、容器の内側の一部にのみ 液相を流動させるようにし、気相が容器内の内部電極 11aの周囲に存在するようにし て用いることもできる。この場合は、内部電極 11aが容器 10a内の中心軸方向に長く 延在して設けられているため、部分的に内部電極 11aが濡れ、その結果電極表面か らの二次電子供給が少なくなることによって当該部分でのプラズマが消滅した場合で あっても、内部電極の濡れていない部分力 発生した放電によりグロ一プラズマが広 がり、維持されることとなる。したがって、電極が多少濡れても放電が持続し、グローブ ラズマを維持することできるため、液体へのプラズマ処理などの適用に用いる場合に 有利となる。よって、プラズマ化学やバイオサイエンス等への新しいプラズマプロセス の展開が期待できる。 Note that the glow plasma generator according to the present embodiment allows the liquid phase to flow only in a part of the inside of the container so that the gas phase exists around the internal electrode 11a in the container. Can also be used. In this case, since the internal electrode 11a is provided extending in the direction of the central axis in the container 10a, the internal electrode 11a is partially wetted, and as a result, the supply of secondary electrons from the electrode surface is reduced. As a result, even if the plasma in the relevant part is extinguished, the glow plasma is spread and maintained by the discharge generated by the partial force that is not wetted of the internal electrode. Therefore, even if the electrode is slightly wet, the discharge can be maintained and the globular plasma can be maintained, which is advantageous when used for applications such as plasma treatment to liquids. Therefore, the development of new plasma processes for plasma chemistry and bioscience can be expected.
[0068] 図 7は、本発明の第 2実施形態にカゝかるグロ一プラズマ発生装置の概略構成を示 す図である。このグロ一プラズマ発生装置は、チャンバ一部材 2Bを備える。チャンバ 一部材 2Bは、図 5に示すチャンバ一部材と同様に容器内に液体と雰囲気ガスとを混 在させた状態で流動させながら供給し、当該容器内の雰囲気ガス気相中にグローブ ラズマを発生させるような構成である。  [0068] FIG. 7 is a diagram showing a schematic configuration of a glow plasma generator according to the second embodiment of the present invention. This glow plasma generator includes a chamber member 2B. Similarly to the one chamber member shown in FIG. 5, the one-chamber member 2B supplies the liquid and the atmospheric gas in a mixed state while flowing and supplies the globe plasma into the atmospheric gas gas phase in the container. It is the structure which is generated.
[0069] 図 7のチャンバ一装置 2Bは、鉛直方向に配置された誘電体材料で構成された筒 状の容器 10bを備える。容器中 10bには、図 7において、下側から雰囲気ガスを供給 する雰囲気ガス供給管 22と液体を供給する液供給管 24とが接続されて 、る。雰囲 気ガス供給管 22の終端には、液供給管 24から供給された液中に細かな気泡を形成 するために微細ノズル 23が設けられている。なお、液体中に気泡を形成するための 構成は単一ノズル 23に限定されるものではなぐバブラ一として用いられる種々の構 成を用いることができる。バブラ一の例としては、プロペラで気泡を攪拌するもの、ラ バールノズルを用いるもの、流体の剪断力を用いて微小気泡を創出するものなどが 例示できる。 [0069] The chamber apparatus 2B in FIG. 7 includes a cylindrical container 10b made of a dielectric material arranged in a vertical direction. In FIG. 7, an atmospheric gas supply pipe 22 that supplies atmospheric gas from the lower side and a liquid supply pipe 24 that supplies liquid are connected to the inside 10b of the container. At the end of the atmosphere gas supply pipe 22, a fine nozzle 23 is provided to form fine bubbles in the liquid supplied from the liquid supply pipe 24. For forming bubbles in the liquid The configuration is not limited to the single nozzle 23, and various configurations used as a bubbler can be used. Examples of bubblers include those that stir bubbles with a propeller, those that use a rubber nozzle, and those that create microbubbles using the shearing force of a fluid.
[0070] 容器 10b内には、内部電極ユニット 20が挿入された状態で配置される。内部電極 ユニット 20は、誘電体材料で構成された棒状の支持部材 19の外周面に沿って螺旋 状に内部電極 l ibを巻き付けた状態で固定した構造を有する。内部電極ユニット 20 は、容器 10bの内径と略等しい外径寸法を有することが好ましい。具体的には、支持 部材 19の外形寸法と内部電極 l ibを構成する針金の径寸法の 2倍の合計が、容器 10bの内径と略等しくなるように設計すればよい。容器 10bと内部電極ユニットの支 持部材 19との間に形成される空間は、上述のように容器 10bに供給された液体と雰 囲気ガスが流動する流動空間 20となる。  [0070] The internal electrode unit 20 is disposed in the container 10b. The internal electrode unit 20 has a structure in which the internal electrode Lib is fixed in a spiral manner along the outer peripheral surface of a rod-shaped support member 19 made of a dielectric material. The internal electrode unit 20 preferably has an outer diameter dimension substantially equal to the inner diameter of the container 10b. Specifically, it may be designed such that the sum of the outer dimensions of the support member 19 and the diameter of the wire constituting the internal electrode l ib is approximately equal to the inner diameter of the container 10b. A space formed between the container 10b and the support member 19 of the internal electrode unit is a flow space 20 in which the liquid and the atmospheric gas supplied to the container 10b flow as described above.
[0071] 本実施形態においては、内部電極は断面円形の金属棒を用いて構成されている ため、内部電極 1 lbの周方向に対して外部電極との電極間距離が異なるように配置 される。すなわち、内部電極 l ibが容器 10bの内周面と接触している箇所において は電極間距離は最も短くなり、当該位置力も上下方向に向かうにつれて外部電極 12 bとの電極間距離が広がるように構成されて ヽる。このように電極間距離が外部電極 の部分ごとにレンジを持って構成されているため、上述したように、気相の圧力状態 に応じて、内部電極と容器の外周面に沿って設けられた外部電極の間で自発的に 放電経路が決定され、当該決定された特定の放電経路から誘電体バリア放電が発 生する。  [0071] In the present embodiment, since the internal electrode is configured using a metal rod having a circular cross section, the interelectrode distance with the external electrode is different from the circumferential direction of the internal electrode 1 lb. . That is, the distance between the electrodes is the shortest at the location where the internal electrode l ib is in contact with the inner peripheral surface of the container 10b, and the distance between the electrodes with the external electrode 12b increases as the positional force also increases in the vertical direction. Constructed. As described above, the distance between the electrodes is configured to have a range for each portion of the external electrode, and as described above, the distance between the electrodes is provided along the outer peripheral surface of the internal electrode and the container according to the pressure state of the gas phase. A discharge path is spontaneously determined between the external electrodes, and a dielectric barrier discharge is generated from the determined specific discharge path.
[0072] なお、図 1、図 2Aおよび図 2Bを参照して説明した場合と同様に、本発明の第 2実 施形態に力かるグロ一プラズマ発生装置の説明でも、電極間距離というのは、内部 電極と外部電極との間隔よりも、内部電極と容器の周壁の内側面との距離 (雰囲気ガ スの少なくとも一部のうちの外部電極の側と内部電極の側との間の距離)を意味する のが本質的である。  [0072] As in the case described with reference to FIG. 1, FIG. 2A, and FIG. 2B, in the description of the glow plasma generator that works on the second embodiment of the present invention, The distance between the internal electrode and the inner surface of the peripheral wall of the container rather than the distance between the internal electrode and the external electrode (the distance between the external electrode side and the internal electrode side of at least a part of the atmosphere gas) It is essential to mean.
[0073] また、容器 10bの外周面には外周面に沿って設けられる板状電極である外部電極 12bが設けられている。外部電極は、内部電極 11aが設けられている位置における 外周面を被覆するように配置される。本実施形態では、内部電極 l ibが位置する容 器 10bの高さ方向領域被覆するように、また、容器 10aの周方向には周壁 14の一部 に約半周にわたって設けられている。なお、外部電極 14bは、容器 10bの周方向に は周壁 14の全周にわたつて設けられてもよ!/、。 [0073] In addition, an outer electrode 12b, which is a plate-like electrode provided along the outer peripheral surface, is provided on the outer peripheral surface of the container 10b. The external electrode is at the position where the internal electrode 11a is provided. It arrange | positions so that an outer peripheral surface may be coat | covered. In the present embodiment, the inner electrode l ib is provided on a part of the peripheral wall 14 in the circumferential direction of the container 10a so as to cover the height direction region of the container 10b, and is provided over about a half circumference. The external electrode 14b may be provided over the entire circumference of the peripheral wall 14 in the circumferential direction of the container 10b! /.
[0074] 図 8は、図 7の一部断面部分拡大図である。容器 10b内に供給された液体及び雰 囲気ガスは、流動空間 21を通って上昇する。このとき、雰囲気ガス 101の気泡 102は 内部電極 l ibにからみつきながら上昇するため、内部電極 l ibの周囲は気相となり やすい。また、内部電極 l ibは、断面円形であるため、容器 10b内周面との距離がそ の周方向に異なる。この状態で電圧印加装置 3から内部電極 l ibと外部電極 12bと の間に高周波電圧が印加されると、当該気相中の圧力状態に応じて、内部電極 l ib と容器 10bの外周面 14に沿って設けられた外部電極 12bの間で自発的に放電経路 が決定され、当該決定された特定の放電経路から誘電体バリア放電が発生する。  FIG. 8 is a partially enlarged cross-sectional view of FIG. The liquid and the atmospheric gas supplied into the container 10b rise through the flow space 21. At this time, since the bubbles 102 of the atmospheric gas 101 rise while entangled with the internal electrode l ib, the surroundings of the internal electrode l ib tend to be in a gas phase. Further, since the internal electrode l ib is circular in cross section, the distance from the inner peripheral surface of the container 10b differs in the circumferential direction. In this state, when a high frequency voltage is applied from the voltage application device 3 between the internal electrode l ib and the external electrode 12b, the internal electrode l ib and the outer peripheral surface 14 of the container 10b according to the pressure state in the gas phase. A discharge path is spontaneously determined between the external electrodes 12b provided along the line, and a dielectric barrier discharge is generated from the determined specific discharge path.
[0075] 当該発生した放電は、内部電極と当該外部電極に接触している容器の周壁の内側 面との間で発生する。両者は直流的に絶縁した関係となっている力 外部電極によつ て誘電体材料である容器が、電気的エネルギーが高い状態となり、誘電体バリア放 電を発生させる。当該発生したバリア放電は、グロ一プラズマとして維持できる電極 間距離の放電経路の領域において広がり、当該領域において継続的に放電が行わ れる。図 7および図 8を参照して、曲率を有する内部電極を備えたグロ一プラズマ発 生装置を説明した。曲率を有する内部電極に雰囲気ガスと液体とが絡み付いて流れ るため、反応効率が高くなる。  [0075] The generated discharge is generated between the inner electrode and the inner surface of the peripheral wall of the container in contact with the outer electrode. The force is in a DC-insulated relationship. The container, which is a dielectric material, is brought into a high electrical energy state by the external electrode, and the dielectric barrier discharge is generated. The generated barrier discharge spreads in the region of the discharge path having a distance between the electrodes that can be maintained as a glow plasma, and discharge is continuously performed in the region. With reference to FIG. 7 and FIG. 8, a glow plasma generating apparatus provided with an internal electrode having a curvature has been described. Since the atmosphere gas and liquid flow through the internal electrode with curvature, the reaction efficiency increases.
[0076] また、本実施形態に力かるグロ一プラズマ発生装置は、内部電極 l ibが容器 10b 内にお 、て電極面積が大き 、ため、気相中の広 、領域にぉ 、てプラズマが発生す る。また、気相は液体と接触しており、当該液体とプラズマとが接触することとなる。し たがって、電極が多少濡れても放電が持続してグロ一プラズマを維持することでき、 また、気相と液相の接触面積を大きくすることができるため、液体へのプラズマ処理 などの適用に用いる場合に有利となる。よって、プラズマが液体に接触することにより 水溶性物質中にラジカル、高エネルギー原子、紫外線などを供給することが可能とな り、プラズマ化学やバイオサイエンス等への新し 、プラズマプロセスの展開が期待で きる。本実施形態に力かるグロ一プラズマ発生装置は容器内部の気圧が高くてもプ ラズマを発生させることができ、真空引きを必要としない点で生体物質などへの適合 性もよい。 [0076] Further, in the glow plasma generator according to the present embodiment, since the internal electrode rib is in the container 10b and the electrode area is large, the plasma is generated over a wide area in the gas phase. appear. The gas phase is in contact with the liquid, and the liquid and the plasma come into contact with each other. Therefore, even if the electrode is somewhat wet, the discharge can be sustained and the glow plasma can be maintained, and the contact area between the gas phase and the liquid phase can be increased. This is advantageous when used in Therefore, it is possible to supply radicals, high-energy atoms, ultraviolet rays, etc. into water-soluble substances when the plasma comes into contact with the liquid, and new developments in plasma chemistry, biosciences, etc. are expected to develop plasma processes. so wear. The glow plasma generator that is useful in this embodiment can generate plasma even when the pressure inside the container is high, and is also compatible with biological materials and the like because it does not require evacuation.
[0077] 上記各実施形態に力かるチャンバ一部材の構成を有するグロ一プラズマ発生装置 を用いて放電を行うことにより、液体表面並びに液中にてグロ一状の放電が実現され 、対象となる液体に対して均一に種々の形態にてエネルギーを供給することが可能と なる。これにより従来にはな力つた液中化学反応に対するプラズマプロセスを行うこと が可能となり、新しい技術展開が期待される。  [0077] By performing discharge using the glow plasma generator having the configuration of one chamber member that is effective in each of the above embodiments, a glow discharge is realized on the liquid surface and in the liquid. It is possible to supply energy uniformly in various forms to the liquid. As a result, it has become possible to perform a plasma process for chemical reactions in liquids, which has been difficult in the past, and new technological developments are expected.
[0078] 以上、図 2A、図 2B、図 3A、図 3B、図 5〜図 8、図 10A〜図 10D、図 11Aおよび 図 11Bを参照して、容器の内部には内部電極が設けられ、容器の外部には外部電 極が設けられる形態を説明した。  [0078] As described above, referring to FIGS. 2A, 2B, 3A, 3B, 5 to 8, 10A to 10D, 11A, and 11B, an internal electrode is provided inside the container, In the above description, the external electrode is provided outside the container.
[0079] しかし、本発明においては、 2つの電極のそれぞれの位置力 容器の内部と外部と に位置することに限定されない。 2つの電極のうちの一方 (第 1電極)と他方 (第 2電極 )との間に雰囲気ガスの少なくとも一部と容器 (貯留部)の誘電部分とが介在しており 、雰囲気ガスの少なくとも一部のうちの第 1電極の側と第 2電極の側との間の距離が、 部分的に異なる限りは、 2つの電極が容器の外部に位置しても良いし、容器の内部 に位置しても良い。  [0079] However, in the present invention, the position force of each of the two electrodes is not limited to being positioned inside and outside the container. At least part of the atmospheric gas and the dielectric part of the container (reservoir) are interposed between one (first electrode) and the other (second electrode) of the two electrodes. As long as the distance between the first electrode side and the second electrode side of the part is partially different, the two electrodes may be located outside the container, or located inside the container. May be.
[0080] 図 12は、本発明の実施形態の一つ(グロ一プラズマ発生装置 120)を示す。グロ一 プラズマ発生装置 120は、第 1電極 102と第 2電極 104と容器 106とを備える。容器 1 06の内部には雰囲気ガスが貯留されている。第 1電極 102と第 2電極 104とは、容器 106の外部に設けられている。  FIG. 12 shows one embodiment of the present invention (glow plasma generator 120). The glow plasma generator 120 includes a first electrode 102, a second electrode 104, and a container 106. An atmosphere gas is stored inside the container 106. The first electrode 102 and the second electrode 104 are provided outside the container 106.
[0081] 容器 106は第 1部分 108と第 2部分 110とを有する。容器 106の第 1部分 108と第 2 部分 110とは、誘電体である。  [0081] The container 106 has a first portion 108 and a second portion 110. The first portion 108 and the second portion 110 of the container 106 are dielectrics.
[0082] 第 1電極 102は、容器 106の第 1部分 108の少なくとも一部を覆うように設けられて おり、第 2電極 104は、容器 106の第 2部分 110の少なくとも一部を覆うように設けら れている。  [0082] The first electrode 102 is provided so as to cover at least a part of the first part 108 of the container 106, and the second electrode 104 is provided so as to cover at least a part of the second part 110 of the container 106. It is provided.
[0083] 第 1電極 102と第 2電極 104との間には、雰囲気ガスの少なくとも一部と容器 106の 第 1部分 108と第 2部分 110とが介在している。さらに、容器 106の第 1部分 108の壁 厚は、場所に応じて異なる。容器 106の第 2部分 110の壁厚は、場所に応じて異なら ない。第 1電極 102と第 2電極 104とは互いに平行する。その結果、容器 106の第 1 電極 102の側 108aと第 2電極 104の側 110aとの間の距離は、部分的に異なる。 [0083] Between the first electrode 102 and the second electrode 104, at least a part of the atmospheric gas and the first portion 108 and the second portion 110 of the container 106 are interposed. In addition, the wall of the first part 108 of the container 106 The thickness varies depending on the location. The wall thickness of the second part 110 of the container 106 does not vary depending on the location. The first electrode 102 and the second electrode 104 are parallel to each other. As a result, the distance between the side 108a of the first electrode 102 and the side 110a of the second electrode 104 of the container 106 is partially different.
[0084] 例えば、符号 Cに示すようにごく短い距離 (最短では、密着した状態)から、符号 D に示すように長い距離 (最大では、容器 10の幅寸法とほぼ等しくすることができる。 ) まで、容器 106の第 1電極 102の側 108aと第 2電極 104の側 110aとの間の距離を 部分的に異なるように構成しえる。  [0084] For example, from a very short distance (closely in the shortest state) as indicated by reference symbol C to a long distance as indicated by reference symbol D (maximum, it can be made substantially equal to the width dimension of the container 10). Up to this point, the distance between the side 108a of the first electrode 102 and the side 110a of the second electrode 104 of the container 106 can be configured to be partially different.
[0085] その結果、容器 106の第 1電極 102の側 108aと第 2電極 104の側 110aとの間の 距離のレンジが広くなり、種々の条件によっても定常的なグロ一プラズマを生成、維 持することができる。  [0085] As a result, the range of the distance between the first electrode 102 side 108a and the second electrode 104 side 110a of the container 106 is widened, and a steady glow plasma is generated and maintained under various conditions. Can have.
実施例  Example
[0086] 図 2A,図 2Bに示すチャンバ一装置を用いたグロ一プラズマ発生装置をプラズマ処 理装置として用いた場合の性能評価として、水接触プラズマの化学反応性を評価す るために、メチレンブルー(色素)の分解実験を水接触プラズマにて行った。メチレン ブルーは紫外線では分解せず、また、濃度を光学的に簡単に測定できることから、 定量的評価法として適当である。実験条件は次の通りである。  [0086] In order to evaluate the chemical reactivity of water contact plasma as a performance evaluation when the glow plasma generator using the chamber apparatus shown in FIGS. 2A and 2B is used as a plasma processing apparatus, methylene blue was used. (Dye) decomposition experiment was performed in water contact plasma. Methylene blue is suitable for quantitative evaluation because it is not decomposed by ultraviolet light and its concentration can be easily measured optically. The experimental conditions are as follows.
[0087] 図 2A,図 2Bに示す装置を用い、液相としてメチレンブルーを 20 gZmlの初期濃 度で溶解させた水溶液を容器中に貯留し、雰囲気ガスとしてヘリウムを 0. 1気圧とな るように充填した状態で、電圧印加装置から 13. 56MHz, 80W, 2000Vの高周波 電圧を印加した。内部電極と外部電極との間でグロ一プラズマが発生し、液相表面と 接触するプラズマが確認された。 10分ごとに電圧の印加を停止し、メチレンブルー溶 液をサンプリングして、分光光度計でメチレンブルー溶液の濃度測定を行った。結果 は図 9に示す通りである。  [0087] Using the apparatus shown in Figs. 2A and 2B, an aqueous solution in which methylene blue was dissolved at an initial concentration of 20 gZml as a liquid phase was stored in a container, and helium was used as an atmospheric gas at 0.1 atm. A high frequency voltage of 13.56 MHz, 80 W, 2000 V was applied from the voltage application device. Glow plasma was generated between the internal and external electrodes, and plasma in contact with the liquid phase surface was confirmed. The voltage application was stopped every 10 minutes, the methylene blue solution was sampled, and the concentration of the methylene blue solution was measured with a spectrophotometer. The result is shown in Fig. 9.
[0088] 図 9に示すように、メチレンブルーの濃度は、時間と共に指数関数的に減少してい くことが確認された。これは、プラズマを水溶液に照射することにより、水分子が分解 して強 、酸化力を持つ OHラジカルが発生し、これカ チレンブルーのベンゼン環を 破壊 (酸化)したと推察される。  [0088] As shown in FIG. 9, it was confirmed that the concentration of methylene blue decreased exponentially with time. It can be inferred that by irradiating the aqueous solution with plasma, water molecules decompose and OH radicals with strong and oxidizing power are generated, which destroys (oxidizes) the benzene ring of the Cyan blue.
[0089] このように、本実施形態に力かるグロ一プラズマ発生装置によれば、液体にプラズ マを接触させた新 ヽ反応場を創出することができる。プラズマプロセスの適用範囲 としては、例えば、生体高分子が例示できる。生体高分子は水環境とは切っては切り 離せない関係にあるために、従来の蒸気圧以下で行われる低圧プラズマプロセスの 適用を図ることは困難であった。本実施形態に力かるグロ一プラズマ発生装置は、大 気圧下にてプラズマを制御可能な形で生成することができるため、グロ一プラズマを 水と定常的に長時間にわたり接触させることができ、液体に対するプラズマプロセス を行うことができる。 As described above, according to the glow plasma generator that works on the present embodiment, the liquid is It is possible to create a Xinjiang reaction field that is in contact with ma. Examples of the application range of the plasma process include biopolymers. Since biopolymers are inseparable from the water environment, it has been difficult to apply the low-pressure plasma process that is performed under the conventional vapor pressure. Since the glow plasma generator that works in this embodiment can generate plasma in a controllable form at atmospheric pressure, the glow plasma can be brought into constant contact with water over a long period of time. A plasma process for liquids can be performed.
[0090] なお、本発明は上記実施形態に限定されるものではなぐその他種々の態様で実 施可能である。例えば、上記実施形態においては、誘電体材料で構成された容器の 壁厚は一定であり、内部電極の位置を中心からずらすことにより電極間距離 (雰囲気 ガスの少なくとも一部のうちの外部電極の側と内部電極の側との間の距離)を異なる ように構成している力 容器の壁厚を異ならせることにより、内部電極と容器表面との 間隔 (雰囲気ガスの少なくとも一部のうちの外部電極の側と内部電極の側との間の距 離)を異ならすようにすることもできる。例えば、図 10Aに開示するように、内部電極 1 lcと外部電極 12cとは互いに平行に配置された平板電極であり、その間に配置され る容器 10cの壁 22c壁厚を部分的に異ならせることにより、内部電極 (雰囲気ガスのう ちの内部電極の側)と容器の内側面 23c (雰囲気ガスのうちの外部電極の側)との距 離を異ならせる構成をとることもできる。その結果、内部電極と容器の内側面 23cとの 距離は分布を有する。  Note that the present invention is not limited to the above-described embodiment, and can be implemented in various other modes. For example, in the above embodiment, the wall thickness of the container made of the dielectric material is constant, and the distance between the electrodes (at least part of the atmosphere gas of the external electrode is set by shifting the position of the internal electrode from the center). The distance between the inner electrode and the side of the internal electrode) The distance between the internal electrode and the surface of the container by changing the wall thickness of the container The distance between the electrode side and the internal electrode side) may be different. For example, as disclosed in FIG. 10A, the internal electrode 1 lc and the external electrode 12c are plate electrodes arranged in parallel to each other, and the wall 22c wall thickness of the container 10c arranged therebetween is partially different. Accordingly, the distance between the internal electrode (the internal electrode side of the atmospheric gas) and the inner surface 23c of the container (the external electrode side of the atmospheric gas) can be made different. As a result, the distance between the internal electrode and the inner surface 23c of the container has a distribution.
[0091] また、図 10Bに示すように断面矩形の容器 10dの外壁に沿って板状の外部電極 12 dを設け、容器内部 25に対角線状に板状の内部電極を設けるようにしてもよい。  In addition, as shown in FIG. 10B, a plate-like external electrode 12 d may be provided along the outer wall of the container 10 d having a rectangular cross section, and a plate-like internal electrode may be provided diagonally in the container interior 25. .
[0092] さらに、図 10Cに示すように、図 2Aに示したチャンバ一部材 2に用いられる容器 10 と同様の構成を有する容器 10eを用い、内部電極 l ieを容器 10eの中心軸力も傾け て配置するようにしてもよい。また、図 10Dに示すように、図 2Aに示したチャンバ一部 材 2と同様の構成を有する容器 10fを用い、周方向に間欠的に設けられた外部電極 12fを全周にわたって設けてもよい。外部電極 12fを間欠的に設けることによって、内 部電極 1 Ifと外部電極 12fとの電極間距離 (雰囲気ガスの外部電極 12fの側と内部 電極 1 Ifの側との間の距離)は離散的に分布する。 [0093] また、図 11A、図 1 IBに示すようなチャンバ一部材を用いてもよい。このチャンバ一 部材は、図 7に示したチャンバ一部材 2bと同様に、内部に液体と気泡を流動させるよ うに構成されている。具体的には、断面矩形の扁平形状の容器 10gの内部を液体及 び雰囲気ガスの気泡の流動空間 2 lgとし、当該流動空間 2 lg内に曲折した針金状 の内部電極 l lgを配置する。板状の外部電極 12gは容器 10gの外周壁に沿って設 けられる。内部電極 1 lgの直径は流動空間 21gの短手方向幅と略等しく構成され、 流動空間 21g内に液体とともに送り込まれた気泡が内部電極 l lgにからみつき、内 部電極 l lgの周囲は気相となりやすくなる。 Furthermore, as shown in FIG. 10C, a container 10e having the same configuration as the container 10 used for the chamber member 2 shown in FIG. 2A is used, and the internal electrode l ie is also inclined with the central axial force of the container 10e. It may be arranged. Further, as shown in FIG. 10D, a container 10f having a configuration similar to that of the chamber partial member 2 shown in FIG. 2A may be used, and the external electrode 12f provided intermittently in the circumferential direction may be provided over the entire circumference. . By providing the external electrode 12f intermittently, the interelectrode distance between the internal electrode 1 If and the external electrode 12f (distance between the external electrode 12f side of the atmospheric gas and the internal electrode 1 If side) is discrete. Distributed. [0093] One chamber member as shown in FIG. 11A and FIG. 1IB may be used. Similar to the chamber member 2b shown in FIG. 7, this chamber member is configured to allow liquid and bubbles to flow inside. Specifically, the inside of a flat container 10g having a rectangular cross section is defined as a flow space 2 lg of bubbles of liquid and atmospheric gas, and a bent wire-like internal electrode l lg is disposed in the flow space 2 lg. The plate-like external electrode 12g is provided along the outer peripheral wall of the container 10g. The diameter of the internal electrode 1 lg is configured to be approximately equal to the width in the short direction of the flow space 21g. Bubbles sent together with the liquid into the flow space 21g are entangled with the internal electrode l lg, and the periphery of the internal electrode l lg is a gas phase. It becomes easy to become.
[0094] 以上説明したように、本発明のグロ一プラズマ発生装置によれば、内部電極そのも のの形状、内部電極の配置箇所もしくは、外部電極の配置箇所またはこれらの複数 の構成の組み合わせにより、内部電極と容器内周との距離が部分的に異なる構成を 有する。したがって、その使用環境に応じた電極間距離を自発的に選択して放電を 開始することができ、その後グロ一プラズマを広 、領域で定常的に維持することがで きる。  As described above, according to the glow plasma generating apparatus of the present invention, depending on the shape of the internal electrode itself, the location of the internal electrode, the location of the external electrode, or a combination of these plural configurations. The distance between the internal electrode and the inner periphery of the container is partially different. Therefore, it is possible to spontaneously select the distance between the electrodes according to the use environment and start the discharge, and then the glow plasma can be widened and constantly maintained in the region.
産業上の利用可能性  Industrial applicability
[0095] 本発明にかかるグロ一プラズマ発生装置は、容器内圧力が高い場合であってもグ ロープラズマを発生させることができ、また、グロ一プラズマを液体と接触させることが できるので、種々の利用可能性を有する。例えば、プラズマ水と接触することによって 生じるヒドロキシラジカルを用いて精密医療器具などを殺菌する殺菌装置として好適 に用いることができる。また、個々のチャンバ一部材は小型で実現可能であるために 、チャンバ一部材をモジュールィ匕して直列又は並列に配列することによって液体を大 量に処理することも可能であり、用途に応じた処理を選択することができる。また流体 ポンプを使って循環を行うことにより、対象となる液体の連続処理が可能となり、循環 型水処理装置に好適に用いることができる。また、新機能を持つ生体高分子の合成 に用いることができる。例えば、化学的な高分子合成法では、出発原料となるモノマ 一に二重結合などの特定の反応基が必要である力 プラズマを用いて重合を行うこと も可能である。本装置を用いることにより、液体中のモノマーを重合することで水溶液 中の生化学物質を内包する機能性高分子を合成する。本装置によれば、大気圧下、 そしてバルタ温度上昇が少ないために、生体物質との親和性が非常に良ぐ新機能 を持つバイオマテリアルの開発に発展する可能性を持つ。 [0095] The glow plasma generator according to the present invention can generate glow plasma even when the pressure in the container is high, and the glow plasma can be brought into contact with a liquid. With the availability of For example, it can be suitably used as a sterilization apparatus that sterilizes precision medical instruments and the like using hydroxy radicals generated by contact with plasma water. In addition, since each chamber member can be realized in a small size, it is possible to process a large amount of liquid by modularly arranging the chamber members in series or in parallel. You can select the process. Further, by circulating using a fluid pump, the target liquid can be continuously processed, and can be suitably used for a circulating water treatment apparatus. It can also be used to synthesize biopolymers with new functions. For example, in a chemical polymer synthesis method, it is also possible to carry out polymerization using force plasma that requires a specific reactive group such as a double bond in a monomer as a starting material. By using this device, functional polymers containing biochemical substances in aqueous solutions are synthesized by polymerizing monomers in the liquid. According to this device, under atmospheric pressure, And since the rise in Balta temperature is small, it has the potential to develop biomaterials with new functions that have very good affinity with biological materials.
[0096] なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより [0096] It should be noted that by appropriately combining any of the various embodiments described above,
、それぞれの有する効果を奏するようにすることができる。 , Each effect can be achieved.
[0097] 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載され ているが、この技術の熟練した人々にとつては種々の変形や修正は明白である。そ のような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限り において、その中に含まれると理解されるべきである。 [0097] Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of the present invention as defined by the appended claims.

Claims

請求の範囲 The scope of the claims
[1] 雰囲気ガスを貯留するように構成された貯留部と第 1電極と第 2電極とを備えたグロ 一プラズマ発生装置であって、  [1] A glow plasma generator comprising a reservoir configured to store an atmospheric gas, a first electrode, and a second electrode,
前記貯留部の少なくとも一部は誘電体で構成された誘電部分であり、  At least a part of the storage part is a dielectric part made of a dielectric,
前記第 1電極と前記第 2電極との間には、前記雰囲気ガスの少なくとも一部と前記 貯留部の前記誘電部分とが介在しており、  Between the first electrode and the second electrode, at least a part of the atmospheric gas and the dielectric part of the reservoir are interposed,
前記雰囲気ガスの前記少なくとも一部の前記第 1電極の側と前記第 2電極の側との 間の距離が、部分的に異なっている、グロ一プラズマ発生装置。  A glow plasma generating apparatus, wherein a distance between the first electrode side and the second electrode side of the at least part of the atmospheric gas is partially different.
[2] 前記貯留部の誘電部分は、第 1部分と第 2部分を有しており、 [2] The dielectric part of the storage part has a first part and a second part,
前記第 1電極は、前記貯留部の前記第 1部分の少なくとも一部を覆うように設けられ ており、  The first electrode is provided so as to cover at least a part of the first portion of the storage portion,
前記第 2電極は、前記貯留部の前記第 2部分の少なくとも一部を覆うように設けられ ており、  The second electrode is provided so as to cover at least a part of the second portion of the storage portion,
前記第 1電極と前記第 2電極との間には、前記雰囲気ガスの前記少なくとも一部と 前記貯留部の前記第 1部分と前記第 2部分とが介在しており、  Between the first electrode and the second electrode, the at least part of the atmospheric gas, the first part of the storage part and the second part are interposed,
前記貯留部の前記第 1部分と前記貯留部の前記第 2部分との間の距離が、部分的 に異なるように設けられて 、る、請求項 1に記載のグロ一プラズマ発生装置。  2. The glow plasma generating apparatus according to claim 1, wherein the distance between the first part of the storage part and the second part of the storage part is provided so as to be partially different.
[3] 前記第 1電極は、前記貯留部の前記誘電部分を覆うように設けられており、 [3] The first electrode is provided so as to cover the dielectric portion of the reservoir,
前記第 1電極と前記第 2電極との間には、前記雰囲気ガスの前記少なくとも一部と 前記貯留部の前記誘電部分とが介在しており、  Between the first electrode and the second electrode, the at least part of the atmospheric gas and the dielectric portion of the storage portion are interposed,
前記貯留部の前記誘電部分と前記第 2電極の側との間の距離が、部分的に異なつ て 、る、請求項 1に記載のグロ一プラズマ発生装置。  2. The glow plasma generating device according to claim 1, wherein a distance between the dielectric portion of the storage portion and the second electrode side is partially different.
[4] 前記貯留部は、前記雰囲気ガスを貯留する内部と前記雰囲気ガスを貯留しない外 部とを画定する区画壁を有し、 [4] The storage section has a partition wall that defines an inside for storing the atmospheric gas and an outside for not storing the atmospheric gas,
前記第 1電極は、前記貯留部の前記区画壁の外部側に設けられており、 前記第 2電極は、前記貯留部の前記区画壁の内部側に設けられている、請求項 3 に記載のグロ一プラズマ発生装置。  The said 1st electrode is provided in the exterior side of the said partition wall of the said storage part, The said 2nd electrode is provided in the interior side of the said partition wall of the said storage part. Glow plasma generator.
[5] 前記第 2電極が前記貯留部の前記内部の中心から偏心した位置に設けられている 、請求項 4に記載のグロ一プラズマ発生装置。 [5] The second electrode is provided at a position eccentric from the inner center of the reservoir. The glow plasma generator according to claim 4.
[6] 前記第 2電極は螺旋状である、請求項 4に記載のグロ一プラズマ発生装置。 6. The glow plasma generating apparatus according to claim 4, wherein the second electrode has a spiral shape.
[7] 前記第 2電極は、前記貯留部の前記区画壁の内部側面に接触している、請求項 4 に記載のグロ一プラズマ発生装置。 7. The glow plasma generating apparatus according to claim 4, wherein the second electrode is in contact with an inner side surface of the partition wall of the storage section.
[8] 前記第 1電極の側と前記第 2電極の側との間の距離が、連続的に分布するように、 部分的に異なって 、る、請求項 1に記載のグロ一プラズマ発生装置。 8. The glow plasma generator according to claim 1, wherein the distance between the first electrode side and the second electrode side is partially different so as to be distributed continuously. .
[9] 前記第 1電極の側と前記第 2電極の側との間の距離が、離散的に分布するように、 部分的に異なって 、る、請求項 1に記載のグロ一プラズマ発生装置。 9. The glow plasma generator according to claim 1, wherein the distance between the first electrode side and the second electrode side is partially different so as to be distributed discretely. .
[10] 前記貯留部は、液体を貯留するように構成されて ヽる、請求項 4に記載のグローブ ラズマ発生装置。 [10] The globe plasma generating apparatus according to [4], wherein the storage section is configured to store a liquid.
[11] グロ一プラズマ発生装置によってグロ一プラズマを発生する方法であって、  [11] A method of generating glow plasma by a glow plasma generator,
前記グロ一プラズマ発生装置は、  The glow plasma generator comprises:
雰囲気ガスを貯留するように構成された貯留部と第 1電極と第 2電極とを備え、 前記貯留部の少なくとも一部は誘電体で構成された誘電部分であり、  A storage portion configured to store an atmospheric gas, a first electrode, and a second electrode, wherein at least a part of the storage portion is a dielectric portion formed of a dielectric;
前記第 1電極と前記第 2電極との間には、前記雰囲気ガスの少なくとも一部と前記 貯留部の前記誘電部分とが介在しており、  Between the first electrode and the second electrode, at least a part of the atmospheric gas and the dielectric part of the reservoir are interposed,
前記雰囲気ガスの前記少なくとも一部の前記第 1電極の側と前記第 2電極の側との 間の距離が、部分的に異なっており、  The distance between the first electrode side and the second electrode side of the at least part of the atmospheric gas is partially different,
前記グロ一プラズマ発生方法は、  The glow plasma generation method includes:
前記第 1電極と前記第 2電極との間に電圧を印加することによって、前記第 1電極 の側と前記第 2電極の側との間で放電を発生する放電発生ステップを包含する、グロ 一プラズマ発生方法。  Including a discharge generating step of generating a discharge between the first electrode side and the second electrode side by applying a voltage between the first electrode and the second electrode. Plasma generation method.
PCT/JP2006/317652 2006-03-06 2006-09-06 Glow plasma generator and method for generating glow plasma WO2007105330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008504972A JP4590528B2 (en) 2006-03-06 2006-09-06 Glow plasma generation apparatus and glow plasma generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-059721 2006-03-06
JP2006059721 2006-03-06

Publications (1)

Publication Number Publication Date
WO2007105330A1 true WO2007105330A1 (en) 2007-09-20

Family

ID=38509177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317652 WO2007105330A1 (en) 2006-03-06 2006-09-06 Glow plasma generator and method for generating glow plasma

Country Status (2)

Country Link
JP (1) JP4590528B2 (en)
WO (1) WO2007105330A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022885A (en) * 2007-07-19 2009-02-05 Toto Ltd Discharging apparatus and discharging method
WO2011027542A1 (en) * 2009-09-03 2011-03-10 国立大学法人大阪大学 Method and device for supplying ions to liquid, and method and device for sterilizing
WO2012011332A1 (en) * 2010-07-21 2012-01-26 パナソニック株式会社 Plasma generating device and method for producing radical, and washing and cleaning device and small electrical appliance using same
JP2016081676A (en) * 2014-10-15 2016-05-16 株式会社栗田製作所 In-fluid plasma generation method and in-fluid plasma generation device
JP2017018944A (en) * 2010-02-10 2017-01-26 ゾレッジ‐ガレトン,アルフレド Method and apparatus for applying plasma particles to liquid and use for disinfecting water
JP2017073375A (en) * 2016-03-01 2017-04-13 アルファ株式会社 Plasma processing device and plasma torch
WO2018043468A1 (en) * 2016-08-30 2018-03-08 国立大学法人東北大学 Pathogen and pest exterminating device, and reaction vessel thereof
GB2565852A (en) * 2017-08-25 2019-02-27 Air Quality Res Limited Method and apparatus for treating a fluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354297A (en) * 1998-05-29 1999-12-24 Leybold Syst Gmbh Plasma generator
JP2003500195A (en) * 1999-05-21 2003-01-07 アクセンタス パブリック リミテッド カンパニー Non-axial flow dielectric barrier gas reactor.
JP2004043789A (en) * 2000-02-24 2004-02-12 Mitsubishi Heavy Ind Ltd Plasma treatment device and method for producing carbon coating-formed plastic container
JP2004268003A (en) * 2003-03-06 2004-09-30 Masayuki Sato Underwater discharge plasma method and liquid treatment apparatus
JP2005276618A (en) * 2004-03-24 2005-10-06 Japan Science & Technology Agency Device and method for generating microplasma

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354297A (en) * 1998-05-29 1999-12-24 Leybold Syst Gmbh Plasma generator
JP2003500195A (en) * 1999-05-21 2003-01-07 アクセンタス パブリック リミテッド カンパニー Non-axial flow dielectric barrier gas reactor.
JP2004043789A (en) * 2000-02-24 2004-02-12 Mitsubishi Heavy Ind Ltd Plasma treatment device and method for producing carbon coating-formed plastic container
JP2004268003A (en) * 2003-03-06 2004-09-30 Masayuki Sato Underwater discharge plasma method and liquid treatment apparatus
JP2005276618A (en) * 2004-03-24 2005-10-06 Japan Science & Technology Agency Device and method for generating microplasma

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KITANO ET AL.: "Investigation of RF-driven atmospheric-pressure plasmas in contact with liquid water", PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON REACTIVE PLASMAS AND 23RD SYMPOSIUM ON PLASMA PROCESSING, vol. 25, January 2006 (2006-01-01), pages 317 - 318, XP003022499 *
KITANO ET AL.: "Investigation of RF-driven atmospheric-pressure plasmas in contact with liquid water", SCIENTIFIC PROGRAM OF THE 6H INTERNATIONAL CONFERENCE ON REACTIVE PLASMAS AND 23RD SYMPOSIUM ON PLASMA PROCESSING, vol. 24, January 2006 (2006-01-01), pages IX, XP003022500 *
KITANO K. ET AL.: "Ekitai no Mizu ni Sesshoku suru Koshuha Taikiatsu Plasma ni Kansuru Kenkyu", DAI 66 KAI THE JAPAN SOCIETY OF APPLIED PHYSICS GAKUJUTSU KOENKAI, vol. 9P-ZG-9, 9 September 2005 (2005-09-09), pages 1 - 3, XP003022498 *
KITANO K. ET AL.: "Mizu Sesshoku Taikiatsu Koshuha Hoden Plasma no Shotokusei", 2005 NEN (HEISEI 17 NEN) SHUKI DAI 66 KAI THE JAPAN SOCIETY OF APPLIED PHYSICS KOENKAI KOEN YOKOSHU, vol. 1, 7 September 2005 (2005-09-07), pages 103, XP003022497 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022885A (en) * 2007-07-19 2009-02-05 Toto Ltd Discharging apparatus and discharging method
JP5305274B2 (en) * 2009-09-03 2013-10-02 国立大学法人大阪大学 Method and apparatus for supplying ions to liquid and sterilization method and apparatus
WO2011027542A1 (en) * 2009-09-03 2011-03-10 国立大学法人大阪大学 Method and device for supplying ions to liquid, and method and device for sterilizing
JPWO2011027542A1 (en) * 2009-09-03 2013-01-31 国立大学法人大阪大学 Method and apparatus for supplying ions to liquid and sterilization method and apparatus
US8383038B2 (en) 2009-09-03 2013-02-26 Osaka University Method and apparatus for supplying liquid with ions, sterilization method and apparatus
JP2017018944A (en) * 2010-02-10 2017-01-26 ゾレッジ‐ガレトン,アルフレド Method and apparatus for applying plasma particles to liquid and use for disinfecting water
US9119284B2 (en) 2010-07-21 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Plasma generator and method for producing radical, and cleaning and purifying apparatus and small-sized electrical appliance using the same
CN102960073A (en) * 2010-07-21 2013-03-06 松下电器产业株式会社 Plasma generating device and method for producing radical, and washing and cleaning device and small electrical appliance using same
JP2012043769A (en) * 2010-07-21 2012-03-01 Panasonic Corp Plasma generating device and method for producing radical, washing and cleaning device using the same, and compact electrical appliance
WO2012011332A1 (en) * 2010-07-21 2012-01-26 パナソニック株式会社 Plasma generating device and method for producing radical, and washing and cleaning device and small electrical appliance using same
JP2016081676A (en) * 2014-10-15 2016-05-16 株式会社栗田製作所 In-fluid plasma generation method and in-fluid plasma generation device
JP2017073375A (en) * 2016-03-01 2017-04-13 アルファ株式会社 Plasma processing device and plasma torch
WO2018043468A1 (en) * 2016-08-30 2018-03-08 国立大学法人東北大学 Pathogen and pest exterminating device, and reaction vessel thereof
US10925285B2 (en) 2016-08-30 2021-02-23 Tohoku University Pathogen and pest exterminating device and reaction vessel thereof
GB2565852A (en) * 2017-08-25 2019-02-27 Air Quality Res Limited Method and apparatus for treating a fluid
GB2565852B (en) * 2017-08-25 2022-04-06 Air Quality Res Limited Dielectric barrier discharge device and method and apparatus for treating a fluid

Also Published As

Publication number Publication date
JP4590528B2 (en) 2010-12-01
JPWO2007105330A1 (en) 2009-07-30

Similar Documents

Publication Publication Date Title
JP4590528B2 (en) Glow plasma generation apparatus and glow plasma generation method
Laimer et al. Recent Advances in the Research on Non‐Equilibrium Atmospheric Pressure Plasma Jets
EP2317830B1 (en) Inductively-coupled plasma device
CN102605350B (en) Barrier-film forming apparatus, barrier-film forming method and barrier films are by coated container
JP2016083658A (en) Plasma generation apparatus
US20100021340A1 (en) Method and device for the disinfection of objects
US20080060579A1 (en) Apparatus of triple-electrode dielectric barrier discharge at atmospheric pressure
EP3473601B1 (en) Apparatus for producing reforming liquid and method for producing reforming liquid
EP1366647A1 (en) Apparatus for generating low temperature plasma at atmospheric pressure
WO2007035182A2 (en) Field enhanced electrodes for additive-injection non-thermal plasma (ntp) processor
US20130209703A1 (en) Hollow-cathode gas lance for the interior coating of containers
WO2011099247A1 (en) Electrode for plasma in liquid, plasma in liquid generator device, and plasma generation method
JP2007134056A (en) Plasma surface treatment device and manufacturing method of surface treatment cylinder base material
US20100039036A1 (en) Initiation method for abnormal glow plasma discharge in a liquid-phase medium and apparatus for its implementation
JP5597133B2 (en) Gas reformer
JP2010272355A (en) Apparatus for generating active particle
Babij et al. Atmospheric pressure plasma jet for mass spectrometry
EP3108721B1 (en) Systems and methods for producing electrical discharges in compositions
JP2018149535A (en) Liquid treatment apparatus
NL1026532C2 (en) Method and means for generating a plasma at atmospheric pressure.
JPH05251198A (en) Electrode for generating glow discharge plasma and reactor using the same
JP2009221490A (en) Film-forming apparatus for hollow container
KR101748739B1 (en) Atmospheric pressure plasma device with surface dielectric barrier discharge with gas flow guide
US20230414811A1 (en) Liquid processing apparatus with atmospheric, low-temperature plasma activation
EP3981743A1 (en) Method and device for disinfection of liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2008504972

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797547

Country of ref document: EP

Kind code of ref document: A1