JPH11354297A - Plasma generator - Google Patents

Plasma generator

Info

Publication number
JPH11354297A
JPH11354297A JP11148356A JP14835699A JPH11354297A JP H11354297 A JPH11354297 A JP H11354297A JP 11148356 A JP11148356 A JP 11148356A JP 14835699 A JP14835699 A JP 14835699A JP H11354297 A JPH11354297 A JP H11354297A
Authority
JP
Japan
Prior art keywords
vacuum chamber
conductor
insulating tube
rod
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11148356A
Other languages
Japanese (ja)
Other versions
JP4414507B2 (en
Inventor
Michael Liehr
リーア ミヒャエル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold Systems GmbH
Original Assignee
Leybold Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Systems GmbH filed Critical Leybold Systems GmbH
Publication of JPH11354297A publication Critical patent/JPH11354297A/en
Application granted granted Critical
Publication of JP4414507B2 publication Critical patent/JP4414507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/16Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields
    • H05H1/18Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using externally-applied electric and magnetic fields wherein the fields oscillate at very high frequency, e.g. in the microwave range, e.g. using cyclotron resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • H01J37/3222Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32266Means for controlling power transmitted to the plasma
    • H01J37/32284Means for controlling or selecting resonance mode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Abstract

PROBLEM TO BE SOLVED: To avoid a fluctuation in a deposited layer on the basis of generation of an alternating magnetic field in a microwave. SOLUTION: A single rod-shaped conductor 4 is guided by penetrating through a vacuum chamber 3 on the inside of a single insulating tube 5, an inside diameter of the insulating tube 5 is formed larger than a diameter of the conductor 4, the insulating tube 5 is held by a wall 6 of the vacuum chamber 3 at least in one end part, the outside surface of the insulating tube 5 is sealed to the wall, the conductor 4 is connected to a first source 8 for generating an alternating magnetic field at least in one end part, a range of the part where the rod- shaped conductor 4 extends by rushing in the vacuum chamber 3 is molded as a spiral body 2, and here, the winding length L of the part is set to L=C/cos (α) in a wave length λo=10 deg.<α<15 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交番電磁界(el
ektromagnetisch.Wechselfe
lder)を用いて真空室内にプラズマを発生させるた
めの装置であって、少なくとも1つのロッド状の導体
が、絶縁性の材料から成る絶縁管の内部で真空室内に突
入しており、該絶縁管の内径が、導体の直径よりも大き
く形成されており、絶縁管が少なくとも一方の端部で、
真空室の壁に保持されていて、該壁に対して絶縁管の外
面がシールされており、導体が少なくとも一方の端部
で、交番電磁界を発生させるための源に接続されている
形式のものに関する。
TECHNICAL FIELD The present invention relates to an alternating electromagnetic field (el
ektromagnetisch. Wechself
apparatus for generating a plasma in a vacuum chamber by using at least one rod-like conductor, wherein the at least one rod-shaped conductor protrudes into the vacuum chamber inside an insulating tube made of an insulating material; Is formed larger than the diameter of the conductor, the insulating tube at least at one end,
Of the type in which it is held on the wall of a vacuum chamber, the outer surface of the insulating tube is sealed against the wall, and the conductor is connected at least at one end to a source for generating an alternating electromagnetic field. About things.

【0002】[0002]

【従来の技術】プラズマを発生させるための公知の装置
(ドイツ連邦共和国特許第19503205号明細書)
では、制限された運転領域(プロセス領域、ガス圧、マ
イクロ波出力)で表面処理および被覆技術のためのプラ
ズマを発生させることが可能である。この公知の装置は
主として、真空プロセス室内に設備された円筒状のガラ
ス管と、このガラス管内に設けられた、金属導電性の管
とから成っており、この場合、ガラス管の内室には雰囲
気圧が形成される。マイクロ波出力は両側で2つの供給
部と、内導体および外導体から成る金属製の2つの同軸
線路とによって真空プロセス室の壁を通じて導入され
る。真空プロセス室内部では同軸線路の外導体が存在せ
ず、外導体はプラズマ放電によって代えられる。このプ
ラズマ放電は十分な点弧条件(ガス圧)においてマイク
ロ波出力によって点弧されて、維持される。この場合、
マイクロ波出力は金属製の両同軸線路からガラス管を通
じて真空プロセス室内に進出することができる。プラズ
マは円筒状のガラス管を外方から取り囲んで、内導体と
共に極めて高い減衰被膜を有する1つの同軸線路を形成
する。両側で供給された定置のマイクロ波出力におい
て、真空プロセス室のガス圧は、真空プロセス室の内部
で同軸線路の外導体が欠如している場所でプラズマが見
た目には装置に沿って均一に発生するように調節され得
る。
2. Description of the Related Art A known device for generating a plasma (DE 19503205).
It is possible to generate a plasma for surface treatment and coating technology in a limited operating area (process area, gas pressure, microwave power). This known device mainly consists of a cylindrical glass tube provided in a vacuum process chamber and a metal conductive tube provided in the glass tube. Atmospheric pressure is formed. Microwave power is introduced through the walls of the vacuum process chamber by two feeds on both sides and two coaxial lines made of metal consisting of an inner conductor and an outer conductor. There is no outer conductor of the coaxial line inside the vacuum process chamber, and the outer conductor is replaced by plasma discharge. This plasma discharge is ignited and maintained by the microwave output under sufficient ignition conditions (gas pressure). in this case,
The microwave output can enter the vacuum process chamber from the two metal coaxial lines through the glass tube. The plasma surrounds the cylindrical glass tube from the outside and, together with the inner conductor, forms one coaxial line with a very high attenuation coating. With stationary microwave power supplied on both sides, the gas pressure in the vacuum process chamber is uniform, apparently along the device, where the plasma is apparent where the outer conductor of the coaxial line is absent inside the vacuum process chamber Can be adjusted to

【0003】さらに、マイクロ波励起によって処理室内
にプラズマを局所的に発生させるための装置が公知であ
る(ドイツ連邦共和国特許出願公開第4136297号
明細書)。この公知の装置は、壁に取付け可能なフラン
ジまたは壁自体によって外側の部分と内側の部分とに分
割されており、この場合、外側の部分にはマイクロ波発
生装置が配置されている。このマイクロ波発生装置のマ
イクロ波はマイクロ波入力結合装置を介して内側の部分
に向かって案内される。このマイクロ波入力結合装置
は、フランジを貫通した、絶縁性の材料から成る外側の
導波管を有しており、この外側の導波管内には金属から
成る内導体が延びており、この場合、マイクロ波はマイ
クロ波発生装置から内導体に入力結合される。
Furthermore, a device is known for locally generating plasma in a processing chamber by means of microwave excitation (DE-A 41 36 297). This known device is divided into an outer part and an inner part by a wall-mountable flange or the wall itself, in which case a microwave generator is arranged on the outer part. The microwaves of this microwave generator are guided towards the inner part via a microwave input coupling device. The microwave incoupling device has an outer waveguide made of an insulating material, which penetrates the flange, and has an inner conductor made of metal extending into the outer waveguide. , Microwaves are coupled into the inner conductor from the microwave generator.

【0004】さらに、交番電磁界を用いて真空室内にプ
ラズマを発生させるための装置が提案されている(ドイ
ツ連邦共和国特許出願第19722272.2号明細
書)。この装置では、ロッド状の導体が、絶縁性の材料
から成る絶縁管の内部で真空室を通って案内されてお
り、絶縁管の内径は導体の直径よりも大きく形成されて
いる。絶縁管は両端部で真空室の壁に保持されており、
この壁に対して絶縁管の外面がシールされており、導体
は両端部でそれぞれ、交番電磁界を発生させるための第
1の源に接続されている。ロッド状の導体はそれぞれ両
壁貫通案内部の範囲で導体の真ん中の部分に向かう方向
で、導電性の材料から成る管片により小さな間隔を置い
て取り囲まれており、この場合、両管片は絶縁管に対し
て同心的に配置されており、それぞれ、絶縁管と各管片
とによって形成された円環円筒状の中間室は、交番電磁
界を発生させるための第2の源に接続されている。
Furthermore, a device has been proposed for generating a plasma in a vacuum chamber using an alternating electromagnetic field (DE-A-197 22 272.2). In this device, a rod-shaped conductor is guided through a vacuum chamber inside an insulating tube made of an insulating material, and the inner diameter of the insulating tube is formed larger than the diameter of the conductor. The insulating tube is held on the wall of the vacuum chamber at both ends,
The outer surface of the insulating tube is sealed against this wall and the conductors are connected at both ends respectively to a first source for generating an alternating electromagnetic field. The rod-shaped conductors are each surrounded at a small distance by a tube made of a conductive material in the direction of the middle part of the conductor in the region of the two-wall guides, in which case the two tubes are Concentrically arranged with respect to the insulating tube, an annular cylindrical intermediate chamber formed by the insulating tube and each tube piece, respectively, is connected to a second source for generating an alternating electromagnetic field. ing.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、冒頭
で述べた形式の装置を改良して、マイクロ波における交
番磁界の発生に基づく、析出された層における変動を回
避するために適当となる装置を提供することである。当
該装置はさらに廉価に製造可能であることが望ましく、
特にマイクロ波送振器を反射された出力から保護するた
めのコストのかかるアイソレータの組込みが回避される
ことが望ましい。すなわち、アンテナは、各アンテナに
固有の放射特性に対して付加的に、アプリケーション
(たとえばプラズマ)によって反射された出力を再び吸
収することなしに高周波数のマイクロ波を放射し得る特
性をも有するように形成されていることが望ましい。
SUMMARY OF THE INVENTION The object of the invention is to provide a device of the type mentioned at the outset which is suitable for avoiding fluctuations in the deposited layer due to the generation of an alternating magnetic field in the microwave. Device. The device should be more inexpensive to manufacture,
In particular, it is desirable to avoid the incorporation of costly isolators to protect the microwave transmitter from reflected output. That is, the antennas may also have the property of emitting high frequency microwaves without reabsorbing the power reflected by the application (eg, plasma), in addition to the radiation properties inherent to each antenna. It is desirable to be formed in.

【0006】[0006]

【課題を解決するための手段】この課題を解決するため
に本発明の構成では、ロッド状の導体の、真空室内に突
入して延びる部分の範囲が、螺旋体として成形されてお
り、ただし該部分の巻き線長さ(L)が、10゜<α<
15゜のつる巻き角においてほぼ波長λに相当している
ようにした。
In order to solve this problem, according to the structure of the present invention, the region of the rod-shaped conductor that extends into the vacuum chamber and extends is formed as a spiral body. Is less than 10 ° <α <
At a helical winding angle of 15 °, it was made to substantially correspond to the wavelength λ.

【0007】[0007]

【発明の効果】本発明の有利な構成では、複数のロッド
状の導体が、絶縁性の材料から成る1つの絶縁管の内部
で真空室を貫いて案内されており、該絶縁管の内径が、
導体の直径よりも大きく形成されており、絶縁管が両端
部で、真空室の壁に保持されていて、該壁に対して絶縁
管の外面がシールされており、導体がそれぞれ、交番電
磁界を発生させるための固有の源に接続されており、ロ
ッド状の導体の、真空室内に突入して延びる部分の範囲
が、螺旋体として成形されており、ただし前記両部分の
巻き線長さが、ほぼ波長λおよび10゜<α<15゜の
つる巻き角に相当している。
According to an advantageous embodiment of the invention, a plurality of rod-shaped conductors are guided through a vacuum chamber inside an insulating tube of insulating material, the inner diameter of which is reduced. ,
The insulating tube is formed larger than the diameter of the conductor, the insulating tube is held at both ends by the wall of the vacuum chamber, the outer surface of the insulating tube is sealed against the wall, and the conductor The area of the part of the rod-shaped conductor that extends into the vacuum chamber and extends into the vacuum chamber is shaped as a spiral, provided that the winding length of the two parts is This corresponds approximately to the wavelength λ and the helix angle of 10 ° <α <15 °.

【0008】本発明の択一的な構成では、複数のロッド
状の導体が、絶縁性の材料から成る複数の絶縁管の内部
で真空室を貫いて案内されており、該絶縁管の内径が、
それぞれ導体の直径よりも大きく形成されており、絶縁
管がそれぞれ一方の端部で、真空室の壁に保持されてい
て、それぞれ該壁に対して絶縁管の外面がシールされて
おり、各導体が一方の端部でそれぞれ、交番電磁界を発
生させるための源に接続されており、ロッド状の導体
の、真空室内に突入して延びる部分の範囲が、螺旋体と
して成形されており、ただし前記両部分の巻き線長さ
が、ほぼ波長λおよび10゜<α<15゜のつる巻き角
に相当している。
In an alternative embodiment of the invention, a plurality of rod-shaped conductors are guided through a vacuum chamber inside a plurality of insulating tubes made of insulating material, the inner diameter of which is reduced. ,
Each of the conductors is formed to have a diameter larger than the diameter of the conductor, and each of the insulating tubes is held at one end by a wall of the vacuum chamber, and the outer surface of the insulating tube is sealed to the wall, and Are connected at one end to a source for generating an alternating electromagnetic field, respectively, and the area of the rod-shaped conductor, which extends into the vacuum chamber and extends, is formed as a spiral, The winding lengths of both parts approximately correspond to the wavelength λ and the helical winding angle of 10 ° <α <15 °.

【0009】[0009]

【発明の実施の形態】以下に、本発明の実施の形態を図
面につき詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図1に示した装置は、Tモードで作動さ
せられる螺旋アンテナに関する。この場合、円偏波され
たマイクロ波放射線が中心軸線に沿って螺旋体の自由端
部から放射されて、プラズマ放電を点弧させかつ維持す
る。
[0010] device shown in Figure 1, relates to helical antennas are operated by T 1 mode. In this case, circularly polarized microwave radiation is emitted from the free end of the helix along the central axis to ignite and maintain the plasma discharge.

【0011】マイクロ波出力は方形導波管10によって
マイクロ波発生器から供給され、このマイクロ波出力は
インピーダンス整合素子11,12によって同軸線路4
に伝達される。螺旋アンテナ2の螺旋体は同軸線路4の
内導体に接続されていて、同軸線路4の横方向電磁波、
つまりTEM波を円偏波に変換し、この円偏波を、真空
密であるがマイクロ波透過性の絶縁管5を通じて真空室
3内へ放射する。真空室3の金属導電性(metall
isch leitend.)の壁6は後進波のための
リフレクタシールドとして働く。
A microwave output is supplied from a microwave generator by a rectangular waveguide 10, and the microwave output is supplied to the coaxial line 4 by impedance matching elements 11 and 12.
Is transmitted to The helical body of the helical antenna 2 is connected to the inner conductor of the coaxial line 4, and the transverse electromagnetic wave of the coaxial line 4,
That is, the TEM waves are converted into circularly polarized waves, and the circularly polarized waves are radiated into the vacuum chamber 3 through the insulating tube 5 which is vacuum-tight but has microwave transparency. Metal conductivity of the vacuum chamber 3 (metal
isch leitend. The wall 6) serves as a reflector shield for the backward wave.

【0012】上記タイプの複数の装置が、同一のプラズ
マ処理室内でマイクロ波出力を放射するようになってい
る(図6)。この場合、個々の螺旋アンテナはマイクロ
波技術的に分離されているが、ただし互いに向かい合っ
て配置された装置は逆向きの巻き方向(ヘリシティ)を
有していることが必要となる。
A plurality of devices of the above type emit microwave power in the same plasma processing chamber (FIG. 6). In this case, the individual helical antennas are separated by microwave technology, provided that the devices arranged opposite one another have to have opposite winding directions (helicity).

【0013】正確に言えば、一方の側に設けられた装置
が右回りのヘリシティを有していると、他方の装置は左
回りのヘリシティを有していなければならない。理想的
な条件下では、左円偏波されたマイクロ波放射線を右回
りのヘリックスアンテナもしくは螺旋アンテナによって
吸収することはできないか、もしくは逆に、右円偏波さ
れたマイクロ波放射線を左回りのヘリックスアンテナも
しくは螺旋アンテナによって吸収することはできない。
円偏波されたマイクロ波放射線は、金属導電性の平らな
表面における反射時にその都度の偏波方向を変化させ
る。
To be precise, if the device provided on one side has clockwise helicity, the other device must have counterclockwise helicity. Under ideal conditions, left circularly polarized microwave radiation cannot be absorbed by a clockwise helix or helical antenna, or conversely, right circularly polarized microwave radiation can be counterclockwise. It cannot be absorbed by helical or spiral antennas.
Circularly polarized microwave radiation changes the respective polarization direction upon reflection on a flat metal-conductive surface.

【0014】それぞれ2つの互いに向かい合って位置す
る本発明による装置は、図7に示したように真空密でか
つマイクロ波透過性の1つの共通の絶縁管5内に配置さ
れ得る。この場合、両装置は互いに逆向きのヘリシティ
を有している。
The two devices according to the invention, which are respectively situated opposite one another, can be arranged in a common vacuum-tight and microwave-permeable insulating tube 5 as shown in FIG. In this case, both devices have opposite helicities.

【0015】本発明による装置から前進方向へ放射され
たマイクロ波放射線は、プラズマ放電を発生させ、この
プラズマ放電はマイクロ波放射線にとっては波動力学的
に見て、吸収性の誘電体を成し、この誘電体内でマイク
ロ波は強力な減衰を受ける。減衰を弱め、ひいてはプラ
ズマのジオメトリ形状を変化させる(特に:長手方向で
延伸させる)ためには、両装置の間にプラズマなしの接
続通路を形成することが有利になり得る。運転パラメー
タが適宜に設定された場合に、互いに向かい合って配置
された各2つの本発明による装置の間には、定在波磁界
パターンをほとんど有しない、閉じられたプラズマ柱を
形成することができる。
The microwave radiation emitted from the device according to the invention in the forward direction generates a plasma discharge which, for the microwave radiation, forms an absorbing dielectric in terms of wave dynamics, Microwaves undergo strong attenuation within this dielectric. In order to reduce the attenuation and thus change the geometry of the plasma (especially: stretching in the longitudinal direction), it may be advantageous to form a connection passage without plasma between the two devices. If the operating parameters are set appropriately, a closed plasma column with little standing wave magnetic field pattern can be formed between each two devices according to the invention arranged opposite each other. .

【0016】マイクロ波を放射するために使用される、
つる巻き状もしくは螺旋状に成形されたロッドアンテナ
(「ヘリックス」とも呼ばれる)は、いわゆる「T
ード」で作動させられるような特性を有している。図2
には、約4つの巻き条を備えた螺旋アンテナもしくはヘ
リックスが示されている。この螺旋アンテナには、同軸
線路を介してマイクロ波出力が供給される。「ヘリック
ス」の放射線特性は、第1に、巻き直径D対供給される
マイクロ波の波長λの比に関連しており、第2に、つ
る巻き角αに関連している。これらのパラメータの設定
に応じて、「ヘリックス」アンテナは極端な事例では、
図4および図5に示したように、互いに十分に相補的な
放射線特性を示す2つの異なるモードで放射する。
Used to radiate microwaves,
Helical shaped or helically shaped rod antenna (also called "helix") has a characteristic that is operated in the so-called "T 1 mode". FIG.
Shows a spiral antenna or helix with about four turns. A microwave output is supplied to the spiral antenna via a coaxial line. The radiation properties of the "helix" relate firstly to the ratio of the winding diameter D to the wavelength of the supplied microwave λ 0 , and secondly to the helical angle α. Depending on the setting of these parameters, a "helix" antenna can, in extreme cases,
As shown in FIGS. 4 and 5, radiation is emitted in two different modes exhibiting radiation characteristics that are sufficiently complementary to each other.

【0017】Tモード:巻き線長さL=C/cos
(α)がほぼ波長λおよび10゜<α<15゜に相当
する。
[0017] T 1 mode: winding length L = C / cos
(Α) substantially corresponds to the wavelength λ 0 and 10 ° <α <15 °.

【0018】この運転状態では、ヘリックスアンテナも
しくは螺旋アンテナが、図4に示したように著しく大き
な主ローブと小さな副ローブとで、ヘリックス中心軸線
に対して同心的にヘリックスの自由端部から放射する
(エンドファイアもしくは縦形アンテナ)。その上、少
なくとも4つの巻き条を備えたヘリックスアンテナで
は、放射線が十分な円偏波を有しており、この円偏波の
回転方向はアンテナのヘリシティによって規定される。
このような種類のヘリックスアンテナは「クラウスコイ
ル(Kraus−Coil)」(モノフィラメント、軸
方向モードT)と呼ばれる。クラウスコイルの詳
細な構成は、「Antennas」、第2版(John
D.Kraus著、出版社Mcgraw−Hill
Book Company、第7章参照)に記載されて
いる。可能となるアンテナ利得はヘリックスのジオメト
リ、たとえば巻き直径、つる巻き角および全長に関連し
ていて、最大15dBであってよく、しかしこの場合、
管状の金属導電性の材料の直径や、その固有電気抵抗の
直径とはほとんど無関係である(D.T.Emerso
n著の「National Radio Astron
omy Observatory」 Antenna
Compendium 第4巻、第64頁〜第68頁、
1995年、出版社AARL参照)。
In this operating condition, the helix or spiral antenna radiates from the free end of the helix concentrically with respect to the helix center axis, with a significantly large main lobe and a small minor lobe, as shown in FIG. (Endfire or vertical antenna). Moreover, in a helical antenna with at least four turns, the radiation has a sufficient circular polarization, the direction of rotation of which is defined by the helicity of the antenna.
Such kind of helical antenna is referred to as "Claus coil (Kraus-Coil)" (monofilament, axial mode T 1 R 1). The detailed configuration of the Claus coil is described in "Antennas", 2nd edition (John
D. By Kraus, publisher McGraw-Hill
Book Company, see Chapter 7). The possible antenna gain is related to the geometry of the helix, for example the winding diameter, the helix angle and the overall length, and may be up to 15 dB, but in this case
It is almost independent of the diameter of the tubular metallic conductive material and the diameter of its intrinsic electrical resistance (DT Emerso).
n "Radio Radio Astron"
omy Observatory "Antenna
Compendium Volume 4, pages 64 to 68,
1995, see publisher AARL).

【0019】Tモード:巻き線長さL=C/cos
(α)が波長λおよび10゜<α<15゜よりも著し
く小さい。
[0019] T 0 mode: winding length L = C / cos
(Α) is significantly smaller than the wavelength λ 0 and 10 ° <α <15 °.

【0020】この運転状態では、ヘリックスが、図5に
示したようにヘリックス中心軸線に対してほぼ直角に延
びるローブ、つまり真っ直ぐなロッドアンテナと同様に
半径方向に延びるローブを有する強度分布で放射する。
このような運転状態は、ドイツ連邦共和国特許出願公開
第4136297号明細書またはドイツ連邦共和国特許
第19503205号明細書に記載の装置のための基礎
である。Tモードは本発明の対象のためには重要では
ない。
In this operating state, the helix radiates in an intensity distribution having lobes extending substantially perpendicular to the helix center axis, as shown in FIG. 5, that is, lobes extending in the radial direction like a straight rod antenna. .
Such an operating state is the basis for the device described in DE-A-4136297 or DE-A-19503205. T 0 mode is not important for the object of the present invention.

【0021】T、T、...モード:巻き線長さL
=C/cos(α)が波長λおよび10゜<α<15
゜よりも著しく大きい。
T 2 , T 3 ,. . . Mode: winding length L
= C / cos (α) is the wavelength λ 0 and 10 ゜ <α <15
Significantly larger than ゜.

【図面の簡単な説明】[Brief description of the drawings]

【図1】螺旋アンテナと、真空室側で閉じられた絶縁管
とを備えた装置の断面図である。
FIG. 1 is a cross-sectional view of an apparatus including a spiral antenna and an insulating tube closed on the vacuum chamber side.

【図2】典型的な螺旋アンテナの概略図である。FIG. 2 is a schematic diagram of a typical spiral antenna.

【図3】螺旋アンテナの展開図である。FIG. 3 is a development view of a spiral antenna.

【図4】図1に示した装置をTモードで運転した場合
のプラズマ雲を示す概略図である。
[4] The apparatus shown in FIG. 1 is a schematic view illustrating a plasma cloud when operated by T 1 mode.

【図5】図1に示した装置をTモードで運転した場合
のプラズマ雲を示す概略図である。
[5] The apparatus shown in FIG. 1 is a schematic view illustrating a plasma cloud during operation with a T 0 mode.

【図6】それぞれ閉じられた絶縁管内に互いに向かい合
って位置するように配置された2つの螺旋アンテナを備
えた装置を用いる実施例におけるプラズマ雲を示す概略
図である。
FIG. 6 is a schematic diagram showing a plasma cloud in an embodiment using a device with two helical antennas, which are arranged opposite each other in a closed insulating tube;

【図7】両螺旋アンテナを取り囲む共通の絶縁管を備え
た、互いに向かい合って位置するように配置された2つ
の螺旋アンテナを備えた装置を用いる実施例におけるプ
ラズマ雲を示す概略図である。
FIG. 7 is a schematic diagram illustrating a plasma cloud in an embodiment using an apparatus with two helical antennas positioned opposite each other with a common insulating tube surrounding both helical antennas.

【符号の説明】[Explanation of symbols]

2 螺旋アンテナ、 3 真空室、 4 同軸線路、
5 絶縁管、 6,7壁、 8,9 源、 10 方形
導波管、 11,12 インピーダンス整合素子、 1
3 螺旋アンテナ、 14 絶縁管、 15 同軸線
路、 16 絶縁管
2 spiral antenna, 3 vacuum chamber, 4 coaxial line,
5 Insulation tube, 6,7 wall, 8,9 source, 10 Rectangular waveguide, 11, 12 Impedance matching element, 1
3 spiral antenna, 14 insulating tube, 15 coaxial line, 16 insulating tube

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 交番電磁界を用いて真空室(3)内にプ
ラズマを発生させるための装置において、1つのロッド
状の導体(4)が、絶縁性の材料から成る1つの絶縁管
(5)の内部で真空室(3)を貫いて案内されており、
該絶縁管(5)の内径が、導体(4)の直径よりも大き
く形成されており、絶縁管(5)が少なくとも一方の端
部で、真空室(3)の壁(6,7)に保持されていて、
該壁(6,7)に対して絶縁管(5)の外面がシールさ
れており、導体(4)が少なくとも一方の端部で、交番
電磁界を発生させるための第1の源(8;9)に接続さ
れており、ロッド状の導体(4)の、真空室(3)内に
突入して延びる部分の範囲が、螺旋体(2)として成形
されており、ただし該部分の巻き線長さ(L)が、波長
λ=10゜<α<15゜においてL=C/cos
(α)であることを特徴とする、プラズマを発生させる
ための装置。
In an apparatus for generating plasma in a vacuum chamber (3) using an alternating electromagnetic field, one rod-shaped conductor (4) is connected to one insulating tube (5) made of an insulating material. ) Is guided through the vacuum chamber (3),
The inside diameter of the insulating tube (5) is formed larger than the diameter of the conductor (4), and the insulating tube (5) is formed at least at one end on the wall (6, 7) of the vacuum chamber (3). Being held,
The outer surface of the insulating tube (5) is sealed against the wall (6, 7), and the conductor (4) is at least at one end and a first source (8; 9), the area of the rod-shaped conductor (4) extending into the vacuum chamber (3) extending into the vacuum chamber (3) is formed as a spiral body (2), provided that the winding length of this part is (L) is L = C / cos at a wavelength λ 0 = 10 ° <α <15 °
(Α) An apparatus for generating plasma, characterized in that:
【請求項2】 交番電磁界を用いて真空室(3)内にプ
ラズマを発生させるための装置において、複数のロッド
状の導体(4,15)が、絶縁性の材料から成る1つの
絶縁管(14)の内部で真空室(3)を貫いて案内され
ており、該絶縁管(14)の内径が、導体(4,15)
の直径よりも大きく形成されており、絶縁管(14)が
両端部で、真空室(3)の壁(6,7)に保持されてい
て、該壁(6,7)に対して絶縁管(14)の外面がシ
ールされており、導体(4,15)がそれぞれ、交番電
磁界を発生させるための固有の源(8;9)に接続され
ており、ロッド状の導体(4,15)の、真空室(3)
内に突入して延びる部分の範囲が、螺旋体(2;13)
として成形されており、ただし前記両部分の巻き線長さ
(L,L′)が、波長λ=10゜<α<15゜におい
てL=C/cos(α)であることを特徴とする、プラ
ズマを発生させるための装置。
2. An apparatus for generating plasma in a vacuum chamber (3) by using an alternating electromagnetic field, wherein a plurality of rod-shaped conductors (4, 15) are made of one insulating tube made of an insulating material. It is guided through the vacuum chamber (3) inside (14), and the inside diameter of the insulating tube (14) is equal to that of the conductor (4, 15).
The insulating tube (14) is held at both ends by walls (6, 7) of the vacuum chamber (3), and the insulating tube (14) is The outer surface of (14) is sealed and the conductors (4, 15) are each connected to a unique source (8; 9) for generating an alternating electromagnetic field, and the rod-shaped conductors (4, 15) ), Vacuum chamber (3)
The area of the part that extends into and extends into the spiral (2; 13)
Wherein the winding length (L, L ') of the two portions is L = C / cos (α) at a wavelength λ 0 = 10 ° <α <15 °. , A device for generating plasma.
【請求項3】 交番電磁界を用いて真空室(3)内にプ
ラズマを発生させるための装置において、複数のロッド
状の導体(4,15)が、絶縁性の材料から成る複数の
絶縁管(5,16)の内部で真空室(3)を貫いて案内
されており、該絶縁管(5,16)の内径が、それぞれ
導体(4,15)の直径よりも大きく形成されており、
絶縁管(5,16)がそれぞれ一方の端部で、真空室
(3)の壁(6,7)に保持されていて、それぞれ該壁
(6,7)に対して絶縁管(5,16)の外面がシール
されており、各導体(4,15)が一方の端部でそれぞ
れ、交番電磁界を発生させるための源(8;9)に接続
されており、ロッド状の導体(4,15)の、真空室
(3)内に突入して延びる部分の範囲が、螺旋体(2;
13)として成形されており、ただし前記両部分の巻き
線長さ(L,L′)が、波長λ=10゜<α<15゜
においてL=C/cos(α)であることを特徴とす
る、プラズマを発生させるための装置。
3. An apparatus for generating plasma in a vacuum chamber (3) using an alternating electromagnetic field, wherein a plurality of rod-shaped conductors (4, 15) are formed of a plurality of insulating tubes made of an insulating material. (5, 16) are guided through the vacuum chamber (3), and the inner diameter of the insulating tubes (5, 16) is formed larger than the diameter of the conductor (4, 15), respectively.
Insulating tubes (5, 16) are held at one end on the walls (6, 7) of the vacuum chamber (3), respectively, against the walls (6, 7). ) Is sealed, and each conductor (4, 15) is connected at one end to a source (8; 9) for generating an alternating electromagnetic field, respectively, and a rod-shaped conductor (4, 15) is provided. , 15) extend into the vacuum chamber (3) by the spiral body (2;
13), wherein the winding length (L, L ') of the two parts is L = C / cos (α) at a wavelength λ 0 = 10 ° <α <15 °. An apparatus for generating plasma.
JP14835699A 1998-05-29 1999-05-27 Apparatus for generating plasma Expired - Fee Related JP4414507B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19824077.5 1998-05-29
DE19824077A DE19824077A1 (en) 1998-05-29 1998-05-29 Device for generating plasma

Publications (2)

Publication Number Publication Date
JPH11354297A true JPH11354297A (en) 1999-12-24
JP4414507B2 JP4414507B2 (en) 2010-02-10

Family

ID=7869316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14835699A Expired - Fee Related JP4414507B2 (en) 1998-05-29 1999-05-27 Apparatus for generating plasma

Country Status (6)

Country Link
US (1) US6191532B1 (en)
EP (1) EP0961528B1 (en)
JP (1) JP4414507B2 (en)
KR (1) KR100359380B1 (en)
DE (2) DE19824077A1 (en)
TW (1) TW432903B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073363A1 (en) * 2003-02-14 2004-08-26 Tokyo Electron Limited Plasma generating apparatus, plasma generating method, and remote plasma processing apparatus
JP2005228727A (en) * 2003-04-24 2005-08-25 Tokyo Electron Ltd Plasma monitoring method, plasma monitoring device, and plasma treatment device
JP2007126742A (en) * 2005-11-01 2007-05-24 Applied Films Corp System and method for power function ramping of microwave liner discharge source
WO2007105330A1 (en) * 2006-03-06 2007-09-20 Juridical Foundation Osaka Industrial Promotion Organization Glow plasma generator and method for generating glow plasma
WO2008018159A1 (en) * 2006-08-08 2008-02-14 Adtec Plasma Technology Co., Ltd. Microwave line plasma generation system with two power supply
JP2008525750A (en) * 2004-12-23 2008-07-17 アルカテル−ルーセント Apparatus and method for monitoring dehydration operation during lyophilization process
JP2009032545A (en) * 2007-07-27 2009-02-12 Md Luminous Kk Microwave plasma needle generation device
JP2011515030A (en) * 2008-01-30 2011-05-12 アプライド マテリアルズ インコーポレイテッド Integrated microwave waveguide with impedance transition
JP2013526067A (en) * 2010-04-30 2013-06-20 アプライド マテリアルズ インコーポレイテッド Vertical in-line CVD system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6158384A (en) * 1997-06-05 2000-12-12 Applied Materials, Inc. Plasma reactor with multiple small internal inductive antennas
EP1421832B1 (en) * 2001-08-28 2006-10-04 Jeng-Ming Wu Plasma burner with microwave stimulation
US7567037B2 (en) * 2003-01-16 2009-07-28 Japan Science And Technology Agency High frequency power supply device and plasma generator
US20060137613A1 (en) * 2004-01-27 2006-06-29 Shigeru Kasai Plasma generating apparatus, plasma generating method and remote plasma processing apparatus
WO2010064818A2 (en) * 2008-12-02 2010-06-10 트리플코어스코리아 Apparatus for generating atmospheric pressure plasma, and method for generating atmospheric pressure plasma using same
KR101100916B1 (en) 2008-12-02 2012-01-02 (주)트리플코어스코리아 Apparatus for producing atmospheric plasma, and method for producing atmospheric plasma using the same
JP5191524B2 (en) * 2010-11-09 2013-05-08 株式会社新川 Plasma device and manufacturing method thereof
JP5700695B2 (en) * 2012-04-12 2015-04-15 中外炉工業株式会社 Plasma generating apparatus, vapor deposition apparatus, and plasma generating method
DE102022109511A1 (en) 2022-04-20 2023-10-26 Muegge Gmbh Device for supplying microwaves into a treatment room

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4297615A (en) * 1979-03-19 1981-10-27 The Regents Of The University Of California High current density cathode structure
JPS55131175A (en) * 1979-03-30 1980-10-11 Toshiba Corp Surface treatment apparatus with microwave plasma
US4566403A (en) * 1985-01-30 1986-01-28 Sovonics Solar Systems Apparatus for microwave glow discharge deposition
JPH084039B2 (en) * 1988-07-26 1996-01-17 松下電器産業株式会社 Plasma generation method and thin film deposition method
JPH0810634B2 (en) * 1990-06-01 1996-01-31 インターナショナル・ビジネス・マシーンズ・コーポレイション Microwave-fed material / plasma processing system
DE4136297A1 (en) * 1991-11-04 1993-05-06 Plasma Electronic Gmbh, 7024 Filderstadt, De Localised plasma prodn. in treatment chamber - using microwave generator connected to coupling device which passes through the wall of the chamber without using a coupling window
DE4337119C2 (en) * 1993-10-29 1996-10-24 Forsch Applikationslabor Plasm VHF plasma source
DE19503205C1 (en) * 1995-02-02 1996-07-11 Muegge Electronic Gmbh Device for generating a plasma in low pressure container e.g. for hardware items surface treatment by plasma etching and plasma deposition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073363A1 (en) * 2003-02-14 2004-08-26 Tokyo Electron Limited Plasma generating apparatus, plasma generating method, and remote plasma processing apparatus
JP2004266268A (en) * 2003-02-14 2004-09-24 Tokyo Electron Ltd Plasma generator, plasma generating method, and remote plasma treatment apparatus
JP4588329B2 (en) * 2003-02-14 2010-12-01 東京エレクトロン株式会社 Plasma generator and remote plasma processing apparatus
JP2005228727A (en) * 2003-04-24 2005-08-25 Tokyo Electron Ltd Plasma monitoring method, plasma monitoring device, and plasma treatment device
JP2008525750A (en) * 2004-12-23 2008-07-17 アルカテル−ルーセント Apparatus and method for monitoring dehydration operation during lyophilization process
JP2007126742A (en) * 2005-11-01 2007-05-24 Applied Films Corp System and method for power function ramping of microwave liner discharge source
WO2007105330A1 (en) * 2006-03-06 2007-09-20 Juridical Foundation Osaka Industrial Promotion Organization Glow plasma generator and method for generating glow plasma
WO2008018159A1 (en) * 2006-08-08 2008-02-14 Adtec Plasma Technology Co., Ltd. Microwave line plasma generation system with two power supply
JPWO2008018159A1 (en) * 2006-08-08 2009-12-24 株式会社アドテック プラズマ テクノロジー Microwave line plasma generator with two power supplies
JP2009032545A (en) * 2007-07-27 2009-02-12 Md Luminous Kk Microwave plasma needle generation device
JP2011515030A (en) * 2008-01-30 2011-05-12 アプライド マテリアルズ インコーポレイテッド Integrated microwave waveguide with impedance transition
US8536955B2 (en) 2008-01-30 2013-09-17 Applied Materials, Inc. Integrated microwave waveguide block with tapered impedance transition sections
KR101397646B1 (en) * 2008-01-30 2014-05-22 어플라이드 머티어리얼스, 인코포레이티드 Integrated microwave waveguide with impedance transition
JP2013526067A (en) * 2010-04-30 2013-06-20 アプライド マテリアルズ インコーポレイテッド Vertical in-line CVD system

Also Published As

Publication number Publication date
JP4414507B2 (en) 2010-02-10
EP0961528B1 (en) 2010-06-16
DE19824077A1 (en) 1999-12-02
KR19990088498A (en) 1999-12-27
US6191532B1 (en) 2001-02-20
DE59915175D1 (en) 2010-07-29
EP0961528A2 (en) 1999-12-01
EP0961528A3 (en) 2003-08-13
TW432903B (en) 2001-05-01
KR100359380B1 (en) 2002-11-04

Similar Documents

Publication Publication Date Title
JP4414507B2 (en) Apparatus for generating plasma
US5517085A (en) Apparatus including ring-shaped resonators for producing microwave plasmas
US6158383A (en) Plasma processing method and apparatus
US6812895B2 (en) Reconfigurable electromagnetic plasma waveguide used as a phase shifter and a horn antenna
US3942058A (en) Electrodeless light source having improved arc shaping capability
JP6010406B2 (en) Microwave radiation mechanism, microwave plasma source, and surface wave plasma processing apparatus
US2811624A (en) Radiation systems
JPH05190103A (en) Device for coupling microwave energy
JP4109213B2 (en) Coaxial microwave plasma torch
JPH06295797A (en) Generator of plasma and method of occurrence
KR100284903B1 (en) Plasma generating device
US4178534A (en) Methods of and apparatus for electrodeless discharge excitation
US3942068A (en) Electrodeless light source with a termination fixture having an improved center conductor for arc shaping capability
JP2003133232A (en) Method and device for microwave plasma treatment, and microwave power supply device
US6863773B1 (en) Linearly extended device for large-surface microwave treatment and for large surface plasma production
US7156046B2 (en) Plasma CVD apparatus
JPH06349594A (en) Plasma generating device
WO2001078188A1 (en) Reconfigurable plasma electromagnetic waveguide
JP5916467B2 (en) Microwave radiation antenna, microwave plasma source, and plasma processing apparatus
JP2001223171A (en) Plasma processing apparatus
JP2001189197A (en) Coupling structure of waveguide and application and electrodeless lamp using the same
JP2002100610A (en) Plasma apparatus
RU195654U1 (en) Multi-turn device with elliptical and circular polarization of radiation
WO2022224703A1 (en) Standing wave excitation type electromagnetic discharge lamp
RU2039400C1 (en) Cylindrical spiral antenna

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090224

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090319

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090325

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20090423

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees