WO2007102219A1 - Heating discharge print head drive method - Google Patents

Heating discharge print head drive method Download PDF

Info

Publication number
WO2007102219A1
WO2007102219A1 PCT/JP2006/304572 JP2006304572W WO2007102219A1 WO 2007102219 A1 WO2007102219 A1 WO 2007102219A1 JP 2006304572 W JP2006304572 W JP 2006304572W WO 2007102219 A1 WO2007102219 A1 WO 2007102219A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
heating
discharge electrode
voltage
electrode
Prior art date
Application number
PCT/JP2006/304572
Other languages
French (fr)
Japanese (ja)
Inventor
Hisanobu Matsuzoe
Original Assignee
Fukuoka Technoken Kogyo, Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Technoken Kogyo, Co., Ltd. filed Critical Fukuoka Technoken Kogyo, Co., Ltd.
Priority to PCT/JP2006/304572 priority Critical patent/WO2007102219A1/en
Priority to JP2007529291A priority patent/JP4146885B2/en
Publication of WO2007102219A1 publication Critical patent/WO2007102219A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/385Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
    • B41J2/41Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing
    • B41J2/415Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit
    • B41J2/4155Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit for direct electrostatic printing [DEP]

Definitions

  • the present invention relates to a method for driving a heat-discharge type print head for forming an image on an electrostatic development type recording medium capable of repetitive recording by the action of electric discharge.
  • Patent Document 1 an ion irradiation method, which is an electrostatic latent image forming method different from the electrophotographic method, has been developed.
  • the electrophotographic method uses two processes, uniform charging and exposure, to release the exposed portion of the charge on the uniformly charged photoconductor, thereby forming an electrostatic latent image on the photoconductor as the electrostatic latent image carrier.
  • the ion irradiation method in an atmosphere where ions can be generated (such as in the air), selective charging by irradiation of ions generated by the discharge of electrons from the discharge electrode (electrostatic latent image formation charging)
  • the electrostatic latent image can be completely formed on the electrostatic latent image carrier (there is no need to be a photoconductor as long as it is an insulator). It is a method.
  • Patent Document 2 discloses a specific shape of an ion irradiation type print head compatible with a horizontal printer and an image forming apparatus including the shape.
  • the heating and discharging methods shown in (Patent Document 1) and (Patent Document 2) are in a state in which a voltage (discharge control voltage) is generated in which a discharge is generated by heating without generating a discharge just by being applied to the discharge electrode.
  • a voltage discharge control voltage
  • the generation of ions is controlled by controlling the presence or absence of discharge, and it is not necessary to control the voltage applied to the discharge electrode.
  • a low withstand voltage driver IC such as 5V drive used to control heating by a heating resistor, etc., and this is the most excellent control method from the viewpoint of discharge control. It can be said that there is.
  • a minute ball is color-coded into two colors (for example, black and white), and the ball is rotated by the difference in electrical characteristics of each color to display an arbitrary color, a minute ball
  • Two colors (for example, black and white) of fine powder are mixed in the ball.
  • An electrophoretic method in which only one color is floated and displayed due to the difference in electrical characteristics of the fine powder of color, and a liquid crystal that displays the background color of the part where the shutter is opened by opening and closing the liquid crystal shutter of the liquid crystal plate or small liquid crystal block There are methods.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-326756
  • Patent Document 2 WO2005Z056297
  • the heating and discharging type print heads of (Patent Document 1) and (Patent Document 2) are easy to control the discharge, and are optimal for non-contact writing on an electrostatic development type recording medium. As for the control of the generation amount, it was not fully studied.
  • the present invention meets the above-mentioned demand.
  • the discharge can be efficiently generated, and the energy saving property is excellent.
  • the purpose is to provide a method for driving a heat-discharge-type printhead that can easily control gradation and accurately record the amount of ions generated, and that can form high-resolution and high-quality images.
  • a driving method for a heat-discharge type print head according to the present invention has the following configuration.
  • a heating / discharging printhead driving method comprising: a heating / discharging printhead having a discharge electrode having an electron emission site; and a heating means for selectively heating the discharge electrode; The potential difference corresponding to the discharge control voltage between the recording electrode that can be written and erased by the action of the counter electrode and the counter electrode that is disposed opposite to the discharge electrode.
  • a potential difference setting step for forming an electric field by setting the voltage and a discharge electrode heating step for selectively heating the discharge electrode by the heating means based on image information.
  • the timing of applying a driving voltage lower than the discharge control voltage to the discharge electrode and the timing of the discharge electrode heating step are synchronized.
  • This configuration has the following effects.
  • a potential difference corresponding to the discharge control voltage is set between the discharge electrode and the counter electrode to form an electric field. Since the discharge can be generated only by selectively heating the discharge electrode, it is not necessary to control the high voltage and the generation of the discharge can be easily controlled.
  • an electric field is set by setting a potential difference corresponding to the discharge control voltage between the discharge electrode of the heat discharge type print head and the counter electrode formed on, or in contact with, or close to the back side of the recording medium.
  • the discharge electrode is selectively heated by a heating means including a heating resistor, a laser irradiation part, etc., so that a discharge can be generated between the discharge electrode and the counter electrode arranged opposite to each other.
  • a heating means including a heating resistor, a laser irradiation part, etc.
  • electrons and ions whose discharge electrode force is also released by the electric field can be moved to the recording surface (surface) of the recording medium, and the image can be written or erased by the action of the charges.
  • discharge control voltage means that a discharge does not occur between the discharge electrode of the heat-discharge type print head and the counter electrode on the recording medium only by the potential difference, but the discharge occurs by heating the discharge electrode.
  • Discharge here means that discharge electrode force electrons are emitted. The emitted electrons ionize oxygen and nitrogen in the atmosphere and To reach the recording surface of the recording medium.
  • the discharge electrode is formed in a comb shape by connecting one end of a plurality of electron emission sites with a common electrode, or formed in a ladder shape or the like by connecting both ends of a plurality of electron emission sites with a common electrode
  • it can be formed into a single flat plate shape such as a rectangular shape or a square shape (see, for example, JP-A-2003-326756, WO2005Z056297).
  • the cooling area of the discharge electrode and the responsiveness to heating stop are improved by increasing the heat radiation area of the discharge electrode and increasing the heat capacity.
  • the stability of discharge can be further improved.
  • the vicinity of the heating position by the heating means is an electron emission site, and other than the electron emission site is a common electrode.
  • the cooling effect of the discharge electrode which is temporarily heated to 100 to 300 ° C, is improved, and heat can be prevented from being burned.
  • the discharge can be stopped in response to the heating off quickly, the discharge time interval can be shortened and the presence / absence of the discharge can be switched in a short time, and the recording speed can be increased.
  • the resistance value of the common electrode can be reduced, and the potential difference generated between the electron emission sites connected by the common electrode can be suppressed as much as possible. Therefore, the amount of electron emission at each electron emission site is reduced. Fluctuations and excellent discharge stability.
  • the discharge electrode is formed by depositing a metal such as gold, silver, copper, or aluminum on the substrate by vapor deposition, sputtering, printing, plating, or the like, and then etching as necessary to pattern the electron emission site or the common electrode. What is to be formed, and after thinning at least a part of a metal such as stainless steel, copper, aluminum, etc. by cutting or the like, patterning of the discharge electrode by etching or laser caching, etc., if necessary is suitable. Used for.
  • the discharge electrode may be formed using a conductive material such as carbon.
  • the material of the substrate may be any material as long as the discharge electrode can be formed on the surface and has heat resistance to withstand the heating by the heating means. Further, when heating is performed from the back side of the substrate by the heating means, those having a heat transfer property capable of transferring the heat generated by the heating means to the discharge electrode are preferably used. Specifically, A synthetic resin such as glass, polyimide, aramid, or polyetherimide is preferably used.
  • the shape of each electron emission site can be formed in a substantially rectangular shape, a trapezoidal shape, a semicircular shape, a bullet shape, or a combination thereof.
  • the peripheral length around the edge of the electron emission site can be increased by further dividing a part of the electron emission site with a slit or the like, or by forming an uneven portion on the peripheral edge (for example, WO
  • the discharge electrode Since the discharge electrode emits a large amount of electrons from the periphery of the edge, it is possible to increase the amount of emitted electrons and the intensity of emitted light by increasing the amount of electron emission of the discharge electrode force by increasing the circumference around the edge.
  • the discharge control voltage and heating temperature can be set low, and the energy saving and discharge generation efficiency are excellent.
  • the discharge control voltage can be set low, the discharge electrode has excellent long life.
  • a discharge hole portion may be formed in the vicinity of the electron emission site (heating position).
  • the shape of the discharge hole portion can be formed in various shapes such as a substantially circular shape, a substantially elliptical shape, a polygonal shape such as a quadrangle and a hexagon, and a star shape.
  • the number and size of the discharge hole portions per one electron emission site (near the heating position) can be appropriately selected and combined.
  • the concave and convex portions and the discharge holes of the discharge electrode can be formed by the above-described etching or laser processing.
  • a conductive material layer may be formed on at least the surface of the common electrode among the discharge electrodes.
  • the resistance value of the common electrode can be further reduced, the potential difference generated between each electron emission site can be reliably reduced, and the discharge stability is excellent.
  • the conductive material layer only needs to have conductivity superior to that of the discharge electrode, and can be easily formed by silver paste screen printing or silver plating. By increasing the thickness of the conductive material layer, the resistance value of the common electrode can be reduced, and the discharge stability can be improved.
  • the thickness of the discharge electrode is preferably 0.1 ⁇ m to 100 m when it is formed with a force plate depending on the material.
  • the discharge electrode tends to be affected by wear as the thickness of the discharge electrode becomes thinner than 0. m, and the life of the discharge electrode tends to be shortened. As the thickness exceeds 100 m, the heat capacity increases, and the response to heating on and off is increased. It tends to be lowered, and the deviation is also preferable Yes. By reducing the thickness of the discharge electrode to 100 m or less, it is possible to quickly recover from the heated state and to increase the printing speed.
  • any heating means that can selectively heat an arbitrary position of the discharge electrode may be used in close contact with the discharge electrode, or separated from the discharge electrode. It can be heated.
  • a heating means for heating by being brought into close contact with the discharge electrode a configuration similar to that of a thermal print head used in a conventional thermal facsimile can be suitably used.
  • the heat generation of the heating resistor is controlled by a driver IC electrically connected to the heating resistor.
  • a method of irradiating laser light As a heating means for heating away from the discharge electrode, a method of irradiating laser light, a method of irradiating infrared rays, or the like can be suitably used.
  • a method of irradiating laser light a combination of a laser irradiation unit and a polygon mirror or a galvanometer mirror, a method of serially scanning the laser irradiation unit, or the like is preferably used.
  • the discharge is performed in a state where an electric field is formed by setting a potential difference corresponding to the discharge control voltage between the discharge electrode and the counter electrode during the potential difference setting step.
  • a discharge is generated by selectively heating the discharge electrode with the heating means based on the image information in the electrode heating process, but various waveforms are selected as the driving voltage applied to the discharge electrode. Triangular waves, rectangular waves, trapezoidal waves, sin waves, etc. can be used alone or in combination, and a DC voltage or an AC voltage can be superimposed on them.
  • positive and negative ions are generated when only an AC voltage is applied to the discharge electrode as a driving voltage. Therefore, in order to select only negative ions, a negative DC voltage is superimposed on the AC voltage, and to select only positive ions, the discharge voltage is obtained by using a positive DC voltage superimposed on the AC voltage as a driving voltage. Apply to.
  • the heating amount by the heating means is controlled to be constant, if the voltage value of the driving voltage applied to the discharge electrode at the time of heating is different, the amount of ions generated is different.
  • the value changes with time such as a sine wave or a triangular wave
  • the timing for applying the driving voltage over the head side voltage application process and the discharge electrode heating temperature It is necessary to synchronize the timing for heating the discharge electrode. This is because it is possible to reduce variations in the amount of ions generated by always heating the discharge electrode at the same timing against the driving voltage that periodically changes with time.
  • the temperature of the discharge electrode reaches a peak when the voltage value of the driving voltage reaches a peak, the discharge generation efficiency is maximized, and the generated amount of ions generated accordingly is also maximized. It becomes. If the temperature of the discharge electrode does not reach the peak when the voltage value of the driving voltage is at the peak, the discharge generation efficiency will decrease, but the discharge electrode will be above the predetermined temperature while the driving voltage is applied. As long as it is heated, ions can be generated. If the heating time by the heating means is widened so that the voltage value of the driving voltage reaches a peak during the heating time, variations in the amount of ions generated can be greatly reduced, and the driving voltage can be reduced. The timing of the peak value of the working voltage and the peak temperature of the discharge electrode need not necessarily coincide.
  • the invention according to claim 2 is the method for driving the heat-discharge type print head according to claim 1, wherein a plurality of application of the drive voltage in the head side voltage application step is performed within one print cycle. It has a structure that repeats!
  • the heating by the heating means can be divided and repeated a plurality of times in synchronization with the application of the discharge amount. As the number of heating rises can be increased, the total amount of ions generated can be increased, and the discharge generation efficiency is excellent.
  • the ion generation amount can be controlled easily and accurately, and high-quality gradation recording can be performed.
  • the number of discharges can be increased to increase the total amount of ions generated, so the peak value of the driving voltage is reduced.
  • Setting and heating time by the heating means and discharge generation time can be shortened as a whole, and the long life of the discharge electrode is excellent.
  • the discharge electrode heating process is performed in synchronization with the timing of applying each driving voltage. Controls the voltage value and application time of the driving voltage per time or the heating time by the heating means, and controls the number of times the heating voltage is applied and the heating voltage is repeated within one printing cycle.
  • the amount of generated ions can be controlled.
  • the invention according to claim 3 is the driving method of the heat discharge type print head according to claim 1 or 2, wherein the driving voltage applied to the discharge electrode in the head side voltage applying step.
  • the discharge electrode is heated by the discharge electrode heating step at the peak of the time.
  • the discharge electrode At the peak of the driving voltage applied to the discharge electrode in the head side voltage application process, the discharge electrode is heated by the discharge electrode heating process, so that the discharge can be generated reliably.
  • the voltage peak and the temperature peak of the discharge electrode heated by the discharge electrode heating step are substantially matched, the maximum amount of ions can be generated, and the discharge generation efficiency is excellent.
  • the heating in the discharge electrode heating step has a range of time, so that the discharge can be surely generated if the timing is adjusted so that the voltage value of the driving voltage reaches the peak during the heating time. Can do.
  • the heating means power is turned on in consideration of the time until heat is transferred to the discharge electrode. It is necessary to set the timing earlier than the timing of the peak of the driving voltage applied to the discharge electrode. In addition, the heating ON timing force of the heating means The time (time lag) until the discharge electrode reaches a predetermined temperature varies depending on the thickness of the heat generating part insulating film, the thermal conductivity of the material, the heating temperature, etc. Therefore, adjust the timing appropriately according to these conditions.
  • the invention according to claim 4 is the heating discharge type print head driving method according to any one of claims 1 to 3, wherein the opposing force is synchronized with the head side voltage application step.
  • the drive voltage directly applied to the discharge electrode can be reduced by performing the medium-side voltage application step of applying a part of the discharge control voltage to the counter electrode in synchronization with the head-side voltage application step.
  • the medium-side voltage application step of applying a part of the discharge control voltage to the counter electrode in synchronization with the head-side voltage application step.
  • it is possible to form a high-quality image by optimally adjusting the voltage value applied to the counter electrode according to the type and characteristics of the recording medium. .
  • the potential difference between the discharge electrode and the counter electrode only needs to be within the range of the discharge control voltage
  • the voltage value to be applied to the discharge electrode and the counter electrode within the range is arbitrarily set. Can do.
  • various waveforms can be selected in the same manner as the driving voltage applied to the discharge electrode. For example, when a part of the discharge control voltage in which the DC voltage is superimposed on the AC voltage is applied to the counter electrode, at least a part of the DC component may be distributed and applied to the counter electrode. Even if the part is distributed and applied to the counter electrode,
  • the invention according to claim 5 is the heating discharge type print head drive method according to any one of claims 1 to 4, wherein the discharge is performed during the head side voltage application step. It has a configuration in which an auxiliary voltage having a polarity opposite to that of the driving voltage is applied to the discharge electrode at least either before or after application of the driving voltage to the electrode.
  • an auxiliary voltage having a polarity opposite to that of the driving voltage is applied to the discharge electrode, so that the surplus generated in the previous driving is generated. It is possible to attract and collect unnecessary electrons and ions to the discharge electrode before driving, thereby preventing image smearing and improving image quality.
  • the auxiliary voltage may be a voltage that is small enough to attract excess electrons and ions to the discharge electrode! Even if an auxiliary voltage is applied and the discharge electrode is heated, the voltage value is set so that no discharge occurs even when the discharge electrode is heated, so that unnecessary electrons and ions are not generated and the reliability is excellent.
  • the amount of ion generation can be easily and accurately controlled by controlling the number of times of application of the driving voltage repeated within one printing cycle, and image quality can be recorded with gradation. It is possible to provide a method for driving a heat-discharge type print head having excellent reliability.
  • a potential difference corresponding to the discharge control voltage can be set reliably between the discharge electrode and the counter electrode, and applied directly to the discharge electrode.
  • the drive voltage can be reduced to improve the durability of the discharge electrode, and a high-quality image can be formed by optimally adjusting the voltage applied to the counter electrode according to the type and characteristics of the recording medium. It is possible to provide a method for driving a heat-discharge type print head having excellent versatility.
  • an extra voltage having a polarity opposite to that of the drive voltage is applied to the discharge electrode at least one of before or after application of the drive voltage to the discharge electrode. Electrons and ions can be attracted to the discharge electrode and collected immediately before or after driving, and the image quality can be reliably prevented from floating by preventing electrons and ions from floating. It is possible to provide a method for driving a heat-discharge type print head.
  • FIG. 1 A schematic side view showing a usage state of a heat discharge type print head.
  • B A schematic perspective view of a main part showing a heat discharge type print head.
  • FIG. 2 is a schematic plan view of the head substrate of the heat discharge type print head in the first embodiment.
  • FIG. 3 (a) Schematic cross-sectional view taken along line A-A in Fig. 2 (b) Schematic cross-sectional view taken along line B-B in Fig. 2
  • FIG. 4 is a schematic side view showing an image forming method using a heat discharge type print head.
  • FIG. 5 is a block diagram showing a configuration of a heat discharge type print head in the first embodiment.
  • FIG. 6 (a) A diagram showing a driving voltage in a head-side voltage applying process of the heating discharge type print head driving method in Embodiment 1. (b) Driving of the heating discharge type print head in Embodiment 1. The figure which shows the temperature of the discharge electrode in the discharge electrode heating process of the method
  • FIG. 7 (a) A diagram showing a driving voltage in a head-side voltage applying process of a heating discharge type print head driving method in Embodiment 2. (b) Driving of a heating discharge type print head in Embodiment 2. (C) Diagram showing the temperature of the discharge electrode in the discharge electrode heating step of the method for driving the heat discharge type print head in Embodiment 2 in the medium side voltage application step of the method
  • FIG. 8 (a) A diagram showing a driving voltage in the head-side voltage applying process of the heating discharge type print head driving method in Embodiment 3. (b) Driving of the heating discharge type print head in Embodiment 3. (C) Diagram showing the temperature of the discharge electrode in the discharge electrode heating step of the method for driving the heat discharge type print head in Embodiment 3 in the medium side voltage application step of the method
  • FIG. 9 (a) A diagram showing a driving voltage in a head-side voltage application process of a heating discharge type print head driving method in Embodiment 4. (b) Driving of a heating discharge type print head in Embodiment 4. The figure which shows the temperature of the discharge electrode in the discharge electrode heating process of the method
  • FIG. 1 (a) is a schematic side view showing the usage state of the heating / discharge type print head
  • FIG. 1 (b) is a schematic perspective view of the main part showing the heating / discharge type print head.
  • FIG. 1, 1 is a heating discharge type print head to which the driving method of the heating discharge type print head according to Embodiment 1 of the present invention is applied, and 2 is a heating discharge type mark formed of a material such as aluminum.
  • the heat sink of the character head 1, 3 a is a substantially arc-shaped end surface formed at the tip of the heat sink 2, 4 is a flexible substrate to be described later, and a discharge electrode 5, which will be described later, a heating resistor of the heating means, etc.
  • the head substrate of the heat discharge type print head 1 disposed on the plate 2 5 is the discharge electrode of the heat discharge type print head 1, 5 a is a plurality of electron emission sites of the discharge electrode 5 formed in a ladder shape, 5 b is A common electrode of the discharge electrode 5 connected to both ends of the plurality of electron emission sites 5a, 7 is a heating discharge type print head 1 having a head IC 4 and a driver IC 6 for controlling the heat generation of a heating resistor described later.
  • Discharge control device 8 includes a connector 8a for connecting to an external control unit and a printed wiring board of the heat discharge type print head 1 disposed on the heat sink 2 9 protects the driver IC 6 and the printed wiring board 8
  • 9a is a high voltage substrate that is disposed on the back of the IC cover 9 and is electrically connected to the common electrode 5b of the discharge electrode 5 and supplies a high voltage (discharge control voltage) to the electron emission site 5a. is there.
  • the electrical wiring for applying the discharge control voltage can be shortened,
  • the high-pressure substrate 9a can be handled integrally with the heat-discharge type print head 1. This eliminates the need for electrical wiring, makes it easy to incorporate into an image forming apparatus, and excels in mass productivity.
  • the heat-discharge type print head 1 and the high-voltage board 9a can be moved together, so that it is difficult to place a load on the electric wiring. The occurrence of poor conduction can be reduced.
  • the arrangement position of the high-voltage substrate 9a is not limited to the present embodiment, and it is sufficient that the discharge control voltage can be applied to the common electrode 5b of the discharge electrode 5.
  • Fig. 2 is a schematic plan view of the head substrate of a heat discharge type print head.
  • Fig. 3 (a) is a schematic cross-sectional view taken along the line AA in Fig. 2, and Fig. 3 (b) is a line B-B in Fig. 2.
  • 10 is a flexible substrate of the head substrate 4 made of a heat-resistant and insulating thin film resin such as polyimide, aramid, or polyetherimide, and 1 la is a comb-like shape on the upper surface of the substrate 10.
  • the formed heating comb electrode, l ib is a heating common electrode formed in a substantially U-shape on the upper surface of the substrate 10 so as to connect the ends of the plurality of heating comb electrodes 11a, 12 Is a heating individual electrode formed on the upper surface of the substrate 10 alternately with a plurality of heating comb electrodes 11a, 13 is a heating means of the discharge control device 7, 13a is a heating comb electrode 11a and a heating individual electrode 12
  • a heating resistor 13 of the heating means 13 that is electrically connected to the heating element 13 and 13b is a heating part covered on the upper surface of the substrate 10 except for the ends of the heating common electrode l ib and the heating individual electrode 12.
  • An insulating film 16 is a conductive material layer formed on the surface of the common electrode 5b in the discharge electrode 5.
  • the discharge electrode 5 is insulated from the heating comb electrode l la, the heating individual electrode 12 and the heating resistor 13a by the heating portion insulating film 13b, and a plurality of electron emission portions 5a of the discharge electrode 5 are insulated. Is formed to face the heat generating resistor 13a at a position corresponding to the heat generating individual electrode 12.
  • the heat generating portion insulating film 13b has heat resistance and insulating properties, and insulates between the discharge electrode 5 and the heating means 13.
  • an insulating film may be formed on at least one of the two surfaces of the heat generating portion insulating film 13b. Insulating film is made of inorganic materials such as SiON and SiO
  • It can be formed into a thin film with an insulating material (whether organic or inorganic).
  • an insulating material whether organic or inorganic.
  • a material having high thermal conductivity that can efficiently transfer the heat of the heating resistor 13a to the electron emission site 5a is preferable.
  • the conductive material layer 16 was formed of silver paste or the like having excellent conductivity. By forming the conductive material layer 16 on the surface of the common electrode 5b, the resistance value of the common electrode 5b can be lowered, and the potential difference generated between the respective electron emission sites 5a can be reliably reduced.
  • the conductive material layer 16 is formed on each of the two common electrodes 5b, but may be formed on only one of them.
  • the conductive material layer 16 may be formed on a part of the common electrode 5b as shown in FIGS. 2 and 3, or may be formed over the entire width. Further, the conductive material layer 16 may be formed at a location other than the electron emission site 5 a of the discharge electrode 5.
  • the heat generated by the heating means 13 can be quickly absorbed by the heat radiating plate 2 and radiated from the heat radiating plate 2.
  • the heating means 13 can be rapidly cooled to improve the response to the heating stop.
  • it can protect the driver IC6 etc. from heat and has excellent reliability.
  • irregularities are formed on the surface of the heat radiating plate 2 by grooves or the like, the surface area of the heat radiating plate 2 can be increased, and the efficiency of heat radiation can be improved.
  • the heating resistor 13a was heated at a low voltage of 24V, and the driver IC 6 used as a switch for generating heat from the heating resistor 13a was a 5V drive compatible with low withstand voltage.
  • the driver IC 6 was wire bonded to the lead pattern extending from the heating means 13 with a gold wire, and then sealed with an IC protecting resin such as epoxy resin.
  • a heating resistor 13a is formed.
  • the heating resistor 13a of the heating means 13 is formed in a strip shape, the heating comb electrodes 11a and the heating individual electrodes 12 are alternately arranged, and one heating heater at each center is provided.
  • any part of the heating resistor 13a corresponding to the position of each electron emission part 5a is selectively heated, and the electron emission part
  • the force used to heat 5a is not limited to this, and any structure that can selectively heat each electron emission portion 5a is acceptable.
  • the configuration of the heating means 13 may be a thick film type or a thin film type.
  • the surface of the flexible substrate 10 except for the ends of the heat generating common electrode l ib and the heat generating individual electrode 12 has a heat resistance and insulation properties of about 300 ° C on the surface of the flexible substrate 10.
  • the heat generating portion insulating film 13b is formed by printing a thin film resin such as ether imide.
  • the heat generating portion insulating film 13b may be any material that can protect and insulate the heat generating common electrode l lb, the heat generating individual electrode 12, the heat generating resistor 13a, etc., but the heat of the heat generating resistor 13a is efficiently discharged 5 Those having a high thermal conductivity capable of being transmitted to are preferably used.
  • the heat generating portion insulating film 13b may be formed by applying a heat-resistant and insulating resin solution such as polyimide garamide by screen printing or the like, or a thin film sheet formed of the same resin. A cover may be formed. Next, a plurality of electron emission portions 5a facing the heat generating individual electrodes 12 of the heating means 13 and a common electrode 5b connecting them are formed on the heat generating portion insulating film 13b.
  • a material such as gold, silver, copper, aluminum, or the like, which is formed by vapor deposition or notter printing and then etched to form a pattern is suitably used. .
  • a conductive material such as carbon may be used.
  • the electron emission site 5a is formed in a substantially rectangular shape, but can be formed in a trapezoidal shape, a shell shape, a semicircular shape, or a combination of these.
  • the discharge electrode 5 since the discharge electrode 5 has a large amount of discharge due to the peripheral edge force, a plurality of irregularities are formed on the outer peripheral edge of the electron emission site 5a to increase the peripheral length of the peripheral edge, thereby improving the discharge generation efficiency. It can be made. As a result, the amount of discharge from the electron emission site 5a is increased, and the amount of ion irradiation and emission intensity can be increased, so that the energy saving property of the discharge control device 7 is excellent. In addition, since the voltage applied to the discharge electrode 5 can be set small, the life of the discharge electrode 5 is excellent.
  • the thickness of the flexible substrate 10 of the head substrate 4 and the heat generating part insulating film 13b is extremely thin, for example, several / zm to several tens / zm. Can be formed to be extremely thin with a thickness of about several tens / zm to several hundreds / zm.
  • the head substrate 4 is formed in a flat state, it is extremely thin and flexible, so it can be easily processed (deformed) by bending it from the flat state according to the shape of the end surface 3a of the heat sink 2. Therefore, it is possible to obtain a heat discharge type print head 1 that is not subject to restrictions on the formation technology of the discharge electrode 5, the heating means 13, and the like.
  • the head substrate 4 remains the same, and the heat discharge type print head 1 can be obtained in various forms simply by changing the shape of the heat sink 2 and the attachment position of the head substrate 4. Excellent mass productivity.
  • FIG. 4 is a schematic side view showing an image forming method using the heat discharge type print head.
  • 20 is an electrostatic development type recording medium that can repeatedly write and erase images by the action of electric charge
  • 21 is a counter electrode formed on, or in contact with, or close to the back side of the recording medium 20. is there.
  • the discharge control voltage E (discharging does not occur only when applied) between the discharge electrode 5 and the counter electrode 21 of the heat discharge type print head 1.
  • the electric field is formed by setting a potential difference corresponding to the voltage range in which discharge occurs when heated.
  • the potential difference setting unit that sets the potential difference between the discharge electrode 5 and the counter electrode 21 includes a head-side voltage application unit that applies a voltage to the discharge electrode 5, and a selective grounding or voltage application to the counter electrode 21.
  • a device provided with a medium-side voltage control unit is preferably used.
  • the discharge control voltage E is applied to the discharge electrode 5 by the head side voltage application unit, and the medium side voltage control unit
  • the counter electrode 21 may be grounded by a discharge control voltage E and the discharge electrode 5
  • the voltage value applied to the counter electrode 21 can be adjusted according to the type of the recording medium 20, and the discharge on the discharge electrode 5 side can be reduced and discharge can be generated efficiently. .
  • the discharge control voltage E is applied to the discharge electrode 5 (common electrode 5b).
  • the heating means 13 is controlled by the driver IC6, and the electron emission site 5a is selectively heated (100 to 300 ° C.) by the heating resistor 13a of the heating means 13. It is possible to generate a discharge between the electron emission site 5a of the discharge electrode 5 and the counter electrode 21 that are arranged to face each other. Then, the electrons and ions emitted from the electron emission site 5a of the discharge electrode 5 by the electric field can be moved to the recording surface (surface) of the recording medium 20, and an image can be formed by applying charges. By selecting the heating location by the heating means 13, it is possible to easily emit electrons by selectively emitting electrons from any electron emission site 5a of the discharge electrode 5 (see FIGS. 2 and 3). .
  • the presence or absence of discharge can be controlled by controlling the presence or absence of heating of the discharge electrode 5 to which a voltage is applied.
  • the amount of ions generated varies depending on the voltage and the temperature of the discharge electrode 5. Therefore, in order to control the amount of ions generated, it is necessary to control the timing of applying a driving voltage to the discharge electrode 5 and the timing of heating the discharge electrode 5 by the heating means 13 and the amount of heating by the heating means 13.
  • FIG. 5 is a block diagram showing the configuration of the heat discharge type print head according to the first embodiment.
  • the heating means 13 of the heat discharge type print head 1 includes heat generation points corresponding to n electron emission sites 5 a.
  • a heating resistor 13a having Rl to Rn and a driver IC 6 that is electrically connected to the heating resistor 13a and controls the heat generation of the heating resistor 13a are provided.
  • the driver IC 6 includes a shift register unit, a latch unit, an output gate unit, and output transistors Q1 to Qn. Signals are also input to each part through the cable connected to the connector 8a (see Fig. 1).
  • a DC power supply voltage VHD for driving the heating resistor 13a is applied to the heating common electrode l ib (see FIGS. 2 and 3) common to the heating points Rl to Rn of the heating resistor 13a.
  • Image data (image information) is input to a shift register unit synchronized with a clock signal Clock as one line of serial data Serial in rather than parallel data. These image data are transferred to the latch unit at the timing of the latch signal Latch.
  • the output gate unit turns on the output transistors Ql to Qn for the time when the strobe signal Strobe is at the L level for the heat generation points Rl to Rn where the output level of the latch unit is the H level.
  • the heat generation points Rl to Rn generate heat corresponding to the H level of the image data.
  • the discharge electrode 5 has a discharge control voltage equal to or less than the discharge control voltage during the head side voltage application step of the potential difference setting step.
  • the timing for applying the driving voltage can be synchronized with the timing of the discharge electrode heating step in which the discharge means 5 is selectively heated by the heating means 13. If it is necessary to shift the timing of applying the driving voltage with respect to the timing of heating the discharge electrode 5 in consideration of the thermal conductivity of the heat generating part insulating film 13b, etc., it is delayed in the high voltage substrate 9a.
  • a circuit may be provided.
  • the strobe signal Strobe is turned on only when there is data, the number of ons within one printing cycle can be controlled by the number of data. Therefore, depending on the density of the image (1 dot), it is possible to change the number of times the heating voltage is applied by applying the driving voltage to the discharge electrode 5 and the heating means 13 within one printing cycle, thereby changing the amount of generated ions. Therefore, the charge amount in the recording medium 20 can be controlled, and gradation recording can be easily performed.
  • 5 is merely an example of a configuration in which a heating resistor 13a is used as the heating means 13, and means for synchronizing the timing of the head-side voltage application process and the discharge electrode heating process or the heating means 13 Is not limited to this.
  • FIG. 6 (a) is a diagram showing a driving voltage in the head-side voltage application process of the heating and discharging type print head driving method in the first embodiment
  • FIG. 6 (b) is a diagram in the first embodiment
  • FIG. 5 is a diagram showing the temperature of the discharge electrode in the discharge electrode heating step of the heating / discharging type print head driving method.
  • the driving voltage is applied to the discharge electrode 5 from the high voltage substrate 9a (see FIG. 1) connected to the common electrode 5b.
  • the driving voltage applied to the discharge electrode 5 can be considered in various combinations.
  • a DC bias is superimposed on the triangular wave, and the peak value is the discharge control voltage E. Repeated several times within one printing cycle T (3 times in Fig. 6).
  • the force for selectively heating the discharge electrode 5 by the heating means 13 is synchronized with the timing of applying the driving voltage in the head side voltage applying step, as shown in FIG. Do.
  • the temperature of the discharge electrode 5 heated by the discharge electrode heating step is at the peak at the peak of the drive voltage (E) applied to the discharge electrode 5 in the head side voltage application step.
  • the timing was adjusted. By adjusting the timing so that the voltage value of the driving voltage reaches the peak (E) while the temperature of the discharge electrode 5 is at the peak, efficient discharge is generated.
  • the ion generation amount changes almost in proportion to the temperature of the discharge electrode 5 shown in FIG. 6 (b). Actually, the heat transfer to the discharge electrode 5 varies depending on the thickness of the heat-generating part insulating film 13b and the thermal conductivity of the material, so the heating ON timing to the heating means 13 in the discharge electrode heating process And drive voltage peak (E)
  • the heating means 13 accelerate the heating by shifting the time lag of the heat transfer. Further, in the head-side voltage application process, the driving voltage is applied several times within one printing cycle T. When applying (three times in FIG. 6), heating by the heating means 13 is performed in synchronization with the timing of applying each driving voltage. Controls the voltage value and application time of the driving voltage per time or the heating time by the heating means 13, and controls the number of times the driving voltage is applied and the heating means 13 is repeated within one printing cycle T. As a result, the amount of ion generation can be controlled, and gradation recording can be easily performed.
  • the method for driving the heat-discharge type print head according to the first embodiment is configured as described above, and thus has the following effects.
  • the timing of applying the driving voltage to the discharge electrode 5 and the timing of selectively heating the discharge electrode 5 in the discharge electrode heating process are synchronized to ensure reliable discharge. As a result, it is possible to reduce the variation in the amount of ions generated, and the image quality is highly reliable, and an unnecessary voltage is not applied to the discharge electrode 5 and energy saving is excellent.
  • the heating by the heating means 13 can be divided and repeated a plurality of times in synchronization with it, Since the number of heating rises that increase the amount of discharge can be increased, the total amount of ions generated can be increased and the efficiency of discharge generation is excellent.
  • the amount of ion generation can be easily and accurately controlled simply by controlling the number of times of applying the driving voltage repeated within one printing cycle T, and high-quality images can be formed by gradation recording.
  • the discharge electrode 5 can be heated by the discharge electrode heating process to reliably generate a discharge.
  • the peak of the driving voltage and the temperature peak of the discharge electrode 5 heated by the discharge electrode heating step are substantially matched, the maximum amount of ions can be generated, and the discharge generation efficiency is excellent.
  • FIG. 7 (a) is a diagram showing a driving voltage in the head side voltage application process of the heating discharge type print head driving method in the second embodiment
  • FIG. 7 (b) is a heating discharge in the second embodiment
  • FIG. 7 (c) is a diagram showing a voltage applied to the counter electrode in the medium-side voltage application step of the method for driving the mold print head
  • FIG. It is a figure which shows the temperature of the discharge electrode in a process.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the driving method of the heat discharge type print head in the second embodiment is different from that in the first embodiment in that discharge control is performed on the counter electrode 21 in synchronization with the head side voltage application process in the potential difference setting process.
  • This is a point having a medium side voltage applying step for applying a part of the voltage E.
  • the peak of the potential difference between the discharge electrode 5 and the counter electrode 21 is the discharge control voltage E.
  • only a part of the force applied to the counter electrode 21 may be applied to the voltage E corresponding to the DC bias component of the driving voltage in the first embodiment.
  • the method for driving the heat-discharge-type print head according to the second embodiment is configured as described above. Therefore, in addition to the operation of the first embodiment, the following operation is provided. (1) A part of the discharge control voltage E is applied to the counter electrode 21 in synchronization with the head side voltage application process.
  • the driving voltage E directly applied to the discharge electrode 5 can be reduced, and the discharge electrode 5 has excellent long life and the type of the recording medium 20 High quality by optimally adjusting the voltage value E applied to the counter electrode 21 according to the characteristics etc.
  • FIG. 8 (a) is a diagram showing a driving voltage in the head side voltage application process of the heating discharge type print head driving method in the third embodiment
  • FIG. 8 (b) is a heating discharge in the third embodiment
  • FIG. 8 (c) is a diagram showing a voltage applied to the counter electrode in the medium side voltage application process of the driving method of the print head
  • FIG. 8 (c) shows the discharge electrode heating of the driving method of the heating and discharging print head in the third embodiment. It is a figure which shows the temperature of the discharge electrode in a process.
  • the same components as those in the first or second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the heating discharge type print head driving method in the third embodiment is different from that in the second embodiment in that the voltage applied to the counter electrode 21 in the medium side voltage applying step is not DC bias.
  • the peak value is the triangular wave of E.
  • the peak of the potential difference between the discharge electrode 5 and the counter electrode 21 is the discharge control voltage E.
  • Embodiments 1 and 2 The description is omitted because it is the same as in Embodiments 1 and 2 except that the voltage is distributed and applied to the electrode 5 and the counter electrode 21.
  • the ratio to the voltage E can be selected as appropriate according to the type and characteristics of the recording medium 20.
  • the driving method of the heat-discharge type print head of the third embodiment is configured as described above. Therefore, in addition to the operation of the second embodiment, the following operation is provided. (1) When the media side voltage application process is synchronized with the head side voltage application process so that no voltage is applied to the counter electrode 21 in the non-printing state, when printing is interrupted or stopped due to a malfunction or the like. Therefore, the recording medium 20 can be removed safely, and the maintenance is excellent.
  • FIG. 9 (a) is a diagram showing a driving voltage in the head side voltage application process of the heating discharge type print head driving method in the fourth embodiment
  • FIG. 9 (b) is a heating discharge in the fourth embodiment
  • FIG. 6 is a diagram showing the temperature of the discharge electrode in the discharge electrode heating step of the method for driving the mold print head.
  • symbol is attached
  • the driving method of the heat discharge type print head in the fourth embodiment is different from that in the first embodiment in that the driving voltage applied to the discharge electrode 5 in the head side voltage applying step is a rectangular wave.
  • the driving voltage applied to the discharge electrode 5 in the head side voltage applying step is a rectangular wave.
  • an auxiliary voltage having a polarity opposite to that of the driving voltage is applied to the discharge electrode 5 after application of the driving voltage.
  • the auxiliary voltage may be a voltage (E) that is small enough to attract excess electrons and ions generated by the discharge to the discharge electrode 5. Auxiliary voltage is applied
  • the auxiliary voltage is applied after the driving voltage is applied to the discharge electrode 5, but the auxiliary voltage may be applied before the driving voltage is applied. Also, discharge control voltage
  • a part thereof may be applied to the counter electrode 21 as in the second embodiment.
  • an electrostatic development type recording medium is provided. Can be promoted.

Abstract

A heating discharge print head drive method for efficiently causing electric discharge by controlling the timing at which a voltage is applied to a discharge electrode and the timing at which the discharge electrode is heated. The energy is excellently saved, the amount of ions produced is accurately controlled to simply perform gradation recording, and a high-quality image can be created. The method comprises a potential difference setting step of setting a potential difference corresponding to the discharge control voltage between a heating discharge print head having a discharge electrode and heating means for selectively heating the discharge electrode and an opposing electrode opposed to the discharge electrode in such a way that a recording medium writable/erasable by the action of electric charge is interposed between the print head and the opposing electrode so as to produce an electric field and a discharge electrode heating step of allowing the heating means to selectively heating the discharge electrode according to image information. At the head voltage applying step of the potential difference setting step, the timing at which a drive voltage is applied to the discharge electrode is synchronized with the timing of the discharge electrode heating step.

Description

加熱放電型印字ヘッドの駆動方法  Driving method of heating and discharging type print head
技術分野  Technical field
[0001] 本発明は、繰り返し記録可能な静電現像方式の記録媒体に放電の作用により画像 を形成するための加熱放電型印字ヘッドの駆動方法に関するものである。  The present invention relates to a method for driving a heat-discharge type print head for forming an image on an electrostatic development type recording medium capable of repetitive recording by the action of electric discharge.
背景技術  Background art
[0002] 近年、(特許文献 1)に示すように、電子写真方式とは別方式の静電潜像形成方式 である、イオン照射方式が開発されてきている。  In recent years, as shown in (Patent Document 1), an ion irradiation method, which is an electrostatic latent image forming method different from the electrophotographic method, has been developed.
電子写真方式が一様帯電 +露光という 2工程で、一様帯電した感光体上の露光し た部分の電荷を逃がすことで、静電潜像担持体としての感光体上に静電潜像を形成 するのに対し、イオン照射方式では、イオン生成可能な雰囲気中(大気中等)におい ては、放電電極からの電子の放出により発生するイオンの照射による選択的帯電 (静 電潜像形成帯電)のみで静電潜像担持体 (絶縁体であれば良 、ので、必ずしも感光 体である必要はない)上に静電潜像の形成を完了できるので、より簡素化された静電 潜像形成方式である。  The electrophotographic method uses two processes, uniform charging and exposure, to release the exposed portion of the charge on the uniformly charged photoconductor, thereby forming an electrostatic latent image on the photoconductor as the electrostatic latent image carrier. On the other hand, in the ion irradiation method, in an atmosphere where ions can be generated (such as in the air), selective charging by irradiation of ions generated by the discharge of electrons from the discharge electrode (electrostatic latent image formation charging) The electrostatic latent image can be completely formed on the electrostatic latent image carrier (there is no need to be a photoconductor as long as it is an insulator). It is a method.
また、(特許文献 2)には、水平プリンタ対応型のイオン照射型印字ヘッドの具体的 な形状及びそれを備えた画像形成装置が開示されている。  Further, (Patent Document 2) discloses a specific shape of an ion irradiation type print head compatible with a horizontal printer and an image forming apparatus including the shape.
特に、(特許文献 1)や (特許文献 2)に示す加熱放電方式は、放電電極に印加した だけでは放電が発生せず加熱することにより放電が発生する電圧 (放電制御電圧)を 印加した状態で、放電電極への加熱の有無を制御することにより、放電の有無を制 御してイオンの発生制御を行うものであり、放電電極に印加する電圧の制御が不要 である。その結果、発熱抵抗体等による加熱の制御に使用する 5V駆動のような低耐 電圧対応のドライバ ICで放電の発生を制御することができ、放電の制御の観点から は最も優れた制御方式であると言える。  In particular, the heating and discharging methods shown in (Patent Document 1) and (Patent Document 2) are in a state in which a voltage (discharge control voltage) is generated in which a discharge is generated by heating without generating a discharge just by being applied to the discharge electrode. Thus, by controlling the presence or absence of heating of the discharge electrode, the generation of ions is controlled by controlling the presence or absence of discharge, and it is not necessary to control the voltage applied to the discharge electrode. As a result, it is possible to control the occurrence of discharge with a low withstand voltage driver IC such as 5V drive used to control heating by a heating resistor, etc., and this is the most excellent control method from the viewpoint of discharge control. It can be said that there is.
因に、現時点におけるデジタルぺーパとしては、微小なボールを二色 (例えば白黒 )に色分けし、各色の電気特性の違いによりボールを回転して任意の一色を表示す るツイストボール方式、微小なボール中に二色 (例えば白黒)の微粉末を混入し、各 色の微粉末が持つ電気特性の違いにより一色のみを浮上させて表示する電気泳動 方式、液晶板あるいは微小な液晶ブロックの液晶シャッターを開閉して、シャッターを 開けた部分の背景色を表示する液晶方式等がある。 Incidentally, as a digital paper at the present time, a minute ball is color-coded into two colors (for example, black and white), and the ball is rotated by the difference in electrical characteristics of each color to display an arbitrary color, a minute ball Two colors (for example, black and white) of fine powder are mixed in the ball. An electrophoretic method in which only one color is floated and displayed due to the difference in electrical characteristics of the fine powder of color, and a liquid crystal that displays the background color of the part where the shutter is opened by opening and closing the liquid crystal shutter of the liquid crystal plate or small liquid crystal block There are methods.
特許文献 1:特開 2003 - 326756号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-326756
特許文献 2: WO2005Z056297号公報  Patent Document 2: WO2005Z056297
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、上記従来の技術にお!、ては、以下のような課題を有して ヽた。 [0003] However, the above-mentioned conventional technology has had the following problems.
(1) (特許文献 1)、(特許文献 2)の加熱放電型印字ヘッドは、放電の制御が容易で 静電現像方式の記録媒体に非接触で書き込むには最適なものである力 イオンの発 生量を制御することに関しては十分な検討がなされていな力つた。  (1) The heating and discharging type print heads of (Patent Document 1) and (Patent Document 2) are easy to control the discharge, and are optimal for non-contact writing on an electrostatic development type recording medium. As for the control of the generation amount, it was not fully studied.
(2)イオンの発生量が異なれば、記録媒体の単位面積当たりに照射されるイオンの 量が異なり、その結果、画像の濃度に変化が生じることになるので、高画質化、カラ 一化を図るためには、イオンの照射量を制御することが重要な課題となって 、た。 (2) If the amount of ions generated is different, the amount of ions irradiated per unit area of the recording medium will be different, resulting in a change in the image density. In order to achieve this, controlling the amount of ion irradiation has become an important issue.
(3)特に、階調記録を行うためには、イオンの照射量を細力べ制御しなければならず 、イオンの発生量の変動を抑える必要があった。 (3) In particular, in order to perform gradation recording, it was necessary to control the irradiation amount of ions in detail, and it was necessary to suppress fluctuations in the amount of generated ions.
[0004] 本発明は上記要望に応えるもので、放電電極に電圧を印加するタイミングと放電電 極を加熱するタイミングを制御することにより、放電を効率的に発生させることができ、 省エネルギー性に優れると共に、イオンの発生量を精度よく制御して簡便に階調記 録を行うことができ、高解像度で高品質な画像を形成することが可能な加熱放電型 印字ヘッドの駆動方法の提供を目的とする。  [0004] The present invention meets the above-mentioned demand. By controlling the timing of applying a voltage to the discharge electrode and the timing of heating the discharge electrode, the discharge can be efficiently generated, and the energy saving property is excellent. At the same time, the purpose is to provide a method for driving a heat-discharge-type printhead that can easily control gradation and accurately record the amount of ions generated, and that can form high-resolution and high-quality images. And
課題を解決するための手段  Means for solving the problem
[0005] 上記課題を解決するために本発明の加熱放電型印字ヘッドの駆動方法は、以下 の構成を有している。 [0005] In order to solve the above problems, a driving method for a heat-discharge type print head according to the present invention has the following configuration.
本発明の請求項 1に記載の加熱放電型印字ヘッドの駆動方法は、電子放出部位 を有する放電電極と前記放電電極を選択的に加熱する加熱手段とを有する加熱放 電型印字ヘッドと、電荷の作用により書き込みや消去が可能な記録媒体を挟んで前 記放電電極に対向配置された対向電極と、の間に放電制御電圧に相当する電位差 を設定して電界を形成する電位差設定工程と、画像情報に基づ!ヽて前記加熱手段 で前記放電電極を選択的に加熱する放電電極加熱工程と、を有し、前記電位差設 定工程のヘッド側電圧印加工程において前記放電電極に前記放電制御電圧以下 の駆動用電圧を印加するタイミングと、前記放電電極加熱工程のタイミングを同期さ せた構成を有している。 According to a first aspect of the present invention, there is provided a heating / discharging printhead driving method comprising: a heating / discharging printhead having a discharge electrode having an electron emission site; and a heating means for selectively heating the discharge electrode; The potential difference corresponding to the discharge control voltage between the recording electrode that can be written and erased by the action of the counter electrode and the counter electrode that is disposed opposite to the discharge electrode. A potential difference setting step for forming an electric field by setting the voltage and a discharge electrode heating step for selectively heating the discharge electrode by the heating means based on image information. In the head-side voltage application step, the timing of applying a driving voltage lower than the discharge control voltage to the discharge electrode and the timing of the discharge electrode heating step are synchronized.
この構成により、以下のような作用を有する。  This configuration has the following effects.
(1)電位差設定工程で放電電極と対向電極との間に放電制御電圧に相当する電位 差を設定して電界を形成することにより放電に備えることができ、放電電極加熱工程 で画像情報に基づいて放電電極を選択的に加熱するだけで放電を発生させることが できるので、高電圧の制御が不要で、容易に放電の発生を制御することができる。 (1) In the potential difference setting step, a potential difference corresponding to the discharge control voltage is set between the discharge electrode and the counter electrode to form an electric field. Since the discharge can be generated only by selectively heating the discharge electrode, it is not necessary to control the high voltage and the generation of the discharge can be easily controlled.
(2)ヘッド側電圧印加工程にお!ヽて放電電極に駆動用電圧を印加するタイミングと、 放電電極加熱工程において放電電極を選択的に加熱するタイミングを同期させるこ とにより、確実に放電を発生させてイオンの発生量のばらつきを低減することができ 画像品質の信頼性に優れると共に、放電電極に不必要な電圧を印加することがなく 省エネルギー性に優れる。 (2) By synchronizing the timing of applying the driving voltage to the discharge electrode in the head side voltage application process and the timing of selectively heating the discharge electrode in the discharge electrode heating process, the discharge can be reliably performed. As a result, it is possible to reduce variations in the amount of ions generated, and it is excellent in image quality reliability and energy saving without applying unnecessary voltage to the discharge electrode.
ここで、加熱放電型印字ヘッドの放電電極と、記録媒体の裏面側に形成或いは接 触又は近接して配設された対向電極と、の間に放電制御電圧に相当する電位差を 設定して電界を形成し、発熱抵抗体やレーザ照射部等を備えた加熱手段により放電 電極を選択的に加熱することで、対向して配置された放電電極と対向電極との間で 放電を発生させることができ、電界によって放電電極力も放出させた電子やイオンを 記録媒体の記録面 (表面)に移動させ、その電荷の作用により画像の書込や消去を 行うことができる。この加熱手段による加熱箇所を選択することで、容易に放電電極 の任意の加熱位置近傍 (電子放出部位)から選択的に電子を放出させて放電を発生 させることがでさる。  Here, an electric field is set by setting a potential difference corresponding to the discharge control voltage between the discharge electrode of the heat discharge type print head and the counter electrode formed on, or in contact with, or close to the back side of the recording medium. And the discharge electrode is selectively heated by a heating means including a heating resistor, a laser irradiation part, etc., so that a discharge can be generated between the discharge electrode and the counter electrode arranged opposite to each other. In addition, electrons and ions whose discharge electrode force is also released by the electric field can be moved to the recording surface (surface) of the recording medium, and the image can be written or erased by the action of the charges. By selecting the heating location by this heating means, it is possible to easily discharge electrons by selectively emitting electrons from the vicinity of any heating position (electron emission site) of the discharge electrode.
尚、放電制御電圧とは、その電位差だけでは加熱放電型印字ヘッドの放電電極と 記録媒体側の対向電極との間で放電は起こらな ヽが、放電電極を加熱することによ り放電が起こる電圧域を言う。また、ここでの放電とは放電電極力 電子が放出される ことを言う。放出された電子は、大気中においては酸素や窒素をイオン化し、それら を記録媒体の記録面に到達させる。 It should be noted that the discharge control voltage means that a discharge does not occur between the discharge electrode of the heat-discharge type print head and the counter electrode on the recording medium only by the potential difference, but the discharge occurs by heating the discharge electrode. Says voltage range. Discharge here means that discharge electrode force electrons are emitted. The emitted electrons ionize oxygen and nitrogen in the atmosphere and To reach the recording surface of the recording medium.
[0007] 放電電極は、例えば複数の電子放出部位の一端部を共通電極で接続して櫛型に 形成したり、複数の電子放出部位の両端部を共通電極で接続して梯子型等に形成 したりできるほか、長方形状や正方形状等の一枚の平板状に形成することができる( 例えば、特開 2003— 326756号、 WO2005Z056297参照)。  [0007] For example, the discharge electrode is formed in a comb shape by connecting one end of a plurality of electron emission sites with a common electrode, or formed in a ladder shape or the like by connecting both ends of a plurality of electron emission sites with a common electrode In addition, it can be formed into a single flat plate shape such as a rectangular shape or a square shape (see, for example, JP-A-2003-326756, WO2005Z056297).
櫛型や梯子型のように電子放出部位近傍に共通電極を設けることで、放電電極の 放熱面積の拡大及び、熱容量の増大により、放電電極の冷却効果、加熱停止に対 する応答性が向上し、また、抵抗値の低減により常に安定した電圧を印加できるので 、放電の安定性等を更に向上させることができる。尚、平板状に形成した放電電極は 、加熱手段による加熱位置近傍が電子放出部位であり、電子放出部位以外は共通 電極となる。  By providing a common electrode in the vicinity of the electron emission site, such as a comb-type or ladder-type, the cooling area of the discharge electrode and the responsiveness to heating stop are improved by increasing the heat radiation area of the discharge electrode and increasing the heat capacity. In addition, since a stable voltage can always be applied by reducing the resistance value, the stability of discharge can be further improved. Incidentally, in the discharge electrode formed in a flat plate shape, the vicinity of the heating position by the heating means is an electron emission site, and other than the electron emission site is a common electrode.
特に、共通電極の幅を電子放出部位の幅より幅広に形成した場合、一時的に 100 〜300°Cに加熱される放電電極の冷却効果が向上し、熱の籠りを防ぐことができるの で、加熱のオフに迅速に応答して放電を停止でき、放電時間間隔を短縮して短時間 で放電の有無を切替えることができ、記録速度の高速ィ匕を図ることができる。また、共 通電極の抵抗値を引き下げることができ、共通電極で接続された各々の電子放出部 位の間に生じる電位差を極力抑えることができるので、各々の電子放出部位におけ る電子放出量のばらつきを低減でき、放電の安定性に優れる。  In particular, when the width of the common electrode is wider than the width of the electron emission site, the cooling effect of the discharge electrode, which is temporarily heated to 100 to 300 ° C, is improved, and heat can be prevented from being burned. In addition, the discharge can be stopped in response to the heating off quickly, the discharge time interval can be shortened and the presence / absence of the discharge can be switched in a short time, and the recording speed can be increased. In addition, the resistance value of the common electrode can be reduced, and the potential difference generated between the electron emission sites connected by the common electrode can be suppressed as much as possible. Therefore, the amount of electron emission at each electron emission site is reduced. Fluctuations and excellent discharge stability.
[0008] 放電電極は、基板上に金、銀、銅、アルミニウム等の金属を蒸着、スパッタ、印刷、 メツキなどで形成した後、必要に応じてエッチングして電子放出部位や共通電極をパ ターン形成するもの、ステンレス、銅、アルミニウム等の金属の少なくとも一部をエッチ ングゃ切削等により薄肉化した後、必要に応じてエッチングやレーザカ卩ェ等により放 電電極をパターン形成するもの等が好適に用いられる。また、その他にカーボン等の 導電材料を用いて放電電極を形成してもよ ヽ。 [0008] The discharge electrode is formed by depositing a metal such as gold, silver, copper, or aluminum on the substrate by vapor deposition, sputtering, printing, plating, or the like, and then etching as necessary to pattern the electron emission site or the common electrode. What is to be formed, and after thinning at least a part of a metal such as stainless steel, copper, aluminum, etc. by cutting or the like, patterning of the discharge electrode by etching or laser caching, etc., if necessary is suitable. Used for. In addition, the discharge electrode may be formed using a conductive material such as carbon.
基板上に放電電極を形成する場合、基板の材質としては、表面に放電電極を形成 することができると共に、加熱手段による加熱に耐える耐熱性を有するものであれば よい。また、加熱手段で基板の裏面側から加熱を行う場合、加熱手段が発する熱を 放電電極に伝達できる熱伝達性を有するものが好適に用いられる。具体的には、ガ ラスやポリイミド,ァラミド,ポリエーテルイミド等の合成樹脂等が好適に用いられる。 When the discharge electrode is formed on the substrate, the material of the substrate may be any material as long as the discharge electrode can be formed on the surface and has heat resistance to withstand the heating by the heating means. Further, when heating is performed from the back side of the substrate by the heating means, those having a heat transfer property capable of transferring the heat generated by the heating means to the discharge electrode are preferably used. Specifically, A synthetic resin such as glass, polyimide, aramid, or polyetherimide is preferably used.
[0009] 放電電極を櫛型に形成する場合、各々の電子放出部位の形状は、略矩形状、台 形状、半円形状、砲弾状あるいはこれらを組合せた形状等に形成することができる。 また、電子放出部位の一部をさらにスリット等で分割したり、周縁部に凹凸部を形成し たりすることで電子放出部位の縁周辺の周長を増加させることができる(例えば、 WO When the discharge electrodes are formed in a comb shape, the shape of each electron emission site can be formed in a substantially rectangular shape, a trapezoidal shape, a semicircular shape, a bullet shape, or a combination thereof. Further, the peripheral length around the edge of the electron emission site can be increased by further dividing a part of the electron emission site with a slit or the like, or by forming an uneven portion on the peripheral edge (for example, WO
2005Z056297参照)。放電電極は縁周辺からの電子放出量が多いので、縁周辺 の周長を長くすることで、放電電極力 の電子放出量を増加させて照射されるイオン 量や発光強度を増加させることができ、放電制御電圧や加熱温度を低く設定すること ができ、省エネルギー性及び放電発生の効率性に優れる。また、放電制御電圧を低 く設定できるので、放電電極の長寿命性にも優れる。 2005Z056297). Since the discharge electrode emits a large amount of electrons from the periphery of the edge, it is possible to increase the amount of emitted electrons and the intensity of emitted light by increasing the amount of electron emission of the discharge electrode force by increasing the circumference around the edge. In addition, the discharge control voltage and heating temperature can be set low, and the energy saving and discharge generation efficiency are excellent. In addition, since the discharge control voltage can be set low, the discharge electrode has excellent long life.
放電電極の端部を分割したり周縁部に凹凸部を形成したりする代りに、電子放出 部位 (加熱位置)の近傍に放電孔部を形成してもよい。これにより、放電孔部の縁周 辺から電子を放出させることができ、放電電極の端部を分割するのと同様の作用を 得ることができる。放電孔部の形状は、略円形、略楕円形、四角形や六角形等の多 角形、星形など様々な形状に形成することができる。また、電子放出部位 (加熱位置 近傍)の 1箇所当たりの放電孔部の数及び大きさは適宜選択して組合せることができ る。尚、放電電極の凹凸部や放電孔部は前述のエッチングやレーザ加工等により形 成することができる。  Instead of dividing the end portion of the discharge electrode or forming the uneven portion on the peripheral edge portion, a discharge hole portion may be formed in the vicinity of the electron emission site (heating position). As a result, electrons can be emitted from the peripheral edge of the discharge hole, and the same effect as dividing the end of the discharge electrode can be obtained. The shape of the discharge hole portion can be formed in various shapes such as a substantially circular shape, a substantially elliptical shape, a polygonal shape such as a quadrangle and a hexagon, and a star shape. Further, the number and size of the discharge hole portions per one electron emission site (near the heating position) can be appropriately selected and combined. Note that the concave and convex portions and the discharge holes of the discharge electrode can be formed by the above-described etching or laser processing.
[0010] また、放電電極の内の少なくとも共通電極の表面には導電材層を形成してもよい。  [0010] Further, a conductive material layer may be formed on at least the surface of the common electrode among the discharge electrodes.
これにより、共通電極の抵抗値を更に引き下げることができ、各々の電子放出部位間 に生じる電位差を確実に低減でき、放電の安定性に優れる。導電材層は放電電極よ りも優れた導電性を有するものであればよく、銀ペーストのスクリーン印刷ゃ銀メツキ 等により容易に形成することができる。導電材層の厚みを増すことにより、共通電極の 抵抗値を低減でき、放電の安定性を向上させることができる。  As a result, the resistance value of the common electrode can be further reduced, the potential difference generated between each electron emission site can be reliably reduced, and the discharge stability is excellent. The conductive material layer only needs to have conductivity superior to that of the discharge electrode, and can be easily formed by silver paste screen printing or silver plating. By increasing the thickness of the conductive material layer, the resistance value of the common electrode can be reduced, and the discharge stability can be improved.
放電電極の厚さは材質にもよる力 金で形成する場合の厚さは 0. 1 μ m〜100 mが好ましい。放電電極の厚さが 0.: mより薄くなるにつれ摩耗の影響を受け易く 放電電極の寿命が短くなる傾向があり、 100 mより厚くなるにつれ熱容量が増加し 加熱のオン Zオフに対する応答性が低下し易くなる傾向があり、 、ずれも好ましくな い。放電電極の厚さを 100 m以下にすることで、加熱状態から急速に復帰させるこ とができ、印字速度を高速ィ匕することができる。 The thickness of the discharge electrode is preferably 0.1 μm to 100 m when it is formed with a force plate depending on the material. The discharge electrode tends to be affected by wear as the thickness of the discharge electrode becomes thinner than 0. m, and the life of the discharge electrode tends to be shortened. As the thickness exceeds 100 m, the heat capacity increases, and the response to heating on and off is increased. It tends to be lowered, and the deviation is also preferable Yes. By reducing the thickness of the discharge electrode to 100 m or less, it is possible to quickly recover from the heated state and to increase the printing speed.
[0011] 放電電極を加熱する加熱手段としては、放電電極の任意の位置を選択的に加熱 できるものであればよぐ放電電極に密着して加熱するものでもよいし、放電電極から 離間して加熱するものでもよ 、。 [0011] As a heating means for heating the discharge electrode, any heating means that can selectively heat an arbitrary position of the discharge electrode may be used in close contact with the discharge electrode, or separated from the discharge electrode. It can be heated.
放電電極と密着させて加熱する加熱手段としては、従来の感熱式のファクシミリに 使用されるサーマルプリントヘッドと同様の構成を好適に用いることができる。具体的 には、発熱抵抗体と電気的に接続されたドライバ ICで発熱抵抗体の発熱を制御する ものである。  As a heating means for heating by being brought into close contact with the discharge electrode, a configuration similar to that of a thermal print head used in a conventional thermal facsimile can be suitably used. Specifically, the heat generation of the heating resistor is controlled by a driver IC electrically connected to the heating resistor.
放電電極と離間して加熱する加熱手段としては、レーザ光を照射する方式や赤外 線を照射する方式等を好適に用いることができる。レーザ光を照射する方式としては 、レーザ照射部とポリゴンミラーやガルバノミラーを組合せたもの、レーザ照射部をシ リアル走査させるもの等が好適に用いられる。  As a heating means for heating away from the discharge electrode, a method of irradiating laser light, a method of irradiating infrared rays, or the like can be suitably used. As a method of irradiating laser light, a combination of a laser irradiation unit and a polygon mirror or a galvanometer mirror, a method of serially scanning the laser irradiation unit, or the like is preferably used.
[0012] 前述のように、加熱放電型印字ヘッドでは、電位差設定工程にぉ ヽて放電電極と 対向電極との間に放電制御電圧に相当する電位差を設定して電界を形成した状態 で、放電電極加熱工程にぉ ヽて画像情報に基づ ヽて加熱手段で放電電極を選択 的に加熱することにより放電を発生させるが、放電電極に印加する駆動用電圧として は様々な波形を選択することができ、三角波、矩形波、台形波、 sin波等を単独で或 いは組合せて用いたり、さらにこれらに直流電圧や交流電圧を重畳したりできる。例 えば、電位差設定工程のヘッド側電圧印加工程において、放電電極に駆動用電圧 として交流電圧のみを印加すると正負のイオンが生成される。そこで、負のイオンの みを選別するには交流電圧に負の直流電圧を重畳し、正のイオンのみを選別するに は交流電圧に正の直流電圧を重畳したものを駆動用電圧として放電電極に印加す る。 [0012] As described above, in the heat discharge type print head, the discharge is performed in a state where an electric field is formed by setting a potential difference corresponding to the discharge control voltage between the discharge electrode and the counter electrode during the potential difference setting step. A discharge is generated by selectively heating the discharge electrode with the heating means based on the image information in the electrode heating process, but various waveforms are selected as the driving voltage applied to the discharge electrode. Triangular waves, rectangular waves, trapezoidal waves, sin waves, etc. can be used alone or in combination, and a DC voltage or an AC voltage can be superimposed on them. For example, in the head-side voltage application step of the potential difference setting step, positive and negative ions are generated when only an AC voltage is applied to the discharge electrode as a driving voltage. Therefore, in order to select only negative ions, a negative DC voltage is superimposed on the AC voltage, and to select only positive ions, the discharge voltage is obtained by using a positive DC voltage superimposed on the AC voltage as a driving voltage. Apply to.
このとき、加熱手段による加熱量を一定に制御しても、加熱時に放電電極に印加さ れている駆動用電圧の電圧値が異なれば、イオンの発生量が異なるので、特に駆動 用電圧のピーク値がサイン波や三角波等のように時間と共に変化する場合には、へ ッド側電圧印加工程にぉ ヽて駆動用電圧を印加するタイミングと、放電電極加熱ェ 程において放電電極を加熱するタイミングを同期させる必要がある。時間と共に周期 的に変化する駆動用電圧に対し、常に同じタイミングで放電電極の加熱を行うこと〖こ より、イオンの発生量のばらつきを低減することができるためである。 At this time, even if the heating amount by the heating means is controlled to be constant, if the voltage value of the driving voltage applied to the discharge electrode at the time of heating is different, the amount of ions generated is different. When the value changes with time, such as a sine wave or a triangular wave, the timing for applying the driving voltage over the head side voltage application process and the discharge electrode heating temperature It is necessary to synchronize the timing for heating the discharge electrode. This is because it is possible to reduce variations in the amount of ions generated by always heating the discharge electrode at the same timing against the driving voltage that periodically changes with time.
[0013] 尚、駆動用電圧の電圧値がピークになった時点で放電電極の温度もピークになつ ていれば、放電の発生効率は最大となり、それに伴って生成されるイオンの発生量も 最大となる。駆動用電圧の電圧値のピーク時に放電電極の温度がピークになってい ない場合、放電の発生効率は低下することになるが、駆動用電圧が印加されている 間に放電電極が所定の温度以上に加熱されていれば、イオンを発生させることがで きる。尚、加熱手段による加熱時間に幅を持たせて、加熱時間中に駆動用電圧の電 圧値がピークになるようにすれば、イオンの発生量のばらつきを大幅に低減すること ができ、駆動用電圧の電圧値のピークと放電電極の温度のピークのタイミングが必ず しも一致する必要はない。  [0013] It should be noted that if the temperature of the discharge electrode reaches a peak when the voltage value of the driving voltage reaches a peak, the discharge generation efficiency is maximized, and the generated amount of ions generated accordingly is also maximized. It becomes. If the temperature of the discharge electrode does not reach the peak when the voltage value of the driving voltage is at the peak, the discharge generation efficiency will decrease, but the discharge electrode will be above the predetermined temperature while the driving voltage is applied. As long as it is heated, ions can be generated. If the heating time by the heating means is widened so that the voltage value of the driving voltage reaches a peak during the heating time, variations in the amount of ions generated can be greatly reduced, and the driving voltage can be reduced. The timing of the peak value of the working voltage and the peak temperature of the discharge electrode need not necessarily coincide.
また、ヘッド側電圧印加工程と放電電極加熱工程の同期を取る際には、どちらを基 準としても構わない。  Further, when synchronizing the head side voltage application process and the discharge electrode heating process, either may be used as a reference.
[0014] 請求項 2に記載の発明は、請求項 1に記載の加熱放電型印字ヘッドの駆動方法で あって、前記ヘッド側電圧印加工程における前記駆動用電圧の印加を一印字周期 内で複数回繰返す構成を有して!/、る。  [0014] The invention according to claim 2 is the method for driving the heat-discharge type print head according to claim 1, wherein a plurality of application of the drive voltage in the head side voltage application step is performed within one print cycle. It has a structure that repeats!
この構成により、請求項 1の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of claim 1, the following operation is provided.
(1)ヘッド側電圧印加工程における駆動用電圧の印加を一印字周期内で複数回繰 返すことにより、それに同期させて加熱手段による加熱を複数回に分割して繰返すこ とができ、放電量が多くなる加熱の立ち上がりの回数を増カロさせることができるので、 全体としてのイオン発生量を増加させることができ、放電発生の効率性に優れる。 (1) By repeating the application of the driving voltage in the head-side voltage application process a plurality of times within one printing cycle, the heating by the heating means can be divided and repeated a plurality of times in synchronization with the application of the discharge amount. As the number of heating rises can be increased, the total amount of ions generated can be increased, and the discharge generation efficiency is excellent.
(2)—印字周期内で繰返す駆動用電圧の印加回数を制御するだけでイオン発生量 を簡便に精度よく制御でき、高品質な階調記録を行うことができる。 (2) —By controlling the number of times of applying the driving voltage repeatedly within the printing cycle, the ion generation amount can be controlled easily and accurately, and high-quality gradation recording can be performed.
(3)一印字周期内で駆動用電圧の印加を複数回繰返すことにより、放電回数を増加 させて全体としてのイオン発生量を増カロさせることができるので、駆動用電圧のピー ク値を低く設定することや加熱手段による加熱時間及び放電発生時間を全体として 短縮することができ、放電電極の長寿命性に優れる。 [0015] ここで、ヘッド側電圧印加工程において一印字周期内で駆動用電圧の印加を繰返 す場合、各々の駆動用電圧の印加のタイミングに同期して放電電極加熱工程が行わ れる。 1回当たりの駆動用電圧の電圧値や印加時間或いは加熱手段による加熱時間 を制御したり、一印字周期内での駆動用電圧の印加及び加熱手段による加熱の繰 返しの回数を制御したりすることにより、イオン発生量を制御することができる。 (3) By repeating the application of the driving voltage multiple times within one printing cycle, the number of discharges can be increased to increase the total amount of ions generated, so the peak value of the driving voltage is reduced. Setting and heating time by the heating means and discharge generation time can be shortened as a whole, and the long life of the discharge electrode is excellent. Here, when the application of the driving voltage is repeated within one printing cycle in the head-side voltage application process, the discharge electrode heating process is performed in synchronization with the timing of applying each driving voltage. Controls the voltage value and application time of the driving voltage per time or the heating time by the heating means, and controls the number of times the heating voltage is applied and the heating voltage is repeated within one printing cycle. Thus, the amount of generated ions can be controlled.
[0016] 請求項 3に記載の発明は、請求項 1又は 2に記載の加熱放電型印字ヘッドの駆動 方法であって、前記ヘッド側電圧印加工程で前記放電電極に印加される前記駆動 用電圧のピーク時に、前記放電電極加熱工程による前記放電電極の加熱を行う構 成を有している。  [0016] The invention according to claim 3 is the driving method of the heat discharge type print head according to claim 1 or 2, wherein the driving voltage applied to the discharge electrode in the head side voltage applying step. The discharge electrode is heated by the discharge electrode heating step at the peak of the time.
この構成により、請求項 1又は 2の作用に加え、以下のような作用を有する。  With this configuration, in addition to the operation of the first or second aspect, the following operation is provided.
(1)ヘッド側電圧印加工程で放電電極に印加される駆動用電圧のピーク時に、放電 電極加熱工程による放電電極の加熱を行うことにより、確実に放電を発生させること ができ、特に、駆動用電圧のピークと放電電極加熱工程により加熱された放電電極 の温度のピークを略一致させた場合、最大量のイオンを発生させることができ、放電 発生の効率性に優れる。  (1) At the peak of the driving voltage applied to the discharge electrode in the head side voltage application process, the discharge electrode is heated by the discharge electrode heating process, so that the discharge can be generated reliably. When the voltage peak and the temperature peak of the discharge electrode heated by the discharge electrode heating step are substantially matched, the maximum amount of ions can be generated, and the discharge generation efficiency is excellent.
[0017] ここで、放電電極加熱工程における加熱には時間の幅があるので、その加熱時間 中に駆動用電圧の電圧値がピークになるようにタイミングを合わせれば、確実に放電 を発生させることができる。  [0017] Here, the heating in the discharge electrode heating step has a range of time, so that the discharge can be surely generated if the timing is adjusted so that the voltage value of the driving voltage reaches the peak during the heating time. Can do.
実際に駆動用電圧のピークと放電電極の温度のピークを略一致させる場合には、 加熱手段力 放電電極へ熱が伝わるまでの時間を考慮し、放電電極加熱工程にお ける加熱手段の加熱 ONタイミングを放電電極に印加される駆動用電圧のピークのタ イミングよりも早目に設定する必要がある。尚、加熱手段の加熱 ONタイミング力 放 電電極が所定の温度に達するまでの時間(タイムラグ)は、発熱部絶縁膜の厚み、材 料の熱伝導性、加熱温度等の違いにより差が出てくるため、それらの条件に応じて適 宜、タイミングを調整する。  When the drive voltage peak and the discharge electrode temperature peak are substantially matched, the heating means power is turned on in consideration of the time until heat is transferred to the discharge electrode. It is necessary to set the timing earlier than the timing of the peak of the driving voltage applied to the discharge electrode. In addition, the heating ON timing force of the heating means The time (time lag) until the discharge electrode reaches a predetermined temperature varies depending on the thickness of the heat generating part insulating film, the thermal conductivity of the material, the heating temperature, etc. Therefore, adjust the timing appropriately according to these conditions.
[0018] 請求項 4に記載の発明は、請求項 1乃至 3の内いずれ力 1項に記載の加熱放電型 印字ヘッドの駆動方法であって、前記ヘッド側電圧印加工程に同期させて前記対向 電極に前記放電制御電圧の一部を印加する媒体側電圧印加工程を行う構成を有し ている。 [0018] The invention according to claim 4 is the heating discharge type print head driving method according to any one of claims 1 to 3, wherein the opposing force is synchronized with the head side voltage application step. A medium side voltage applying step for applying a part of the discharge control voltage to the electrode; ing.
この構成により、請求項 1乃至 3の内いずれか 1項の作用にカ卩え、以下のような作用 を有する。  With this configuration, in addition to the operation of any one of claims 1 to 3, it has the following operation.
(1)ヘッド側電圧印加工程に同期させて対向電極に放電制御電圧の一部を印加す る媒体側電圧印加工程を行うことにより、放電電極に直接印加される駆動用電圧を 低減することができ、放電電極の長寿命性に優れると共に、記録媒体の種類や特性 等に応じて対向電極に印加する電圧値を最適に調整して高品質な画像を形成する ことができ、汎用性に優れる。  (1) The drive voltage directly applied to the discharge electrode can be reduced by performing the medium-side voltage application step of applying a part of the discharge control voltage to the counter electrode in synchronization with the head-side voltage application step. In addition to excellent long life of the discharge electrode, it is possible to form a high-quality image by optimally adjusting the voltage value applied to the counter electrode according to the type and characteristics of the recording medium. .
(2)媒体側電圧印加工程をヘッド側電圧印加工程に同期させることにより、非印字状 態で対向電極に電圧が印加されな 、ようにすることができ、不具合等により印字が中 断或いは停止した際に、安全に記録媒体を取り除くことができ、メンテナンス性に優 れる。  (2) By synchronizing the medium-side voltage application process with the head-side voltage application process, it is possible to prevent voltage from being applied to the counter electrode in a non-printing state, and printing is interrupted or stopped due to problems or the like. In this case, the recording medium can be removed safely, and it is easy to maintain.
[0019] ここで、放電電極と対向電極との間の電位差が放電制御電圧の範囲内にあればよ いので、その範囲内で放電電極及び対向電極に印加する電圧値を任意に設定する ことができる。  Here, since the potential difference between the discharge electrode and the counter electrode only needs to be within the range of the discharge control voltage, the voltage value to be applied to the discharge electrode and the counter electrode within the range is arbitrarily set. Can do.
尚、対向電極に印加する電圧は、放電電極に印加する駆動用電圧と同様に様々 な波形を選択することができる。例えば、交流電圧に直流電圧を重畳した放電制御 電圧の一部を対向電極に印加する場合、その直流成分の少なくとも一部を対向電極 に分配して印加してもょ 、し、交流成分の一部を対向電極に分配して印加してもょ 、  As the voltage applied to the counter electrode, various waveforms can be selected in the same manner as the driving voltage applied to the discharge electrode. For example, when a part of the discharge control voltage in which the DC voltage is superimposed on the AC voltage is applied to the counter electrode, at least a part of the DC component may be distributed and applied to the counter electrode. Even if the part is distributed and applied to the counter electrode,
[0020] 請求項 5に記載の発明は、請求項 1乃至 4の内いずれ力 1項に記載の加熱放電型 印字ヘッドの駆動方法であって、前記ヘッド側電圧印加工程にぉ 、て前記放電電極 への前記駆動用電圧の印加前若しくは印加後の少なくともいずれか一方で前記駆 動用電圧と逆極性の補助電圧を前記放電電極に印加する構成を有している。 [0020] The invention according to claim 5 is the heating discharge type print head drive method according to any one of claims 1 to 4, wherein the discharge is performed during the head side voltage application step. It has a configuration in which an auxiliary voltage having a polarity opposite to that of the driving voltage is applied to the discharge electrode at least either before or after application of the driving voltage to the electrode.
この構成により、請求項 1乃至 4の内いずれか 1項の作用にカ卩え、以下のような作用 を有する。  With this configuration, in addition to the operation of any one of claims 1 to 4, the following operation is provided.
(1)ヘッド側電圧印加工程において放電電極への駆動用電圧の印加前に駆動用電 圧と逆極性の補助電圧を放電電極に印加することにより、直前の駆動で発生した余 分な電子やイオンを駆動前に放電電極に引き寄せて回収することができ、画像の汚 れを防止して画像品質を向上させることができる。 (1) In the head-side voltage application step, before applying the driving voltage to the discharge electrode, an auxiliary voltage having a polarity opposite to that of the driving voltage is applied to the discharge electrode, so that the surplus generated in the previous driving is generated. It is possible to attract and collect unnecessary electrons and ions to the discharge electrode before driving, thereby preventing image smearing and improving image quality.
(2)ヘッド側電圧印加工程において放電電極への駆動用電圧の印加後に駆動用電 圧と逆極性の補助電圧を放電電極に印加することにより、駆動によって発生した余分 な電子やイオンをその駆動直後に回収して次の駆動 (駆動用電圧の印加)に備える ことができ、駆動周期が長い場合でも電子やイオンが浮遊することがなぐ信頼性に 優れる。  (2) In the head side voltage application process, after applying the driving voltage to the discharge electrode, an auxiliary voltage having a polarity opposite to that of the driving voltage is applied to the discharge electrode, thereby driving excess electrons and ions generated by driving. It can be recovered immediately and prepared for the next drive (application of drive voltage), and is excellent in reliability that electrons and ions do not float even when the drive cycle is long.
[0021] ここで、補助電圧は余分な電子やイオンを放電電極に引き寄せることができる程度 の小さな電圧でよ!ヽ。例え補助電圧が印加されて!ヽる状態で放電電極が加熱されて も放電が発生しないようにその電圧値を設定することにより、不要な電子やイオンが 発生することがなく信頼性に優れる。  [0021] Here, the auxiliary voltage may be a voltage that is small enough to attract excess electrons and ions to the discharge electrode! Even if an auxiliary voltage is applied and the discharge electrode is heated, the voltage value is set so that no discharge occurs even when the discharge electrode is heated, so that unnecessary electrons and ions are not generated and the reliability is excellent.
発明の効果  The invention's effect
[0022] 以上のように、本発明の加熱放電型印字ヘッドの駆動方法によれば、以下のような 有利な効果が得られる。  [0022] As described above, according to the method for driving the heat discharge type print head of the present invention, the following advantageous effects can be obtained.
請求項 1に記載の発明によれば、以下のような効果を有する。  According to the invention described in claim 1, the following effects are obtained.
(1)ヘッド側電圧印加工程にお!ヽて放電電極に駆動用電圧を印加するタイミングと、 放電電極加熱工程において放電電極を選択的に加熱するタイミングを同期させるこ とにより、確実に放電を発生させてイオンの発生量のばらつきを低減することができ、 画像品質の信頼性に優れ、放電電極に不必要な電圧を印加することがなぐ省エネ ルギー性及び放電電極の長寿命性に優れた加熱放電型印字ヘッドの駆動方法を提 供することができる。  (1) For head side voltage application process! By synchronizing the timing of applying the driving voltage to the discharge electrode and the timing of selectively heating the discharge electrode in the discharge electrode heating process, the discharge is reliably generated and the variation in the amount of ions generated is reduced. Provides a method for driving a heat-discharge-type print head that has excellent image quality reliability, energy saving that prevents unnecessary voltage application to the discharge electrode, and excellent discharge electrode long life. be able to.
[0023] 請求項 2に記載の発明によれば、請求項 1の効果に加え、以下のような効果を有す る。  [0023] According to the invention described in claim 2, in addition to the effect of claim 1, the following effect is obtained.
(1)ヘッド側電圧印加工程において、一印字周期内で繰返す駆動用電圧の印加回 数を制御するだけでイオン発生量を簡便に精度よく制御でき、階調記録を行うことが できる画像品質の信頼性に優れた加熱放電型印字ヘッドの駆動方法を提供すること ができる。  (1) In the head-side voltage application process, the amount of ion generation can be easily and accurately controlled by controlling the number of times of application of the driving voltage repeated within one printing cycle, and image quality can be recorded with gradation. It is possible to provide a method for driving a heat-discharge type print head having excellent reliability.
(2)—印字周期内で駆動用電圧の印加を複数回繰返して放電回数を増カロさせること により、それに同期して放電量が多くなる加熱の立ち上がりの回数を増加させること ができるので、全体的なイオン発生量を増加させることができ、駆動用電圧のピーク 値を低く設定することや加熱手段による加熱時間及び放電発生時間を全体として短 縮することが可能な放電電極の長寿命性に優れた加熱放電型印字ヘッドの駆動方 法を提供することができる。 (2) —Increase the number of discharges by repeating the application of drive voltage multiple times within the printing cycle. As a result, the number of heating rises in which the amount of discharge increases in synchronism with it can be increased, so that the total ion generation amount can be increased, and the peak value of the drive voltage can be set low or the heating can be performed. It is possible to provide a method for driving a heat-discharge type print head that can shorten the heating time and discharge generation time by the means and has a long life of the discharge electrode.
[0024] 請求項 3に記載の発明によれば、請求項 1又は 2の効果にカ卩え、以下のような効果 を有する。  [0024] According to the invention of claim 3, in addition to the effect of claim 1 or 2, it has the following effect.
(1)ヘッド側電圧印加工程における駆動用電圧のピークに、放電電極加熱工程のタ イミングを合わせることにより、放電電極に最大の電圧が印加された状態で加熱を行 つて放電を発生させることができ、イオンの発生量の効率性に優れた加熱放電型印 字ヘッドの駆動方法を提供することができる。  (1) By matching the timing of the discharge electrode heating process with the peak of the driving voltage in the head side voltage application process, heating can be performed while the maximum voltage is applied to the discharge electrode to generate discharge. In addition, it is possible to provide a method for driving a heat-discharge type print head that is excellent in the efficiency of ion generation.
[0025] 請求項 4に記載の発明によれば、請求項 1乃至 3の内いずれか 1項の効果にカロえ、 以下のような効果を有する。 [0025] According to the invention of claim 4, the effect of any one of claims 1 to 3 is achieved, and the following effects are obtained.
(1)ヘッド側電圧印加工程に媒体側電圧印加工程を同期させることにより、放電電極 と対向電極の間に確実に放電制御電圧に相当する電位差を設定することができ、放 電電極に直接印加される駆動用電圧を低減して放電電極の耐久性を向上できると 共に、記録媒体の種類や特性等に応じて対向電極に印加する電圧値を最適に調整 して高品質な画像を形成することができる汎用性に優れた加熱放電型印字ヘッドの 駆動方法を提供することができる。  (1) By synchronizing the medium-side voltage application process with the head-side voltage application process, a potential difference corresponding to the discharge control voltage can be set reliably between the discharge electrode and the counter electrode, and applied directly to the discharge electrode. The drive voltage can be reduced to improve the durability of the discharge electrode, and a high-quality image can be formed by optimally adjusting the voltage applied to the counter electrode according to the type and characteristics of the recording medium. It is possible to provide a method for driving a heat-discharge type print head having excellent versatility.
[0026] 請求項 5に記載の発明によれば、請求項 1乃至 4の内いずれか 1項の効果にカロえ、 以下のような効果を有する。 [0026] According to the invention of claim 5, the effect of any one of claims 1 to 4 is reduced, and the following effects are obtained.
(1)ヘッド側電圧印加工程において放電電極への駆動用電圧の印加前若しくは印 加後の少なくともいずれか一方で駆動用電圧と逆極性の補助電圧を放電電極に印 加することにより、余分な電子やイオンを駆動の直前若しくは直後に放電電極に引き 寄せて回収することができ、電子やイオンの浮遊を確実に防止して画像の汚れを防 ぐことができる画像品質の信頼性に優れた加熱放電型印字ヘッドの駆動方法を提供 することができる。  (1) In the head-side voltage application step, an extra voltage having a polarity opposite to that of the drive voltage is applied to the discharge electrode at least one of before or after application of the drive voltage to the discharge electrode. Electrons and ions can be attracted to the discharge electrode and collected immediately before or after driving, and the image quality can be reliably prevented from floating by preventing electrons and ions from floating. It is possible to provide a method for driving a heat-discharge type print head.
図面の簡単な説明 [0027] [図 1] (a)加熱放電型印字ヘッドの使用状態を示す模式側面図 (b)加熱放電型印字 ヘッドを示す要部模式斜視図 Brief Description of Drawings [0027] [Fig. 1] (a) A schematic side view showing a usage state of a heat discharge type print head. (B) A schematic perspective view of a main part showing a heat discharge type print head.
[図 2]実施の形態 1における加熱放電型印字ヘッドのヘッド基板の模式平面図  FIG. 2 is a schematic plan view of the head substrate of the heat discharge type print head in the first embodiment.
[図 3] (a)図 2の A— A線矢視模式断面図 (b)図 2の B— B線矢視模式断面図  [Fig. 3] (a) Schematic cross-sectional view taken along line A-A in Fig. 2 (b) Schematic cross-sectional view taken along line B-B in Fig. 2
[図 4]加熱放電型印字ヘッドを用いた画像形成方法を示す模式側面図  FIG. 4 is a schematic side view showing an image forming method using a heat discharge type print head.
[図 5]実施の形態 1における加熱放電型印字ヘッドの構成を示すブロック図  FIG. 5 is a block diagram showing a configuration of a heat discharge type print head in the first embodiment.
[図 6] (a)実施の形態 1における加熱放電型印字ヘッドの駆動方法のヘッド側電圧印 加工程での駆動用電圧を示す図 (b)実施の形態 1における加熱放電型印字ヘッドの 駆動方法の放電電極加熱工程での放電電極の温度を示す図  [FIG. 6] (a) A diagram showing a driving voltage in a head-side voltage applying process of the heating discharge type print head driving method in Embodiment 1. (b) Driving of the heating discharge type print head in Embodiment 1. The figure which shows the temperature of the discharge electrode in the discharge electrode heating process of the method
[図 7] (a)実施の形態 2における加熱放電型印字ヘッドの駆動方法のヘッド側電圧印 加工程での駆動用電圧を示す図 (b)実施の形態 2における加熱放電型印字ヘッドの 駆動方法の媒体側電圧印加工程で対向電極に印加する電圧を示す図(c)実施の 形態 2における加熱放電型印字ヘッドの駆動方法の放電電極加熱工程での放電電 極の温度を示す図  [FIG. 7] (a) A diagram showing a driving voltage in a head-side voltage applying process of a heating discharge type print head driving method in Embodiment 2. (b) Driving of a heating discharge type print head in Embodiment 2. (C) Diagram showing the temperature of the discharge electrode in the discharge electrode heating step of the method for driving the heat discharge type print head in Embodiment 2 in the medium side voltage application step of the method
[図 8] (a)実施の形態 3における加熱放電型印字ヘッドの駆動方法のヘッド側電圧印 加工程での駆動用電圧を示す図 (b)実施の形態 3における加熱放電型印字ヘッドの 駆動方法の媒体側電圧印加工程で対向電極に印加する電圧を示す図(c)実施の 形態 3における加熱放電型印字ヘッドの駆動方法の放電電極加熱工程での放電電 極の温度を示す図  [FIG. 8] (a) A diagram showing a driving voltage in the head-side voltage applying process of the heating discharge type print head driving method in Embodiment 3. (b) Driving of the heating discharge type print head in Embodiment 3. (C) Diagram showing the temperature of the discharge electrode in the discharge electrode heating step of the method for driving the heat discharge type print head in Embodiment 3 in the medium side voltage application step of the method
[図 9] (a)実施の形態 4における加熱放電型印字ヘッドの駆動方法のヘッド側電圧印 加工程での駆動用電圧を示す図 (b)実施の形態 4における加熱放電型印字ヘッドの 駆動方法の放電電極加熱工程での放電電極の温度を示す図  [FIG. 9] (a) A diagram showing a driving voltage in a head-side voltage application process of a heating discharge type print head driving method in Embodiment 4. (b) Driving of a heating discharge type print head in Embodiment 4. The figure which shows the temperature of the discharge electrode in the discharge electrode heating process of the method
符号の説明  Explanation of symbols
[0028] 1 加熱放電型印字ヘッド [0028] 1 Heating discharge type print head
2 放熱板  2 Heat sink
3a 端面部  3a End face
4 ヘッド 板  4 head board
5 放電電極 5a 電子放出部位 5 Discharge electrode 5a Electron emission site
5b 共通電極  5b Common electrode
6 ドライバ  6 Driver
7 放電制御装置  7 Discharge control device
8 プリント配線基板  8 Printed circuit board
8a コネクタ  8a connector
9 ICカバー  9 IC cover
9a 高圧基板  9a High voltage substrate
10 フレキシブル基板  10 Flexible substrate
11a 発熱用櫛歯電極  11a Comb electrode for heating
l ib 発熱用共通電極  l ib Common electrode for heat generation
12 発熱用個別電極  12 Individual electrode for heat generation
13 加熱手段  13 Heating means
13a 発熱抵抗体  13a Heating resistor
13b 発熱部絶縁膜  13b Heat-generating part insulation film
16 導電材層  16 Conductive material layer
20 記録媒体  20 Recording media
21 対向電極  21 Counter electrode
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1)  (Embodiment 1)
本発明の実施の形態 1における加熱放電型印字ヘッドの駆動方法について、以下 図面を参照しながら説明する。  A method of driving the heat-discharge type print head in Embodiment 1 of the present invention will be described below with reference to the drawings.
まず、実施の形態 1における加熱放電型印字ヘッドの駆動方法を適用する加熱放 電型印字ヘッドの構成について説明する。  First, the configuration of a heating / discharging printhead to which the heating / discharging printhead driving method according to the first embodiment is applied will be described.
図 1 (a)は加熱放電型印字ヘッドの使用状態を示す模式側面図であり、図 1 (b)は 加熱放電型印字ヘッドを示す要部模式斜視図である。  FIG. 1 (a) is a schematic side view showing the usage state of the heating / discharge type print head, and FIG. 1 (b) is a schematic perspective view of the main part showing the heating / discharge type print head.
図 1中、 1は本発明の実施の形態 1における加熱放電型印字ヘッドの駆動方法を適 用する加熱放電型印字ヘッド、 2はアルミニウム等の材質で形成した加熱放電型印 字ヘッド 1の放熱板、 3aは放熱板 2の先端に形成された略円弧状の端面部、 4は後 述するフレキシブル基板に後述する放電電極 5や加熱手段の発熱抵抗体等が積層 され放熱板 2に配設された加熱放電型印字ヘッド 1のヘッド基板、 5は加熱放電型印 字ヘッド 1の放電電極、 5aは梯子型に形成された放電電極 5の複数の電子放出部位 、 5bは複数の電子放出部位 5aの両端部にそれぞれ接続された放電電極 5の共通電 極、 7はヘッド基板 4と後述する発熱抵抗体の発熱を制御するドライバ IC6を備えた 加熱放電型印字ヘッド 1の放電制御装置、 8は外部の制御部と接続するためのコネ クタ 8aを備え放熱板 2に配設された加熱放電型印字ヘッド 1のプリント配線基板、 9は ドライバ IC6及びプリント配線基板 8を保護するために覆設された加熱放電型印字へ ッド 1の ICカバー、 9aは ICカバー 9の背面に配設され放電電極 5の共通電極 5bに電 気的に接続され電子放出部位 5aに対して高電圧 (放電制御電圧)を供給する高圧 基板である。 In FIG. 1, 1 is a heating discharge type print head to which the driving method of the heating discharge type print head according to Embodiment 1 of the present invention is applied, and 2 is a heating discharge type mark formed of a material such as aluminum. The heat sink of the character head 1, 3 a is a substantially arc-shaped end surface formed at the tip of the heat sink 2, 4 is a flexible substrate to be described later, and a discharge electrode 5, which will be described later, a heating resistor of the heating means, etc. are laminated to radiate heat The head substrate of the heat discharge type print head 1 disposed on the plate 2, 5 is the discharge electrode of the heat discharge type print head 1, 5 a is a plurality of electron emission sites of the discharge electrode 5 formed in a ladder shape, 5 b is A common electrode of the discharge electrode 5 connected to both ends of the plurality of electron emission sites 5a, 7 is a heating discharge type print head 1 having a head IC 4 and a driver IC 6 for controlling the heat generation of a heating resistor described later. Discharge control device 8 includes a connector 8a for connecting to an external control unit and a printed wiring board of the heat discharge type print head 1 disposed on the heat sink 2 9 protects the driver IC 6 and the printed wiring board 8 In order to perform 1 is an IC cover, 9a is a high voltage substrate that is disposed on the back of the IC cover 9 and is electrically connected to the common electrode 5b of the discharge electrode 5 and supplies a high voltage (discharge control voltage) to the electron emission site 5a. is there.
[0030] ICカバー 9の背面に高圧基板 9aを配設し、放電電極 5の共通電極 5bに電気的に 接続することにより、放電制御電圧を印加するための電気配線を短くすることができ、 高圧基板 9aを加熱放電型印字ヘッド 1と一体に取扱うことができる。これにより、電気 配線の取り回しが不要で画像形成装置への組込みが容易で量産性に優れる。特に 、加熱放電型印字ヘッド 1を走査させて画像を形成する場合、加熱放電型印字へッ ド 1と高圧基板 9aを一体に移動させることができるので、電気配線に負荷などがかか り難ぐ導通不良の発生を低減できる。  [0030] By disposing the high voltage substrate 9a on the back of the IC cover 9 and electrically connecting to the common electrode 5b of the discharge electrode 5, the electrical wiring for applying the discharge control voltage can be shortened, The high-pressure substrate 9a can be handled integrally with the heat-discharge type print head 1. This eliminates the need for electrical wiring, makes it easy to incorporate into an image forming apparatus, and excels in mass productivity. In particular, when an image is formed by scanning the heat-discharge type print head 1, the heat-discharge type print head 1 and the high-voltage board 9a can be moved together, so that it is difficult to place a load on the electric wiring. The occurrence of poor conduction can be reduced.
尚、高圧基板 9aの配設位置は本実施の形態に限定されるものではなぐ放電電極 5の共通電極 5bに放電制御電圧を印加することができればよい。  Note that the arrangement position of the high-voltage substrate 9a is not limited to the present embodiment, and it is sufficient that the discharge control voltage can be applied to the common electrode 5b of the discharge electrode 5.
[0031] 次に、ヘッド基板の構造について詳細を説明する。 Next, details of the structure of the head substrate will be described.
図 2は加熱放電型印字ヘッドのヘッド基板の模式平面図であり、図 3 (a)は図 2の A A線矢視模式断面図であり、図 3 (b)は図 2の B— B線矢視模式断面図である。 図 2及び図 3中、 10は耐熱性及び絶縁性を有するポリイミド,ァラミド,ポリエーテル イミド等の薄膜樹脂で形成されたヘッド基板 4のフレキシブル基板、 1 laは基板 10の 上面に櫛歯状に形成された発熱用櫛歯電極、 l ibは複数の発熱用櫛歯電極 11aの 端部を接続するように基板 10の上面に略コ字型に形成された発熱用共通電極、 12 は複数の発熱用櫛歯電極 11aと交互に基板 10の上面に形成された発熱用個別電 極、 13は放電制御装置 7の加熱手段、 13aは発熱用櫛歯電極 11a及び発熱用個別 電極 12に電気的に接続され帯状に形成された加熱手段 13の発熱抵抗体、 13bは 発熱用共通電極 l ib及び発熱用個別電極 12の端部を除いて基板 10の上面に覆設 された発熱部絶縁膜、 16は放電電極 5の内の共通電極 5bの表面に形成された導電 材層である。 Fig. 2 is a schematic plan view of the head substrate of a heat discharge type print head. Fig. 3 (a) is a schematic cross-sectional view taken along the line AA in Fig. 2, and Fig. 3 (b) is a line B-B in Fig. 2. It is a cross-sectional schematic view. 2 and 3, 10 is a flexible substrate of the head substrate 4 made of a heat-resistant and insulating thin film resin such as polyimide, aramid, or polyetherimide, and 1 la is a comb-like shape on the upper surface of the substrate 10. The formed heating comb electrode, l ib is a heating common electrode formed in a substantially U-shape on the upper surface of the substrate 10 so as to connect the ends of the plurality of heating comb electrodes 11a, 12 Is a heating individual electrode formed on the upper surface of the substrate 10 alternately with a plurality of heating comb electrodes 11a, 13 is a heating means of the discharge control device 7, 13a is a heating comb electrode 11a and a heating individual electrode 12 A heating resistor 13 of the heating means 13 that is electrically connected to the heating element 13 and 13b is a heating part covered on the upper surface of the substrate 10 except for the ends of the heating common electrode l ib and the heating individual electrode 12. An insulating film 16 is a conductive material layer formed on the surface of the common electrode 5b in the discharge electrode 5.
[0032] 尚、前述の放電電極 5は発熱部絶縁膜 13bにより発熱用櫛歯電極 l la、発熱用個 別電極 12及び発熱抵抗体 13aと絶縁され、放電電極 5の複数の電子放出部位 5aが 発熱用個別電極 12に対応する位置で発熱抵抗体 13aに対向して形成されている。 発熱部絶縁膜 13bは耐熱性及び絶縁性を有し、放電電極 5と加熱手段 13との間を 絶縁する。尚、絶縁性を確保するために、発熱部絶縁膜 13bの両面の内の少なくとも 一方の面に絶縁膜を形成してもよい。絶縁膜は SiON, SiO等の無機質やその他の  Note that the discharge electrode 5 is insulated from the heating comb electrode l la, the heating individual electrode 12 and the heating resistor 13a by the heating portion insulating film 13b, and a plurality of electron emission portions 5a of the discharge electrode 5 are insulated. Is formed to face the heat generating resistor 13a at a position corresponding to the heat generating individual electrode 12. The heat generating portion insulating film 13b has heat resistance and insulating properties, and insulates between the discharge electrode 5 and the heating means 13. In order to ensure insulation, an insulating film may be formed on at least one of the two surfaces of the heat generating portion insulating film 13b. Insulating film is made of inorganic materials such as SiON and SiO
2  2
絶縁性を有する材質 (有機'無機を問わず)で薄膜状に形成することができる。特に、 発熱抵抗体 13aの熱を効率よく電子放出部位 5aに伝達することができる高熱伝導性 のものが好ましい。  It can be formed into a thin film with an insulating material (whether organic or inorganic). In particular, a material having high thermal conductivity that can efficiently transfer the heat of the heating resistor 13a to the electron emission site 5a is preferable.
[0033] 導電材層 16は導電性に優れる銀ペーストゃ銀メツキ等で形成した。共通電極 5bの 表面に導電材層 16を形成することで共通電極 5bの抵抗値を引き下げることができ、 各々の電子放出部位 5a間に生じる電位差を確実に低減できる。 [0033] The conductive material layer 16 was formed of silver paste or the like having excellent conductivity. By forming the conductive material layer 16 on the surface of the common electrode 5b, the resistance value of the common electrode 5b can be lowered, and the potential difference generated between the respective electron emission sites 5a can be reliably reduced.
尚、本実施の形態では、二つの共通電極 5bにそれぞれ導電材層 16を形成したが 、いずれか一方のみに形成してもよい。導電材層 16は図 2, 3に示したように共通電 極 5bの一部に形成してもよいし、全幅に渡って形成してもよい。また、導電材層 16は 放電電極 5の電子放出部位 5aを除く箇所に形成してもよい。  In the present embodiment, the conductive material layer 16 is formed on each of the two common electrodes 5b, but may be formed on only one of them. The conductive material layer 16 may be formed on a part of the common electrode 5b as shown in FIGS. 2 and 3, or may be formed over the entire width. Further, the conductive material layer 16 may be formed at a location other than the electron emission site 5 a of the discharge electrode 5.
[0034] ヘッド基板 4に放熱板 2を配設することで加熱手段 13で発生した熱を速やかに放熱 板 2に吸収させ、放熱板 2から放熱することができる。これにより、加熱手段 13の急速 冷却を可能にして加熱停止に対する応答性を向上させている。また、ドライバ IC6等 を熱カゝら守ることができ信頼性に優れる。放熱板 2の表面に溝等により凹凸を形成し た場合、放熱板 2の表面積を拡大することができ、放熱の効率性を向上させることが できる。 尚、発熱抵抗体 13aの加熱は 24Vの低電圧で行い、発熱抵抗体 13aを発熱させる ためのスィッチとして用いるドライバ IC6には、 5V駆動の低耐電圧対応のものを用い た。このドライバ IC6は加熱手段 13から延びるリードパターンに金線でワイヤボンディ ングした後に、エポキシ榭脂等の IC保護用の樹脂で封止した。 By disposing the heat radiating plate 2 on the head substrate 4, the heat generated by the heating means 13 can be quickly absorbed by the heat radiating plate 2 and radiated from the heat radiating plate 2. As a result, the heating means 13 can be rapidly cooled to improve the response to the heating stop. In addition, it can protect the driver IC6 etc. from heat and has excellent reliability. When irregularities are formed on the surface of the heat radiating plate 2 by grooves or the like, the surface area of the heat radiating plate 2 can be increased, and the efficiency of heat radiation can be improved. The heating resistor 13a was heated at a low voltage of 24V, and the driver IC 6 used as a switch for generating heat from the heating resistor 13a was a 5V drive compatible with low withstand voltage. The driver IC 6 was wire bonded to the lead pattern extending from the heating means 13 with a gold wire, and then sealed with an IC protecting resin such as epoxy resin.
[0035] 次に、ヘッド基板の製造方法について詳細に説明する。 Next, a method for manufacturing the head substrate will be described in detail.
まず、加熱部形成工程について説明する。  First, a heating part formation process is demonstrated.
図 2及び図 3において、平面状に形成されたフレキシブル基板 10の表面に金ぺー スト等の導体を印刷した後、エッチングにより発熱用共通電極 l ibで接続された複数 の発熱用櫛歯電極 11a及び発熱用個別電極 12を形成する。その後、発熱用櫛歯電 極 11a及び発熱用個別電極 12の上部に TaSiO、 RuO等を印刷する等して帯状の  2 and 3, a plurality of heat generating comb-teeth electrodes 11a connected by heat generating common electrodes l ib after printing a conductor such as a gold paste on the surface of the flexible substrate 10 formed in a flat shape. And the individual electrode 12 for heat generation is formed. After that, a strip-like shape is printed by printing TaSiO, RuO, etc. on the top of the heating comb electrode 11a and the heating individual electrode 12.
2 2  twenty two
発熱抵抗体 13aを形成する。  A heating resistor 13a is formed.
[0036] 本実施の形態では、加熱手段 13の発熱抵抗体 13aを帯状に形成し、発熱用櫛歯 電極 11aと発熱用個別電極 12を交互に配設し、各中央の 1本の発熱用個別電極 12 とその両側の発熱用櫛歯電極 11aとの間に通電することにより各々の電子放出部位 5aの位置に対応する発熱抵抗体 13aの任意の箇所を選択的に発熱させ、電子放出 部位 5aを加熱する方式とした力 これに限定されるものではなぐ各々の電子放出部 位 5aを選択的に加熱できる構造であればよい。尚、加熱手段 13の構成は厚膜型で ち薄膜型でもよい。  [0036] In the present embodiment, the heating resistor 13a of the heating means 13 is formed in a strip shape, the heating comb electrodes 11a and the heating individual electrodes 12 are alternately arranged, and one heating heater at each center is provided. By energizing between the individual electrode 12 and the comb electrode 11a for heat generation on both sides thereof, any part of the heating resistor 13a corresponding to the position of each electron emission part 5a is selectively heated, and the electron emission part The force used to heat 5a is not limited to this, and any structure that can selectively heat each electron emission portion 5a is acceptable. The configuration of the heating means 13 may be a thick film type or a thin film type.
[0037] 次に、放電電極形成工程について説明する。  [0037] Next, the discharge electrode forming step will be described.
図 2及び図 3において、発熱用共通電極 l ib及び発熱用個別電極 12の各端部を 除いてフレキシブル基板 10の表面に 300°C程度の耐熱性及び絶縁性を有するポリ イミド,ァラミド,ポリエーテルイミド等の薄膜榭脂を印刷する等して発熱部絶縁膜 13b を形成する。発熱部絶縁膜 13bは発熱用共通電極 l lb、発熱用個別電極 12、発熱 抵抗体 13a等を保護し、絶縁できるものであればよいが、発熱抵抗体 13aの熱を効 率よく放電電極 5に伝達することができる高熱伝導性のものが好適に用いられる。発 熱部絶縁膜 13bは、ポリイミドゃァラミド等の耐熱性及び絶縁性を有する榭脂の溶液 をスクリーン印刷等で塗布して形成してもよ ヽし、同様の榭脂で形成された薄膜シー トを覆設して形成してもよい。 [0038] 次に、発熱部絶縁膜 13bの上部に加熱手段 13の発熱用個別電極 12に対向した 複数の電子放出部位 5a及びそれらを接続する共通電極 5bを形成する。電子放出部 位 5a及び共通電極 5bの形成には、金、銀、銅、アルミニウム等の金属を、蒸着ゃス ノッタゃ印刷で形成した後、エッチングしてパターン形成するものが好適に用いられ る。また、その他にカーボン等の導電材料を用いてもよい。 2 and 3, the surface of the flexible substrate 10 except for the ends of the heat generating common electrode l ib and the heat generating individual electrode 12 has a heat resistance and insulation properties of about 300 ° C on the surface of the flexible substrate 10. The heat generating portion insulating film 13b is formed by printing a thin film resin such as ether imide. The heat generating portion insulating film 13b may be any material that can protect and insulate the heat generating common electrode l lb, the heat generating individual electrode 12, the heat generating resistor 13a, etc., but the heat of the heat generating resistor 13a is efficiently discharged 5 Those having a high thermal conductivity capable of being transmitted to are preferably used. The heat generating portion insulating film 13b may be formed by applying a heat-resistant and insulating resin solution such as polyimide garamide by screen printing or the like, or a thin film sheet formed of the same resin. A cover may be formed. Next, a plurality of electron emission portions 5a facing the heat generating individual electrodes 12 of the heating means 13 and a common electrode 5b connecting them are formed on the heat generating portion insulating film 13b. For the formation of the electron emission portion 5a and the common electrode 5b, a material such as gold, silver, copper, aluminum, or the like, which is formed by vapor deposition or notter printing and then etched to form a pattern is suitably used. . In addition, a conductive material such as carbon may be used.
尚、本実施の形態では電子放出部位 5aを略矩形状に形成したが、台形状、砲弾 状、半円形状あるいはこれらを組合せた形状等に形成することができる。また、放電 電極 5は縁周辺力 の放電量が多 、ので、縁周辺の周長が長くなるように電子放出 部位 5aの外周周縁部に複数の凹凸部を形成して放電の発生効率を向上させること ができる。その結果、電子放出部位 5aからの放電量が増加し、イオン照射量や発光 強度を増加させることができるので、放電制御装置 7の省エネルギー性に優れる。ま た、放電電極 5への印加電圧を小さく設定できるので、放電電極 5の長寿命性にも優 れる。  In the present embodiment, the electron emission site 5a is formed in a substantially rectangular shape, but can be formed in a trapezoidal shape, a shell shape, a semicircular shape, or a combination of these. In addition, since the discharge electrode 5 has a large amount of discharge due to the peripheral edge force, a plurality of irregularities are formed on the outer peripheral edge of the electron emission site 5a to increase the peripheral length of the peripheral edge, thereby improving the discharge generation efficiency. It can be made. As a result, the amount of discharge from the electron emission site 5a is increased, and the amount of ion irradiation and emission intensity can be increased, so that the energy saving property of the discharge control device 7 is excellent. In addition, since the voltage applied to the discharge electrode 5 can be set small, the life of the discharge electrode 5 is excellent.
[0039] ヘッド基板 4のフレキシブル基板 10や発熱部絶縁膜 13b等の厚みは、各々が例え ば数/ z m〜数十/ z mと極めて薄いものであるため、ヘッド基板 4の総合的な厚さを数 十/ z m〜数百/ z m程度に抑えて極めて薄く形成することができる。ヘッド基板 4は平 面状態で形成するものの、極めて薄くかつ柔軟性に富んでいるため、平面状態から 放熱板 2の端面部 3aの形状に合わせて湾曲して容易に加工する(変形させる)ことが でき、放電電極 5や加熱手段 13等の形成技術上の制約を受けることなぐ加熱放電 型印字ヘッド 1を得ることができる。また、ヘッド基板 4は共通のままで、放熱板 2の形 状やヘッド基板 4の貼り付け位置を変えるだけで様々な形態の加熱放電型印字へッ ド 1を得ることができ、汎用性、量産性に優れる。  [0039] The thickness of the flexible substrate 10 of the head substrate 4 and the heat generating part insulating film 13b is extremely thin, for example, several / zm to several tens / zm. Can be formed to be extremely thin with a thickness of about several tens / zm to several hundreds / zm. Although the head substrate 4 is formed in a flat state, it is extremely thin and flexible, so it can be easily processed (deformed) by bending it from the flat state according to the shape of the end surface 3a of the heat sink 2. Therefore, it is possible to obtain a heat discharge type print head 1 that is not subject to restrictions on the formation technology of the discharge electrode 5, the heating means 13, and the like. In addition, the head substrate 4 remains the same, and the heat discharge type print head 1 can be obtained in various forms simply by changing the shape of the heat sink 2 and the attachment position of the head substrate 4. Excellent mass productivity.
[0040] 以上のように形成された加熱放電型印字ヘッドの基本的な動作につ!ヽて説明する 図 4は加熱放電型印字ヘッドを用いた画像形成方法を示す模式側面図である。 図 4中、 20は電荷の作用により繰り返し画像の書き込みや消去が可能な静電現像 方式の記録媒体、 21は記録媒体 20の裏面側に形成或いは接触又は近接して配設 された対向電極である。 まず、電位差設定工程において、図 4に示すように、加熱放電型印字ヘッド 1の放 電電極 5と対向電極 21との間に放電制御電圧 E (印加しただけでは放電が起こらな The basic operation of the heat discharge type print head formed as described above will be described. FIG. 4 is a schematic side view showing an image forming method using the heat discharge type print head. In FIG. 4, 20 is an electrostatic development type recording medium that can repeatedly write and erase images by the action of electric charge, and 21 is a counter electrode formed on, or in contact with, or close to the back side of the recording medium 20. is there. First, in the potential difference setting step, as shown in FIG. 4, the discharge control voltage E (discharging does not occur only when applied) between the discharge electrode 5 and the counter electrode 21 of the heat discharge type print head 1.
0  0
いが、加熱することにより放電が起こる電圧域を言う)に相当する電位差を設定して電 界を形成する。放電電極 5と対向電極 21との間の電位差を設定する電位差設定部と しては、放電電極 5に電圧を印加するヘッド側電圧印加部と、対向電極 21に選択的 な接地又は電圧印加を行う媒体側電圧制御部を備えたものが好適に用いられる。へ ッド側電圧印加部により放電電極 5に放電制御電圧 Eを印加し、媒体側電圧制御部  However, the electric field is formed by setting a potential difference corresponding to the voltage range in which discharge occurs when heated. The potential difference setting unit that sets the potential difference between the discharge electrode 5 and the counter electrode 21 includes a head-side voltage application unit that applies a voltage to the discharge electrode 5, and a selective grounding or voltage application to the counter electrode 21. A device provided with a medium-side voltage control unit is preferably used. The discharge control voltage E is applied to the discharge electrode 5 by the head side voltage application unit, and the medium side voltage control unit
0  0
により対向電極 21を接地するようにしてもよいし、放電制御電圧 Eを放電電極 5と対  The counter electrode 21 may be grounded by a discharge control voltage E and the discharge electrode 5
0  0
向電極 21に分配して印加するようにしてもよい。これにより、記録媒体 20の種類ゃ特 性等に応じて対向電極 21に印加する電圧値を調整することができ、放電電極 5側の 負担を軽減して効率的に放電を発生させることができる。  It may be distributed and applied to the counter electrode 21. As a result, the voltage value applied to the counter electrode 21 can be adjusted according to the type of the recording medium 20, and the discharge on the discharge electrode 5 side can be reduced and discharge can be generated efficiently. .
[0041] 次に、放電電極加熱工程にお!ヽて、放電電極 5 (共通電極 5b)に放電制御電圧 E [0041] Next, in the discharge electrode heating step, the discharge control voltage E is applied to the discharge electrode 5 (common electrode 5b).
0 以下の電圧が印加された状態で、加熱手段 13をドライバ IC6で制御し、加熱手段 13 の発熱抵抗体 13aにより電子放出部位 5aを選択的に加熱(100〜300°C)すること で、対向して配置された放電電極 5の電子放出部位 5aと対向電極 21との間で放電 を発生させることができる。そして電界によって放電電極 5の電子放出部位 5aから放 出させた電子やイオンを記録媒体 20の記録面 (表面)に移動させ、電荷を付与して 画像を形成することができる。この加熱手段 13による加熱箇所を選択することで、容 易に放電電極 5の任意の電子放出部位 5aから選択的に電子を放出させて放電を発 生させることができる(図 2, 3参照)。  In a state where a voltage of 0 or less is applied, the heating means 13 is controlled by the driver IC6, and the electron emission site 5a is selectively heated (100 to 300 ° C.) by the heating resistor 13a of the heating means 13. It is possible to generate a discharge between the electron emission site 5a of the discharge electrode 5 and the counter electrode 21 that are arranged to face each other. Then, the electrons and ions emitted from the electron emission site 5a of the discharge electrode 5 by the electric field can be moved to the recording surface (surface) of the recording medium 20, and an image can be formed by applying charges. By selecting the heating location by the heating means 13, it is possible to easily emit electrons by selectively emitting electrons from any electron emission site 5a of the discharge electrode 5 (see FIGS. 2 and 3). .
[0042] 以上のように、加熱放電型印字ヘッド 1では電圧が印加された放電電極 5に対する 加熱の有無を制御することにより、放電の発生の有無を制御できるので、放電電極 5 に印加された電圧と放電電極 5の温度によってイオンの発生量が変化することになる 。従って、イオンの発生量を制御するために、放電電極 5に駆動用電圧を印加するタ イミングと加熱手段 13によって放電電極 5を加熱するタイミングや加熱手段 13による 加熱量を制御する必要がある。  [0042] As described above, in the heating and discharging type print head 1, the presence or absence of discharge can be controlled by controlling the presence or absence of heating of the discharge electrode 5 to which a voltage is applied. The amount of ions generated varies depending on the voltage and the temperature of the discharge electrode 5. Therefore, in order to control the amount of ions generated, it is necessary to control the timing of applying a driving voltage to the discharge electrode 5 and the timing of heating the discharge electrode 5 by the heating means 13 and the amount of heating by the heating means 13.
[0043] 以下、実施の形態 1における加熱放電型印字ヘッドの駆動方法の詳細について説 明する。 図 5は実施の形態 1における加熱放電型印字ヘッドの構成を示すブロック図である 図 5において、加熱放電型印字ヘッド 1の加熱手段 13は、 n箇所の電子放出部位 5 aに対応した発熱箇所 Rl〜Rnを有する発熱抵抗体 13aと、発熱抵抗体 13aと電気 的に接続され発熱抵抗体 13aの発熱を制御するドライバ IC6と、を備えている。 The details of the method for driving the heat-discharge type print head in Embodiment 1 will be described below. FIG. 5 is a block diagram showing the configuration of the heat discharge type print head according to the first embodiment. In FIG. 5, the heating means 13 of the heat discharge type print head 1 includes heat generation points corresponding to n electron emission sites 5 a. A heating resistor 13a having Rl to Rn and a driver IC 6 that is electrically connected to the heating resistor 13a and controls the heat generation of the heating resistor 13a are provided.
ドライバ IC6は、シフトレジスタ部、ラッチ部、出力ゲート部及び出力トランジスタ Q1 〜Qnを有している。各部には制御部力もコネクタ 8a (図 1参照)に接続されるケープ ルを介して信号が入力される。  The driver IC 6 includes a shift register unit, a latch unit, an output gate unit, and output transistors Q1 to Qn. Signals are also input to each part through the cable connected to the connector 8a (see Fig. 1).
また、発熱抵抗体 13aの発熱箇所 Rl〜Rnに共通の発熱用共通電極 l ib (図 2, 3 参照)には、発熱抵抗体 13aの駆動用の直流電源電圧 VHDが印加されている。 画像データ(画像情報)はパラレルデータではなぐ 1ラインのシリアルデータ Serial inとして、クロック信号 Clockと同期されたシフトレジスタ部へ入力される。これらの 画像データは、ラッチ信号 Latchのタイミングでラッチ部へ転送される。出力ゲート部 は、ラッチ部の出力レベルが Hレベルの発熱箇所 Rl〜Rnに対して、ストローブ信号 Strobeが Lレベルの時間だけ、出力トランジスタ Ql〜Qnをオンにする。これにより、 画像データの Hレベルに対応して発熱箇所 Rl〜Rnが発熱する。このとき、ストロー ブ信号 Strobeに基づいて高圧基板 9aから放電電極 5に駆動用電圧が印加されるの で、電位差設定工程のヘッド側電圧印加工程にぉ ヽて放電電極 5に放電制御電圧 以下の駆動用電圧を印加するタイミングと、加熱手段 13で放電電極 5を選択的に加 熱する放電電極加熱工程のタイミングを同期させることができる。尚、発熱部絶縁膜 1 3b等の熱伝導性などを考慮して駆動用電圧の印加のタイミングを放電電極 5の加熱 のタイミングに対してずらす必要がある場合には、高圧基板 9a内に遅延回路を持た せても良い。  A DC power supply voltage VHD for driving the heating resistor 13a is applied to the heating common electrode l ib (see FIGS. 2 and 3) common to the heating points Rl to Rn of the heating resistor 13a. Image data (image information) is input to a shift register unit synchronized with a clock signal Clock as one line of serial data Serial in rather than parallel data. These image data are transferred to the latch unit at the timing of the latch signal Latch. The output gate unit turns on the output transistors Ql to Qn for the time when the strobe signal Strobe is at the L level for the heat generation points Rl to Rn where the output level of the latch unit is the H level. As a result, the heat generation points Rl to Rn generate heat corresponding to the H level of the image data. At this time, since a driving voltage is applied from the high-voltage substrate 9a to the discharge electrode 5 based on the strobe signal Strobe, the discharge electrode 5 has a discharge control voltage equal to or less than the discharge control voltage during the head side voltage application step of the potential difference setting step. The timing for applying the driving voltage can be synchronized with the timing of the discharge electrode heating step in which the discharge means 5 is selectively heated by the heating means 13. If it is necessary to shift the timing of applying the driving voltage with respect to the timing of heating the discharge electrode 5 in consideration of the thermal conductivity of the heat generating part insulating film 13b, etc., it is delayed in the high voltage substrate 9a. A circuit may be provided.
ストローブ信号 Strobeはデータがある時だけオンになるので、データの数により一 印字周期内のオン回数を制御することができる。よって、画像(1ドット)の濃度に応じ て一印字周期内での放電電極 5への駆動用電圧の印加及び加熱手段 13による加 熱の回数を変えることができ、イオン発生量を変化させることができるので、記録媒体 20における帯電量を制御することができ、簡便に階調記録を行うことができる。 尚、図 5で説明したものは、加熱手段 13として発熱抵抗体 13aを用いる場合の構成 の一例に過ぎず、ヘッド側電圧印加工程と放電電極加熱工程のタイミングを同期さ せる手段や加熱手段 13はこれに限定されるものではない。 Since the strobe signal Strobe is turned on only when there is data, the number of ons within one printing cycle can be controlled by the number of data. Therefore, depending on the density of the image (1 dot), it is possible to change the number of times the heating voltage is applied by applying the driving voltage to the discharge electrode 5 and the heating means 13 within one printing cycle, thereby changing the amount of generated ions. Therefore, the charge amount in the recording medium 20 can be controlled, and gradation recording can be easily performed. 5 is merely an example of a configuration in which a heating resistor 13a is used as the heating means 13, and means for synchronizing the timing of the head-side voltage application process and the discharge electrode heating process or the heating means 13 Is not limited to this.
[0045] 図 6 (a)は実施の形態 1における加熱放電型印字ヘッドの駆動方法のヘッド側電圧 印加工程での駆動用電圧を示す図であり、図 6 (b)は実施の形態 1における加熱放 電型印字ヘッドの駆動方法の放電電極加熱工程での放電電極の温度を示す図であ る。 FIG. 6 (a) is a diagram showing a driving voltage in the head-side voltage application process of the heating and discharging type print head driving method in the first embodiment, and FIG. 6 (b) is a diagram in the first embodiment. FIG. 5 is a diagram showing the temperature of the discharge electrode in the discharge electrode heating step of the heating / discharging type print head driving method.
まず、電位差設定工程のヘッド側電圧印加工程にっ ヽて説明する。  First, the head side voltage application step of the potential difference setting step will be described.
放電電極 5への駆動用電圧の印加は共通電極 5bに接続された高圧基板 9a (図 1 参照)から行う。放電電極 5に印加する駆動用電圧は、色々な組み合わせが考えられ る力 本実施の形態では、図 6 (a)に示すように三角波に DCバイアスを重畳し、ピー ク値が放電制御電圧 Eとなるようにして一印字周期 T内で複数回(図 6では 3回)繰  The driving voltage is applied to the discharge electrode 5 from the high voltage substrate 9a (see FIG. 1) connected to the common electrode 5b. In this embodiment, the driving voltage applied to the discharge electrode 5 can be considered in various combinations. As shown in FIG. 6 (a), a DC bias is superimposed on the triangular wave, and the peak value is the discharge control voltage E. Repeated several times within one printing cycle T (3 times in Fig. 6).
0  0
返し印加した。尚、このとき対向電極 21は接地されている。  Applied repeatedly. At this time, the counter electrode 21 is grounded.
[0046] 次に、放電電極加熱工程について説明する。 [0046] Next, the discharge electrode heating step will be described.
放電電極加熱工程においては、加熱手段 13により放電電極 5を選択的に加熱する 力 この加熱のタイミングを図 6に示すように、ヘッド側電圧印加工程における駆動用 電圧の印加のタイミングに同期させて行う。  In the discharge electrode heating step, the force for selectively heating the discharge electrode 5 by the heating means 13 is synchronized with the timing of applying the driving voltage in the head side voltage applying step, as shown in FIG. Do.
このとき、ヘッド側電圧印加工程で放電電極 5に印加される駆動用電圧のピーク (E )時に、放電電極加熱工程により加熱された放電電極 5の温度がピークとなるように At this time, the temperature of the discharge electrode 5 heated by the discharge electrode heating step is at the peak at the peak of the drive voltage (E) applied to the discharge electrode 5 in the head side voltage application step.
0 0
タイミングを合わせた。放電電極 5の温度がピークとなっている間に駆動用電圧の電 圧値がピーク (E )となるようにタイミングを合わせることにより、効率的に放電を発生さ  The timing was adjusted. By adjusting the timing so that the voltage value of the driving voltage reaches the peak (E) while the temperature of the discharge electrode 5 is at the peak, efficient discharge is generated.
0  0
せることができるためである。尚、イオン発生量 (電荷量)は、図 6 (b)に示した放電電 極 5の温度にほぼ比例して変化する。実際には、発熱部絶縁膜 13bの厚みや材料の 熱伝導性の違いにより放電電極 5への熱の伝わり方に差が出てくるため、放電電極 加熱工程における加熱手段 13への加熱 ONタイミングと駆動用電圧のピーク (E )を  It is because it can be made. The ion generation amount (charge amount) changes almost in proportion to the temperature of the discharge electrode 5 shown in FIG. 6 (b). Actually, the heat transfer to the discharge electrode 5 varies depending on the thickness of the heat-generating part insulating film 13b and the thermal conductivity of the material, so the heating ON timing to the heating means 13 in the discharge electrode heating process And drive voltage peak (E)
0 熱の伝わりのタイムラグ分ずらして、加熱手段 13による加熱を早くすることが好ましい また、ヘッド側電圧印加工程において、一印字周期 T内で複数回の駆動用電圧の 印加を行う場合(図 6では 3回)は、各々の駆動用電圧の印加のタイミングに同期して 加熱手段 13による加熱を行う。 1回当たりの駆動用電圧の電圧値や印加時間或いは 加熱手段 13による加熱時間を制御したり、一印字周期 T内での駆動用電圧の印加 及び加熱手段 13による加熱の繰返しの回数を制御したりすることにより、イオン発生 量を制御することができ、簡便に階調記録を行うことができる。 0 It is preferable that the heating means 13 accelerate the heating by shifting the time lag of the heat transfer. Further, in the head-side voltage application process, the driving voltage is applied several times within one printing cycle T. When applying (three times in FIG. 6), heating by the heating means 13 is performed in synchronization with the timing of applying each driving voltage. Controls the voltage value and application time of the driving voltage per time or the heating time by the heating means 13, and controls the number of times the driving voltage is applied and the heating means 13 is repeated within one printing cycle T. As a result, the amount of ion generation can be controlled, and gradation recording can be easily performed.
実施の形態 1の加熱放電型印字ヘッドの駆動方法は以上のように構成されて!、る ので、以下の作用を有する。  The method for driving the heat-discharge type print head according to the first embodiment is configured as described above, and thus has the following effects.
(1)電位差設定工程で放電電極 5と対向電極 21との間に放電制御電圧 Eに相当す  (1) Corresponds to the discharge control voltage E between the discharge electrode 5 and the counter electrode 21 in the potential difference setting process.
0  0
る電位差を設定して電界を形成することにより放電に備えることができ、放電電極カロ 熱工程で画像情報に基づいて放電電極 5を選択的に加熱するだけで放電を発生さ せることができるので、高電圧の制御が不要で、容易に放電の発生を制御することが できる。 By setting the potential difference to be generated and preparing an electric field, it is possible to prepare for the discharge, and it is possible to generate a discharge simply by selectively heating the discharge electrode 5 based on the image information in the discharge electrode calorie heating process. Therefore, it is not necessary to control a high voltage, and the generation of discharge can be easily controlled.
(2)ヘッド側電圧印加工程にぉ 、て放電電極 5に駆動用電圧を印加するタイミングと 、放電電極加熱工程において放電電極 5を選択的に加熱するタイミングを同期させ ることにより、確実に放電を発生させてイオンの発生量のばらつきを低減することがで き画像品質の信頼性に優れると共に、放電電極 5に不必要な電圧を印加することが なく省エネルギー性に優れる。  (2) During the head-side voltage application process, the timing of applying the driving voltage to the discharge electrode 5 and the timing of selectively heating the discharge electrode 5 in the discharge electrode heating process are synchronized to ensure reliable discharge. As a result, it is possible to reduce the variation in the amount of ions generated, and the image quality is highly reliable, and an unnecessary voltage is not applied to the discharge electrode 5 and energy saving is excellent.
(3)ヘッド側電圧印加工程における駆動用電圧の印加を一印字周期内で複数回繰 返すことにより、それに同期させて加熱手段 13による加熱を複数回に分割して繰返 すことができ、放電量が多くなる加熱の立ち上がりの回数を増加させることができるの で、全体としてのイオン発生量を増加させることができ、放電発生の効率性に優れる  (3) By repeating the application of the driving voltage in the head side voltage application process a plurality of times within one printing cycle, the heating by the heating means 13 can be divided and repeated a plurality of times in synchronization with it, Since the number of heating rises that increase the amount of discharge can be increased, the total amount of ions generated can be increased and the efficiency of discharge generation is excellent.
(4)一印字周期 T内で繰返す駆動用電圧の印加回数を制御するだけでイオン発生 量を簡便に精度よく制御でき、階調記録を行って高品質な画像を形成することができ る。 (4) The amount of ion generation can be easily and accurately controlled simply by controlling the number of times of applying the driving voltage repeated within one printing cycle T, and high-quality images can be formed by gradation recording.
(5)一印字周期 T内で駆動用電圧の印加を複数回繰返すことにより、放電回数を増 カロさせて全体としてのイオン発生量を増カロさせることができるので、駆動用電圧のピ ーク値 (E )を低く設定することや加熱手段 13による加熱時間及び放電発生時間を 全体として短縮することができ、放電電極の長寿命性に優れる。 (5) By repeating the application of the driving voltage multiple times within one printing cycle T, the number of discharges can be increased and the total amount of generated ions can be increased, so the peak of the driving voltage can be increased. Set the value (E) low, the heating time by the heating means 13 and the discharge occurrence time. As a whole, it can be shortened, and the long life of the discharge electrode is excellent.
(6)ヘッド側電圧印加工程で放電電極 5に印加される駆動用電圧のピーク時に、放 電電極加熱工程による放電電極 5の加熱を行うことにより、確実に放電を発生させる ことができ、特に、駆動用電圧のピークと放電電極加熱工程により加熱された放電電 極 5の温度のピークを略一致させた場合、最大量のイオンを発生させることができ、 放電発生の効率性に優れる。  (6) At the peak of the driving voltage applied to the discharge electrode 5 in the head side voltage application process, the discharge electrode 5 can be heated by the discharge electrode heating process to reliably generate a discharge. When the peak of the driving voltage and the temperature peak of the discharge electrode 5 heated by the discharge electrode heating step are substantially matched, the maximum amount of ions can be generated, and the discharge generation efficiency is excellent.
[0048] (実施の形態 2) [0048] (Embodiment 2)
本発明の実施の形態 2における加熱放電型印字ヘッドの駆動方法について、以下 図面を参照しながら説明する。  A method for driving the heat-discharge type print head according to the second embodiment of the present invention will be described below with reference to the drawings.
図 7 (a)は実施の形態 2における加熱放電型印字ヘッドの駆動方法のヘッド側電圧 印加工程での駆動用電圧を示す図であり、図 7 (b)は実施の形態 2における加熱放 電型印字ヘッドの駆動方法の媒体側電圧印加工程で対向電極に印加する電圧を示 す図であり、図 7 (c)は実施の形態 2における加熱放電型印字ヘッドの駆動方法の放 電電極加熱工程での放電電極の温度を示す図である。尚、実施の形態 1と同様のも のには同一の符号を付して説明を省略する。  FIG. 7 (a) is a diagram showing a driving voltage in the head side voltage application process of the heating discharge type print head driving method in the second embodiment, and FIG. 7 (b) is a heating discharge in the second embodiment. FIG. 7 (c) is a diagram showing a voltage applied to the counter electrode in the medium-side voltage application step of the method for driving the mold print head, and FIG. It is a figure which shows the temperature of the discharge electrode in a process. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
[0049] 図 7において、実施の形態 2における加熱放電型印字ヘッドの駆動方法が実施の 形態 1と異なるのは、電位差設定工程のヘッド側電圧印加工程に同期させて対向電 極 21に放電制御電圧 Eの一部を印加する媒体側電圧印加工程を有する点である。 In FIG. 7, the driving method of the heat discharge type print head in the second embodiment is different from that in the first embodiment in that discharge control is performed on the counter electrode 21 in synchronization with the head side voltage application process in the potential difference setting process. This is a point having a medium side voltage applying step for applying a part of the voltage E.
0  0
このとき、放電電極 5と対向電極 21との間の電位差のピークは放電制御電圧 Eに  At this time, the peak of the potential difference between the discharge electrode 5 and the counter electrode 21 is the discharge control voltage E.
0 保たれており、放電電極 5に印加される駆動用電圧のピーク値 Eと対向電極 21に印 加される電圧 Eとの間には、 E— E =Eの関係が成り立つている。  The relationship of E−E = E is established between the peak value E of the driving voltage applied to the discharge electrode 5 and the voltage E applied to the counter electrode 21.
2 1 2 0  2 1 2 0
このように放電電極 5と対向電極 21との間に設定される放電制御電圧 E力 放電  Thus, the discharge control voltage E force discharge set between the discharge electrode 5 and the counter electrode 21
0 電極 5と対向電極 21に分配されて印加されている以外は、実施の形態 1と同様なの で説明を省略する。  Except for being distributed and applied to the electrode 5 and the counter electrode 21, they are the same as in the first embodiment, and thus description thereof is omitted.
尚、本実施の形態では、実施の形態 1における駆動用電圧の DCバイアス分に相 当する電圧 Eを全て対向電極 21に印加した力 一部のみを印加してもよい。  In the present embodiment, only a part of the force applied to the counter electrode 21 may be applied to the voltage E corresponding to the DC bias component of the driving voltage in the first embodiment.
2  2
[0050] 実施の形態 2の加熱放電型印字ヘッドの駆動方法は以上のように構成されて!、る ので、実施の形態 1の作用に加え、以下の作用を有する。 (1)ヘッド側電圧印加工程に同期させて対向電極 21に放電制御電圧 Eの一部を印 [0050] The method for driving the heat-discharge-type print head according to the second embodiment is configured as described above. Therefore, in addition to the operation of the first embodiment, the following operation is provided. (1) A part of the discharge control voltage E is applied to the counter electrode 21 in synchronization with the head side voltage application process.
0 加する媒体側電圧印加工程を行うことにより、放電電極 5に直接印加される駆動用電 圧 Eを低減することができ、放電電極 5の長寿命性に優れると共に、記録媒体 20の 種類や特性等に応じて対向電極 21に印加する電圧値 Eを最適に調整して高品質  By performing the medium-side voltage application process to be applied, the driving voltage E directly applied to the discharge electrode 5 can be reduced, and the discharge electrode 5 has excellent long life and the type of the recording medium 20 High quality by optimally adjusting the voltage value E applied to the counter electrode 21 according to the characteristics etc.
2  2
な画像を形成することができ、汎用性に優れる。  An excellent image can be formed.
[0051] (実施の形態 3) [0051] (Embodiment 3)
本発明の実施の形態 3における加熱放電型印字ヘッドの駆動方法について、以下 図面を参照しながら説明する。  A method for driving the heat-discharge type print head according to the third embodiment of the present invention will be described below with reference to the drawings.
図 8 (a)は実施の形態 3における加熱放電型印字ヘッドの駆動方法のヘッド側電圧 印加工程での駆動用電圧を示す図であり、図 8 (b)は実施の形態 3における加熱放 電型印字ヘッドの駆動方法の媒体側電圧印加工程で対向電極に印加する電圧を示 す図であり、図 8 (c)は実施の形態 3における加熱放電型印字ヘッドの駆動方法の放 電電極加熱工程での放電電極の温度を示す図である。尚、実施の形態 1又は 2と同 様のものには同一の符号を付して説明を省略する。  FIG. 8 (a) is a diagram showing a driving voltage in the head side voltage application process of the heating discharge type print head driving method in the third embodiment, and FIG. 8 (b) is a heating discharge in the third embodiment. FIG. 8 (c) is a diagram showing a voltage applied to the counter electrode in the medium side voltage application process of the driving method of the print head, and FIG. 8 (c) shows the discharge electrode heating of the driving method of the heating and discharging print head in the third embodiment. It is a figure which shows the temperature of the discharge electrode in a process. The same components as those in the first or second embodiment are denoted by the same reference numerals and description thereof is omitted.
[0052] 図 8において、実施の形態 3における加熱放電型印字ヘッドの駆動方法が実施の 形態 2と異なるのは、媒体側電圧印加工程で対向電極 21に印加される電圧が DCバ ィァスではなぐピーク値が Eの三角波である点である。 In FIG. 8, the heating discharge type print head driving method in the third embodiment is different from that in the second embodiment in that the voltage applied to the counter electrode 21 in the medium side voltage applying step is not DC bias. The peak value is the triangular wave of E.
4  Four
このとき、放電電極 5と対向電極 21との間の電位差のピークは放電制御電圧 Eに  At this time, the peak of the potential difference between the discharge electrode 5 and the counter electrode 21 is the discharge control voltage E.
0 保たれており、放電電極 5に印加される駆動用電圧のピーク値 Eと対向電極 21に印  0, the peak value E of the driving voltage applied to the discharge electrode 5 and the counter electrode 21 are marked.
3  Three
加される電圧 Eとの間には、 E— E =Eの関係が成り立つている。  The relationship of E− E = E is established with the applied voltage E.
4 3 4 0  4 3 4 0
このように放電電極 5と対向電極 21との間に設定される放電制御電圧 E力 放電  Thus, the discharge control voltage E force discharge set between the discharge electrode 5 and the counter electrode 21
0 電極 5と対向電極 21に分配されて印加されている以外は、実施の形態 1及び 2と同 様なので説明を省略する。  The description is omitted because it is the same as in Embodiments 1 and 2 except that the voltage is distributed and applied to the electrode 5 and the counter electrode 21.
尚、放電電極 5に印加される駆動用電圧のピーク値 Eと、対向電極 21に印加され  Note that the peak value E of the driving voltage applied to the discharge electrode 5 and the counter electrode 21 are applied.
3  Three
る電圧 Eとの比は、記録媒体 20の種類や特性等に応じて適宜、選択することができ The ratio to the voltage E can be selected as appropriate according to the type and characteristics of the recording medium 20.
4 Four
る。  The
[0053] 実施の形態 3の加熱放電型印字ヘッドの駆動方法は以上のように構成されて!、る ので、実施の形態 2の作用に加え、以下の作用を有する。 (1)媒体側電圧印加工程をヘッド側電圧印加工程に同期させ、非印字状態では対 向電極 21に電圧が印加されないようにすることにより、不具合等により印字が中断或 いは停止した際に、安全に記録媒体 20を取り除くことができ、メンテナンス性に優れ る。 [0053] The driving method of the heat-discharge type print head of the third embodiment is configured as described above. Therefore, in addition to the operation of the second embodiment, the following operation is provided. (1) When the media side voltage application process is synchronized with the head side voltage application process so that no voltage is applied to the counter electrode 21 in the non-printing state, when printing is interrupted or stopped due to a malfunction or the like. Therefore, the recording medium 20 can be removed safely, and the maintenance is excellent.
(2)対向電極 21に印加される電圧が三角波であることにより、駆動用電圧と同期させ てイオン生成量を細力べ制御することができ、階調性に優れる。  (2) Since the voltage applied to the counter electrode 21 is a triangular wave, the amount of ions generated can be controlled in synchronism with the driving voltage, and the gradation is excellent.
[0054] (実施の形態 4)  [Embodiment 4]
本発明の実施の形態 4における加熱放電型印字ヘッドの駆動方法について、以下 図面を参照しながら説明する。  A method for driving a heat-discharge type print head according to Embodiment 4 of the present invention will be described below with reference to the drawings.
図 9 (a)は実施の形態 4における加熱放電型印字ヘッドの駆動方法のヘッド側電圧 印加工程での駆動用電圧を示す図であり、図 9 (b)は実施の形態 4における加熱放 電型印字ヘッドの駆動方法の放電電極加熱工程での放電電極の温度を示す図であ る。尚、実施の形態 1と同様のものには同一の符号を付して説明を省略する。  FIG. 9 (a) is a diagram showing a driving voltage in the head side voltage application process of the heating discharge type print head driving method in the fourth embodiment, and FIG. 9 (b) is a heating discharge in the fourth embodiment. FIG. 6 is a diagram showing the temperature of the discharge electrode in the discharge electrode heating step of the method for driving the mold print head. In addition, the same code | symbol is attached | subjected to the thing similar to Embodiment 1, and description is abbreviate | omitted.
[0055] 図 9において、実施の形態 4における加熱放電型印字ヘッドの駆動方法が実施の 形態 1と異なるのは、ヘッド側電圧印加工程で放電電極 5に印加される駆動用電圧 が矩形波である点と、駆動用電圧の印加後に駆動用電圧と逆極性の補助電圧を放 電電極 5に印加している点である。 In FIG. 9, the driving method of the heat discharge type print head in the fourth embodiment is different from that in the first embodiment in that the driving voltage applied to the discharge electrode 5 in the head side voltage applying step is a rectangular wave. One point is that an auxiliary voltage having a polarity opposite to that of the driving voltage is applied to the discharge electrode 5 after application of the driving voltage.
このとき、補助電圧は放電によって発生した余分な電子やイオンを放電電極 5に引 き寄せることができる程度の小さな電圧 (E )でよい。例え補助電圧が印加されている  At this time, the auxiliary voltage may be a voltage (E) that is small enough to attract excess electrons and ions generated by the discharge to the discharge electrode 5. Auxiliary voltage is applied
5  Five
状態で放電電極 5が加熱されても放電が発生しな ヽようにその電圧値 Eを設定する  Set the voltage value E so that no discharge occurs even if the discharge electrode 5 is heated in this state.
5 ことにより、不要な電子やイオンが発生することがなく信頼性に優れる。  Therefore, it is excellent in reliability without generating unnecessary electrons and ions.
このように駆動用電圧の印加後に補助電圧が印加されている以外は、実施の形態 The embodiment except that the auxiliary voltage is applied after the driving voltage is applied as described above.
1と同様なので説明を省略する。 The explanation is omitted because it is the same as 1.
尚、本実施の形態では、放電電極 5への駆動用電圧の印加後に補助電圧を印加し たが、駆動用電圧の印加前に補助電圧を印加することもできる。また、放電制御電圧 In the present embodiment, the auxiliary voltage is applied after the driving voltage is applied to the discharge electrode 5, but the auxiliary voltage may be applied before the driving voltage is applied. Also, discharge control voltage
Eに相当する電圧を全て駆動用電圧として放電電極 5に印加する代わりに、実施のInstead of applying all the voltages corresponding to E to the discharge electrode 5 as drive voltages,
0 0
形態 2と同様にその一部を対向電極 21に印加してもよい。  A part thereof may be applied to the counter electrode 21 as in the second embodiment.
[0056] 実施の形態 4の加熱放電型印字ヘッドの駆動方法は以上のように構成されて!、る ので、実施の形態 1の作用に加え、以下の作用を有する。 [0056] The method of driving the heat-discharge-type print head according to the fourth embodiment is configured as described above! Therefore, in addition to the operation of the first embodiment, the following operation is provided.
(1)ヘッド側電圧印加工程において放電電極 5への駆動用電圧の印加後に駆動用 電圧と逆極性の補助電圧を放電電極 5に印加することにより、駆動によって発生した 余分な電子やイオンをその駆動直後に回収して次の駆動 (駆動用電圧の印加)に備 えることができ、駆動周期が長い場合でも電子やイオンが浮遊することがなぐ信頼 性に優れる。  (1) By applying a driving voltage to the discharge electrode 5 after applying a driving voltage to the discharge electrode 5 in the head-side voltage application step, extra electrons and ions generated by driving It is recovered immediately after driving and can be prepared for the next driving (application of driving voltage), and it has excellent reliability because electrons and ions do not float even when the driving cycle is long.
産業上の利用可能性 Industrial applicability
本発明は、放電電極に電圧を印加するタイミングと放電電極を加熱するタイミングを 制御することにより、放電を効率的に発生させることができ、省エネルギー性に優れる と共に、イオンの発生量を精度よく制御して簡便に階調記録を行うことができ、高解 像度で高品質な画像を形成することが可能な加熱放電型印字ヘッドの駆動方法の 提供を行って、静電現像方式の記録媒体の普及を図ることができる。  In the present invention, by controlling the timing of applying a voltage to the discharge electrode and the timing of heating the discharge electrode, it is possible to efficiently generate a discharge, which is excellent in energy saving and accurately controls the amount of ions generated. By providing a method for driving a heat-discharge type print head that can easily perform gradation recording and can form a high-quality image with high resolution, an electrostatic development type recording medium is provided. Can be promoted.

Claims

請求の範囲 The scope of the claims
[1] 電子放出部位を有する放電電極と前記放電電極を選択的に加熱する加熱手段と を有する加熱放電型印字ヘッドと、電荷の作用により書き込みや消去が可能な記録 媒体を挟んで前記放電電極に対向配置された対向電極と、の間に放電制御電圧に 相当する電位差を設定して電界を形成する電位差設定工程と、画像情報に基づ 、 て前記加熱手段で前記放電電極を選択的に加熱する放電電極加熱工程と、を有し 、前記電位差設定工程のヘッド側電圧印加工程にぉ ヽて前記放電電極に前記放電 制御電圧以下の駆動用電圧を印加するタイミングと、前記放電電極加熱工程のタイ ミングを同期させたことを特徴とする加熱放電型印字ヘッドの駆動方法。  [1] A discharge electrode having an electron emission site and a heating discharge type print head having a heating means for selectively heating the discharge electrode, and the discharge electrode sandwiched by a recording medium capable of writing and erasing by the action of electric charge A potential difference setting step in which an electric field is set by setting a potential difference corresponding to the discharge control voltage between the counter electrode and the counter electrode disposed opposite to the counter electrode, and the heating means selectively selects the discharge electrode based on image information. A discharge electrode heating step for heating, a timing for applying a driving voltage equal to or lower than the discharge control voltage to the discharge electrode over the head side voltage application step of the potential difference setting step, and the discharge electrode heating step A method for driving a heat-discharge type print head, characterized in that the timings of these are synchronized.
[2] 前記ヘッド側電圧印加工程における前記駆動用電圧の印加を一印字周期内で複 数回繰返すことを特徴とする請求項 1に記載の加熱放電型印字ヘッドの駆動方法。  [2] The method for driving a heat-discharge type print head according to [1], wherein the application of the driving voltage in the head side voltage applying step is repeated a plurality of times within one printing cycle.
[3] 前記ヘッド側電圧印加工程で前記放電電極に印加される前記駆動用電圧のピー ク時に、前記放電電極加熱工程による前記放電電極の加熱を行うことを特徴とする 請求項 1又は 2に記載の加熱放電型印字ヘッドの駆動方法。 3. The discharge electrode is heated by the discharge electrode heating step when the driving voltage applied to the discharge electrode is peaked in the head side voltage application step. A driving method of the heating and discharging type print head described in the above.
[4] 前記ヘッド側電圧印加工程に同期させて前記対向電極に前記放電制御電圧の一 部を印加する媒体側電圧印加工程を行うことを特徴とする請求項 1乃至 3の内いず れか 1項に記載の加熱放電型印字ヘッドの駆動方法。 [4] The medium side voltage applying step of applying a part of the discharge control voltage to the counter electrode in synchronization with the head side voltage applying step is performed. 2. A method for driving a heat-discharge type print head according to item 1.
[5] 前記ヘッド側電圧印加工程にお!、て前記放電電極への前記駆動用電圧の印加前 若しくは印加後の少なくともいずれか一方で前記駆動用電圧と逆極性の補助電圧を 前記放電電極に印加することを特徴とする請求項 1乃至 4の内いずれか 1項に記載 の加熱放電型印字ヘッドの駆動方法。 [5] In the head-side voltage application step, an auxiliary voltage having a polarity opposite to that of the drive voltage is applied to the discharge electrode either before or after application of the drive voltage to the discharge electrode. 5. The method for driving a heat discharge type print head according to claim 1, wherein the heating is applied.
PCT/JP2006/304572 2006-03-09 2006-03-09 Heating discharge print head drive method WO2007102219A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/304572 WO2007102219A1 (en) 2006-03-09 2006-03-09 Heating discharge print head drive method
JP2007529291A JP4146885B2 (en) 2006-03-09 2006-03-09 Image forming apparatus and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/304572 WO2007102219A1 (en) 2006-03-09 2006-03-09 Heating discharge print head drive method

Publications (1)

Publication Number Publication Date
WO2007102219A1 true WO2007102219A1 (en) 2007-09-13

Family

ID=38474666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304572 WO2007102219A1 (en) 2006-03-09 2006-03-09 Heating discharge print head drive method

Country Status (2)

Country Link
JP (1) JP4146885B2 (en)
WO (1) WO2007102219A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872292A (en) * 1994-09-09 1996-03-19 Alps Electric Co Ltd Ion write head
WO2005056297A1 (en) * 2003-12-12 2005-06-23 Fukuoka Technoken Kogyo, Co., Ltd. Discharge control device, its discharge control method, and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872292A (en) * 1994-09-09 1996-03-19 Alps Electric Co Ltd Ion write head
WO2005056297A1 (en) * 2003-12-12 2005-06-23 Fukuoka Technoken Kogyo, Co., Ltd. Discharge control device, its discharge control method, and its manufacturing method

Also Published As

Publication number Publication date
JPWO2007102219A1 (en) 2009-07-23
JP4146885B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US7789489B2 (en) Print head and image forming apparatus including the same
JP2008149498A (en) Image forming method
WO2007102219A1 (en) Heating discharge print head drive method
JP4047906B2 (en) Composite image forming apparatus
JP3993884B2 (en) Display device and image display method thereof
WO2007122710A1 (en) Heating discharge type printing head and its drive method
JP4263759B2 (en) Head substrate, discharge control device using the same, and heating discharge type print head equipped with the discharge control device
JP4575922B2 (en) Heat discharge type print head and discharge unit used therefor
WO2007094070A1 (en) Recording medium
WO2007099597A1 (en) Image forming method and image forming device
JP2565915B2 (en) Current transfer recording device
JP5009568B2 (en) Heating discharge type print head
JP4185558B2 (en) Image forming apparatus, image forming method, and recording medium
JP2001270145A (en) Printer and head therefor
WO2007052340A1 (en) Heating discharge type printhead and image-forming device including the same
JP4943096B2 (en) Heating discharge type print head
JP2008087263A (en) Image forming apparatus and image forming method
JP4771484B2 (en) Image forming method and image forming apparatus
JP2008114429A (en) Ion flow recording head
JP2887974B2 (en) Electrostatic latent image forming device
JP4851991B2 (en) Image forming method and image forming apparatus
JPS60192656A (en) Printer
JP2009119669A (en) Ion flow recording head
JPH11320956A (en) Print head
JP2001277579A (en) Print head and image forming apparatus using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2007529291

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06715443

Country of ref document: EP

Kind code of ref document: A1