JP2009032545A - Microwave plasma needle generation device - Google Patents

Microwave plasma needle generation device Download PDF

Info

Publication number
JP2009032545A
JP2009032545A JP2007195667A JP2007195667A JP2009032545A JP 2009032545 A JP2009032545 A JP 2009032545A JP 2007195667 A JP2007195667 A JP 2007195667A JP 2007195667 A JP2007195667 A JP 2007195667A JP 2009032545 A JP2009032545 A JP 2009032545A
Authority
JP
Japan
Prior art keywords
antenna
gas
plasma
exposed
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007195667A
Other languages
Japanese (ja)
Other versions
JP5230976B2 (en
Inventor
Masashi Shindo
正士 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MD LUMINOUS KK
Original Assignee
MD LUMINOUS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MD LUMINOUS KK filed Critical MD LUMINOUS KK
Priority to JP2007195667A priority Critical patent/JP5230976B2/en
Publication of JP2009032545A publication Critical patent/JP2009032545A/en
Application granted granted Critical
Publication of JP5230976B2 publication Critical patent/JP5230976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a micro wave plasma needle generating device which prevents thermal damage due to plasma, and obtaining a large temperature adjustable range of plasma by generating the plasma outside a coaxial wave guide tube. <P>SOLUTION: In a microwave generating device (1), the coaxial wave guide tube (10) is installed, in which an inner conductor (12) is coaxially fitted into the axial core part of a cylindrical outer conductor (11), a conductive antenna (13) is connected to the inner conductor (12), the antenna (13) is exposed outside from the outer conductor (11), and gas for plasma generation supplied by a gas supplying device (20) is discharged toward an exposure end part of the antenna (13). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マイクロ波プラズマニードル発生装置、殊に小形かつ簡素なマイクロ波プラズマニードル発生装置に関するものである。   The present invention relates to a microwave plasma needle generator, and more particularly to a small and simple microwave plasma needle generator.

従来の技術として、特許文献1があった。即ち、円柱状の外側導体に、マイクロ波発振器に接続される同軸ケーブルの外部導体を接続し、該外側導体に円筒状の放電管を導電可能に嵌合させ、放電管の軸心部にアンテナを所定の間隙を保持して同軸に配置するとともに、該アンテナを前記同軸ケーブルの内部導体に接続し、前記放電管の基部にガス導入管路を接続する。   There existed patent document 1 as a prior art. That is, an outer conductor of a coaxial cable connected to a microwave oscillator is connected to a cylindrical outer conductor, a cylindrical discharge tube is fitted to the outer conductor so as to be conductive, and an antenna is disposed at the axial center of the discharge tube. Are arranged coaxially while maintaining a predetermined gap, the antenna is connected to the inner conductor of the coaxial cable, and a gas introduction pipe is connected to the base of the discharge tube.

そして、ガス導入管路から放電管とアンテナとの間隙部にプラズマ発生用のガスを供給するとともに、前記同軸ケーブルにマイクロ波発振器から所定のマイクロ波を出力し、アンテナの先端と放電管の内面との間でプラズマを発生させ、放電管の先端開口からプラズマを照射するようにしたものがあった。   Then, a gas for generating plasma is supplied from the gas introduction conduit to the gap between the discharge tube and the antenna, and a predetermined microwave is output from the microwave oscillator to the coaxial cable, and the tip of the antenna and the inner surface of the discharge tube Plasma was generated between the two and the plasma was irradiated from the tip opening of the discharge tube.

前記従来のものは、放電管の内部でプラズマが発生するため、高温のプラズマを発生させると、放電管が熱によって損傷し、保守に手数を要することになる。また、放電管にガス導入管路を接続したり、放電管とアンテナとの間にガスが流通する間隙部を形成したりしていたため、構造が複雑になる。また、同軸管インピーダンスの整合が行なわれる放電管とアンテナとの間隙部にガスを流通させるようにしていたので、ガスの流量が制限され、プラズマの温度調整幅が制限されることになる。
特開2005−293955号公報
In the conventional apparatus, since plasma is generated inside the discharge tube, when high-temperature plasma is generated, the discharge tube is damaged by heat, and maintenance is required. In addition, the structure is complicated because a gas introduction conduit is connected to the discharge tube and a gap through which gas flows is formed between the discharge tube and the antenna. Further, since the gas is circulated through the gap between the discharge tube and the antenna where the coaxial tube impedance is matched, the gas flow rate is limited and the temperature adjustment range of the plasma is limited.
JP 2005-293955 A

本発明は、プラズマを同軸導波管の外側で発生させることにより、変換器のプラズマによる熱損傷を防止するとともに、プラズマの温度調整幅が大きくとれるマイクロ波プラズマニードル発生装置を得ることを目的とする。   It is an object of the present invention to obtain a microwave plasma needle generating apparatus that generates a plasma outside a coaxial waveguide, thereby preventing thermal damage due to the plasma of the transducer and increasing the temperature adjustment range of the plasma. To do.

請求項1に係る発明は、マイクロ波発生装置に、筒状の外部導体の軸心部に内部導体を同軸に嵌合させてなる同軸導波管を設け、前記内部導体に導体性のアンテナを接続するとともに、該アンテナを前記外部導体から外部に露出させ、プラズマ発生用のガスを前記アンテナの露出端部に向けて吐出するガス供給装置を設ける構成にしたものである。
請求項2に係る発明は、前記アンテナを内部導体の軸線方向に延長させて外部導体から外部に露出させたものである。
請求項3に係る発明は、前記ガスの吐出方向を、アンテナの軸心と直交する方向としたものである。
請求項4に係る発明は、ガスの吐出部を絶縁性の管体により形成し、外部導体から露出したアンテナの露出部を螺旋状に湾曲させてコイル部とし、該コイル部の基部を前記管体の外周に嵌合させ、該コイル部の先端部を前記管体からガスの吐出方向に突出させるようにしたものである。
請求項5に係る発明は、前記ガスの吐出量を調整するガス調整部と、マイクロ波発生装置の出力を調整する電力調整部とを設けたものである。
In the invention according to claim 1, the microwave generator is provided with a coaxial waveguide formed by coaxially fitting the inner conductor to the axial center portion of the cylindrical outer conductor, and a conductive antenna is provided on the inner conductor. In addition to the connection, the antenna is exposed to the outside from the external conductor, and a gas supply device is provided for discharging a gas for generating plasma toward the exposed end of the antenna.
According to a second aspect of the present invention, the antenna is extended in the axial direction of the inner conductor and exposed to the outside from the outer conductor.
According to a third aspect of the present invention, the gas discharge direction is a direction perpendicular to the antenna axis.
According to a fourth aspect of the present invention, the gas discharge portion is formed of an insulating tube, the exposed portion of the antenna exposed from the outer conductor is helically curved to form a coil portion, and the base portion of the coil portion is the tube. It is fitted to the outer periphery of the body, and the tip of the coil portion is projected from the tube body in the gas discharge direction.
According to a fifth aspect of the present invention, a gas adjustment unit that adjusts the discharge amount of the gas and a power adjustment unit that adjusts the output of the microwave generator are provided.

請求項1に係る発明は、アンテナの先端を外部導体から外部に露出させ、該露出したアンテナの先端部に向けてプラズマ発生用のガスを吐出するようにしたので、ガスの吐出流路の形成が容易になる。また、ガスの流量を大きく変化させることができ、これによりプラズマニードルの温度範囲が拡大し、多用途化が可能となる。また、外部導体の外側でプラズマニードルが発生するため、高温のプラズマニードルを発生させても、外部導体、及び内部導体が熱によって損傷し難くなる。
請求項2に係る発明は、アンテナを内部導体の軸線方向に延長させて外部導体から外部に露出させたので、ガスの混合が容易に行なえることになる。
請求項3に係る発明は、ガスの吐出方向をアンテナの軸心と直交する方向としたので、プラズマニードルをアンテナの先端部で効率よく生成させることができる。
請求項4に係る発明は、ガス吐出部を絶縁性の管体により形成し、コイル状にしたアンテナの基部を前記管体の外周に嵌合させるようにしたので、コイル部の中心部で強い電磁波が発生し、管体の出口中心部でプラズマニードルが発生することになる。このため、大気との混合が少なくなり、安定したプラズマニードルを得ることができる。
請求項5に係る発明は、ガスの吐出量、及びマイクロ波発生装置の出力を調整することにより、プラズマニードルの温度及び長さを広範囲で調節することができる。
According to the first aspect of the present invention, the tip of the antenna is exposed from the external conductor to the outside, and the gas for generating plasma is discharged toward the exposed tip of the antenna. Becomes easier. In addition, the gas flow rate can be changed greatly, which expands the temperature range of the plasma needle and enables versatility. Further, since the plasma needle is generated outside the outer conductor, the outer conductor and the inner conductor are not easily damaged by heat even when a high-temperature plasma needle is generated.
In the invention according to claim 2, since the antenna is extended in the axial direction of the inner conductor and exposed from the outer conductor to the outside, gas can be easily mixed.
In the invention according to claim 3, since the gas discharge direction is a direction orthogonal to the antenna axis, the plasma needle can be efficiently generated at the tip of the antenna.
In the invention according to claim 4, the gas discharge portion is formed of an insulating tube body, and the base portion of the coiled antenna is fitted to the outer periphery of the tube body, so that it is strong at the center portion of the coil portion. Electromagnetic waves are generated, and a plasma needle is generated at the center of the outlet of the tube. For this reason, mixing with air | atmosphere decreases and the stable plasma needle can be obtained.
In the invention according to claim 5, the temperature and length of the plasma needle can be adjusted over a wide range by adjusting the gas discharge amount and the output of the microwave generator.

以下、本発明の実施の形態を図面に基いて説明する。図面において、図1は本発明の実施例を示す装置全体の概略図、図2は図1の要部拡大断面図、図3はアンテナの変形例(第2実施例)を示す要部拡大断面図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, FIG. 1 is a schematic view of an entire apparatus showing an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a main part of FIG. 1, and FIG. 3 is an enlarged main part of an antenna showing a modification of the antenna (second embodiment). FIG.

図1において、1はマイクロ波発生装置であり、固体マイクロ波発振器2によって発生されるマイクロ波電力を同軸ケーブル3で矩形導波管4に導くようになっている。前記固体マイクロ波発振器2は、本例では2.45GHzのマイクロ波が発振されるものを使用している。5は固体マイクロ波発振器2の出力を調整する電力調整部、6は電力計である。   In FIG. 1, reference numeral 1 denotes a microwave generator that guides microwave power generated by a solid-state microwave oscillator 2 to a rectangular waveguide 4 with a coaxial cable 3. In the present example, the solid-state microwave oscillator 2 that oscillates a 2.45 GHz microwave is used. Reference numeral 5 denotes a power adjusting unit that adjusts the output of the solid-state microwave oscillator 2, and 6 denotes a power meter.

前記矩形導波管4は、矩形の導波管本体4a、ダブルスラグチューナ4b、可動短絡板4cを有し、導波管本体4aの壁に同軸導波管(ランチャー)10を取り付ける。該同軸導波管10は導体性資材、本例では銅により形成され、図2に示すように、外径D1が13.9mmとなる円筒状の外部導体11を矩形導波管4の壁に起立固定し、該外部導体11の軸心部に外径D2が4.8mmとなる円筒状の内部導体12を嵌合させ、両者間に絶縁体15を充填して両者を同軸に保持する。   The rectangular waveguide 4 includes a rectangular waveguide body 4a, a double slag tuner 4b, and a movable short-circuit plate 4c, and a coaxial waveguide (launcher) 10 is attached to the wall of the waveguide body 4a. The coaxial waveguide 10 is formed of a conductive material, copper in this example, and a cylindrical outer conductor 11 having an outer diameter D1 of 13.9 mm is formed on the wall of the rectangular waveguide 4 as shown in FIG. The cylindrical inner conductor 12 having an outer diameter D2 of 4.8 mm is fitted to the axial center of the outer conductor 11, and the insulator 15 is filled between the two to hold them coaxially.

また、前記内部導体12の上端は外部導体11の上端に一致させ、内部導体12の下端は外部導体11の下端から下方に突出させる。このとき、前記外部導体11の長さL1はマイクロ波の波長λに対し、λ/2/ √εrを満足する長さ、本例では54mmとし、内部導体12の下部12aは外部導体11から下方に突出させる。この突出量L2はマイクロ波の波長λに対し、λ/4を満足する長さ、本例では30mmとし、これにより、同軸導波管10のインピーダンスの整合をとる。なお、前記同軸導波管10は固体マイクロ波発振器2の同軸ケーブル3に接続するようにしてもよい。 The upper end of the inner conductor 12 is made to coincide with the upper end of the outer conductor 11, and the lower end of the inner conductor 12 is projected downward from the lower end of the outer conductor 11. In this case, the length L1 of the outer conductor 11 with respect to the wavelength lambda of the microwaves, the length that satisfies the λ / 2 / √ε r, in this example a 54 mm, bottom 12a of the inner conductor 12 from outer conductor 11 Project downward. The protruding amount L2 is set to a length that satisfies λ / 4 with respect to the wavelength λ of the microwave, in this example, 30 mm, thereby matching the impedance of the coaxial waveguide 10. The coaxial waveguide 10 may be connected to the coaxial cable 3 of the solid-state microwave oscillator 2.

前記内部導体12の上端部に導体性のアンテナ13を取り付ける。該アンテナ13はタングステン、あるいはモリブデン等の耐熱性の線材からなり、直径(線径)は0.5mmとなっている。該アンテナ13を前記外部導体11から上方(外部)に露出させる。この露出量H1はマイクロ波の波長の1/4以下とし、本例では15mmとする。14はアンテナ13を内部導体12に導電可能に固定するストッパーである。   A conductive antenna 13 is attached to the upper end of the inner conductor 12. The antenna 13 is made of a heat-resistant wire such as tungsten or molybdenum and has a diameter (wire diameter) of 0.5 mm. The antenna 13 is exposed upward (outside) from the outer conductor 11. This exposure amount H1 is ¼ or less of the wavelength of the microwave, and is 15 mm in this example. Reference numeral 14 denotes a stopper for fixing the antenna 13 to the inner conductor 12 in a conductive manner.

前記同軸導波管10の上方にAr、He、N2などのプラズマ発生用のガスを前記アンテナ13の上端部に向けて吐出する吐出管(管体)21を配置する。該吐出管21は絶縁資材、本例では発砲テフロン(登録商標)により直径D3が6mm、内径D4が4.5mmとなる管体とし、アンテナ13の軸線に対して直交する横向きにするとともに、その吐出端がアンテナ13の上端部に対し5mmの間隔S1を保持する如く配置する。20は前記吐出管21にガスを供給するガス供給装置、22はガスの供給量を調整するガス調整部である。 The upward A r of the coaxial waveguide 10, H e, placing the discharge pipe (pipe) 21 for ejecting a gas for plasma generation such as N 2 in the upper portion of the antenna 13. The discharge pipe 21 is a tubular body having a diameter D3 of 6 mm and an inner diameter D4 of 4.5 mm made of insulating material, in this example, foamed Teflon (registered trademark). The discharge end is disposed so as to maintain an interval S1 of 5 mm with respect to the upper end portion of the antenna 13. Reference numeral 20 denotes a gas supply device that supplies gas to the discharge pipe 21, and 22 denotes a gas adjustment unit that adjusts the supply amount of gas.

前記実施例によれば、吐出管21からアンテナ13の先端部に向けてガスを吐出し、この状態でマイクロ波発生装置1からマイクロ波が出力されると、該マイクロ波が同軸導波管(ランチャー)10部で同軸モードに変換され、アンテナ13の先端でマイクロ波の電磁波が集中し、該アンテナ13の先端からニードルプラズマ25が発生することになる。   According to the embodiment, when a gas is discharged from the discharge tube 21 toward the tip of the antenna 13 and a microwave is output from the microwave generator 1 in this state, the microwave is coaxially guided ( The launcher is converted into a coaxial mode at 10 parts, and microwave electromagnetic waves concentrate at the tip of the antenna 13, and needle plasma 25 is generated from the tip of the antenna 13.

この場合、前記アンテナ13の先端が外部導体11及び内部導体12から外部に露出しているので、高温のプラズマニードルを発生させても、外部導体11、及び内部導体12がプラズマニードルの熱によって損傷し難くなる。また、アンテナ13が熱損傷した際には、これを新規なものと容易に取り替えることができる。   In this case, since the tip of the antenna 13 is exposed to the outside from the outer conductor 11 and the inner conductor 12, even if a high temperature plasma needle is generated, the outer conductor 11 and the inner conductor 12 are damaged by the heat of the plasma needle. It becomes difficult to do. Further, when the antenna 13 is thermally damaged, it can be easily replaced with a new one.

また、同軸導波管10の外側でガスをアンテナ13の先端部に向けて吐出するようにしたので、ガスの流量を大きく変化させることができ、これによりプラズマニードルの温度範囲が拡大し、多用途化が可能となる。さらに、ガスの吐出管21を同軸導波管10の外側に配置したので、ガス流路の形成が容易になる。   In addition, since the gas is discharged toward the tip of the antenna 13 outside the coaxial waveguide 10, the gas flow rate can be greatly changed, which increases the temperature range of the plasma needle, Application becomes possible. Furthermore, since the gas discharge pipe 21 is disposed outside the coaxial waveguide 10, the gas flow path can be easily formed.

表1はガスの流量−固体マイクロ波発振器2の電力に対するプラズマニードル25の長さを示す。   Table 1 shows the flow rate of the gas and the length of the plasma needle 25 with respect to the power of the solid-state microwave oscillator 2.

Figure 2009032545
Figure 2009032545






















表1によれば、固体マイクロ波発振器2の電力(W)が一定の場合、ガスの流量を4L/mim、6L/mim、8L/mimと増すことによってプラズマニードル25の長さが順次長くなり、また、ガスの流量が一定の場合、固体マイクロ波発振器2の電力を2.5W、5W、7.5W、10W、20W、30W、40W、50Wと大きくすることによってプラズマニードル25の長さが長くなることが判る。   According to Table 1, when the power (W) of the solid-state microwave oscillator 2 is constant, the length of the plasma needle 25 is sequentially increased by increasing the gas flow rate to 4 L / mim, 6 L / mim, and 8 L / mim. In addition, when the gas flow rate is constant, the power of the solid-state microwave oscillator 2 is increased to 2.5 W, 5 W, 7.5 W, 10 W, 20 W, 30 W, 40 W, and 50 W, thereby increasing the length of the plasma needle 25. It turns out to be long.

プラズマニードル25の流れ方向の温度分布は、図4(a)、(b)、(c)で示すように、固体マイクロ波発振器2の電力が2.5W、5W、7.5W、10Wにおいて、ガスの流量を4L/mim、6L/mim、8L/mimと増すことによってプラズマニードルの温度が下がり、ガスの流量が8L/mim、電力が2.5Wにおいては、プラズマニードルの先端部の温度が約40℃となって人体に触れることができ、歯部、皮膚部の殺菌、消毒等、医療用に活用することができる。   As shown in FIGS. 4A, 4B, and 4C, the temperature distribution in the flow direction of the plasma needle 25 is as follows. When the power of the solid-state microwave oscillator 2 is 2.5 W, 5 W, 7.5 W, and 10 W, By increasing the gas flow rate to 4 L / mim, 6 L / mim, and 8 L / mim, the temperature of the plasma needle is lowered. When the gas flow rate is 8 L / mim and the power is 2.5 W, the temperature of the tip of the plasma needle is It can reach about 40 ° C. and touch the human body and can be used for medical purposes such as sterilization and disinfection of teeth and skin.

図3はアンテナの変形例(第2実施例)を示す。図3において、10は同軸導波管(ランチャー)、21は吐出管であり、これらは前述した実施例と略同様の構造となっているので、図2と同符号を付してその説明を省略する。   FIG. 3 shows a modification of the antenna (second embodiment). In FIG. 3, 10 is a coaxial waveguide (launcher), 21 is a discharge pipe, and these have substantially the same structure as the above-described embodiment. Omitted.

13−1は内部導体12の上端部に固着したアンテナであり、該アンテナ13はタングステン、あるいはモリブデン等の耐熱性の線材からなり、直径(線径)は0.5mmとなっている。該アンテナ13を前記外部導体11から上方(外部)に露出させ、該露出した露出部を螺旋状に湾曲させてコイル部13aとする。該コイル部13aの基部13bを吐出管(管体)21の外周に密接に嵌合させ、その先端部13cを前記吐出管21から右方(ガスの吐出方向)に突出させる。   Reference numeral 13-1 denotes an antenna fixed to the upper end of the inner conductor 12, and the antenna 13 is made of a heat-resistant wire such as tungsten or molybdenum, and has a diameter (wire diameter) of 0.5 mm. The antenna 13 is exposed upward (outside) from the external conductor 11, and the exposed exposed portion is spirally curved to form a coil portion 13a. The base portion 13b of the coil portion 13a is closely fitted to the outer periphery of the discharge pipe (tube body) 21, and the tip portion 13c is protruded from the discharge pipe 21 to the right (gas discharge direction).

前記同軸導波管10と吐出管21との間隔H2はマイクロ波の波長の1/4以下、本例では3mmとし、吐出管21に巻き付けるコイル部13aの基部13bの巻き付け量M1は15mm、吐出管21からのコイル部13aの先端部13cの突出量M2は27mmとする。   The distance H2 between the coaxial waveguide 10 and the discharge tube 21 is ¼ or less of the wavelength of the microwave, 3 mm in this example, the winding amount M1 of the base portion 13b of the coil portion 13a wound around the discharge tube 21 is 15 mm, The protrusion amount M2 of the tip portion 13c of the coil portion 13a from the tube 21 is 27 mm.

前記第2実施例によれば、コイル部13aの中心部で強い電磁波が発生し、吐出管21の出口中心部でプラズマニードル25aが発生することになる。このため、大気との混合が少なくなり、安定したプラズマニードルを得ることができる。   According to the second embodiment, strong electromagnetic waves are generated at the central portion of the coil portion 13a, and the plasma needle 25a is generated at the central portion of the outlet of the discharge pipe 21. For this reason, mixing with air | atmosphere decreases and the stable plasma needle can be obtained.

本発明の実施例を示す装置全体の概略図である。It is the schematic of the whole apparatus which shows the Example of this invention. 図1の要部拡大断面図である。It is a principal part expanded sectional view of FIG. アンテナの変形例(第2実施例)を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the modification (2nd Example) of an antenna. プラズマニードルの流れ方向の温度分布図Temperature distribution diagram in the flow direction of the plasma needle

符号の説明Explanation of symbols

1 マイクロ波発生装置
2 固体マイクロ波発振器
3 同軸ケーブル
4 矩形導波管
4a 導波管本体
4b ダブルスラグチューナ
4c 可変短絡板
5 電力調整部
6 電力計
10 同軸導波管(ランチャー)
11 外部導体
12 内部導体
12a 下部
13(13−1) アンテナ
13a コイル部
13b 基部
13c 先端部
14 ストッパー
15 絶縁体
20 ガス供給装置
21 吐出管(管体)
22 ガス調整部
25(25a) プラズマトーチ
DESCRIPTION OF SYMBOLS 1 Microwave generator 2 Solid state microwave oscillator 3 Coaxial cable 4 Rectangular waveguide 4a Waveguide main body 4b Double slag tuner 4c Variable short circuit board 5 Power adjustment part 6 Wattmeter 10 Coaxial waveguide (launcher)
DESCRIPTION OF SYMBOLS 11 Outer conductor 12 Inner conductor 12a Lower part 13 (13-1) Antenna 13a Coil part 13b Base part 13c Tip part 14 Stopper 15 Insulator 20 Gas supply apparatus 21 Discharge pipe (tube body)
22 Gas regulator 25 (25a) Plasma torch

Claims (5)

マイクロ波発生装置に、筒状の外部導体の軸心部に内部導体を同軸に嵌合させてなる同軸導波管を設け、前記内部導体に導体性のアンテナを接続するとともに、該アンテナを前記外部導体から外部に露出させ、ガス供給装置によって供給されるプラズマ発生用のガスを前記アンテナの露出端部に向けて吐出することを特徴とするマイクロ波プラズマニードル発生装置。   The microwave generator is provided with a coaxial waveguide in which an inner conductor is coaxially fitted to the axial center portion of a cylindrical outer conductor, a conductive antenna is connected to the inner conductor, and the antenna is A microwave plasma needle generator characterized in that it is exposed to the outside from an external conductor and discharges a plasma generating gas supplied by a gas supply device toward the exposed end of the antenna. アンテナは内部導体の軸線方向に延長させて外部導体から外部に露出させたことを特徴とする請求項1記載のマイクロ波プラズマニードル発生装置。   2. The microwave plasma needle generator according to claim 1, wherein the antenna is extended in the axial direction of the inner conductor and exposed from the outer conductor to the outside. ガスの吐出方向は、アンテナの軸心と直交する方向としたことを特徴とする請求項1又は2記載のマイクロ波プラズマニードル発生装置。   3. The microwave plasma needle generator according to claim 1, wherein the gas discharge direction is a direction orthogonal to the axis of the antenna. ガスの吐出部を絶縁性の管体により形成し、外部導体から露出したアンテナの露出部を螺旋状に湾曲させてコイル部とし、該コイル部の基部を前記管体の外周に嵌合させ、該コイル部の先端部を前記管体からガスの吐出方向に突出させたことを特徴とする請求項1記載のマイクロ波プラズマニードル発生装置。   The gas discharge portion is formed of an insulating tube, and the exposed portion of the antenna exposed from the external conductor is spirally bent into a coil portion, and the base of the coil portion is fitted to the outer periphery of the tube, The microwave plasma needle generator according to claim 1, wherein a tip end portion of the coil portion is protruded from the tube body in a gas discharge direction. ガスの吐出量を調整するガス調整部と、マイクロ波発生装置の出力を調整する電力調整部とを設けたことを特徴とする請求項1〜4何れか1項に記載のマイクロ波プラズマニードル発生装置。   5. The microwave plasma needle generation according to claim 1, further comprising: a gas adjustment unit that adjusts a gas discharge amount; and a power adjustment unit that adjusts an output of the microwave generator. apparatus.
JP2007195667A 2007-07-27 2007-07-27 Atmospheric microwave plasma needle generator Expired - Fee Related JP5230976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195667A JP5230976B2 (en) 2007-07-27 2007-07-27 Atmospheric microwave plasma needle generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195667A JP5230976B2 (en) 2007-07-27 2007-07-27 Atmospheric microwave plasma needle generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013057553A Division JP5475902B2 (en) 2013-03-21 2013-03-21 Atmospheric microwave plasma needle generator

Publications (2)

Publication Number Publication Date
JP2009032545A true JP2009032545A (en) 2009-02-12
JP5230976B2 JP5230976B2 (en) 2013-07-10

Family

ID=40402857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195667A Expired - Fee Related JP5230976B2 (en) 2007-07-27 2007-07-27 Atmospheric microwave plasma needle generator

Country Status (1)

Country Link
JP (1) JP5230976B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575299A (en) * 1980-04-10 1982-01-12 Anvar Plasma generator
JPS6087200U (en) * 1983-11-15 1985-06-15 新日本無線株式会社 Microwave plasma generator
JPH07130492A (en) * 1993-11-04 1995-05-19 Mitsubishi Heavy Ind Ltd Method and device for generating plasma
JPH08236293A (en) * 1994-10-26 1996-09-13 Matsushita Electric Ind Co Ltd Microwave plasma torch and plasma generating method
JPH11354297A (en) * 1998-05-29 1999-12-24 Leybold Syst Gmbh Plasma generator
JP2005293955A (en) * 2004-03-31 2005-10-20 Adtec Plasma Technology Co Ltd Coaxial microwave plasma torch
JP2005353411A (en) * 2004-06-10 2005-12-22 Tatsuo Shiyouji Plasma generation method in atmospheric pressure and its device
WO2006001455A1 (en) * 2004-06-28 2006-01-05 The University Of Tokyo Plasma generator, in vivo plasma processing device using same, and surface processing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575299A (en) * 1980-04-10 1982-01-12 Anvar Plasma generator
JPS6087200U (en) * 1983-11-15 1985-06-15 新日本無線株式会社 Microwave plasma generator
JPH07130492A (en) * 1993-11-04 1995-05-19 Mitsubishi Heavy Ind Ltd Method and device for generating plasma
JPH08236293A (en) * 1994-10-26 1996-09-13 Matsushita Electric Ind Co Ltd Microwave plasma torch and plasma generating method
JPH11354297A (en) * 1998-05-29 1999-12-24 Leybold Syst Gmbh Plasma generator
JP2005293955A (en) * 2004-03-31 2005-10-20 Adtec Plasma Technology Co Ltd Coaxial microwave plasma torch
JP2005353411A (en) * 2004-06-10 2005-12-22 Tatsuo Shiyouji Plasma generation method in atmospheric pressure and its device
WO2006001455A1 (en) * 2004-06-28 2006-01-05 The University Of Tokyo Plasma generator, in vivo plasma processing device using same, and surface processing device

Also Published As

Publication number Publication date
JP5230976B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US8154206B2 (en) Portable microwave plasma generator capable of generating plasma with low electric power
JP4572213B2 (en) Microwave irradiation device
US4906898A (en) Surface wave launchers to produce plasma columns and means for producing plasma of different shapes
JP4577684B2 (en) Plasma generator and method for optimizing its power supply efficiency
JP2005322582A (en) Microwave heating device
JPH0219600B2 (en)
JP2005293955A (en) Coaxial microwave plasma torch
US9451685B2 (en) Electromagnetic wave high frequency hybrid plasma torch
JP2010177002A (en) Electrode for submerged plasma, submerged plasma generating device, and submerged plasma generating method
US10840064B2 (en) Durable auto-ignition device for plasma reactor
JP5475902B2 (en) Atmospheric microwave plasma needle generator
JP5230976B2 (en) Atmospheric microwave plasma needle generator
US7921804B2 (en) Plasma generating nozzle having impedance control mechanism
US20100074810A1 (en) Plasma generating system having tunable plasma nozzle
JP5132487B2 (en) Plasma processing equipment
US20100074808A1 (en) Plasma generating system
JP2013157303A (en) Plasma generation device
JP5275092B2 (en) Plasma processing equipment
KR20090011059A (en) Apparatus for generating plasma
JP3854238B2 (en) Plasma source
JP5636876B2 (en) Plasma generator
JP2010086685A (en) Plasma treatment device
KR200398765Y1 (en) Multipurpose microwave source apparatus
JP2022190830A (en) Plasma generator
KR101762937B1 (en) Producer for atmospheric pressure plasma using two parallel wires resonator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5230976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees