JP5076099B2 - 反射型光サーキュレータ - Google Patents

反射型光サーキュレータ Download PDF

Info

Publication number
JP5076099B2
JP5076099B2 JP2008503908A JP2008503908A JP5076099B2 JP 5076099 B2 JP5076099 B2 JP 5076099B2 JP 2008503908 A JP2008503908 A JP 2008503908A JP 2008503908 A JP2008503908 A JP 2008503908A JP 5076099 B2 JP5076099 B2 JP 5076099B2
Authority
JP
Japan
Prior art keywords
polarization
optical
light
polarization separation
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008503908A
Other languages
English (en)
Other versions
JPWO2007102579A1 (ja
Inventor
良博 今野
勝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Adamant Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd, Adamant Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP2008503908A priority Critical patent/JP5076099B2/ja
Publication of JPWO2007102579A1 publication Critical patent/JPWO2007102579A1/ja
Application granted granted Critical
Publication of JP5076099B2 publication Critical patent/JP5076099B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2793Controlling polarisation dependent loss, e.g. polarisation insensitivity, reducing the change in polarisation degree of the output light even if the input polarisation state fluctuates

Description

本発明は、光通信システムや光計測等の分野で使用される、光サーキュレータに関するものであり、特に反射体を備えて光を反射することによって往復光路を形成する反射型光サーキュレータに関する。
光サーキュレータは、光通信システムや光計測等の分野で重要な働きをする非相反光デバイスの1つであり、少なくとも3つ以上のポートを有する。例えば、1,2,3の番号で表わされる3ポートを有する光サーキュレータの場合、順方向の1→2,2→3,3→1の方向では伝搬光は低損失で、逆方向の3→2,2→1,1→3の方向では高損失の出力として光を伝搬させる。
ところで、前記光サーキュレータは、伝搬方向に沿って対向配置した一方のポートから他方のポートへと光を伝搬する構造上、光学素子数が多くなって全体的に大型化するという問題があった。しかも、ポート数を増やそうとすると、光学素子が更に増加するため一層大型化し、多ポート化が難しいという問題もあった。そこで、多ポート化しても光学素子数が増えることなく、従来構造に比べて小型な光サーキュレータの構造として、反射体を備えて往復光路を形成する反射型光サーキュレータが出願されている(例えば、特許文献1,2を参照)。
特開2000−231080号公報(第2−5頁、第1−6図) 特表2002−528765号公報(第38−39頁、第12図)
図16に示すように、特許文献1の光サーキュレータ100は、入出射側ポート(光入出射部)に4つのアレイ形光ファイバ101を用いると共に、前記アレイ形光ファイバ101とレンズ102との間に、複屈折素子103、2つの半波長素子からなる第1の位相素子104、偏光面回転素子105、及び2つの複屈折素子からなる複合複屈折素子106とが配置され、更にレンズ102を挟んで反対側に第2の位相素子107と反射体108とが配置されてなるものである。
又、特許文献2の光サーキュレータ109は図17に示すように、入出射側ポート(光入出射部)に非一列型の光ファイバ束110を用いた光サーキュレータであり、2つの複屈折素子111a及び111b、2つのファラデー回転子112,113(又は偏光面回転素子114)、及び反射体として反射プリズム115とを備えるものである。2つのファラデー回転子112,113の回転方向は逆向きになるように構成されている。
しかしながら、光サーキュレータ100の入出射側ポートを構成する4つの光ファイバ101は、図16のz軸方向から見ると、図18に示すように一列に配置されたアレイ形を呈する。よって、全ての光ファイバP1〜P4の中心軸を結ぶ対角線上の中心点Cに対して、全ての光ファイバP1〜P4の中心軸を等距離に配置することが出来ず、外側の光ファイバP3,P4に行くに従って前記中心点Cから遠距離になってしまう。従って、内回りの往復光路(例えばP1→P2)と、外回りの往復光路(例えばP3→P4)との光路長間に光路長差が生じ、この光路長差により往復光路毎に挿入損失にばらつきが発生してしまっていた。従って、従来の光サーキュレータ100では挿入損失の安定化を図ることが困難であった。
又、光サーキュレータ100では、複屈折素子103と、複合複屈折素子106との結晶軸方向が互いに垂直となるように構成されているため、光ファイバP1〜P4を一列状に配列しないと、各往復光路と光ファイバP1〜P4各端面との結合が取れなくなってしまう。以上から、光サーキュレータ100の構成では挿入損失のばらつきを防止することは不可能であった。
一方、光サーキュレータ109の、3つの光ファイバP1〜P3から成る入出射側ポートは、図17のz軸方向から見ると、図19に示すように非一列型に構成されており、全ての光ファイバP1〜P3の中心軸を結ぶ対角線上の中心点Cに対して、光ファイバP1〜P3の中心軸が等距離に配置されている。従って、往復光路毎の挿入損失のばらつきは防止される。しかしながら、複屈折素子116〜119において、2つの偏光成分のうち一方の偏光成分しかシフトさせない構成なので、偏波依存損失(Polarization Dependent Loss:PDL)が発生してしまっていた。
本発明は、かかる事情を鑑みてなされたものであり、その目的はPDLの発生と、往復光路毎の挿入損失のばらつきの両方を防止することにより、特性の向上を図った反射型の光サーキュレータを実現することである。
本発明の請求項1に記載の発明は、第1の偏光分離素子と,45度の回転角を有する非相反性の偏光面回転素子と,入射光の偏光面を90度回転させる位相素子と,第2の偏光分離素子とから成る光学素子部を備え、
光学素子部の一端側に、少なくとも3本以上の導波路が配列された光入出射部が配置されると共に、光学素子部を挟んで光入出射部の反対側にレンズと反射体が配置され、
光入出射部側から順に、第1の偏光分離素子,偏光面回転素子,位相素子,第2の偏光分離素子が配置され、
各導波路の中心軸を結ぶ対角線上の中心点から等間隔に全ての導波路が配置され、
更に、第1及び第2の偏光分離素子の光学面上における各結晶軸方向が45度異なり、
第2の偏光分離素子における異常光線のシフト量が、第1の偏光分離素子における異常光線のシフト量よりも大きく設定され、
偏光面回転素子の回転角の方向が、光入出射部からみて反時計方向に設定され、
更に、位相素子が第1位相光学素子及び第2位相光学素子の2つの位相光学素子によって構成され、各位相光学素子の大きさは、第1の偏光分離素子で常光線と異常光線の2つの偏光成分に分離される光の一方の偏光成分のみ透過するように設定されると共に、一方の偏光成分のみが2つの位相光学素子を透過するように各位相光学素子が設置され、
第1の偏光分離素子で分離される光の2つの偏光成分のうち、反射体で反射後に第1の偏光分離素子透過時に異常光線となる偏光成分が第1位相光学素子に透過されると共に、反射体で反射される前に第1の偏光分離素子透過時に常光線となる偏光成分は第2位相光学素子に透過され、
更に、第2の偏光分離素子の大きさが、光入出射部から出射され反射体で反射されることで光学素子部を往復する光の光路の、往路又は復路の一方のみ透過するように設定され、
反射体において2つの偏光成分が点対称に反射されると共に、
反射体における反射点とレンズの光軸とが、光の伝搬方向において同一直線上に配置される一方で、各導波路の中心軸を結ぶ対角線上の中心点と、レンズの光軸とは、非同一直線上に配置され、
順方向の光が反射体で反射される前に、第2の偏光分離素子に入射するように、第2の偏光分離素子が配置されることを特徴とする反射型光サーキュレータである。
更に、本発明の請求項2に記載の発明は、前記反射体が、凹面鏡であることを特徴とする請求項1記載の反射型光サーキュレータである。
本発明の光サーキュレータに依れば、各導波路の中心軸を結ぶ対角線上の中心点に対して、全ての導波路を等距離に配置して光サーキュレータを構成することが可能になる。従って、光サーキュレータにおける往復光路毎の挿入損失のばらつきを防止して、挿入損失の安定化を図ることが可能となる。
更に、光が第2の偏光面分離素子透過時に、一方の偏光成分のみシフトして起こるPDLの発生を防止することが出来る。又、反射体において2つの偏光成分を点対称で反射させるので、反射前後の2つの偏光成分の光路長差を零にすることができ、これによってもPDLの発生を防止することが可能となる。更に、順方向の光が反射体で反射される前に第2の偏光分離素子に入射する様に、第2の偏光分離素子を配置することにより、PDLの発生防止と各光学素子の小型化を達成することが可能となる。
又、各導波路の中心軸を結ぶ対角線上の中心点に対して全ての導波路の中心軸が等距離となるように配置することにより、各導波路の光入出射端面と、各導波路の光入出射端面側に備えられるレンズの光軸との間を等距離に設定することが出来る。これにより、前記レンズから出射及び前記レンズに入射される光のビーム径を同一サイズに設定することが可能となる。従って、より一層、光入出射部と光学素子部、及び光入出射部の反対側に配置されるレンズと反射体との調芯作業が容易化できる。
又、反射体を備えて、往復光路で光サーキュレータを構成することにより、光サーキュレータ全体の全長を短縮して、光サーキュレータの小型化が可能となる。
更に、反射体を凹面鏡とすることにより、光サーキュレータの光学素子部及び光入出射部の反対側に配置されるレンズとの結合トレランスを緩和させることが可能となり、光入出射部,光学素子部,及び前記レンズとの調芯作業が容易化できる。
本発明の光サーキュレータの構成と順方向の光の光路を示す平面図。 本発明の光サーキュレータの構成と順方向の光の光路を示す側面図。 光入出射部の概略構成図。 光ファイバを挿入、保持するフェルールの構成図。 図1の光サーキュレータの、光学素子部の各光学素子の配置と、順方向で の伝搬光の偏光状態を示す斜視図。 図1の光サーキュレータの、レンズから反射体までの配置と、順方向での 伝搬光の偏光状態を示す斜視図。 図1の光サーキュレータにおいて、光ファイバP1から出射して反射体で 反射されるまでの伝搬光の偏光状態を示す説明図。 図1の光サーキュレータにおいて、反射体で反射されて光ファイバP2に 入射するまでの伝搬光の偏光状態を示す説明図。 本発明の光サーキュレータの構成と逆方向の光の光路を示す平面図。 本発明の光サーキュレータの構成と逆方向の光の光路を示す側面図。 図9の光サーキュレータの、光学素子部の各光学素子の配置と、逆方向 での伝搬光の偏光状態を示す斜視図。 図9の光サーキュレータの、レンズから反射体までの配置と、逆方向で の伝搬光の偏光状態を示す斜視図。 図9の光サーキュレータにおいて、光ファイバP2から出射して反射体 で反射されるまでの伝搬光の偏光状態を示す説明図。 図9の光サーキュレータにおいて、反射体で反射されて光ファイバP3 に入射するまでの伝搬光の偏光状態を示す説明図。 反射体の変更例を示す模式図。 従来の光サーキュレータの一例を示す平面図。 従来の光サーキュレータの他の例を示す平面図。 図16の光サーキュレータを、z軸方向から反射体に向かって見たとき の光入出射部を示す構成図。 図17の光サーキュレータを、z軸方向から反射体に向かって見たとき の光入出射部を示す構成図。
符号の説明
1 光サーキュレータ
2 第1の偏光分離素子
3 偏光面回転素子
4 位相素子
4a 第1位相光学素子
4b 第2位相光学素子
5 第2の偏光分離素子
6、9 レンズ
7 反射体
8 光入出射部
10 フェルール
以下、本発明に係る光サーキュレータの最良の実施形態を、図1乃至図14に基づいて詳細に説明する。なお、各図に示してあるx軸乃至z軸は、それぞれの図で対応している。図1と図2に、光の伝搬方向をz軸、z軸に直交する面内のそれぞれ水平方向をx軸、垂直方向をy軸としたときの、光サーキュレータ1の光入出射部8から反射体7までの各光学素子の構成と配置を示す。なお、光が各光学素子内部を透過する際の光路は破線で表し、それ以外の光路は実線で表すものとする。
本発明の光サーキュレータ1は、図1及び図2に示すように、第1の偏光分離素子2(以下、偏光分離素子2)、偏光面回転素子3、位相素子4、第2の偏光分離素子5(以下、偏光分離素子5)とから成る光学素子部とを備える。更に、これら光学素子部の一端側に光入出射部8が配置され、前記光学素子部を挟んで光入出射部8の反対側には、レンズ6と反射体7が配置されている。
光学素子部の各光学素子は、光入出射部側8からz軸方向に順に、偏光分離素子2,偏光面回転素子3,位相素子4,偏光面回転素子5と配置される。各光学素子のそれぞれの光学面には、SiO2/TiO2等の反射防止コートを施すことが望ましい。なお、偏光面回転素子3に磁気を印加する磁石については説明と図示を省略する。
図3は前記光入出射部8の概略構成図であり、図4(a)は光ファイバP1〜P3を挿入、保持するフェルール10の構成を示す正面図,同図(b)はフェルール10の構成を示す側面図である。図3に示すように光入出射部8は、導波路として用いられる複数の光ファイバP1〜P3が、互いのコア軸が平行となるように配列されると共に、各光ファイバP1〜P3の光入出射端面は、各光ファイバP1〜P3の中心軸fcに対して非垂直となるように形成されている。各光ファイバP1〜P3の光入出射端面側にはレンズ9が備えられる。
各光ファイバP1〜P3は3芯フェルール10の各孔に挿入されて保持される。図4(a)の正面図より、各孔の中心からフェルール10の中心点Cまでは等間隔となるように形成される。従って、孔に挿入された各光ファイバP1〜P3の中心軸fcを結ぶ対角線上の中心点は前記中心点C上に来るので、全ての光ファイバP1〜P3はフェルール10に保持されることで、中心点Cから等間隔に配置される。但し、隣り合う光ファイバどうしの間隔Lfは、レンズ6のバックフォーカスと、偏光分離素子2の厚み及び分離幅との関係を考慮して決定する。
更に、図3に示すように、レンズ9の光軸oaとフェルール10の中心点Cとがz軸方向において同一直線上に来るように、レンズ9とフェルール10とを互いに配置し、位置決めを行う。このようにレンズ9とフェルール10とを配置することにより、各光ファイバP1〜P3を結ぶ中心点(前記中心点C)とレンズ9の光軸oaとは同一直線上に配置される。従って、レンズ9の光軸oaに対して、全ての光ファイバP1〜P3の中心軸fcが等距離となるように、フェルール10によって保持されることになる。
又、全ての光ファイバP1〜P3の光入出射端面は、図4に示すように同一傾斜角度φで斜めに形成される。図4では、製造のし易さを考慮して、中心点Cが頂点となるようにフェルール10端面を四つの平面から成るように形成することで、光ファイバP1〜P3の光入出射端面を斜めに形成する例を挙げた。
複数の光ファイバP1〜P3は、シングルモード光ファイバ(Single Mode Fiber:SMF)で構成されると共に、光の入出射側端面には、グレーデッドインデックス光ファイバ(Graded Index Fiber:GIF)が接合される(図示省略)。GIFを設けることにより、各光ファイバP1〜P3の光入出射端のモードフィールド径(Mode Field Diameter:MFD)が拡大されて、出射光の広がり角が小さく抑えられる。MFDの拡大化としては、前記GIFの設置に限らず、光ファイバにTEC処理を施したり、微小レンズ等を設置しても良い。
レンズ9は、入射する光のコリメーション又は収束を行うもので、非球面レンズ,ボールレンズ,平凸レンズあるいは分布屈折レンズ等を使用することが出来る。
偏光分離素子2は、各光ファイバP1〜P3から出射した光を常光線と異常光線へ分離、及び後述する反射体7で反射して戻ってくる前記常光線と異常光線との合成を行う光学素子である。偏光分離素子2及び5には、例えば、ルチル(TiO2),方解石(CaCO3),イットリウム・オソバナデート(YVO4),アルファバリウム・ボーデート(αBaB2O4)等の複屈折単結晶が使用される。又、偏光分離素子2の光学面に対する結晶軸X22(図5,11参照)の方向は、最大の分離幅を得られるように光学面の法線に対して42〜50度前後(最も好ましくは47.8度)に設定される。
偏光面回転素子3は、偏光分離素子2を透過した光の偏光成分の偏光面を回転させる非相反性の偏光面回転素子で、使用波長帯域で回転角45度を有する、できるだけ薄いものを使用する。例えば、ガーネット,TBIG,GBIG等が最適である。本実施の形態では、回転角の方向が光入出射部8からz軸方向にみたときに、反時計方向に設定されたガーネット単結晶を用いる。
位相素子4は、偏光面回転素子を透過して入射してくる光の各偏光成分(常光線と異常光線)の偏光面を90度回転させるもので、例えば、TBIG(テルビウム・ビスマス・アイアン・ガーネット),GBIG(ガドリニウム・ビスマス・アイアン・ガーネット)等のガーネットや水晶等の相反性偏光面回転素子や半波長素子等が使用される。半波長素子を使用するときには、図5に示すように、結晶軸X4a方向がy軸に対して45度傾いた第1位相光学素子4a(以下、位相光学素子4a)と、結晶軸X4b方向が同じくy軸に対して45度傾いた第2位相光学素子4b(以下、位相光学素子4b)とで構成する。相反性偏光面回転素子を用いる場合には、0次単プレートや1次単プレート等、可能な限り薄いことが望ましく、高次の波長板を使用すると、波長特性と温度特性が悪くなる。
偏光分離素子5の大きさは、図5に示すように、光が反射体7で反射されることで光学素子部を往復する光の光路(図1及び図2中に実線及び破線で示す)の、往路又は復路の一方の光のみ透過するように設定される。更に、偏光分離素子5の、光学面の法線に対する結晶軸X52方向は、x軸に対して約42〜50度前後(最も好ましくは47.8度)に設定されるが、光学面上における結晶軸X51の方向はx軸方向に平行に設定される。又、偏光分離素子2の光学面上における結晶軸X21の方向は、x軸方向に対して45度に設定される。従って、第1及び第2の偏光分離素子2,5の結晶軸X21,X51方向は45度異なる。
レンズ6は、入射する光のコリメーション又は収束を行うもので、非球面レンズ,ボールレンズ,平凸レンズあるいは分布屈折レンズ等を使用することが出来る。但し、レンズ6には、光入出射部9との間に前記光学素子部を配置しうるバックフォーカスを有するレンズを使用する。本実施形態では、非球面レンズを使用した。
反射体7は、偏光面回転素子6を透過した光を反射する反射鏡で、本実施の形態では、一例として、基板の表面にSiO2/TiO2をコーティングした全反射鏡を用いた。
次に、光サーキュレータ1の動作について説明する。図7と図8の(A)〜(I)は、光サーキュレータ1における順方向の光の偏光状態を示す図であり、図1及び図2中の符号(A)〜(I)で示す各光路断面での偏光状態に対応している。図7及び図8では、横方向がx軸、縦方向がy軸、紙面に向かう方向がz軸であり、説明の便宜上、縦,横方向共に8分割して、横方向には1から8で、縦方向にはa〜hで、各光路断面での偏光成分の伝搬位置を示す。なお本発明では、図1において、光ファイバP1から反射体7を経て光ファイバP2へと向かう往復光路を「順方向」と定義し、光ファイバP2から反射体7を経て光ファイバP3へと向かう往復光路を「逆方向」と、それぞれ定義する。
光ファイバP1に光が入射されると、その光は光ファイバP1を伝搬して、斜めに形成された光入出射端面から出射される。出射の際に、その出射光は傾斜角度φに応じて斜めに出射され、一定の広がり角θ≒λ/(πω0)でビーム径が広がりながら、レンズ9の光軸oaを横切るように伝搬して、レンズ9の表面に入射される。
レンズ9に入射された光は、図3で示すレンズ9の左側の凸曲面で光軸oaから外側へと屈折され、光線軸ba1がz軸に対し平行になるようにレンズ9から出射される。出射された光B1は、コリメート光又は収束光に変換される。
レンズ9から偏光分離素子2へと入射する光の入射位置は、マトリクスで見ると図7(A)に示すように、横方向では5と6の間で、縦方向ではgとhの間である。本実施の形態ではこのような位置を(5-6, g-h)と表す。また、符号Cは前記中心点C、符号Rは反射体7における偏光成分の反射点である。
偏光分離素子2へ出射された光は、図5及び図7(B)に示すように、偏光分離素子2で結晶軸X21に直交した常光線と、平行な異常光線との、2つの偏光成分に分離される。順方向において、偏光分離素子2から出射する異常光線の伝搬位置は、図7(B)より(7-8,e-f)である。
分離された偏光成分は、偏光面回転素子3を透過することで、図7(C)に示すように、反時計方向(左回り)に45度回転される。
次に、これらの偏光成分のうち、偏光分離素子2透過時に常光線となる偏光成分のみが位相光学素子4bに入射,透過され、一方の偏光成分(偏光分離素子2透過時に異常光線となる偏光成分)は2つの位相光学素子4a,4b間の空間をそのまま伝搬していく(図5参照)。このように、位相光学素子4bの大きさは、一方の偏光成分のみを透過するように設定される。前記の通り位相光学素子4bの結晶軸X4bは、y軸に対して45度傾いているので、位相光学素子4bを透過した偏光成分は、図7(D)に示すように偏光方向が90度回転する。以上によって、2つの偏光成分の偏光方向は、偏光分離素子5の結晶軸X51と直交する方向であるy軸方向に揃えられる。
次いで、これらの光は、偏光分離素子5に入射される。偏光分離素子5は、順方向に伝搬する光が反射体7で反射される前に入射する様に、図2,図5,及び図7(D)に示すように片側の光路上のみに配置される。
前記の通り、各偏光成分の偏光方向と結晶軸X51の方向は直交するから、2つの偏光成分の偏光面が偏光分離素子5に入射しても、図7(E)に示すように、順方向では2つの偏光成分は偏光分離素子5でシフトすること無く、偏光分離素子5への入射時の偏光方向が保持されたまま、偏光分離素子5から出射される。
以上から、順方向において偏光分離素子5入射時に、2つの偏光成分の偏光面が結晶軸X51方向に対して直交方向に揃うように、2つの偏光分離素子2,5間の、偏光面回転素子3の回転方向と、位相素子4の結晶軸X4a,X4b方向を設定することとする。
次に、偏光分離素子5を透過した光はレンズ6で所定角度屈折するが、偏光状態は変化しない。このときの屈折角は、レンズ6の光軸X6から光の中心位置とレンズ6の焦点距離により決まる。
次いで、レンズ6を透過した2つの偏光成分の光は、反射体7で入射角と反対側に、一点Rで点対称となる様に反射される(図6,図7(E),図8(F)参照)。図1及び図2から分かるように、本発明の光サーキュレータ1では反射体7における反射点Rと、レンズ6の光軸X6とが、光の伝搬方向(z軸方向)において同一直線上に来るように、反射体7とレンズ6とを位置決めして配置している。一方、光ファイバP1〜P3の中心軸fcを結ぶ対角線上の中心点Cと、レンズ6の光軸X6とは、図1及び図2から明らかなように非同一直線上となるように、各光ファイバP1〜P3とレンズ6とを位置決めして配置している。反射体7によって光が反射されて往復光路を形成することにより、光サーキュレータ1全体の全長を短縮することが出来る。
反射された光は、再度レンズ6を透過することにより図8(F)に示すように、レンズ6の光軸X6に関し、図7(E)の場合と対称の位置に出射される。このとき、レンズ6の前後で偏光状態は変化しない。
次に、レンズ6を透過した光は、図2及び図5に示すように偏光分離素子5外部の空間を通過して、一方の偏光成分のみ位相光学素子4aを透過することにより、図8(G)に示すように偏光方向が90度回転し、各々の偏光方向が直交する状態とされる。このように、位相光学素子4aの大きさは、一方の偏光成分のみを透過するように設定される。この時に位相光学素子4aを透過する偏光成分は、先程、位相光学素子4bも透過した偏光成分である。このように2つの位相光学素子4a,4bに一方の偏光成分のみが透過するように、2つの位相光学素子4a,4bを配置することで、片方の偏光成分のみを位相素子4で180度回転させる。
次に、2つの偏光成分が偏光面回転素子3に入射することにより、図8(H)に示すように反時計方向に45度偏光面がそれぞれ回転される。この状態は、x軸方向における伝搬位置は異なっているが、図7(B)に示したように偏光分離素子2を透過した後の偏光状態と同じである。
そして、この後2つの偏光成分は偏光分離素子2を透過することにより、図8(I)に示すように(1-2,c-d)の伝搬位置で合波され、その合波された光B2はレンズ9に入射される。更に、図3で示すレンズ9の左側の凸曲面で光B2の光線軸ba2は内側(光軸oa側)へと屈折,集光されて光ファイバP2に入射される。
次に、光ファイバP2からP3への、逆方向の光路における偏光成分の動作を図9〜14を参照して説明する。なお、順方向の動作時に説明した事柄と重複する事に関しては、説明を省略若しくは簡略化して記述する。図13と図14の(A)〜(I)は、光サーキュレータ1における逆方向の光の偏光状態を示す図であり、図9及び図10の符号(A)〜(I)で示す各光路断面での偏光状態に対応している。図13及び図14でも、横方向がx軸、縦方向がy軸、紙面に向かう方向がz軸であり、説明の便宜上、縦,横方向共に8分割して偏光成分の伝搬位置を示している。
前記のように光ファイバP2から出射され、レンズ9でコリメート光又は収束光に変換された光は、偏光分離素子2へ入射位置(1-2,c-d)から入射する。入射した光は、偏光分離素子2で常光線と異常光線に分離される。分離された偏光成分は、偏光面回転素子3により反時計方向に回転され、互いに直交する偏光方向に揃えられる。
次に、これらの偏光成分のうち、偏光分離素子2透過時に異常光線となる偏光成分のみが位相光学素子4aに入射,透過され、一方の偏光成分(偏光分離素子2透過時に常光線となる偏光成分)は2つの位相光学素子4a,4b間の空間をそのまま伝搬していく(図11参照)。位相光学素子4aを透過した偏光成分は、図13(F)に示すように偏光方向が90度回転する。この回転により、2つの偏光成分の偏光方向は、偏光分離素子5の結晶軸X51と同方向であるx軸方向に揃えられる。
そして、位相光学素子4aを透過した光は、図10及び図11に示すように偏光分離素子5外部の空間を通過して、反射体7で点対称に反射されて偏光分離素子5に入射する。偏光分離素子5に入射した各偏光成分は、図11及び図14(E)-(D)で示すようにx軸方向に同一量だけシフトされる。
続いて、2つの偏光成分のうちの、一方の偏光成分のみ位相光学素子4bを透過することにより、図14(C)に示すように偏光方向が90度回転し、各々の偏光方向が直交する状態となる。この時、位相光学素子4bを透過する偏光成分は、先程、位相光学素子4aも透過した偏光成分である。このように2つの位相光学素子に一方の偏光成分のみが透過するように2つの位相光学素子4a,4bを配置することで、片方の偏光成分のみを位相素子4で180度回転させる。
次に、2つの偏光成分が偏光面回転素子3に入射することにより、図14(B)に示すように反時計方向に45度偏光面がそれぞれ回転される。この状態は、y軸方向における伝搬位置は異なっているが、図13(H)に示したように偏光分離素子2を透過した後の偏光状態と同じである。
そして、この後2つの偏光成分は偏光分離素子2を透過することにより、図14(A)に示すように(1-2,g-h)の伝搬位置で合波され、レンズ9で集光されて光ファイバP3に入射される。
中心点Cから等距離に配置された全ての光ファイバP1〜P3と伝搬光とを結合させるために、光サーキュレータ1では、偏光分離素子5における異常光線のシフト量を、偏光分離素子2における異常光線のシフト量よりも大きくなるように、その厚みを変更して設定している。
以上、説明したように本発明の光サーキュレータ1では、前記中心点Cに対して、全ての光ファイバP1〜P3を等距離に配置して構成することにより、光サーキュレータ1における往復光路毎の挿入損失のばらつきを防止して、挿入損失の安定化を図ることが可能となる。
更に、偏光分離素子2,5の光学面上における各結晶軸X21,X51の方向を互いに45度異なるように設定すると共に、2つの偏光分離素子2,5間に偏光面回転素子3と位相素子4を配置し、更に偏光面回転素子3の回転方向と、位相素子4の結晶軸X4a,X4b方向を適宜設定することにより、偏光分離素子5で2つの偏光成分を共に異常光線としてシフトさせることが可能となる。従って、偏光分離素子5透過時に、一方の偏光成分のみシフトして起こるPDLの発生を防止することが出来る。又、反射体7において2つの偏光成分を点対称で反射させるので、反射前後の2つの偏光成分の光路長差を零にすることができ、これによってもPDLの発生を防止することが可能となる。
更に、順方向の光が反射体7で反射される前に偏光分離素子5に入射する様に、偏光分離素子5を配置することにより、PDLの発生防止と各光学素子の小型化を達成することが可能となる。順方向の光が反射体7で反射後に入射される様に第2の偏光分離素子5を配置してしまうと、逆方向の光路において偏光分離素子5により2つの偏光成分が共にシフトされた後、反射体7で2つの偏光成分が反射されることとなってしまう。すると、反射点Rと2つの偏光成分との各距離が、各偏光成分ごとに同一とならずPDLが発生してしまう。従って、本実施の形態で説明してきた様な第2の偏光分離素子5の配置位置が好ましい。
又、中心点Cに対して全ての光ファイバP1〜P3の中心軸fcが等距離となるように配置することにより、各光ファイバP1〜P3の光入出射端面と、レンズ9の光軸oaとの間を等距離に設定することが出来る。これにより、レンズ9から出射及びレンズ9に入射される光のビーム径を同一サイズに設定することが可能となる。従って、より一層、光入出射部8と光学素子部及びレンズ6と反射体7との調芯作業が容易化できる。
なお、光サーキュレータ1に要求される特性がそれほど高くない場合には、公差を含む範囲内で全ての光ファイバP1〜P3を中心点Cから若干、等距離とはならない構成に変更することも可能である。
又、本発明はその技術的思想に基づいて種々変更可能であり、図15に示すように反射体7を凹面鏡としても良い。凹面鏡を用いることにより、光サーキュレータ1の光学素子部及びレンズ6との結合トレランスを緩和させることが可能となり、光入出射部8,光学素子部,及びレンズ6との調芯作業が容易化できる。
更に、偏光分離素子2と5には複屈折単結晶の換わりに、複屈折性のプリズムや偏光ビームスプリッタと置き換えても良い。又、前記GIFの換わりに、光ファイバP1〜P3の光入出射端面近傍に、新たにレンズを配置しても良いし、偏光分離素子5のy軸方向にガラス板を設けても良い。
本発明の光サーキュレータは、光通信システムや光計測分野等で非相反光デバイスとして利用することが可能である。

Claims (2)

  1. 第1の偏光分離素子と,45度の回転角を有する非相反性の偏光面回転素子と,入射光の偏光面を90度回転させる位相素子と,第2の偏光分離素子とから成る光学素子部を備え、
    光学素子部の一端側に、少なくとも3本以上の導波路が配列された光入出射部が配置されると共に、光学素子部を挟んで光入出射部の反対側にレンズと反射体が配置され、
    光入出射部側から順に、第1の偏光分離素子,偏光面回転素子,位相素子,第2の偏光分離素子が配置され、
    各導波路の中心軸を結ぶ対角線上の中心点から等間隔に全ての導波路が配置され、
    更に、第1及び第2の偏光分離素子の光学面上における各結晶軸方向が45度異なり、
    第2の偏光分離素子における異常光線のシフト量が、第1の偏光分離素子における異常光線のシフト量よりも大きく設定され、
    偏光面回転素子の回転角の方向が、光入出射部からみて反時計方向に設定され、
    更に、位相素子が第1位相光学素子及び第2位相光学素子の2つの位相光学素子によって構成され、各位相光学素子の大きさは、第1の偏光分離素子で常光線と異常光線の2つの偏光成分に分離される光の一方の偏光成分のみ透過するように設定されると共に、一方の偏光成分のみが2つの位相光学素子を透過するように各位相光学素子が設置され、
    第1の偏光分離素子で分離される光の2つの偏光成分のうち、反射体で反射後に第1の偏光分離素子透過時に異常光線となる偏光成分が第1位相光学素子に透過されると共に、反射体で反射される前に第1の偏光分離素子透過時に常光線となる偏光成分は第2位相光学素子に透過され、
    更に、第2の偏光分離素子の大きさが、光入出射部から出射され反射体で反射されることで光学素子部を往復する光の光路の、往路又は復路の一方のみ透過するように設定され、
    反射体において2つの偏光成分が点対称に反射されると共に、
    反射体における反射点とレンズの光軸とが、光の伝搬方向において同一直線上に配置される一方で、各導波路の中心軸を結ぶ対角線上の中心点と、レンズの光軸とは、非同一直線上に配置され、
    順方向の光が反射体で反射される前に、第2の偏光分離素子に入射するように、第2の偏光分離素子が配置されることを特徴とする反射型光サーキュレータ。
  2. 前記反射体が、凹面鏡であることを特徴とする請求項1記載の反射型光サーキュレータ。
JP2008503908A 2006-03-09 2007-03-08 反射型光サーキュレータ Expired - Fee Related JP5076099B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008503908A JP5076099B2 (ja) 2006-03-09 2007-03-08 反射型光サーキュレータ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006064124 2006-03-09
JP2006064124 2006-03-09
JP2008503908A JP5076099B2 (ja) 2006-03-09 2007-03-08 反射型光サーキュレータ
PCT/JP2007/054531 WO2007102579A1 (ja) 2006-03-09 2007-03-08 反射型光サーキュレータ

Publications (2)

Publication Number Publication Date
JPWO2007102579A1 JPWO2007102579A1 (ja) 2009-07-23
JP5076099B2 true JP5076099B2 (ja) 2012-11-21

Family

ID=38474998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008503908A Expired - Fee Related JP5076099B2 (ja) 2006-03-09 2007-03-08 反射型光サーキュレータ

Country Status (5)

Country Link
US (1) US7826137B2 (ja)
EP (1) EP2003485B1 (ja)
JP (1) JP5076099B2 (ja)
CN (1) CN101401021B (ja)
WO (1) WO2007102579A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585465B (zh) * 2013-09-27 2017-06-01 Jing- Chen Multi-port light circulator
US10591870B2 (en) 2014-05-01 2020-03-17 Celloptic, Inc. Birefringent lens interferometer for use in microscopy and other applications
CN103955026B (zh) * 2014-05-23 2016-06-29 福州百讯光电有限公司 一种基于光纤和透镜阵列的光环形器
WO2017193005A1 (en) * 2016-05-06 2017-11-09 Gary Brooker Birefringent lens interferometer for use in microscopy and other applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172747A (ja) * 1997-04-07 1999-03-16 Jds Fitel Inc 光サーキュレータ
JP2002228984A (ja) * 2001-02-07 2002-08-14 Nec Tokin Corp 光サーキュレータ
JP2005148703A (ja) * 2003-10-20 2005-06-09 Tdk Corp 反射型光部品
JP2006317614A (ja) * 2005-05-11 2006-11-24 Namiki Precision Jewel Co Ltd 光デバイスの光入出射部
JP2006317624A (ja) * 2005-05-11 2006-11-24 Namiki Precision Jewel Co Ltd 光サーキュレータ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2986295B2 (ja) * 1992-12-08 1999-12-06 松下電器産業株式会社 光アイソレータ
US5471340A (en) * 1994-01-07 1995-11-28 Jds Fitel Inc. Reflective optical non-reciprocal devices
US5930422A (en) * 1997-02-14 1999-07-27 Cheng; Yihao Optical circulator
US5930418A (en) * 1997-02-25 1999-07-27 Hewlett-Packard Company Optical assembly and method based on TEC fibres
US6239900B1 (en) * 1997-09-19 2001-05-29 Nz Applied Technologies Corp. Reflective fiber-optic isolator
US6154581A (en) * 1998-10-27 2000-11-28 Adc Telecommunications, Inc. Multiple port, fiber optic circulator
JP4070053B2 (ja) 1999-02-10 2008-04-02 古河電気工業株式会社 光サーキュレータ
US6078716A (en) * 1999-03-23 2000-06-20 E-Tek Dynamics, Inc. Thermally expanded multiple core fiber
US6246518B1 (en) * 1999-03-25 2001-06-12 E-Tek Dynamics, Inc. Reflection type optical isolator
US6263131B1 (en) * 1999-07-02 2001-07-17 Nortel Networks (Photonics) Pty Ltd. Reflective non-reciprocal optical device
US6853488B1 (en) * 1999-09-23 2005-02-08 Avanex Corporation Reflection-type optical circulator utilizing a lens and birefringent plates
US6236506B1 (en) * 1999-09-23 2001-05-22 Avanex Corporation Reflection-type optical circulation utilizing a lens and birefringent plates
US6480331B1 (en) * 1999-11-10 2002-11-12 Avanex Corporation Reflection-type polarization-independent optical isolator, optical isolator/amplifier/monitor, and optical system
US6744554B2 (en) * 2000-09-11 2004-06-01 Mitsui Chemicals, Inc. Wavelength conversion apparatus
US6493139B1 (en) * 2001-03-16 2002-12-10 Hongdu Liu Optical switch
US20020191284A1 (en) * 2001-06-13 2002-12-19 Kok-Wai Chang Optical circulator
US6795242B2 (en) * 2002-02-06 2004-09-21 Lightwaves 2020, Inc. Miniature circulator devices and methods for making the same
JP2004264368A (ja) * 2003-02-20 2004-09-24 Fdk Corp 反射型光デバイス
US7072111B2 (en) 2003-10-20 2006-07-04 Tdk Corporation Reflection-type optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172747A (ja) * 1997-04-07 1999-03-16 Jds Fitel Inc 光サーキュレータ
JP2002228984A (ja) * 2001-02-07 2002-08-14 Nec Tokin Corp 光サーキュレータ
JP2005148703A (ja) * 2003-10-20 2005-06-09 Tdk Corp 反射型光部品
JP2006317614A (ja) * 2005-05-11 2006-11-24 Namiki Precision Jewel Co Ltd 光デバイスの光入出射部
JP2006317624A (ja) * 2005-05-11 2006-11-24 Namiki Precision Jewel Co Ltd 光サーキュレータ

Also Published As

Publication number Publication date
US7826137B2 (en) 2010-11-02
WO2007102579A1 (ja) 2007-09-13
CN101401021B (zh) 2010-10-27
EP2003485A4 (en) 2011-05-18
JPWO2007102579A1 (ja) 2009-07-23
CN101401021A (zh) 2009-04-01
US20090304392A1 (en) 2009-12-10
EP2003485B1 (en) 2012-12-19
EP2003485A9 (en) 2009-04-22
EP2003485A2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
US5689359A (en) Polarization independent optical isolator
US6590706B1 (en) Optical circulators using beam angle turners
EP1726983B1 (en) Optical device comprising an optical isolator
JPH0954283A (ja) 偏波無依存型光アイソレータ装置
CN105891956B (zh) 反射型光环形器阵列
JPH05196890A (ja) 光アイソレータ
JP5076099B2 (ja) 反射型光サーキュレータ
JP3517657B2 (ja) 埋込型光非可逆回路装置
JP3368209B2 (ja) 反射型光サーキュレータ
JP2006317614A (ja) 光デバイスの光入出射部
JP2006317624A (ja) 光サーキュレータ
US20020191284A1 (en) Optical circulator
JP4070053B2 (ja) 光サーキュレータ
US6549686B2 (en) Reflective optical circulator
JP3649899B2 (ja) 光スイッチ
KR101061336B1 (ko) 인라인형 광아이솔레이터
JP2006337905A (ja) 光サーキュレータ
US6987896B1 (en) Optical isolator
JPH0667118A (ja) 光結合装置
JP4888780B2 (ja) 光ファイバ結合装置
JPH0627415A (ja) 3ポート型光サーキュレータ
JPH08286150A (ja) 光アイソレータ
JPS6232455B2 (ja)
JP2000056264A (ja) 光サーキュレータ
JP2004333876A (ja) 非相反光デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees