WO2007102978A1 - Système et méthode de refroidissement d'un centre de données fondé sur un serveur grâce à un refroidissement au dessous de la température ambiante - Google Patents

Système et méthode de refroidissement d'un centre de données fondé sur un serveur grâce à un refroidissement au dessous de la température ambiante Download PDF

Info

Publication number
WO2007102978A1
WO2007102978A1 PCT/US2007/004146 US2007004146W WO2007102978A1 WO 2007102978 A1 WO2007102978 A1 WO 2007102978A1 US 2007004146 W US2007004146 W US 2007004146W WO 2007102978 A1 WO2007102978 A1 WO 2007102978A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
fluid coolant
heat exchangers
liquid
vapor
Prior art date
Application number
PCT/US2007/004146
Other languages
English (en)
Inventor
William G. Wyatt
Richard M. Weber
Original Assignee
Raytheon Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Company filed Critical Raytheon Company
Priority to JP2008558282A priority Critical patent/JP2009529237A/ja
Priority to EP07750945A priority patent/EP1997362A1/fr
Publication of WO2007102978A1 publication Critical patent/WO2007102978A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/208Liquid cooling with phase change
    • H05K7/20827Liquid cooling with phase change within rooms for removing heat from cabinets, e.g. air conditioning devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C2001/006Systems comprising cooling towers, e.g. for recooling a cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0031Radiators for recooling a coolant of cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/14Safety or protection arrangements; Arrangements for preventing malfunction for preventing damage by freezing, e.g. for accommodating volume expansion

Definitions

  • This invention relates generally to the field of cooling systems and, more particularly, to a system and method for cooling a server-based data center with sub- ambient cooling.
  • a variety of different types of structures can generate heat or thermal energy in operation.
  • a variety of different types of cooling systems may be utilized to dissipate the thermal energy, including air conditioning systems.
  • a cooling system for heat- generating structures comprises a plurality of heat exchangers, a structure which directs flow of the fluid coolant substantially in the form of a liquid to each of the plurality of heat exchangers, and a structure which reduces a pressure of the fluid coolant to a pressure at which the fluid coolant has a boiling temperature less than a temperature of the heat- generating structures.
  • Each of the plurality of heat exchangers is in thermal communication with at least one of the heat-generating structures and has an inlet and an outlet. Thermal energy from the heat-generating structure causes the fluid coolant substantially in the form of a liquid to boil and vaporize in each of the plurality of heat exchangers so that the fluid coolant absorbs thermal energy from the heat-generating structure as the fluid coolant changes state.
  • a technical advantage of one embodiment may include the capability to enhance cooling capability for data centers at a reduced energy consumption.
  • Other technical advantages of other embodiments may include the capability to minimize a need for conditioned air in a cooling system.
  • Still yet other technical advantages of other embodiments may include the capability to minimize potential impact on a server upon a leak occurring the in the cooling system.
  • FIGURE 1 is a block diagram of an embodiment of a cooling system that may be utilized in conjunction with other embodiments;
  • FIGURE 2 is a block diagram of another embodiment of a cooling system that may be utilized in conjunction with other embodiments;
  • FIGURES 3A and 3B illustrate in a block diagram, a transfer of thermal energy from a structure to a cooling system, according to embodiments of the invention
  • FIGURE 4 is a block diagram of a cooling system, according to an embodiment of the invention.
  • FIGURES 5 A and 5B illustration a sub-system for transfer of thermal energy from a structure to a cooling system, according to an embodiment of the invention.
  • ASHRAE The American Society of Heating Refrigerating and Air-conditioning Engineers
  • ASHRAE papers have suggested the use of heat pipes to concentrate the heat and loop-thermosyphons to take the heat to the top of individual cabinets. The heat or thermal energy is then removed from the top of the individual cabinet by the cool conditioned-air.
  • the cooling needs could be on the order of 1,000 tons (3513 kW) of refrigeration, including the ancillary cooling loads (lighting, fan heat, UPS, etc.).
  • the refrigerated air cooling system may require two 500 ton chillers with variable speed compressors and forty 30 ton chilled water computer room air-conditioning units. In other words, these systems requires a lot of energy consumption. Accordingly, teachings of some embodiments of the invention recognize a cooling system that efficiently enhances cooling capability for data centers at a reduced energy consumption.
  • FIGURE 1 is a block diagram of an embodiment of a cooling system 10 that may be utilized in conjunction with other embodiments disclosed herein, namely the embodiments described with reference to FIGURES 3-5B. Although the details of one cooling system will be described below, it should be expressly understood that other cooling systems may be used in conjunction with embodiments of the invention, including the cooling system 100, described with reference to FIGURE 2.
  • the cooling system 10 of FIGURE 1 is shown cooling a structure 12 that is exposed to or generates thermal energy.
  • the structure 12 may be any of a variety of structures, including, but not limited to, electronic components, circuits, computers, and servers. Because the structure 12 can vary greatly, the details of structure 12 are not illustrated and described.
  • the cooling system 10 of FIGURE 1 includes a vapor line 61, a liquid line 71, heat exchangers 23 and 24, a pump 46, inlet orifices 47 and 48, a condenser heat exchanger 41, an expansion reservoir 42, and a pressure controller 51.
  • the structure 12 may be arranged and designed to conduct heat or thermal energy to the heat exchangers 23, 24.
  • the heat exchanger 23, 24 may be disposed on an edge of the structure 12 (e.g., as a thermosyphon, heat pipe, or other device) or may extend through portions of the structure 12, for example, through a thermal plane of structure 12. In particular embodiments, the heat exchangers 23, 24 may extend up to the components of the structure 12, directly receiving thermal energy from the components. Although two heat exchangers 23, 24 are shown in the cooling system 10 of FIGURE 1, one heat exchanger or more than two heat exchangers may be used to cool the structure 12 in other cooling systems. In operation, a fluid coolant flows through each of the heat exchangers 23, 24.
  • this fluid coolant may be a two-phase fluid coolant, which enters inlet conduits 25 of heat exchangers 23, 24 in liquid form. Absorption of heat from the structure 12 causes part or all of the liquid coolant to boil and vaporize such that some or all of the fluid coolant leaves the exit conduits 27 of heat exchangers 23, 24 in a vapor phase.
  • the heat exchangers 23, 24 may be lined with pin fins or other similar devices which, among other things, increase surface contact between the fluid coolant and walls of the heat exchangers 23, 24.
  • the fluid coolant may be forced or sprayed into the heat exchangers 23, 24 to ensure fluid contact between the fluid coolant and the walls of the heat exchangers 23, 24.
  • the fluid coolant departs the exit conduits 27 and flows through the vapor line 61, the condenser heat exchanger 41, the expansion reservoir 42, a pump 46, the liquid line 71, and a respective one of two orifices 47 and 48, in order to again to reach the inlet conduits 25 of the heat exchanger 23, 24.
  • the pump 46 may cause the fluid coolant to circulate around the loop shown in FIGURE 1.
  • the pump 46 may use magnetic drives so there are no shaft seals that can wear or leak with time.
  • the vapor line 61 uses the term "vapor” and the liquid line 71 uses the terms "liquid”, each respective line may have fluid in a different phase.
  • the liquid line 71 may have contain some vapor and the vapor line 61 may contain some liquid.
  • the orifices 47 and 48 in particular embodiments may facilitate proper partitioning of the fluid coolant among the respective heat exchanger 23, 24 , and may also help to create a large pressure drop between the output of the pump 46 and the heat exchanger 23, 24 in which the fluid coolant vaporizes.
  • the orifices 47 and 48 may have the same size, or may have different sizes in order to partition the coolant in a proportional manner which facilitates a desired cooling profile.
  • a flow 56 of fluid may be forced to flow through the condenser heat exchanger 41, for example by a fan (not shown) or other suitable device.
  • the flow 56 of fluid may be ambient fluid.
  • the condenser heat exchanger 41 transfers heat from the fluid coolant to the flow 56 of ambient fluid, thereby causing any portion of the fluid coolant which is in the vapor phase to condense back into a liquid phase.
  • a liquid bypass 49 may be provided for liquid fluid coolant that either may have exited the heat exchangers 23, 24 or that may have condensed from vapor fluid coolant during travel to the condenser heat exchanger 41.
  • the condenser heat exchanger 41 may be a cooling tower.
  • the liquid fluid coolant exiting the condenser heat exchanger 41 may be supplied to the expansion reservoir 42. Since fluids typically take up more volume in their vapor phase than in their liquid phase, the expansion reservoir 42 may be provided in order to take up the volume of liquid fluid coolant that is displaced when some or all of the coolant in the system changes from its liquid phase to its vapor phase.
  • the amount of the fluid coolant which is in its vapor phase can vary over time, due in part to the fact that the amount of heat or thermal energy being produced by the structure 12 will vary over time, as the structure 12 system operates in various operational modes.
  • one highly efficient technique for removing heat from a surface is to boil and vaporize a liquid which is in contact with a surface. As the liquid vaporizes in this process, it inherently absorbs heat to effectuate such vaporization.
  • the amount of heat that can be absorbed per unit volume of a liquid is commonly known as the latent heat of vaporization of the liquid. The higher the latent heat of vaporization, the larger the amount of heat that can be absorbed per unit volume of liquid being vaporized.
  • the fluid coolant used in the embodiment of FIGURE 1 may include, but is not limited to, mixtures of antifreeze and water or water, alone.
  • the antifreeze may be ethylene glycol, propylene glycol, methanol, or other suitable antifreeze.
  • the mixture may also include fluoroinert.
  • the fluid coolant may absorb a substantial amount of heat as it vaporizes, and thus may have a very high latent heat of vaporization.
  • the fluid coolant's boiling temperature may be reduced to between 55-65°C by subjecting the fluid coolant to a subambient pressure of about 2-3 psia.
  • orifices 47 and 48 may permit the pressure of the fluid coolant downstream from them to be substantially less than the fluid coolant pressure between the pump 46 and the orifices
  • the pressure controller 51 maintains the coolant at a pressure of approximately 2-3 psia along the portion of the loop which extends from the orifices 47 and 48 to the pump 46, in particular through the heat exchangers 23 and 24, the condenser heat exchanger 41, and the expansion reservoir 42.
  • a metal bellows may be used in the expansion reservoir 42, connected to the loop using brazed joints.
  • the pressure controller 51 may control loop pressure by using a motor driven linear actuator that is part of the metal bellows of the expansion reservoir 42 or by using small gear pump to evacuate the loop to the desired pressure level.
  • the fluid coolant removed may be stored in the metal bellows whose fluid connects are brazed.
  • the pressure controller 51 may utilize other suitable devices capable of controlling pressure.
  • the fluid coolant flowing from the pump 46 to the orifices 47 and 48 through liquid line 71 may have a temperature of approximately 55 0 C to 65°C and a pressure of approximately 12 psia as referenced above. After passing through the orifices 47 and 48, the fluid coolant may still have a temperature of approximately 55°C to 65°C, but may also have a lower pressure in the range about 2 psia to 3 psia. Due to this reduced pressure, some or all of the fluid coolant will boil or vaporize as it passes through and absorbs heat from the heat exchanger 23 and 24.
  • the subambient coolant vapor travels through the vapor line 61 to the condenser heat exchanger 41 where heat or thermal energy can be transferred from the subambient fluid coolant to the flow 56 of fluid.
  • the flow 56 of fluid in particular embodiments may have a temperature of less than 5O 0 C. In other embodiments, the flow 56 may have a temperature of less than 40 0 C.
  • any portion of the fluid which is in its vapor phase will condense such that substantially all of the fluid coolant will be in liquid form when it exits the condenser heat exchanger 41.
  • the fluid coolant may have a temperature of approximately 55 0 C to 65°C and a subambient pressure of approximately 2 psia to 3 psia.
  • the fluid coolant may then flow to pump 46, which in particular embodiments 46 may increase the pressure of the fluid coolant to a value in the range of approximately 12 psia, as mentioned earlier.
  • pump 46 Prior to the pump 46, there may be a fluid connection to an expansion reservoir 42 which, when used in conjunction with the pressure controller 51, can control the pressure within the cooling loop. It will be noted that the embodiment of FIGURE 1 may operate without a refrigeration system.
  • FIGURE 2 is a block diagram of another embodiment of a cooling system 100 that may be utilized in conjunction with other embodiments disclosed herein, namely the embodiments described with reference to FIGURES 3-5B.
  • the cooling system 100 of FIGURE 2 may operate in a similar to the cooling system 10 of FIGURE 1; however, the cooling system 100 of FIGURE 2 also incorporates an air removal system 190. For a variety of reasons, unintended air or other fluids may be introduced into the cooling system 100.
  • the cooling system 100 may utilize the air removal system 190 to remove air or other fluids from the cooling system 100.
  • the air removal system 190 in the embodiment of FIGURE 2 includes an air pump 192, a reclamation heat exchanger 194, an air trap 196, and a reclamation fill valve 198.
  • the cooling loop for the cooling system 100 is similar to cooling loop for the cooling system 10 of FIGURE 1 for example, including a heat exchanger 123, a pump 160, a liquid line 171, a vapor line 161, an expansion reservoir 142, a pressure controller 151, and a condenser heat exchanger 141.
  • fluid or air leaks 102 may enter the system at the heat exchanger 123 of a structure 112 or other location and travel in the vapor line 161 to the condenser heat exchanger 141.
  • condensed coolant liquid may pass though while air (and any associated coolant vapor that may be present therein) may be pumped using air pump 192 to a reclamation heat exchanger 194.
  • the reclamation heat exchanger 194 may cool the air / coolant vapor combination, which condenses the vapor from the air stream being removed from the bottom of the condenser heat exchanger 141. Coolant separates from the air in a trap 196 while the air exits through a vent 195.
  • a level switch 197 may be in communication with a reclamation fill valve 198 to allow the reclamation fill valve 198 to open when recovered coolant is present. The recovered coolant may be reintroduced to the loop through the reclamation fill valve 198 and a conduit in communication with the pump 146.
  • FIGURES 1 and 2 Although one example of an air removal system 190 has been shown with reference to FIGURE 2, other air removal systems may be used in other embodiments of the invention with more, less, or alternative component parts. Additionally, although components of embodiments of cooling system 10 and 100 have been shown in FIGURES 1 and 2, it should be understood that other embodiments of the cooling system 10 can include more, fewer, or different component parts. For example, although specific temperatures and pressures have been described for such one embodiment of the cooling systems 10 and 100, other embodiments of the cooling system 10 and 100 may operate at different pressures and temperatures. Additionally, in some embodiments a coolant fill port and/or a coolant bleed port may be utilized with metal-to-metal caps to seal them. Further, in some embodiments, all or a portion of the joints between various components may be brazed, soldered or welded using metal-to-metal seal caps.
  • FIGURES 3A and 3B illustrate in a block diagram, a transfer of thermal energy from a structure 212 to a cooling system, according to embodiments of the invention.
  • the heat exchanger 223 has been disposed on an end of a structure 212.
  • the heat exchanger 223 may be a thermosyphon, heat pipe, or other similar device.
  • the structure 212 may include a variety of features to enhance transfer of thermal energy to the heat exchanger 223. Fluid is received in a substantially liquid state through a liquid line 271 and vaporized in the heat exchanger 223. The fluid exits the heat exchanger 223 in a substantially vapor state to the vapor line 261.
  • a plurality of heat exchangers 223 extend through the structure
  • each of the heat exchangers fluid is received in a substantially liquid state through a liquid line 271 and vaporized in the heat exchanger 223.
  • the fluid exits the heat exchanger 223 in a substantially vapor state to the vapor line 261.
  • FIGURE 4 is a block diagram of a cooling system 300, according to an embodiment of the invention.
  • the cooling loop for the cooling system 300 may operate in a similar manner to the cooling loops for the cooling system 10 of FIGURE 1 and the cooling system 100 of FIGURE 2, for example, including a heat exchangers 323, a pump 346, a liquid line 371, a vapor line 361, and a condenser heat exchanger 341.
  • the cooling system 300 may be used to cool a plurality of structures 312, for example, servers in a data center.
  • components of the each of servers or structures 312 may generate thermal energy, which is dissipated to the heat exchanger 312.
  • Each of the heat exchangers 323 of the servers or structures 312 may interact with a common liquid line 371 and a common vapor line 361.
  • Each of the heat exchangers 323 receives fluid in a substantially liquid state through the liquid line 371 and vaporizes the fluid in the heat exchanger 323. The fluid exits the heat exchanger 323 in a substantially vapor state to the vapor line 361.
  • the heat exchangers 323 in some embodiments may be disposed on an end of the server or structure 312, for example, as a thermosyphon, heat pipe, or other similar device. In other embodiments, the heat exchangers 323 may extend into a portion of the structures 312 to enhance a transfer of thermal energy. In either of these embodiments, the server or structures 312 may include a variety of different feature to enhance transfer of thermal energy to the heat exchangers 323.
  • the servers or structures 312 may be located inside a building while the condenser heat exchanger 341 and/or pump 346 may be located outside of a building.
  • FIGURES 5 A and 5B illustration a sub-system 400 for transfer of thermal energy from a structure 412 to a cooling system, according to an embodiment of the invention.
  • the sub-system 400 of FIGURES 5 A and 5B may be used in conjunction with the cooling systems 10, 100, and 300 of FIGURES 1, 2, and 4, or other cooling systems.
  • the structure 412 is shown as a server tower, which may hold a plurality of circuit cards assemblies 412 and their associated chassis 462 on shelves 482 or other suitable components.
  • the sub-system 400 includes a liquid manifold line 482 in communication with a liquid line 471 of a cooling system and a vapor manifold line 384 in communication with a vapor line 461 of a cooling system.
  • the liquid manifold line 482 and vapor manifold line 484 may be arranged in a variety of configurations.
  • the liquid manifold line 482 and vapor manifold line 484 may be vertically disposed in a rear portion of the rack 480.
  • One or more electronic chassis 462 may respectively be plugged into the liquid manifold line 482 and the vapor manifold line 484 to obtain cooling functionality for the electronic chassis 462.
  • the chassis 462 may have a heat exchanger 423 in its wall, which contains an inlet port 425 (e.g., for substantial liquid fluid coolant) and an exit port 427 (e.g., for substantially vapor fluid coolant).
  • the inlet port 425 may fluidly couple to the liquid manifold line 482 and the exit port 427 may fluidly couple to the vapor manifold line 484 using a variety of fluid coupling techniques, including but not limited to techniques which utilize seals, O-rings, and other devices.
  • the structure 412 may provide a series of coolant channels or heat exchangers plumbed into the walls of the rack 412, for example, in a manner similar to that described with reference to FIGURE 3B. Accordingly, each chassis 462 would simply slide into its allocated slot where it may be coupled or clamped to the coolant channels or heat exchangers.
  • An advantage of such an embodiment is that the cooling system may be sealed. Accordingly, minimized perturbances to such a sealed system would occur during insertion or removal of a chassis 462.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Selon un exemple de mode de réalisation, l'invention consiste en un système de refroidissement pour des structures produisant de la chaleur comprenant une pluralité d'échangeurs de chaleur, une structure qui dirige l'écoulement du fluide de refroidissement en grande partie sous forme liquide vers chaque élément de la pluralité d'échangeurs de chaleur, et une structure qui réduit la pression du fluide de refroidissement à une valeur à laquelle le fluide de refroidissement possède une température d'ébullition inférieure à la température des structures produisant de la chaleur. Chaque élément de la pluralité d'échangeurs de chaleur est en communication thermique avec au moins une des structures produisant de la chaleur et possède une entrée et une sortie. Sous l'effet de l'énergie thermique provenant de la structure produisant de la chaleur, le fluide de refroidissement en grande partie sous forme liquide bout et se vaporise dans chaque élément de la pluralité d'échangeurs de chaleur de telle façon que le fluide de refroidissement absorbe de l'énergie thermique provenant de la structure produisant de la chaleur au fur et à mesure que le fluide de refroidissement change d'état.
PCT/US2007/004146 2006-03-08 2007-02-14 Système et méthode de refroidissement d'un centre de données fondé sur un serveur grâce à un refroidissement au dessous de la température ambiante WO2007102978A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008558282A JP2009529237A (ja) 2006-03-08 2007-02-14 サーバーベースデータセンタを冷却するためのシステム及び方法
EP07750945A EP1997362A1 (fr) 2006-03-08 2007-02-14 Système et méthode de refroidissement d'un centre de données fondé sur un serveur grâce à un refroidissement au dessous de la température ambiante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/371,681 US20070209782A1 (en) 2006-03-08 2006-03-08 System and method for cooling a server-based data center with sub-ambient cooling
US11/371,681 2006-03-08

Publications (1)

Publication Number Publication Date
WO2007102978A1 true WO2007102978A1 (fr) 2007-09-13

Family

ID=38235190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/004146 WO2007102978A1 (fr) 2006-03-08 2007-02-14 Système et méthode de refroidissement d'un centre de données fondé sur un serveur grâce à un refroidissement au dessous de la température ambiante

Country Status (4)

Country Link
US (1) US20070209782A1 (fr)
EP (1) EP1997362A1 (fr)
JP (1) JP2009529237A (fr)
WO (1) WO2007102978A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009120613A1 (fr) 2008-03-25 2009-10-01 Raytheon Company Systèmes et procédés permettant de refroidir un composant informatique dans un bâti informatique
EP2193537A1 (fr) * 2007-09-17 2010-06-09 Raytheon Company Système de refroidissement pour tubes à vide de grande puissance
WO2011017385A1 (fr) * 2009-08-04 2011-02-10 Parker Hannifin Corporation Système de refroidissement par liquide pompé à phases multiples
WO2011137798A1 (fr) * 2010-09-13 2011-11-10 华为技术有限公司 Procédé et dispositif de dissipation de chaleur
WO2011149487A3 (fr) * 2010-05-27 2013-04-18 Johnson Controls Technology Company Refroidisseurs à thermosiphon pour systèmes de refroidissement avec tours de refroidissement
EP2593845A2 (fr) * 2010-07-13 2013-05-22 Inertech IP LLC Systèmes et procédés de refroidissement d'équipement électronique
US10488061B2 (en) 2016-03-16 2019-11-26 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-series heat rejection and trim cooling
US11384989B2 (en) 2016-08-26 2022-07-12 Inertech Ip Llc Cooling systems and methods using single-phase fluid
EP4181642A1 (fr) 2021-11-16 2023-05-17 JJ Cooling Innovation Sàrl Système de refroidissement pour étagères de composants électroniques
CN117098964A (zh) * 2021-06-09 2023-11-21 能量回收股份有限公司 具有压力交换器的制冷系统和热泵系统
US11982481B2 (en) 2020-07-10 2024-05-14 Energy Recovery, Inc. Refrigeration system with high speed rotary pressure exchanger

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070291452A1 (en) * 2006-06-14 2007-12-20 Gilliland Don A Heat Transfer Systems for Dissipating Thermal Loads From a Computer Rack
US8651172B2 (en) 2007-03-22 2014-02-18 Raytheon Company System and method for separating components of a fluid coolant for cooling a structure
US7921655B2 (en) * 2007-09-21 2011-04-12 Raytheon Company Topping cycle for a sub-ambient cooling system
US8553416B1 (en) * 2007-12-21 2013-10-08 Exaflop Llc Electronic device cooling system with storage
US8032767B2 (en) * 2008-04-02 2011-10-04 Microsoft Corporation Power-efficient state setting of data-center elements
US7961463B2 (en) * 2008-04-02 2011-06-14 Microsoft Corporation Power efficient data center
CN101346058B (zh) * 2008-08-28 2012-01-25 中山大学 一种废热驱动的两相回路散热系统
GB2465140B (en) 2008-10-30 2011-04-13 Aqua Cooling Solutions Ltd An electronic system
US7903404B2 (en) * 2009-04-29 2011-03-08 Hewlett-Packard Development Company, L.P. Data centers
US8369090B2 (en) 2009-05-12 2013-02-05 Iceotope Limited Cooled electronic system
US8020390B2 (en) * 2009-06-06 2011-09-20 International Business Machines Corporation Cooling infrastructure leveraging a combination of free and solar cooling
US8120916B2 (en) * 2009-09-17 2012-02-21 International Business Machines Corporation Facilitating cooling of an electronics rack employing water vapor compression system
JP2012118781A (ja) * 2010-12-01 2012-06-21 Hitachi Ltd 電子機器用ラックおよびデータセンタ
US9151543B2 (en) 2011-07-15 2015-10-06 International Business Machines Corporation Data center coolant switch
EP3154324A3 (fr) 2011-11-22 2017-05-17 Le Groupe S.M. Inc. Système de refroidissement de centre de données
JP6536406B2 (ja) * 2013-11-20 2019-07-03 日本電気株式会社 電子機器収容装置および電子機器冷却システム
US9883616B2 (en) 2014-09-29 2018-01-30 International Business Machines Corporation Manifold heat exchanger
US10576589B2 (en) * 2014-09-30 2020-03-03 The Boeing Company Cooling system for use with a power electronics assembly and method of manufacturing thereof
US9861012B2 (en) * 2014-10-21 2018-01-02 International Business Machines Corporation Multifunction coolant manifold structures
US10448543B2 (en) 2015-05-04 2019-10-15 Google Llc Cooling electronic devices in a data center
US10462935B2 (en) 2015-06-23 2019-10-29 Google Llc Cooling electronic devices in a data center
JP6596986B2 (ja) * 2015-07-01 2019-10-30 富士通株式会社 冷却部品及び電子機器
US10349561B2 (en) 2016-04-15 2019-07-09 Google Llc Cooling electronic devices in a data center
US11255611B2 (en) 2016-08-02 2022-02-22 Munters Corporation Active/passive cooling system
US11839062B2 (en) 2016-08-02 2023-12-05 Munters Corporation Active/passive cooling system
US10459499B2 (en) * 2017-05-26 2019-10-29 Dell Products L.P. Systems and methods for management of liquid cooling upgrades with liquid cooling adapter card
US10813253B2 (en) * 2017-12-07 2020-10-20 Hewlett Packard Enterprise Development Lp Chassis cooling
US10739831B2 (en) 2018-04-24 2020-08-11 Dell Products L.P. Card-based extension cooling
GB201809208D0 (en) * 2018-06-05 2018-07-25 Univ Brunel Thermal transfer loop
US11525636B2 (en) * 2019-03-20 2022-12-13 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Method and system for stabilizing loop heat pipe operation with a controllable condenser bypass
US11895808B2 (en) * 2020-05-27 2024-02-06 Nvidia Corporation Intelligent refrigeration-assisted data center liquid cooling
US11683910B2 (en) * 2021-04-27 2023-06-20 Quanta Computer Inc. Hot plug redundant pump for cooling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143778A1 (fr) * 2000-04-04 2001-10-10 Thermal Form & Function LLC Système de refroidissement à pompage de liquide réfrigérant à changement de phase
US6415619B1 (en) * 2001-03-09 2002-07-09 Hewlett-Packard Company Multi-load refrigeration system with multiple parallel evaporators
EP1380799A2 (fr) * 2002-07-11 2004-01-14 Raytheon Company Procédé et dispositif pour refroidir avec un fluide réfrigérant à pression sous-ambiante
EP1448040A2 (fr) * 2003-02-14 2004-08-18 Hitachi, Ltd. Système de refroidissement par liquide d' un sytème de serveur monté dans un rack
US20040231351A1 (en) * 2003-05-19 2004-11-25 Wyatt William Gerald Method and apparatus for extracting non-condensable gases in a cooling system
EP1601043A2 (fr) * 2004-05-25 2005-11-30 Raytheon Company Procédé et dispositif pour refroidir avec un fluide réfrigérant à pression sous-ambiante

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1528619A (en) * 1924-09-22 1925-03-03 Paul Hofer Production of cold glaze wall and floor plates
US1906422A (en) * 1931-11-14 1933-05-02 Atlantic Refining Co Apparatus for heating
US2321964A (en) * 1941-08-08 1943-06-15 York Ice Machinery Corp Purge system for refrigerative circuits
US2371443A (en) * 1942-03-02 1945-03-13 G & J Weir Ltd Closed feed system for steam power plants
US2991978A (en) * 1959-07-29 1961-07-11 Westinghouse Electric Corp Steam heaters
US3131548A (en) * 1962-11-01 1964-05-05 Worthington Corp Refrigeration purge control
US3174540A (en) * 1963-09-03 1965-03-23 Gen Electric Vaporization cooling of electrical apparatus
US3334684A (en) * 1964-07-08 1967-08-08 Control Data Corp Cooling system for data processing equipment
US3371298A (en) * 1966-02-03 1968-02-27 Westinghouse Electric Corp Cooling system for electrical apparatus
US3524497A (en) * 1968-04-04 1970-08-18 Ibm Heat transfer in a liquid cooling system
US3609991A (en) * 1969-10-13 1971-10-05 Ibm Cooling system having thermally induced circulation
US3586101A (en) * 1969-12-22 1971-06-22 Ibm Cooling system for data processing equipment
US3774677A (en) * 1971-02-26 1973-11-27 Ibm Cooling system providing spray type condensation
US3756903A (en) * 1971-06-15 1973-09-04 Wakefield Eng Inc Closed loop system for maintaining constant temperature
US5333677A (en) * 1974-04-02 1994-08-02 Stephen Molivadas Evacuated two-phase head-transfer systems
US3989102A (en) * 1974-10-18 1976-11-02 General Electric Company Cooling liquid de-gassing system
US4019098A (en) * 1974-11-25 1977-04-19 Sundstrand Corporation Heat pipe cooling system for electronic devices
US4301861A (en) * 1975-06-16 1981-11-24 Hudson Products Corporation Steam condensing apparatus
US4072188A (en) * 1975-07-02 1978-02-07 Honeywell Information Systems Inc. Fluid cooling systems for electronic systems
US4003213A (en) * 1975-11-28 1977-01-18 Robert Bruce Cox Triple-point heat pump
US4129180A (en) * 1976-12-06 1978-12-12 Hudson Products Corporation Vapor condensing apparatus
US4169356A (en) * 1978-02-27 1979-10-02 Lloyd Kingham Refrigeration purge system
GB2029250B (en) * 1978-09-05 1982-10-27 Apv Spiro Gills Ltd Water chilling plant
JPS55118561A (en) * 1979-03-05 1980-09-11 Hitachi Ltd Constant pressure type boiling cooler
US4296455A (en) * 1979-11-23 1981-10-20 International Business Machines Corporation Slotted heat sinks for high powered air cooled modules
US4511376A (en) * 1980-04-07 1985-04-16 Coury Glenn E Method of separating a noncondensable gas from a condensable vapor
US4381817A (en) * 1981-04-27 1983-05-03 Foster Wheeler Energy Corporation Wet/dry steam condenser
US4495988A (en) * 1982-04-09 1985-01-29 The Charles Stark Draper Laboratory, Inc. Controlled heat exchanger system
US4411756A (en) * 1983-03-31 1983-10-25 Air Products And Chemicals, Inc. Boiling coolant ozone generator
US4585054A (en) * 1984-05-14 1986-04-29 Koeprunner Ernst Condensate draining system for temperature regulated steam operated heat exchangers
US4794984A (en) * 1986-11-10 1989-01-03 Lin Pang Yien Arrangement for increasing heat transfer coefficient between a heating surface and a boiling liquid
US4998181A (en) * 1987-12-15 1991-03-05 Texas Instruments Incorporated Coldplate for cooling electronic equipment
US4851856A (en) * 1988-02-16 1989-07-25 Westinghouse Electric Corp. Flexible diaphragm cooling device for microwave antennas
JPH06100408B2 (ja) * 1988-09-09 1994-12-12 日本電気株式会社 冷却装置
JP2708495B2 (ja) * 1988-09-19 1998-02-04 株式会社日立製作所 半導体冷却装置
US4938280A (en) * 1988-11-07 1990-07-03 Clark William E Liquid-cooled, flat plate heat exchanger
US5183104A (en) * 1989-06-16 1993-02-02 Digital Equipment Corporation Closed-cycle expansion-valve impingement cooling system
DE4118196C2 (de) * 1990-06-29 1995-07-06 Erno Raumfahrttechnik Gmbh Verdampfungswärmetauscher
JPH0827109B2 (ja) * 1990-07-12 1996-03-21 甲府日本電気株式会社 液体冷却装置
US5128689A (en) * 1990-09-20 1992-07-07 Hughes Aircraft Company Ehf array antenna backplate including radiating modules, cavities, and distributor supported thereon
CA2053055C (fr) * 1990-10-11 1997-02-25 Tsukasa Mizuno Systeme de refroidissement par liquide pour boitiers lsi
US5148859A (en) * 1991-02-11 1992-09-22 General Motors Corporation Air/liquid heat exchanger
US5067560A (en) * 1991-02-11 1991-11-26 American Standard Inc. Condenser coil arrangement for refrigeration system
US5181395A (en) * 1991-03-26 1993-01-26 Donald Carpenter Condenser assembly
US5158136A (en) * 1991-11-12 1992-10-27 At&T Laboratories Pin fin heat sink including flow enhancement
NO915127D0 (no) * 1991-12-27 1991-12-27 Sinvent As Kompresjonsanordning med variabelt volum
US5353865A (en) * 1992-03-30 1994-10-11 General Electric Company Enhanced impingement cooled components
US5239443A (en) * 1992-04-23 1993-08-24 International Business Machines Corporation Blind hole cold plate cooling system
US5501082A (en) * 1992-06-16 1996-03-26 Hitachi Building Equipment Engineering Co., Ltd. Refrigeration purge and/or recovery apparatus
US5406807A (en) * 1992-06-17 1995-04-18 Hitachi, Ltd. Apparatus for cooling semiconductor device and computer having the same
US5245839A (en) * 1992-08-03 1993-09-21 Industrial Technology Research Institute Adsorption-type refrigerant recovery apparatus
US5261246A (en) * 1992-10-07 1993-11-16 Blackmon John G Apparatus and method for purging a refrigeration system
US5493305A (en) * 1993-04-15 1996-02-20 Hughes Aircraft Company Small manufacturable array lattice layers
US5447189A (en) * 1993-12-16 1995-09-05 Mcintyre; Gerald L. Method of making heat sink having elliptical pins
US5509468A (en) * 1993-12-23 1996-04-23 Storage Technology Corporation Assembly for dissipating thermal energy contained in an electrical circuit element and associated method therefor
JPH07211832A (ja) * 1994-01-03 1995-08-11 Motorola Inc 電力放散装置とその製造方法
US5515690A (en) * 1995-02-13 1996-05-14 Carolina Products, Inc. Automatic purge supplement after chamber with adsorbent
US5960861A (en) * 1995-04-05 1999-10-05 Raytheon Company Cold plate design for thermal management of phase array-radar systems
US5655600A (en) * 1995-06-05 1997-08-12 Alliedsignal Inc. Composite plate pin or ribbon heat exchanger
US5761037A (en) * 1996-02-12 1998-06-02 International Business Machines Corporation Orientation independent evaporator
US6305463B1 (en) * 1996-02-22 2001-10-23 Silicon Graphics, Inc. Air or liquid cooled computer module cold plate
US5605054A (en) * 1996-04-10 1997-02-25 Chief Havc Engineering Co., Ltd. Apparatus for reclaiming refrigerant
US5943211A (en) * 1997-04-18 1999-08-24 Raytheon Company Heat spreader system for cooling heat generating components
MY115676A (en) * 1996-08-06 2003-08-30 Advantest Corp Printed circuit board with electronic devices mounted thereon
US5841564A (en) * 1996-12-31 1998-11-24 Motorola, Inc. Apparatus for communication by an electronic device and method for communicating between electronic devices
US5806322A (en) * 1997-04-07 1998-09-15 York International Refrigerant recovery method
US5815370A (en) * 1997-05-16 1998-09-29 Allied Signal Inc Fluidic feedback-controlled liquid cooling module
US5818692A (en) * 1997-05-30 1998-10-06 Motorola, Inc. Apparatus and method for cooling an electrical component
US5862675A (en) * 1997-05-30 1999-01-26 Mainstream Engineering Corporation Electrically-driven cooling/heating system utilizing circulated liquid
US5829514A (en) * 1997-10-29 1998-11-03 Eastman Kodak Company Bonded cast, pin-finned heat sink and method of manufacture
US5950717A (en) * 1998-04-09 1999-09-14 Gea Power Cooling Systems Inc. Air-cooled surface condenser
US6055154A (en) * 1998-07-17 2000-04-25 Lucent Technologies Inc. In-board chip cooling system
US6018192A (en) * 1998-07-30 2000-01-25 Motorola, Inc. Electronic device with a thermal control capability
US6052285A (en) * 1998-10-14 2000-04-18 Sun Microsystems, Inc. Electronic card with blind mate heat pipes
US6173758B1 (en) * 1999-08-02 2001-01-16 General Motors Corporation Pin fin heat sink and pin fin arrangement therein
US6297775B1 (en) * 1999-09-16 2001-10-02 Raytheon Company Compact phased array antenna system, and a method of operating same
US6347531B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Single mixed refrigerant gas liquefaction process
US6349760B1 (en) * 1999-10-22 2002-02-26 Intel Corporation Method and apparatus for improving the thermal performance of heat sinks
US6729383B1 (en) * 1999-12-16 2004-05-04 The United States Of America As Represented By The Secretary Of The Navy Fluid-cooled heat sink with turbulence-enhancing support pins
US6292364B1 (en) * 2000-04-28 2001-09-18 Raytheon Company Liquid spray cooled module
US6366462B1 (en) * 2000-07-18 2002-04-02 International Business Machines Corporation Electronic module with integral refrigerant evaporator assembly and control system therefore
US6367543B1 (en) * 2000-12-11 2002-04-09 Thermal Corp. Liquid-cooled heat sink with thermal jacket
CA2329408C (fr) * 2000-12-21 2007-12-04 Long Manufacturing Ltd. Echangeur de chaleur a plaques a ailettes
US6594479B2 (en) * 2000-12-28 2003-07-15 Lockheed Martin Corporation Low cost MMW transceiver packaging
US6687122B2 (en) * 2001-08-30 2004-02-03 Sun Microsystems, Inc. Multiple compressor refrigeration heat sink module for cooling electronic components
US6529377B1 (en) * 2001-09-05 2003-03-04 Microelectronic & Computer Technology Corporation Integrated cooling system
JP3946018B2 (ja) * 2001-09-18 2007-07-18 株式会社日立製作所 液冷却式回路装置
US6942018B2 (en) * 2001-09-28 2005-09-13 The Board Of Trustees Of The Leland Stanford Junior University Electroosmotic microchannel cooling system
US6603662B1 (en) * 2002-01-25 2003-08-05 Sun Microsystems, Inc. Computer cooling system
US6708511B2 (en) * 2002-08-13 2004-03-23 Delaware Capital Formation, Inc. Cooling device with subcooling system
US6952345B2 (en) * 2003-10-31 2005-10-04 Raytheon Company Method and apparatus for cooling heat-generating structure
US6952346B2 (en) * 2004-02-24 2005-10-04 Isothermal Systems Research, Inc Etched open microchannel spray cooling
US7254957B2 (en) * 2005-02-15 2007-08-14 Raytheon Company Method and apparatus for cooling with coolant at a subambient pressure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143778A1 (fr) * 2000-04-04 2001-10-10 Thermal Form & Function LLC Système de refroidissement à pompage de liquide réfrigérant à changement de phase
US6415619B1 (en) * 2001-03-09 2002-07-09 Hewlett-Packard Company Multi-load refrigeration system with multiple parallel evaporators
EP1380799A2 (fr) * 2002-07-11 2004-01-14 Raytheon Company Procédé et dispositif pour refroidir avec un fluide réfrigérant à pression sous-ambiante
EP1448040A2 (fr) * 2003-02-14 2004-08-18 Hitachi, Ltd. Système de refroidissement par liquide d' un sytème de serveur monté dans un rack
US20040231351A1 (en) * 2003-05-19 2004-11-25 Wyatt William Gerald Method and apparatus for extracting non-condensable gases in a cooling system
EP1601043A2 (fr) * 2004-05-25 2005-11-30 Raytheon Company Procédé et dispositif pour refroidir avec un fluide réfrigérant à pression sous-ambiante

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2193537A1 (fr) * 2007-09-17 2010-06-09 Raytheon Company Système de refroidissement pour tubes à vide de grande puissance
WO2009120613A1 (fr) 2008-03-25 2009-10-01 Raytheon Company Systèmes et procédés permettant de refroidir un composant informatique dans un bâti informatique
WO2011017385A1 (fr) * 2009-08-04 2011-02-10 Parker Hannifin Corporation Système de refroidissement par liquide pompé à phases multiples
US10295262B2 (en) 2010-05-27 2019-05-21 Johnson Controls Technology Company Thermosyphon coolers for cooling systems with cooling towers
US10451351B2 (en) 2010-05-27 2019-10-22 Johnson Controls Technology Company Thermosyphon coolers for cooling systems with cooling towers
WO2011149487A3 (fr) * 2010-05-27 2013-04-18 Johnson Controls Technology Company Refroidisseurs à thermosiphon pour systèmes de refroidissement avec tours de refroidissement
US10302363B2 (en) 2010-05-27 2019-05-28 Johnson Controls Technology Company Thermosyphon coolers for cooling systems with cooling towers
US9939201B2 (en) 2010-05-27 2018-04-10 Johnson Controls Technology Company Thermosyphon coolers for cooling systems with cooling towers
EP2593845A2 (fr) * 2010-07-13 2013-05-22 Inertech IP LLC Systèmes et procédés de refroidissement d'équipement électronique
EP2593845A4 (fr) * 2010-07-13 2015-04-22 Inertech Ip Llc Systèmes et procédés de refroidissement d'équipement électronique
WO2011137798A1 (fr) * 2010-09-13 2011-11-10 华为技术有限公司 Procédé et dispositif de dissipation de chaleur
US10488061B2 (en) 2016-03-16 2019-11-26 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-series heat rejection and trim cooling
US11415330B2 (en) 2016-03-16 2022-08-16 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-sertes heat rejection and trim cooling
US11867426B2 (en) 2016-03-16 2024-01-09 Inertech Ip Llc System and methods utilizing fluid coolers and chillers to perform in-series heat rejection and trim cooling
US11384989B2 (en) 2016-08-26 2022-07-12 Inertech Ip Llc Cooling systems and methods using single-phase fluid
US11940227B2 (en) 2016-08-26 2024-03-26 Inertech Ip Llc Cooling systems and methods using single-phase fluid
US11982481B2 (en) 2020-07-10 2024-05-14 Energy Recovery, Inc. Refrigeration system with high speed rotary pressure exchanger
CN117098964A (zh) * 2021-06-09 2023-11-21 能量回收股份有限公司 具有压力交换器的制冷系统和热泵系统
US12007154B2 (en) 2021-06-09 2024-06-11 Energy Recovery, Inc. Heat pump systems with pressure exchangers
EP4181642A1 (fr) 2021-11-16 2023-05-17 JJ Cooling Innovation Sàrl Système de refroidissement pour étagères de composants électroniques
WO2023088865A2 (fr) 2021-11-16 2023-05-25 JJ Cooling Innovation Sàrl Système de refroidissement pour baie de composants électroniques

Also Published As

Publication number Publication date
JP2009529237A (ja) 2009-08-13
EP1997362A1 (fr) 2008-12-03
US20070209782A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
US20070209782A1 (en) System and method for cooling a server-based data center with sub-ambient cooling
US8347641B2 (en) Sub-cooling unit for cooling system and method
US8651172B2 (en) System and method for separating components of a fluid coolant for cooling a structure
US8441789B2 (en) Data center module
EP2498024B1 (fr) Système de refroidissement pour équipement électronique
EP1380799B1 (fr) Procédé et dispositif pour refroidir avec un fluide réfrigérant à pression sous-ambiante
JP2009512190A5 (fr)
US20120048514A1 (en) Cooling systems and methods
CN106051981A (zh) 一种基于双温驱双冷源的制冷方法
EP1796447B1 (fr) Système et méthode pour un chassis électronique, électronique montée dans une baie avec un système de refroidissement intégré sousambiant
EP2765480B1 (fr) Système de refroidissement pour serveur et procédé de refroidissement
JP6292834B2 (ja) 情報処理室の空調設備
EP3504490A1 (fr) Distributeur de fluide frigorigène pour évaporateur a film tombant
CA3240989A1 (fr) Systeme de refroidissement actif/passif avec refrigerant pompe
AU2023204812A1 (en) Active/passive cooling system with pumped refrigerant
KR20130103460A (ko) 응축기가 증발기 하부 또는 측부에 위치하는 물의 저온비등 산업기계용 냉각시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008558282

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007750945

Country of ref document: EP