WO2007102579A1 - 反射型光サーキュレータ - Google Patents

反射型光サーキュレータ Download PDF

Info

Publication number
WO2007102579A1
WO2007102579A1 PCT/JP2007/054531 JP2007054531W WO2007102579A1 WO 2007102579 A1 WO2007102579 A1 WO 2007102579A1 JP 2007054531 W JP2007054531 W JP 2007054531W WO 2007102579 A1 WO2007102579 A1 WO 2007102579A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
polarization
phase
polarization separation
Prior art date
Application number
PCT/JP2007/054531
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Konno
Masaru Sasaki
Original Assignee
Namiki Seimitsu Houseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Seimitsu Houseki Kabushiki Kaisha filed Critical Namiki Seimitsu Houseki Kabushiki Kaisha
Priority to JP2008503908A priority Critical patent/JP5076099B2/ja
Priority to EP07738022A priority patent/EP2003485B1/en
Priority to CN2007800082993A priority patent/CN101401021B/zh
Priority to US12/281,901 priority patent/US7826137B2/en
Publication of WO2007102579A1 publication Critical patent/WO2007102579A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2793Controlling polarisation dependent loss, e.g. polarisation insensitivity, reducing the change in polarisation degree of the output light even if the input polarisation state fluctuates

Definitions

  • the present invention relates to an optical circulator used in fields such as an optical communication system and optical measurement, and more particularly, a reflective light that includes a reflector and reflects light to form a round-trip optical path. Regarding the circuit circulator.
  • An optical circulator is one of non-reciprocal optical devices that play an important role in the fields of optical communication systems and optical measurement, and has at least three or more ports.
  • the propagation light has low loss in the forward direction 1 ⁇ 2, 2 ⁇ 3, 3 ⁇ 1, and the reverse direction 3 ⁇ In the direction of 2, 2 ⁇ 1, 1 ⁇ 3, light is propagated as high loss output.
  • the optical circulator has a problem that light is propagated from one port opposed to the other along the propagation direction to the other port, so that the number of optical elements increases and the overall size increases. there were.
  • the number of ports is increased, the number of optical elements increases further, resulting in a problem that the size is further increased and it is difficult to increase the number of ports. Therefore, a reflection-type optical circulator that includes a reflector and forms a reciprocating optical path has been filed as an optical circulator structure that is smaller than the conventional structure that does not increase the number of optical elements even when the number of ports is increased (for example, (See Patent Documents 1 and 2).
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-231080 (page 2-5, Fig. 1-6)
  • Patent Document 2 Japanese Translation of Special Publication 2002-528765 (No. 38_39, Fig. 12)
  • an optical circulator 100 of Patent Document 1 uses four array-type optical finos 101 at an input / output side port (light input / output section), and also includes the array-type optical fiber 101 and the lens 102.
  • Birefringent element 103, first phase element 104 made up of two half-wavelength elements, polarization plane rotating element 105, and composite birefringent element 106 made up of two birefringent elements are arranged between the two, and a lens.
  • a second phase element 107 and a reflector 108 are arranged on the opposite side across 102.
  • the optical circulator 109 of Patent Document 2 is an optical circulator using a non-row-type optical fiber bundle 110 at an input / output side port (light input / output portion).
  • the bending elements 111a and lllb, the two Faraday rotators 112 and 113 (or the polarization plane rotating element 114), and the reflecting prism 115 as a reflector are provided.
  • the two Faraday rotators 1 12 and 113 are configured to rotate in opposite directions.
  • the four optical fibers 101 constituting the input / output side port of the optical circulator 100 are arranged in a line as shown in FIG. Takes shape. Therefore, the central axes of all the optical fibers P1 to P4 cannot be arranged at equal distances with respect to the center point C on the diagonal line connecting the central axes of all the optical fibers P1 to P4. , P4 becomes far from the center point C as it goes to P4. Therefore, an optical path length difference occurs between the optical path length of the inner round trip optical path (for example, P1 ⁇ P2) and the outer round trip optical path (for example, P3 ⁇ P4), and this optical path length difference causes an insertion loss for each round trip optical path. Variations had occurred. Therefore, it is difficult to stabilize the insertion loss with the conventional optical circulator 100.
  • the optical circulator 100 is configured such that the crystal axis directions of the birefringent element 103 and the composite birefringent element 106 are perpendicular to each other, the optical fibers P1 to P4 are arranged in a line. If this is not done, the reciprocal optical paths and the end faces of the optical fibers P1 to P4 cannot be connected. From the above, it is impossible to prevent variations in insertion loss in the configuration of the optical circulator 100.
  • the input / output side port composed of the three optical fibers P1 to P3 of the optical circulator 109 is configured in a non-line type as shown in FIG. 19 when viewed from the z-axis direction of FIG.
  • the central axes of the optical fibers P1 to P3 are arranged equidistantly from the center point C on the diagonal line connecting the central axes of all the optical fibers P1 to P3. Therefore, variation in insertion loss for each round-trip optical path is prevented.
  • the birefringent elements 116 to 119 are configured to shift only one of the two polarization components, polarization dependent loss (PDL) has occurred.
  • PDL polarization dependent loss
  • the invention described in claim 1 of the present invention is characterized in that the first polarization separation element, the nonreciprocal polarization plane rotation element having a rotation angle of 45 degrees, and the polarization plane of incident light are 90 degrees.
  • An optical element unit comprising a rotating phase element and a second polarization separation element;
  • a light incident / exit section in which at least three waveguides are arranged is disposed on one end side of the optical element section, and a lens and a reflector are disposed on the opposite side of the light incident / emitter section with the optical element section interposed therebetween.
  • the first polarization separation element, the polarization plane rotation element, the phase element, and the second polarization separation element are arranged in this order from the light incident / exit section side.
  • All waveguides are arranged at equal intervals from the center point on the diagonal connecting the central axes of the waveguides.
  • crystal axis directions on the optical surfaces of the first and second polarization separation elements are different by 45 degrees
  • the extraordinary ray shift amount in the second polarization separation element is set larger than the extraordinary ray shift amount in the first polarization separation element
  • the direction of the rotation angle of the polarization plane rotating element is set in the counterclockwise direction when viewed from the light incident / exiting portion, and the phase element is composed of two phase optical elements, a first phase optical element and a second phase optical element,
  • the size of each phase optical element is set so as to transmit only one polarization component of the light separated into two polarization components of the ordinary ray and the extraordinary ray by the first polarization separation device, and one polarization component
  • Each phase optical element is installed so that only the two phase optical elements are transmitted,
  • the polarized light component that becomes an extraordinary ray when transmitted through the first polarized light separating element is transmitted to the first phase optical element and becomes an ordinary ray.
  • the component is transmitted to the second phase optical element, Further, the size of the second polarization separation element is set so that only one of the forward path and the return path of the light traveling back and forth through the optical element section is transmitted by being emitted from the light incident / exit section and reflected by the reflector.
  • the two polarized components are reflected point-symmetrically,
  • the center point on the diagonal line connecting the central axes of the waveguides and the optical axis of the lens are Arranged on non-collinear lines
  • the reflection type optical circulator is characterized in that the second polarization separation element is arranged so that the light in the forward direction is incident on the second polarization separation element before being reflected by the reflector.
  • the invention according to claim 2 of the present invention is the reflection type optical circulator according to claim 1, wherein the reflector is a concave mirror.
  • the optical circulator of the present invention it is possible to configure an optical circulator by arranging all the waveguides at equal distances from the central point on the diagonal line connecting the central axes of the respective waveguides. become. Accordingly, it is possible to prevent variations in insertion loss for each round-trip optical path in the optical circulator and stabilize the insertion loss.
  • the central axes of all the waveguides can be equidistant with respect to the central point on the diagonal line connecting the central axes of the respective waveguides.
  • the distance from the optical axis of the lens provided on the light incident / exit end face side of each waveguide can be set at an equal distance. This makes it possible to set the beam diameters of the light emitted from the lens and incident on the lens to the same size. Therefore, the alignment work between the light incident / exit section, the optical element section, and the lens and the reflector disposed on the opposite side of the light incident / exit section can be further facilitated.
  • the entire length of the optical circulator can be shortened, and the optical circulator can be downsized.
  • FIG. 1 is a plan view showing a configuration of an optical circulator according to the present invention and an optical path of light in a forward direction.
  • FIG. 2 is a side view showing the configuration of the optical circulator of the present invention and the optical path of light in the forward direction.
  • FIG. 3 is a schematic configuration diagram of a light incident / exit section.
  • FIG. 4 Configuration of ferrule for inserting and holding optical fiber.
  • FIG. 5 is a perspective view showing the arrangement of optical elements in the optical element section of the optical circulator shown in FIG. 1 and the polarization state of propagating light in the forward direction.
  • the perspective view which shows the polarization state of propagation light.
  • FIG. 8 In the optical circulator of FIG. 1, it is reflected by the reflector and enters the optical fiber P2.
  • FIG. 9 is a plan view showing an optical path of light in the opposite direction to the configuration of the optical circulator of the present invention.
  • FIG. 10 is a side view showing an optical path of light in the opposite direction to the configuration of the optical circulator of the present invention.
  • FIG. 11 The arrangement of optical elements in the optical element section of the optical circulator of FIG.
  • the perspective view which shows the polarization state of the propagation light in.
  • the perspective view which shows the polarization state of the propagation light of.
  • FIG. 14 In the optical circulator of FIG. 9, the optical fiber P3 is reflected by the reflector.
  • FIG. 15 is a schematic diagram showing an example of changing a reflector.
  • FIG. 16 is a plan view showing an example of a conventional optical circulator.
  • FIG. 17 is a plan view showing another example of a conventional optical circulator.
  • the block diagram which shows the light incident / exit part.
  • the block diagram which shows the light incident / exit part.
  • FIG. 1 to FIG. 8 show that the light propagation direction of the optical circulator 1 when the light propagation direction is the z-axis, the horizontal direction in the plane perpendicular to the z-axis is the X-axis, and the vertical direction is the y-axis 8
  • the configuration and arrangement of each optical element from reflector to reflector 7 are shown.
  • the light path when light passes through each optical element is represented by a broken line, and the other light paths are represented by solid lines.
  • the optical circulator 1 of the present invention includes a first polarization separation element 2
  • polarization separation element 2 (Hereinafter referred to as polarization separation element 2), polarization plane rotation element 3, phase element 4, second polarization separation element 5 ( Hereinafter, an optical element unit including the polarization separation element 5) is provided. Further, a light incident / exiting portion 8 is disposed on one end side of these optical element portions, and a lens 6 and a reflector 7 are disposed on the opposite side of the light incident / exiting portion 8 with the optical element portion interposed therebetween.
  • Each optical element of the optical element section is sequentially polarized in the z-axis direction from the light incident / exit section side 8
  • a polarization plane rotation element 3 a phase element 4, and a polarization plane rotation element 5. It is desirable to apply an antireflection coating such as SiO 2 / TiO on each optical surface of each optical element.
  • an antireflection coating such as SiO 2 / TiO on each optical surface of each optical element.
  • FIG. 3 is a schematic configuration diagram of the light incident / exit section 8, and Fig. 4 (a) is a front view showing the configuration of the ferrule 10 for inserting and holding optical fibers P1 to P3, and Fig. 4 (b).
  • FIG. 2 is a side view showing the configuration of ferrule 10.
  • the light incident / exit section 8 includes a plurality of optical fibers P1 to P3 used as waveguides arranged so that their core axes are parallel to each other, and the light of each optical fiber P1 to P3.
  • the input / output end face is formed so as to be non-perpendicular to the central axis fc of each of the optical fibers P1 to P3.
  • a lens 9 is provided on the light incident / exit end face side of each of the optical fibers P1 to P3.
  • Each optical fiber P 1 to P 3 is inserted and held in each hole of the three-core ferrule 10. From the front view of FIG. 4 (a), the center of each hole and the center point C of the ferrule 10 are formed at equal intervals. Therefore, since the center point on the diagonal line connecting the center axes fc of the optical fibers P1 to P3 inserted in the holes comes on the center point C, all the optical fibers P1 to P3 are held by the ferrule 10. Thus, they are arranged at equal intervals from the center point C. However, the distance Lf between adjacent optical fibers is determined in consideration of the relationship between the back focus of the lens 6 and the thickness and separation width of the polarization separation element 2.
  • the lens 9 and the ferrule 10 are arranged with each other so that the optical axis oa of the lens 9 and the center point C of the rule 10 are on the same straight line in the z-axis direction. Perform positioning.
  • the center point connecting the optical fibers P1 to P3 (the center point C) and the optical axis oa of the lens 9 are arranged on the same straight line. Therefore, the optical axis oa of the lens 9 is held by the ferrule 10 so that the central axes fc of all the optical fibers P1 to P3 are equidistant.
  • the light incident / exit end faces of all the optical fibers P1 to P3 have the same inclination angle as shown in FIG. It is formed diagonally with ⁇ .
  • the ferrule 10 end face is formed of four planes so that the center point C is the apex, so that the light incident / exit end faces of the optical fibers ⁇ 1 to ⁇ 3
  • An example of forming the film diagonally is given.
  • the plurality of optical fibers ⁇ 1 to ⁇ 3 are composed of single mode optical fibers (Single Mode Fiber: SMF), and a graded index fiber (GIF) is provided on the light incident / exit side end face. Are joined (not shown).
  • SMF Single Mode Fiber
  • GIF graded index fiber
  • MFD mode field diameter
  • TEC processing may be applied to the optical fiber, or a micro lens may be installed.
  • the lens 9 collimates or converges incident light, and an aspherical lens, Bonore lens, plano-convex lens, distributed refractive lens, or the like can be used.
  • the polarization separation element 2 separates the light emitted from each of the optical fibers P1 to P3 into an ordinary ray and an extraordinary ray, and reflects the ordinary ray and the extraordinary ray reflected by a reflector 7 described later. It is an optical element that performs synthesis.
  • the polarization separating elements 2 and 5 include, for example, rutile ( ⁇ ), calcite (
  • CaCO Yttrium 'Osovanadate
  • YVO Yttrium 'Osovanadate
  • Alpha Barium Bodate a BaB
  • a birefringent single crystal such as 0) is used.
  • the direction of X22 (see Figures 5 and 11) is set around 42 to 50 degrees (most preferably 47.8 degrees) with respect to the normal of the optical surface so that the maximum separation width can be obtained.
  • the polarization plane rotating element 3 is a non-reciprocal polarization plane rotating element that rotates the polarization plane of the polarization component of the light transmitted through the polarization separation element 2, and has a rotation angle of 45 degrees in the used wavelength band.
  • Use only thin ones For example, garnet, TBIG, GBIG, etc. are optimal.
  • a garnet single crystal set in the counterclockwise direction when the direction of the rotation angle is viewed from the light incident / exit section 8 in the z-axis direction is used.
  • the phase element 4 rotates the polarization plane of each polarization component (ordinary ray and extraordinary ray) of light incident through the polarization plane rotation element by 90 degrees.
  • TBIG terbium bismuth
  • Reciprocal polarization plane rotation elements such as' Iron 'garnet
  • GBIG gadolinium bismuth. Iron' garnet
  • half-wave elements such as quartz are used.
  • the crystal axis X4a direction force Sy axis is tilted 45 degrees.
  • phase optical element 4a (hereinafter referred to as phase optical element 4a) and the second phase optical element 4b (hereinafter referred to as phase optical element 4b) in which the crystal axis X4b direction is similarly inclined by 45 degrees with respect to the y axis.
  • phase optical element 4b phase optical element 4b
  • a reciprocal polarization plane rotating element using a higher order wave plate that is desired to be as thin as possible, such as a 0th order single plate or a 1st order single plate, the wavelength characteristics and temperature characteristics are improved. Deteriorate.
  • the size of the polarization separation element 5 is such that the optical path of the light that travels back and forth through the optical element section when the light is reflected by the reflector 7 (shown by the solid line and in FIG. 1 and FIG. 2). It is set so that only one light of the forward path or the backward path (shown by a broken line) is transmitted. Furthermore, the crystal axis X52 direction of the polarization separating element 5 with respect to the normal of the optical surface is set to about 42 to 50 degrees (most preferably 47.8 degrees) with respect to the X axis. The direction of X51 is set parallel to the X-axis direction.
  • the direction of the crystal axis X21 on the optical surface of the polarization separation element 2 is set to 45 degrees with respect to the X-axis direction. Therefore, the directions of the crystal axes X21 and X51 of the first and second polarization separation elements 2 and 5 are different by 45 degrees.
  • the lens 6 collimates or converges incident light, and an aspherical lens, Bonore lens, plano-convex lens, distributed refractive lens, or the like can be used. However, a lens having a back focus in which the optical element unit can be disposed between the lens 6 and the light incident / exiting unit 9 is used for the lens 6. In this embodiment, an aspheric lens is used.
  • the reflector 7 is a reflecting mirror that reflects the light transmitted through the polarization plane rotating element 6.
  • a total reflecting mirror in which the surface of the substrate is coated with SiO 2 / TiO is used.
  • FIG. 7 and FIG. 8 are diagrams showing the polarization state of light in the forward direction in the optical circulator 1, and are indicated by the symbols ( ⁇ ) to ( ⁇ ) in FIG. 1 and FIG. It corresponds to the polarization state in each optical path section shown.
  • the horizontal direction is the X axis
  • the vertical direction is the y axis
  • the direction force on the paper is the 3 ⁇ 4 axis.
  • the vertical and horizontal directions are divided into eight
  • the horizontal direction is 1 8 to 8 and a to h in the vertical direction indicate the propagation position of the polarization component at each optical path cross section.
  • the directional reciprocating optical path is defined as “forward direction” from the optical fiber P1 through the reflector 7 to the optical fiber P2, and from the optical fiber P2 to the optical fiber P3 through the reflector 7.
  • Directional force Reciprocal light path is defined as “reverse direction”.
  • the beam diameter is expanded at a constant divergence angle ⁇ ⁇ / ( ⁇ ⁇ ).
  • the light incident on the lens 9 is refracted from the optical axis oa to the outside on the convex curved surface on the left side of the lens 9 shown in Fig. 3, and from the lens 9 so that the light axis bal is parallel to the z axis. Emitted.
  • the emitted light B1 is converted into collimated light or convergent light.
  • the light emitted to the polarization separation element 2 is composed of 2 rays of ordinary rays perpendicular to the crystal axis X21 and parallel extraordinary rays. Separated into two polarization components. In the forward direction, the propagation position of the extraordinary ray emitted from the polarization separation element 2 is shown in FIG.
  • the separated polarization component is transmitted through the polarization plane rotating element 3 and rotated 45 degrees counterclockwise (counterclockwise) as shown in FIG. 7C.
  • phase optical element 4b is set so as to transmit only one polarization component.
  • the crystal axis X4b of the phase optical element 4b is inclined by 45 degrees with respect to the y-axis.
  • the polarization component transmitted through the phase optical element 4b has a polarization direction of 90 as shown in FIG. 7 (D). Rotate degrees. As described above, the polarization directions of the two polarization components are aligned with the y-axis direction, which is a direction orthogonal to the crystal axis X51 of the polarization separation element 5.
  • the polarization separation element 5 is arranged only on one side of the optical path as shown in FIGS. 2, 5, and 7 (D) so that the light propagating in the forward direction is incident before being reflected by the reflector 7. Is done.
  • the polarization between the two polarization separation elements 2 and 5 is aligned so that the polarization planes of the two polarization components are aligned in a direction orthogonal to the crystal axis X51 direction when the polarization separation element 5 is incident in the forward direction.
  • the rotation direction of the surface rotation element 3 and the crystal axes X4a and X4b of the phase element 4 are set.
  • the light transmitted through the polarization separation element 5 is refracted by a predetermined angle by the lens 6, but the polarization state does not change.
  • the refraction angle at this time is determined by the center position of the light from the optical axis X6 of the lens 6 and the focal distance of the lens 6.
  • the two polarized light components that have passed through the lens 6 are reflected by the reflector 7 on the side opposite to the incident angle so as to be symmetric with respect to a point R (Figs. 6 and 7E).
  • Figure 8 (F) As can be seen from FIGS. 1 and 2, in the optical circulator 1 of the present invention, the reflection point R on the reflector 7 and the optical axis X6 of the lens 6 are collinear in the light propagation direction (z-axis direction).
  • the reflector 7 and the lens 6 are positioned and arranged so that On the other hand, the center point C on the diagonal line connecting the central axes fc of the optical fibers P1 to P3 and the optical axis X6 of the lens 6 are each non-collinear as is apparent from FIGS. 1 and 2.
  • the optical fibers P1 to P3 and the lens 6 are positioned and arranged. By reflecting light by the reflector 7 to form a reciprocating optical path, the entire length of the optical circuit 1 can be shortened.
  • the reflected light is transmitted through the lens 6 again, and as shown in FIG. 8 (F), is emitted to a position symmetrical to the case of FIG. 7 (E) with respect to the optical axis X6 of the lens 6. .
  • the polarization state does not change before and after the lens 6.
  • the light transmitted through the lens 6 passes through the space outside the polarization separation element 5 as shown in FIGS. 2 and 5, and only one polarization component is transmitted through the phase optical element 4a.
  • the polarization directions are rotated by 90 degrees, and the respective polarization directions are orthogonal to each other.
  • the size of the phase optical element 4a is set so as to transmit only one polarization component.
  • the polarization component that is transmitted through the phase optical element 4a is the polarization component that is also transmitted through the phase optical element 4b.
  • the two polarization components pass through the polarization separation element 2, and are combined at the propagation position (l_2, cd) as shown in Fig. 8 (1).
  • the light B2 is incident on the lens 9. Further, the light axis ba2 of the light B2 is refracted and condensed inside (on the optical axis oa side) on the left convex surface of the lens 9 shown in FIG. 3, and is incident on the optical fiber P2.
  • FIGS. 13 and 14 are diagrams showing the polarization state of light in the reverse direction in the optical circulator 1, and are indicated by the symbols ( ⁇ ) to (I) in FIGS. 9 and 10. It corresponds to the polarization state in the cross section of the optical path.
  • the horizontal direction is the X axis
  • the vertical direction is the y axis
  • the directional force axis faces the paper.
  • the propagation position of the polarization component is shown by dividing it into 8 parts in both the vertical and horizontal directions. Talk to me.
  • the incident light is separated into an ordinary ray and an extraordinary ray by the polarization separation element 2.
  • the separated polarization components are rotated counterclockwise by the polarization plane rotating element 3 and aligned in the polarization directions orthogonal to each other.
  • the light transmitted through the phase optical element 4a passes through the space outside the polarization separation element 5 as shown in FIGS. 10 and 11, and is reflected point-symmetrically by the reflector 7 to be polarized. Incident on 5 To do.
  • Each polarization component incident on the polarization separation element 5 is shifted by the same amount in the X-axis direction, as shown in FIGS. 11 and 14 (E) _ (D).
  • the polarization direction is rotated by 90 degrees as shown in FIG.
  • the directions are orthogonal.
  • the polarization component transmitted through the phase optical element 4b is the polarization component transmitted through the phase optical element 4a.
  • the two polarization components pass through the polarization separation element 2 and are combined at the propagation position (l-2, gh) as shown in FIG. Light is incident on the optical fiber P3.
  • the optical circulator 1 determines the shift amount of the extraordinary ray in the polarization separation element 5 as follows. The thickness is changed to be larger than the amount of extraordinary ray shift in 2.
  • the optical circulator 1 in the optical circulator 1 can be configured by arranging all the optical fibers P1 to P3 at an equal distance from the center point C. It is possible to stabilize insertion loss by preventing variations in insertion loss for each round-trip optical path.
  • the directions of the crystal axes X21 and X51 on the optical surfaces of the polarization separating elements 2 and 5 are set to each other.
  • the polarization plane rotation element 3 and the phase element 4 are arranged between the two polarization separation elements 2 and 5, and the rotation direction of the polarization plane rotation element 3 and the crystal axis X4 of the phase element 4
  • the polarization separation element 5 can shift both polarization components as extraordinary rays. Therefore, when the polarized light separating element 5 is transmitted, It is possible to prevent the occurrence of PDL that occurs by shifting only the polarization component.
  • the optical path length difference between the two polarization components before and after the reflection can be made zero, which also prevents the occurrence of PDL. Will be able to
  • the polarization separation element 5 By arranging the polarization separation element 5 so that the forward light is incident on the polarization separation element 5 before being reflected by the reflector 7, it is possible to prevent the occurrence of PDL and reduce the size of each optical element. Can be achieved. If the second polarization separation element 5 is arranged so that light in the forward direction is incident after being reflected by the reflector 7, the two polarization components are shifted together by the polarization separation element 5 in the optical path in the reverse direction. After that, two polarization components are reflected by the reflector 7. Then, the distance between the reflection point R and the two polarization components is not the same for each polarization component, and PDL occurs. Therefore, the arrangement position of the second polarization separation element 5 as described in the present embodiment is preferable.
  • the central axes fc of all the optical fibers P1 to P3 are arranged. It is possible to set the same distance from the optical axis oa. This makes it possible to set the beam diameters of light emitted from the lens 9 and incident on the lens 9 to the same size. Therefore, alignment work between the light input / output unit 8 and the optical element unit and the lens 6 and the reflector 7 can be further facilitated.
  • the present invention can be variously modified based on its technical idea, and the reflector 7 may be a concave mirror as shown in FIG.
  • the reflector 7 may be a concave mirror as shown in FIG.
  • the polarization separation elements 2 and 5 may be replaced with birefringent prisms or polarization beam splitters instead of birefringent single crystals.
  • a new lens may be arranged near the light incident / exit end faces of the optical fibers P1 to P3, or a glass plate may be provided in the y-axis direction of the polarization separating element 5.
  • the optical circulator of the present invention can be used as a nonreciprocal optical device in the optical communication system, the optical measurement field, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

 PDLの発生と、往復光路毎の挿入損失のばらつきの両方を防止することにより、特性の向上を図った反射型の光サーキュレータを実現する。第1の偏光分離素子,45度の非相反性の偏光面回転素子,入射光偏光面を90度回転させる位相素子,第2の偏光分離素子から成る光学素子部と、光入出射部、レンズ及び反射体を備え、中心点から等間隔に全ての導波路を配置し、第2の偏光分離素子の異常光線のシフト量を、第1の偏光分離素子でのシフト量よりも大きくする。更に、位相素子を2つの位相光学素子によって構成し、一方の偏光成分のみを2つの位相光学素子に透過させる。更に、第2の偏光分離素子の大きさを、光の往復光路の一方のみ透過するように設定すると共に、反射体で2つの偏光成分を点対称に反射し、順方向の光が反射される前に、第2の偏光分離素子に入射するように光サーキュレータを構成する。

Description

明 細 書
反射型光サーキユレータ
技術分野
[0001] 本発明は、光通信システムや光計測等の分野で使用される、光サーキユレータに 関するものであり、特に反射体を備えて光を反射することによって往復光路を形成す る反射型光サーキユレータに関する。
背景技術
[0002] 光サーキユレータは、光通信システムや光計測等の分野で重要な働きをする非相 反光デバイスの 1つであり、少なくとも 3つ以上のポートを有する。例えば、 1 , 2, 3の 番号で表わされる 3ポートを有する光サーキユレータの場合、順方向の 1→2, 2→3, 3→1の方向では伝搬光は低損失で、逆方向の 3→2, 2→1, 1→3の方向では高損 失の出力として光を伝搬させる。
[0003] ところで、前記光サーキユレータは、伝搬方向に沿って対向配置した一方のポート から他方のポートへと光を伝搬する構造上、光学素子数が多くなつて全体的に大型 化するという問題があった。しかも、ポート数を増やそうとすると、光学素子が更に増 加するため一層大型化し、多ポート化が難しいという問題もあった。そこで、多ポート 化しても光学素子数が増えることなぐ従来構造に比べて小型な光サーキユレータの 構造として、反射体を備えて往復光路を形成する反射型光サーキユレータが出願さ れている(例えば、特許文献 1, 2を参照)。
[0004] 特許文献 1 :特開 2000— 231080号公報(第 2— 5頁、第 1—6図)
特許文献 2 :特表 2002— 528765号公報(第 38 _ 39頁、第 12図)
[0005] 図 16に示すように、特許文献 1の光サーキユレータ 100は、入出射側ポート(光入出 射部)に 4つのアレイ形光ファイノ 101を用いると共に、前記アレイ形光ファイバ 101と レンズ 102との間に、複屈折素子 103、 2つの半波長素子からなる第 1の位相素子 104 、偏光面回転素子 105、及び 2つの複屈折素子からなる複合複屈折素子 106とが配置 され、更にレンズ 102を挟んで反対側に第 2の位相素子 107と反射体 108とが配置され てなるものである。 [0006] 又、特許文献 2の光サーキユレータ 109は図 17に示すように、入出射側ポート(光入 出射部)に非一列型の光ファイバ束 110を用いた光サーキユレータであり、 2つの複屈 折素子 111a及び lllb、 2つのファラデー回転子 112, 113 (又は偏光面回転素子 114) 、及び反射体として反射プリズム 115とを備えるものである。 2つのファラデー回転子 1 12, 113の回転方向は逆向きになるように構成されている。
[0007] し力、しながら、光サーキユレータ 100の入出射側ポートを構成する 4つの光ファイバ 1 01は、図 16の z軸方向から見ると、図 18に示すように一列に配置されたアレイ形を呈 する。よって、全ての光ファイバ P1〜P4の中心軸を結ぶ対角線上の中心点 Cに対し て、全ての光ファイバ P1〜P4の中心軸を等距離に配置することが出来ず、外側の光 ファイバ P3, P4に行くに従って前記中心点 Cから遠距離になってしまう。従って、内回 りの往復光路 (例えば P1→P2)と、外回りの往復光路 (例えば P3→P4)との光路長間 に光路長差が生じ、この光路長差により往復光路毎に挿入損失にばらつきが発生し てしまっていた。従って、従来の光サーキユレータ 100では挿入損失の安定化を図る ことが困難であった。
発明の開示
発明が解決しょうとする課題
[0008] 又、光サーキユレータ 100では、複屈折素子 103と、複合複屈折素子 106との結晶軸 方向が互いに垂直となるように構成されているため、光ファイバ P1〜P4を一列状に配 列しないと、各往復光路と光ファイバ P1〜P4各端面との結合が取れなくなってしまう。 以上から、光サーキユレータ 100の構成では挿入損失のばらつきを防止することは不 可能であった。
[0009] 一方、光サーキユレータ 109の、 3つの光ファイバ P1〜P3から成る入出射側ポートは 、図 17の z軸方向から見ると、図 19に示すように非一列型に構成されており、全ての 光ファイバ P1〜P3の中心軸を結ぶ対角線上の中心点 Cに対して、光ファイバ P1〜P3 の中心軸が等距離に配置されている。従って、往復光路毎の挿入損失のばらつきは 防止される。し力 ながら、複屈折素子 116〜119において、 2つの偏光成分のうち一 方の偏光成分しかシフトさせない構成なので、偏波依存損失(Polarization Dependen t Loss : PDL)が発生してしまっていた。 [0010] 本発明は、力かる事情を鑑みてなされたものであり、その目的は PDLの発生と、往 復光路毎の挿入損失のばらつきの両方を防止することにより、特性の向上を図った 反射型の光サーキユレータを実現することである。
課題を解決するための手段
[0011] 本発明の請求項 1に記載の発明は、第 1の偏光分離素子と, 45度の回転角を有す る非相反性の偏光面回転素子と,入射光の偏光面を 90度回転させる位相素子と,第 2の偏光分離素子とから成る光学素子部を備え、
光学素子部の一端側に、少なくとも 3本以上の導波路が配列された光入出射部が 配置されると共に、光学素子部を挟んで光入出射部の反対側にレンズと反射体が配 置され、
光入出射部側から順に、第 1の偏光分離素子,偏光面回転素子,位相素子,第 2 の偏光分離素子が配置され、
各導波路の中心軸を結ぶ対角線上の中心点から等間隔に全ての導波路が配置さ れ、
更に、第 1及び第 2の偏光分離素子の光学面上における各結晶軸方向が 45度異な り、
第 2の偏光分離素子における異常光線のシフト量が、第 1の偏光分離素子におけ る異常光線のシフト量よりも大きく設定され、
偏光面回転素子の回転角の方向が、光入出射部からみて反時計方向に設定され 更に、位相素子が第 1位相光学素子及び第 2位相光学素子の 2つの位相光学素 子によって構成され、各位相光学素子の大きさは、第 1の偏光分離素子で常光線と 異常光線の 2つの偏光成分に分離される光の一方の偏光成分のみ透過するように 設定されると共に、一方の偏光成分のみが 2つの位相光学素子を透過するように各 位相光学素子が設置され、
第 1の偏光分離素子で分離される光の 2つの偏光成分のうち、第 1の偏光分離素子 透過時に異常光線となる偏光成分が第 1位相光学素子に透過されると共に、常光線 となる偏光成分は第 2位相光学素子に透過され、 更に、第 2の偏光分離素子の大きさが、光入出射部から出射され反射体で反射さ れることで光学素子部を往復する光の光路の、往路又は復路の一方のみ透過するよ うに設定され、
反射体において 2つの偏光成分が点対称に反射されると共に、
反射体における反射点とレンズの光軸とが、光の伝搬方向において同一直線上に 配置される一方で、各導波路の中心軸を結ぶ対角線上の中心点と、レンズの光軸と は、非同一直線上に配置され、
順方向の光が反射体で反射される前に、第 2の偏光分離素子に入射するように、 第 2の偏光分離素子が配置されることを特徴とする反射型光サーキユレータである。
[0012] 更に、本発明の請求項 2に記載の発明は、前記反射体が、凹面鏡であることを特徴 とする請求項 1記載の反射型光サーキユレータである。
発明の効果
[0013] 本発明の光サーキユレータに依れば、各導波路の中心軸を結ぶ対角線上の中心 点に対して、全ての導波路を等距離に配置して光サーキユレータを構成することが可 能になる。従って、光サーキユレータにおける往復光路毎の挿入損失のばらつきを防 止して、挿入損失の安定化を図ることが可能となる。
[0014] 更に、光が第 2の偏光面分離素子透過時に、一方の偏光成分のみシフトして起こる PDLの発生を防止することが出来る。又、反射体において 2つの偏光成分を点対称 で反射させるので、反射前後の 2つの偏光成分の光路長差を零にすることができ、こ れによっても PDLの発生を防止することが可能となる。更に、順方向の光が反射体で 反射される前に第 2の偏光分離素子に入射する様に、第 2の偏光分離素子を配置す ることにより、 PDLの発生防止と各光学素子の小型化を達成することが可能となる。
[0015] 又、各導波路の中心軸を結ぶ対角線上の中心点に対して全ての導波路の中心軸 が等距離となるように配置することにより、各導波路の光入出射端面と、各導波路の 光入出射端面側に備えられるレンズの光軸との間を等距離に設定することが出来る 。これにより、前記レンズから出射及び前記レンズに入射される光のビーム径を同一 サイズに設定することが可能となる。従って、より一層、光入出射部と光学素子部、及 び光入出射部の反対側に配置されるレンズと反射体との調芯作業が容易化できる。 [0016] 又、反射体を備えて、往復光路で光サーキユレータを構成することにより、光サーキ ユレータ全体の全長を短縮して、光サーキユレータの小型化が可能となる。
[0017] 更に、反射体を凹面鏡とすることにより、光サーキユレータの光学素子部及び光入 出射部の反対側に配置されるレンズとの結合トレランスを緩和させることが可能となり 、光入出射部,光学素子部,及び前記レンズとの調芯作業が容易化できる。
図面の簡単な説明
[0018] [図 1]本発明の光サーキユレータの構成と順方向の光の光路を示す平面図。
[図 2]本発明の光サーキユレータの構成と順方向の光の光路を示す側面図。
[図 3]光入出射部の概略構成図。
[図 4]光ファイバを挿入、保持するフエルールの構成図。
[図 5]図 1の光サーキユレータの、光学素子部の各光学素子の配置と、順方向で の伝搬光の偏光状態を示す斜視図。
[図 6]図 1の光サーキユレータの、レンズから反射体までの配置と、順方向での
伝搬光の偏光状態を示す斜視図。
[図 7]図 1の光サーキユレータにおいて、光ファイバ P1から出射して反射体で
反射されるまでの伝搬光の偏光状態を示す説明図。
[図 8]図 1の光サーキユレータにおいて、反射体で反射されて光ファイバ P2に
入射するまでの伝搬光の偏光状態を示す説明図。
[図 9]本発明の光サーキユレータの構成と逆方向の光の光路を示す平面図。
[図 10]本発明の光サーキユレータの構成と逆方向の光の光路を示す側面図。
[図 11]図 9の光サーキユレータの、光学素子部の各光学素子の配置と、逆方向
での伝搬光の偏光状態を示す斜視図。
[図 12]図 9の光サーキユレータの、レンズから反射体までの配置と、逆方向で
の伝搬光の偏光状態を示す斜視図。
[図 13]図 9の光サーキユレータにおいて、光ファイバ P2から出射して反射体
で反射されるまでの伝搬光の偏光状態を示す説明図。
[図 14]図 9の光サーキユレータにおいて、反射体で反射されて光ファイバ P3
に入射するまでの伝搬光の偏光状態を示す説明図。 [図 15]反射体の変更例を示す模式図。
[図 16]従来の光サーキユレータの一例を示す平面図。
[図 17]従来の光サーキユレータの他の例を示す平面図。
[図 18]図 16の光サーキユレータを、 z軸方向から反射体に向かって見たとき
の光入出射部を示す構成図。
[図 19]図 17の光サーキユレータを、 z軸方向から反射体に向かって見たとき
の光入出射部を示す構成図。
符号の説明
1 光サーキユレータ
2 第 1の偏光分離素子
3 偏光面回転素子
4 位相素子
4a 第 1位相光学素子
4b 第 2位相光学素子
5 第 2の偏光分離素子
6、 9 レンズ
7 反射体
8 光入出射部
10 フェルール
発明を実施するための最良の形態
[0020] 以下、本発明に係る光サーキユレータの最良の実施形態を、図 1乃至図 14に基づ いて詳細に説明する。なお、各図に示してある X軸乃至 z軸は、それぞれの図で対応 してレ、る。図 1と図 2に、光の伝搬方向を z軸、 z軸に直交する面内のそれぞれ水平方 向を X軸、垂直方向を y軸としたときの、光サーキユレータ 1の光入出射部 8から反射 体 7までの各光学素子の構成と配置を示す。なお、光が各光学素子内部を透過する 際の光路は破線で表し、それ以外の光路は実線で表すものとする。
[0021] 本発明の光サーキユレータ 1は、図 1及び図 2に示すように、第 1の偏光分離素子 2
(以下、偏光分離素子 2)、偏光面回転素子 3、位相素子 4、第 2の偏光分離素子 5 ( 以下、偏光分離素子 5)とから成る光学素子部とを備える。更に、これら光学素子部 の一端側に光入出射部 8が配置され、前記光学素子部を挟んで光入出射部 8の反 対側には、レンズ 6と反射体 7が配置されている。
[0022] 光学素子部の各光学素子は、光入出射部側 8から z軸方向に順に、偏光分離素子
2,偏光面回転素子 3,位相素子 4,偏光面回転素子 5と配置される。各光学素子の それぞれの光学面には、 SiO /Ti〇等の反射防止コートを施すことが望ましい。なお
2 2
、偏光面回転素子 3に磁気を印加する磁石については説明と図示を省略する。
[0023] 図 3は前記光入出射部 8の概略構成図であり、図 4(a)は光ファイバ P1〜P3を揷入、 保持するフェルール 10の構成を示す正面図,同図 (b)はフェルール 10の構成を示す 側面図である。図 3に示すように光入出射部 8は、導波路として用いられる複数の光 ファイバ P1〜P3が、互いのコア軸が平行となるように配列されると共に、各光ファイバ P1〜P3の光入出射端面は、各光ファイバ P1〜P3の中心軸 fcに対して非垂直となるよ うに形成されている。各光ファイバ P1〜P3の光入出射端面側にはレンズ 9が備えられ る。
[0024] 各光ファイバ P1〜P3は 3芯フエルール 10の各孔に挿入されて保持される。図 4(a)の 正面図より、各孔の中心からフエルール 10の中心点 Cまでは等間隔となるように形成 される。従って、孔に挿入された各光ファイバ P1〜P3の中心軸 fcを結ぶ対角線上の 中心点は前記中心点 C上に来るので、全ての光ファイバ P1〜P3はフエルール 10に保 持されることで、中心点 Cから等間隔に配置される。但し、隣り合う光ファイバどうしの 間隔 Lfは、レンズ 6のバックフォーカスと、偏光分離素子 2の厚み及び分離幅との関 係を考慮して決定する。
[0025] 更に、図 3に示すように、レンズ 9の光軸 oaとフヱルール 10の中心点 Cとが z軸方向 において同一直線上に来るように、レンズ 9とフェルール 10とを互いに配置し、位置 決めを行う。このようにレンズ 9とフヱルール 10とを配置することにより、各光ファイバ P1 〜P3を結ぶ中心点(前記中心点 C)とレンズ 9の光軸 oaとは同一直線上に配置される 。従って、レンズ 9の光軸 oaに対して、全ての光ファイバ P1〜P3の中心軸 fcが等距離 となるように、フェルール 10によって保持されることになる。
[0026] 又、全ての光ファイバ P1〜P3の光入出射端面は、図 4に示すように同一傾斜角度 φで斜めに形成される。図 4では、製造のし易さを考慮して、中心点 Cが頂点となるよ うにフエルール 10端面を四つの平面から成るように形成することで、光ファイバ Ρ1〜Ρ 3の光入出射端面を斜めに形成する例を挙げた。
[0027] 複数の光ファイバ Ρ1〜Ρ3は、シングルモード光ファイバ(Single Mode Fiber : SMF) で構成されると共に、光の入出射側端面には、グレーデッドインデックス光ファイバ( Graded Index Fiber: GIF)が接合される(図示省略)。 GIFを設けることにより、各光フ アイバ P1〜P3の光入出射端のモードフィールド径(Mode Field Diameter: MFD)が拡 大されて、出射光の広がり角が小さく抑えられる。 MFDの拡大化としては、前記 GIFの 設置に限らず、光ファイバに TEC処理を施したり、微小レンズ等を設置しても良い。
[0028] レンズ 9は、入射する光のコリメーシヨン又は収束を行うもので、非球面レンズ,ボー ノレレンズ,平凸レンズあるいは分布屈折レンズ等を使用することが出来る。
[0029] 偏光分離素子 2は、各光ファイバ P1〜P3から出射した光を常光線と異常光線へ分 離、及び後述する反射体 7で反射して戻ってくる前記常光線と異常光線との合成を 行う光学素子である。偏光分離素子 2及び 5には、例えば、ルチル (ΉΟ ) ,方解石(
2
CaCO ),イットリウム 'ォソバナデート(YVO ),アルファバリウム ·ボーデート(a BaB
3 4 2
0 )等の複屈折単結晶が使用される。又、偏光分離素子 2の光学面に対する結晶軸
4
X22 (図 5, 11参照)の方向は、最大の分離幅を得られるように光学面の法線に対し て 42〜50度前後(最も好ましくは 47.8度)に設定される。
[0030] 偏光面回転素子 3は、偏光分離素子 2を透過した光の偏光成分の偏光面を回転さ せる非相反性の偏光面回転素子で、使用波長帯域で回転角 45度を有する、できる だけ薄いものを使用する。例えば、ガーネット, TBIG, GBIG等が最適である。本実施 の形態では、回転角の方向が光入出射部 8から z軸方向にみたときに、反時計方向 に設定されたガーネット単結晶を用いる。
[0031] 位相素子 4は、偏光面回転素子を透過して入射してくる光の各偏光成分(常光線と 異常光線)の偏光面を 90度回転させるもので、例えば、 TBIG (テルビウム 'ビスマス' アイアン'ガーネット), GBIG (ガドリニウム .ビスマス .アイアン'ガーネット)等のガーネ ットゃ水晶等の相反性偏光面回転素子や半波長素子等が使用される。半波長素子 を使用するときには、図 5に示すように、結晶軸 X4a方向力 Sy軸に対して 45度傾いた第 1位相光学素子 4a (以下、位相光学素子 4a)と、結晶軸 X4b方向が同じく y軸に対して 45度傾いた第 2位相光学素子 4b (以下、位相光学素子 4b)とで構成する。相反性偏 光面回転素子を用いる場合には、 0次単プレートや 1次単プレート等、可能な限り薄 レ、ことが望ましぐ高次の波長板を使用すると、波長特性と温度特性が悪くなる。
[0032] 偏光分離素子 5の大きさは、図 5に示すように、光が反射体 7で反射されることで光 学素子部を往復する光の光路(図 1及び図 2中に実線及び破線で示す)の、往路又 は復路の一方の光のみ透過するように設定される。更に、偏光分離素子 5の、光学 面の法線に対する結晶軸 X52方向は、 X軸に対して約 42〜50度前後(最も好ましくは 47.8度)に設定されるが、光学面上における結晶軸 X51の方向は X軸方向に平行に 設定される。又、偏光分離素子 2の光学面上における結晶軸 X21の方向は、 X軸方向 に対して 45度に設定される。従って、第 1及び第 2の偏光分離素子 2, 5の結晶軸 X21 , X51方向は 45度異なる。
[0033] レンズ 6は、入射する光のコリメーシヨン又は収束を行うもので、非球面レンズ,ボー ノレレンズ,平凸レンズあるいは分布屈折レンズ等を使用することが出来る。但し、レン ズ 6には、光入出射部 9との間に前記光学素子部を配置しうるバックフォーカスを有 するレンズを使用する。本実施形態では、非球面レンズを使用した。
[0034] 反射体 7は、偏光面回転素子 6を透過した光を反射する反射鏡で、本実施の形態 では、一例として、基板の表面に SiO /TiOをコーティングした全反射鏡を用いた。
2 2
[0035] 次に、光サーキユレータ 1の動作について説明する。図 7と図 8の (A)〜(I)は、光サ ーキユレータ 1における順方向の光の偏光状態を示す図であり、図 1及び図 2中の符 号 (Α)〜(Ι)で示す各光路断面での偏光状態に対応している。図 7及び図 8では、横方 向が X軸、縦方向が y軸、紙面に向力 方向力 ¾軸であり、説明の便宜上、縦,横方向 共に 8分割して、横方向には 1から 8で、縦方向には a〜hで、各光路断面での偏光成 分の伝搬位置を示す。なお本発明では、図 1において、光ファイバ P1から反射体 7を 経て光ファイバ P2へと向力 往復光路を「順方向」と定義し、光ファイバ P2から反射体 7を経て光ファイバ P3へと向力 往復光路を「逆方向」と、それぞれ定義する。
[0036] 光ファイバ P1に光が入射されると、その光は光ファイバ P1を伝搬して、斜めに形成 された光入出射端面から出射される。出射の際に、その出射光は傾斜角度 φに応じ て斜めに出射され、一定の広がり角 Θ λ /( π ω )でビーム径が広がりながら、レン
0
ズ 9の光軸 oaを横切るように伝搬して、レンズ 9の表面に入射される。
[0037] レンズ 9に入射された光は、図 3で示すレンズ 9の左側の凸曲面で光軸 oaから外側 へと屈折され、光線軸 balが z軸に対し平行になるようにレンズ 9から出射される。出射 された光 B1は、コリメート光又は収束光に変換される。
[0038] レンズ 9から偏光分離素子 2へと入射する光の入射位置は、マトリクスで見ると図 7(
A)に示すように、横方向では 5と 6の間で、縦方向では gと hの間である。本実施の形 態ではこのような位置を(5-6, g-h)と表す。また、符号 Cは前記中心点 C、符号 Rは反 射体 7における偏光成分の反射点である。
[0039] 偏光分離素子 2へ出射された光は、図 5及び図 7(B)に示すように、偏光分離素子 2 で結晶軸 X21に直交した常光線と、平行な異常光線との、 2つの偏光成分に分離さ れる。順方向において、偏光分離素子 2から出射する異常光線の伝搬位置は、図 7(
B)より(7-8,e_f)である。
[0040] 分離された偏光成分は、偏光面回転素子 3を透過することで、図 7(C)に示すように 、反時計方向(左回り)に 45度回転される。
[0041] 次に、これらの偏光成分のうち、偏光分離素子 2透過時に常光線となる偏光成分の みが位相光学素子 4bに入射,透過され、一方の偏光成分 (偏光分離素子 2透過時 に異常光線となる偏光成分)は 2つの位相光学素子 4a, 4b間の空間をそのまま伝搬 していく(図 5参照)。このように、位相光学素子 4bの大きさは、一方の偏光成分のみ を透過するように設定される。前記の通り位相光学素子 4bの結晶軸 X4bは、 y軸に対 して 45度傾いているので、位相光学素子 4bを透過した偏光成分は、図 7(D)に示すよ うに偏光方向が 90度回転する。以上によって、 2つの偏光成分の偏光方向は、偏光 分離素子 5の結晶軸 X51と直交する方向である y軸方向に揃えられる。
[0042] 次いで、これらの光は、偏光分離素子 5に入射される。偏光分離素子 5は、順方向 に伝搬する光が反射体 7で反射される前に入射する様に、図 2,図 5,及び図 7(D)に 示すように片側の光路上のみに配置される。
[0043] 前記の通り、各偏光成分の偏光方向と結晶軸 X51の方向は直交するから、 2つの偏 光成分の偏光面が偏光分離素子 5に入射しても、図 7(E)に示すように、順方向では 2 つの偏光成分は偏光分離素子 5でシフトすること無ぐ偏光分離素子 5への入射時の 偏光方向が保持されたまま、偏光分離素子 5から出射される。
[0044] 以上から、順方向において偏光分離素子 5入射時に、 2つの偏光成分の偏光面が 結晶軸 X51方向に対して直交方向に揃うように、 2つの偏光分離素子 2, 5間の、偏光 面回転素子 3の回転方向と、位相素子 4の結晶軸 X4a, X4b方向を設定することとす る。
[0045] 次に、偏光分離素子 5を透過した光はレンズ 6で所定角度屈折するが、偏光状態は 変化しない。このときの屈折角は、レンズ 6の光軸 X6から光の中心位置とレンズ 6の焦 点距離により決まる。
[0046] 次いで、レンズ 6を透過した 2つの偏光成分の光は、反射体 7で入射角と反対側に 、一点 Rで点対称となる様に反射される(図 6,図 7(E),図 8(F)参照)。図 1及び図 2か ら分かるように、本発明の光サーキユレータ 1では反射体 7における反射点 Rと、レン ズ 6の光軸 X6とが、光の伝搬方向(z軸方向)において同一直線上に来るように、反射 体 7とレンズ 6とを位置決めして配置している。一方、光ファイバ P1〜P3の中心軸 fcを 結ぶ対角線上の中心点 Cと、レンズ 6の光軸 X6とは、図 1及び図 2から明らかなように 非同一直線上となるように、各光ファイバ P1〜P3とレンズ 6とを位置決めして配置して いる。反射体 7によって光が反射されて往復光路を形成することにより、光サーキユレ ータ 1全体の全長を短縮することが出来る。
[0047] 反射された光は、再度レンズ 6を透過することにより図 8(F)に示すように、レンズ 6の 光軸 X6に関し、図 7(E)の場合と対称の位置に出射される。このとき、レンズ 6の前後 で偏光状態は変化しない。
[0048] 次に、レンズ 6を透過した光は、図 2及び図 5に示すように偏光分離素子 5外部の空 間を通過して、一方の偏光成分のみ位相光学素子 4aを透過することにより、図 8(G) に示すように偏光方向が 90度回転し、各々の偏光方向が直交する状態とされる。こ のように、位相光学素子 4aの大きさは、一方の偏光成分のみを透過するように設定さ れる。この時に位相光学素子 4aを透過する偏光成分は、先程、位相光学素子 4bも透 過した偏光成分である。このように 2つの位相光学素子 4a, 4bに一方の偏光成分の みが透過するように、 2つの位相光学素子 4a, 4bを配置することで、片方の偏光成分 のみを位相素子 4で 180度回転させる。
[0049] 次に、 2つの偏光成分が偏光面回転素子 3に入射することにより、図 8(H)に示すよう に反時計方向に 45度偏光面がそれぞれ回転される。この状態は、 X軸方向における 伝搬位置は異なっているが、図 7(B)に示したように偏光分離素子 2を透過した後の偏 光状態と同じである。
[0050] そして、この後 2つの偏光成分は偏光分離素子 2を透過することにより、図 8(1)に示 すように(l_2,c-d)の伝搬位置で合波され、その合波された光 B2はレンズ 9に入射さ れる。更に、図 3で示すレンズ 9の左側の凸曲面で光 B2の光線軸 ba2は内側(光軸 oa 側)へと屈折,集光されて光ファイバ P2に入射される。
[0051] 次に、光ファイバ P2から P3への、逆方向の光路における偏光成分の動作を図 9〜1 4を参照して説明する。なお、順方向の動作時に説明した事柄と重複する事に関して は、説明を省略若しくは簡略化して記述する。図 13と図 14の (A)〜(I)は、光サーキュ レータ 1における逆方向の光の偏光状態を示す図であり、図 9及び図 10の符号 (Α)〜 (I)で示す各光路断面での偏光状態に対応している。図 13及び図 14でも、横方向が X軸、縦方向が y軸、紙面に向力う方向力 軸であり、説明の便宜上、縦,横方向共に 8分割して偏光成分の伝搬位置を示してレヽる。
[0052] 前記のように光ファイバ P2から出射され、レンズ 9でコリメート光又は収束光に変換 された光は、偏光分離素子 2へ入射位置(l-2,c-d)から入射する。入射した光は、偏 光分離素子 2で常光線と異常光線に分離される。分離された偏光成分は、偏光面回 転素子 3により反時計方向に回転され、互いに直交する偏光方向に揃えられる。
[0053] 次に、これらの偏光成分のうち、偏光分離素子 2透過時に異常光線となる偏光成分 のみが位相光学素子 4aに入射,透過され、一方の偏光成分 (偏光分離素子 2透過時 に常光線となる偏光成分)は 2つの位相光学素子 4a, 4b間の空間をそのまま伝搬し ていく(図 11参照)。位相光学素子 4aを透過した偏光成分は、図 13(F)に示すように 偏光方向が 90度回転する。この回転により、 2つの偏光成分の偏光方向は、偏光分 離素子 5の結晶軸 X51と同方向である X軸方向に揃えられる。
[0054] そして、位相光学素子 4aを透過した光は、図 10及び図 11に示すように偏光分離素 子 5外部の空間を通過して、反射体 7で点対称に反射されて偏光分離素子 5に入射 する。偏光分離素子 5に入射した各偏光成分は、図 11及び図 14(E)_(D)で示すよう に X軸方向に同一量だけシフトされる。
[0055] 続いて、 2つの偏光成分のうちの、一方の偏光成分のみ位相光学素子 4bを透過す ることにより、図 14(C)に示すように偏光方向が 90度回転し、各々の偏光方向が直交 する状態となる。この時、位相光学素子 4bを透過する偏光成分は、先程、位相光学 素子 4aも透過した偏光成分である。このように 2つの位相光学素子に一方の偏光成 分のみが透過するように 2つの位相光学素子 4a, 4bを配置することで、片方の偏光成 分のみを位相素子 4で 180度回転させる。
[0056] 次に、 2つの偏光成分が偏光面回転素子 3に入射することにより、図 14(B)に示すよ うに反時計方向に 45度偏光面がそれぞれ回転される。この状態は、 y軸方向におけ る伝搬位置は異なってレ、るが、図 13(H)に示したように偏光分離素子 2を透過した後 の偏光状態と同じである。
[0057] そして、この後 2つの偏光成分は偏光分離素子 2を透過することにより、図 14(A)に 示すように(l-2,g-h)の伝搬位置で合波され、レンズ 9で集光されて光ファイバ P3に 入射される。
[0058] 中心点 Cから等距離に配置された全ての光ファイバ P1〜P3と伝搬光とを結合させる ために、光サーキユレータ 1では、偏光分離素子 5における異常光線のシフト量を、 偏光分離素子 2における異常光線のシフト量よりも大きくなるように、その厚みを変更 して設定している。
[0059] 以上、説明したように本発明の光サーキユレータ 1では、前記中心点 Cに対して、全 ての光ファイバ P1〜P3を等距離に配置して構成することにより、光サーキユレータ 1に おける往復光路毎の揷入損失のばらつきを防止して、挿入損失の安定化を図ること が可能となる。
[0060] 更に、偏光分離素子 2, 5の光学面上における各結晶軸 X21, X51の方向を互いに
45度異なるように設定すると共に、 2つの偏光分離素子 2, 5間に偏光面回転素子 3と 位相素子 4を配置し、更に偏光面回転素子 3の回転方向と、位相素子 4の結晶軸 X4 a, X4b方向を適宜設定することにより、偏光分離素子 5で 2つの偏光成分を共に異常 光線としてシフトさせることが可能となる。従って、偏光分離素子 5透過時に、一方の 偏光成分のみシフトして起こる PDLの発生を防止することが出来る。又、反射体 7に おいて 2つの偏光成分を点対称で反射させるので、反射前後の 2つの偏光成分の光 路長差を零にすることができ、これによつても PDLの発生を防止することが可能となる
[0061] 更に、順方向の光が反射体 7で反射される前に偏光分離素子 5に入射する様に、 偏光分離素子 5を配置することにより、 PDLの発生防止と各光学素子の小型化を達 成することが可能となる。順方向の光が反射体 7で反射後に入射される様に第 2の偏 光分離素子 5を配置してしまうと、逆方向の光路において偏光分離素子 5により 2つ の偏光成分が共にシフトされた後、反射体 7で 2つの偏光成分が反射されることとな つてしまう。すると、反射点 Rと 2つの偏光成分との各距離が、各偏光成分ごとに同一 とならず PDLが発生してしまう。従って、本実施の形態で説明してきた様な第 2の偏光 分離素子 5の配置位置が好ましレ、。
[0062] 又、中心点 Cに対して全ての光ファイバ P1〜P3の中心軸 fcが等距離となるように配 置することにより、各光ファイバ P1〜P3の光入出射端面と、レンズ 9の光軸 oaとの間を 等距離に設定することが出来る。これにより、レンズ 9から出射及びレンズ 9に入射さ れる光のビーム径を同一サイズに設定することが可能となる。従って、より一層、光入 出射部 8と光学素子部及びレンズ 6と反射体 7との調芯作業が容易化できる。
[0063] なお、光サーキユレータ 1に要求される特性がそれほど高くない場合には、公差を 含む範囲内で全ての光ファイバ P1〜P3を中心点 Cから若干、等距離とはならない構 成に変更することも可能である。
[0064] 又、本発明はその技術的思想に基づいて種々変更可能であり、図 15に示すように 反射体 7を凹面鏡としても良い。凹面鏡を用いることにより、光サーキユレータ 1の光 学素子部及びレンズ 6との結合トレランスを緩和させることが可能となり、光入出射部 8,光学素子部,及びレンズ 6との調芯作業が容易化できる。
[0065] 更に、偏光分離素子 2と 5には複屈折単結晶の換わりに、複屈折性のプリズムや偏 光ビームスプリッタと置き換えても良レ、。又、前記 GIFの換わりに、光ファイバ P1〜P3 の光入出射端面近傍に、新たにレンズを配置しても良いし、偏光分離素子 5の y軸方 向にガラス板を設けても良レ、。 産業上の利用可能性
本発明の光サーキユレータは、光通信システムや光計測分野等で非相反光デバイ スとして利用することが可能である。

Claims

請求の範囲
第 1の偏光分離素子と, 45度の回転角を有する非相反性の偏光面回転素子と,入 射光の偏光面を 90度回転させる位相素子と,第 2の偏光分離素子とから成る光学素 子部を備え、
光学素子部の一端側に、少なくとも 3本以上の導波路が配列された光入出射部が 配置されると共に、光学素子部を挟んで光入出射部の反対側にレンズと反射体が配 置され、
光入出射部側から順に、第 1の偏光分離素子,偏光面回転素子,位相素子,第 2 の偏光分離素子が配置され、
各導波路の中心軸を結ぶ対角線上の中心点から等間隔に全ての導波路が配置さ れ、
更に、第 1及び第 2の偏光分離素子の光学面上における各結晶軸方向が 45度異な り、
第 2の偏光分離素子における異常光線のシフト量が、第 1の偏光分離素子におけ る異常光線のシフト量よりも大きく設定され、
偏光面回転素子の回転角の方向が、光入出射部からみて反時計方向に設定され 更に、位相素子が第 1位相光学素子及び第 2位相光学素子の 2つの位相光学素 子によって構成され、各位相光学素子の大きさは、第 1の偏光分離素子で常光線と 異常光線の 2つの偏光成分に分離される光の一方の偏光成分のみ透過するように 設定されると共に、一方の偏光成分のみが 2つの位相光学素子を透過するように各 位相光学素子が設置され、
第 1の偏光分離素子で分離される光の 2つの偏光成分のうち、第 1の偏光分離素子 透過時に異常光線となる偏光成分が第 1位相光学素子に透過されると共に、常光線 となる偏光成分は第 2位相光学素子に透過され、
更に、第 2の偏光分離素子の大きさが、光入出射部から出射され反射体で反射さ れることで光学素子部を往復する光の光路の、往路又は復路の一方のみ透過するよ うに設定され、 反射体において 2つの偏光成分が点対称に反射されると共に、
反射体における反射点とレンズの光軸とが、光の伝搬方向において同一直線上に 配置される一方で、各導波路の中心軸を結ぶ対角線上の中心点と、レンズの光軸と は、非同一直線上に配置され、
順方向の光が反射体で反射される前に、第 2の偏光分離素子に入射するように、 第 2の偏光分離素子が配置されることを特徴とする反射型光サーキユレータ。
前記反射体が、凹面鏡であることを特徴とする請求項 1記載の反射型光サーキユレ
■ ~々
PCT/JP2007/054531 2006-03-09 2007-03-08 反射型光サーキュレータ WO2007102579A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008503908A JP5076099B2 (ja) 2006-03-09 2007-03-08 反射型光サーキュレータ
EP07738022A EP2003485B1 (en) 2006-03-09 2007-03-08 Reflection type optical circulator
CN2007800082993A CN101401021B (zh) 2006-03-09 2007-03-08 反射型光循环器
US12/281,901 US7826137B2 (en) 2006-03-09 2007-03-08 Reflective optical circulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006064124 2006-03-09
JP2006-064124 2006-03-09

Publications (1)

Publication Number Publication Date
WO2007102579A1 true WO2007102579A1 (ja) 2007-09-13

Family

ID=38474998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054531 WO2007102579A1 (ja) 2006-03-09 2007-03-08 反射型光サーキュレータ

Country Status (5)

Country Link
US (1) US7826137B2 (ja)
EP (1) EP2003485B1 (ja)
JP (1) JP5076099B2 (ja)
CN (1) CN101401021B (ja)
WO (1) WO2007102579A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955026A (zh) * 2014-05-23 2014-07-30 福州百讯光电有限公司 一种基于光纤和透镜阵列的光环形器
JP2019515354A (ja) * 2016-05-06 2019-06-06 セルオプティック、インコーポレイテッドCelloptic, Inc. 顕微鏡法及び他の応用例で使用するための複屈折レンズ干渉計

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585465B (zh) * 2013-09-27 2017-06-01 Jing- Chen Multi-port light circulator
US10591870B2 (en) 2014-05-01 2020-03-17 Celloptic, Inc. Birefringent lens interferometer for use in microscopy and other applications

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172747A (ja) * 1997-04-07 1999-03-16 Jds Fitel Inc 光サーキュレータ
JP2000231080A (ja) 1999-02-10 2000-08-22 Furukawa Electric Co Ltd:The 光サーキュレータ
JP2002228984A (ja) * 2001-02-07 2002-08-14 Nec Tokin Corp 光サーキュレータ
JP2002528765A (ja) 1998-10-27 2002-09-03 エイディーシー テレコミュニケイションズ インコーポレイテッド マルチプルポート、光ファイバ・サーキュレータ
JP2005148703A (ja) * 2003-10-20 2005-06-09 Tdk Corp 反射型光部品
JP2006317614A (ja) * 2005-05-11 2006-11-24 Namiki Precision Jewel Co Ltd 光デバイスの光入出射部
JP2006317624A (ja) * 2005-05-11 2006-11-24 Namiki Precision Jewel Co Ltd 光サーキュレータ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986295B2 (ja) * 1992-12-08 1999-12-06 松下電器産業株式会社 光アイソレータ
US5471340A (en) * 1994-01-07 1995-11-28 Jds Fitel Inc. Reflective optical non-reciprocal devices
US5930422A (en) * 1997-02-14 1999-07-27 Cheng; Yihao Optical circulator
US5930418A (en) * 1997-02-25 1999-07-27 Hewlett-Packard Company Optical assembly and method based on TEC fibres
US6239900B1 (en) * 1997-09-19 2001-05-29 Nz Applied Technologies Corp. Reflective fiber-optic isolator
US6078716A (en) * 1999-03-23 2000-06-20 E-Tek Dynamics, Inc. Thermally expanded multiple core fiber
US6246518B1 (en) * 1999-03-25 2001-06-12 E-Tek Dynamics, Inc. Reflection type optical isolator
US6263131B1 (en) * 1999-07-02 2001-07-17 Nortel Networks (Photonics) Pty Ltd. Reflective non-reciprocal optical device
US6236506B1 (en) * 1999-09-23 2001-05-22 Avanex Corporation Reflection-type optical circulation utilizing a lens and birefringent plates
US6853488B1 (en) * 1999-09-23 2005-02-08 Avanex Corporation Reflection-type optical circulator utilizing a lens and birefringent plates
US6480331B1 (en) * 1999-11-10 2002-11-12 Avanex Corporation Reflection-type polarization-independent optical isolator, optical isolator/amplifier/monitor, and optical system
CN1343906A (zh) * 2000-09-11 2002-04-10 三井化学株式会社 波长转换装置
US6493139B1 (en) * 2001-03-16 2002-12-10 Hongdu Liu Optical switch
US20020191284A1 (en) * 2001-06-13 2002-12-19 Kok-Wai Chang Optical circulator
US6795242B2 (en) * 2002-02-06 2004-09-21 Lightwaves 2020, Inc. Miniature circulator devices and methods for making the same
JP2004264368A (ja) * 2003-02-20 2004-09-24 Fdk Corp 反射型光デバイス
US7072111B2 (en) 2003-10-20 2006-07-04 Tdk Corporation Reflection-type optical device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172747A (ja) * 1997-04-07 1999-03-16 Jds Fitel Inc 光サーキュレータ
JP2002528765A (ja) 1998-10-27 2002-09-03 エイディーシー テレコミュニケイションズ インコーポレイテッド マルチプルポート、光ファイバ・サーキュレータ
JP2000231080A (ja) 1999-02-10 2000-08-22 Furukawa Electric Co Ltd:The 光サーキュレータ
JP2002228984A (ja) * 2001-02-07 2002-08-14 Nec Tokin Corp 光サーキュレータ
JP2005148703A (ja) * 2003-10-20 2005-06-09 Tdk Corp 反射型光部品
JP2006317614A (ja) * 2005-05-11 2006-11-24 Namiki Precision Jewel Co Ltd 光デバイスの光入出射部
JP2006317624A (ja) * 2005-05-11 2006-11-24 Namiki Precision Jewel Co Ltd 光サーキュレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2003485A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103955026A (zh) * 2014-05-23 2014-07-30 福州百讯光电有限公司 一种基于光纤和透镜阵列的光环形器
JP2019515354A (ja) * 2016-05-06 2019-06-06 セルオプティック、インコーポレイテッドCelloptic, Inc. 顕微鏡法及び他の応用例で使用するための複屈折レンズ干渉計

Also Published As

Publication number Publication date
CN101401021A (zh) 2009-04-01
JP5076099B2 (ja) 2012-11-21
EP2003485A9 (en) 2009-04-22
CN101401021B (zh) 2010-10-27
US7826137B2 (en) 2010-11-02
EP2003485B1 (en) 2012-12-19
EP2003485A4 (en) 2011-05-18
JPWO2007102579A1 (ja) 2009-07-23
US20090304392A1 (en) 2009-12-10
EP2003485A2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US6590706B1 (en) Optical circulators using beam angle turners
JP5076099B2 (ja) 反射型光サーキュレータ
JP4714811B2 (ja) 光アイソレータ及び光学装置
JP3517657B2 (ja) 埋込型光非可逆回路装置
US6246518B1 (en) Reflection type optical isolator
JPH11194301A (ja) 光サーキュレータ
JP2006317614A (ja) 光デバイスの光入出射部
JP3368209B2 (ja) 反射型光サーキュレータ
US20020191284A1 (en) Optical circulator
JP3649899B2 (ja) 光スイッチ
JP4070053B2 (ja) 光サーキュレータ
KR101061336B1 (ko) 인라인형 광아이솔레이터
JP2006317624A (ja) 光サーキュレータ
US6549686B2 (en) Reflective optical circulator
US11719965B2 (en) Optical isolators
CN215264114U (zh) 一种反射式光环行器
JP3981100B2 (ja) 反射型光部品
JP2006337905A (ja) 光サーキュレータ
JP4888780B2 (ja) 光ファイバ結合装置
CN112904490A (zh) 一种反射式光环行器
JPH0627415A (ja) 3ポート型光サーキュレータ
JP2003057599A (ja) 複合光学素子
JP2000089164A (ja) 循環型光サーキュレータ及び光スイッチ
JPH09113847A (ja) 多芯光アイソレータ
JP2000221447A (ja) 光非相反回路ユニットとそれを使用した光アイソレータおよび光サーキュレータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780008299.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007738022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008503908

Country of ref document: JP

Ref document number: 12281901

Country of ref document: US