WO2007099974A1 - Envelope for field emission display - Google Patents

Envelope for field emission display Download PDF

Info

Publication number
WO2007099974A1
WO2007099974A1 PCT/JP2007/053686 JP2007053686W WO2007099974A1 WO 2007099974 A1 WO2007099974 A1 WO 2007099974A1 JP 2007053686 W JP2007053686 W JP 2007053686W WO 2007099974 A1 WO2007099974 A1 WO 2007099974A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
envelope
front glass
glass part
strain point
Prior art date
Application number
PCT/JP2007/053686
Other languages
French (fr)
Japanese (ja)
Inventor
Tsunehiko Sugawara
Yuichi Kuroki
Mikio Ueki
Hiroshi Kaneko
Original Assignee
Asahi Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co., Ltd. filed Critical Asahi Glass Co., Ltd.
Priority to JP2008502807A priority Critical patent/JPWO2007099974A1/en
Publication of WO2007099974A1 publication Critical patent/WO2007099974A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/863Vessels or containers characterised by the material thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes

Definitions

  • the present invention relates to an envelope made of a plurality of glass members used for a field emission display (hereinafter referred to as “FED”) using electron field emission.
  • FED field emission display
  • TV television broadcasting receiver
  • CRT cathode ray tube
  • LCD liquid crystal display
  • FPDs flat panel displays
  • PDPs display panels
  • FEDs are known as FPDs other than the LCD and PDP.
  • SED surface-conduction electron-emission display
  • FED using the principle of electron emission is characterized by low power consumption compared to PDP, CRT and LCD, high brightness and high definition compared with LCD, etc., and wide viewing angle, making it easy to see Is expected.
  • the FED is a phosphor pixel formed on the surface of the front glass part (front substrate), a minute emitter (electron emission source) formed on the surface of the rear glass part (back substrate), or a plurality of them. It has a structure in which the arranged emitter arrays are paired and arranged opposite to each other in a matrix form with a substantially constant distance. And the back glass portion front glass portion, the inside is maintained in a vacuum (10_ 4 ⁇ 10_ 7 Pa) is sealed in a state having a airtight. Many emitters such as Spindt type and carbon nanotube type have been proposed.
  • the front glass portion is required to suppress browning due to the electron beam (electron beam browning characteristics).
  • an anode voltage of about several kV to 10 kV is applied as described above, high electrical resistance is required for the front glass portion and the rear glass portion so as not to cause voltage breakdown.
  • a general FED envelope is composed of a flat front glass portion and a flat rear glass portion facing each other, and a substantially rectangular outer frame forming a side wall.
  • the member is hermetically sealed using a sealing material.
  • a shallow box structure in which the front glass part and the outer frame are integrated, and a structure in which the rear glass part and the outer frame are integrated have been proposed.
  • the back glass portion is repeatedly heated to a temperature of about 500 to 580 ° C. Therefore, it is necessary to prevent thermal deformation, thermal shrinkage and thermal damage of the glass due to the high temperature.
  • heat treatment is performed to thermally decompose the organic solvent used in forming the phosphor. It is about 0 ° C.
  • the front glass part and the rear glass part, or the front glass part and the outer frame are generally sealed at a temperature of 450 ° C or lower.
  • the temperature in the exhaust process after sealing ranges from about 300 ° C to 380 ° C.
  • the front glass part is treated at a temperature lower than the maximum temperature in the heat treatment of the back glass part.
  • the rear glass part that is repeatedly heat-treated at a higher temperature causes a larger thermal shrinkage than the front glass part. Therefore, after assembling the envelope by sealing the front glass part on which the pixels are formed and the rear glass part on which the emitters are formed, they face each other due to the difference in thermal shrinkage between the two glasses. The relative positional relationship between the pixel and the emitter Deviation occurs.
  • positional displacement simply refers to a relative positional displacement between the opposing pixel and the emitter, which is caused by a difference in thermal shrinkage between the front glass portion and the rear glass portion. .
  • positional deviation there is a concern that the electron beam emitted from the emitter collides with a position other than the predetermined pixel, causing a color purity defect and causing a fatal problem in image quality.
  • strain point of glass the viscosity of the glass? It is defined as the temperature indicating i-force 10 14 ⁇ 6 dPa 'S. Below the strain point, it is defined as a state in which the glass does not substantially cause viscous flow. That is, when the heat treatment is performed at a high temperature above the strain point of the glass, the heat shrinkage rate of the glass cannot be ignored.
  • glass used in simple matrix LCD and CRT has a strain point that is significantly lower than the heat treatment temperature (500 to 580 ° C) in the CVD method described above, so the shrinkage of the glass after heat treatment is large. It is inappropriate to use it for the back glass part.
  • the high strain point glass has an advantage that the amount of heat shrinkage is small as compared with the low strain point glass even after the high temperature treatment as described above.
  • the back glass has a strain point in the same temperature range (500 to 580 ° C) as that of the heat treatment temperature in the CVD method, or a slightly higher temperature range (570 to 600 ° C). Some high strain point glass is used. In consideration of heat shrinkage, convenience, and consistency of linear thermal expansion coefficient, the same high strain point glass as that of the back glass has been used for the front glass.
  • the processing temperature in the pixel forming process in the front glass part and the subsequent heat treatment process is low, so the heat shrinkage of the front glass part.
  • the rate is relatively small. Therefore, even if a low strain point glass is used as the front glass part, there is a possibility that the difference in heat shrinkage between the front glass part and the rear glass part may fall within the allowable range. It was not done.
  • the melting temperature of glass compared to low strain point glass (the melting temperature of glass generally indicates the viscosity of glass ⁇ force Sl0 2 dPa 'S of
  • the press molding method is more suitable for the production method of the front glass part than the conventional flat glass production method such as the float method.
  • the press molding method is a method in which several types of molds are used to press and mold a high-temperature glass lump (gob) filled in the mold.
  • the press molding method is a method in which the glass is cooled from the start of molding to the end of molding, and the viscosity at the start of molding is generally about 10 2 ' 5 to 10 7 dPa' S.
  • the viscosity at the end of molding is about lC ⁇ l oUdPa'S. That is, the essence of the molding process is to fix the shape of the glass by increasing the viscosity in the process of cooling and solidifying the glass.
  • an alkali oxide essentially contains only a sodium oxide.
  • potassium oxide is generally used, but the content of potassium oxide is extremely small compared to the content of sodium oxide.
  • the front substrate has a strain point of 510 ° C. and contains 13.0% (mass percentage) of sodium oxide as an alkali oxide.
  • An organic EL display using soda lime glass containing 1.0% (mass percentage) of potassium is disclosed.
  • Soda-lime glass has a low volume resistivity (10 8 ⁇ 5 ⁇ 'cm) at 150 ° C, so there is also a problem of inducing dielectric breakdown when used in an FED driven with an anode voltage of several kV or more.
  • glass that does not or does not exhibit the mixed alkali effect such as soda lime glass, is suitable for FED.
  • the mixed alkali effect is a phenomenon in which physical properties such as ionic conductivity, dielectric properties, and mechanical properties are greatly changed when alkali ions in a single alkali glass are replaced with other alkaliions.
  • the characteristic that the mixed alkali effect is most prominent is electrical resistance.
  • a glass containing two or more elements of alkali and exhibiting the above-described mixed strength effect is referred to as mixed alkali glass.
  • Glass having a sufficiently enhanced mixed alkali effect is advantageous in that it has a high electric resistance and good electron beam browning characteristics.
  • the glass (panel glass) used for the image display part (glass panel) of CRT binary mixed alkali glass containing sodium and potassium is used for direct view type CRT.
  • ternary mixed alkali glass containing sodium, potassium and lithium is used for projection cathode ray tubes.
  • the composition of the glass for the glass funnel (funnel glass), which is located on the back side of the CRT and on which the electron gun and the deflection yoke coil are mounted, is used for the panel used for the image display portion.
  • Panel glass used in black and white televisions and panel glass used in early color televisions contained lead in the same way as funnel glass to prevent X-ray leakage.
  • CRT panel glass does not contain lead at all, which has been used to secure X-ray absorption, as a measure to prevent electron beam browning and thermal deformation.
  • glass compositions that contain strontium and barium and have a high strain point while ensuring practical X-ray absorption ability have been used.
  • the strain point of the panel glass is about 470 ° C to 480 ° C, which is about 20 ° C to 40 ° C higher than the strain point of the funnel glass containing lead.
  • the CRT bundles thermoelectrons emitted from at most three force swords into an electron beam with an electron gun, scans them with a deflection yoke coil, and accelerates them to generate hundreds of thousands to millions of pixels.
  • the principle of exciting and emitting phosphors is used. That is, there is no need for a structure in which force swords and phosphor pixels are arranged in a matrix like PDP and FED, which are flat light emitting displays. In addition, it differs from the FED manufacturing method in that it does not require a high-temperature treatment process when forming a force sword on the glass funnel corresponding to the back glass part of the FED.
  • Patent Document 1 discloses an inorganic EL display using soda lime glass for the front substrate and glass having a strain point of 520 ° C or higher for the back substrate.
  • the invention according to Patent Document 1 is intended to prevent thermal deformation of the back substrate itself even when baked at 650 to 700 ° C.
  • it does not provide a specific measure for solving the problems related to the production of the front glass as described above while ensuring the excellent electron beam browning characteristics required for the front glass part for FED. .
  • the invention according to Patent Document 1 has practically used a relative positional shift between the opposing pixel and the emitter, which is caused by a difference in thermal shrinkage between the front glass portion and the rear glass portion, which is a problem unique to FED. It does not provide a glass vacuum envelope that ensures good electron beam browning characteristics while keeping it within a certain range. In addition, the invention according to Patent Document 1 improves the solubility of the front glass part, which is a problem in the production technology of an FED envelope, or the moldability of glass required when the front glass part has a three-dimensional shape. It is not intended to disclose any solution to facilitate the enhancement, in addition to improving the system.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-025761
  • the present invention provides a practical function as an FED envelope and provides optimum glass properties and glass composition so that glass members constituting the envelope can be easily manufactured. Furthermore, it aims at providing the envelope lightened.
  • the present invention aims to solve the following problems imposed on the FED envelope.
  • the first problem is to reduce the above-mentioned “positional deviation” to a practical range.
  • the second issue is to satisfy the electron beam browning characteristics required for FED.
  • the third issue is to improve the melting property of the front glass part and prolong the life of the melting furnace.
  • the fourth problem is to facilitate press molding when the front glass part has a three-dimensional shape. The goal is to provide an FED envelope that is lighter by using these means for solving problems.
  • the present invention provides the following solution.
  • the first invention is an FED envelope having a front glass part for displaying an image and a rear glass part for forming an emitter, wherein the front glass part and the rear glass part are provided.
  • the glass part is made of mixed alkali glass.
  • a'S is T 77 (° C), and the back glass part has a strain point of T
  • FED envelope characterized by satisfying ⁇ ⁇ 1500.
  • the content of the oxide standard of each component constituting the front glass portion is substantially 60 ⁇ Si0 ⁇ 73, 0 ⁇ in terms of mass percentage. A1 ⁇
  • the content of the alkali metal oxide constituting the front glass portion is substantially 2.0 ⁇ 0.21 Na O + O. 065K O + O. 726Li in terms of mass percentage. 0 ⁇ 2.
  • the envelope for FED of the present invention is composed of a front glass portion having a low strain point and a rear glass portion having a high strain point, but ensures consistency of expansion coefficients with each other. It's going to Therefore, the “positional deviation” described above can be reduced. At the same time, while satisfying the electron beam browning characteristics required for the FED front glass part, the melting property of the front glass part is improved and the melting temperature is lowered, thereby extending the life of the melting furnace. When the front glass part has a three-dimensional shape, press molding can be facilitated. In addition, a significant weight reduction can be achieved by optimizing the density of the front glass.
  • FIG. 1 is a schematic cross-sectional view of a field emission display envelope showing an embodiment of the present invention.
  • FIG. 2 Outline of field emission display envelope showing another embodiment of the present invention.
  • FIG. 1 and 2 are cross-sectional views of an FED envelope showing a typical embodiment of the present invention.
  • an example of an FED envelope according to the present invention includes a front glass portion 1 having phosphor pixels (not shown) formed on the inner surface, and an emitter (not shown) for emitting electrons. And a rear glass portion 2 having a surface arranged on the surface, and a substantially rectangular glass outer frame 3 that forms a side wall.
  • Each member is made of a sealing material. It is hermetically sealed.
  • the FED envelope of the present invention may have a structure in which the front glass portion and the outer frame are integrated as shown in FIG. Further, a reinforcing member may be used so as to cover the peripheral portion of the front glass portion and the outer surface of Z or the back glass portion. In addition, a spacer for keeping a constant distance between the force sword and the anode may be interposed inside the envelope.
  • Alkali-containing glass is used for the front glass part 1, the back glass part 2 and the outer frame 3 constituting the present invention.
  • the melting temperature of the glass becomes high, resulting in a significant reduction in productivity and loss of economy.
  • the envelope Under the high-voltage and high-current driving conditions applied in FED or the like, the envelope exhibits good dielectric breakdown characteristics. That is, mixed alkali glass is used for all of the front glass part, the back glass part, and the outer frame constituting the envelope of the present invention. Specifically, the front glass part, the rear glass part, and the outer frame constituting the envelope of the present invention use glass having a volume resistivity of 150 ⁇ cm or more at 150 ° C.
  • the front glass part constituting the present invention has good electron beam browning characteristics, and the substance amount ratio of the alkali oxide contained is essentially mixed in terms of the characteristics. It is in a range where the potash effect can be expressed. In other words, the substance amount ratio of the alkali oxide contained in the front glass portion constituting the present invention is excellent in volume resistivity that can ensure high insulation. Therefore, it is limited to the range where both the electron beam anti-browning characteristics are compatible.
  • the material amount ratio of the alkali oxide contained in the back glass part is 10 ⁇ ⁇ 'as a volume resistivity. It may be in a range indicating cm or more.
  • the front glass portion and the back glass portion constituting the present invention have different strain points.
  • the front glass part has a strain point of 460 ° C or higher and 505 ° C or lower.
  • the sealing step refers to a step of sealing the front glass portion and the rear glass portion, or a step of sealing with an outer frame interposed between the front glass portion and the rear glass portion.
  • the rear glass portion constituting the present invention has a strain point of 550 ° C or higher and 600 ° C or lower.
  • the strain point of the back glass is less than 550 ° C, the amount of thermal shrinkage increases when heat treatment is performed in a high-temperature process such as emitter formation, which impairs practicality. If the strain point of the back glass exceeds 600 ° C, the good solubility of the glass will be impaired.
  • of the number ⁇ is less than 5 X 10_ 7 / ° C. This allows thermal expansion and heat
  • Consistency during shrinkage is maintained, and thermal cracking (cracking due to thermal expansion and contraction) in a series of heat treatment steps when assembling the FED can be suppressed.
  • the temperature of the glass at the front glass portion is set to 1500 ° C or lower when the viscosity ⁇ of the glass is 10 2 dPa'S.
  • the density of the front glass portion is 2.45 gZcm 3 or more and 2.6 g / cm 3 or less.
  • the viscosity of the glass is 10 2 dPa '.
  • the density of the back glass part may be larger than that of the front glass part.
  • the glass used for the front glass is composed of SiO, CaO, MgO, Li0, Na
  • the glass composition of the front glass portion in the envelope of the present invention is intended to facilitate lightening of the envelope at a low density.
  • the glass composition of the front glass part makes it easy to adjust the linear thermal expansion coefficient, strain point and other high-temperature viscosities, and at the same time exhibits the mixed alkali effect in terms of electric resistance and electron beam browning characteristics. This is also the purpose.
  • SiO is a network former that is important for vitrification.
  • the SiO content is more than 73%, the viscosity of the glass becomes high and melt molding becomes difficult.
  • the content of SiO is preferably 60 to 73%.
  • the viscosity of the mold becomes too high, making melt molding difficult. Therefore, the Al O content is 2.5.
  • MgO and CaO are mainly used to adjust the viscosity curve of glass. If the total content of MgO and CaO is less than 8%, the viscosity becomes too high and it becomes difficult to maintain the strain point at 460 ° C or more and 505 ° C or less. If the total content of MgO and CaO exceeds 12%, the glass tends to devitrify and the liquidus temperature rises. In addition, to the CaO content If the MgO content ratio, that is, the MgO / CaO value is less than 0 ⁇ 15 or more than 2.3, the glass tends to devitrify. Therefore, the total content of MgO and CaO is preferably 8-12%.
  • Both SrO and BaO may be contained to increase the linear thermal expansion coefficient of the glass.
  • the content of Sr ⁇ or Ba ⁇ is 3. If it exceeds / 0 , the density of the glass becomes high and the remarkable lightening effect cannot be obtained.
  • the content of SrO or BaO is more than 3%, BaO-SrO-SiO-based crystals are likely to precipitate. Therefore, the content of SrO and BaO is
  • Both are preferably 3% or less.
  • ZnO is mainly effective in adjusting the viscosity curve of glass and suppressing electron beam browning.
  • the ZnO content is preferably 6% or less.
  • LiO suppresses electron beam browning of the glass and the viscosity of the glass at high temperatures.
  • Li O raw material If the content of LiO is more than 3.0%, the glass tends to devitrify. Li O raw material
  • the content of Li 2 O is preferably 1 to 3%.
  • Na 0 is a component that adjusts the linear thermal expansion coefficient and viscosity of glass, but the content is 0.5%.
  • the NaO content is preferably 0.5-5%.
  • is a component that adjusts the linear thermal expansion coefficient and viscosity of glass in the same manner as Na O, but contains
  • the percentage is less than 4%, the viscosity of the glass becomes too high, making melting and forming difficult. If the K ⁇ content is higher than 12%, the linear thermal expansion coefficient of the glass will increase.
  • ZrO has a force content that can be added to adjust the viscosity curve of glass.
  • the surface devitrification temperature increases between the glass and the refractory, and devitrification occurs on the surface. It becomes easy. Further, when the surface devitrification temperature is high, it is not preferable because it becomes difficult to form the glass as in the case where the liquidus temperature inside the glass is high. Therefore, the ZrO content is 2.5.
  • Wrinkles include a force that can be added to prevent glass coloring due to ultraviolet rays and X-rays.
  • the content of TiO is preferably 2% or less.
  • CeO is excellent in the effect of preventing the coloring of the glass by X-rays and is used as a clarifier.
  • the content of 2 is preferably 1% or less.
  • SbO is a force that can be added as a glass refining agent. If the content is more than 0.5%,
  • the SbO content should be 0.5% or less.
  • coloring components such as NiO, CoO, and FeO can be added to reduce the transmittance of the glass or adjust the color of the glass.
  • Pb ⁇ is
  • RO is 1 mole 0/0 or less than 14 mole
  • Molar ratio of sodium oxide to total alkali oxide, Na O / R 0 is 0.12 or more
  • the present invention has been made with the following knowledge about the effect of each alkali oxide to lower the strain point. That is, to lower the strain point, Li O
  • Na 0, K ⁇ and Li ⁇ in the above formula are preferable to be in the following range.
  • Na 0, K ⁇ and Li ⁇ in the above formula are preferable to be in the following range.
  • the envelope of the present invention will be described in detail based on examples and comparative examples.
  • the envelopes in the examples and comparative examples have a structure in which the front glass part and the outer frame are integrated as shown in FIG.
  • the glass composition used for the front glass part and the back glass part in the following Examples and Comparative Examples is prepared by adjusting as follows.
  • a raw material batch prepared so as to have a predetermined composition was put in a platinum crucible, and the raw material was charged at about 1400 ° C, and then heated to a temperature sufficient to melt and melted for about 4 hours.
  • defoaming was carried out by stirring for 30 minutes using a platinum stirring rod during the temperature rise and fall of the molten glass.
  • the molten glass is formed into a predetermined shape and then slowly cooled.
  • the density, linear thermal expansion coefficient, strain point, viscosity, thermal contraction rate, volume resistivity, electron beam browning amount, etc. of each glass thus obtained were measured. Tables 1 to 3 show the measurement results.
  • the heat shrinkage rate is calculated by comparing the distance between the impressions before and after the heat treatment.
  • the heat shrinkage rate of each sample calculated in this way is compared, and if the heat shrinkage rate is about the same as Example 1 (Example) or lower than Example 1 (the amount of heat shrinkage is small)
  • the heat shrinkage characteristics were evaluated by setting “small”, the heat shrinkage rate being higher than that of Example 1, and “large” for (large heat shrinkage).
  • Example 4 On the basis of the decrease in light transmittance in Example 4 (Example), if it is the same as that, it is judged as good, if it is clearly lower than that, it is bad, and it is clearly lower than that. Those that did not were considered excellent, and these evaluations were regarded as electron beam browning characteristics.
  • the back glass part that forms the emitter on the surface is assumed to undergo a high-temperature process in the range of 550 ° C force 600 ° C, and heat shrinkage rate and thermal deformation of the back glass part caused by heat treatment High strain point glass with a strain point of 570 ° C was used so that the amount was within the practical range. Table:! To 2 ⁇ Sf, 0.21 Na O + O. 065K O + O. 726Li O
  • FRI may break the thermal process that produces the envelope.
  • Example values of FRI is 5X 10_ 7 (/ ° C) less than 1 (Example), Example 2 (Example), Example 3 the envelope Cracking (Example) and Example 4 (Example)
  • 6X 1
  • Example 8 (Comparative Example) has a high strain point (strain point T> 505 ° C).
  • the front glass part of (Comparative Example) has a high melting temperature ( ⁇ ⁇ > 1500 ° C).
  • Example 11 (Comparative Example) is an example in which the total amount of CaO and MgO is small (CaO + MgO ⁇ 8%), the melting temperature is high, and (T 77> 1500 ° C).
  • Example 12 (comparative example) is CaO and Mg.
  • Example 13 (comparative example) has a high alkali oxide content (R 0> 14%) and a large S value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

This invention provides an envelope for a field emission display (FED) which can realize a weight reduction of an envelope while suppressing relative misregistration between a pixel and an emitter. The envelope can further realize an improvement in electron beam browning resistant properties of a front glass part and an improvement in glass dissolvability and molding properties. The envelope for FED comprises a mixed alkali glass, and satisfies requirements represented by formulae 460 ≤ TSF ≤ 505, 550 ≤ TSR < 600, |αF - αR| ≤ 5 × 10-7, 2.45 ≤ dF ≤ 2.6, dF ≤ dR, and Tη2 ≤ 1500 wherein TSF represents the distortion point of the front glass part, ºC; αF represents the coefficient of linear thermal expansion of the front glass part, /ºC; dF represents density of the front glass part, g/cm3; Tη2 represents the temperature at which the viscosity of glass in the front glass part, ηF, is 102 dPa·s, ºC; TSR represents the distortion point of the backside glass part, ºC; dR represents the density of the backside glass part, g/cm3; and αR represents the coefficient of linear thermal expansion of the backside glass part, /ºC.

Description

明 細 書  Specification
フィールドェミッションディスプレイ用外囲器  Field emission display envelope
技術分野  Technical field
[0001] 本発明は、電子の電界放出を利用するフィールドェミッションディスプレイ(以下、「 FED」という)に用いる複数のガラス部材からなる外囲器に関する。  The present invention relates to an envelope made of a plurality of glass members used for a field emission display (hereinafter referred to as “FED”) using electron field emission.
背景技術  Background art
[0002] 近年、テレビジョン放送受像装置 (以下、「テレビ」という)として、陰極線管(以下、「 CRT」という)を用いたテレビに替わり、液晶ディスプレイ(以下、「LCD」という)ゃプラ ズマディスプレイパネル(以下、「PDP」という)等の平板ディスプレイ(フラットパネル ディスプレイ。以下、「FPD」という)に対する需要が高まっている。  In recent years, as a television broadcasting receiver (hereinafter referred to as “TV”), a television using a cathode ray tube (hereinafter referred to as “CRT”) has been replaced by a liquid crystal display (hereinafter referred to as “LCD”). There is an increasing demand for flat panel displays (flat panel displays; hereinafter referred to as “FPDs”) such as display panels (hereinafter referred to as “PDPs”).
[0003] 前記の LCDや PDP以外の FPDとしては FEDが知られている。なお、 FEDに類似 したディスプレイとして表面伝導型電子放出ディスプレイ(以下、「SED」という)が知 られている力 ここでは、 SEDも FEDの一種として説明する。  [0003] FEDs are known as FPDs other than the LCD and PDP. Note that a surface-conduction electron-emission display (hereinafter referred to as “SED”) is known as a display similar to the FED.
[0004] 電子放出の原理を用いた FEDは、 PDP、 CRT及び LCDに比べて消費電力が小 さぐかつ LCD等に比べて高輝度 ·高精細で、視野角が広く見やすいことが特徴で あり普及が期待されている。  [0004] FED using the principle of electron emission is characterized by low power consumption compared to PDP, CRT and LCD, high brightness and high definition compared with LCD, etc., and wide viewing angle, making it easy to see Is expected.
[0005] FEDは、前面ガラス部(前面基板)の表面上に形成した蛍光体画素と、背面ガラス 部 (背面基板)の表面上に形成した微小なェミッタ(電子放出源)又はそれらを複数 個配列したェミッタアレイとを対にしてほぼ一定の距離を保ってマトリクス状に対向配 置させた構造を有する。前面ガラス部と背面ガラス部は、気密性を有する状態に封着 されてその内部が真空(10_4〜10_7Pa)に維持されている。ェミッタとしては、 Spind t型、カーボンナノチューブ型等、数多くが提案されている。 [0005] The FED is a phosphor pixel formed on the surface of the front glass part (front substrate), a minute emitter (electron emission source) formed on the surface of the rear glass part (back substrate), or a plurality of them. It has a structure in which the arranged emitter arrays are paired and arranged opposite to each other in a matrix form with a substantially constant distance. And the back glass portion front glass portion, the inside is maintained in a vacuum (10_ 4 ~10_ 7 Pa) is sealed in a state having a airtight. Many emitters such as Spindt type and carbon nanotube type have been proposed.
[0006] そして、真空中で前記ェミッタから放出された電子線をゲート電極で制御した後、数 kVから 10kV程度の範囲のアノード電圧を印加して加速し、次いで加速した電子線 の照射により蛍光体を励起'発光させて画像を表示する。  [0006] Then, after controlling the electron beam emitted from the emitter in a vacuum with a gate electrode, an anode voltage in the range of several kV to 10 kV is applied to accelerate, and then fluorescence is emitted by irradiation of the accelerated electron beam. The body is excited to emit light and display an image.
[0007] 前述のように、 FEDにおいては前面ガラス部の内側表面上に塗布された蛍光体に 高速電子線が照射されるが、前記電子線の一部は蛍光体を貫通し、ガラス表面から 数/ mの深さの内部へ堆積する。その結果、電子線によって前面ガラス部にブラウ二 ング (褐色ィ匕)が生じる問題がある。 [0007] As described above, in the FED, the phosphor applied on the inner surface of the front glass portion is irradiated with a high-speed electron beam, but a part of the electron beam penetrates the phosphor and passes from the glass surface. Deposits inside a few meters deep. As a result, there is a problem in that the electron beam causes browsing on the front glass.
[0008] このため、前面ガラス部には画像品質を損なわない高い光学的外観品質に加えて 、前記の電子線によるブラウニングを抑制すること(耐電子線ブラウニング特性)が求 められる。また、前記のように数 kVから 10kV程度のアノード電圧を印加することから 、電圧破壊を招かないよう前面ガラス部や背面ガラス部には高い電気抵抗が求めら れる。 [0008] For this reason, in addition to high optical appearance quality that does not impair image quality, the front glass portion is required to suppress browning due to the electron beam (electron beam browning characteristics). In addition, since an anode voltage of about several kV to 10 kV is applied as described above, high electrical resistance is required for the front glass portion and the rear glass portion so as not to cause voltage breakdown.
[0009] 一般的な FEDの外囲器は、平板状の前面ガラス部と、平板状の背面ガラス部とを 対向配置させ、さらに側壁を形成する略矩形状の外枠とから構成され、各部材が封 着材を用いて気密封着される。また、前面ガラス部と外枠を一体化した浅い箱型の構 造や、背面ガラス部と外枠とを一体化した構造も提案されている。  [0009] A general FED envelope is composed of a flat front glass portion and a flat rear glass portion facing each other, and a substantially rectangular outer frame forming a side wall. The member is hermetically sealed using a sealing material. In addition, a shallow box structure in which the front glass part and the outer frame are integrated, and a structure in which the rear glass part and the outer frame are integrated have been proposed.
[0010] ェミッタや電極を背面ガラス部上に形成する方法としては、高温下で行われる CVD  [0010] As a method of forming an emitter or electrode on the back glass part, CVD performed at high temperature is used.
(Chemical Vapor D印 osition)法等が用いられている。 CVD法によって形成するエミ ッタとしては、カーボンナノチューブを用いたもの等が挙げられる。このような工程に おいて背面ガラス部は、繰り返し 500〜580°C程度の温度となるため、高温に起因す るガラスの熱変形、熱収縮及び熱的損傷を防止する必要がある。  (Chemical Vapor D mark osition) method is used. Examples of the emitter formed by the CVD method include those using carbon nanotubes. In such a process, the back glass portion is repeatedly heated to a temperature of about 500 to 580 ° C. Therefore, it is necessary to prevent thermal deformation, thermal shrinkage and thermal damage of the glass due to the high temperature.
[0011] 一方、前面ガラス部の表面上に画素や電極を形成する工程では、蛍光体形成の際 に用いる有機溶媒を熱分解するために熱処理が施されるが、その温度は高くても 35 0°C程度である。また前面ガラス部及び背面ガラス部、又は前面ガラス部及び外枠は 、一般的に 450°C以下の温度で封着される。さらには、封着後の排気工程 (表面吸 着ガスを十分脱離させることが可能な温度で熱処理を施す工程)の温度は 300°Cか ら 380°C程度の範囲である。  [0011] On the other hand, in the step of forming pixels and electrodes on the surface of the front glass part, heat treatment is performed to thermally decompose the organic solvent used in forming the phosphor. It is about 0 ° C. Further, the front glass part and the rear glass part, or the front glass part and the outer frame are generally sealed at a temperature of 450 ° C or lower. Furthermore, the temperature in the exhaust process after sealing (process in which heat treatment is performed at a temperature at which the surface adsorbed gas can be sufficiently desorbed) ranges from about 300 ° C to 380 ° C.
[0012] すなわち、全プロセスを通して前面ガラス部は背面ガラス部の熱処理における最高 温度よりも低い温度で処理される。言い換えると、前面ガラス部と背面ガラス部とを比 較した場合、より高温で繰り返し熱処理を受ける背面ガラス部の方が、前面ガラス部 よりも大きな熱収縮が生じる。したがって、画素が形成された前面ガラス部とェミッタが 形成された背面ガラス部とを封着して外囲器を組み立てた後において、両ガラス間 の熱収縮率の差異に起因して、対向している画素とェミッタの相対的な位置関係に ずれを生じる。なお、本発明において単に「位置ずれ」と言う場合は、前面ガラス部と 背面ガラス部との熱収縮率の差異に起因して生じる、対向する画素とェミッタとの相 対的な位置ずれをいう。そして、前記位置ずれの結果として、ェミッタから放出された 電子線が所定画素以外の位置に衝突し、色純度不良の発生を招き、画質上致命的 な問題を引き起こす懸念がある。 That is, throughout the entire process, the front glass part is treated at a temperature lower than the maximum temperature in the heat treatment of the back glass part. In other words, when the front glass part and the rear glass part are compared, the rear glass part that is repeatedly heat-treated at a higher temperature causes a larger thermal shrinkage than the front glass part. Therefore, after assembling the envelope by sealing the front glass part on which the pixels are formed and the rear glass part on which the emitters are formed, they face each other due to the difference in thermal shrinkage between the two glasses. The relative positional relationship between the pixel and the emitter Deviation occurs. In the present invention, the term “positional displacement” simply refers to a relative positional displacement between the opposing pixel and the emitter, which is caused by a difference in thermal shrinkage between the front glass portion and the rear glass portion. . As a result of the positional deviation, there is a concern that the electron beam emitted from the emitter collides with a position other than the predetermined pixel, causing a color purity defect and causing a fatal problem in image quality.
[0013] ガラスのひずみ点(strain point)は、当該ガラスの粘度? i力 1014· 6dPa' Sを示す温 度として定義されている。ひずみ点以下では、実質的にガラスが粘性流動を起こさな い状態であると定義されている。すなわち、前記の熱処理がガラスのひずみ点以上 の高温で行われる場合、ガラスの熱収縮率は無視できなレ、。例えば、単純マトリクス L CDや CRTに用いられているガラスは、ひずみ点が前記の CVD法における熱処理 温度(500〜580°C)を大幅に下回るため熱処理後のガラスの収縮量が大きぐ FED の背面ガラス部に用いることは不適切である。 [0013] Is the strain point of glass the viscosity of the glass? It is defined as the temperature indicating i-force 10 14 · 6 dPa 'S. Below the strain point, it is defined as a state in which the glass does not substantially cause viscous flow. That is, when the heat treatment is performed at a high temperature above the strain point of the glass, the heat shrinkage rate of the glass cannot be ignored. For example, glass used in simple matrix LCD and CRT has a strain point that is significantly lower than the heat treatment temperature (500 to 580 ° C) in the CVD method described above, so the shrinkage of the glass after heat treatment is large. It is inappropriate to use it for the back glass part.
[0014] これに対して、高ひずみ点ガラスは前記のように高温処理を経ても低ひずみ点ガラ スに比べて熱収縮量が小さいという利点がある。このことから、背面ガラス部にはひず み点が前記の CVD法における熱処理温度と同程度の温度範囲(500〜580°C)又 は少し高い温度範囲(570°C〜600°C)にある高ひずみ点ガラスを用いている。また 、熱収縮、利便性、線熱膨張係数の整合性も考慮して、従来は前面ガラス部にも背 面ガラス部と同じ高ひずみ点ガラスを用いてきた。  [0014] On the other hand, the high strain point glass has an advantage that the amount of heat shrinkage is small as compared with the low strain point glass even after the high temperature treatment as described above. For this reason, the back glass has a strain point in the same temperature range (500 to 580 ° C) as that of the heat treatment temperature in the CVD method, or a slightly higher temperature range (570 to 600 ° C). Some high strain point glass is used. In consideration of heat shrinkage, convenience, and consistency of linear thermal expansion coefficient, the same high strain point glass as that of the back glass has been used for the front glass.
[0015] しかし、背面ガラス部におけるェミッタ形成プロセスでの処理温度と比較すると、前 面ガラス部における画素形成プロセスやその後の熱処理プロセスでの処理温度は低 温であるため、前面ガラス部の熱収縮率は比較的小さい。したがって、たとえ前面ガ ラス部として低ひずみ点ガラスを採用しても、前面ガラス部と背面ガラス部の熱収縮 率の差が許容範囲内に収まる可能性があるにもかかわらず、十分な検討がなされて いなかった。  [0015] However, compared with the processing temperature in the emitter forming process in the rear glass part, the processing temperature in the pixel forming process in the front glass part and the subsequent heat treatment process is low, so the heat shrinkage of the front glass part. The rate is relatively small. Therefore, even if a low strain point glass is used as the front glass part, there is a possibility that the difference in heat shrinkage between the front glass part and the rear glass part may fall within the allowable range. It was not done.
[0016] 他方、高ひずみ点ガラスを製造する場合、低ひずみ点ガラスに比べてガラスの溶 融温度(ガラスの溶融温度は、一般的に、ガラスの粘度 η 力 Sl02dPa' Sを示すときの [0016] On the other hand, when producing high strain point glass, the melting temperature of glass compared to low strain point glass (the melting temperature of glass generally indicates the viscosity of glass η force Sl0 2 dPa 'S of
F  F
温度と定義される。)が高くなる。そのため、ガラスの溶解に必要な熱量が増加するだ けでなく、ガラス原料とガラス溶解窯の炉壁との反応性が高まり種々のガラス欠点を 派生させ商品性を損なう。加えてガラス溶解窯の炉壁に用いる耐熱煉瓦の熱的損傷 が激しくなり、溶解窯の寿命を短くする問題がある。 Defined as temperature. ) Becomes higher. Therefore, not only does the amount of heat required for melting the glass increase, but the reactivity between the glass raw material and the furnace wall of the glass melting furnace increases, and various glass defects are eliminated. Derived and impairs merchantability. In addition, the heat damage of the heat-resistant brick used for the furnace wall of the glass melting furnace becomes severe and there is a problem of shortening the life of the melting furnace.
[0017] 前面ガラス部と前記外枠とを一体化した構造の外囲器の場合、前面ガラス部は略 開口状の箱のような三次元形状となる。そのため、前面ガラス部の製法としてはフロ ート法等の従来の平板ガラスの製法よりもプレス成型法が適してレ、る。プレス成型法 は、数種類の金型を用いて金型内に充填した高温のガラス塊 (ゴブ)を押圧して成型 する方法である。  [0017] In the case of an envelope having a structure in which a front glass part and the outer frame are integrated, the front glass part has a three-dimensional shape like a substantially open box. Therefore, the press molding method is more suitable for the production method of the front glass part than the conventional flat glass production method such as the float method. The press molding method is a method in which several types of molds are used to press and mold a high-temperature glass lump (gob) filled in the mold.
[0018] 前記プレス成型法は、成型開始時から成型終了時にかけてガラスを冷却しながら 成型する方法であって、一般的に、成型開始時の粘度はおよそ 102' 5〜107dPa' S であり、成型終了時の粘度は lC^ l oUdPa' S程度である。すなわち、ガラスが冷 却されて凝固する過程での粘度上昇によってガラスの形状を固定することが成型ェ 程の本質である。 [0018] The press molding method is a method in which the glass is cooled from the start of molding to the end of molding, and the viscosity at the start of molding is generally about 10 2 ' 5 to 10 7 dPa' S. The viscosity at the end of molding is about lC ^ l oUdPa'S. That is, the essence of the molding process is to fix the shape of the glass by increasing the viscosity in the process of cooling and solidifying the glass.
[0019] 前面ガラス部として前述の高ひずみ点ガラスを用いる場合にも適度な粘度でプレス 成型を行う必要がある力 その作業温度の範囲は低ひずみ点ガラスに比べて必然的 に高くなる。また、より高温でプレス成型することにより、金型の表面が磨耗して、寿命 が著しく短くなる問題を生じる。さらには、ガラスと金型とが固着しやすくなる問題も生 じる。すなわち、プレス成型法によってガラス成型体を製造する上では、ガラスのひず み点は極力低いことが好ましい。仮に、溶融温度を高めることなくひずみ点を高めよ うとすると、成型作業のための適正な温度範囲を設定できず、ガラスの組成設計が著 しく困難になる。  [0019] Even when the above-described high strain point glass is used as the front glass portion, the force that needs to be press-molded with an appropriate viscosity is inevitably higher than the low strain point glass. Further, press molding at a higher temperature causes a problem that the surface of the mold is worn and the life is remarkably shortened. Furthermore, there is a problem that the glass and the mold are easily fixed. That is, when manufacturing a glass molding by a press molding method, it is preferable that the strain point of glass is as low as possible. If an attempt is made to increase the strain point without increasing the melting temperature, an appropriate temperature range for the molding operation cannot be set, and the glass composition design becomes extremely difficult.
[0020] ディスプレイ用の低ひずみ点ガラスとしては、蛍光表示管や単純マトリクス液晶ディ スプレイ用として、ソーダライムガラスのように、アルカリ酸化物としては本質的にナトリ ゥム酸化物のみを含有するもの、又はカリウム酸化物を含むがナトリウム酸化物の含 有量に比べてカリウム酸化物の含有量が極端に少ないものが一般的である。  [0020] As a low strain point glass for a display, as a fluorescent display tube or a simple matrix liquid crystal display, as a soda lime glass, an alkali oxide essentially contains only a sodium oxide. Or, potassium oxide is generally used, but the content of potassium oxide is extremely small compared to the content of sodium oxide.
[0021] その他には、特開 2002— 025761号公報(特許文献 1)において、前面基板として 、ひずみ点が 510°Cで、アルカリ酸化物として酸化ナトリウムを 13.0% (質量百分率) 含有し、酸化カリウムを 1. 0% (質量百分率)含有するソーダライムガラスを用いた無 機 ELディスプレイが開示されている。 [0022] しかし、高速電子線が照射される FEDにおいて、前記ソーダライムガラスを用いると 、ガラス内に浸透する電子線によりガラス中のナトリウムイオンが還元され、電子線ブ ラウニングが短期間に著しく進行する問題が生じる。またソーダライムガラスは 150°C における体積抵抗率が低い(108· 5 Ω ' cm)ため、数 kV以上のアノード電圧で駆動さ れる FEDに用いた場合、絶縁破壊を誘発する問題もある。すなわち、ソーダライムガ ラスのように、混合アルカリ効果(mixed alkali effect)を発現しないかあるいは発現し にくいガラスは FED用としては適切でなレ、。 [0021] In addition, in Japanese Patent Application Laid-Open No. 2002-025761 (Patent Document 1), the front substrate has a strain point of 510 ° C. and contains 13.0% (mass percentage) of sodium oxide as an alkali oxide. An organic EL display using soda lime glass containing 1.0% (mass percentage) of potassium is disclosed. [0022] However, in the FED irradiated with a high-speed electron beam, when the soda lime glass is used, sodium ions in the glass are reduced by the electron beam penetrating into the glass, and the electron beam browning proceeds remarkably in a short time. Problems arise. Soda-lime glass has a low volume resistivity (10 8 · 5 Ω 'cm) at 150 ° C, so there is also a problem of inducing dielectric breakdown when used in an FED driven with an anode voltage of several kV or more. In other words, glass that does not or does not exhibit the mixed alkali effect, such as soda lime glass, is suitable for FED.
[0023] 前述のガラスの他には、混合アルカリ効果を発現する CRT用ガラスが実用化されて いる。混合アルカリ効果とは、単一アルカリガラス中のアルカリイオンを他のアルカリィ オンで置換すると、イオン伝導度や誘電特性、力学特性等の物理的特性が大きく変 化する現象をいう。ガラスの場合、混合アルカリ効果が最も顕著に表れる特性は電気 抵抗である。本発明においては、 2元素以上のアルカリを含有し、前記の混合アル力 リ効果を発現するガラスを混合アルカリガラスとレ、う。  [0023] In addition to the glass described above, CRT glass exhibiting a mixed alkali effect has been put into practical use. The mixed alkali effect is a phenomenon in which physical properties such as ionic conductivity, dielectric properties, and mechanical properties are greatly changed when alkali ions in a single alkali glass are replaced with other alkaliions. In the case of glass, the characteristic that the mixed alkali effect is most prominent is electrical resistance. In the present invention, a glass containing two or more elements of alkali and exhibiting the above-described mixed strength effect is referred to as mixed alkali glass.
[0024] 混合アルカリ効果を十分に高めたガラスは、高電気抵抗である点、及び耐電子線 ブラウニング特性が良好である点で有利である。 CRTの画像表示部分 (ガラスパネ ノレ)に用いられるガラス(パネル用ガラス)としては、直視型陰極線管(direct view type CRT)用としてナトリウムとカリウムを含む、 2元の混合アルカリガラスが用いられており 、投射型陰極線管用としてはナトリウム、カリウム及びリチウムを含有する 3元の混合 アルカリガラスが用いられている。  [0024] Glass having a sufficiently enhanced mixed alkali effect is advantageous in that it has a high electric resistance and good electron beam browning characteristics. As the glass (panel glass) used for the image display part (glass panel) of CRT, binary mixed alkali glass containing sodium and potassium is used for direct view type CRT. For projection cathode ray tubes, ternary mixed alkali glass containing sodium, potassium and lithium is used.
[0025] また、前述のように X線吸収能を十分に確保するために、いずれのパネル用ガラス も 2· 7g/cm3から 3· Og/cm3程度と高密度になっている。しかし、このような高密度 のガラスを前面ガラス部に用いた場合、 FED用外囲器の軽量化が困難になる。 [0025] Further, as described above, in order to sufficiently secure the X-ray absorption ability, all the glass for a panel has a high density of about 2 · 7 g / cm 3 to 3 · Og / cm 3 . However, when such high-density glass is used for the front glass, it is difficult to reduce the weight of the FED envelope.
[0026] また、 CRTの背面側に位置し、電子銃や偏向ヨークコイル(deflection yoke coil)が 装着されるガラスファンネル用のガラス(ファンネル用ガラス)の組成は、画像表示部 分に用いるパネル用ガラスとは異なる。 白黒テレビで使用されたパネル用ガラス及び 初期のカラーテレビで使用されたパネル用ガラスでは、 X線の漏洩を防止するために ファンネル用ガラスと同様に鉛を含有させていた。  [0026] Further, the composition of the glass for the glass funnel (funnel glass), which is located on the back side of the CRT and on which the electron gun and the deflection yoke coil are mounted, is used for the panel used for the image display portion. Different from glass. Panel glass used in black and white televisions and panel glass used in early color televisions contained lead in the same way as funnel glass to prevent X-ray leakage.
[0027] その後、 30kV程度までアノード電圧を高電圧化した高輝度 CRTの登場に伴い、 電子線ブラウニングの更なる抑制が技術課題として取り上げられようになった。また、 結晶性ハンダガラス(crystalline solder glass)を用いてガラスパネルとガラスフアンネ ルとを封着する工程では約 440°Cに達するので、ガラスパネルの熱収縮や熱変形を 引き起こし、ガラスパネルの内側に装着する色選別機構であるシャドウマスクとの間 隔が変動し色純度不良を生じる問題があった。 [0027] After that, along with the advent of high-brightness CRT with the anode voltage increased to about 30kV, Further suppression of electron beam browning has been taken up as a technical issue. Also, in the process of sealing the glass panel and glass funnel using crystalline solder glass, the temperature reaches about 440 ° C, causing heat shrinkage and thermal deformation of the glass panel. There was a problem that the spacing between the shadow mask, which is the color selection mechanism to be mounted, fluctuated, resulting in poor color purity.
[0028] このため、 CRTのパネル用ガラスには、電子線ブラウニングや熱変形の防止策とし て、従来 X線吸収能を確保するために使用していた鉛を全く含有せず、鉛の代替とし てストロンチウムやバリウムを含有させて実用的な X線吸収能を確保しながら高ひず み点にしたガラス組成物を用いるようになった。その結果、前記パネル用ガラスのひ ずみ点は 470°Cから 480°C程度となり、鉛を含有するファンネル用ガラスのひずみ点 に比べて 20°Cから 40°C程度高レ、。 [0028] For this reason, CRT panel glass does not contain lead at all, which has been used to secure X-ray absorption, as a measure to prevent electron beam browning and thermal deformation. As a result, glass compositions that contain strontium and barium and have a high strain point while ensuring practical X-ray absorption ability have been used. As a result, the strain point of the panel glass is about 470 ° C to 480 ° C, which is about 20 ° C to 40 ° C higher than the strain point of the funnel glass containing lead.
[0029] CRTは、高々 3個の力ソードから放出された熱電子を電子銃によって電子線に束 ねて、偏向ヨークコイルによりスキャンさせ、加速し、数十万個から数百万個の画素の 蛍光体を励起 ·発光させる原理を用いている。すなわち、平板型の発光ディスプレイ である PDPや FEDのように力ソードと蛍光体画素とを対にしてマトリクス状に配置した 構造を必要としていない。また、 FEDの背面ガラス部に相当するガラスファンネル上 に力ソードを形成する際に高温処理プロセスを必要としない点で FEDの製造方法と は本質的に異なる。 [0029] The CRT bundles thermoelectrons emitted from at most three force swords into an electron beam with an electron gun, scans them with a deflection yoke coil, and accelerates them to generate hundreds of thousands to millions of pixels. The principle of exciting and emitting phosphors is used. That is, there is no need for a structure in which force swords and phosphor pixels are arranged in a matrix like PDP and FED, which are flat light emitting displays. In addition, it differs from the FED manufacturing method in that it does not require a high-temperature treatment process when forming a force sword on the glass funnel corresponding to the back glass part of the FED.
[0030] したがって、 CRTの場合、ガラスパネルとガラスファンネルとの間の相対的な熱収 縮の差があっても、電子を放出する力ソードと放出された電子が衝突する画素との位 置ずれによる色純度低下の懸念は生じなレ、。言い換えれば、 CRTにおいては、ガラ スパネルとガラスファンネルの間の相対的な熱収縮の差異に起因する色純度不良は 技術課題として存在せず、ガラスファンネルの高ひずみ点化を技術課題として取り上 げる必要もなかった。  [0030] Therefore, in the case of the CRT, even if there is a relative thermal contraction difference between the glass panel and the glass funnel, the position of the force sword that emits electrons and the pixel that the emitted electrons collide with. There is no concern about color purity deterioration due to misalignment. In other words, in CRT, poor color purity due to the difference in relative heat shrinkage between the glass panel and the glass funnel does not exist as a technical issue, and the high strain point of the glass funnel is taken up as a technical issue. I didn't have to.
[0031] 前記特許文献 1においては、前面基板にソーダライムガラスを用レ、、背面基板にひ ずみ点が 520°C以上であるガラスを用いる無機 ELディスプレイが開示されている。し かし、特許文献 1に係る発明は、 650〜700°Cで焼成されても背面基板自体の熱変 形が起こらないようにすることを目的とするものである。 [0032] すなわち、 FED用の前面ガラス部に要求される良好な耐電子線ブラウニング特性 を確保しつつ、前述のような前面ガラスの生産に関わる諸課題を解決する具体策を 提供するものではない。さらには、前述の位置ずれに関する技術課題については開 示も示唆もされていない。 [0031] Patent Document 1 discloses an inorganic EL display using soda lime glass for the front substrate and glass having a strain point of 520 ° C or higher for the back substrate. However, the invention according to Patent Document 1 is intended to prevent thermal deformation of the back substrate itself even when baked at 650 to 700 ° C. [0032] That is, it does not provide a specific measure for solving the problems related to the production of the front glass as described above while ensuring the excellent electron beam browning characteristics required for the front glass part for FED. . Furthermore, there is no disclosure or suggestion of the above-mentioned technical issues related to misalignment.
[0033] したがって、特許文献 1に係る発明は、 FED特有の課題である前面ガラス部と背面 ガラス部の熱収縮量の差から生じる、対向する画素とェミッタとの相対的な位置ずれ を実用的な範囲に抑えつつ、良好な耐電子線ブラウニング特性を確保したガラス真 空外囲器を提供するものではない。また、特許文献 1に係る発明は、 FED用外囲器 の生産技術上の課題である前面ガラス部の溶解性の向上や又は前面ガラス部が三 次元形状である場合に必要なガラスの成型性の向上を図るためでもなぐ加えて強 化を容易化するための解決手段を何ら開示するものでもない。  [0033] Therefore, the invention according to Patent Document 1 has practically used a relative positional shift between the opposing pixel and the emitter, which is caused by a difference in thermal shrinkage between the front glass portion and the rear glass portion, which is a problem unique to FED. It does not provide a glass vacuum envelope that ensures good electron beam browning characteristics while keeping it within a certain range. In addition, the invention according to Patent Document 1 improves the solubility of the front glass part, which is a problem in the production technology of an FED envelope, or the moldability of glass required when the front glass part has a three-dimensional shape. It is not intended to disclose any solution to facilitate the enhancement, in addition to improving the system.
[0034] 特許文献 1 :特開 2002— 025761号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-025761
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0035] 本発明は、 FED用外囲器として実用的な機能を備え、外囲器を構成するガラス部 材を容易に製造できるようにするために最適なガラス特性とガラス組成とを提供し、更 には、軽量化された外囲器を提供することを目的とする。  [0035] The present invention provides a practical function as an FED envelope and provides optimum glass properties and glass composition so that glass members constituting the envelope can be easily manufactured. Furthermore, it aims at providing the envelope lightened.
[0036] すなわち、本発明は、 FED用外囲器に課せられた以下の課題を解決することを目 的とする。まず第 1の課題は、前述の「位置ずれ」を小さくして実用的な範囲に抑える ことである。第 2の課題は、 FEDに要求される耐電子線ブラウニング特性を満足させ ることである。第 3の課題は、前面ガラス部の溶解性を向上させ、溶解窯の長寿化を 図ることである。第 4の課題は、前面ガラス部が三次元形状である場合において、プ レス成型を容易化することである。カロえて、これらの課題解決手段を用いて軽量化さ れた FED用外囲器を具体的に提供することである。  [0036] That is, the present invention aims to solve the following problems imposed on the FED envelope. The first problem is to reduce the above-mentioned “positional deviation” to a practical range. The second issue is to satisfy the electron beam browning characteristics required for FED. The third issue is to improve the melting property of the front glass part and prolong the life of the melting furnace. The fourth problem is to facilitate press molding when the front glass part has a three-dimensional shape. The goal is to provide an FED envelope that is lighter by using these means for solving problems.
課題を解決するための手段  Means for solving the problem
[0037] 前記の目的を達成するため、本発明は、次の解決手段を提供する。 In order to achieve the above object, the present invention provides the following solution.
[0038] すなわち第 1の発明は、画像を表示するための前面ガラス部と、ェミッタを形成する ための背面ガラス部とを有する FED用外囲器であって、前記前面ガラス部及び背面 ガラス部は混合アルカリガラスからなり、前記前面ガラス部について、ひずみ点を T That is, the first invention is an FED envelope having a front glass part for displaying an image and a rear glass part for forming an emitter, wherein the front glass part and the rear glass part are provided. The glass part is made of mixed alkali glass.
SF  SCIENCE FICTION
(°C)、線熱膨張係数を α (/°C)、密度を d (g/cm3)、ガラスの粘度 77 力 Sl02 (dP (° C), linear thermal expansion coefficient α (/ ° C), density d (g / cm 3 ), glass viscosity 77 force Sl0 2 (dP
F F F  F F F
a ' S)を示すときの温度を T 77 (°C)とし、前記背面ガラス部について、ひずみ点を T  a'S) is T 77 (° C), and the back glass part has a strain point of T
2 S 2 S
(°C)、線熱膨張係数をひ (/°C)、密度を d (g/cm3)とするとき、 460≤T ≤50460≤T ≤50, where (° C), linear thermal expansion coefficient is (/ ° C), and density is d (g / cm 3 )
R R R SF R R R SF
5、 550≤T く 600、 2. 45≤d ≤ 2. 6, d ≤d , | α - α | ≤5 Χ 10"7,及び丁 5, 550≤T 600, 2.45≤d ≤ 2. 6, d ≤d, | α-α | ≤5 Χ 10 " 7 , and Ding
SR F F R F R  SR F F R F R
η ≤1500、を満足することを特徴とする FED用外囲器である。  FED envelope characterized by satisfying η ≤1500.
2  2
[0039] また第 2の発明は、前記の外囲器において、前面ガラス部を構成する各成分の酸 化物基準の含有率が、質量百分率表示で実質的に 60≤Si〇 ≤73、 0≤A1〇  [0039] In addition, according to a second aspect of the present invention, in the envelope described above, the content of the oxide standard of each component constituting the front glass portion is substantially 60≤Si0 ≤73, 0≤ in terms of mass percentage. A1〇
2 2 3 2 2 3
≤2. 5、 8≤MgO + CaO≤12, 0. 15≤MgO/CaO≤2. 3、 0≤SrO ≤3, 0≤ Ba〇≤3、 0≤ZnO≤6, 0. 5≤Na〇≤4、 4≤K 0≤12, l≤Li〇≤3、 0≤ZrO ≤2.5, 8≤MgO + CaO≤12, 0. 15≤MgO / CaO≤2.3, 0≤SrO ≤3, 0≤ Ba〇≤3, 0≤ZnO≤6, 0.5.5≤Na〇 ≤4, 4≤K 0≤12, l≤Li〇≤3, 0≤ZrO
2 2 2 2 2 2 2 2
≤2. 5、 0≤TiO ≤2、 0≤CeO ≤1、 0≤Sb〇 ≤0. 5であり、モル百分率表示 ≤2.5, 0≤TiO ≤2, 0≤CeO ≤1, 0≤Sb〇 ≤0.5.
2 2 2 3  2 2 2 3
で、アルカリ酸化物 Na〇、 K〇及び Li〇の含有率の合計を R〇とするとき、 11≤R  When the total content of alkali oxides Na〇, K〇 and Li〇 is R〇, 11≤R
2 2 2 2  2 2 2 2
0≤14, 0. 12≤Na〇/R O≤0. 45、を満足するものである。  0≤14, 0. 12≤Na〇 / R O≤0.45.
2 2 2  2 2 2
[0040] また第 3の発明は、前記前面ガラス部を構成するアルカリ金属酸化物の含有率が、 質量百分率表示で実質的に 2. 0≤0. 21Na O + O. 065K O + O. 726Li 0≤2.  [0040] Further, in the third invention, the content of the alkali metal oxide constituting the front glass portion is substantially 2.0 ≤ 0.21 Na O + O. 065K O + O. 726Li in terms of mass percentage. 0≤2.
2 2 2  2 2 2
8なる関係、を満足することである。  Satisfy 8 relationships.
発明の効果  The invention's effect
[0041] 本発明の FED用外囲器は、低ひずみ点を有する前面ガラス部と高ひずみ点を有 する背面ガラス部とから構成されてレ、るが、互いに膨張係数の整合性を確保してレ、る 。そのため、前述の「位置ずれ」を小さくできる。また同時に、 FED用前面ガラス部に 要求される耐電子線ブラウニング特性を満足しつつ、前面ガラス部の溶解性を向上 し、溶解温度を低温にすることにより溶解窯の長寿命化が図れるとともに、前面ガラス 部が三次元形状である場合にプレス成形を容易にできる。また、前面ガラス部の密度 を最適化することにより大幅な軽量化が達成される。  [0041] The envelope for FED of the present invention is composed of a front glass portion having a low strain point and a rear glass portion having a high strain point, but ensures consistency of expansion coefficients with each other. It's going to Therefore, the “positional deviation” described above can be reduced. At the same time, while satisfying the electron beam browning characteristics required for the FED front glass part, the melting property of the front glass part is improved and the melting temperature is lowered, thereby extending the life of the melting furnace. When the front glass part has a three-dimensional shape, press molding can be facilitated. In addition, a significant weight reduction can be achieved by optimizing the density of the front glass.
図面の簡単な説明  Brief Description of Drawings
[0042] [図 1]本発明の一実施形態を示すフィールドェミッションディスプレイ用外囲器の概略 断面図。  FIG. 1 is a schematic cross-sectional view of a field emission display envelope showing an embodiment of the present invention.
[図 2]本発明の他の実施形態を示すフィールドェミッションディスプレイ用外囲器の概 略断面図。 [Fig. 2] Outline of field emission display envelope showing another embodiment of the present invention. FIG.
符号の説明  Explanation of symbols
[0043] 1 :前面ガラス部  [0043] 1: Front glass part
2 :背面ガラス部  2: Back glass
3 :外枠  3: Outer frame
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0044] 以下、本発明を詳細に説明する。図 1及び図 2は、本発明の代表的な実施形態を 示す FED用外囲器の断面図である。本発明の FED用外囲器の一例は、図 1に示す ように、内表面に蛍光体画素(図示しない)が形成された前面ガラス部 1と、電子を放 出するためのェミッタ(図示しなレ、)を表面に配設した背面ガラス部 2とを対向配置さ せ、さらに側壁を形成する略矩形状のガラス製の外枠 3とから構成され、各部材が封 着材を用いて気密封着されているものである。  [0044] Hereinafter, the present invention will be described in detail. 1 and 2 are cross-sectional views of an FED envelope showing a typical embodiment of the present invention. As shown in FIG. 1, an example of an FED envelope according to the present invention includes a front glass portion 1 having phosphor pixels (not shown) formed on the inner surface, and an emitter (not shown) for emitting electrons. And a rear glass portion 2 having a surface arranged on the surface, and a substantially rectangular glass outer frame 3 that forms a side wall. Each member is made of a sealing material. It is hermetically sealed.
[0045] 本発明の FED用外囲器は、図 2に示すような前面ガラス部と外枠とを一体化した構 造でもよい。さらには、前面ガラス部の周縁部及び Z又は背面ガラス部の外面を被覆 するように補強部材が用いられてもよい。また、外囲器の内部には、力ソードとァノー ドとの間隔を一定に保持するためのスぺーサが介在してもよい。  [0045] The FED envelope of the present invention may have a structure in which the front glass portion and the outer frame are integrated as shown in FIG. Further, a reinforcing member may be used so as to cover the peripheral portion of the front glass portion and the outer surface of Z or the back glass portion. In addition, a spacer for keeping a constant distance between the force sword and the anode may be interposed inside the envelope.
[0046] 本発明を構成する前面ガラス部 1、背面ガラス部 2及び外枠 3には、全てアルカリ含 有ガラスが用いられる。無アルカリガラス(alkali-free glass)を用いた場合、ガラスの溶 解温度が高くなり生産性が著しく低下し経済性が損なわれる。  [0046] Alkali-containing glass is used for the front glass part 1, the back glass part 2 and the outer frame 3 constituting the present invention. When alkali-free glass is used, the melting temperature of the glass becomes high, resulting in a significant reduction in productivity and loss of economy.
[0047] FED等で適用される高電圧及び高電流の駆動条件において、前記外囲器は良好 な耐絶縁破壊特性を示す。すなわち、本発明の外囲器を構成する前面ガラス部、背 面ガラス部、及び外枠の全てには混合アルカリガラスが用いられる。具体的には、本 発明の外囲器を構成する前面ガラス部、背面ガラス部及び外枠は、 150°Cにおいて ΙΟ^ Ω ' cm以上の体積抵抗率を有するガラスを用いる。  [0047] Under the high-voltage and high-current driving conditions applied in FED or the like, the envelope exhibits good dielectric breakdown characteristics. That is, mixed alkali glass is used for all of the front glass part, the back glass part, and the outer frame constituting the envelope of the present invention. Specifically, the front glass part, the rear glass part, and the outer frame constituting the envelope of the present invention use glass having a volume resistivity of 150 Ωcm or more at 150 ° C.
[0048] 力 Qえて、本発明を構成する前面ガラス部は、良好な耐電子線ブラウニング特性を有 しており、含有されるアルカリ酸化物の物質量比は、その特性上本質的に混合アル カリ効果を発現可能な範囲にある。すなわち、本発明を構成する前面ガラス部に含 有されるアルカリ酸化物の物質量比は、高い絶縁性を確保できる体積抵抗率と良好 な耐電子線ブラウニング特性とが両立する範囲内に制限される。 [0048] The front glass part constituting the present invention has good electron beam browning characteristics, and the substance amount ratio of the alkali oxide contained is essentially mixed in terms of the characteristics. It is in a range where the potash effect can be expressed. In other words, the substance amount ratio of the alkali oxide contained in the front glass portion constituting the present invention is excellent in volume resistivity that can ensure high insulation. Therefore, it is limited to the range where both the electron beam anti-browning characteristics are compatible.
[0049] 他方、背面ガラス部に関しては、良好な耐電子線ブラウニング特性が必須条件で はないので、背面ガラス部に含有されるアルカリ酸化物の物質量比は、体積抵抗率 として 10η Ω ' cm以上を示す範囲であればよい。 [0049] On the other hand, since a good electron beam browning characteristic is not an essential condition for the back glass part, the material amount ratio of the alkali oxide contained in the back glass part is 10 η Ω 'as a volume resistivity. It may be in a range indicating cm or more.
[0050] 本発明を構成する前面ガラス部と背面ガラス部は、互いに異なるひずみ点を有する 。具体的に、前記前面ガラス部は 460°C以上 505°C以下のひずみ点を有する。前面 ガラス部のひずみ点が 460°C未満では、封着工程において熱処理する際に、熱収 縮量が大きくなる問題や、熱変形により前面ガラス部が歪むという問題を生じる。前記 の封着工程とは、前面ガラス部と背面ガラス部との封着する工程、又は前面ガラス部 と背面ガラス部の間に外枠を介在させて封着する工程をいう。  [0050] The front glass portion and the back glass portion constituting the present invention have different strain points. Specifically, the front glass part has a strain point of 460 ° C or higher and 505 ° C or lower. When the strain point of the front glass part is less than 460 ° C, there is a problem that the amount of heat contraction becomes large during heat treatment in the sealing process, and that the front glass part is distorted due to thermal deformation. The sealing step refers to a step of sealing the front glass portion and the rear glass portion, or a step of sealing with an outer frame interposed between the front glass portion and the rear glass portion.
[0051] 前面ガラス部のひずみ点が 505°Cを超えると、ガラスの溶解エネルギーの増加や、 種々のガラス溶解欠点の増カロ、ガラスの溶解温度が高温化することによる溶解窯の 短命化、ガラスの成型温度が高温化することによるプレス金型の短命化等、生産性 の低下に繋がる問題が甚だしくなる。  [0051] When the strain point of the front glass part exceeds 505 ° C, the melting energy of the glass increases, various glass melting defects increase, the melting temperature of the glass rises, and the melting furnace becomes shorter. Problems that lead to reduced productivity, such as shortening the life of press dies due to higher glass molding temperatures, become serious.
[0052] また、本発明を構成する背面ガラス部は、 550°C以上 600°C以下のひずみ点を有 する。背面ガラス部のひずみ点が 550°C未満では、ェミッタ形成などの高温プロセス で熱処理を受ける際に、熱収縮量が大きくなり実用性を損なう。背面ガラス部のひず み点が 600°Cを超えるとガラスの良好な溶解性が損なわれる。  [0052] Further, the rear glass portion constituting the present invention has a strain point of 550 ° C or higher and 600 ° C or lower. When the strain point of the back glass is less than 550 ° C, the amount of thermal shrinkage increases when heat treatment is performed in a high-temperature process such as emitter formation, which impairs practicality. If the strain point of the back glass exceeds 600 ° C, the good solubility of the glass will be impaired.
[0053] 本発明を構成する前面ガラス部の線熱膨張係数 α と背面ガラス部の線熱膨張係  [0053] The coefficient of linear thermal expansion α of the front glass part and the coefficient of linear thermal expansion of the rear glass part constituting the present invention.
F  F
数 α の差 I α — α | は、 5 X 10_7/°C以下である。このことにより、熱膨張や熱The difference I α — α | of the number α is less than 5 X 10_ 7 / ° C. This allows thermal expansion and heat
R F R R F R
収縮の際の整合性が保たれ、 FEDを組み立てる際の一連の熱処理工程における熱 割れ (熱膨張や熱収縮に起因する割れ)を抑制できる。  Consistency during shrinkage is maintained, and thermal cracking (cracking due to thermal expansion and contraction) in a series of heat treatment steps when assembling the FED can be suppressed.
[0054] また、前記の前面ガラス部は、良好な溶解性や成形性を確保する必要上、ガラスの 粘度 η が 102dPa' Sとなるときの温度を 1500°C以下とする。 [0054] Further, in order to ensure good solubility and formability, the temperature of the glass at the front glass portion is set to 1500 ° C or lower when the viscosity η of the glass is 10 2 dPa'S.
F  F
[0055] 本発明においては、前面ガラス部の密度は、 2. 45gZcm3以上 2. 6g/cm3以下 とする。前面ガラス部の密度が 2. 45g/cm3以下では、ガラスの粘度 が 102dPa' [0055] In the present invention, the density of the front glass portion is 2.45 gZcm 3 or more and 2.6 g / cm 3 or less. When the density of the front glass part is 2.45 g / cm 3 or less, the viscosity of the glass is 10 2 dPa '.
F  F
Sとなるときの温度を 1500°C以下に確保することが困難になり、前記密度が 2. 6g/ cm3以上では十分に軽量化できない。 [0056] 背面ガラス部に関しては、可視光の透過性は求められなレ、ので金属部材などで補 強が可能であり極力薄くすることができる。そのため、背面ガラス部の密度は前面ガラ ス部より大きくても良い。 It becomes difficult to secure the temperature when S is 1500 ° C. or less, and if the density is 2.6 g / cm 3 or more, the weight cannot be sufficiently reduced. [0056] With respect to the back glass portion, visible light transmittance is not required, so it can be reinforced with a metal member or the like and can be made as thin as possible. Therefore, the density of the back glass part may be larger than that of the front glass part.
[0057] 背面ガラス部の密度を 2. 45g/cm3未満にすると線膨張係数を 75 X 10_7/°C以 上、 90 X 10— 7Z°C以下の範囲(封着工程における諸問題回避や他の材料の膨張 係数との整合性確保のために必要な線膨張係数の範囲)に維持しながらひずみ点を 550°C以上に確保することが困難になる。 [0057] The density of the back glass unit 2. If less than 45 g / cm 3 linear expansion coefficient 75 X 10_ 7 / ° C or more on, problems in 90 X 10- 7 Z ° C following range (sealing step It is difficult to ensure a strain point of 550 ° C or higher while maintaining the range of the linear expansion coefficient necessary for avoidance and ensuring consistency with the expansion coefficient of other materials.
[0058] 次に、本発明の外囲器を構成する前面ガラス部の組成の実施形態について述べる 。前面ガラス部に用いられるガラスは、その成分として Si〇、 CaO、 Mg〇、 Li 0、 Na  Next, an embodiment of the composition of the front glass part constituting the envelope of the present invention will be described. The glass used for the front glass is composed of SiO, CaO, MgO, Li0, Na
2 2  twenty two
O及び K oを必須成分としている。  O and Ko are essential ingredients.
2 2  twenty two
[0059] 本発明の外囲器における前面ガラス部のガラス組成は、低密度で外囲器の軽量ィ匕 を容易にすることを目的としている。また前記の前面ガラス部のガラス組成は、線熱 膨張係数、ひずみ点やその他の高温粘度を調整し易くすると同時に、電気抵抗ゃ耐 電子線ブラウニング特性の点で、前述の混合アルカリ効果を発現することも目的とす る。  [0059] The glass composition of the front glass portion in the envelope of the present invention is intended to facilitate lightening of the envelope at a low density. The glass composition of the front glass part makes it easy to adjust the linear thermal expansion coefficient, strain point and other high-temperature viscosities, and at the same time exhibits the mixed alkali effect in terms of electric resistance and electron beam browning characteristics. This is also the purpose.
[0060] 次いで、前記前面ガラス部のガラス組成の各成分について説明する。なお、特に断 りがない場合、%が質量百分率を表すものとする。  [0060] Next, each component of the glass composition of the front glass portion will be described. Unless otherwise specified, “%” represents mass percentage.
[0061] SiOは、ガラス化する上で重要なネットワークフォーマーである力 その含有率が 6 [0061] SiO is a network former that is important for vitrification.
2  2
0%よりも少ない場合は、ガラスの粘度が低下するとともに化学的耐久性が悪くなる。  If it is less than 0%, the viscosity of the glass decreases and the chemical durability deteriorates.
SiOの含有率が 73%よりも多い場合には、ガラスの粘度が高くなり、溶融成形が困 If the SiO content is more than 73%, the viscosity of the glass becomes high and melt molding becomes difficult.
2 2
難になる。そのため、 SiOの含有率は 60〜73%とすることが好ましい。  It becomes difficult. Therefore, the content of SiO is preferably 60 to 73%.
2  2
[0062] Al Oは、耐水性向上のために添加するが、含有率が 2. 5%より多い場合にはガラ  [0062] Al O is added to improve water resistance. If the content is more than 2.5%, the glass
2 3  twenty three
スの粘度が高くなりすぎて溶融成形が困難になる。そのため、 Al Oの含有率は 2. 5  The viscosity of the mold becomes too high, making melt molding difficult. Therefore, the Al O content is 2.5.
2 3  twenty three
%以下とすることが好ましい。  % Or less is preferable.
[0063] MgOと Ca〇は、主にガラスの粘性曲線を調整するために用いる。 MgOと Ca〇の含 有率の総和が 8%未満であると粘度が高くなり過ぎて、ひずみ点を 460°C以上 505 °C以下に維持するのが困難になる。 MgOと Ca〇の含有率の総和が 12%より多い場 合には、ガラスが失透しやすくなり液相温度が上昇する。また、 Ca〇の含有率に対す る MgOの含有率の比、即ち MgO/CaOの値は、 0· 15未満の場合及び 2. 3を超え る場合にはガラスが失透しやすくなる。そのため、 MgOと CaOの含有率の総和は 8 〜 12%とすることが好ましレ、。 [0063] MgO and CaO are mainly used to adjust the viscosity curve of glass. If the total content of MgO and CaO is less than 8%, the viscosity becomes too high and it becomes difficult to maintain the strain point at 460 ° C or more and 505 ° C or less. If the total content of MgO and CaO exceeds 12%, the glass tends to devitrify and the liquidus temperature rises. In addition, to the CaO content If the MgO content ratio, that is, the MgO / CaO value is less than 0 · 15 or more than 2.3, the glass tends to devitrify. Therefore, the total content of MgO and CaO is preferably 8-12%.
[0064] SrO及び BaOは、ともにガラスの線熱膨張係数を高めるために含有してもよレ、。た だし、 Sr〇又は Ba〇の含有率が 3。/0を超えるとガラスの密度が高くなり際立った軽量 化の効果が得られなくなる。また、 SrO又は Ba〇の含有率が 3%より多い場合には B aO- SrO-SiO系の結晶が析出し易くなる。そのため、 SrO及び Ba〇の含有率は [0064] Both SrO and BaO may be contained to increase the linear thermal expansion coefficient of the glass. However, the content of Sr〇 or Ba〇 is 3. If it exceeds / 0 , the density of the glass becomes high and the remarkable lightening effect cannot be obtained. In addition, when the content of SrO or BaO is more than 3%, BaO-SrO-SiO-based crystals are likely to precipitate. Therefore, the content of SrO and BaO is
2  2
、ともに 3%以下とすることが好ましい。  Both are preferably 3% or less.
[0065] Zn〇は、主にガラスの粘性曲線を調整し電子線ブラウニングを抑えるのに効果があ る。ただし、 ZnOの含有率が 6%より多い場合にはガラスの密度が高くなると共にガラ スが失透し易くなる。そのため ZnOの含有率は 6%以下とすることが好ましい。  [0065] ZnO is mainly effective in adjusting the viscosity curve of glass and suppressing electron beam browning. However, if the ZnO content is higher than 6%, the glass density increases and the glass tends to devitrify. Therefore, the ZnO content is preferably 6% or less.
[0066] Li〇は、ガラスの電子線ブラウニングを抑制するとともに高温の際のガラスの粘度  [0066] LiO suppresses electron beam browning of the glass and the viscosity of the glass at high temperatures.
2  2
を低下させてガラスの溶融性を向上させ、かつ線熱膨張係数を高める成分である。 L i〇の含有率が 1 %より少ない場合には高温でのガラスの粘性が高すぎて溶融しにく Is a component that improves the meltability of the glass and increases the coefficient of linear thermal expansion. If the content of Li is less than 1%, the viscosity of the glass at high temperature is too high to melt.
2 2
ぐ Li Oの含有率が 3. 0%より多い場合にはガラスが失透し易くなる。また Li O原料 If the content of LiO is more than 3.0%, the glass tends to devitrify. Li O raw material
2 2 自体が高価であるためコストの面から多量に含有することは好ましくなレ、。そのため Li Oの含有率は 1〜3%とすることが好ましい。 2 2 Because it is expensive, it is preferable to contain a large amount in terms of cost. Therefore, the content of Li 2 O is preferably 1 to 3%.
2  2
[0067] Na〇は、ガラスの線熱膨張係数と粘度を調整する成分であるが、含有率が 0. 5%  [0067] Na 0 is a component that adjusts the linear thermal expansion coefficient and viscosity of glass, but the content is 0.5%.
2  2
より少ない場合には線熱膨張係数が低くなりすぎて背面ガラス部の膨張係数と整合 しなくなり、 Na〇の含有率が 4%より多い場合にはガラスの粘度が低くなりすぎ、成  If it is less, the linear thermal expansion coefficient becomes too low to match the expansion coefficient of the back glass part, and if the NaO content is more than 4%, the viscosity of the glass becomes too low and
2  2
形が困難になる。そのため Na〇の含有率は 0· 5〜4%とすることが好ましい。  The shape becomes difficult. Therefore, the NaO content is preferably 0.5-5%.
2  2
[0068] Κ〇は、 Na Oと同様にガラスの線熱膨張係数と粘度を調整する成分であるが、含  [0068] Κ〇 is a component that adjusts the linear thermal expansion coefficient and viscosity of glass in the same manner as Na O, but contains
2 2  twenty two
有率が 4%より少ない場合にはガラスの粘度が高くなりすぎて溶融及び成形が困難 になる。 K〇の含有率が 12%より多い場合にはガラスの線熱膨張係数が高くなりす  If the percentage is less than 4%, the viscosity of the glass becomes too high, making melting and forming difficult. If the K ○ content is higher than 12%, the linear thermal expansion coefficient of the glass will increase.
2  2
ぎる。そのため 〇の含有率は 4〜12%とすることが好ましぐ 8〜11 %であればさら  Giru. Therefore, it is preferable to set the content of 〇 to 4-12%.
2  2
に好ましい。  Is preferred.
[0069] Zr〇は、ガラスの粘性曲線を調整するために添カ卩できる力 含有率が 2. 5%より多  [0069] ZrO has a force content that can be added to adjust the viscosity curve of glass.
2  2
い場合には、ガラスと耐火物との間で表面失透温度が高くなり、表面に失透が起こり 易くなる。また表面失透温度が高くなると、ガラス内部での液相温度が高い場合と同 様に、ガラスの成形が困難になるため好ましくない。そのため ZrOの含有率は 2. 5 The surface devitrification temperature increases between the glass and the refractory, and devitrification occurs on the surface. It becomes easy. Further, when the surface devitrification temperature is high, it is not preferable because it becomes difficult to form the glass as in the case where the liquidus temperature inside the glass is high. Therefore, the ZrO content is 2.5.
2  2
%以下とすることが好ましい。  % Or less is preferable.
[0070] ΤΪΟは、紫外線及び X線に起因するガラスの着色を防ぐために添カ卩できる力 含 [0070] Wrinkles include a force that can be added to prevent glass coloring due to ultraviolet rays and X-rays.
2  2
有率が 2%より多い場合には、ガラスの X線透過率が低下するので好ましくなレ、。そ のため TiOの含有率は 2%以下とすることが好ましレ、。  When the percentage is more than 2%, the X-ray transmittance of the glass is lowered, which is preferable. Therefore, the content of TiO is preferably 2% or less.
2  2
[0071] CeOは、 X線によるガラスの着色を防止する効果に優れているとともに清澄剤とし  [0071] CeO is excellent in the effect of preventing the coloring of the glass by X-rays and is used as a clarifier.
2  2
ての効果があるが、含有率が 1 %より多い場合にはガラスが失透し易くなり、また可視 部短波長域におけるガラスの光透過率が低下するので好ましくなレ、。そのため CeO  However, when the content is more than 1%, the glass tends to be devitrified, and the light transmittance of the glass in the visible short wavelength region is lowered. Therefore CeO
2 の含有率は 1 %以下とすることが好ましい。  The content of 2 is preferably 1% or less.
[0072] Sb〇は、ガラスの清澄剤として添カ卩できる力 含有率が 0. 5%より多い場合には [0072] SbO is a force that can be added as a glass refining agent. If the content is more than 0.5%,
2 3  twenty three
ガラスの表面失透が著しくなる。そのため Sb Oの含有率は 0. 5%以下とすることが  Glass surface devitrification becomes remarkable. Therefore, the SbO content should be 0.5% or less.
2 3  twenty three
好ましい。  preferable.
[0073] また本発明においては、上記成分以外にもガラスの透過率を低下させ、又はガラス の色を調整するため NiO、 Co〇、 Fe O等の着色成分も添加可能である。 Pb〇は  [0073] In the present invention, in addition to the above components, coloring components such as NiO, CoO, and FeO can be added to reduce the transmittance of the glass or adjust the color of the glass. Pb〇 is
3 4 2 3  3 4 2 3
、電子線及び X線ブラウニングによる着色を起こし易くなるので含有させなレ、方がよ レ、。  , It is easy to cause coloring by electron beam and X-ray browning, so it is better not to contain it.
[0074] モル百分率表示で、アルカリ酸化物 Na O (モル0 /0)、 K O (モル%)及び Li O (モ [0074] in a molar percentage display, alkali oxides Na O (mol 0/0), KO (mol%) and Li O (Mo
2 2 2 ル%)の含有率の合計 R 0 (Na O +K O + Li O) (モル%)は、 1 1モル%以上且つ  2 2 2%) content R 0 (Na 2 O + K 2 O + Li 2 O) (mol%) is 1 1 mol% or more and
2 2 2 2  2 2 2 2
14モル%以下の範囲にあることが好ましレ、。前記 R Oが 1 1モル0 /0未満又は 14モル Preferably, it is in the range of 14 mol% or less. Wherein RO is 1 mole 0/0 or less than 14 mole
2  2
%超であると、前面ガラス部の線熱膨張係数 α を 75 X 10— 7〜90 X 10— 7の範囲に When percent is, the linear thermal expansion coefficient of front glass portion α in the range of 75 X 10- 7 ~90 X 10- 7
F  F
調整するのが困難になる。  It becomes difficult to adjust.
[0075] アルカリ酸化物総和に対するナトリウム酸化物のモル比、 Na O/R〇は、 0. 12以 [0075] Molar ratio of sodium oxide to total alkali oxide, Na O / R 0 is 0.12 or more
2 2  twenty two
上且つ 0. 45以下の範囲にあることが好ましい。この範囲を逸脱すると、所望の混合 アルカリ効果を発現するのが困難になる。  It is preferable to be in the range above and below 0.45. Beyond this range, it becomes difficult to develop the desired mixed alkali effect.
[0076] また、本発明は、各アルカリ酸化物がひずみ点を低下させる効果について以下の 知見を得てなされたものである。すなわち、ひずみ点を低くするためには、 Li Oの添 [0076] Further, the present invention has been made with the following knowledge about the effect of each alkali oxide to lower the strain point. That is, to lower the strain point, Li O
2 加が最も効果的で、 Na Oの添加が次に効果的である。 K Oの添加は、ひずみ点を 低下させる効果が最も小さい。 2 addition is most effective, followed by Na 2 O. Add KO to set the strain point The effect to reduce is the smallest.
[0077] さらに、前記の適正な線熱膨張係数の範囲においては、質量百分率表示で、 S = 0 . 21Na O + O. 065K O + O. 726Π〇として定義されるィ直 S力 2. 0以上且つ 2. 8[0077] Further, in the above-mentioned range of the appropriate linear thermal expansion coefficient, in terms of mass percentage, it is defined as S = 0.21Na O + O. 065K O + O. 726Π〇 And 2.8
2 2 2 2 2 2
以下なる範囲にあることが好ましレ、。ここで、前記数式中の Na 0、 K〇及び Li〇は  It is preferable to be in the following range. Here, Na 0, K〇 and Li〇 in the above formula are
2 2 2 それぞれの成分の質量百分率の値を表すものとする。前記 Sの値が 2. 0を下回ると、 前面ガラス部に用いるガラスのひずみ点 T を 505°C以下にすることが困難になり、 S  2 2 2 The mass percentage value of each component shall be expressed. If the value of S is less than 2.0, it becomes difficult to set the strain point T of the glass used for the front glass part to 505 ° C or less.
SF  SCIENCE FICTION
の値が 2. 8を上回ると前記ひずみ点 T を 460°C以上にすることが困難になる。  If the value of 2.8 exceeds 2.8, it becomes difficult to make the strain point T above 460 ° C.
SF  SCIENCE FICTION
実施例  Example
[0078] 以下、本発明の外囲器を、実施例と比較例に基づいて詳細に説明する。実施例及 び比較例における外囲器は、図 2に示すように前面ガラス部と外枠とを一体化した構 造である。また、以下の実施例及び比較例における前面ガラス部及び背面ガラス部 に用いるガラス組成物は、以下のように調整して作製する。  Hereinafter, the envelope of the present invention will be described in detail based on examples and comparative examples. The envelopes in the examples and comparative examples have a structure in which the front glass part and the outer frame are integrated as shown in FIG. Moreover, the glass composition used for the front glass part and the back glass part in the following Examples and Comparative Examples is prepared by adjusting as follows.
[0079] まず、所定の組成となるように調合した原料バッチを白金坩堝に入れ、約 1400°C で原料を投入後、溶融するために十分な温度に加熱し、 4時間程度溶解した。なお、 均質なガラスを得るため、溶融ガラスの昇温 ·降下の途中で白金攪拌棒を使って 30 分間攪拌して脱泡を行った。その後、溶融ガラスを所定形状に成形した後、徐冷する 。このようにして得られた各ガラスの密度、線熱膨張係数、ひずみ点、粘度、熱収縮 率、体積抵抗率、電子線ブラウニング量等を測定した。測定結果を表 1から表 3に示 す。  [0079] First, a raw material batch prepared so as to have a predetermined composition was put in a platinum crucible, and the raw material was charged at about 1400 ° C, and then heated to a temperature sufficient to melt and melted for about 4 hours. In order to obtain a homogeneous glass, defoaming was carried out by stirring for 30 minutes using a platinum stirring rod during the temperature rise and fall of the molten glass. Thereafter, the molten glass is formed into a predetermined shape and then slowly cooled. The density, linear thermal expansion coefficient, strain point, viscosity, thermal contraction rate, volume resistivity, electron beam browning amount, etc. of each glass thus obtained were measured. Tables 1 to 3 show the measurement results.
[0080] 上記各物性値の測定方法を以下に示す。  [0080] Measuring methods of the above physical property values are shown below.
[密度]泡を含まない約 30gのガラス塊についてアルキメデス法により測定する。  [Density] Measured by Archimedes method on a glass mass of about 30 g without bubbles.
[線熱膨張係数] JIS R3102に規定されている方法に準じて測定した、 0°Cから 300 [Linear thermal expansion coefficient] Measured according to the method specified in JIS R3102, from 0 ° C to 300
°Cまでの平均の線熱膨張係数である。 Average coefficient of linear thermal expansion up to ° C.
[ひずみ点] JIS R3103に規定されている方法により測定する。  [Strain point] Measure by the method specified in JIS R3103.
[0081] [溶融状態でのガラスの粘度]回転円筒法により測定し、前面ガラス部の粘度 77 力 [0081] [Viscosity of Glass in Molten State] Viscosity of front glass part measured by rotating cylinder method
F  F
02 (dPa ' S)を示すときの温度、すなわち log 77 = 2を示す温度を T 77 (°C)として The temperature when 0 2 (dPa 'S) is shown, that is, the temperature showing log 77 = 2 is T 77 (° C)
10 F 2  10 F 2
読み取る。また、背面ガラス部についても同様に、粘度 77 力 Sl02 (dPa' S)を示すとき read. Similarly, when the back glass part shows viscosity 77 force Sl0 2 (dPa 'S)
R  R
の温度、すなわち log 77 = 2を示す温度を T 77 (°C)として読み取る。 [0082] ほ収縮]まず、各サンプルについてビッカース圧痕法により熱収縮率を測定する。 熱収縮率の測定法を具体的に説明する。 , That is, a temperature indicating log 77 = 2 is read as T 77 (° C). [0082] First, the thermal shrinkage rate of each sample is measured by the Vickers indentation method. A method for measuring the heat shrinkage rate will be specifically described.
(1)サンプルとして、 600°Cから室温まで冷却して作製した約 100mm X 30mm X 10 mmの寸法のガラスを用意する。  (1) As a sample, prepare a glass with dimensions of about 100mm x 30mm x 10mm produced by cooling from 600 ° C to room temperature.
(2)島津製作所社製の微小硬度計 HMV— 2000を用レ、、前記サンプルにピッカー ス圧痕を形成する。  (2) Using a hardness tester HMV-2000 manufactured by Shimadzu Corporation, picker indentations are formed on the sample.
(3)ニコン社製メジャリングマイクロスコープを用レ、、熱処理前の圧痕間の距離を測定 する。  (3) Using a Nikon measuring microscope, measure the distance between the indentations before heat treatment.
(4)前記サンプノレを 450°Cで 1時間加熱 (熱処理)する。 (この熱処理条件は前面ガラ ス部と背面ガラス部とを封着する際の焼成条件にほぼ相当する。 )  (4) Heat (heat-treat) the Sampnore at 450 ° C for 1 hour. (This heat treatment condition substantially corresponds to the firing condition for sealing the front glass part and the back glass part.)
(5)前記マイクロスコープを用レ、、熱処理後の圧痕間の距離を測定する。  (5) Using the microscope, measure the distance between the indentations after heat treatment.
(6)熱処理前後の圧痕間の距離を比較して熱収縮率を算出する。  (6) The heat shrinkage rate is calculated by comparing the distance between the impressions before and after the heat treatment.
このようにして算出した各サンプルの熱収縮率をそれぞれ比較し、例 1 (実施例)の熱 収縮率と同程度又は例 1と比べて熱収縮率が低い(熱収縮量が小さい)場合は「小」 とし、例 1と比べて熱収縮率が高レ、 (熱収縮量が大きい)ものを「大」として、熱収縮特 性を評価した。  The heat shrinkage rate of each sample calculated in this way is compared, and if the heat shrinkage rate is about the same as Example 1 (Example) or lower than Example 1 (the amount of heat shrinkage is small) The heat shrinkage characteristics were evaluated by setting “small”, the heat shrinkage rate being higher than that of Example 1, and “large” for (large heat shrinkage).
[0083] [電子線ブラウニング特性]各試料のガラスを約 10mm X 10mm X厚さ 3mmとなるよ うに形成し両面を光学鏡面研磨した後、波長 400nm〜700nmにおける光透過率を 測定し、アルミを蒸着させる。続いて、試料台の冷却水温度が 80°Cの条件で、 30kV 、 20 /i A/ cm2の電子線を 300時間照射する。その後、再度 400應〜 700應にぉ ける光透過率を測定し、電子線照射による光透過率の低下量を比較することで、ブラ ゥニング特性の評価を行う。具体的には、例 4 (実施例)の光透過率の低下量を基準 として、それと同程度であれば、良とし、それより明らかに低下しているものを不良、そ れより明らかに低下しないものを優良とし、これらの評価を電子線ブラウニング特性と した。 [0083] [Electron beam browning characteristics] After forming the glass of each sample to be about 10mm X 10mm X thickness 3mm and polishing both sides with optical mirrors, the light transmittance at wavelengths of 400nm to 700nm was measured, Evaporate. Subsequently, an electron beam of 30 kV and 20 / i A / cm 2 is irradiated for 300 hours under the condition that the cooling water temperature of the sample stage is 80 ° C. After that, the light transmittance at 400 to 700 degrees is measured again, and the amount of decrease in light transmittance due to electron beam irradiation is compared to evaluate the browning characteristics. Specifically, on the basis of the decrease in light transmittance in Example 4 (Example), if it is the same as that, it is judged as good, if it is clearly lower than that, it is bad, and it is clearly lower than that. Those that did not were considered excellent, and these evaluations were regarded as electron beam browning characteristics.
[0084] 以下、第 1の発明に係る実施例(例:!〜 4)及び比較例(例 5〜8)を表 1に示し、第 2 の発明に係る実施例(例 9〜 10)及び第 2の発明に係る比較例(例 11〜 13)を表 2に 示す。なお、例 9、 10の前面ガラス部については、表 3に記載の背面ガラス部と組み 合わせて外囲器を形成する。 [0084] Examples according to the first invention (examples:! To 4) and comparative examples (examples 5 to 8) are shown in Table 1, and examples according to the second invention (examples 9 to 10) and Table 2 shows comparative examples (Examples 11 to 13) according to the second invention. The front glass part of Examples 9 and 10 is assembled with the rear glass part shown in Table 3. Together they form an envelope.
[0085] ェミッタを表面に形成する背面ガラス部には、 550°C力 600°Cの範囲での高温プ 口セスを経ることを想定し、熱処理によって生じる背面ガラス部の熱収縮率と熱変形 量が実用的な範囲に収まるよう、ひずみ点が 570°Cである高ひずみ点ガラスを用い た。なお、表:!〜 2ίこ記載の Sfま、 0. 21Na O + O. 065K O + O. 726Li Oの値を示  [0085] The back glass part that forms the emitter on the surface is assumed to undergo a high-temperature process in the range of 550 ° C force 600 ° C, and heat shrinkage rate and thermal deformation of the back glass part caused by heat treatment High strain point glass with a strain point of 570 ° C was used so that the amount was within the practical range. Table:! To 2ί Sf, 0.21 Na O + O. 065K O + O. 726Li O
2 2 2 す。前記数式中の Na 0、 K Ο及び Li Oは、各成分の質量百分率を表す。  2 2 2 Na 0, K Ο and Li 2 O in the above formula represent mass percentages of the respective components.
2 2 2  2 2 2
[0086] [表 1] [0086] [Table 1]
Figure imgf000019_0001
2007/053686
Figure imgf000019_0001
2007/053686
Figure imgf000020_0001
例 A
Figure imgf000020_0001
Example A
5102(質量%) 57.4 510 2 (% by mass) 57.4
Al203 (質量? 7.0 Al 2 0 3 (mass? 7.0
MgO (質量%) 2.0  MgO (mass%) 2.0
CaO (質量%) 5.0  CaO (mass%) 5.0
SrO (質量%) 7.0  SrO (mass%) 7.0
BaO (質量 %) 8.0  BaO (mass%) 8.0
ZnO (質量%) 0  ZnO (mass%) 0
背 Na20(質量%) 4.1 Back Na 2 0 (mass%) 4.1
面 K20(質量 ¾) 6.3 Surface K 2 0 (mass ¾) 6.3
 Ga
ラ U20(g量%) 0 La U 2 0 (g amount%) 0
 The
部 Zr02 (質量 ¾) 3.0 Part Zr0 2 (mass ¾) 3.0
 of
02(¾量%) 0 0 2 (¾%) 0
 Ga
ラ Ce02 (質量%) 0 La Ce0 2 (mass%) 0
 The
組 so3 (質量 %) 0.1 Pair so 3 (mass%) 0.1
 Completion
Fe203 (質量 » 0.1 Fe 2 0 3 (mass »0.1
Sb203 (質量 ¾) 0 Sb 2 0 3 (mass ¾) 0
Na20 (mol%) 4.59 Na 2 0 (mol%) 4.59
Κ20(πιοΙ%) 4.64 Κ 2 0 (πιοΙ%) 4.64
Li20 (mol%) 0.00 Li 2 0 (mol%) 0.00
Rz0 (mol%) 9.2 R z 0 (mol%) 9.2
Na20 (mol%) /Rz0 (mol%) 0.5 Na 2 0 (mol%) / R z 0 (mol%) 0.5
S 1.27  S 1.27
背 密度 (g/ciD3) 2.77 Back density (g / ciD 3 ) 2.77
 Face
ガ 線熱膨張係数 a R (x10"7/°O 83 Linear thermal expansion coefficient a R (x10 " 7 / ° O 83
 La
ス ひずみ点 TSR (°C) 570 Strain point T SR (° C) 570
 Part
の O2 (。C) 1551 O 2 (.C) 1551
 object
性 熱收縮率 (ppm) 25 表 1における例 1 (実施例)、例 2 (実施例)の前面ガラス部について 450。C X 1時間 の熱処理を行って熱収縮率を測定したところ、あまり収縮しておらず実用的な範囲で あった。一方、ひずみ点が 460°Cを下回る例 5 (比較例)の前面ガラス部(ひずみ点 T = 451°C)の場合、実用上問題を生じるレベルの熱収縮を生じた。 Heat shrinkage rate (ppm) 25 450 for the front glass part of Example 1 (Example) and Example 2 (Example) in Table 1. CX heat treatment for 1 hour was performed and the heat shrinkage rate was measured. there were. On the other hand, in the case of the front glass part (strain point T = 451 ° C) of Example 5 (comparative example) where the strain point is lower than 460 ° C, thermal shrinkage at a level causing practical problems occurred.
SF  SCIENCE FICTION
[0090] また、前面ガラス部と背面ガラス部の線熱膨張係数の差 I α — α  [0090] Also, the difference in linear thermal expansion coefficient between the front glass part and the rear glass part I α — α
F R Iによって外 囲器を作製する熱工程で割れる場合がある。 Iひ — ひ  FRI may break the thermal process that produces the envelope. I hi — hi
F R Iの値が 5X 10_7(/°C) 以下である例 1 (実施例)、例 2 (実施例)、例 3 (実施例)及び例 4 (実施例)の外囲器 は熱割れを生じなレ、が、例 6 (比較例)、例 7 (比較例)の場合( Iひ — ひ | =6X 1 Example values of FRI is 5X 10_ 7 (/ ° C) less than 1 (Example), Example 2 (Example), Example 3 the envelope Cracking (Example) and Example 4 (Example) The In the case of Example 6 (comparative example) and Example 7 (comparative example) (I hi — hi | = 6X 1
F R  F R
0—ソ。 C 7X 10— 7/°C)、外囲器を作製する熱工程で割れが生じる。 0—So. C 7X 10- 7 / ° C) , cracks occur in the heat process of manufacturing the envelope.
[0091] 例 8 (比較例)の前面ガラス部はひずみ点が高く(ひずみ点 T > 505°C)、例 5 (比 [0091] The front glass part of Example 8 (Comparative Example) has a high strain point (strain point T> 505 ° C).
SF  SCIENCE FICTION
較例)の前面ガラス部は溶融温度が高レ、 (Τ η >1500°C)例であるが、溶解炉内で  The front glass part of (Comparative Example) has a high melting temperature (Τ η> 1500 ° C).
2  2
設定し得る温度では粘度が高すぎるため、溶融ガラス内の気泡が十分に抜けず、品 質的に満足できる前面ガラス部を得ることができない。  Since the viscosity is too high at the settable temperature, bubbles in the molten glass cannot be sufficiently removed, and a front glass portion that is satisfactory in quality cannot be obtained.
[0092] 例 11 (比較例)の前面ガラス部は、 Ca〇と MgOの総量が少なく(Ca〇 + MgO<8 %)、溶融温度が高レ、 (T 77 >1500°C)例である。また例 12 (比較例)は CaOと Mg [0092] The front glass part of Example 11 (Comparative Example) is an example in which the total amount of CaO and MgO is small (CaO + MgO <8%), the melting temperature is high, and (T 77> 1500 ° C). . Example 12 (comparative example) is CaO and Mg.
2  2
Oの総量が多すぎ(Ca〇 + MgO〉12%)、かつ、アルカリ酸化物の含有率のバラン ス; ^好適でなく、 Sのィ直(0. 21Na O + O. 065K O + O. 726Li O)力 /J、さい(Sく 2  The total amount of O is too large (CaO + MgO> 12%), and the balance of the content of alkali oxides; ^ not suitable, S straight (0.21 Na O + O. 065K O + O. 726Li O) Force / J 、 Sai (S 2
2 2 2  2 2 2
. 0)ために、ひずみ点高すぎる (T >505°C)例である。これらの比較例のガラスは  0), the strain point is too high (T> 505 ° C). These comparative glasses are
SF  SCIENCE FICTION
前述のように品質的に満足できる前面ガラス部を作製することができないおそれがあ る。  As described above, there is a possibility that a front glass portion that is satisfactory in quality cannot be produced.
[0093] 例 13 (比較例)は、アルカリ酸化物の含有率が多く(R 0>14%)、かつ Sの値が大  [0093] Example 13 (comparative example) has a high alkali oxide content (R 0> 14%) and a large S value.
2  2
きい(S>2. 8)ためにひずみ点が低い (T く 460°C)例である。この場合、熱収縮  This is an example where the strain point is low (T 460 ° C) due to the threshold (S> 2.8). In this case, heat shrink
SF  SCIENCE FICTION
率が大きぐ実用上問題となる。  This is a practical problem due to the large rate.
[0094] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。 [0094] Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. is there.
本出願は、 2006年 3月 2日出願の日本特許出願(特願 2006— 056322)に基づくもの であり、その内容はここに参照として取り込まれる。  This application is based on a Japanese patent application filed on March 2, 2006 (Japanese Patent Application No. 2006-056322), the contents of which are incorporated herein by reference.
産業上の利用可能性  Industrial applicability
[0095] 本発明によれば、 FED用途として実用的な機能を備えた外囲器を提供することが できる。 [0095] According to the present invention, it is possible to provide an envelope having a practical function for FED applications. it can.

Claims

請求の範囲 The scope of the claims
[1] 画像を表示するための前面ガラス部と、ェミッタを形成するための背面ガラス部とを 有するフィールドェミッションディスプレイ用外囲器であって、  [1] A field emission display envelope having a front glass portion for displaying an image and a rear glass portion for forming an emitter,
前記前面ガラス部及び背面ガラス部は混合アルカリガラスからなり、  The front glass part and the back glass part are made of mixed alkali glass,
前記前面ガラス部の、ひずみ点を T (°C)、線熱膨張係数をひ (/°C)、密度を d  The front glass part has a strain point of T (° C), a linear thermal expansion coefficient of H (/ ° C), and a density of d
SF F F  SF F F
(g/cm3)、ガラスの粘度が 102 (dPa ' S)を示すときの温度を Τ (°C)とし、前記背 (g / cm 3 ), the temperature when the glass viscosity is 10 2 (dPa'S) is Τ (° C),
2  2
面ガラス部の、ひずみ点を T (°C)、線熱膨張係数を a (/°C)、密度を d (g/cm£ Strain point of surface glass is T (° C), linear thermal expansion coefficient is a (/ ° C), density is d (g / cm £
SR R R  SR R R
)、とするとき、  ),
460≤T ≤505,  460≤T ≤505,
SF  SCIENCE FICTION
550≤T く 600、  550≤T 600,
SR  SR
\ a - \ a-
F R I ≤5 X 10_ 7FRI ≤5 X 10 _ 7 ,
2. 45≤d ≤2. 6、  2. 45≤d ≤2. 6,
F  F
d ≤d、及び  d ≤d, and
F R  F R
T ?7 ≤1500,  T? 7 ≤1500,
2  2
を満足することを特徴とするフィールドェミッションディスプレイ用外囲器。  An envelope for field emission display characterized by satisfying
[2] 前記前面ガラス部を構成する各成分の酸化物基準の含有率が、質量百分率表示 で実質的に、 [2] The oxide-based content of each component constituting the front glass portion is substantially expressed in terms of mass percentage.
60≤SiO ≤73、  60≤SiO ≤73,
2  2
0≤A1 O ≤2. 5、  0≤A1 O ≤2.5,
2 3  twenty three
8≤MgO + CaO ≤12、  8≤MgO + CaO ≤12,
0. 15≤MgO/CaO ≤2.  0. 15≤MgO / CaO ≤2.
3、 3,
0≤SrO ≤3、  0≤SrO ≤3,
0≤Ba〇 ≤3、  0≤Ba〇 ≤3,
0≤Zn〇 ≤6、 であり、 0≤Zn〇 ≤6, And
モル百分率表示で、 Na 0、 K Ο及び Li Oの含有率の合計を R〇とするとき、 11  When the total content of Na 0, K Ο and Li O is R ○ in mole percentage, 11
2 2 2 2  2 2 2 2
≤R〇≤14、及び 0. 12≤Na O/R O ≤0. 45を満足する請求項 1記載のフィー The fee as claimed in claim 1, satisfying ≤R〇≤14 and 0.12≤Na O / R O ≤0.45.
2 2 2 2 2 2
ルドエミッションディスプレイ用外囲器。 Envelope for lud emission display.
前記前面ガラス部に含まれるアルカリ金属酸化物の含有率が、質量百分率表示で 実質的に、 2. 0≤0. 21Na O + O. 065K O + O. 726Li 0≤2. 8なる関係を満足  The content of the alkali metal oxide contained in the front glass portion substantially satisfies the relationship of 2.0≤0.2.21Na O + O.065K O + O.726Li 0≤2.8 in terms of mass percentage.
2 2 2  2 2 2
するものである請求項 2記載のフィールドェミッションディスプレイ用外囲器。 The envelope for field emission display according to claim 2.
PCT/JP2007/053686 2006-03-02 2007-02-27 Envelope for field emission display WO2007099974A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008502807A JPWO2007099974A1 (en) 2006-03-02 2007-02-27 Envelope for field emission display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006056322 2006-03-02
JP2006-056322 2006-03-02

Publications (1)

Publication Number Publication Date
WO2007099974A1 true WO2007099974A1 (en) 2007-09-07

Family

ID=38459077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053686 WO2007099974A1 (en) 2006-03-02 2007-02-27 Envelope for field emission display

Country Status (2)

Country Link
JP (1) JPWO2007099974A1 (en)
WO (1) WO2007099974A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025761A (en) * 2000-07-04 2002-01-25 Nippon Electric Glass Co Ltd Inorganic el display
WO2004099096A2 (en) * 2003-05-07 2004-11-18 Saint-Gobain Glass France Silico-sodo-calcic glass composition for the production of substrates.
JP2006188406A (en) * 2005-01-07 2006-07-20 Asahi Glass Co Ltd Vacuum envelope for flat panel display and flat panel display using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025761A (en) * 2000-07-04 2002-01-25 Nippon Electric Glass Co Ltd Inorganic el display
WO2004099096A2 (en) * 2003-05-07 2004-11-18 Saint-Gobain Glass France Silico-sodo-calcic glass composition for the production of substrates.
JP2006188406A (en) * 2005-01-07 2006-07-20 Asahi Glass Co Ltd Vacuum envelope for flat panel display and flat panel display using it

Also Published As

Publication number Publication date
JPWO2007099974A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
US20090105061A1 (en) Glass Composition and Glass Spacer Using the Same
US7977262B2 (en) Glass composition for lamp, lamp, backlight unit and method for producing glass composition for lamp
US7365036B2 (en) Crystallized glass spacer for field emission display and method its production
JP2006188406A (en) Vacuum envelope for flat panel display and flat panel display using it
US20090141478A1 (en) Glass composition for lamp, lamp, backlight unit and method for producing glass composition for lamp
JP4692915B2 (en) Front glass substrate for plasma display devices.
KR20080055969A (en) Display panel
KR100408456B1 (en) Display Panel Glasses
JP4974046B2 (en) Glass spacer for flat display device and spacer using the same
JP3882489B2 (en) Glass spacer for electron beam excited display element and electron beam excited display element
JP4947486B2 (en) Glass for flat image display device, glass substrate using the same, and manufacturing method thereof
JP5299834B2 (en) Support frame forming glass powder, support frame forming material, support frame, and method of manufacturing support frame
JP2006182637A (en) Crystallized glass spacer for field emission display and its production method and field emission display
JPWO2006106781A1 (en) Glass spacer for electron beam excited display including glass composition containing yttrium and electron beam excited display
US7755269B2 (en) Spacer and image display panel using the same
JP4953169B2 (en) Support frame forming material
JPH11310432A (en) Glass composition for substrate board
US20080203894A1 (en) Display device
WO2007099974A1 (en) Envelope for field emission display
JP2007001831A (en) Spacer for image display device and image display device
JP4600061B2 (en) Glass spacer and manufacturing method thereof, and field emission display
JP5365976B2 (en) Support frame forming glass composition and support frame forming material
JP2005347171A (en) Glass spacer for field emission display, its manufacturing method and field emission display
WO2010134414A1 (en) Exhaust pipe for display
CN102424525A (en) FED flat panel display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07715021

Country of ref document: EP

Kind code of ref document: A1