WO2007099911A1 - Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system - Google Patents

Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system Download PDF

Info

Publication number
WO2007099911A1
WO2007099911A1 PCT/JP2007/053530 JP2007053530W WO2007099911A1 WO 2007099911 A1 WO2007099911 A1 WO 2007099911A1 JP 2007053530 W JP2007053530 W JP 2007053530W WO 2007099911 A1 WO2007099911 A1 WO 2007099911A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen production
oxygen
fuel cell
oxygen absorbent
hydrogen
Prior art date
Application number
PCT/JP2007/053530
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Sato
Akira Goto
Ken Samura
Akira Fuju
Masataka Kadowaki
Original Assignee
Nippon Oil Corporation
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation, Sanyo Electric Co., Ltd. filed Critical Nippon Oil Corporation
Priority to CN2007800152214A priority Critical patent/CN101432226B/en
Priority to US12/281,425 priority patent/US9112201B2/en
Priority to KR1020087023745A priority patent/KR101357431B1/en
Publication of WO2007099911A1 publication Critical patent/WO2007099911A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0259Physical processing only by adsorption on solids
    • C01B13/0262Physical processing only by adsorption on solids characterised by the adsorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1609Shutting down the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen production apparatus for producing hydrogen, a raw material for hydrogen production such as city gas, liquid petroleum gas (LPG), kerosene, etc., and the hydrogen-containing gas produced by this hydrogen production apparatus as a fuel.
  • the present invention relates to a fuel cell system.
  • Fuel cells have good energy utilization efficiency and are actively developed as power generation systems! Among these, polymer electrolyte fuel cells are attracting attention because of their high power density and ease of handling.
  • Establishment of a hydrogen supply means is essential for a fuel cell that generates electricity by an electrochemical reaction between hydrogen and oxygen.
  • One of these methods is a method of producing hydrogen by reforming raw materials for hydrogen production such as hydrocarbon fuels. Pure hydrogen is used because the hydrocarbon fuel supply system has already been socially developed. It is more advantageous than the method used.
  • Hydrocarbon fuels include city gas, LPG, gasoline, kerosene, and light oil.
  • Liquid fuels such as LPG, gasoline, kerosene, and light oil are attracting attention as fuel cell fuels because they are easy to handle, store and transport, and are inexpensive.
  • a hydrogen production apparatus including at least a reformer is used.
  • a reformer reacts hydrocarbons with water to decompose mainly into carbon monoxide and hydrogen, and a shift reactor then reacts most of the carbon monoxide and carbon with water. It is converted to hydrogen and carbon dioxide, and finally a small amount of residual carbon monoxide is reacted with oxygen to form carbon dioxide in a selective oxidation reactor.
  • sulfur may be a poisoning substance such as a reforming catalyst, a desulfurizer is often provided to remove sulfur in hydrocarbon fuel.
  • Patent Document 1 discloses a fuel cell power generation system using a reproducible oxygen removal means for removing oxygen contained in air.
  • Patent Document 1 eliminates the need for an inert gas cylinder or the like, air is sent from an air supply blower to a deoxygenation column (oxygen removal means) to reduce the oxygen concentration. To purge. In other words, the purge is still being performed, and it cannot be said that the stop operation is simple, and it is necessary to continue the operation of the air supply blower even after the end of power generation.
  • Patent Document 2 makes it possible to suppress deterioration of the acid in the catalyst in the hydrogen production apparatus without performing a purge operation when the hydrogen production apparatus or the fuel cell system including the hydrogen production apparatus is stopped. Technology is disclosed.
  • Patent Document 1 JP 2002-280038 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-179081
  • An object of the present invention is to make it possible to more reliably suppress the deterioration of acidity of the catalyst in the hydrogen production apparatus even when the start and stop are repeated without performing the purge operation when the hydrogen production apparatus is stopped.
  • a hydrogen production apparatus is provided.
  • Another object of the present invention is to more reliably suppress the oxidative deterioration of the catalyst in the hydrogen production apparatus even when the start and stop are repeated without performing a purge operation when the fuel cell system is stopped. It is to provide a fuel cell system and an operation method thereof. Means for solving the problem
  • a reforming unit that obtains a gas containing hydrogen using a reforming reaction using a raw material force for hydrogen production, and a shift reaction of the concentration of carbon monoxide and carbon in the outlet gas of the reforming unit And a selective oxidation catalyst layer filled with a selective oxidation catalyst that selectively oxidizes carbon monoxide for further reducing the concentration of carbon monoxide and carbon in the outlet gas of the shift reaction portion
  • a hydrogen production apparatus comprising a selective acid-rich reaction section having
  • It has an oxygen absorbent layer filled with an oxygen absorbent that can absorb oxygen and can be regenerated by a reducing gas, and the oxygen absorbent layer and the selective oxidation catalyst layer are laminated with the oxygen absorbent layer downstream.
  • a hydrogen production apparatus having means for opening the downstream of the oxygen absorbent layer to the atmosphere is provided.
  • the oxygen absorbent may contain at least one metal selected from the group consisting of Ru, Pt, Au, Ni, Co, Rh, Pd, Ir, Ag, and Re.
  • the oxygen absorbent may include at least one oxide selected from ceria, zircoa, titer, yttria, manganese oxide, tin oxide, iron oxide, copper oxide, and zinc oxide. .
  • a reforming unit that obtains a gas containing hydrogen using a reforming reaction using a raw material force for hydrogen production, and a shift reaction of the concentration of carbon monoxide and carbon in the outlet gas of the reforming unit And a selective oxidation catalyst layer filled with a selective oxidation catalyst that selectively oxidizes carbon monoxide for further reducing the concentration of carbon monoxide and carbon in the outlet gas of the shift reaction portion And a fuel cell system that generates electricity using gas obtained from the hydrogen production device, wherein the fuel cell system is capable of absorbing oxygen and is reduced.
  • An oxygen absorbent layer filled with an oxygen absorbent that can be regenerated by gas, and the oxygen absorbent layer and the selective oxidation catalyst layer are laminated with the oxygen absorbent layer downstream;
  • a fuel cell system having means for opening the downstream of the oxygen absorbent layer to the atmosphere is provided.
  • a method of operating a fuel cell system includes a step of regenerating the oxygen absorbent using a gas containing hydrogen during hydrogen production by the hydrogen production apparatus.
  • a fuel that makes it possible to more reliably suppress the deterioration of the acidity of the catalyst in the hydrogen production apparatus even when the start and stop are repeated without performing the purge operation when the fuel cell system is stopped.
  • a battery system and a method of operating the same are provided.
  • FIG. 1 is a flowchart showing an outline of one embodiment of the hydrogen production apparatus of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a selective acid / aqueous reactor equipped with an oxygen absorbent layer.
  • FIG. 3 is a flowchart showing an outline of another embodiment of the hydrogen production apparatus of the present invention.
  • FIG. 4 is a flowchart showing an outline of an embodiment of the fuel cell system of the present invention.
  • FIG. 5 is a flowchart showing an outline of another embodiment of the fuel cell system of the present invention.
  • oxygen in the air is removed by using an oxygen absorbent, and air with a reduced oxygen concentration (hereinafter referred to as oxygen-removed air) is selected as the selective oxidation catalyst layer. It is allowed to flow naturally into the hydrogen production apparatus from the downstream side.
  • an oxygen absorbent that can be regenerated with a reducing gas is used.
  • the oxygen absorbent can be regenerated using the hydrogen-containing gas at the selective oxidation reaction section outlet during hydrogen production.
  • the hydrogen-containing gas is a gas that substantially contains hydrogen.
  • upstream or downstream is based on the gas flow direction during operation (when hydrogen is produced for a hydrogen production apparatus or during power generation for a fuel cell system).
  • the hydrogen production apparatus is an apparatus for producing a gas containing hydrogen as a raw material for hydrogen production.
  • the product gas obtained by the hydrogen production apparatus is used, for example, by supplying it to the anode chamber of the fuel cell.
  • product gas can be stored as needed and used to supply automobiles etc. at the hydrogen station.
  • the hydrogen production apparatus in order to produce a hydrogen-containing gas by reforming a raw material for hydrogen production by a reforming reaction, includes a reforming unit such as a reformer.
  • a shift reaction unit such as a shift reactor is provided downstream of the reforming unit to reduce the concentration of carbon monoxide and carbon
  • a selective oxidation reactor is provided downstream of the shift reactor to reduce the concentration of carbon monoxide. It has a selective acid reaction part such as.
  • a desulfurizer can be provided upstream of the reformer to reduce the sulfur concentration in the raw material for hydrogen production.
  • the reformer water (steam) and Z or oxygen are reacted with the raw material for hydrogen production to produce a reformed gas containing hydrogen.
  • the raw material for hydrogen production is mainly decomposed into hydrogen and carbon monoxide.
  • carbon dioxide and methane are also contained in the cracked gas.
  • reforming reactions include steam reforming reactions, autothermal reforming reactions, and partial oxidation reactions.
  • the steam reforming reaction is a reaction of steam and a raw material for hydrogen production, but usually involves heating from the outside because it involves a large endotherm.
  • the reaction is carried out in the presence of a metal catalyst, typically a Group VIII metal such as nickel, cobalt, iron, ruthenium, rhodium, iridium or platinum.
  • the reaction temperature is 450 ° C to 900 ° C, preferably 500 ° C to 850 ° C, more preferably 550 ° C to 800 ° C.
  • the amount of steam introduced into the reaction system is defined as the ratio of the number of moles of water molecules to the number of moles of carbon atoms contained in the raw material for hydrogen production (steam Z carbon ratio), and this value is preferably 0.5-10. Preferably it is 1-7, More preferably, it is 2-5.
  • the space velocity (LHSV) at this time is represented by AZB when the flow rate in the liquid state of the raw material for hydrogen production is A (L / h) and the volume of the catalyst layer is B (L). This value is preferably 0. More preferred properly is 0. 1 ⁇ : LOh- 1, more preferably set in the range of 0. 2 ⁇ 5h- 1.
  • the autothermal reforming reaction is a process in which a part of the raw material for hydrogen production is acidified and the steam reforming reaction is advanced by the heat generated at this time, and the reforming is performed while balancing the reaction heat.
  • This is a method to be performed, and since it has a relatively short start-up time and is easy to control, it has recently attracted attention as a method for producing hydrogen for fuel cells.
  • the reaction is usually carried out in the presence of a metal catalyst typified by a Group VIII metal such as nickel, cobalt, iron, ruthenium, rhodium, iridium and platinum.
  • the amount of steam introduced into the reaction system is preferably from 0.3 to 10, more preferably from 0.5 to 5, and even more preferably from 1 to 3, as a steam Z carbon ratio.
  • oxygen is added to the raw material in addition to steam.
  • the oxygen source may be pure oxygen, but in many cases air is used.
  • the power to add oxygen that can generate heat that can balance the endothermic reaction that normally accompanies steam reforming reaction.
  • the amount of addition is appropriately determined in relation to heat loss and external heating that is installed if necessary.
  • the amount is preferably 0.05 to 1, more preferably 0.1 to 0.75, and even more preferably, as the ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms contained in the raw material for hydrogen production (oxygen Z carbon ratio). Is between 0.2 and 0.6.
  • the reaction temperature of the autothermal reforming reaction is in the range of 450 ° C to 900 ° C, preferably 500 ° C to 850 ° C, more preferably 550 ° C to 800 ° C, as in the case of the steam reforming reaction.
  • the space velocity (LHSV) at this time is preferably selected in the range of 0.1 to 30, more preferably 0.5 to 20, and still more preferably 1 to 10.
  • the partial oxidation reaction is a method in which a reforming reaction is advanced by oxidizing a raw material for hydrogen production, and an apparatus that has a relatively short start-up time can be designed compactly.
  • a catalyst may or may not be used, but when a catalyst is used, it is usually a metal catalyst such as nickel, cobalt, iron, ruthenium, rhodium, iridium, platinum, etc.
  • the reaction is carried out in the presence of a lobskite spinel oxide catalyst.
  • steam can be introduced to suppress the generation of soot, and the amount thereof is preferably 0.1 to 5, more preferably 0.1 to 3, as a steam / carbon ratio. More preferably, it is set to 1-2.
  • oxygen is added to the raw material.
  • the oxygen source may be pure oxygen, but in many cases air is used.
  • the amount added is appropriately determined.
  • the amount is preferably 0.1 to 3, more preferably 0.2 to 0.7 as the ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms contained in the raw material for hydrogen production (oxygen Z carbon ratio).
  • the reaction temperature of the partial oxidation reaction can be in the range of 1,000 to 1,300 ° C when no catalyst is used, and when a catalyst is used, the reaction temperature is the same as in the steam reforming reaction.
  • the space velocity (LHSV) at this time is preferably selected in the range of 0.1 to 30.
  • a known reformer capable of performing the above reforming reaction can be used as a reformer.
  • any substance capable of obtaining a reformed gas containing hydrogen by the above reforming reaction can be used.
  • compounds having carbon and hydrogen in the molecule such as hydrocarbons, alcohols and ethers can be used.
  • Preferable examples that can be obtained at low cost for industrial or consumer use include methanol, ethanol, dimethyl ether, city gas, LPG (liquid petroleum gas), gasoline, and kerosene. Of these, kerosene is preferred because it is readily available for industrial and consumer use and is easy to handle.
  • the gas generated in the reformer includes, for example, carbon monoxide, carbon dioxide, methane, and water vapor. Nitrogen is also contained when air is used as the oxygen source in the partial oxidation reforming.
  • the shift reactor performs a shift reaction in which monoxide carbon is reacted with water to convert it into hydrogen and diacid carbon. Usually, the reaction proceeds in the presence of a catalyst, and a catalyst containing noble metals such as mixed oxides of Fe-Cr, mixed oxides of Zn-Cu, platinum, ruthenium, and iridium is used.
  • the mol% of the base is preferably reduced to 2% or less, more preferably 1% or less, and even more preferably 0.5% or less.
  • the shift reaction can be carried out in two stages, in which case a high temperature shift reactor and a low temperature shift reactor are used.
  • the shift reaction is an exothermic reaction, operation conditions at low temperatures are preferred in terms of equilibrium. However, a certain temperature is actually maintained depending on the temperature at which the activity of the catalyst used is developed. Specifically, when the shift is performed in one stage, it is usually in the range of 100 to 450 ° C, preferably 120 to 400 ° C, more preferably 150 to 350 ° C. When the temperature is 100 ° C. or higher, it is easy to suppress CO adsorption of the catalyst itself and to exhibit excellent activity, and it is easy to perform CO conversion well. When the temperature is 450 ° C or lower, it is easy to perform CO conversion well by suppressing the increase in CO concentration in equilibrium.
  • a selective oxidation reaction section In order to further reduce the concentration of carbon monoxide and carbon in the outlet gas of the shift reactor, a selective oxidation reaction section is provided.
  • a selective oxidation catalyst layer filled with a selective oxidation catalyst that selectively oxidizes carbon monoxide can be used, and the shift reactor outlet gas can be processed by the selective oxidation reaction.
  • a catalyst containing iron, conoleto, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, silver, gold, etc. is used, and the remaining number of moles of carbon monoxide.
  • 0.5 to 10 times mol, more preferably 0.7 to 5 times mol, and even more preferably 1 to 3 times mol of oxygen is added to selectively convert carbon monoxide to carbon dioxide.
  • the concentration of monoxide-carbon is preferably reduced to less than 10 ppm (on a dry basis molar basis).
  • the selective oxidation reaction can also be performed in two stages.
  • the Ru content can be, for example, 0.02% by mass or more and less than 1% by mass.
  • the Ru content is preferably 0.05% by mass or more and 0.75% by mass or less, and more preferably 0.1% by mass or more and 0.5% by mass or less.
  • the selective oxidation reaction varies depending on the catalyst used and the structure of the container, it is usually carried out in the range of 50 to 250 ° C., preferably 60 to 220 ° C., more preferably 80 to 200 ° C.
  • the temperature is 50 ° C or higher, excellent catalytic activity is exhibited and CO can be easily reduced.
  • the temperature is 250 ° C or lower, CO selective acid can exhibit excellent combustion selectivity, suppress hydrogen consumption, suppress catalyst temperature rise, and reform the entire hydrogen production system. It is easy to make the efficiency excellent, and it is easy to suppress the CO metanation that coexists in a large amount in the methanation reaction and prevent thermal runaway.
  • the sulfur in the raw material for hydrogen production has a low concentration because it has the effect of inactivating the reforming catalyst, preferably 0.1 mass ppm or less, more preferably 50 mass ppb or less. . Therefore, if necessary, the raw material for hydrogen production can be desulfurized in advance.
  • the sulfur concentration in the raw material used for the desulfurization step is not particularly limited, and any sulfur can be used as long as it can be converted to the above sulfur concentration in the desulfurization step.
  • the desulfurization method there is no particular limitation on the desulfurization method, but an example is a method in which hydrodesulfurization is performed in the presence of an appropriate catalyst and hydrogen, and the generated hydrogen sulfide is absorbed by acid zinc. it can .
  • the catalyst that can be used in this case include catalysts containing nickel-molybdenum, cobalt-molybdenum, and the like as components.
  • a method of sorbing sulfur in the presence of hydrogen can be employed.
  • sorbents that can be used in this case sorbents mainly composed of copper zinc or nickel zinc as shown in Japanese Patent No. 2654515, Japanese Patent No. 2688749, etc. are mainly used. Examples include sorbents as components.
  • the composition of the gas that has undergone the reforming reaction (mol% of the dry base) is usually, for example, 63 to 73% hydrogen, 0.1 to 5% methane, 5 to 20 carbon dioxide when steam reforming reaction is used for reforming. %, Carbon monoxide 5-20%.
  • the composition of the case of using the autothermal reforming reaction is generally for example, hydrogen from 23 to 37% methane 0.1 to 5%, carbon dioxide 5-25%, Carbon monoxide 5-25%, nitrogen 30-60%.
  • composition of the case of using a partial oxidation reaction typically for example, hydrogen 15% to 35% methane 0.1 to 5%, 10-30% carbon monoxide, carbon dioxide 10 to 40 %, Nitrogen 30-60%.
  • Part composition in the case of using the oxidation reforming reaction typically for example, hydrogen 20-40% methane 0.1 to 5%, Ichisani ⁇ containing IOOOrrp! ⁇ 10000ppm, diacid carbon 20-45%, honey 30 ⁇ 55%.
  • composition of the gas that has undergone the reforming reaction, the shift reaction, and the selective oxidation reaction is usually, for example, 65 to 75% hydrogen and 0.5% methane when steam reforming reaction is used for reforming. 1-5%, diacid carbon 20-30%, nitrogen 1-10%.
  • (mol 0/0 of dry base) composition in the case of using the autothermal reforming reaction is generally for example, hydrogen 25% to 40% methane 0.1 to 5%, diacid I ⁇ oxygen 20-40% , Nitrogen 30-54%.
  • Part composition in which had use of oxidation reforming reaction typically for example, hydrogen 20-40% methane 0.1 to 5%, 20-45% carbon dioxide, nitrogen 30-55 %.
  • a fuel cell of a type in which hydrogen is a reactant of the electrode reaction over the fuel electrode can be appropriately employed.
  • a solid polymer type, phosphoric acid type, molten carbonate type, or solid oxide type fuel cell can be employed. The configuration of the polymer electrolyte fuel cell is described below.
  • the fuel cell electrode is an anode (fuel electrode) and a force sword (air electrode) and a solid polymer electrolyte force sandwiched between them. If necessary, an oxygen-containing gas such as air is introduced after appropriate humidification treatment.
  • both anode and force sword catalysts are formed into a porous catalyst layer together with tetrafluoroethylene, a low molecular weight high molecular electrolyte membrane material, activated carbon, etc., if necessary.
  • Examples of solid polymer electrolytes include Nafion (Nafion, manufactured by DuPont), Goa (Gore, manufactured by Goa), Flemion (Flemion, manufactured by Asahi Glass), and Aciplex (produced by Aciplex, Asahi Kasei).
  • a polymer electrolyte membrane known in the art is usually used, and the porous catalyst layer is laminated on both sides to form a MEA (Membrane Electrode Assembly).
  • a fuel cell can be assembled by sandwiching the MEA with a separator that has a gas supply function, a current collection function, and especially an important drainage function for a power sword. The electrical load is electrically connected to the anode and power sword.
  • the oxygen absorbent is capable of removing oxygen in the air and obtaining air with a reduced oxygen concentration.
  • the oxygen absorbent capacity of the oxygen absorbent is preferably 2 or more, more preferably 3 or more, and even more preferably 5 or more. From the viewpoint of preventing the occurrence of hot spots, 30 or less is preferable, 20 or less is more preferable, and 10 or less is more preferable.
  • the oxygen absorption capacity is a dimensionless number defined as a normal volume of oxygen that can be absorbed per unit volume of the oxygen absorbent (volume converted to 0 ° C, 0.1 lOlMPa).
  • Oxygen absorption capacity is determined by performing a predetermined pretreatment (for example, reduction pretreatment) according to the oxygen absorbent as necessary in a container filled with several tens to several lOOmL of the oxygen absorbent in a bulk volume. This can be obtained by a method that continuously distributes oxygen diluted with nitrogen and continuously analyzes the oxygen concentration in the outlet gas. When a certain concentration of oxygen is detected from the outlet gas, the integrated flow rate of oxygen circulated up to that time is converted to normal and divided by the catalyst volume to obtain the absorption capacity value.
  • the oxygen concentration in the oxygen-containing nitrogen supplied to the oxygen absorbent layer is 1% by volume
  • the oxygen concentration used to determine oxygen breakthrough is lOOppm (volume basis)
  • the temperature is 80 ° C
  • the pressure is 0.
  • Oxygen absorption can be performed under conditions where lMPa and GHSV (normal conversion value) are lOOOh 1 .
  • the selective oxidation catalyst layer provided in the selective oxidation reaction section and the oxygen absorbent layer filled with the oxygen absorbent are laminated.
  • both layers are laminated with the oxygen absorbent layer on the downstream side, and hence the selective oxidation catalyst layer on the upstream side.
  • open the atmosphere downstream of the oxygen absorber layer Provide releasable means.
  • This air release means can be appropriately formed using a valve or piping.
  • the downstream of the oxygen absorbent layer may be opened to the atmosphere, or the downstream of the oxygen absorbent layer may be opened to the atmosphere via other equipment.
  • the selective oxidation catalyst layer (and further upstream) can be opened to the atmosphere via the oxygen absorbent layer. Therefore, the oxygen-removed air flows into the selective oxidation catalyst layer, and it is possible to more reliably prevent the deterioration of the oxidation of the selective oxidation catalyst and the catalyst such as the shift reaction catalyst upstream thereof.
  • an oxygen absorbent that can be regenerated by a reducing gas is used.
  • the oxygen absorbent is regenerated by the hydrogen-containing gas (selective oxidation catalyst layer outlet gas), which is a reducing gas, and the start and stop can be repeated without performing a separate regeneration process.
  • An oxygen absorbent that can be regenerated at 80 ° C. or higher and 150 ° C. or lower can be used.
  • an oxygen absorbent containing at least one metal selected from the group consisting of Ru, Pt, Au, Ni, Co, Rh, Pd, Ir, Ag and Re can be used.
  • the content of Ru in the oxygen absorbent is preferably 1% by mass or more, more preferably 1.5% by mass or more, and 2% by mass or more from the viewpoint of oxygen absorption capacity and regeneration capacity. Even better.
  • it is preferably 10% by mass or less, more preferably 7.5% by mass or less, and further preferably 5% by mass or less.
  • An oxygen absorbent in which the oxide is used as a carrier and the metal is supported on the carrier can be used.
  • a support obtained by adding the above oxide to an oxide other than the above can be used.
  • a carrier containing alumina as a main component and at least one component selected from the group force consisting of ceria, zirconium, and yttria.
  • the total content of ceria, zircoure and yttria is preferably 5% by mass or more with respect to the catalyst mass.
  • an oxygen absorbent layer filled with an oxygen absorbent is disposed downstream of the selective oxidation catalyst layer, and the selective oxidation catalyst layer and the oxygen absorbent layer are laminated. This makes hydrogen production Sometimes, the oxygen absorbent can be efficiently heated by the heat generated by the selective oxidation reaction, and it becomes easy to bring the oxygen absorbent to a preferred regeneration temperature.
  • the selective acid catalyst layer and the oxygen absorbent layer can be laminated in one container.
  • an oxygen absorbent layer and a selective oxidation catalyst layer can be stacked inside the selective oxidation reactor.
  • the container structure that prioritizes the function of selective oxidation within a range where oxygen absorption can be practically performed, for example, heat generated by a catalytic reaction.
  • a reactor with a large heat transfer area can be used as it is for release.
  • a heating means for heating the oxygen absorbent for example, an electric heater can be provided.
  • heating can be performed by a dedicated panner used exclusively for heating the oxygen absorbent.
  • a special pruner it is possible to continue burning the special pruner as necessary even after stopping.
  • each heat source generated in the fuel cell system for example, heat generated by an exothermic reaction of the hydrogen production apparatus, such as shift and CO selective oxidation, heat generated from the fuel cell itself, etc., is used as a heat medium such as hot water. It can also be given to the oxygen absorbent.
  • a cooling system for cooling the oxygen absorbent may be provided.
  • the cooling system is provided with a flow path through which a cooling medium such as water or steam is circulated on the wall of the container containing the oxygen absorbent, for example, a form such as a water cooling jacket, or a pipe penetrating the inside of the container.
  • a cooling medium such as water or steam
  • a configuration in which a cooling medium is distributed can be employed.
  • the oxygen absorbent absorbs oxygen in the air.
  • the temperature of the oxygen absorbent is preferably 200 ° C or lower, and more preferably 150 ° C or lower, from the viewpoint of preventing hot spots and deterioration of the oxygen absorber. C or less is more preferable.
  • the oxygen absorbent In order to regenerate the oxygen absorbent that has absorbed oxygen, the oxygen absorbent is preferably 60 ° C or higher, more preferably 70 ° C or higher, in a reducing gas (selective oxidation catalyst layer outlet gas) atmosphere. More preferably, the temperature is 80 ° C or higher.
  • the oxygen absorbent when the oxygen absorbent is in a reducing gas atmosphere, runaway of the metathesis reaction is prevented. From the viewpoint of stopping, the oxygen absorbent is preferably 250 ° C or lower, more preferably 200 ° C or lower, and further preferably 150 ° C or lower.
  • a method for controlling the oxygen absorbent within the above temperature range for example, a method of cooling the catalyst layer through a water pipe, a method of air-cooling the outer surface of the cylindrical container, or the like can be used. Further, the temperature may be controlled by cooling both catalysts through a cooling water pipe common to the oxygen absorbent layer and the selective oxidation catalyst layer. These water pipes can exert a cooling action during a period where an exothermic reaction is accompanied by oxygen absorption, such as when passing through reducing gas or air, and conversely, for example, the oxygen absorbent layer is 70 When it is cooled to below ° C, it can also be used as a means for heating the oxygen-absorbing agent layer.
  • the shape of the desulfurization catalyst (including the sorbent), the reforming catalyst, the shift reaction catalyst, the selective oxidation catalyst, and the oxygen absorber is appropriately selected.
  • the force is granular. In some cases, it may be in the form of two or two cams! /.
  • oxygen in the air is removed by an oxygen absorbent.
  • the oxygen concentration in the air from which oxygen has been removed by the oxygen absorbent is preferably 1 mol% or less, more preferably 0.2 mol% or less, as the oxygen concentration in a dry base that does not contain moisture, the lower the better. More preferred is a range of 500 mol ppm or less, and most preferred is a range of 100 mol ppm or less.
  • oxygen removal by the fuel cell can be performed prior to oxygen removal by the oxygen absorbent.
  • the oxygen concentration is preferably as described above both in the oxygen-removed air in which oxygen is removed only with the oxygen absorbent and in the oxygen-removed air that has undergone both in the case of using both the fuel cell and the oxygen absorbent.
  • the oxygen concentration of the outlet gas of the fuel cell power sword chamber is detected by an oxygen sensor, and a signal corresponding to the oxygen concentration of the oxygen sensor force is sent to a computer, sequencer, etc. It is preferable to adjust the oxygen concentration of the cathode chamber outlet gas to a predetermined range by controlling the current generated in step (b).
  • an oxygen sensor For example, a known sensor capable of measuring the oxygen concentration in the gas can be used as appropriate.
  • the oxygen concentration adjusting means for adjusting the oxygen concentration a known control technique can be appropriately employed.
  • a current control means such as a known current controller and a control device such as a computer or sequencer that can form a control circuit such as a known feedback control circuit are combined, and a signal path for sending a signal from an oxygen sensor to the feedback control circuit is provided. Can be formed by connecting.
  • the white ones indicate open valves
  • the ones marked in black indicate closed valves.
  • the black arrows indicate the compulsory flow direction of the fluid. Arrows marked with no and indicate the direction in which high-pressure air naturally flows as the temperature drops.
  • the white arrow indicates the direction in which the oxygen-removed air naturally flows as the temperature decreases.
  • FIG. 1 is a flowchart showing an outline of one embodiment of the hydrogen production apparatus of the present invention.
  • the raw material supply valve 101 is opened and the raw material for hydrogen production is supplied to the reformer 11.
  • the raw material for hydrogen production can be boosted by a boosting means such as a pump or blower.
  • other substances necessary for hydrogen production such as reactants for reforming reactions other than raw materials for hydrogen production, can be appropriately supplied to the hydrogen production apparatus.
  • steam is required for the reforming reaction
  • steam or water can be supplied to the hydrogen production device.
  • an oxygen-containing gas such as air is supplied to the hydrogen production device.
  • An oxygen-containing gas such as air for the oxidation reaction can also be supplied to the selective oxidation reactor.
  • a reformed gas that is a hydrogen-containing gas is produced by a reforming reaction.
  • the reformer is an external heat type reformer, that is, the reaction tube containing the reforming catalyst is heated from the outside by combustion means such as a burner to supply heat necessary for the reforming reaction.
  • combustion means such as a burner to supply heat necessary for the reforming reaction.
  • the fuel and air for combustion can be appropriately supplied.
  • FIG. 1 shows a hydrogen production apparatus for producing a hydrogen-containing gas suitable for, for example, a polymer electrolyte fuel cell.
  • a shift reactor 12 and a selective oxidation reactor 21 are provided downstream of the reformer.
  • the gas is provided in this order from the upstream side of the flow direction of the hydrogen-containing gas, and the concentration of carbon monoxide and carbon in the reformed gas is reduced to become a product gas. If necessary, water in the gas can be condensed to produce product gas.
  • the line through which hydrogen-containing gas flows during hydrogen production is a line through which a gas containing hydrogen substantially flows during hydrogen production, and is a line from the reformer 11 to the product gas outlet 14.
  • FIG. 2 shows a structural example of the selective oxidation reactor 21.
  • the reactor has a sealable container 301.
  • a selective oxidation catalyst layer 302 filled with a selective oxidation catalyst and an oxygen absorbent layer 303 filled with an oxygen absorbent are laminated.
  • An oxygen absorbent layer is arranged on the downstream side of the flow of the hydrogen-containing gas.
  • the outlet gas force of the shift reactor 12 is supplied to the reactor 21.
  • the shift reactor outlet gas is introduced into the vessel from the gas inlet 311, passes through the selective oxidation catalyst layer and the oxygen absorbent layer in this order, and is led out from the gas outlet 312.
  • CO is removed in the selective oxidation catalyst layer.
  • the oxygen absorbent can be regenerated by a hydrogen-containing gas (selective oxidation catalyst layer outlet gas).
  • the nozzle 102 is closed, the valve 103 is opened, and the derived hydrogen-containing gas passes through the valve 103 and is connected as a product gas downstream from the product gas outlet 14 to a hydrogen utilization facility or a hydrogen storage facility. Supplied to the equipment.
  • the reactor 21 is provided with a coiled cooling pipe 322 that penetrates the selective oxidation catalyst layer and the oxygen absorbent layer. Cooling hydraulic power introduced from the water inlet 321 is discharged from the water outlet 323 through the coiled cooling pipe 322. During hydrogen production, the selective oxidation catalyst layer generates heat due to an oxidation reaction. This heat can be removed by the cooling pipe 322 and given to the oxygen absorbent.
  • the supply of the supply substance to the hydrogen production apparatus is stopped and the supply line is shut off, and the line where the reformer force also reaches the product gas outlet is downstream of the oxygen absorbent layer.
  • the oxygen removal air from which oxygen has been removed by the oxygen absorbent as the temperature of the hydrogen production device decreases as the temperature of the hydrogen production device decreases by switching to a line that leads to the atmosphere and heating the oxygen absorbent as necessary. It passes through the bed and naturally flows from the gas inlet 311 into the shift reactor 12 and further into the reformer 11. As a result, it is possible to prevent the inside of the hydrogen production apparatus without purging from becoming a negative pressure, and to prevent the deterioration of the acidity of the catalyst.
  • the present invention is not limited to this, and for example, a three-way valve can also be used.
  • the above-described operations are all automatically performed by using a control device such as a control computer and a valve as an automatic valve.
  • the above operation that is, the application to the hydrogen production apparatus.
  • the supply can be stopped and the line shut off, the line can be switched to the open line, and the heating means for heating the oxygen absorbent can be operated simultaneously. Therefore, the stop operation is simple.
  • equipment such as a blower for purging after stopping, there is no need for the power required for this purpose, and there is an energy saving effect.
  • FIG. 3 shows another embodiment of the hydrogen production apparatus of the present invention (only the state at the time of stoppage is shown).
  • the selective oxidation reactor has a configuration in which a selective oxidation catalyst layer and an oxygen absorbent layer are stacked inside, and an oxygen absorbent layer is arranged on the downstream side.
  • This configuration can be suitably used when the product gas outlet is opened to the atmosphere when the hydrogen production equipment is stopped, such as when the hydrogen utilization facility is removed.
  • a product gas outlet 14 is provided immediately downstream of the selective acid reactor 21, and a valve as a line switching means that does not require line switching is unnecessary (as a shut-off means). There is a valve).
  • FIG. 4 is a flowchart showing an outline of one embodiment of the fuel cell system of the present invention. This form is based on a configuration in which the hydrogen production apparatus 100 and the fuel cell 2 shown in FIG. 1 are combined, and is suitable for a polymer electrolyte fuel cell.
  • the selective oxidation reactor has a configuration in which a selective oxidation catalyst layer and an oxygen absorbent layer are laminated inside, and an oxygen absorbent layer is arranged on the downstream side.
  • valve 102 is closed and the valve 103 is opened.
  • the hydrogen-containing gas produced by the hydrogen production apparatus 100 is supplied to the anode chamber 2a of the fuel cell 2 for power generation.
  • Anode that also discharges anode chamber power Since the off-gas contains a combustible substance, it is burned by a pan ib provided in the reformer 11 for supplying heat necessary for the reforming reaction.
  • the combustion gas of the PANA is exhausted to the atmosphere after heat is recovered as appropriate.
  • the heating means such as a panner for supplying heat necessary for the reforming reaction provided as necessary has not been shown, but the fuel cell system
  • the region where the reforming reaction occurs is shown as a reforming reaction tube 11a filled with the reforming catalyst in order to distinguish from this.
  • the reformer 11 means a region where the reforming reaction occurs.
  • air is supplied from the atmosphere to the power sword chamber 2c of the fuel cell by the air boosting means 4 such as a blower or a compressor, is used for power generation, and is then discharged to the atmosphere.
  • Air used for combustion in the PANAL ib is also supplied from the pressurizing means 4.
  • the line including the reformer in which the hydrogen-containing gas was flowing is shut off upstream of the anode chamber.
  • a line is formed to open the downstream of the selective oxygenation reactor 21 (upstream of the anode chamber) to the atmosphere. That is, the line from the selective acid-reaction layer to the anode off-gas line through the oxygen absorption layer and the anode chamber is switched to a line that opens to the atmosphere downstream of the oxygen absorption layer.
  • air flows from the valve 102 into the oxygen absorption layer, and the oxygen-removed air can naturally flow into the selective oxidation catalyst layer, the shift reactor 12, and the reformer 11 (reforming reaction tube 11a).
  • the oxygen absorbent can be heated as necessary.
  • the fuel cell anode chamber 2a is connected to the combustion gas line of the reformer that communicates with the atmosphere. Atmospheric force Air can naturally flow in via PanaLib.
  • a catalyst may also be used for the anode, but for example, in a polymer electrolyte fuel cell, the fuel cell itself is relatively low in temperature, and the influence of slight oxygen contamination is often negligible.
  • the force sword chamber outlet line force air can naturally flow into the force sword chamber 2c, and the air can naturally flow through the air pressurizing means 4 or via the partition rib. You can also. Since the force sword system originally flows air, it is not necessary to flow oxygen-removing air when it stops.
  • the anode off-gas line is a line through which combustible gas containing unused hydrogen from which the anode chamber power is also discharged flows.
  • the anode off gas is burned by 1 lb of the burner, and therefore, the line from the outlet of the anode chamber 2a to the burner rib is the anode off gas line.
  • the line through which the hydrogen-containing gas flows during the hydrogen production is a line through which a gas containing hydrogen substantially flows during the hydrogen production, and is a line from the reformer 11 (reforming reaction tube 11a) to the partner rib.
  • the present invention is not limited to this, and for example, a three-way valve can be used.
  • FIG. 5 shows another embodiment of the fuel cell system of the present invention.
  • the selective oxidation reactor has a configuration in which a selective oxidation catalyst layer and an oxygen absorbent layer are laminated inside, and an oxygen absorbent layer is arranged on the downstream side.
  • oxygen removal by the fuel cell is performed in addition to oxygen removal by the oxygen absorbent.
  • the line between the selective oxidation reactor 21 and the valve 103 is branched, and the reformer and the like can be opened to the atmosphere via the nozzle 102.
  • a line between the reactor 21 and the valve 103 is branched, and the reformer and the like can be opened to the atmosphere via the fuel cell power sword chamber 2c and the air pressurization means 4 by being connected to the valve 102.
  • the valve 104 together with the nozzle 102, functions as a switching means for switching between a power sword outlet line used during operation of the fuel cell and a line for releasing the reformer and the like through the power sword chamber.
  • the anode off-gas is supplied to the partition ib via the buffer tank 6.
  • the noffer tank is turned into a fuel cell when stopped.
  • This is a storage means for storing hydrogen-containing gas in order to store hydrogen used for power generation.
  • the notifier tank is not always necessary and may be omitted if the anode offgas line has a large capacity.
  • the storage means can be formed by providing two openings in a sealable container. Two openings allow storage means to be installed in the anode offgas line.
  • the power sword outlet gas passes through the valve 104 (the valve 102 is closed) and is released to the atmosphere.
  • the oxygen sensor 201 provided downstream of the force sword chamber monitors the oxygen concentration in the air at the outlet of the force sword chamber, and flows to the fuel cell by the current controller 200 so that the concentration falls below a predetermined value.
  • the current can be controlled.
  • hydrogen in the hydrogen-containing gas existing from the valve 103 to the burner rib is consumed.
  • the anode chamber is open to the atmosphere via a burner rib, and as the temperature of the fuel cell, etc. decreases, air naturally flows from the atmosphere through the burner.
  • the anode offgas line from valve 103 If the capacity of the tank is small and there is a risk of running out of hydrogen, it is preferable to install the buffer tank 6 in the anode off-gas line in order to increase the capacity of this part. In other words, the amount of hydrogen necessary for the operation of the fuel cell for removing oxygen is included in the gas that naturally flows into the anode chamber as indicated by arrow A. Furthermore, a buffer tank can be added upstream of the anode (between the valve 103 and the anode chamber 2a).
  • the above operations can be performed automatically by using a control device such as a control computer or a sequencer and using a valve as an automatic valve.
  • the operation as described above that is, the supply of fuel to the fuel cell system is stopped, the line is shut off, the line is switched, the air pressurizing means is stopped, and the oxygen absorbent is heated.
  • the start of operation of the heating means and the start of the oxygen removal operation of the fuel cell can be performed simultaneously. Therefore, the stop operation is simple.
  • since it is not necessary to operate the blower for purging after stopping there is no need for the power required for this purpose, and there is an energy saving effect.
  • nitrogen purging has been carried out while continuing to burn the burner or the like provided in the reformer until a certain point after the stop, but according to the present invention, it is not necessary to burn with the burner after the stop. So there is also an energy saving effect in this respect.
  • the oxygen absorbent After stopping, the oxygen absorbent must be heated by a heating means such as an electric heater or a dedicated burner. Even when there is a force S, or when it is necessary to operate the fuel cell to remove oxygen from naturally flowing air However, such an operation is a simple operation in a very limited part and requires a small amount of energy. [0108] [Other equipment]
  • known components of a hydrogen production apparatus using a reformer and known components of a fuel cell system can be appropriately provided as necessary.
  • Specific examples include a steam generator that generates steam for humidifying the gas supplied to the fuel cell, a cooling system for cooling various devices such as the fuel cell, a pump for compressing various fluids, and a compression system.
  • Pressurization means such as a machine, blower, etc., to adjust the flow rate of fluid, or to shut off the flow of fluid
  • Flow rate control means such as a valve to switch Z shut off the flow path Z switching means, heat exchange 'to perform heat recovery Heat exchangers, vaporizers that vaporize liquids, condensers that condense gases, heating that heats various devices with steam, etc.Z heat insulation means, various fluid storage means, instrumentation air and electrical systems, and control These include signal systems, control devices, and electrical systems for output and power.
  • a hydrogen production system with the configuration shown in Fig. 1 was prepared.
  • the shift reactor 12 was filled with a hydrogen-reduced copper zinc catalyst as a shift catalyst.
  • a reactor having the structure shown in FIG. 2 was used.
  • the downstream packed bed of the selective oxidation catalyst filling vessel 301 contains 5% by mass of Ru and 20% by mass of Y 2 O.
  • An oxygen absorbent layer 303 was formed by filling 200 mL (bulk volume) of an oxygen absorbent, which is alumina.
  • the oxygen absorption capacity of this oxygen absorbent was 5.0 (mL-O ZmL-catalyst).
  • the selective oxidation catalyst layer 302 was formed by filling 400 mL (bulk volume) of the selective oxidation catalyst having 0.35 mass% of Ru as the metal mass upstream of the oxygen absorbent layer.
  • a coiled cooling water pipe (nominal diameter 1Z4 inch (outside diameter approximately 14mm)) 322 is provided through the selective acid catalyst layer and the oxygen absorbent layer, and this is mixed with gas and liquid.
  • the selective acid catalyst layer can be cooled by passing the phase water.
  • This apparatus was repeatedly started and stopped. After startup, the oxygen absorbent layer exothermed to about 130 ° C with hydrogen-containing gas flowing through the oxygen absorbent layer, and then reached a steady state with respect to temperature at about 100 ° C. The oxygen absorbent layer was kept in this state for 10 minutes. Then The system was shut down, but at that time, as shown in Fig. 1 (b), air was naturally introduced from the downstream side of the selective oxidation reactor. Through this operation, it was confirmed that 3.5 NL (N means normal volume) of air passed through the oxygen absorbent layer as the hydrogen production device cooled. Although the temperature of the shift reaction catalyst provided in the shift reactor 12 was monitored, the increase of the shift outlet catalyst layer temperature accompanying the oxygen inflow was not observed at the time of shutdown.
  • the oxygen absorbent was regenerated well at the time of start-up, and the oxygen absorbent absorbed oxygen well at the time of stop, so that the oxygen inflow to the shift catalyst layer could be suppressed.
  • This start / stop operation was repeated 400 times, but no significant catalyst deterioration was observed with the shift catalyst and selective oxidation catalyst, and both the outlet CO concentration and catalyst layer temperature distribution remained unchanged from the initial stage. Was confirmed.
  • the CO concentration in the gas exit from the selective acid reactor was stable at 10 ppm by volume.
  • a selective oxidation reactor having a selective oxidation catalyst layer and no oxygen absorbent layer was used instead of the selective oxidation reactor having an oxygen absorbent layer.
  • a separate oxygen absorber was installed as a new vessel downstream of the selective oxidation reactor.
  • the oxygen absorber is a container in which an oxygen absorbent layer similar to that in Example 1 is disposed.
  • the selective oxidation reactor and the oxygen absorber were connected by piping.
  • Example 1 Instead of the oxygen absorbent used in Example 1, a reactor filled with a commercially available copper zinc catalyst (trade name: MDC-1 manufactured by Sud Chemie Co., Ltd.) by hydrogen reduction was used. The oxygen absorption of this catalyst The yield was 14.0. Other configurations were the same as in Example 1.
  • Example 1 When starting and stopping were repeated in the same manner as in Example 1, the amount of air sucked when the apparatus was stopped was 3.5 NL, the same as in Example 1. Also, at the first stop, the copper-zinc-based catalyst filled in the subsequent stage of the selective oxidation catalyst layer generated heat, and it was confirmed that oxygen was generated due to oxygen in the sucked air. At this time, the shift catalyst layer temperature did not increase. This experiment was repeated, and at the time of stoppage after the fifth start-up, heat generation of the copper zinc catalyst after the selective acid catalyst layer due to air suction no longer occurred, and instead heat generation of the shift catalyst layer was observed instead It was done. At this time, the oxygen absorption capacity of the copper zinc catalyst in the latter stage of the selective oxidation catalyst layer was 0.8, and it was found that the oxygen absorption capacity of this catalyst was regenerated.
  • the hydrogen production apparatus of the present invention can be used for producing a hydrogen-containing gas as fuel for a fuel cell, and can be used in a hydrogen station for supplying a hydrogen-containing gas to an automobile. it can.
  • the fuel cell system of the present invention can be used in a power generation device for a moving body such as an automobile, a fixed power generation system, a cogeneration system, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

This invention provides a hydrogen production apparatus, which, even when start-up and shutdown are repeated without conducting purge operation upon shutdown, can more reliably prevent an oxidation degradation of a catalyst within a hydrogen production apparatus, and a fuel cell system and a method for operating the fuel cell system. The hydrogen production apparatus comprises a modification part, a shift reaction part, and a selective oxidation reaction part provided with a selective oxidation catalyst layer packed with a selective oxidation catalyst. In this hydrogen production apparatus, the following means is provided. An oxygen absorbing agent layer packed with an oxygen absorbing agent, which can absorb oxygen and can be regenerated by reducing gas, is provided. The oxygen absorbing agent layer and the selective oxidation catalyst layer are stacked on top of each other so that the oxygen absorbing agent layer is located on the downstream side, and the downstream of the oxygen absorbing agent layer is opened to the air. The fuel cell system comprises the hydrogen production apparatus. The method for operating the fuel cell system comprises the step of opening the downstream of the oxygen absorbing agent layer to the air in the shutdown of the fuel cell system and the step of regenerating the oxygen absorbing agent using a hydrogen-containing gas in the hydrogen production using the hydrogen production apparatus.

Description

明 細 書  Specification
水素製造装置および燃料電池システム並びにその運転方法  Hydrogen production apparatus, fuel cell system and operation method thereof
技術分野  Technical field
[0001] 本発明は都市ガス、液ィ匕石油ガス (LPG)、灯油等の水素製造用原料力 水素を 製造する水素製造装置に関し、またこの水素製造装置で製造された水素含有ガスを 燃料とする燃料電池システムに関する。  [0001] The present invention relates to a hydrogen production apparatus for producing hydrogen, a raw material for hydrogen production such as city gas, liquid petroleum gas (LPG), kerosene, etc., and the hydrogen-containing gas produced by this hydrogen production apparatus as a fuel. The present invention relates to a fuel cell system.
背景技術  Background art
[0002] 燃料電池はエネルギー利用効率の良 、発電システムとして開発が活発化して!/、る 。この中でも固体高分子形燃料電池は高い出力密度、取り扱いの容易さなど力 特 に注目を集めている。  [0002] Fuel cells have good energy utilization efficiency and are actively developed as power generation systems! Among these, polymer electrolyte fuel cells are attracting attention because of their high power density and ease of handling.
[0003] 水素と酸素との電気化学的な反応により発電する燃料電池にとっては、水素供給 手段の確立が必須である。この方法の一つとして炭化水素燃料などの水素製造用原 料を改質し水素を製造する方法があり、炭化水素燃料の供給システムがすでに社会 的に整備されて ヽる点で、純水素を用いる方法より有利である。  [0003] Establishment of a hydrogen supply means is essential for a fuel cell that generates electricity by an electrochemical reaction between hydrogen and oxygen. One of these methods is a method of producing hydrogen by reforming raw materials for hydrogen production such as hydrocarbon fuels. Pure hydrogen is used because the hydrocarbon fuel supply system has already been socially developed. It is more advantageous than the method used.
[0004] 炭化水素燃料としては、都市ガス、 LPG、ガソリン、灯油、軽油などがある。 LPG、 ガソリン、灯油、軽油などの液体燃料は取り扱い、保存および輸送が容易であること、 安価であることなどの特徴から燃料電池用燃料として注目されている。これらの水素 製造用原料を燃料電池で用いるためには炭化水素から水素を製造することが必要 であり、このために、少なくとも改質器を備える水素製造装置が用いられている。  [0004] Hydrocarbon fuels include city gas, LPG, gasoline, kerosene, and light oil. Liquid fuels such as LPG, gasoline, kerosene, and light oil are attracting attention as fuel cell fuels because they are easy to handle, store and transport, and are inexpensive. In order to use these raw materials for hydrogen production in a fuel cell, it is necessary to produce hydrogen from hydrocarbons. For this purpose, a hydrogen production apparatus including at least a reformer is used.
[0005] 水素製造装置では、例えば、改質器で炭化水素を水と反応させ主に一酸化炭素と 水素に分解し、続いてシフト反応器で大部分の一酸ィ匕炭素を水と反応させ水素と二 酸化炭素に転換し、最後に選択酸化反応器において微量の残存一酸化炭素を酸素 と反応させ二酸化炭素にすることが行われている。また、硫黄が改質触媒などの被毒 物質となることがあるため、炭化水素燃料中の硫黄を除去するための脱硫器が設け られる場合も多い。  [0005] In a hydrogen production device, for example, a reformer reacts hydrocarbons with water to decompose mainly into carbon monoxide and hydrogen, and a shift reactor then reacts most of the carbon monoxide and carbon with water. It is converted to hydrogen and carbon dioxide, and finally a small amount of residual carbon monoxide is reacted with oxygen to form carbon dioxide in a selective oxidation reactor. In addition, since sulfur may be a poisoning substance such as a reforming catalyst, a desulfurizer is often provided to remove sulfur in hydrocarbon fuel.
[0006] このような燃料電池システムを停止する際には、水素製造装置内に存在する触媒 の保護などを目的として、窒素に代表される不活性ガスによるパージが行われてきた 。しかし、窒素の貯蔵のためにスペースが必要であり、またその供給、管理のために 手間がかかっていた。 [0006] When such a fuel cell system is stopped, purging with an inert gas typified by nitrogen has been performed for the purpose of protecting the catalyst present in the hydrogen production apparatus. . However, space was needed to store nitrogen, and it took time and effort to supply and manage it.
[0007] このような状況を打開し、燃料電池システムのパージ用に用いる不活性ガスを簡単 に供給でき、かつ部材の交換などの不要なメンテナンス性の高!ヽ燃料電池発電シス テムのパージ手段を提供することを目的として、特許文献 1には、空気中に含まれる 酸素を除去する再生可能な酸素除去手段を利用した燃料電池発電システムが開示 される。  [0007] In order to overcome this situation, the inert gas used for purging the fuel cell system can be easily supplied, and unnecessary maintenance such as replacement of members is highly possible! (2) For the purpose of providing a purge means for a fuel cell power generation system, Patent Document 1 discloses a fuel cell power generation system using a reproducible oxygen removal means for removing oxygen contained in air.
[0008] 特許文献 1記載の技術では、不活性ガスのボンベなどを不要として 、るものの、空 気供給ブロアから空気を脱酸素カラム (酸素除去手段)に送って酸素濃度を低減し、 これを用いてパージを行っている。すなわち、依然としてパージを行っており、停止操 作が簡易とは言えず、また発電終了後も空気供給ブロワの作動を継続することが必 要なため、そのための動力が無駄である。  [0008] Although the technique described in Patent Document 1 eliminates the need for an inert gas cylinder or the like, air is sent from an air supply blower to a deoxygenation column (oxygen removal means) to reduce the oxygen concentration. To purge. In other words, the purge is still being performed, and it cannot be said that the stop operation is simple, and it is necessary to continue the operation of the air supply blower even after the end of power generation.
[0009] 特許文献 2には、水素製造装置もしくは水素製造装置を備える燃料電池システム の停止時に、パージ操作を行わずに水素製造装置内の触媒の酸ィヒ劣化を抑えるこ とを可能とする技術が開示される。  [0009] Patent Document 2 makes it possible to suppress deterioration of the acid in the catalyst in the hydrogen production apparatus without performing a purge operation when the hydrogen production apparatus or the fuel cell system including the hydrogen production apparatus is stopped. Technology is disclosed.
特許文献 1:特開 2002— 280038号公報  Patent Document 1: JP 2002-280038 A
特許文献 2 :特開 2005— 179081号公報  Patent Document 2: Japanese Patent Laid-Open No. 2005-179081
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] しかしながら、改質器、シフト反応器および選択酸化反応器を備える水素製造装置 においては、特許文献 2に開示される技術によっても、停止時にシフト反応触媒や選 択酸化触媒が酸化されて劣化する傾向が認められる場合があり、特に起動停止を繰 り返して運転する場合に長寿命化の観点カも更なる改善が望まれることがわ力つた。  [0010] However, in a hydrogen production apparatus including a reformer, a shift reactor, and a selective oxidation reactor, the shift reaction catalyst and the selective oxidation catalyst are oxidized at the time of stoppage even by the technique disclosed in Patent Document 2. In some cases, there is a tendency to deteriorate. In particular, when starting and stopping repeatedly, it is clear that further improvement is desired from the viewpoint of extending the service life.
[0011] 本発明の目的は、水素製造装置の停止時にパージ操作を行わずに、起動停止を 繰り返した場合でも水素製造装置内の触媒の酸ィ匕劣化をより確実に抑えることを可 能とする水素製造装置を提供することである。  [0011] An object of the present invention is to make it possible to more reliably suppress the deterioration of acidity of the catalyst in the hydrogen production apparatus even when the start and stop are repeated without performing the purge operation when the hydrogen production apparatus is stopped. A hydrogen production apparatus is provided.
[0012] 本発明の別の目的は、燃料電池システムの停止時にパージ操作を行わずに、起動 停止を繰り返した場合でも水素製造装置内の触媒の酸化劣化をより確実に抑えるこ とを可能とする燃料電池システムとその運転方法を提供することである。 課題を解決するための手段 Another object of the present invention is to more reliably suppress the oxidative deterioration of the catalyst in the hydrogen production apparatus even when the start and stop are repeated without performing a purge operation when the fuel cell system is stopped. It is to provide a fuel cell system and an operation method thereof. Means for solving the problem
[0013] 本発明により、水素製造用原料力ゝら改質反応を利用して水素を含むガスを得る改 質部と、該改質部の出口ガス中の一酸ィ匕炭素濃度をシフト反応により低減するシフト 反応部と、該シフト反応部の出口ガス中の一酸ィ匕炭素濃度をさらに低減するための、 一酸化炭素を選択的に酸化する選択酸化触媒が充填された選択酸化触媒層を有 する選択酸ィヒ反応部とを備える水素製造装置であって、  [0013] According to the present invention, a reforming unit that obtains a gas containing hydrogen using a reforming reaction using a raw material force for hydrogen production, and a shift reaction of the concentration of carbon monoxide and carbon in the outlet gas of the reforming unit And a selective oxidation catalyst layer filled with a selective oxidation catalyst that selectively oxidizes carbon monoxide for further reducing the concentration of carbon monoxide and carbon in the outlet gas of the shift reaction portion A hydrogen production apparatus comprising a selective acid-rich reaction section having
酸素を吸収可能でかつ還元ガスにより再生可能な酸素吸収剤が充填された酸素吸 収剤層を有し、該酸素吸収剤層と選択酸化触媒層とは酸素吸収剤層を下流側にし て積層され、  It has an oxygen absorbent layer filled with an oxygen absorbent that can absorb oxygen and can be regenerated by a reducing gas, and the oxygen absorbent layer and the selective oxidation catalyst layer are laminated with the oxygen absorbent layer downstream. And
該酸素吸収剤層の下流を大気開放する手段を有する水素製造装置が提供される。  A hydrogen production apparatus having means for opening the downstream of the oxygen absorbent layer to the atmosphere is provided.
[0014] 前記酸素吸収剤が Ru、 Pt、 Au、 Ni、 Co、 Rh、 Pd、 Ir、 Agおよび Reからなる群か ら選ばれる少なくとも一つの金属を含むことができる。 [0014] The oxygen absorbent may contain at least one metal selected from the group consisting of Ru, Pt, Au, Ni, Co, Rh, Pd, Ir, Ag, and Re.
[0015] 前記酸素吸収剤がセリア、ジルコ-ァ、チタ-ァ、イットリア、酸ィ匕マンガン、酸化ス ズ、酸化鉄、酸化銅および酸化亜鉛から選ばれる少なくとも一つの酸化物を含むこと ができる。 [0015] The oxygen absorbent may include at least one oxide selected from ceria, zircoa, titer, yttria, manganese oxide, tin oxide, iron oxide, copper oxide, and zinc oxide. .
[0016] 本発明により、水素製造用原料力ゝら改質反応を利用して水素を含むガスを得る改 質部と、該改質部の出口ガス中の一酸ィ匕炭素濃度をシフト反応により低減するシフト 反応部と、該シフト反応部の出口ガス中の一酸ィ匕炭素濃度をさらに低減するための、 一酸化炭素を選択的に酸化する選択酸化触媒が充填された選択酸化触媒層を有 する選択酸化反応部とを備える水素製造装置;および、該水素製造装置から得られ るガスを用いて発電を行う燃料電池とを有する燃料電池システムであって、 酸素を吸収可能でかつ還元ガスにより再生可能な酸素吸収剤が充填された酸素吸 収剤層を有し、該酸素吸収剤層と選択酸化触媒層とは酸素吸収剤層を下流側にし て積層され、  [0016] According to the present invention, a reforming unit that obtains a gas containing hydrogen using a reforming reaction using a raw material force for hydrogen production, and a shift reaction of the concentration of carbon monoxide and carbon in the outlet gas of the reforming unit And a selective oxidation catalyst layer filled with a selective oxidation catalyst that selectively oxidizes carbon monoxide for further reducing the concentration of carbon monoxide and carbon in the outlet gas of the shift reaction portion And a fuel cell system that generates electricity using gas obtained from the hydrogen production device, wherein the fuel cell system is capable of absorbing oxygen and is reduced. An oxygen absorbent layer filled with an oxygen absorbent that can be regenerated by gas, and the oxygen absorbent layer and the selective oxidation catalyst layer are laminated with the oxygen absorbent layer downstream;
該酸素吸収剤層の下流を大気開放する手段を有する燃料電池システムが提供され る。  A fuel cell system having means for opening the downstream of the oxygen absorbent layer to the atmosphere is provided.
[0017] 本発明により、上記燃料電池システムの運転方法であって、 該燃料電池システムを停止する際に前記酸素吸収剤層の下流を大気開放するェ 程と、 [0017] According to the present invention, there is provided a method of operating the fuel cell system, Opening the downstream of the oxygen absorbent layer to the atmosphere when stopping the fuel cell system;
前記水素製造装置による水素製造時に水素を含むガスを用いて該酸素吸収剤を再 生する工程を有する燃料電池システムの運転方法が提供される。  A method of operating a fuel cell system is provided that includes a step of regenerating the oxygen absorbent using a gas containing hydrogen during hydrogen production by the hydrogen production apparatus.
発明の効果  The invention's effect
[0018] 本発明により、水素製造装置の停止時にパージ操作を行わずに、起動停止を繰り 返した場合でも水素製造装置内の触媒の酸ィ匕劣化をより確実に抑えることを可能と する水素製造装置が提供される。  [0018] According to the present invention, hydrogen that makes it possible to more reliably suppress deterioration of the catalyst in the hydrogen production apparatus even when the start and stop are repeated without performing a purge operation when the hydrogen production apparatus is stopped. A manufacturing apparatus is provided.
[0019] 本発明により、燃料電池システムの停止時にパージ操作を行わずに、起動停止を 繰り返した場合でも水素製造装置内の触媒の酸ィ匕劣化をより確実に抑えることを可 能とする燃料電池システムとその運転方法が提供される。 [0019] According to the present invention, a fuel that makes it possible to more reliably suppress the deterioration of the acidity of the catalyst in the hydrogen production apparatus even when the start and stop are repeated without performing the purge operation when the fuel cell system is stopped. A battery system and a method of operating the same are provided.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明の水素製造装置の一形態の概略を表すフロー図である。 FIG. 1 is a flowchart showing an outline of one embodiment of the hydrogen production apparatus of the present invention.
[図 2]酸素吸収剤層を備える選択酸ィ匕反応器の例を示す模式的断面図である。  FIG. 2 is a schematic cross-sectional view showing an example of a selective acid / aqueous reactor equipped with an oxygen absorbent layer.
[図 3]本発明の水素製造装置の別の形態の概略を表すフロー図である。  FIG. 3 is a flowchart showing an outline of another embodiment of the hydrogen production apparatus of the present invention.
[図 4]本発明の燃料電池システムの一形態の概略を表すフロー図である。  FIG. 4 is a flowchart showing an outline of an embodiment of the fuel cell system of the present invention.
[図 5]本発明の燃料電池システムの別の形態の概略を表すフロー図である。  FIG. 5 is a flowchart showing an outline of another embodiment of the fuel cell system of the present invention.
符号の説明  Explanation of symbols
2 燃料電池  2 Fuel cell
2a アノード室  2a Anode chamber
2c 力ソード室  2c power sword room
4 空気昇圧手段  4 Air pressure boosting means
6 ノ ッファータンク  6 Noffer tank
11 改質器  11 Reformer
11a 改質反応管  11a reforming reaction tube
l ib パーナ  l ib Pana
12 シフト反応器  12 shift reactor
14 製品ガス出口 21 酸素吸収剤層を備える選択酸化反応器 14 Product gas outlet 21 Selective oxidation reactor with oxygen absorber layer
100 水素製造装置  100 Hydrogen production equipment
101、 102、 103、 104 ノ レブ  101, 102, 103, 104
110 分岐点  110 junction
200 電流制御器  200 Current controller
201 酸素センサー  201 oxygen sensor
301 容器  301 container
302 選択酸化触媒層  302 selective oxidation catalyst layer
303 酸素吸収剤層  303 Oxygen absorber layer
311 ガス導入口  311 Gas inlet
312 ガス導出口  312 Gas outlet
321 水導入口  321 Water inlet
322 冷却管  322 Cooling pipe
323 水導出口  323 Water outlet
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 水素製造装置や燃料電池システムの停止に当たって、パージを行わずに水素製 造装置を大気から遮断すると、水素製造装置の温度が下がるに伴い水素製造装置 の内部が負圧になる。負圧になった部分には大気力 空気が流入し、水素製造装置 に備わる触媒が酸ィ匕劣化するおそれがある。また負圧のために機器が破損するおそ れもある。このような事態を防止するために、本発明では酸素吸収剤を利用して空気 中の酸素を除去し、酸素濃度が低減された空気 (以下、酸素除去空気という。)を選 択酸化触媒層の下流側から水素製造装置に自然流入可能にしておく。  [0022] When the hydrogen production apparatus and the fuel cell system are stopped, if the hydrogen production apparatus is shut off from the atmosphere without purging, the internal pressure of the hydrogen production apparatus becomes negative as the temperature of the hydrogen production apparatus decreases. Atmospheric force air flows into the negative pressure area, and the catalyst in the hydrogen production system may deteriorate with acid. There is also a risk of equipment damage due to negative pressure. In order to prevent such a situation, in the present invention, oxygen in the air is removed by using an oxygen absorbent, and air with a reduced oxygen concentration (hereinafter referred to as oxygen-removed air) is selected as the selective oxidation catalyst layer. It is allowed to flow naturally into the hydrogen production apparatus from the downstream side.
[0023] また、酸素吸収剤として、還元ガスで再生可能なものを用いる。これにより、水素製 造時の選択酸化反応部出口の水素含有ガスを用いて酸素吸収剤を再生することが できる。なお、水素含有ガスは実質的に水素を含むガスである。  [0023] Further, an oxygen absorbent that can be regenerated with a reducing gas is used. As a result, the oxygen absorbent can be regenerated using the hydrogen-containing gas at the selective oxidation reaction section outlet during hydrogen production. The hydrogen-containing gas is a gas that substantially contains hydrogen.
[0024] なお本発明において、特に断りのない限り、上流もしくは下流は、運転時 (水素製 造装置について水素製造時、燃料電池システムについて発電時)のガスの流れ方向 を基準とする。 [0025] 〔水素製造装置〕 [0024] In the present invention, unless otherwise specified, upstream or downstream is based on the gas flow direction during operation (when hydrogen is produced for a hydrogen production apparatus or during power generation for a fuel cell system). [Hydrogen production equipment]
水素製造装置は、水素製造用原料力 水素を含むガスを製造する装置である。水 素製造装置で得られる製品ガスは、例えば燃料電池のアノード室に供給するなどし て利用される。また、製品ガスを必要に応じて貯蔵し、水素ステーションで自動車など に供給するために利用することもできる。  The hydrogen production apparatus is an apparatus for producing a gas containing hydrogen as a raw material for hydrogen production. The product gas obtained by the hydrogen production apparatus is used, for example, by supplying it to the anode chamber of the fuel cell. In addition, product gas can be stored as needed and used to supply automobiles etc. at the hydrogen station.
[0026] 本発明において、水素製造用原料を改質反応によって改質して水素含有ガスを製 造するため、水素製造装置は改質器などの改質部を備える。そして、改質部の下流 に一酸ィ匕炭素濃度低減のためにシフト反応器などのシフト反応部を備え、さらに一酸 化炭素濃度を低減するためにシフト反応器の下流に選択酸化反応器等の選択酸ィ匕 反応部を備える。また必要に応じて改質器の上流に水素製造用原料中の硫黄分濃 度を低減する脱硫器を備えることもできる。  [0026] In the present invention, in order to produce a hydrogen-containing gas by reforming a raw material for hydrogen production by a reforming reaction, the hydrogen production apparatus includes a reforming unit such as a reformer. A shift reaction unit such as a shift reactor is provided downstream of the reforming unit to reduce the concentration of carbon monoxide and carbon, and a selective oxidation reactor is provided downstream of the shift reactor to reduce the concentration of carbon monoxide. It has a selective acid reaction part such as. If necessary, a desulfurizer can be provided upstream of the reformer to reduce the sulfur concentration in the raw material for hydrogen production.
[0027] 〔改質器〕  [0027] [Reformer]
改質器では、水 (スチーム)および Zまたは酸素を水素製造用原料と反応させ、水 素を含有する改質ガスを製造する。この装置で水素製造用原料は主に水素と一酸 化炭素に分解される。また、通常、二酸ィ匕炭素およびメタンも分解ガス中に含有され る。改質反応の例としては水蒸気改質反応、自己熱改質反応、部分酸化反応を挙げ ることがでさる。  In the reformer, water (steam) and Z or oxygen are reacted with the raw material for hydrogen production to produce a reformed gas containing hydrogen. In this device, the raw material for hydrogen production is mainly decomposed into hydrogen and carbon monoxide. Usually, carbon dioxide and methane are also contained in the cracked gas. Examples of reforming reactions include steam reforming reactions, autothermal reforming reactions, and partial oxidation reactions.
[0028] 水蒸気改質反応とは水蒸気と水素製造用原料を反応させるものであるが、大きな 吸熱を伴うため通常外部からの加熱が必要である。通常、ニッケル、コバルト、鉄、ル テニゥム、ロジウム、イリジウム、白金などの VIII族金属を代表例とする金属触媒の存 在下反応が行われる。反応温度は 450°C〜900°C、好ましくは 500°C〜850°C、さら に好ましくは 550°C〜800°Cの範囲で行うことができる。反応系に導入するスチーム の量は、水素製造用原料に含まれる炭素原子モル数に対する水分子モル数の比( スチーム Zカーボン比)として定義され、この値は好ましくは 0. 5〜10、より好ましくは 1〜7、さらに好ましくは 2〜5とされる。水素製造用原料が液体の場合、この時の空間 速度 (LHSV)は水素製造用原料の液体状態での流速を A (L/h)、触媒層体積を B (L)とした場合 AZBで表すことができ、この値は好ましくは 0.
Figure imgf000008_0001
より好ま しくは 0. 1〜: LOh— 1、さらに好ましくは 0. 2〜5h— 1の範囲で設定される。 [0029] 自己熱改質反応とは、水素製造用原料の一部を酸ィ匕しながら、この時発生する熱 で水蒸気改質反応を進行させることで反応熱のバランスを取りつつ改質を行う方法 であり、比較的立ち上げ時間も短く制御も容易であるため、近年燃料電池用の水素 製造方法として注目されているものである。この場合にも通常、ニッケル、コバルト、 鉄、ルテニウム、ロジウム、イリジウム、白金などの VIII族金属を代表例とする金属触 媒の存在下反応が行われる。反応系に導入するスチームの量は、スチーム Zカーボ ン比として好ましくは 0. 3〜10、より好ましくは 0. 5〜5、さらに好ましくは 1〜3とされ る。
[0028] The steam reforming reaction is a reaction of steam and a raw material for hydrogen production, but usually involves heating from the outside because it involves a large endotherm. Usually, the reaction is carried out in the presence of a metal catalyst, typically a Group VIII metal such as nickel, cobalt, iron, ruthenium, rhodium, iridium or platinum. The reaction temperature is 450 ° C to 900 ° C, preferably 500 ° C to 850 ° C, more preferably 550 ° C to 800 ° C. The amount of steam introduced into the reaction system is defined as the ratio of the number of moles of water molecules to the number of moles of carbon atoms contained in the raw material for hydrogen production (steam Z carbon ratio), and this value is preferably 0.5-10. Preferably it is 1-7, More preferably, it is 2-5. When the raw material for hydrogen production is liquid, the space velocity (LHSV) at this time is represented by AZB when the flow rate in the liquid state of the raw material for hydrogen production is A (L / h) and the volume of the catalyst layer is B (L). This value is preferably 0.
Figure imgf000008_0001
More preferred properly is 0. 1~: LOh- 1, more preferably set in the range of 0. 2~5h- 1. [0029] The autothermal reforming reaction is a process in which a part of the raw material for hydrogen production is acidified and the steam reforming reaction is advanced by the heat generated at this time, and the reforming is performed while balancing the reaction heat. This is a method to be performed, and since it has a relatively short start-up time and is easy to control, it has recently attracted attention as a method for producing hydrogen for fuel cells. Also in this case, the reaction is usually carried out in the presence of a metal catalyst typified by a Group VIII metal such as nickel, cobalt, iron, ruthenium, rhodium, iridium and platinum. The amount of steam introduced into the reaction system is preferably from 0.3 to 10, more preferably from 0.5 to 5, and even more preferably from 1 to 3, as a steam Z carbon ratio.
[0030] 自己熱改質ではスチームの他に酸素が原料に添加される。酸素源としては純酸素 でも良いが多くの場合空気が使用される。通常水蒸気改質反応に伴う吸熱反応をバ ランスできる熱量を発生し得る程度の酸素を添加する力 熱のロスや必要に応じて設 置する外部加熱との関係において適宜添加量は決定される。その量は、水素製造用 原料に含まれる炭素原子モル数に対する酸素分子モル数の比 (酸素 Zカーボン比) として好ましくは 0. 05〜1、より好ましくは 0. 1〜0. 75、さらに好ましくは 0. 2〜0. 6 とされる。自己熱改質反応の反応温度は水蒸気改質反応の場合と同様、 450°C〜9 00°C、好ましくは 500°C〜850°C、さらに好ましくは 550°C〜800°Cの範囲で設定さ れる。水素製造用原料が液体の場合、この時の空間速度 (LHSV)は、好ましくは 0. 1〜30、より好ましくは 0. 5〜20、さらに好ましくは 1〜10の範囲で選ばれる。  In the autothermal reforming, oxygen is added to the raw material in addition to steam. The oxygen source may be pure oxygen, but in many cases air is used. The power to add oxygen that can generate heat that can balance the endothermic reaction that normally accompanies steam reforming reaction. The amount of addition is appropriately determined in relation to heat loss and external heating that is installed if necessary. The amount is preferably 0.05 to 1, more preferably 0.1 to 0.75, and even more preferably, as the ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms contained in the raw material for hydrogen production (oxygen Z carbon ratio). Is between 0.2 and 0.6. The reaction temperature of the autothermal reforming reaction is in the range of 450 ° C to 900 ° C, preferably 500 ° C to 850 ° C, more preferably 550 ° C to 800 ° C, as in the case of the steam reforming reaction. Set. When the raw material for hydrogen production is liquid, the space velocity (LHSV) at this time is preferably selected in the range of 0.1 to 30, more preferably 0.5 to 20, and still more preferably 1 to 10.
[0031] 部分酸化反応とは、水素製造用原料を酸化させて改質反応を進行させる方法であ り、比較的立ち上げ時間が短ぐ装置をコンパクトに設計できることもあり、水素製造 方法として注目されている。触媒を使用する場合と使用しない場合があるが、触媒を 使用する場合は、通常、ニッケル、コバルト、鉄、ルテニウム、ロジウム、イリジウム、白 金などの VIII族金属を代表例とする金属触媒ゃぺロブスカイトゃスピネル型酸化物 触媒の存在下反応が行われる。反応系にお 、てすすの発生を抑制するためにスチ ームを導入することができ、その量は、スチーム/カーボン比として好ましくは 0. 1〜 5、より好ましくは 0. 1〜3、さらに好ましくは 1〜2とされる。  [0031] The partial oxidation reaction is a method in which a reforming reaction is advanced by oxidizing a raw material for hydrogen production, and an apparatus that has a relatively short start-up time can be designed compactly. Has been. A catalyst may or may not be used, but when a catalyst is used, it is usually a metal catalyst such as nickel, cobalt, iron, ruthenium, rhodium, iridium, platinum, etc. The reaction is carried out in the presence of a lobskite spinel oxide catalyst. In the reaction system, steam can be introduced to suppress the generation of soot, and the amount thereof is preferably 0.1 to 5, more preferably 0.1 to 3, as a steam / carbon ratio. More preferably, it is set to 1-2.
[0032] 部分酸化改質では酸素が原料に添加される。酸素源としては純酸素でも良いが多 くの場合空気が使用される。反応を進めるための温度を確保するため、熱のロス等に おいて適宜添加量は決定される。その量は、水素製造用原料に含まれる炭素原子 モル数に対する酸素分子モル数の比(酸素 Zカーボン比)として好ましくは 0. 1〜3 、より好ましくは 0. 2〜0. 7とされる。部分酸化反応の反応温度は、触媒を用いない 場合は、反応温度は 1, 000〜1, 300°Cの範囲とすることができ、触媒を用いた場合 は水蒸気改質反応の場合と同様、 450°C〜900°C、好ましくは 500°C〜850°C、さら に好ましくは 550°C〜800°Cの範囲で設定することができる。水素製造用原料が液 体の場合、この時の空間速度(LHSV)は、好ましくは 0. 1〜30の範囲で選ばれる。 [0032] In the partial oxidation reforming, oxygen is added to the raw material. The oxygen source may be pure oxygen, but in many cases air is used. In order to secure the temperature for proceeding the reaction, heat loss etc. In this case, the amount added is appropriately determined. The amount is preferably 0.1 to 3, more preferably 0.2 to 0.7 as the ratio of the number of moles of oxygen molecules to the number of moles of carbon atoms contained in the raw material for hydrogen production (oxygen Z carbon ratio). . The reaction temperature of the partial oxidation reaction can be in the range of 1,000 to 1,300 ° C when no catalyst is used, and when a catalyst is used, the reaction temperature is the same as in the steam reforming reaction. It can be set in the range of 450 ° C to 900 ° C, preferably 500 ° C to 850 ° C, more preferably 550 ° C to 800 ° C. When the raw material for hydrogen production is liquid, the space velocity (LHSV) at this time is preferably selected in the range of 0.1 to 30.
[0033] 本発明にお 、て、改質器として、上記改質反応を行うことのできる公知の改質器を 禾 IJ用することがでさる。  [0033] In the present invention, a known reformer capable of performing the above reforming reaction can be used as a reformer.
[0034] 〔水素製造用原料〕  [0034] [Raw material for hydrogen production]
水素製造の原料としては、上記改質反応により水素を含む改質ガスを得ることので きる物質であれば使用できる。例えば、炭化水素類、アルコール類、エーテル類など 分子中に炭素と水素を有する化合物を用いることができる。工業用あるいは民生用 に安価に入手できる好ましい例として、メタノール、エタノール、ジメチルエーテル、都 巿ガス、 LPG (液ィ匕石油ガス)、ガソリン、灯油などを挙げることができる。なかでも灯 油は工業用としても民生用としても入手容易であり、その取り扱いも容易なため、好ま しい。  As a raw material for hydrogen production, any substance capable of obtaining a reformed gas containing hydrogen by the above reforming reaction can be used. For example, compounds having carbon and hydrogen in the molecule such as hydrocarbons, alcohols and ethers can be used. Preferable examples that can be obtained at low cost for industrial or consumer use include methanol, ethanol, dimethyl ether, city gas, LPG (liquid petroleum gas), gasoline, and kerosene. Of these, kerosene is preferred because it is readily available for industrial and consumer use and is easy to handle.
[0035] 〔シフト反応器〕  [Shift reactor]
改質器で発生するガスは水素の他に例えば一酸ィ匕炭素、二酸化炭素、メタン、水 蒸気を含む。また、自己熱改質ゃ部分酸化改質で空気を酸素源とした場合には窒 素も含有される。このうち、一酸ィ匕炭素を水と反応させ水素と二酸ィ匕炭素に転換する シフト反応を行うのがシフト反応器である。通常、触媒の存在下反応が進行し、 Fe- Crの混合酸化物、 Zn— Cuの混合酸ィ匕物、白金、ルテニウム、イリジウムなど貴金属 を含有する触媒を用い、一酸化炭素含有量 (ドライベースのモル%)を好ましくは 2% 以下、より好ましくは 1%以下、さらに好ましくは 0. 5%以下までに落とす。シフト反応 を二段階で行うこともでき、この場合高温シフト反応器と低温シフト反応器が用いられ る。  In addition to hydrogen, the gas generated in the reformer includes, for example, carbon monoxide, carbon dioxide, methane, and water vapor. Nitrogen is also contained when air is used as the oxygen source in the partial oxidation reforming. Among these, the shift reactor performs a shift reaction in which monoxide carbon is reacted with water to convert it into hydrogen and diacid carbon. Usually, the reaction proceeds in the presence of a catalyst, and a catalyst containing noble metals such as mixed oxides of Fe-Cr, mixed oxides of Zn-Cu, platinum, ruthenium, and iridium is used. The mol% of the base is preferably reduced to 2% or less, more preferably 1% or less, and even more preferably 0.5% or less. The shift reaction can be carried out in two stages, in which case a high temperature shift reactor and a low temperature shift reactor are used.
[0036] 上記シフト反応は発熱反応であるため、平衡論的には低温での運転条件が好まし いが、用いる触媒の活性が発現する温度により、実際にはある程度の温度を保持す ることが行われている。具体的には、シフトを 1段で行う場合、通常 100〜450°C、好 ましくは 120〜400°C、より好ましくは 150〜350°Cの範囲である。 100°C以上の場 合には、触媒自身の CO吸着を抑制して優れた活性を発現させることが容易で、良好 に CO転ィ匕を行うことが容易である。また 450°C以下の場合には、平衡論的に CO濃 度が高くなることを抑え、良好に CO転ィ匕を行うことが容易である。 [0036] Since the shift reaction is an exothermic reaction, operation conditions at low temperatures are preferred in terms of equilibrium. However, a certain temperature is actually maintained depending on the temperature at which the activity of the catalyst used is developed. Specifically, when the shift is performed in one stage, it is usually in the range of 100 to 450 ° C, preferably 120 to 400 ° C, more preferably 150 to 350 ° C. When the temperature is 100 ° C. or higher, it is easy to suppress CO adsorption of the catalyst itself and to exhibit excellent activity, and it is easy to perform CO conversion well. When the temperature is 450 ° C or lower, it is easy to perform CO conversion well by suppressing the increase in CO concentration in equilibrium.
[0037] 〔選択酸化反応部〕  [0037] [Selective oxidation reaction unit]
シフト反応器の出口ガス中の一酸ィ匕炭素濃度をさらに低減させるために、選択酸 化反応部が設けられる。選択酸化反応部には、一酸化炭素を選択的に酸化する選 択酸化触媒が充填された選択酸化触媒層を用いることができ、シフト反応器出口ガ スを選択酸化反応で処理することができる。このために選択酸化触媒層を容器内に 設けた選択酸ィ匕反応器を用いることができる。  In order to further reduce the concentration of carbon monoxide and carbon in the outlet gas of the shift reactor, a selective oxidation reaction section is provided. In the selective oxidation reaction section, a selective oxidation catalyst layer filled with a selective oxidation catalyst that selectively oxidizes carbon monoxide can be used, and the shift reactor outlet gas can be processed by the selective oxidation reaction. . For this purpose, it is possible to use a selective acid-sodium reactor provided with a selective oxidation catalyst layer in a container.
[0038] 選択酸化反応では、鉄、コノ レト、ニッケル、ルテニウム、ロジウム、パラジウム、ォス ミゥム、イリジウム、白金、銅、銀、金などを含有する触媒を用い、残存する一酸化炭 素モル数に対し好ましくは 0. 5〜10倍モル、より好ましくは 0. 7〜5倍モル、さらに好 ましくは 1〜3倍モルの酸素を添加することで一酸ィ匕炭素を選択的に二酸ィ匕炭素に 転換することにより一酸ィ匕炭素濃度を好ましくは lOppm (ドライベースのモル基準)以 下に低減させる。この場合、一酸化炭素の酸化と同時に共存する水素と一酸化炭素 とを反応させメタンを生成させることで一酸ィ匕炭素濃度の低減を図ることもできる。選 択酸化反応を二段階で行うこともできる。選択酸化触媒が Ruを含有する場合、 Ru含 有量は例えば 0. 02質量%以上 1質量%未満とすることができる。 Ru含有量は好ま しくは 0. 05質量%以上 0. 75質量%以下、より好ましくは 0. 1質量%以上 0. 5質量 %以下である。  [0038] In the selective oxidation reaction, a catalyst containing iron, conoleto, nickel, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, silver, gold, etc. is used, and the remaining number of moles of carbon monoxide. Preferably, 0.5 to 10 times mol, more preferably 0.7 to 5 times mol, and even more preferably 1 to 3 times mol of oxygen is added to selectively convert carbon monoxide to carbon dioxide. By converting to acid-carbon, the concentration of monoxide-carbon is preferably reduced to less than 10 ppm (on a dry basis molar basis). In this case, it is possible to reduce the concentration of carbon monoxide and carbon by reacting hydrogen and carbon monoxide simultaneously with the oxidation of carbon monoxide to produce methane. The selective oxidation reaction can also be performed in two stages. When the selective oxidation catalyst contains Ru, the Ru content can be, for example, 0.02% by mass or more and less than 1% by mass. The Ru content is preferably 0.05% by mass or more and 0.75% by mass or less, and more preferably 0.1% by mass or more and 0.5% by mass or less.
[0039] 選択酸化反応は、用いる触媒や容器の構造によっても異なるが、通常 50〜250°C 、好ましくは 60〜220°C、さらに好ましくは 80〜200°Cの範囲で行われる。 50°C以上 の場合には、優れた触媒の活性が発現し COを優れて低減することが容易である。ま た 250°C以下の場合には、 CO選択酸ィ匕において、優れた燃焼選択性を発現させ、 水素の消費を抑え、触媒層温度の上昇を抑え、水素製造装置全体の改質プロセス 効率を優れたものにすることが容易であり、またメタネーシヨン反応において、多量に 共存する COのメタネーシヨンを抑え、熱暴走状態になることを防止することが容易で Although the selective oxidation reaction varies depending on the catalyst used and the structure of the container, it is usually carried out in the range of 50 to 250 ° C., preferably 60 to 220 ° C., more preferably 80 to 200 ° C. When the temperature is 50 ° C or higher, excellent catalytic activity is exhibited and CO can be easily reduced. When the temperature is 250 ° C or lower, CO selective acid can exhibit excellent combustion selectivity, suppress hydrogen consumption, suppress catalyst temperature rise, and reform the entire hydrogen production system. It is easy to make the efficiency excellent, and it is easy to suppress the CO metanation that coexists in a large amount in the methanation reaction and prevent thermal runaway.
2  2
ある。  is there.
[0040] 〔脱硫器〕  [0040] [Desulfurizer]
水素製造用原料中の硫黄は改質触媒を不活性化させる作用があるためなるベく低 濃度であることが望ましぐ好ましくは 0. 1質量 ppm以下、より好ましくは 50質量 ppb 以下とする。このため、必要であれば前もって水素製造用原料を脱硫することができ る。脱硫工程に供する原料中の硫黄濃度には特に制限はなぐ脱硫工程において、 上記の硫黄濃度に転換できるものであれば使用することができる。  It is desirable that the sulfur in the raw material for hydrogen production has a low concentration because it has the effect of inactivating the reforming catalyst, preferably 0.1 mass ppm or less, more preferably 50 mass ppb or less. . Therefore, if necessary, the raw material for hydrogen production can be desulfurized in advance. The sulfur concentration in the raw material used for the desulfurization step is not particularly limited, and any sulfur can be used as long as it can be converted to the above sulfur concentration in the desulfurization step.
[0041] 脱硫の方法にも特に制限はないが、適当な触媒と水素の存在下水素化脱硫を行 い生成した硫ィ匕水素を酸ィ匕亜鉛などに吸収させる方法を例としてあげることができる 。この場合用いることができる触媒の例としてはニッケル一モリブデン、コバルト一モリ ブデンなどを成分とする触媒を挙げることができる。一方、適当な収着剤の存在下必 要であれば水素の共存下硫黄分を収着させる方法も採用できる。この場合用いるこ とができる収着剤としては日本国特許第 2654515号公報、 日本国特許第 2688749 号公報などに示されたような銅 亜鉛を主成分とする収着剤あるいはニッケル 亜 鉛を主成分とする収着剤などを例示できる。  [0041] There is no particular limitation on the desulfurization method, but an example is a method in which hydrodesulfurization is performed in the presence of an appropriate catalyst and hydrogen, and the generated hydrogen sulfide is absorbed by acid zinc. it can . Examples of the catalyst that can be used in this case include catalysts containing nickel-molybdenum, cobalt-molybdenum, and the like as components. On the other hand, if necessary in the presence of an appropriate sorbent, a method of sorbing sulfur in the presence of hydrogen can be employed. As sorbents that can be used in this case, sorbents mainly composed of copper zinc or nickel zinc as shown in Japanese Patent No. 2654515, Japanese Patent No. 2688749, etc. are mainly used. Examples include sorbents as components.
[0042] 〔水素含有ガスの組成〕  [Composition of hydrogen-containing gas]
改質反応を経たガスの組成(ドライベースのモル%)は改質に水蒸気改質反応を用 いた場合、通常例えば、水素 63〜73%、メタン 0. 1〜5%、二酸化炭素 5〜20%、 一酸ィ匕炭素 5〜20%である。一方、自己熱改質反応を用いた場合の組成(ドライべ ースのモル0 /0)は、通常例えば、水素 23〜37%、メタン 0. 1〜5%、二酸化炭素 5〜 25%、一酸ィ匕炭素 5〜25%、窒素 30〜60%である。部分酸化反応を用いた場合の 組成は(ドライベースのモル0 /0)、通常例えば、水素 15〜35%、メタン 0. 1〜5%、一 酸化炭素 10〜30%、二酸化炭素 10〜40%、窒素 30〜60%である。 The composition of the gas that has undergone the reforming reaction (mol% of the dry base) is usually, for example, 63 to 73% hydrogen, 0.1 to 5% methane, 5 to 20 carbon dioxide when steam reforming reaction is used for reforming. %, Carbon monoxide 5-20%. On the other hand, (mol 0/0 of Doraibe over scan) the composition of the case of using the autothermal reforming reaction is generally for example, hydrogen from 23 to 37% methane 0.1 to 5%, carbon dioxide 5-25%, Carbon monoxide 5-25%, nitrogen 30-60%. The composition of the case of using a partial oxidation reaction (mol 0/0 of dry basis), typically for example, hydrogen 15% to 35% methane 0.1 to 5%, 10-30% carbon monoxide, carbon dioxide 10 to 40 %, Nitrogen 30-60%.
[0043] 改質反応およびシフト反応を経たガスの組成(ドライベースのモル0 /0もしくはモル pp m)は改質に水蒸気改質反応を用いた場合、通常例えば、水素 65〜75%、メタン 0 . 1〜5%、二酸ィ匕炭素 20〜30%、一酸ィ匕炭素 ΙΟΟΟρρπ!〜 lOOOOppmである。一 方、自己熱改質反応を用いた場合の組成(ドライベースのモル0 /0もしくはモル ppm) は、通常例えば、水素 25〜40%、メタン 0. 1〜5%、二酸化炭素 20〜40%、一酸 ィ匕炭素 1000ppm〜10000ppm、窒素 30〜54%である。部分酸化改質反応を用い た場合の組成は(ドライベースのモル0 /0)、通常例えば、水素 20〜40%、メタン 0. 1 〜5%、一酸ィ匕炭素 ΙΟΟΟρρπ!〜 10000ppm、二酸ィ匕炭素 20〜45%、蜜素 30〜5 5%である。 [0043] When the reforming reaction and the shift the composition of the reaction through the gas (dry base mole 0/0 or mole pp m) is using a steam reforming reaction in the reforming, usually for example, hydrogen 65% to 75%, methane 0.1-5%, diacid carbon 20-30%, monoacid carbon 匕 ρρπ! ~ LOOOOppm. one Write, (mol 0/0 or mole ppm dry basis) composition in the case of using the autothermal reforming reaction is generally for example, hydrogen 25% to 40% methane 0.1 to 5%, 20-40% carbon dioxide , Carbon monoxide 1000ppm-10000ppm, nitrogen 30-54%. Part composition in the case of using the oxidation reforming reaction (mol 0/0 of dry basis), typically for example, hydrogen 20-40% methane 0.1 to 5%, Ichisani匕炭containing IOOOrrp! ~ 10000ppm, diacid carbon 20-45%, honey 30 ~ 55%.
[0044] 改質反応、シフト反応および選択酸化反応を経たガスの組成(ドライベースのモル %)は改質に水蒸気改質反応を用いた場合、通常例えば、水素 65〜75%、メタン 0 . 1〜5%、二酸ィ匕炭素 20〜30%、窒素 1〜10%である。一方、自己熱改質反応を 用いた場合の組成(ドライベースのモル0 /0)は、通常例えば、水素 25〜40%、メタン 0. 1〜5%、二酸ィ匕炭素 20〜40%、窒素 30〜54%である。部分酸化改質反応を用 いた場合の組成は(ドライベースのモル0 /0)、通常例えば、水素 20〜40%、メタン 0. 1〜5%、二酸化炭素 20〜45%、窒素 30〜55%である。 [0044] The composition of the gas that has undergone the reforming reaction, the shift reaction, and the selective oxidation reaction (mol% of the dry base) is usually, for example, 65 to 75% hydrogen and 0.5% methane when steam reforming reaction is used for reforming. 1-5%, diacid carbon 20-30%, nitrogen 1-10%. On the other hand, (mol 0/0 of dry base) composition in the case of using the autothermal reforming reaction is generally for example, hydrogen 25% to 40% methane 0.1 to 5%, diacid I匕炭oxygen 20-40% , Nitrogen 30-54%. Part composition in which had use of oxidation reforming reaction (mol 0/0 of dry basis), typically for example, hydrogen 20-40% methane 0.1 to 5%, 20-45% carbon dioxide, nitrogen 30-55 %.
[0045] 〔燃料電池〕  [0045] [Fuel cell]
燃料電池としては、燃料極にぉ ヽて水素が電極反応の反応物質であるタイプの燃 料電池を適宜採用することができる。例えば、固体高分子形、燐酸形、溶融炭酸塩 形、固体酸化物形の燃料電池を採用することができる。以下、固体高分子型燃料電 池の構成を記す。  As the fuel cell, a fuel cell of a type in which hydrogen is a reactant of the electrode reaction over the fuel electrode can be appropriately employed. For example, a solid polymer type, phosphoric acid type, molten carbonate type, or solid oxide type fuel cell can be employed. The configuration of the polymer electrolyte fuel cell is described below.
[0046] 燃料電池電極はアノード (燃料極)および力ソード (空気極)とこれらに挟まれる固体 高分子電解質力 なり、アノード側には上記水素製造装置で製造された水素含有ガ スカ 力ソード側には空気等の酸素含有ガスが、それぞれ必要であれば適当な加湿 処理を行った後導入される。  [0046] The fuel cell electrode is an anode (fuel electrode) and a force sword (air electrode) and a solid polymer electrolyte force sandwiched between them. If necessary, an oxygen-containing gas such as air is introduced after appropriate humidification treatment.
[0047] この時、アノードでは水素ガスがプロトンとなり電子を放出する反応が進行し、カソ ードでは酸素ガスが電子とプロトンを得て水となる反応が進行する。これらの反応を 促進するため、それぞれ、アノードには白金黒、活性炭担持の Pt触媒あるいは Pt— Ru合金触媒などが、力ソードには白金黒、活性炭担持の Pt触媒などが用いられる。 通常アノード、力ソードの両触媒とも、必要に応じてテトラフロロエチレン、低分子の高 分子電解質膜素材、活性炭などと共に多孔質触媒層に成形される。 [0048] 固体高分子電解質としてはナフイオン (Nafion、デュポン社製)、ゴァ(Gore、ゴァ 社製)、フレミオン (Flemion、旭硝子社製)、ァシプレックス (Aciplex、旭化成社製) 等の商品名で知られる高分子電解質膜が通常用いられ、この両側に上記多孔質触 媒層を積層し MEA (Membrane Electrode Assembly:膜電極集合体)が形成 される。さらに MEAを金属材料、グラフアイト、カーボンコンポジットなどからなるガス 供給機能、集電機能、特に力ソードにおいては重要な排水機能等を持つセパレータ で挟み込むことで燃料電池が組み立てられる。電気負荷はアノード、力ソードと電気 的に連結される。 At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds at the anode, and a reaction in which oxygen gas becomes electrons and protons to become water proceeds at the cathode. To promote these reactions, platinum black and Pt catalyst or Pt-Ru alloy catalyst supported on activated carbon are used for the anode, and platinum black and Pt catalyst supported on activated carbon are used for the power sword. In general, both anode and force sword catalysts are formed into a porous catalyst layer together with tetrafluoroethylene, a low molecular weight high molecular electrolyte membrane material, activated carbon, etc., if necessary. [0048] Examples of solid polymer electrolytes include Nafion (Nafion, manufactured by DuPont), Goa (Gore, manufactured by Goa), Flemion (Flemion, manufactured by Asahi Glass), and Aciplex (produced by Aciplex, Asahi Kasei). A polymer electrolyte membrane known in the art is usually used, and the porous catalyst layer is laminated on both sides to form a MEA (Membrane Electrode Assembly). In addition, a fuel cell can be assembled by sandwiching the MEA with a separator that has a gas supply function, a current collection function, and especially an important drainage function for a power sword. The electrical load is electrically connected to the anode and power sword.
[0049] 〔酸素吸収剤〕  [Oxygen absorber]
酸素吸収剤は、空気中の酸素を除去し、酸素濃度が低減された空気を得ることが 可能なものである。  The oxygen absorbent is capable of removing oxygen in the air and obtaining air with a reduced oxygen concentration.
[0050] 酸素吸収剤の酸素吸収能は、装置のコンパクトさの観点から、 2以上が好ましぐ 3 以上がより好ましぐ 5以上がさらに好ましい。またホットスポット発生防止の観点から、 30以下が好ましぐ 20以下がより好ましぐ 10以下がさらに好ましい。  [0050] From the viewpoint of the compactness of the apparatus, the oxygen absorbent capacity of the oxygen absorbent is preferably 2 or more, more preferably 3 or more, and even more preferably 5 or more. From the viewpoint of preventing the occurrence of hot spots, 30 or less is preferable, 20 or less is more preferable, and 10 or less is more preferable.
[0051] ここで酸素吸収能は、酸素吸収剤の単位体積あたりの吸収可能な酸素のノルマル 体積 (0°C、 0. lOlMPaに換算した体積)として定義される無次元数である。酸素吸 収能は、酸素吸収剤をカゝさ体積で数 10〜数 lOOmL充填した容器に、必要に応じて 酸素吸収剤に応じた所定の前処理 (例えば還元前処理)を行った後、窒素希釈した 酸素を流通させ、出口ガス中の酸素濃度を連続的に分析する方法により求めること 力 Sできる。出口ガスから一定濃度の酸素が検出された時点で、それまでに流通させ た酸素の積算流量をノルマル換算し、触媒体積で除することにより吸収能の値として 得られる。ここで、酸素吸収剤層に供給する酸素含有窒素中の酸素濃度は 1体積% とし、酸素破過の判定に用いる酸素濃度は lOOppm (体積基準)とし、温度が 80°C、 圧力が 0. lMPa、 GHSV (ノルマル換算値)が lOOOh 1の条件下で酸素吸収を行う ことができる。 Here, the oxygen absorption capacity is a dimensionless number defined as a normal volume of oxygen that can be absorbed per unit volume of the oxygen absorbent (volume converted to 0 ° C, 0.1 lOlMPa). Oxygen absorption capacity is determined by performing a predetermined pretreatment (for example, reduction pretreatment) according to the oxygen absorbent as necessary in a container filled with several tens to several lOOmL of the oxygen absorbent in a bulk volume. This can be obtained by a method that continuously distributes oxygen diluted with nitrogen and continuously analyzes the oxygen concentration in the outlet gas. When a certain concentration of oxygen is detected from the outlet gas, the integrated flow rate of oxygen circulated up to that time is converted to normal and divided by the catalyst volume to obtain the absorption capacity value. Here, the oxygen concentration in the oxygen-containing nitrogen supplied to the oxygen absorbent layer is 1% by volume, the oxygen concentration used to determine oxygen breakthrough is lOOppm (volume basis), the temperature is 80 ° C, and the pressure is 0. Oxygen absorption can be performed under conditions where lMPa and GHSV (normal conversion value) are lOOOh 1 .
[0052] 本発明では、選択酸化反応部に備わる選択酸化触媒層と、酸素吸収剤が充填さ れた酸素吸収剤層とを積層する。ここで、酸素吸収剤層を下流側に、従って選択酸 化触媒層を上流側にして、両者を積層する。そして、酸素吸収剤層の下流を大気開 放可能な手段を設ける。この大気開放手段は、バルブや配管を用いて適宜形成する ことができる。酸素吸収剤層の直下流を大気開放してもよいし、酸素吸収剤層の下 流を他の機器を経由して大気開放してもよい。 In the present invention, the selective oxidation catalyst layer provided in the selective oxidation reaction section and the oxygen absorbent layer filled with the oxygen absorbent are laminated. Here, both layers are laminated with the oxygen absorbent layer on the downstream side, and hence the selective oxidation catalyst layer on the upstream side. Then open the atmosphere downstream of the oxygen absorber layer. Provide releasable means. This air release means can be appropriately formed using a valve or piping. The downstream of the oxygen absorbent layer may be opened to the atmosphere, or the downstream of the oxygen absorbent layer may be opened to the atmosphere via other equipment.
[0053] これにより、停止時に、選択酸化触媒層(さらにはその上流)を酸素吸収剤層を介し て大気開放可能とすることができる。従って、酸素除去空気が選択酸化触媒層に流 れ込むことになり、選択酸化触媒やその上流にあるシフト反応触媒等の触媒の酸ィ匕 劣化をより確実に防止することができる。  [0053] Thereby, when stopped, the selective oxidation catalyst layer (and further upstream) can be opened to the atmosphere via the oxygen absorbent layer. Therefore, the oxygen-removed air flows into the selective oxidation catalyst layer, and it is possible to more reliably prevent the deterioration of the oxidation of the selective oxidation catalyst and the catalyst such as the shift reaction catalyst upstream thereof.
[0054] 本発明では、還元ガスにより再生可能な酸素吸収剤を用いる。これにより、水素製 造時に、還元ガスである水素含有ガス (選択酸化触媒層出口ガス)によって酸素吸収 剤が再生され、別途再生処理を行うことなく起動停止を繰り返すことができる。 80°C 以上 150°C以下で再生可能な酸素吸収剤を用いることができる。  In the present invention, an oxygen absorbent that can be regenerated by a reducing gas is used. As a result, during hydrogen production, the oxygen absorbent is regenerated by the hydrogen-containing gas (selective oxidation catalyst layer outlet gas), which is a reducing gas, and the start and stop can be repeated without performing a separate regeneration process. An oxygen absorbent that can be regenerated at 80 ° C. or higher and 150 ° C. or lower can be used.
[0055] 本発明にお 、て、 Ru、 Pt、 Au、 Ni、 Co、 Rh、 Pd、 Ir、 Agおよび Reからなる群から 選ばれる少なくとも一つの金属を含む酸素吸収剤を用いることができる。例えば Ruを 用いる場合、酸素吸収剤中の Ru含有量は、酸素吸収能および再生能の観点から、 1質量%以上が好ましぐ 1. 5質量%以上がより好ましぐ 2質量%以上がさらに好ま しい。また、ホットスポット発生防止の観点から 10質量%以下が好ましぐ 7. 5質量% 以下が好ましぐ 5質量%以下がさらに好ましい。  [0055] In the present invention, an oxygen absorbent containing at least one metal selected from the group consisting of Ru, Pt, Au, Ni, Co, Rh, Pd, Ir, Ag and Re can be used. For example, when Ru is used, the content of Ru in the oxygen absorbent is preferably 1% by mass or more, more preferably 1.5% by mass or more, and 2% by mass or more from the viewpoint of oxygen absorption capacity and regeneration capacity. Even better. Also, from the viewpoint of preventing the occurrence of hot spots, it is preferably 10% by mass or less, more preferably 7.5% by mass or less, and further preferably 5% by mass or less.
[0056] また、本発明にお!/、て、セリア、ジルコニァ、チタニア、イットリア、酸化マンガン、酸 ィ匕スズ、酸化鉄、酸化銅および酸化亜鉛から選ばれる少なくとも一つの酸化物を含 む酸素吸収剤を用いることができる。  [0056] Further, in the present invention! /, Oxygen containing at least one oxide selected from ceria, zirconia, titania, yttria, manganese oxide, tin oxide, iron oxide, copper oxide and zinc oxide. Absorbents can be used.
[0057] 上記酸化物を担体とし、この担体に上記金属が担持された酸素吸収剤を用いるこ とができる。あるいは、上記酸化物を、上記以外の酸ィ匕物に添加した担体を用いるこ ともできる。例えば、アルミナを主成分とし、かつセリア、ジルコユアおよびイットリアか らなる群力も選ばれる少なくとも一つの成分が添加された担体を用いることができる。 この場合、酸素吸収能の観点から、セリア、ジルコユアおよびイットリアの合計の含有 量が、触媒質量に対して 5質量%以上であることが好ましい。  [0057] An oxygen absorbent in which the oxide is used as a carrier and the metal is supported on the carrier can be used. Alternatively, a support obtained by adding the above oxide to an oxide other than the above can be used. For example, it is possible to use a carrier containing alumina as a main component and at least one component selected from the group force consisting of ceria, zirconium, and yttria. In this case, from the viewpoint of oxygen absorption capacity, the total content of ceria, zircoure and yttria is preferably 5% by mass or more with respect to the catalyst mass.
[0058] 本発明では、選択酸化触媒層の下流側に酸素吸収剤を充填した酸素吸収剤層を 配置し、かつ、選択酸化触媒層と酸素吸収剤層とを積層する。これにより、水素製造 時に、選択酸化反応による発熱によって効率的に酸素吸収剤を加熱することができ 、酸素吸収剤を好ましい再生温度にすることが容易となる。 [0058] In the present invention, an oxygen absorbent layer filled with an oxygen absorbent is disposed downstream of the selective oxidation catalyst layer, and the selective oxidation catalyst layer and the oxygen absorbent layer are laminated. This makes hydrogen production Sometimes, the oxygen absorbent can be efficiently heated by the heat generated by the selective oxidation reaction, and it becomes easy to bring the oxygen absorbent to a preferred regeneration temperature.
[0059] 選択酸ィ匕触媒層と酸素吸収剤層とを一つの容器内において積層することができる 。例えば、選択酸化反応器の内部において酸素吸収剤層と選択酸化触媒層とを積 層することができる。このように、選択酸化触媒を収容する容器に酸素吸収能を付与 する場合は、酸素吸収が実用的に行える範囲内において、選択酸化の機能を優先 させた容器構造、たとえば触媒反応により生じる熱を放出するため伝熱面積の大きな リアクターなどをそのまま転用することも可能である。  [0059] The selective acid catalyst layer and the oxygen absorbent layer can be laminated in one container. For example, an oxygen absorbent layer and a selective oxidation catalyst layer can be stacked inside the selective oxidation reactor. As described above, when oxygen absorbing ability is imparted to a container that contains a selective oxidation catalyst, the container structure that prioritizes the function of selective oxidation within a range where oxygen absorption can be practically performed, for example, heat generated by a catalytic reaction. A reactor with a large heat transfer area can be used as it is for release.
[0060] 必要に応じて、酸素吸収剤を加熱するための加熱手段、例えば電気ヒータを設け ることができる。電気ヒータに替えて、あるいは電気ヒータとともに、酸素吸収剤を加熱 するために専用に用いる専用パーナによる加熱を行うこともできる。専用パーナを用 いる場合、停止後でも必要に応じて専用パーナの燃焼を継続させることができる。  [0060] If necessary, a heating means for heating the oxygen absorbent, for example, an electric heater can be provided. In place of the electric heater or together with the electric heater, heating can be performed by a dedicated panner used exclusively for heating the oxygen absorbent. In the case of using a special pruner, it is possible to continue burning the special pruner as necessary even after stopping.
[0061] あるいは、燃料電池システム内で発生する各熱源、たとえばシフト、 CO選択酸化な ど水素製造装置の発熱反応により生じる熱や、燃料電池自体から発生する熱などを 、温水などの熱媒を介して酸素吸収剤に与えることもできる。  [0061] Alternatively, each heat source generated in the fuel cell system, for example, heat generated by an exothermic reaction of the hydrogen production apparatus, such as shift and CO selective oxidation, heat generated from the fuel cell itself, etc., is used as a heat medium such as hot water. It can also be given to the oxygen absorbent.
[0062] また、必要に応じて、酸素吸収剤を冷却する冷却系を設けることもできる。冷却系は 、酸素吸収剤を収容する容器の壁に、水やスチームなどの冷却媒体を流通させる流 路を設けた、例えば水冷ジャケットのような形態、あるいは容器内を貫通するパイプを 設けここに冷却媒体を流通させる形態などを採用できる。  [0062] If necessary, a cooling system for cooling the oxygen absorbent may be provided. The cooling system is provided with a flow path through which a cooling medium such as water or steam is circulated on the wall of the container containing the oxygen absorbent, for example, a form such as a water cooling jacket, or a pipe penetrating the inside of the container. A configuration in which a cooling medium is distributed can be employed.
[0063] 次に、酸素吸収剤の好ましい使用条件について説明する。  [0063] Next, preferable use conditions of the oxygen absorbent will be described.
[0064] 水素製造装置もしくは燃料電池システムの停止時、酸素吸収剤に空気中の酸素を 吸収させる。酸素吸収時においては、ホットスポット発生および酸素吸収剤の酸ィ匕劣 化を防止する観点から、酸素吸収剤の温度は 200°C以下が好ましぐ 150°C以下が より好ましぐ 100°C以下がさらに好ましい。  [0064] When the hydrogen production apparatus or the fuel cell system is stopped, the oxygen absorbent absorbs oxygen in the air. At the time of oxygen absorption, the temperature of the oxygen absorbent is preferably 200 ° C or lower, and more preferably 150 ° C or lower, from the viewpoint of preventing hot spots and deterioration of the oxygen absorber. C or less is more preferable.
[0065] 酸素を吸収した酸素吸収剤を再生するためには、酸素吸収剤を還元ガス (選択酸 化触媒層出口ガス)雰囲気下に好ましくは 60°C以上、より好ましくは 70°C以上、さら に好ましくは 80°C以上にする。  [0065] In order to regenerate the oxygen absorbent that has absorbed oxygen, the oxygen absorbent is preferably 60 ° C or higher, more preferably 70 ° C or higher, in a reducing gas (selective oxidation catalyst layer outlet gas) atmosphere. More preferably, the temperature is 80 ° C or higher.
[0066] また、酸素吸収剤が還元ガス雰囲気下にある場合、メタネーシヨン反応の暴走を防 止する観点から、酸素吸収剤を好ましくは 250°C以下、より好ましくは 200°C以下、さ らに好ましくは 150°C以下とする。 [0066] Further, when the oxygen absorbent is in a reducing gas atmosphere, runaway of the metathesis reaction is prevented. From the viewpoint of stopping, the oxygen absorbent is preferably 250 ° C or lower, more preferably 200 ° C or lower, and further preferably 150 ° C or lower.
[0067] 酸素吸収剤を上記温度範囲に制御する方法としては、例えば水管を通じて触媒層 を冷却する方法や、筒型容器の外面を空冷する方法などを用いることができる。さら に酸素吸収剤層と選択酸化触媒層とに共通の冷却水管を通じて両触媒を冷却する ことで温度を制御しても良い。これらの水管は、還元性ガスを通じる際やエアーを通 じる際など、酸素吸収に発熱反応が伴う期間には冷却作用を発揮させることすること ができ、逆に酸素吸収剤層が例えば 70°C以下に冷えている場合などには、酸素吸 収剤層を加温する手段としても用いることができる。  [0067] As a method for controlling the oxygen absorbent within the above temperature range, for example, a method of cooling the catalyst layer through a water pipe, a method of air-cooling the outer surface of the cylindrical container, or the like can be used. Further, the temperature may be controlled by cooling both catalysts through a cooling water pipe common to the oxygen absorbent layer and the selective oxidation catalyst layer. These water pipes can exert a cooling action during a period where an exothermic reaction is accompanied by oxygen absorption, such as when passing through reducing gas or air, and conversely, for example, the oxygen absorbent layer is 70 When it is cooled to below ° C, it can also be used as a means for heating the oxygen-absorbing agent layer.
[0068] 〔触媒 ·酸素吸収剤の形状〕  [Catalyst / Oxygen Absorber Shape]
脱硫触媒 (収着剤も含める)、改質触媒、シフト反応触媒、選択酸化触媒、酸素吸 収剤のいずれにおいても形状は適宜選ばれる。典型的には粒状である力 場合によ つてはノ、二カム状などとしてもよ!/、。  The shape of the desulfurization catalyst (including the sorbent), the reforming catalyst, the shift reaction catalyst, the selective oxidation catalyst, and the oxygen absorber is appropriately selected. Typically, the force is granular. In some cases, it may be in the form of two or two cams! /.
[0069] 〔酸素除去空気〕  [0069] [Oxygen removal air]
本発明では、改質器等に備わる触媒保護の観点から、酸素吸収剤によって空気中 の酸素を除去する。酸素吸収剤で酸素が除去された空気中の酸素濃度は、低けれ ば低い程良ぐ水分を含まないドライベースでの酸素濃度として、好ましくは 1モル% 以下、より好ましくは 0. 2モル%以下、さらに好ましくは 500モル ppm以下、最も好ま しくは 100モル ppm以下の範囲である。  In the present invention, from the viewpoint of protecting the catalyst provided in the reformer or the like, oxygen in the air is removed by an oxygen absorbent. The oxygen concentration in the air from which oxygen has been removed by the oxygen absorbent is preferably 1 mol% or less, more preferably 0.2 mol% or less, as the oxygen concentration in a dry base that does not contain moisture, the lower the better. More preferred is a range of 500 mol ppm or less, and most preferred is a range of 100 mol ppm or less.
[0070] 後述するように、酸素吸収剤による酸素除去に先んじて燃料電池による酸素除去を 行うこともできる。酸素吸収剤だけで酸素除去する場合の酸素除去空気においても、 燃料電池と酸素吸収剤を併用する場合の両者を経た酸素除去空気においても、好 まし 、酸素濃度は上のとおりである。  [0070] As will be described later, oxygen removal by the fuel cell can be performed prior to oxygen removal by the oxygen absorbent. The oxygen concentration is preferably as described above both in the oxygen-removed air in which oxygen is removed only with the oxygen absorbent and in the oxygen-removed air that has undergone both in the case of using both the fuel cell and the oxygen absorbent.
[0071] 〔酸素センサーおよび酸素濃度制御手段〕  [Oxygen sensor and oxygen concentration control means]
燃料電池によって酸素除去空気を得る際に、燃料電池の力ソード室出口ガスの酸 素濃度を酸素センサーによって検知し、酸素センサー力 の酸素濃度に応じた信号 をコンピュータやシーケンサ等に送り、燃料電池で発生する電流を制御して、カソー ド室出口ガスの酸素濃度を所定の範囲に調節することが好ましい。酸素センサーとし てはガス中の酸素濃度を測定可能な公知のセンサーを適宜用いることができる。酸 素濃度を調節する酸素濃度調節手段としては、公知の制御技術を適宜採用できる。 例えば、公知の電流制御器等の電流制御手段と、公知のフィードバック制御回路な どの制御回路を形成できるコンピュータやシーケンサ等の制御装置を組み合わせ、 フィードバック制御回路に酸素センサーからの信号を送る信号経路を接続して形成 することができる。 When obtaining oxygen-removed air by the fuel cell, the oxygen concentration of the outlet gas of the fuel cell power sword chamber is detected by an oxygen sensor, and a signal corresponding to the oxygen concentration of the oxygen sensor force is sent to a computer, sequencer, etc. It is preferable to adjust the oxygen concentration of the cathode chamber outlet gas to a predetermined range by controlling the current generated in step (b). As an oxygen sensor For example, a known sensor capable of measuring the oxygen concentration in the gas can be used as appropriate. As the oxygen concentration adjusting means for adjusting the oxygen concentration, a known control technique can be appropriately employed. For example, a current control means such as a known current controller and a control device such as a computer or sequencer that can form a control circuit such as a known feedback control circuit are combined, and a signal path for sending a signal from an oxygen sensor to the feedback control circuit is provided. Can be formed by connecting.
[0072] 以下図面を用いて本発明について詳細に説明するが、本発明はこれによって限定 されるものではない。なお図中のバルブの表示において、白抜きとしたものは開かれ たバルブ、墨付きとしたものは閉じられたノ レブを意味する。墨付き矢印は流体の強 制的な流れ方向を示すものである。ノ、ツチングを付した矢印は、温度低下に伴い大 気力 空気が自然流入する方向を意味する。白抜き矢印は、温度低下に伴い酸素 除去空気が自然に流れる方向を示すものである。  [0072] Hereinafter, the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. In the valve indications in the figure, the white ones indicate open valves, and the ones marked in black indicate closed valves. The black arrows indicate the compulsory flow direction of the fluid. Arrows marked with no and indicate the direction in which high-pressure air naturally flows as the temperature drops. The white arrow indicates the direction in which the oxygen-removed air naturally flows as the temperature decreases.
[0073] 〔水素製造装置の第一の形態〕  [First form of hydrogen production apparatus]
図 1は本発明の水素製造装置の一形態の概略を示すフロー図である。図 1 (a)に 示すように、水素製造装置の運転時には、原料供給バルブ 101は開とされ、水素製 造用原料が改質器 11に供給される。このとき、必要に応じて水素製造用原料をボン プゃブロワなどの昇圧手段によって昇圧することができる。また、水素製造用原料以 外の改質反応の反応物質など、水素製造のために必要な他の物質も適宜水素製造 装置に供給できる。例えば、改質反応にスチームが必要な場合には水素製造装置 にスチームあるいは水を供給することができ、改質反応に酸素が必要な場合には水 素製造装置に空気などの酸素含有ガスを供給することができる。また選択酸化反応 器に酸化反応用の空気などの酸素含有ガスを供給することもできる。  FIG. 1 is a flowchart showing an outline of one embodiment of the hydrogen production apparatus of the present invention. As shown in FIG. 1 (a), during operation of the hydrogen production apparatus, the raw material supply valve 101 is opened and the raw material for hydrogen production is supplied to the reformer 11. At this time, if necessary, the raw material for hydrogen production can be boosted by a boosting means such as a pump or blower. In addition, other substances necessary for hydrogen production, such as reactants for reforming reactions other than raw materials for hydrogen production, can be appropriately supplied to the hydrogen production apparatus. For example, when steam is required for the reforming reaction, steam or water can be supplied to the hydrogen production device. When oxygen is required for the reforming reaction, an oxygen-containing gas such as air is supplied to the hydrogen production device. Can be supplied. An oxygen-containing gas such as air for the oxidation reaction can also be supplied to the selective oxidation reactor.
[0074] 改質器 11では改質反応によって水素含有ガスである改質ガスが製造される。改質 器が外熱式の改質器である場合、すなわち、改質触媒を収容した反応管を、その外 部からパーナなどの燃焼手段によって加熱し、改質反応に必要な熱を供給するタイ プの改質器である場合、この燃焼用の燃料および空気を適宜供給できる。  [0074] In the reformer 11, a reformed gas that is a hydrogen-containing gas is produced by a reforming reaction. When the reformer is an external heat type reformer, that is, the reaction tube containing the reforming catalyst is heated from the outside by combustion means such as a burner to supply heat necessary for the reforming reaction. In the case of a type of reformer, the fuel and air for combustion can be appropriately supplied.
[0075] 図 1には例えば固体高分子形燃料電池に好適な水素含有ガスを製造する水素製 造装置を示しており、改質器の下流にシフト反応器 12および選択酸化反応器 21が 水素含有ガスの流れ方向上流側からこの順に設けられ、改質ガス中の一酸ィ匕炭素 濃度が低減されて製品ガスとなる。必要に応じてガス中の水を凝縮させたうえで製品 ガスとすることもできる。水素製造時に水素含有ガスが流れるラインは、水素製造時 に実質的に水素を含むガスが流れるラインであり、改質器 11から製品ガス出口 14ま でのラインである。 FIG. 1 shows a hydrogen production apparatus for producing a hydrogen-containing gas suitable for, for example, a polymer electrolyte fuel cell. A shift reactor 12 and a selective oxidation reactor 21 are provided downstream of the reformer. The gas is provided in this order from the upstream side of the flow direction of the hydrogen-containing gas, and the concentration of carbon monoxide and carbon in the reformed gas is reduced to become a product gas. If necessary, water in the gas can be condensed to produce product gas. The line through which hydrogen-containing gas flows during hydrogen production is a line through which a gas containing hydrogen substantially flows during hydrogen production, and is a line from the reformer 11 to the product gas outlet 14.
[0076] 図 2に選択酸化反応器 21の構造例を示す。この反応器は密閉可能な容器 301を 有する。この容器内で、選択酸化触媒が充填された選択酸化触媒層 302と、酸素吸 収剤が充填された酸素吸収剤層 303とが積層されている。水素含有ガスの流れにつ いて下流側に酸素吸収剤層が配される。  FIG. 2 shows a structural example of the selective oxidation reactor 21. The reactor has a sealable container 301. In this container, a selective oxidation catalyst layer 302 filled with a selective oxidation catalyst and an oxygen absorbent layer 303 filled with an oxygen absorbent are laminated. An oxygen absorbent layer is arranged on the downstream side of the flow of the hydrogen-containing gas.
[0077] 水素製造時には、シフト反応器 12の出口ガス力 反応器 21に供給される。具体的 には、このシフト反応器出口ガスがガス導入口 311から容器内に導入され、選択酸 化触媒層と酸素吸収剤層とをこの順に通過し、ガス導出口 312から導出される。この とき選択酸化触媒層では CO除去が行われる。酸素吸収剤層では水素含有ガス (選 択酸化触媒層出口ガス)によって酸素吸収剤を再生することができる。ノ レブ 102は 閉じられ、バルブ 103は開かれており、導出された水素含有ガスは、バルブ 103を経 て、製品ガスとして製品ガス出口 14から水素利用設備や水素貯蔵設備など、下流に 接続される設備に供給される。  At the time of hydrogen production, the outlet gas force of the shift reactor 12 is supplied to the reactor 21. Specifically, the shift reactor outlet gas is introduced into the vessel from the gas inlet 311, passes through the selective oxidation catalyst layer and the oxygen absorbent layer in this order, and is led out from the gas outlet 312. At this time, CO is removed in the selective oxidation catalyst layer. In the oxygen absorbent layer, the oxygen absorbent can be regenerated by a hydrogen-containing gas (selective oxidation catalyst layer outlet gas). The nozzle 102 is closed, the valve 103 is opened, and the derived hydrogen-containing gas passes through the valve 103 and is connected as a product gas downstream from the product gas outlet 14 to a hydrogen utilization facility or a hydrogen storage facility. Supplied to the equipment.
[0078] また反応器 21には選択酸化触媒層および酸素吸収剤層を貫通してコイル状の冷 却管 322が設けられている。水導入口 321から導入された冷却水力 コイル状冷却 管 322を経て、水導出口 323から排出される。水素製造時において、選択酸化触媒 層では酸化反応により発熱する。この熱を冷却管 322によって取り去り、酸素吸収剤 に与えることができる。  [0078] Further, the reactor 21 is provided with a coiled cooling pipe 322 that penetrates the selective oxidation catalyst layer and the oxygen absorbent layer. Cooling hydraulic power introduced from the water inlet 321 is discharged from the water outlet 323 through the coiled cooling pipe 322. During hydrogen production, the selective oxidation catalyst layer generates heat due to an oxidation reaction. This heat can be removed by the cooling pipe 322 and given to the oxygen absorbent.
[0079] 図 1 (b)に示すように、停止に際しては、水素製造用原料の供給を停止し、原料供 給バルブ 101を閉じて原料供給ラインを遮断する。改質反応の反応物質としてスチ ームゃ水、空気などが供給されている場合、また炭素析出防止のためにスチームや 水が供給されている場合にはこれらの供給ラインも適宜遮断する。また、改質器に燃 焼用の燃料や空気を供給している場合にはこれらの供給ラインも適宜遮断する。さら に選択酸化反応器に供給される空気などの酸素含有ガスの供給ラインも適宜遮断 する。このように水素製造装置に供給していた物の供給を停止し、その供給ラインを 遮断する。ただし、停止後に燃焼させる酸素吸収剤を加熱するための専用パーナな どの機器がある場合には、それらに必要な物の供給は行う。 [0079] As shown in FIG. 1 (b), when stopping, the supply of the raw material for hydrogen production is stopped, the raw material supply valve 101 is closed, and the raw material supply line is shut off. When steam or water is supplied as a reactant for the reforming reaction, or when steam or water is supplied to prevent carbon deposition, these supply lines are also cut off as appropriate. In addition, when fuel or air for combustion is supplied to the reformer, these supply lines are also cut off as appropriate. In addition, supply lines for oxygen-containing gases such as air supplied to the selective oxidation reactor are also shut off as appropriate. To do. In this way, the supply of things that have been supplied to the hydrogen production system is stopped, and the supply line is shut off. However, if there is equipment such as a dedicated burner for heating the oxygen absorbent that is burned after the shutdown, supply the necessary materials for them.
[0080] また、バルブ 102を開けることにより、水素含有ガスが流れる選択酸化反応器 21下 流のラインを大気開放し、一方バルブ 103を閉じることにより、水素含有ガスが改質 器力 製品ガス出口へと流れるラインを選択酸ィ匕反応器 21下流において遮断する。  [0080] Further, by opening the valve 102, the selective oxidation reactor 21 in which the hydrogen-containing gas flows is opened to the atmosphere, while the valve 103 is closed, so that the hydrogen-containing gas is reformed. Product gas outlet The line flowing to is cut off downstream of the selective acid reactor 21.
[0081] 以上のように、水素製造装置への供給物質の供給を停止してその供給ラインを遮 断すること、および改質器力も製品ガス出口に至るラインを、酸素吸収剤層下流にお いて大気に通じるラインに切り替え、必要に応じて酸素吸収剤を加熱することにより、 水素製造装置の温度が低下するのに伴って、酸素吸収剤によって酸素が除去され た酸素除去空気が選択酸化触媒層を通過し、ガス導入口 311からシフト反応器 12、 さらには改質器 11に、自然に流入する。これによつて、パージすることなぐ水素製造 装置内が負圧になることを防止し、かつ触媒の酸ィ匕劣化を防止することができる。  [0081] As described above, the supply of the supply substance to the hydrogen production apparatus is stopped and the supply line is shut off, and the line where the reformer force also reaches the product gas outlet is downstream of the oxygen absorbent layer. The oxygen removal air from which oxygen has been removed by the oxygen absorbent as the temperature of the hydrogen production device decreases as the temperature of the hydrogen production device decreases by switching to a line that leads to the atmosphere and heating the oxygen absorbent as necessary. It passes through the bed and naturally flows from the gas inlet 311 into the shift reactor 12 and further into the reformer 11. As a result, it is possible to prevent the inside of the hydrogen production apparatus without purging from becoming a negative pressure, and to prevent the deterioration of the acidity of the catalyst.
[0082] 停止期間が長い場合など、大気が拡散によって水素製造装置内に入ることによる 影響が無視できな!、ような場合には、酸素除去空気が自然流入する部分が環境温 度付近まで冷え、負圧による問題が無視しうるようになったら、バルブ 102も閉じ、水 素製造装置を大気力 遮断することもできる。  [0082] In the case where the influence of the atmosphere entering the hydrogen production apparatus due to diffusion cannot be ignored, such as when the stop period is long, the part where the oxygen-removed air naturally flows is cooled to around the ambient temperature. If the negative pressure problem can be ignored, the valve 102 can also be closed and the hydrogen production device can be shut off by atmospheric power.
[0083] また、酸素吸収剤を加熱する場合には、停止の際に電気ヒータへの通電や、専用 パーナの燃焼を開始し、適宜 (例えば温度低下による負圧が無視できるようになるま で)これを継続することができる。酸素吸収剤を冷却する場合も、停止の際に冷却系 を作動させ、適宜 (例えば温度低下による負圧が無視できるようになるまで)これを継 続することができる。  [0083] In addition, when heating the oxygen absorbent, energization of the electric heater and combustion of the dedicated panner are started at the time of stoppage, and as appropriate (for example, until the negative pressure due to the temperature drop can be ignored). ) You can continue this. Even when the oxygen absorbent is cooled, the cooling system is operated at the time of stopping, and can be continued as appropriate (for example, until the negative pressure due to the temperature drop can be ignored).
[0084] ここではストップバルブを切り替えることにより、ラインの切り替えを行う例を示したが 、本発明においてはこれに限らず、例えば三方弁を利用することも可能である。  Here, an example is shown in which the line is switched by switching the stop valve. However, the present invention is not limited to this, and for example, a three-way valve can also be used.
[0085] 本発明の水素製造装置において、以上のような操作は、制御用コンピュータゃシー ケンサなどの制御装置を用い、バルブを自動バルブとするなどして全て自動で行うこ とちでさる。  [0085] In the hydrogen production apparatus of the present invention, the above-described operations are all automatically performed by using a control device such as a control computer and a valve as an automatic valve.
[0086] 本発明の水素製造装置において、上記のような操作、すなわち水素製造装置への 供給物の供給停止およびそのラインの遮断、大気開放ラインへのライン切り替え、酸 素吸収剤を加熱する加熱手段の作動などは同時に行うことができる。従って、停止操 作は簡易である。また、停止後にパージのためにブロワ等の機器を作動させる必要 がないので、そのための所要動力も不要であり省エネルギー効果がある。停止後に、 酸素吸収剤を電気ヒータや専用パーナなどの加熱手段で加熱する必要があるとして も、このような操作は極めて限定された部分における単純な操作でありまた所要エネ ルギーも小さい。 [0086] In the hydrogen production apparatus of the present invention, the above operation, that is, the application to the hydrogen production apparatus. The supply can be stopped and the line shut off, the line can be switched to the open line, and the heating means for heating the oxygen absorbent can be operated simultaneously. Therefore, the stop operation is simple. In addition, since it is not necessary to operate equipment such as a blower for purging after stopping, there is no need for the power required for this purpose, and there is an energy saving effect. Even if it is necessary to heat the oxygen absorbent with a heating means such as an electric heater or a dedicated panner after the stop, such an operation is a simple operation in a very limited part and requires a small amount of energy.
[0087] 〔水素製造装置の第二の形態〕  [Second form of hydrogen production apparatus]
図 3には本発明の水素製造装置の別の形態を示す (停止時の状態のみ図示する) 。選択酸化反応器は図 2に示すように、選択酸化触媒層と酸素吸収剤層が内部で積 層され、酸素吸収剤層が下流側に配された構成を有する。この形態は水素製造装置 停止時には水素利用設備が取り外される場合など、停止時に製品ガス出口が大気 開放される場合に好適に用いることができる。この形態では、図 3に示すように選択 酸ィ匕反応器 21の直下流に製品ガス出口 14が設けられ、ライン切り替えは行う必要が なぐライン切り替え手段としてのバルブは不要である (遮断手段としてのバルブは有 する)。運転時には水素含有ガスによって酸素吸収剤を再生することが可能で、停止 時には、大気開放された製品ガス出口 14から自然流入する空気が選択酸化反応器 内の酸素吸収剤層によって酸素除去され、改質器等に酸素除去空気が自然流入す る。  FIG. 3 shows another embodiment of the hydrogen production apparatus of the present invention (only the state at the time of stoppage is shown). As shown in FIG. 2, the selective oxidation reactor has a configuration in which a selective oxidation catalyst layer and an oxygen absorbent layer are stacked inside, and an oxygen absorbent layer is arranged on the downstream side. This configuration can be suitably used when the product gas outlet is opened to the atmosphere when the hydrogen production equipment is stopped, such as when the hydrogen utilization facility is removed. In this embodiment, as shown in FIG. 3, a product gas outlet 14 is provided immediately downstream of the selective acid reactor 21, and a valve as a line switching means that does not require line switching is unnecessary (as a shut-off means). There is a valve). During operation, it is possible to regenerate the oxygen absorbent with the hydrogen-containing gas, and when stopped, the air that naturally flows in from the product gas outlet 14 opened to the atmosphere is deoxygenated by the oxygen absorbent layer in the selective oxidation reactor. Oxygen-removed air naturally flows into the device.
[0088] 〔燃料電池システムの第一の形態〕  [First form of fuel cell system]
図 4は本発明の燃料電池システムの一形態の概略を示すフロー図である。この形 態は、図 1に示した水素製造装置 100と燃料電池 2を組合せた構成を基本とし、固体 高分子形燃料電池用に好適である。選択酸化反応器は図 2に示すように、選択酸化 触媒層と酸素吸収剤層が内部で積層され、酸素吸収剤層が下流側に配された構成 を有する。  FIG. 4 is a flowchart showing an outline of one embodiment of the fuel cell system of the present invention. This form is based on a configuration in which the hydrogen production apparatus 100 and the fuel cell 2 shown in FIG. 1 are combined, and is suitable for a polymer electrolyte fuel cell. As shown in FIG. 2, the selective oxidation reactor has a configuration in which a selective oxidation catalyst layer and an oxygen absorbent layer are laminated inside, and an oxygen absorbent layer is arranged on the downstream side.
[0089] 燃料電池システムの運転時には、図 4 (a)に示すように、バルブ 102は閉じられ、バ ルブ 103は開かれている。水素製造装置 100で製造された水素含有ガスが燃料電 池 2のアノード室 2aに供給されて発電に供される。アノード室力も排出されるアノード オフガスには可燃性物質が含まれるため、改質器 11に備わる、改質反応に必要な 熱を供給するためのパーナ l ibで燃焼される。パーナの燃焼ガスは適宜熱回収など された後、大気へ排出される。 [0089] During operation of the fuel cell system, as shown in Fig. 4 (a), the valve 102 is closed and the valve 103 is opened. The hydrogen-containing gas produced by the hydrogen production apparatus 100 is supplied to the anode chamber 2a of the fuel cell 2 for power generation. Anode that also discharges anode chamber power Since the off-gas contains a combustible substance, it is burned by a pan ib provided in the reformer 11 for supplying heat necessary for the reforming reaction. The combustion gas of the PANA is exhausted to the atmosphere after heat is recovered as appropriate.
[0090] なお、水素製造装置に係る図 1等においては、必要に応じて設けられる改質反応 に必要な熱を供給するためのパーナ等の加熱手段は図示しな力つたが、燃料電池 システムに係る図 4等においてはパーナを示しており、これと区別するために改質反 応が起きる領域を、改質触媒が充填された改質反応管 11aとして示している。水素製 造装置に係る図 1等において改質器 11は、改質反応が起きる領域を意味する。  [0090] In FIG. 1 and the like relating to the hydrogen production apparatus, the heating means such as a panner for supplying heat necessary for the reforming reaction provided as necessary has not been shown, but the fuel cell system In FIG. 4 and the like related to FIG. 4, the region where the reforming reaction occurs is shown as a reforming reaction tube 11a filled with the reforming catalyst in order to distinguish from this. In FIG. 1 and the like relating to the hydrogen production apparatus, the reformer 11 means a region where the reforming reaction occurs.
[0091] 一方、大気からブロワやコンプレッサなどの空気昇圧手段 4により空気が燃料電池 の力ソード室 2cに供給され、発電に供された後、大気へ排出される。パーナ l ibで燃 焼に用いられる空気も昇圧手段 4から供給される。  [0091] On the other hand, air is supplied from the atmosphere to the power sword chamber 2c of the fuel cell by the air boosting means 4 such as a blower or a compressor, is used for power generation, and is then discharged to the atmosphere. Air used for combustion in the PANAL ib is also supplied from the pressurizing means 4.
[0092] 図 4 (b)に示すように、燃料電池システムを停止する際には、水素製造用原料の供 給を停止し、バルブ 101を閉じて原料供給ラインを遮断する。水素製造用原料の他 にも水素製造装置に供給していた物がある場合は、その供給を停止し、バルブなど によりその供給ラインを遮断する。このように水素製造装置 100に供給して 、た物の 供給を停止し、その供給ラインを遮断する。また、空気昇圧手段 4を停止するなど、水 素製造装置 100へ供給して 、た物以外の、燃料電池システムへの供給物質の供給 も停止することができる。ただし、停止後に燃焼させる酸素吸収剤を加熱するための 専用パーナなどの機器がある場合には、それらに必要な物の供給は行う。  [0092] As shown in FIG. 4B, when the fuel cell system is stopped, the supply of the raw material for hydrogen production is stopped, the valve 101 is closed, and the raw material supply line is shut off. In addition to the raw materials for hydrogen production, if there is anything that has been supplied to the hydrogen production equipment, stop the supply and shut off the supply line with a valve or the like. In this way, the supply to the hydrogen production apparatus 100 is stopped, the supply of the waste is stopped, and the supply line is shut off. In addition, supply to the hydrogen production apparatus 100, such as by stopping the air pressurizing means 4, can also stop the supply of the supply substance to the fuel cell system other than the waste. However, if there is equipment such as a special burner for heating the oxygen absorbent that is burned after the stop, supply necessary materials for them.
[0093] ノ レブ 103を閉じることにより、水素含有ガスが流れていた、改質器を含むラインを 、アノード室上流において遮断する。また、バルブ 102を開けることにより、選択酸ィ匕 反応器 21の下流 (アノード室上流)を大気開放するラインを形成する。つまり、選択 酸ィ匕反応層から酸素吸収層及びアノード室を経てアノードオフガスラインに至るライ ンを、酸素吸収層の下流を大気開放するラインに切り替える。これにより、空気がバ ルブ 102から酸素吸収層に流入し、酸素除去空気が、選択酸化触媒層、シフト反応 器 12、改質器 11 (改質反応管 11a)へと自然流入可能となる。水素製造装置の場合 と同様、必要に応じて酸素吸収剤を加熱などすることができる。  [0093] By closing the nozzle 103, the line including the reformer in which the hydrogen-containing gas was flowing is shut off upstream of the anode chamber. In addition, by opening the valve 102, a line is formed to open the downstream of the selective oxygenation reactor 21 (upstream of the anode chamber) to the atmosphere. That is, the line from the selective acid-reaction layer to the anode off-gas line through the oxygen absorption layer and the anode chamber is switched to a line that opens to the atmosphere downstream of the oxygen absorption layer. As a result, air flows from the valve 102 into the oxygen absorption layer, and the oxygen-removed air can naturally flow into the selective oxidation catalyst layer, the shift reactor 12, and the reformer 11 (reforming reaction tube 11a). As in the case of the hydrogen production apparatus, the oxygen absorbent can be heated as necessary.
[0094] 一方、燃料電池アノード室 2aへは、大気に通じている改質器の燃焼ガスラインから パーナ l ibを経由して大気力 空気が自然流入可能である。アノードにも触媒が使 用されることもあるが、例えば固体高分子形燃料電池では燃料電池自体が比較的低 温であり、若干の酸素混入の影響は無視し得ることが多 、。 [0094] On the other hand, the fuel cell anode chamber 2a is connected to the combustion gas line of the reformer that communicates with the atmosphere. Atmospheric force Air can naturally flow in via PanaLib. A catalyst may also be used for the anode, but for example, in a polymer electrolyte fuel cell, the fuel cell itself is relatively low in temperature, and the influence of slight oxygen contamination is often negligible.
[0095] また、力ソード室 2cへは力ソード室出口ライン力 空気が自然流入可能であり、また 、空気昇圧手段 4を経由して、あるいはパーナ l ibを経由して空気が自然流入するこ ともできる。力ソード系は元々空気を流すので、停止時に酸素除去空気を流す必要 はない。  [0095] Further, the force sword chamber outlet line force air can naturally flow into the force sword chamber 2c, and the air can naturally flow through the air pressurizing means 4 or via the partition rib. You can also. Since the force sword system originally flows air, it is not necessary to flow oxygen-removing air when it stops.
[0096] なお、アノードオフガスラインは、アノード室力も排出される未利用水素を含む可燃 性ガスが流れるラインである。図 4の形態ではアノードオフガスがパーナ 1 lbで燃焼さ れるため、アノード室 2aの出口力もパーナ l ibまでのラインがアノードオフガスライン である。水素製造時に水素含有ガスが流れるラインは、水素製造時に実質的に水素 を含むガスが流れるラインであり、改質器 11 (改質反応管 11a)カゝらパーナ l ibまで のラインである。  [0096] The anode off-gas line is a line through which combustible gas containing unused hydrogen from which the anode chamber power is also discharged flows. In the configuration shown in FIG. 4, the anode off gas is burned by 1 lb of the burner, and therefore, the line from the outlet of the anode chamber 2a to the burner rib is the anode off gas line. The line through which the hydrogen-containing gas flows during the hydrogen production is a line through which a gas containing hydrogen substantially flows during the hydrogen production, and is a line from the reformer 11 (reforming reaction tube 11a) to the partner rib.
[0097] ここではストップバルブを切り替えることにより、ラインの切り替えを行う例を示したが 、本発明においては、これに限らず、例えば三方弁を利用することも可能である。  Here, an example is shown in which the line is switched by switching the stop valve. However, the present invention is not limited to this, and for example, a three-way valve can be used.
[0098] 〔燃料電池システムの第二の形態〕  [Second form of fuel cell system]
図 5には、本発明の燃料電池システムの別の形態を示す。選択酸化反応器は図 2 に示すように、選択酸化触媒層と酸素吸収剤層が内部で積層され、酸素吸収剤層が 下流側に配された構成を有する。この形態では、酸素吸収剤による酸素除去に加え て、燃料電池による酸素除去を行う。図 4の形態では、選択酸化反応器 21とバルブ 1 03の間のラインを分岐し、ノ レブ 102を介して改質器等を大気開放可能としている 力 図 5に示す形態では、選択酸ィ匕反応器 21とバルブ 103の間のラインを分岐し、 バルブ 102にカ卩えて燃料電池の力ソード室 2cおよび空気昇圧手段 4を介して改質器 等を大気開放可能としている。バルブ 104はノ レブ 102とともに、燃料電池の運転時 に使用する力ソード出口ラインと、上記改質器等を力ソード室を介して大気開放する ラインとを切り替える切り替え手段として機能する。  FIG. 5 shows another embodiment of the fuel cell system of the present invention. As shown in Fig. 2, the selective oxidation reactor has a configuration in which a selective oxidation catalyst layer and an oxygen absorbent layer are laminated inside, and an oxygen absorbent layer is arranged on the downstream side. In this embodiment, oxygen removal by the fuel cell is performed in addition to oxygen removal by the oxygen absorbent. In the configuration shown in FIG. 4, the line between the selective oxidation reactor 21 and the valve 103 is branched, and the reformer and the like can be opened to the atmosphere via the nozzle 102. In the configuration shown in FIG.ラ イ ン A line between the reactor 21 and the valve 103 is branched, and the reformer and the like can be opened to the atmosphere via the fuel cell power sword chamber 2c and the air pressurization means 4 by being connected to the valve 102. The valve 104, together with the nozzle 102, functions as a switching means for switching between a power sword outlet line used during operation of the fuel cell and a line for releasing the reformer and the like through the power sword chamber.
[0099] 図 5 (a)に示すように、燃料電池システムの運転時、アノードオフガスはバッファータ ンク 6を経由してパーナ l ibに供給される。ノ ッファータンクは停止時に燃料電池に よる発電に使用する水素を蓄えるため、水素含有ガスを貯蔵する貯蔵手段である。 ノ ッファータンクは必ずしも必要ではなぐアノードオフガスラインの容量が大きい場 合などには無くても良い。上記貯蔵手段は、密閉可能な容器に二つの開口を設けて 形成することができる。二つの開口によってアノードオフガスライン中に貯蔵手段を設 置することができる。 [0099] As shown in FIG. 5 (a), during operation of the fuel cell system, the anode off-gas is supplied to the partition ib via the buffer tank 6. The noffer tank is turned into a fuel cell when stopped. This is a storage means for storing hydrogen-containing gas in order to store hydrogen used for power generation. The notifier tank is not always necessary and may be omitted if the anode offgas line has a large capacity. The storage means can be formed by providing two openings in a sealable container. Two openings allow storage means to be installed in the anode offgas line.
[0100] また、燃料電池システムの運転時、力ソード出口ガスはバルブ 104を通り(バルブ 1 02は閉じられている)、大気開放される。  [0100] During operation of the fuel cell system, the power sword outlet gas passes through the valve 104 (the valve 102 is closed) and is released to the atmosphere.
[0101] 図 5 (b)に示すように、燃料電池の停止に際しては、前述の形態と同様、水素製造 装置に供給して 、た物の供給停止とその供給ラインの遮断、燃料電池システムへの 供給物質の供給停止などを行う。また、バルブ 102を開け、バルブ 104を閉じ、選択 酸化反応器 21の下流、従って酸素吸収剤層の下流を、燃料電池の力ソード室 2cを 介して大気開放する。またバルブ 103を閉じることにより、分岐点 110とアノード室 2a との間を遮断する。これら操作により、水素製造装置の温度が低下するのに伴って、 大気力 空気が燃料電池力ソード室を経由して酸素吸収剤層に自然流入し、さらに 酸素除去空気が選択酸ィ匕触媒層力も改質器に向力 方向に、自然に流入する。た だし、大気力 空気昇圧手段 4により力ソード室 2cに空気を供給するラインは、空気 昇圧手段を停止するのみで、遮断はしない。大気と力ソード室 2cとの間には停止して いる空気昇圧手段 4が存在するが、空気昇圧手段内部の流路には隙間が存在し、 完全には封止されない。従って、空気は空気昇圧手段を通って自然流入できる。  [0101] As shown in FIG. 5 (b), when the fuel cell is stopped, as in the above-described embodiment, the fuel cell is supplied to the hydrogen production apparatus, the supply of the waste is stopped, the supply line is shut off, and the fuel cell system is supplied. The supply of materials will be stopped. Further, the valve 102 is opened, the valve 104 is closed, and the downstream of the selective oxidation reactor 21, and hence the downstream of the oxygen absorbent layer, is opened to the atmosphere through the power sword chamber 2c of the fuel cell. Further, by closing the valve 103, the branch point 110 and the anode chamber 2a are blocked. With these operations, as the temperature of the hydrogen production apparatus decreases, atmospheric power air naturally flows into the oxygen absorbent layer via the fuel cell power sword chamber, and oxygen removal air is further converted into the selective acid catalyst layer. Force also flows naturally into the reformer in the direction of the force. However, the line that supplies air to the force sword chamber 2c by the atmospheric force air boosting means 4 only stops the air boosting means and does not shut off. There is a stopped air booster 4 between the atmosphere and the force sword chamber 2c, but there is a gap in the flow path inside the air booster, and it is not completely sealed. Therefore, the air can naturally flow in through the air pressure increasing means.
[0102] このとき、燃料電池で発電を行うと、自然流入してきた空気中の酸素が燃料電池に おいて消費され、酸素が除去された空気が得られる。この酸素除去空気が酸素吸収 剤層に流入するため、酸素吸収剤の負担が軽減される。  [0102] At this time, when power is generated by the fuel cell, oxygen in the air that naturally flows in is consumed in the fuel cell, and air from which oxygen has been removed is obtained. Since this oxygen-removed air flows into the oxygen absorbent layer, the burden on the oxygen absorbent is reduced.
[0103] この際、力ソード室の下流に設けた酸素センサー 201により力ソード室出口の空気 中の酸素濃度を監視し、その濃度が所定値以下になるよう電流制御器 200によって 燃料電池に流れる電流を制御することができる。アノード室側ではバルブ 103からバ ーナ l ibまでに存在していた水素含有ガス中の水素が消費される。アノード室はバ ーナ l ibを経て大気解放されており、燃料電池等の温度が低下するにつれ、大気か らパーナを経て空気が自然流入する。従って、バルブ 103からアノードオフガスライ ンまでの容量が小さぐ水素が不足するおそれのある場合には、この部分の容量を大 きくするためバッファータンク 6をアノードオフガスラインに設けることが好まし 、。つま り、矢印 Aで示す、アノード室に自然流入するガス中に、酸素除去のための燃料電池 の運転に必要な量の水素が含まれるようにする。さらにアノード上流 (バルブ 103とァ ノード室 2aとの間)にバッファータンクを追加することもできる。 [0103] At this time, the oxygen sensor 201 provided downstream of the force sword chamber monitors the oxygen concentration in the air at the outlet of the force sword chamber, and flows to the fuel cell by the current controller 200 so that the concentration falls below a predetermined value. The current can be controlled. On the anode chamber side, hydrogen in the hydrogen-containing gas existing from the valve 103 to the burner rib is consumed. The anode chamber is open to the atmosphere via a burner rib, and as the temperature of the fuel cell, etc. decreases, air naturally flows from the atmosphere through the burner. Therefore, the anode offgas line from valve 103 If the capacity of the tank is small and there is a risk of running out of hydrogen, it is preferable to install the buffer tank 6 in the anode off-gas line in order to increase the capacity of this part. In other words, the amount of hydrogen necessary for the operation of the fuel cell for removing oxygen is included in the gas that naturally flows into the anode chamber as indicated by arrow A. Furthermore, a buffer tank can be added upstream of the anode (between the valve 103 and the anode chamber 2a).
[0104] 本発明の燃料電池システムにおいて、停止期間が長い場合など、大気が拡散によ つて水素製造装置内に入ることによる影響が無視できないような場合には、水素製造 装置が環境温度付近まで冷え、温度低下による負圧が無視できるようになった段階 で、例えば図 4 (b)あるいは図 5 (b)に示した状態力もバルブ 102を閉じ、水素製造装 置を大気力も遮断することもできる。また、大気が拡散によってアノード室に入ること による影響が無視できな 、ような場合には、燃料電池システムが環境温度付近まで 冷え、温度低下による負圧が無視できるようになった段階で、例えばアノードオフガス ラインに設けたバルブを閉じ、アノード室も大気力 遮断することができる。  [0104] In the fuel cell system of the present invention, when the influence of the atmosphere entering the hydrogen production device due to diffusion cannot be ignored, such as when the stop period is long, the hydrogen production device reaches the ambient temperature. When the negative pressure due to cooling and temperature drop is negligible, for example, the state force shown in Fig. 4 (b) or Fig. 5 (b) should also close valve 102 and shut off the hydrogen production equipment from atmospheric power. You can also. In addition, when the influence of air entering the anode chamber due to diffusion cannot be ignored, the fuel cell system has cooled to near the ambient temperature, and the negative pressure due to the temperature drop can be ignored. The valve on the anode off-gas line can be closed to shut off the atmospheric pressure in the anode chamber.
[0105] 本発明の燃料電池システムにおいて、以上のような操作は、制御用コンピュータや シーケンサなどの制御装置を用い、バルブを自動バルブとするなどして全て自動で 行うことちでさる。  [0105] In the fuel cell system of the present invention, the above operations can be performed automatically by using a control device such as a control computer or a sequencer and using a valve as an automatic valve.
[0106] 本発明の燃料電池システムにおいて、上記のような操作、すなわち燃料電池システ ムへの供給物の供給停止、ラインの遮断、ライン切り替え、空気昇圧手段の停止、酸 素吸収剤を加熱する加熱手段の作動開始、また燃料電池の酸素除去運転開始など は、同時に行うことができる。従って、停止操作は簡易である。また、停止後にパージ のためにブロワを作動させる必要がないので、そのための所要動力も不要であり省ェ ネルギー効果がある。また、従来、停止後にある時点まで改質器に備わるパーナ等 の燃焼を継続しつつ窒素パージを行うことも行われて ヽたが、本発明によれば停止 後にパーナによる燃焼を行う必要がないので、この点でも省エネルギー効果がある。  [0106] In the fuel cell system of the present invention, the operation as described above, that is, the supply of fuel to the fuel cell system is stopped, the line is shut off, the line is switched, the air pressurizing means is stopped, and the oxygen absorbent is heated. The start of operation of the heating means and the start of the oxygen removal operation of the fuel cell can be performed simultaneously. Therefore, the stop operation is simple. In addition, since it is not necessary to operate the blower for purging after stopping, there is no need for the power required for this purpose, and there is an energy saving effect. Conventionally, nitrogen purging has been carried out while continuing to burn the burner or the like provided in the reformer until a certain point after the stop, but according to the present invention, it is not necessary to burn with the burner after the stop. So there is also an energy saving effect in this respect.
[0107] 停止後に、酸素吸収剤を電気ヒータや専用パーナなどの加熱手段で加熱する必要 力 Sある場合でも、また自然流入する空気から酸素を除去するために燃料電池を作動 させる必要がある場合でも、このような操作は極めて限定された部分における単純な 操作でありまた所要エネルギーも小さ 、。 [0108] 〔他の機器〕 [0107] After stopping, the oxygen absorbent must be heated by a heating means such as an electric heater or a dedicated burner. Even when there is a force S, or when it is necessary to operate the fuel cell to remove oxygen from naturally flowing air However, such an operation is a simple operation in a very limited part and requires a small amount of energy. [0108] [Other equipment]
上記機器の他にも、改質器を利用した水素製造装置の公知の構成要素、および燃 料電池システムの公知の構成要素は、必要に応じて適宜設けることができる。具体例 を挙げれば、燃料電池に供給するガスを加湿するための水蒸気を発生する水蒸気 発生器、燃料電池等の各種機器を冷却するための冷却系、各種流体を加圧するた めのポンプ、圧縮機、ブロワなどの加圧手段、流体の流量を調節するため、あるいは 流体の流れを遮断 Z切り替えるためのバルブ等の流量調節手段ゃ流路遮断 Z切り 替え手段、熱交換'熱回収を行うための熱交換器、液体を気化する気化器、気体を 凝縮する凝縮器、スチームなどで各種機器を外熱する加熱 Z保温手段、各種流体 の貯蔵手段、計装用の空気や電気系統、制御用の信号系統、制御装置、出力用や 動力用の電気系統などである。  In addition to the above equipment, known components of a hydrogen production apparatus using a reformer and known components of a fuel cell system can be appropriately provided as necessary. Specific examples include a steam generator that generates steam for humidifying the gas supplied to the fuel cell, a cooling system for cooling various devices such as the fuel cell, a pump for compressing various fluids, and a compression system. Pressurization means such as a machine, blower, etc., to adjust the flow rate of fluid, or to shut off the flow of fluid Z Flow rate control means such as a valve to switch Z shut off the flow path Z switching means, heat exchange 'to perform heat recovery Heat exchangers, vaporizers that vaporize liquids, condensers that condense gases, heating that heats various devices with steam, etc.Z heat insulation means, various fluid storage means, instrumentation air and electrical systems, and control These include signal systems, control devices, and electrical systems for output and power.
実施例  Example
[0109] 〔実施例 1〕  [Example 1]
図 1に示した構成を有する水素製造装置を用意した。シフト反応器 12には、シフト 触媒として、水素還元した銅亜鉛触媒を充填した。選択酸化反応器 21としては図 2 に示す構造を有する反応器を用いた。選択酸化反応器内において、選択酸化触媒 充填容器 301の下流側充填層として、 Ruを 5質量%、 Y Oを 20質量%含み残部が  A hydrogen production system with the configuration shown in Fig. 1 was prepared. The shift reactor 12 was filled with a hydrogen-reduced copper zinc catalyst as a shift catalyst. As the selective oxidation reactor 21, a reactor having the structure shown in FIG. 2 was used. In the selective oxidation reactor, the downstream packed bed of the selective oxidation catalyst filling vessel 301 contains 5% by mass of Ru and 20% by mass of Y 2 O.
2 3  twenty three
アルミナである酸素吸収剤を 200mL (かさ体積)充填して酸素吸収剤層 303を形成 した。この酸素吸収剤の酸素吸収能は 5. 0 (mL-O ZmL—触媒)であった。  An oxygen absorbent layer 303 was formed by filling 200 mL (bulk volume) of an oxygen absorbent, which is alumina. The oxygen absorption capacity of this oxygen absorbent was 5.0 (mL-O ZmL-catalyst).
2  2
[0110] また酸素吸収剤層の上流に、アルミナ担体に Ruを金属質量として 0. 35質量%担 持した選択酸化触媒を 400mL (かさ体積)充填して選択酸化触媒層 302を形成した  [0110] Further, the selective oxidation catalyst layer 302 was formed by filling 400 mL (bulk volume) of the selective oxidation catalyst having 0.35 mass% of Ru as the metal mass upstream of the oxygen absorbent layer.
[0111] 容器 301内には、選択酸ィ匕触媒層および酸素吸収剤層を貫通してコイル状の冷却 水管(呼び径 1Z4インチ (外径約 14mm) ) 322を設け、これに気液混合相水を通じ ることにより選択酸ィ匕触媒層の冷却等を行えるようにした。 [0111] In the container 301, a coiled cooling water pipe (nominal diameter 1Z4 inch (outside diameter approximately 14mm)) 322 is provided through the selective acid catalyst layer and the oxygen absorbent layer, and this is mixed with gas and liquid. The selective acid catalyst layer can be cooled by passing the phase water.
[0112] この装置の起動停止を繰り返し行った。起動後、酸素吸収剤層に水素含有ガスが 流れている状態で、酸素吸収剤層はー且約 130°Cまで発熱した後、約 100°Cにて温 度に関して定常状態となった。酸素吸収剤層を、この状態で 10分間保った。次いで 装置を停止したが、その際には図 1 (b)に示すように大気を選択酸化反応器の下流 側から自然流入させた。この操作により、水素製造装置の冷却に伴い積算量として 3 . 5NL (Nはノルマル体積を意味する)のエアーが酸素吸収剤層を流通したことを確 認した。シフト反応器 12に備わるシフト反応触媒の温度を監視したが、停止に際して 酸素流入に伴うシフト出口触媒層温度の上昇は見られな力つた。よって、起動の際に 酸素吸収剤が良好に再生され、停止の際に酸素吸収剤が良好に酸素を吸収し、シ フト触媒層への酸素流入を抑制できたと言える。この起動停止操作を 400回繰り返し たが、シフト触媒、選択酸化触媒ともに当該操作に伴う顕著な触媒劣化は観測され ず、出口 CO濃度、触媒層温度分布ともに初期と変わらない状態を保っていることが 確認された。水素製造時における選択酸ィ匕反応器出口ガス中の CO濃度は安定して 10体積 ppmであった。 [0112] This apparatus was repeatedly started and stopped. After startup, the oxygen absorbent layer exothermed to about 130 ° C with hydrogen-containing gas flowing through the oxygen absorbent layer, and then reached a steady state with respect to temperature at about 100 ° C. The oxygen absorbent layer was kept in this state for 10 minutes. Then The system was shut down, but at that time, as shown in Fig. 1 (b), air was naturally introduced from the downstream side of the selective oxidation reactor. Through this operation, it was confirmed that 3.5 NL (N means normal volume) of air passed through the oxygen absorbent layer as the hydrogen production device cooled. Although the temperature of the shift reaction catalyst provided in the shift reactor 12 was monitored, the increase of the shift outlet catalyst layer temperature accompanying the oxygen inflow was not observed at the time of shutdown. Therefore, it can be said that the oxygen absorbent was regenerated well at the time of start-up, and the oxygen absorbent absorbed oxygen well at the time of stop, so that the oxygen inflow to the shift catalyst layer could be suppressed. This start / stop operation was repeated 400 times, but no significant catalyst deterioration was observed with the shift catalyst and selective oxidation catalyst, and both the outlet CO concentration and catalyst layer temperature distribution remained unchanged from the initial stage. Was confirmed. During the hydrogen production, the CO concentration in the gas exit from the selective acid reactor was stable at 10 ppm by volume.
[0113] 〔比較例 1〕 [Comparative Example 1]
酸素吸収剤層を有する選択酸化反応器に替えて、選択酸化触媒層を有し酸素吸 収剤層は有さない選択酸化反応器を用いた。そして、選択酸化反応器の下流に新 たな容器として別途酸素吸収器を設けた。酸素吸収器は、容器内に実施例 1と同様 の酸素吸収剤層を配したものである。選択酸化反応器と酸素吸収器とは配管で接続 した。  Instead of the selective oxidation reactor having an oxygen absorbent layer, a selective oxidation reactor having a selective oxidation catalyst layer and no oxygen absorbent layer was used. A separate oxygen absorber was installed as a new vessel downstream of the selective oxidation reactor. The oxygen absorber is a container in which an oxygen absorbent layer similar to that in Example 1 is disposed. The selective oxidation reactor and the oxygen absorber were connected by piping.
[0114] これ以外は実施例 1と同様にして起動停止を繰り返した。起動後、酸素吸収剤層に 水素含有ガスが流れている状態で、酸素吸収剤層は約 50°Cであり、これ以上の高温 になることはな力つた。この状態を 10分保持した後、実施例 1と同様の操作により装 置を停止した。停止の際のエアー吸引量は実施例 1と同じ 3. 5NLであった。しかし 停止の際に、シフト触媒層温度をモニターしている熱電対温度が 50°C程度上昇した 。この装置構成にて実施例 1と同様に起動停止試験を 400回行ったところ、 150回以 降から徐々にシフト触媒層温度に変化が現われ、 250回目付近から選択酸化反応 器 21出口の CO濃度が lOppm以下にならなくなった。  [0114] The start and stop were repeated in the same manner as in Example 1 except for the above. After the start-up, the oxygen absorbent layer was about 50 ° C with hydrogen-containing gas flowing through the oxygen absorbent layer, and it was hard to reach a higher temperature. After maintaining this state for 10 minutes, the apparatus was stopped by the same operation as in Example 1. The air suction amount at the time of stopping was 3.5 NL, which is the same as in Example 1. However, the temperature of the thermocouple monitoring the shift catalyst layer temperature increased by about 50 ° C during the shutdown. When the start / stop test was conducted 400 times in the same way as in Example 1 with this equipment configuration, the shift catalyst layer temperature gradually changed after 150 times, and the CO concentration at the outlet of the selective oxidation reactor 21 from around 250th time. No longer falls below lOppm.
[0115] 〔比較例 2〕  [0115] [Comparative Example 2]
実施例 1で用いた酸素吸収剤の代わりに、市販の銅亜鉛触媒 (ズードケミー社製、 商品名: MDC— 1)を水素還元して充填したリアクターを用いた。この触媒の酸素吸 収能は 14. 0であった。その他の構成は実施例 1と同様にした。 Instead of the oxygen absorbent used in Example 1, a reactor filled with a commercially available copper zinc catalyst (trade name: MDC-1 manufactured by Sud Chemie Co., Ltd.) by hydrogen reduction was used. The oxygen absorption of this catalyst The yield was 14.0. Other configurations were the same as in Example 1.
[0116] 実施例 1と同様にして起動停止を繰り返したところ、装置を停止時のエアー吸引量 は実施例 1と同じ 3. 5NLであった。また 1回目の停止時には、選択酸化触媒層後段 に充填した銅亜鉛系触媒が発熱し、吸引したエアー中の酸素による酸ィ匕発熱が確認 された。このときシフト触媒層温度の上昇は見られな力つた。し力しこの実験を繰り返 し、 5回目の起動後の停止時には、エアー吸引に伴う選択酸ィ匕触媒層後段の銅亜鉛 触媒の発熱は最早起こらず、代わってシフト触媒層の発熱が観測された。このときの 選択酸化触媒層後段の銅亜鉛触媒の酸素吸収能は 0. 8であり、この触媒の酸素吸 収能は再生されて 、な 、ことがわかった。 [0116] When starting and stopping were repeated in the same manner as in Example 1, the amount of air sucked when the apparatus was stopped was 3.5 NL, the same as in Example 1. Also, at the first stop, the copper-zinc-based catalyst filled in the subsequent stage of the selective oxidation catalyst layer generated heat, and it was confirmed that oxygen was generated due to oxygen in the sucked air. At this time, the shift catalyst layer temperature did not increase. This experiment was repeated, and at the time of stoppage after the fifth start-up, heat generation of the copper zinc catalyst after the selective acid catalyst layer due to air suction no longer occurred, and instead heat generation of the shift catalyst layer was observed instead It was done. At this time, the oxygen absorption capacity of the copper zinc catalyst in the latter stage of the selective oxidation catalyst layer was 0.8, and it was found that the oxygen absorption capacity of this catalyst was regenerated.
[0117] この装置構成にて実施例 1と同様に起動停止試験を 400回行ったところ、 30回以 降から徐々にシフト触媒層温度に変化が現われ、 80回目付近から選択酸化反応器 21出口の CO濃度が lOppm以下にならなくなった。 [0117] When the start / stop test was conducted 400 times in the same manner as in Example 1 with this apparatus configuration, the shift catalyst layer temperature gradually changed from the 30th time onward, and the selective oxidation reactor 21 exit from the 80th time. The CO concentration of Io became no less than lOppm.
産業上の利用可能性  Industrial applicability
[0118] 本発明の水素製造装置は、燃料電池の燃料となる水素含有ガスを製造するために 利用することができ、また自動車に水素含有ガスを供給するための水素ステーション などで利用することができる。 [0118] The hydrogen production apparatus of the present invention can be used for producing a hydrogen-containing gas as fuel for a fuel cell, and can be used in a hydrogen station for supplying a hydrogen-containing gas to an automobile. it can.
[0119] 本発明の燃料電池システムは、自動車などの移動体用の発電装置や、固定発電シ ステム、コージェネレーションシステムなどに用いることができる。 [0119] The fuel cell system of the present invention can be used in a power generation device for a moving body such as an automobile, a fixed power generation system, a cogeneration system, and the like.

Claims

請求の範囲 The scope of the claims
[1] 水素製造用原料力 改質反応を利用して水素を含むガスを得る改質部と、該改質 部の出口ガス中の一酸ィ匕炭素濃度をシフト反応により低減するシフト反応部と、該シ フト反応部の出口ガス中の一酸ィ匕炭素濃度をさらに低減するための、一酸化炭素を 選択的に酸化する選択酸化触媒が充填された選択酸化触媒層を有する選択酸ィ匕 反応部とを備える水素製造装置であって、  [1] Raw material force for hydrogen production A reforming unit that obtains a gas containing hydrogen by using a reforming reaction, and a shift reaction unit that reduces the concentration of carbon monoxide and carbon in the outlet gas of the reforming unit by a shift reaction And a selective oxidation catalyst layer filled with a selective oxidation catalyst that selectively oxidizes carbon monoxide to further reduce the concentration of carbon monoxide and carbon in the outlet gas of the shift reaction section. A hydrogen production device comprising a reaction part,
酸素を吸収可能でかつ還元ガスにより再生可能な酸素吸収剤が充填された酸素吸 収剤層を有し、該酸素吸収剤層と選択酸化触媒層とは酸素吸収剤層を下流側にし て積層され、  It has an oxygen absorbent layer filled with an oxygen absorbent that can absorb oxygen and can be regenerated by a reducing gas, and the oxygen absorbent layer and the selective oxidation catalyst layer are laminated with the oxygen absorbent layer downstream. And
該酸素吸収剤層の下流を大気開放する手段を有する水素製造装置。  A hydrogen production apparatus comprising means for opening the downstream of the oxygen absorbent layer to the atmosphere.
[2] 前記酸素吸収剤が Ru、 Pt、 Au、 Ni、 Co、 Rh、 Pd、 Ir、 Agおよび Reからなる群か ら選ばれる少なくとも一つの金属を含む請求項 1記載の水素製造装置。  [2] The hydrogen production apparatus according to claim 1, wherein the oxygen absorbent contains at least one metal selected from the group consisting of Ru, Pt, Au, Ni, Co, Rh, Pd, Ir, Ag, and Re.
[3] 前記酸素吸収剤がセリア、ジルコユア、チタ二了、イットリア、酸ィ匕マンガン、酸化ス ズ、酸化鉄、酸化銅および酸化亜鉛から選ばれる少なくとも一つの酸化物を含む請 求項 1または 2記載の水素製造装置。  [3] The claim 1 or 2, wherein the oxygen absorbent contains at least one oxide selected from ceria, zirconium oxide, titania, yttria, manganese oxide, tin oxide, iron oxide, copper oxide and zinc oxide. 2. The hydrogen production apparatus according to 2.
[4] 水素製造用原料力 改質反応を利用して水素を含むガスを得る改質部と、該改質 部の出口ガス中の一酸ィ匕炭素濃度をシフト反応により低減するシフト反応部と、該シ フト反応部の出口ガス中の一酸ィ匕炭素濃度をさらに低減するための、一酸化炭素を 選択的に酸化する選択酸化触媒が充填された選択酸化触媒層を有する選択酸ィ匕 反応部とを備える水素製造装置;および、該水素製造装置力 得られるガスを用いて 発電を行う燃料電池とを有する燃料電池システムであって、  [4] Raw material force for hydrogen production A reforming unit that obtains a gas containing hydrogen by using a reforming reaction, and a shift reaction unit that reduces the concentration of carbon monoxide and carbon in the outlet gas of the reforming unit by a shift reaction And a selective oxidation catalyst layer filled with a selective oxidation catalyst that selectively oxidizes carbon monoxide to further reduce the concentration of carbon monoxide and carbon in the outlet gas of the shift reaction section. A fuel cell system comprising: a hydrogen production apparatus comprising a reaction part; and a fuel cell that generates power using the gas obtained from the hydrogen production apparatus power,
酸素を吸収可能でかつ還元ガスにより再生可能な酸素吸収剤が充填された酸素吸 収剤層を有し、該酸素吸収剤層と選択酸化触媒層とは酸素吸収剤層を下流側にし て積層され、  It has an oxygen absorbent layer filled with an oxygen absorbent that can absorb oxygen and can be regenerated by a reducing gas, and the oxygen absorbent layer and the selective oxidation catalyst layer are laminated with the oxygen absorbent layer downstream. And
該酸素吸収剤層の下流を大気開放する手段を有する燃料電池システム。  A fuel cell system having means for opening the downstream of the oxygen absorbent layer to the atmosphere.
[5] 請求項 4記載の燃料電池システムの運転方法であって、 [5] The method of operating a fuel cell system according to claim 4,
該燃料電池システムを停止する際に前記酸素吸収剤層の下流を大気開放するェ 程と、 前記水素製造装置による水素製造時に水素を含むガスを用いて該酸素吸収剤を再 生する工程を有する燃料電池システムの運転方法。 Opening the downstream of the oxygen absorbent layer to the atmosphere when stopping the fuel cell system; A method for operating a fuel cell system comprising a step of regenerating the oxygen absorbent using a gas containing hydrogen during hydrogen production by the hydrogen production apparatus.
PCT/JP2007/053530 2006-03-02 2007-02-26 Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system WO2007099911A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800152214A CN101432226B (en) 2006-03-02 2007-02-26 Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system
US12/281,425 US9112201B2 (en) 2006-03-02 2007-02-26 Hydrogen production apparatus, fuel cell system and operation method thereof
KR1020087023745A KR101357431B1 (en) 2006-03-02 2007-02-26 Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-056455 2006-03-02
JP2006056455A JP5065605B2 (en) 2006-03-02 2006-03-02 Hydrogen production apparatus, fuel cell system and operation method thereof

Publications (1)

Publication Number Publication Date
WO2007099911A1 true WO2007099911A1 (en) 2007-09-07

Family

ID=38459017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053530 WO2007099911A1 (en) 2006-03-02 2007-02-26 Hydrogen production apparatus, fuel cell system, and method for operating the fuel cell system

Country Status (6)

Country Link
US (1) US9112201B2 (en)
JP (1) JP5065605B2 (en)
KR (1) KR101357431B1 (en)
CN (1) CN101432226B (en)
TW (1) TWI424956B (en)
WO (1) WO2007099911A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595720B2 (en) 2013-03-14 2017-03-14 Ford Global Technologies, Llc Electrode with catalyst segmentation

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8273139B2 (en) * 2003-03-16 2012-09-25 Kellogg Brown & Root Llc Catalytic partial oxidation reforming
KR101585219B1 (en) * 2008-02-25 2016-01-13 스미토모 세이카 가부시키가이샤 Process and apparatus for production of hydrogen
JP5086144B2 (en) * 2008-03-19 2012-11-28 Jx日鉱日石エネルギー株式会社 Hydrogen production apparatus and method for stopping fuel cell system
TW201429039A (en) * 2008-05-14 2014-07-16 Nippon Oil Corp Fuel cell system
JP5466871B2 (en) 2009-04-28 2014-04-09 Jx日鉱日石エネルギー株式会社 Fuel cell reformer
US20120264597A1 (en) * 2009-07-20 2012-10-18 Council Of Scientific & Industrial Research CEAlO3 PEROVSKITES CONTAINING TRANSITION METAL
US9118048B2 (en) 2009-09-04 2015-08-25 Lg Fuel Cell Systems Inc. Engine systems and methods of operating an engine
US9874158B2 (en) 2009-09-04 2018-01-23 Lg Fuel Cell Systems, Inc Engine systems and methods of operating an engine
US9140220B2 (en) 2011-06-30 2015-09-22 Lg Fuel Cell Systems Inc. Engine systems and methods of operating an engine
US9178235B2 (en) 2009-09-04 2015-11-03 Lg Fuel Cell Systems, Inc. Reducing gas generators and methods for generating a reducing gas
US9083020B2 (en) 2009-09-04 2015-07-14 Lg Fuel Cell Systems Inc. Reducing gas generators and methods for generating reducing gas
US8597841B2 (en) * 2009-09-04 2013-12-03 Lg Fuel Cell Systems Inc. Method for generating a gas which may be used for startup and shutdown of a fuel cell
US8668752B2 (en) * 2009-09-04 2014-03-11 Rolls-Royce Fuel Cell Systems (Us) Inc. Apparatus for generating a gas which may be used for startup and shutdown of a fuel cell
CN105324685B (en) * 2013-06-28 2019-03-22 圣戈本陶瓷及塑料股份有限公司 Scintillation detector
EP3009186A1 (en) * 2014-10-15 2016-04-20 Haldor Topsøe A/S A reactor system with means for catalyst protection during trips or shut-down
WO2016138969A1 (en) 2015-03-03 2016-09-09 SensoMotoric Instruments Gesellschaft für innovative Sensorik mbH Head mounted eye tracking device and method for providing drift free eye tracking through a lens system
CN108536205A (en) * 2018-06-19 2018-09-14 张家港氢云新能源研究院有限公司 Failure in hydrogen making by natural gas reformation system automatically terminates device
GB2582359B (en) 2019-03-21 2022-01-19 Intelligent Energy Ltd Fuel cell startup/shutdown degradation mitigation by removal of oxygen ad/absorption media
EP4122877A4 (en) * 2020-03-16 2023-09-27 Panasonic Intellectual Property Management Co., Ltd. Fuel cell system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191426A (en) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd Fuel cell power generating system
JP2002280038A (en) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd Fuel cell electric power generating system
JP2003327408A (en) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp Fuel treatment apparatus and operation method thereof
JP2005179081A (en) * 2003-12-16 2005-07-07 Nippon Oil Corp Hydrogen producing apparatus, fuel cell system and method for driving the same
JP2005534602A (en) * 2002-08-01 2005-11-17 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Method for producing hydrogen including water gas shift reaction

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2654515B2 (en) 1987-11-05 1997-09-17 大阪瓦斯株式会社 Method for producing desulfurizing agent
JP2688749B2 (en) 1987-11-05 1997-12-10 大阪瓦斯株式会社 Method for producing high temperature resistant high-order desulfurizing agent
US4985074A (en) * 1987-11-05 1991-01-15 Osaka Gas Company Limited Process for producing a desulfurization agent
US5464606A (en) * 1994-05-27 1995-11-07 Ballard Power Systems Inc. Two-stage water gas shift conversion method
JPH08106914A (en) * 1994-09-30 1996-04-23 Aisin Aw Co Ltd Fuel cell power generating system
JP4053623B2 (en) * 1996-12-27 2008-02-27 阿南化成株式会社 Zirconium-cerium composite oxide and method for producing the same
US6828048B2 (en) * 2001-11-06 2004-12-07 Utc Fuel Cells, Llc Shut-down procedure for fuel cell fuel processing system
EP1513207B1 (en) * 2002-05-02 2012-05-23 Mitsubishi Heavy Industries, Ltd. Fuel cell power generation system and method for operating the same
CN1551397A (en) * 2003-05-19 2004-12-01 松下电器产业株式会社 Hydrogen generating device and fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191426A (en) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd Fuel cell power generating system
JP2002280038A (en) * 2001-03-21 2002-09-27 Matsushita Electric Ind Co Ltd Fuel cell electric power generating system
JP2003327408A (en) * 2002-05-10 2003-11-19 Mitsubishi Electric Corp Fuel treatment apparatus and operation method thereof
JP2005534602A (en) * 2002-08-01 2005-11-17 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Method for producing hydrogen including water gas shift reaction
JP2005179081A (en) * 2003-12-16 2005-07-07 Nippon Oil Corp Hydrogen producing apparatus, fuel cell system and method for driving the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595720B2 (en) 2013-03-14 2017-03-14 Ford Global Technologies, Llc Electrode with catalyst segmentation

Also Published As

Publication number Publication date
KR20080102257A (en) 2008-11-24
JP2007230837A (en) 2007-09-13
JP5065605B2 (en) 2012-11-07
TWI424956B (en) 2014-02-01
TW200804178A (en) 2008-01-16
US20090011298A1 (en) 2009-01-08
CN101432226B (en) 2013-01-23
KR101357431B1 (en) 2014-02-03
CN101432226A (en) 2009-05-13
US9112201B2 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
JP5065605B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP5121533B2 (en) Hydrogen production apparatus and fuel cell system using the same
KR20080005949A (en) Liquefied petroleum gas for lp gas fuel cell, method of desulfurizing the same and fuel cell system
JP2004527367A (en) Gas purification
JP2004284875A (en) Hydrogen production system, and fuel cell system
JP2005255896A (en) Desulfurizer, desulfurization system, hydrogen manufacturing apparatus, and fuel cell system
JP4143028B2 (en) Fuel cell system and operation method thereof
WO2008075761A1 (en) Catalyst for reducing carbon monoxide concentration
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2005179083A (en) Hydrogen producing apparatus, fuel cell system, and its operatin method
JP4455040B2 (en) Fuel cell system and operation method thereof
JP2006076839A (en) Hydrogen purification system and fuel cell system using the same
WO2005115912A1 (en) Hydrogen production apparatus and fuel cell system using the same
JP2005179082A (en) Hydrogen producing apparatus, fuel cell system and method for driving the same
JP5086144B2 (en) Hydrogen production apparatus and method for stopping fuel cell system
JP4550385B2 (en) Hydrogen production apparatus and fuel cell system
KR100647331B1 (en) Shift reactor, fuel cell system employing the same, and operating method of the same
WO2005097317A1 (en) Catalyst for steam reforming, method for steam reforming, apparatus for producing hydrogen and fuel cell system
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP2002012407A (en) Hydrogen manufacturing equipment startup method and its shutdown method
JP2019514174A (en) Fuel cell system combining inert adsorption bed and active adsorption bed
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2004171866A (en) Fuel cell system
JP5041781B2 (en) Method and fuel cell system for reducing carbon monoxide concentration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12281425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087023745

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200780015221.4

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 07737382

Country of ref document: EP

Kind code of ref document: A1