WO2007099910A1 - Photomask blank and photomask, and their manufacturing method - Google Patents

Photomask blank and photomask, and their manufacturing method Download PDF

Info

Publication number
WO2007099910A1
WO2007099910A1 PCT/JP2007/053528 JP2007053528W WO2007099910A1 WO 2007099910 A1 WO2007099910 A1 WO 2007099910A1 JP 2007053528 W JP2007053528 W JP 2007053528W WO 2007099910 A1 WO2007099910 A1 WO 2007099910A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding film
light
photomask blank
photomask
film
Prior art date
Application number
PCT/JP2007/053528
Other languages
French (fr)
Japanese (ja)
Inventor
Takeyuki Yamada
Masaru Mitsui
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to JP2008502774A priority Critical patent/JP5412107B2/en
Priority to KR1020107023098A priority patent/KR101248740B1/en
Publication of WO2007099910A1 publication Critical patent/WO2007099910A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/46Antireflective coatings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Definitions

  • the present invention relates to a photomask blank and a photomask in which the wet etching characteristics of a light shielding film are optimized for a wet etching process for forming a light shielding film pattern, and a manufacturing method thereof.
  • the present invention relates to a photomask blank for manufacturing an FPD device, and a photomask manufactured using the photomask blank.
  • a fine pattern is formed using a photolithography method.
  • a substrate called a photomask is usually used for forming this fine pattern.
  • This photomask is generally a light-transmitting glass substrate provided with a light-shielding fine pattern with a metal thin film and the like, and at least one photolithography method is used for manufacturing the photomask.
  • Photomask blanks having a light-shielding film on a light-transmitting substrate such as a glass substrate are used for manufacturing a photomask by a photolithography method.
  • a photomask using this photomask blank is manufactured by exposing the resist film formed on the photomask blank to a desired pattern exposure and developing the resist film in accordance with the desired pattern exposure.
  • a resist film formed on the photomask blank is subjected to a desired pattern exposure, and then a developing solution is supplied to dissolve a portion of the resist film that is soluble in the developing solution. Form. Further, in the above etching process, using this resist pattern as a mask, the resist pattern is formed by, for example, wet etching to dissolve a portion where the resist film is formed and the light shielding film is exposed, thereby making the desired mask pattern translucent. Form on the substrate. Thus, a photomask is completed.
  • Patent Document 1 describes a photomask blank provided with a chromium film containing chromium carbide as a light shielding film on a transparent substrate as a mask blank suitable for wet etching. It is. Patent Document 2 also has a laminated film of a halftone material film and a metal film on a transparent substrate as a mask blank that is also suitable for wet etching, and this metal film is formed from the surface side to the transparent substrate side. There is a region composed of materials with different etching rates, and for example, a halftone phase shift mask blank made of a CrNZCrC metal film and a CrON antireflection film is described.
  • photomasks used for manufacturing components such as color filters, TFT (thin film transistors) arrays and reflectors in liquid crystal display devices have a larger substrate size than LSI photomasks. . Therefore, compared with the case where the substrate size is small due to the large substrate size, the factors of the manufacturing principle limit (the limit surface derived from the manufacturing method and the manufacturing equipment) and the manufacturing condition fluctuation (process fluctuation) Therefore, variations in various characteristics (film composition, film quality, transmittance, reflectance, optical density, etching characteristics, other optical characteristics, film thickness, etc.) occur in-plane and between substrates. It has a feature that it is difficult to obtain a uniform characteristic between them. Such features tend to increase as the size and definition of FPD (Flat Panel Display) increases.
  • FPD Full Panel Display
  • the mask pattern formed over the entire surface of the large substrate is free from jaggedness and has a good cross-sectional shape.
  • the cross-sectional shape of the mask pattern formed on the photomask is substantially perpendicular to the film surface.
  • Patent Document 1 Japanese Patent Publication No. 62-32782
  • Patent Document 2 Japanese Patent No. 2983020
  • a photomask blank that is an original photomask used for manufacturing a liquid crystal display device
  • a light shielding film in which a chromium oxide (CrO) film and a chromium (Cr) film are laminated on a glass substrate is formed.
  • a light-shielding film formed by laminating a chromium oxide (CrO) film, a chromium (Cr) film, and a chromium oxide (CrO) film on a glass substrate.
  • the chromium oxide (CrO) film described above is an antireflection film having an antireflection function that reduces reflection of the film surface with respect to exposure light.
  • the photomask blank is formed by wet etching using the etchant of ceric ammonium nitrate, perchloric acid and pure water with the resist pattern formed on the light shielding film as a mask. A photomask was made.
  • the miniaturization of the mask pattern has advanced! / Under the circumstances! /
  • the mask pattern is not smooth (the pattern when the mask pattern is viewed in plan).
  • the edge roughness maximum distance between the concave and convex portions of the pattern edge)
  • the unevenness in the mask pattern and the cross-sectional shape of the pattern cause uneven display when a liquid crystal display device is manufactured using a photomask.
  • the present invention has been made to solve the conventional problems, and an object of the present invention is to optimize the wet etching characteristics of the light shielding film to thereby improve the cross-sectional shape of the light shielding film. It is another object of the present invention to provide a photomask blank and a photomask capable of forming a pattern, and further capable of forming a light-shielding film pattern with extremely small pattern irregularities, and a manufacturing method thereof.
  • the cross-sectional shape of the light-shielding film pattern formed by the wet etching process is favorable due to restrictions such as the film thickness of the light-shielding film and the composition gradient in the depth direction of the light-shielding film.
  • the present inventor has intensively studied and found that there is a correlation between the crystallinity of chromium constituting the chromium-based light-shielding film and the wet etching characteristics of the light-shielding film.
  • the present invention has the following configuration.
  • a photomask blank having a light-shielding film on a light-transmitting substrate the photomaster blank is patterned by wet etching using a mask pattern formed on the light-shielding film as a mask.
  • a photomask blank for wet etching processing corresponding to a photomask manufacturing method, wherein the light-shielding film also has a material force including chromium, and a diffraction peak force of CrN (200) by X-ray diffraction is also calculated.
  • Configuration 2 The photomask according to Configuration 1, wherein the light-shielding film is a film having diffraction peaks obtained by an X-ray diffraction method having a diffraction peak of CrN (200) and a diffraction peak of Cr (110). It is blank.
  • a photomask blank manufacturing method including a step of forming a light-shielding film containing chromium on a light-transmitting substrate by sputtering film formation using a target having a material strength containing chromium.
  • the photomask blank is a photomask blank for wet etching corresponding to a photomask manufacturing method in which the light shielding film is patterned by wet etching using a resist pattern formed on the light shielding film as a mask.
  • a method of manufacturing a photomask blank characterized by controlling the crystallinity of chromium constituting the light shielding film so that a cross-sectional shape of the light shielding film pattern formed by the wet etching process has a predetermined shape It is.
  • the structure 7 is characterized in that after forming the light shielding film, the crystallinity of chromium constituting the light shielding film is controlled by adjusting a heat treatment condition applied to the light shielding film. This is a method for producing a photomask blank.
  • (Configuration 12) A photomask manufacturing method comprising a step of patterning the light-shielding film in the photomask blank obtained by the manufacturing method according to any one of configurations 7 to 11 by a wet etching process It is.
  • the photomask blank of the present invention is a photomask blank having a light shielding film on a light-transmitting substrate, and the photomask blank is a mask pattern formed on the light shielding film.
  • a photomask blank for wet etching corresponding to a method for producing a photomask for patterning the light shielding film by wet etching using the mask as a mask, and the light shielding film also has a material force including chromium,
  • the diffraction peak force of CrN (200) by X-ray diffraction is calculated as a film whose crystallite size is lOnm or less.
  • the crystallinity of the light shielding film is calculated from the diffraction peak of CrN (200).
  • the pattern of the light shielding film can be made extremely small when the light shielding film is patterned by wet etching. It becomes possible, cross-sectional shape of the light shielding Makupa turn a good shape.
  • the crystallite size for calculating the diffraction peak force of CrN (200) is smaller! /, But the cross-sectional shape of the light-shielding film pattern is preferred. From the productivity such as film formation speed It is preferable that the size is too small.
  • the crystallite size calculated from the diffraction peak of CrN (200) is preferably 5 nm or more and lOnm or less.
  • the crystallinity of the light-shielding film is that the diffraction peak obtained by the X-ray diffraction method has a diffraction peak of CrN (200) and a diffraction peak of Cr (110). This is preferable because it makes it easier to control the shape of the light-shielding film pattern.
  • the light shielding film is a film containing nitrogen (N) in the entire region in the depth direction, so that the wet etching rate can be increased and the resist film formed on the light shielding film. Therefore, a finer and higher-definition light-shielding film pattern can be formed.
  • the light shielding film can form an antireflection layer containing oxygen in the upper layer portion thereof.
  • an antireflection layer By forming such an antireflection layer, the reflectance at the exposure wavelength can be suppressed to a low reflectance, so that multiple reflections with the projection exposure surface are suppressed when the mask pattern is transferred to the transfer target. In addition, it is possible to suppress a decrease in imaging characteristics.
  • the photomask blank is a large substrate, and a photomask blank for manufacturing an FPD device that requires dimensional accuracy of a light-shielding film pattern over the entire surface of the substrate. Suitable for!
  • the light-shielding film pattern formed by patterning the light-shielding film in the photomask blank according to any one of Configurations 1 to 5 by a wet etching process has a good cross-sectional shape.
  • the photomask is a good photomask with extremely small shading of the light shielding film pattern.
  • a photomask blank having a step of forming a light-shielding film containing chromium on a light-transmitting substrate by sputtering film formation using a target having a material strength containing chromium
  • the photomask blank is used for a wet etching process corresponding to a photomask manufacturing method for patterning the light shielding film by a wet etching process using a resist pattern formed on the light shielding film as a mask.
  • the crystallinity of chromium constituting the light-shielding film is adjusted so that the cross-sectional shape of the light-shielding film pattern formed by the wet etching process is a predetermined shape. Control.
  • the crystallinity of the light shielding film it is possible to control the wet etching characteristics of the light shielding film, which results in a favorable cross-sectional shape of the light shielding film pattern, and further the light shielding film pattern. It can be controlled so that the jaggedness becomes extremely small.
  • the crystallinity of chromium constituting the light shielding film is suitably controlled by adjusting the heat treatment conditions applied to the light shielding film. That's right.
  • the crystallinity of chromium is, for example, the crystallite size of CrN (200), and the heat treatment condition applied to the light shielding film is adjusted after the light shielding film is formed as in the structure 8. Therefore, it is preferable to control the crystallite size of chromium constituting the light shielding film.
  • the heat treatment for the light shielding film is a heat treatment before or after the formation of the resist film formed on the light shielding film.
  • a beta process for the purpose of improving the adhesion force, which is performed before the resist film is formed, or a pre-beta process after the resist film is formed it is preferable to control the crystallinity of chromium (for example, the crystallite size of chromium) constituting the light-shielding film by adjusting these heat treatment conditions.
  • the cross-sectional shape of the light-shielding film pattern formed by the wet etching process is substantially perpendicular to the film surface, as in Configuration 10. This is preferable because the cross-sectional shape of the light shielding film pattern can be well controlled.
  • the photomask blank is a large substrate, and a photomask blank for manufacturing an FPD device that requires dimensional accuracy of a light-shielding film pattern over the entire surface of the substrate. Suitable for!
  • a photomask manufacturing method comprising a step of patterning the light-shielding film in the photomask blank obtained by the manufacturing method according to any one of Configurations 7 to 11 by wet etching treatment
  • the light-shielding film pattern formed by performing the wet etching process has a good cross-sectional shape, and a good photomask with extremely small shading of the light-shielding film pattern can be obtained.
  • the wet etching characteristics of the light-shielding film are optimized and the light-shielding film is optimized by setting the crystallinity of the light-shielding film to a crystallite size for calculating the diffraction peak force of CrN (200). It is possible to provide a photomask blank in which the cross-sectional shape of the film pattern has a favorable shape, and further, the shading of the light-shielding film pattern can be extremely reduced.
  • FIG. 1 is a cross-sectional view showing an embodiment of a photomask blank obtained by the present invention.
  • FIG. 2 is a cross-sectional view showing a photomask manufacturing process using a photomask blank. Explanation of symbols
  • FIG. 1 is a cross-sectional view showing a first embodiment of a photomask blank according to the present invention.
  • a photomask blank 10 in FIG. 1 is in the form of a photomask blank for manufacturing an FPD having a light-shielding film 2 on a translucent substrate 1.
  • the photomask blank 10 is a resist pattern formed on the light shielding film 2. This is a mask blank for wet etching corresponding to a method for producing a photomask for patterning the light-shielding film 2 by wet etching.
  • the light-shielding film 2 is a light-shielding film containing chromium formed on the light-transmitting substrate 1 by a sputtering film using a target containing chromium.
  • a glass substrate is generally used as the translucent substrate 1. Since a glass substrate is excellent in flatness and smoothness, when pattern transfer onto a transfer substrate using a photomask is performed, highly accurate pattern transfer can be performed without causing distortion of the transfer pattern.
  • the light-shielding film 2 is configured so that the light-shielding film pattern formed by wet etching treatment has extremely small irregularities and has a predetermined cross-sectional shape.
  • the crystallinity of chrome is calculated so that the crystallite size calculated from the diffraction peak of CrN (200) is less than lOnm.
  • the crystallinity of chromium constituting the light shielding film 2 is expressed by a diffraction peak force CrN (200) obtained by an X-ray diffraction method.
  • the diffraction peak and Cr (l lO) diffraction peak are set.
  • the wet etching characteristics of the light-shielding film 2 can be controlled, whereby the light-shielding film pattern has a good cross-sectional shape and the light-shielding film pattern.
  • the jaggedness can be extremely small.
  • the crystallinity of chromium constituting the light shielding film 2 can be controlled, for example, by adjusting the heat treatment conditions applied to the light shielding film 2 after the light shielding film 2 is formed.
  • the heat treatment for the light shielding film 2 is, for example, a heat treatment before or after the formation of the resist film formed on the light shielding film 2.
  • a beta process for the purpose of improving the adhesion force, which is performed before the resist film is formed, or a pre-beta process after the resist film is formed is preferable to control the crystallinity of chromium constituting the light-shielding film by adjusting these heat treatment conditions.
  • the crystallinity of the light-shielding film 2 is set to a crystal size of lOnm or less where the diffraction peak force of CrN (200) by X-ray diffraction is also calculated, and the diffraction peak obtained by the X-ray diffraction method is the diffraction peak of CrN (200) And a film having a diffraction peak of Cr (l lO)
  • a material containing chromium and nitrogen more preferably a material containing chromium, nitrogen, and carbon, more preferably a material containing chromium, nitrogen, carbon, and oxygen.
  • Heat treatment conditions are 80 ° C or higher. It can be obtained by heat treatment at a heating temperature of 180 ° C or lower, preferably 100 ° C or higher and 150 ° C or lower.
  • the cross-sectional shape of the light shielding film pattern formed by the wet etching process is desirably a shape that is substantially perpendicular to the film surface.
  • the wet etching characteristics of the light shielding film 2 can be controlled by controlling the crystallinity of the light shielding film 2.
  • the cross-sectional shape of the light-shielding film pattern becomes the above-mentioned favorable shape, and the light-shielding film pattern can be controlled to be extremely small, so that the present invention is suitable.
  • Specific examples of the material of the light shielding film 2 include a material containing chromium and nitrogen.
  • the content of chromium (Cr) contained in the light shielding film 2 is 1, the depth of the light shielding film 2 increases.
  • a region where the nitrogen (N) content is 0.5 or more and a region where the nitrogen (N) content is less than 0.5 are present.
  • the translucent substrate side force is such that when the chromium (Cr) content is 1, the nitrogen (N) content is less than 0.5 and the nitrogen (N) content is A layer of a layer that is 0.5 or more, a layer that has a nitrogen (N) content of 0.5 or more when the chromium (Cr) content is 1 from the translucent substrate side, and nitrogen ( (N) content of less than 0.5 and nitrogen (N) content strength of SO.5 or more of laminated films, and translucent substrate side chromium (Cr) content of 1 A layered film of a layer in which the nitrogen (N) content is 0.5 or more and a layer in which the nitrogen (N) content is less than 0.5 can be given.
  • the light shielding film is a laminated film
  • chromium (Cr) and nitrogen (N) contained in the light shielding film may change stepwise or may change continuously.
  • the light shielding film 2 may further contain an additive element such as oxygen, carbon, or fluorine.
  • the light-shielding film has a good cross-sectional shape with no mask pattern over the entire surface of a large substrate of 330 mm x 450 mm or more used for FPD manufacturing.
  • the material of the light-shielding film is a material containing chromium and nitrogen
  • the translucent substrate side force is nitrogen (N) when the chromium (Cr) content is 1. It is preferable to form a laminated film of a layer having a content of less than 0.5 and a layer having a nitrogen (N) content of 0.5 or more.
  • the method for forming the light shielding film 2 is not particularly limited, but a sputtering film forming method is particularly preferable. According to the sputtering film forming method, a uniform film having a constant film thickness can be formed, which is suitable for the present invention.
  • a chromium (Cr) target is used as the sputtering target, and the sputtering gas introduced into the chamber is argon gas or helium.
  • an inert gas such as lithium gas and a gas such as oxygen, nitrogen, carbon dioxide, or nitrogen monoxide.
  • a light-shielding film containing oxygen in chromium can be formed, and nitrogen gas is used as the inert gas such as argon gas.
  • nitrogen gas is used as the inert gas such as argon gas.
  • a light shielding film containing nitrogen can be formed on the chromium, and when a sputtering gas obtained by mixing nitrogen monoxide gas with an inert gas such as argon gas is used, chromium is added.
  • a light shielding film containing nitrogen and oxygen can be formed.
  • a sputtering gas in which methane gas is mixed with an inert gas such as argon gas is used, a light shielding film containing carbon in chromium can be formed.
  • the film thickness of the light shielding film 2 is set so that the optical density with respect to the exposure light is, for example, 3.0 or more.
  • the thickness of the light shielding film 2 is preferably 200 nm or less. If the film thickness exceeds 200 nm, the film thickness variation in the substrate surface of the light shielding film 2 tends to increase, and the pattern accuracy of the light shielding film pattern deteriorates, which is not preferable. Incidentally, the lower limit of the thickness of the light shielding film 2 can be reduced as long as a desired optical density is obtained.
  • the light shielding film 2 is not limited to a multilayer such as a laminated film as described above, and may be a single layer.
  • the surface layer portion (upper layer portion) may have an antireflection function.
  • the antireflection layer having an antireflection function for example, materials such as CrO, CrCO, CrNO, CrCON are preferably mentioned.
  • the antireflection layer may also be provided on the translucent substrate side as necessary.
  • the light shielding film 2 is different in content of chromium and elements such as oxygen, nitrogen, and carbon in the depth direction, and is stepwise in the antireflection layer of the surface layer portion and the other layers (light shielding layers).
  • a composition gradient film having a composition gradient continuously may be used.
  • a method of appropriately switching the type (composition) of the sputtering gas during the above-described sputtering film formation during the film formation is suitable.
  • the photomask blank may have a form in which a resist film 3 is formed on the light shielding film 2 as shown in FIG.
  • the film thickness of the resist film 3 is preferably as thin as possible in order to improve the pattern accuracy (CD accuracy) of the light shielding film.
  • the lower limit of the thickness of the resist film is set so that the resist film remains when the light shielding film 2 is wet etched using the resist pattern as a mask.
  • the method of manufacturing a photomask using the photomask blank 0 includes a step of patterning the light shielding film 2 of the photomask blank 10 using wet etching. A step of performing desired pattern exposure (pattern drawing) on the resist film formed on the substrate, a step of developing the resist film in accordance with the desired pattern exposure to form a resist pattern, and the light shielding film along the resist pattern. And a step of peeling and removing the remaining resist pattern.
  • FIG. 2 is a cross-sectional view sequentially showing photomask manufacturing processes using the photomask blank 10.
  • FIG. 2 (a) shows a state in which a resist film 3 is formed on the light shielding film 2 of the photomask blank 10 of FIG.
  • the resist material either a positive resist material or a negative resist material can be used.
  • FIG. 2B shows a step of performing desired pattern exposure (pattern drawing) on the resist film 3 formed on the photomask blank 10. Note that turn exposure is performed using a laser lithography system. As the above-described resist material, those having photosensitivity corresponding to laser are used.
  • FIG. 2 (c) shows the resist pattern developed by developing the resist film 3 according to the desired pattern exposure.
  • the process of forming the screen 3a is shown.
  • the resist film 3 formed on the photomask blank 10 is exposed to a desired pattern, and then a developer is supplied to dissolve a portion of the resist film that is soluble in the developer. Form.
  • an aqueous solution obtained by adding perchloric acid to ceric nitrate is generally used.
  • the wet etching conditions such as the concentration, temperature, and processing time of the etching solution are appropriately set such as the pattern cross-sectional characteristics of the light shielding film.
  • FIG. 2 (e) shows a photomask 20 obtained by peeling off and removing the remaining resist pattern 3a.
  • the photomask blank is not limited to a so-called binary mask photomask blank in which a light-shielding film is formed on a light-transmitting substrate, but a light-shielding portion that shields exposure light, a light-transmitting portion that transmits exposure light,
  • a photomask blank for a gray tone mask having a gray tone portion which is a light transmitting region may be used.
  • the gray tone portion may be a semi-transparent film whose material is selected so as to have a desired transmittance with respect to exposure light, or the same material as the light-shielding film, and the resolution limit of exposure light may be The following fine light-shielding film pattern may be used.
  • a single tone mask with a semi-transparent film pattern is a semi-transparent film-type gray-tone mask in which a semi-transparent film pattern is formed under a light-shielding film pattern.
  • a gray-tone mask of a semi-transparent film placed type in which the film pattern is formed on the light shielding film pattern may be used.
  • the translucent substrate generally includes a glass substrate, and includes a synthetic quartz glass substrate, a soda lime glass substrate, an alkali-free glass substrate, and the like.
  • a light-transmitting substrate for manufacturing an FPD device for example, a large-sized substrate of 330 mm X 45 Omm to 1400 mm X 1600 mm is meant.
  • the photomask blank and photomask for manufacturing the FPD device include mask blanks for manufacturing FPD devices such as LCD (liquid crystal display), plasma display, and organic EL (electroluminescence) display. And a photomask.
  • the LCD manufacturing mask includes all photomasks necessary for LCD manufacturing.
  • TFT thin film transistor
  • TFT channel part and contact hole part low-temperature polysilicon TFT
  • color filter color filter
  • a photomask for forming a reflector or the like is included.
  • Other display device manufacturing masks include all photomasks required for the manufacture of organic EL (electral luminescence) displays, plasma displays, and the like.
  • a large in-line sputtering device on a large glass substrate (synthetic quartz 10mm thick, size 850mmX 1200mm), a light-shielding film with an antireflection film formed on the film surface was formed.
  • Cr targets are placed in each space (sputtering chamber) arranged continuously in a large in-line sputtering system, and Ar gas and N gas are sputtered first.
  • CrN film as gas
  • CrC film as Ar gas and CH gas as sputtering gas
  • a CrON film was continuously formed using Ar gas and NO gas as sputtering gases to produce a large photomask blank for FPD.
  • the light-shielding film was formed to have an optical density of 3.5 from the i-line (365 nm) to the g-line (436 nm), which is the wavelength of the ultra-high pressure mercury lamp.
  • the glass substrate on which the light-shielding film was formed was placed on a hot plate and heat-treated at 130 ° C for 10 minutes.
  • nitrogen (N) was obtained when the content of chromium (Cr) on the side of the glass substrate was 1.
  • Bragg angle (diffraction angle 2 ⁇ 1Z2).
  • a large photomask for FPD that has a normal pattern of 5 ⁇ m width and a gray-tone pattern of 1 ⁇ m width (a fine light-shielding pattern that is less than the resolution limit of a large FPD exposure machine and a pattern that consists of a fine transmission part) was made.
  • Example 1 a large photomask blank for FPD and a large photomask for FPD were produced in the same manner as in Example 1 except that the heat treatment temperature after forming the light shielding film was set to 170 ° C.
  • the crystallinity of the light-shielding film in a large photomask blank for FPD was measured by X-ray diffraction, a CrN (200) diffraction peak and a Cr (110) diffraction peak were confirmed, and Cr N (200) diffraction was confirmed.
  • the crystallite size calculated from the peak was 10 nm.
  • the unevenness (jaggedness) of the pattern edge when the pattern was viewed in plan was good at less than 0.1 ⁇ m.
  • large photomass for FPD The pattern line width uniformity in the surface of the pattern was also good. Furthermore, when the cross-sectional shape of the pattern of the light shielding film was observed, the cross-sectional shape was vertical and good.
  • a large in-line sputtering device on a large glass substrate (synthetic quartz 10mm thick, size 850mmX 1200mm), a light-shielding film with an antireflection film formed on the film surface was formed.
  • Cr targets are placed in each space (sputtering chamber) arranged continuously in a large in-line sputtering system, and Ar gas and CO gas are sputtered first.
  • a large photomask blank for FPD was fabricated by continuously forming an ON film.
  • the light-shielding film was formed to have an optical density of 3.5 from the i-line (365 nm) to the g-line (436 nm), which is the wavelength of the ultra-high pressure mercury lamp.
  • the glass substrate with the light-shielding film was subjected to heat treatment.
  • the ratio of nitrogen in the depth direction of this light-shielding film was measured by Rutherford backscattering analysis (RBS).
  • the nitrogen (N) content was A layered film of less than 0.5 layer and a layer in which the content of nitrogen (N) is 0.5 or more. Nitrogen is gradually reduced as the surface side force of the light shielding film is also directed toward the glass substrate side. It was confirmed that the film was sizzling!
  • An FPD device was fabricated using the large FPD photomasks of Examples 1 and 2 and Comparative Example above, and the display unevenness was confirmed.
  • the large FPD photomask of Example 2 Although the manufactured FPD device has a strong display unevenness, the FPD device manufactured using the large FPD photomask of Comparative Example 1 has a display unevenness that seems to be caused by the jaggedness in the gray-tone pattern part of the photomask. It was confirmed that there is.

Abstract

Provided are a photomask blank and a photomask, which can form a pattern of a shading film having an excellent sectional shape by optimizing the wet etching characteristics of the shading film, and which can form a pattern of a shading film having extremely small jaggies. The photomask blank having the shading film on a transparent substrate is provided for a wet etching treatment exemplifying a mask by a mask pattern formed on the shading film. This wet etching treatment matches a photomask manufacturing method for patterning the shading film. This shading film is made of a material containing chromium, and has a crystal size of 10 nm or less, as calculated from a diffraction peak of CrN(200) by an X-ray diffraction. The shading film is patterned by the wet etching treatment, to produce a photomask having the shading film pattern on the substrate.

Description

明 細 書  Specification
フォトマスクブランク及びフォトマスク、並びにそれらの製造方法  Photomask blank, photomask, and manufacturing method thereof
技術分野  Technical field
[0001] 本発明は、遮光膜パターン形成のためのウエットエッチング処理用に遮光膜のゥェ ットエッチング特性を最適化させたフォトマスクブランク及びフォトマスク、並びにそれ らの製造方法に関する。特に、 FPDデバイスを製造するためのフォトマスクブランク、 係るフォトマスクブランクを用いて製造されたフォトマスクに関する。  The present invention relates to a photomask blank and a photomask in which the wet etching characteristics of a light shielding film are optimized for a wet etching process for forming a light shielding film pattern, and a manufacturing method thereof. In particular, the present invention relates to a photomask blank for manufacturing an FPD device, and a photomask manufactured using the photomask blank.
背景技術  Background art
[0002] 一般に、半導体装置や液晶表示装置の製造工程では、フォトリソグラフィ一法を用 いて微細パターンの形成が行われている。この微細パターンの形成には通常、フォト マスクと呼ばれている基板が使用される。このフォトマスクは、一般に透光性のガラス 基板上に、金属薄膜等力 なる遮光性の微細パターンを設けたものであり、このフォ トマスクの製造にぉ 、てもフォトリソグラフィ一法が用いられて 、る。  In general, in a manufacturing process of a semiconductor device or a liquid crystal display device, a fine pattern is formed using a photolithography method. A substrate called a photomask is usually used for forming this fine pattern. This photomask is generally a light-transmitting glass substrate provided with a light-shielding fine pattern with a metal thin film and the like, and at least one photolithography method is used for manufacturing the photomask. RU
[0003] フォトリソグラフィ一法によるフォトマスクの製造には、ガラス基板等の透光性基板上 に遮光膜を有するフォトマスクブランクが用いられる。このフォトマスクブランクを用い たフォトマスクの製造は、フォトマスクブランク上に形成されたレジスト膜に対し、所望 のパターン露光を施す露光工程と、所望のパターン露光に従って前記レジスト膜を 現像してレジストパターンを形成する現像工程と、レジストパターンに沿って前記遮光 膜をエッチングするエッチング工程と、残存したレジストパターンを剥離除去する工程 とを有して行われている。上記現像工程では、フォトマスクブランク上に形成されたレ ジスト膜に対し所望のパターン露光を施した後に現像液を供給して、現像液に可溶 なレジスト膜の部位を溶解し、レジストパターンを形成する。また、上記エッチングェ 程では、このレジストパターンをマスクとして、たとえばウエットエッチングによって、レ ジストパターンの形成されて ヽな ヽ遮光膜が露出した部位を溶解し、これにより所望 のマスクパターンを透光性基板上に形成する。こうして、フォトマスクが出来上がる。  [0003] Photomask blanks having a light-shielding film on a light-transmitting substrate such as a glass substrate are used for manufacturing a photomask by a photolithography method. A photomask using this photomask blank is manufactured by exposing the resist film formed on the photomask blank to a desired pattern exposure and developing the resist film in accordance with the desired pattern exposure. A developing step for forming the light shielding film, an etching step for etching the light shielding film along the resist pattern, and a step for peeling off and removing the remaining resist pattern. In the developing step, a resist film formed on the photomask blank is subjected to a desired pattern exposure, and then a developing solution is supplied to dissolve a portion of the resist film that is soluble in the developing solution. Form. Further, in the above etching process, using this resist pattern as a mask, the resist pattern is formed by, for example, wet etching to dissolve a portion where the resist film is formed and the light shielding film is exposed, thereby making the desired mask pattern translucent. Form on the substrate. Thus, a photomask is completed.
[0004] 特許文献 1には、ウエットエッチングに適したマスクブランクとして、透明基板上に、 クロム炭化物を含有するクロム膜を遮光膜として備えたフォトマスクブランクが記載さ れている。また、特許文献 2には、同じくウエットエッチングに適したマスクブランクとし て、透明基板上に、ハーフトーン材料膜と金属膜との積層膜を有し、この金属膜は、 表面側から透明基板側に向かってエッチングレートが異なる材料で構成される領域 が存在しており、例えば CrNZCrCの金属膜と CrONの反射防止膜からなるハーフ トーン型位相シフトマスクブランクが記載されている。 Patent Document 1 describes a photomask blank provided with a chromium film containing chromium carbide as a light shielding film on a transparent substrate as a mask blank suitable for wet etching. It is. Patent Document 2 also has a laminated film of a halftone material film and a metal film on a transparent substrate as a mask blank that is also suitable for wet etching, and this metal film is formed from the surface side to the transparent substrate side. There is a region composed of materials with different etching rates, and for example, a halftone phase shift mask blank made of a CrNZCrC metal film and a CrON antireflection film is described.
[0005] ところで、液晶表示装置における例えば、カラーフィルターや TFT (薄膜トランジス タ)アレイ、反射板等の部品を製造するに当たって使用されるフォトマスクは、 LSI用 のフォトマスクに比べて基板サイズが大きい。従って、基板サイズが大きい分、基板サ ィズが小さい場合に比べ、製造原理上の限界面 (製造方法や製造装置に由来する 限界面)の要因、並びに製造条件の変動 (プロセス変動)の要因に基づき、面内及び 基板間において諸特性 (膜組成、膜質、透過率、反射率、光学濃度、エッチング特 性、その他光学特性、膜厚など)のばらつきが生じやすぐこのため面内及び基板間 の諸特性が均一なものが得られずらいといった特色がある。このような特色は、 FPD ( フラットパネルディスプレイ)の更なる大型化 ·高精細化に伴 、増長される傾向にある [0005] By the way, photomasks used for manufacturing components such as color filters, TFT (thin film transistors) arrays and reflectors in liquid crystal display devices have a larger substrate size than LSI photomasks. . Therefore, compared with the case where the substrate size is small due to the large substrate size, the factors of the manufacturing principle limit (the limit surface derived from the manufacturing method and the manufacturing equipment) and the manufacturing condition fluctuation (process fluctuation) Therefore, variations in various characteristics (film composition, film quality, transmittance, reflectance, optical density, etching characteristics, other optical characteristics, film thickness, etc.) occur in-plane and between substrates. It has a feature that it is difficult to obtain a uniform characteristic between them. Such features tend to increase as the size and definition of FPD (Flat Panel Display) increases.
[0006] 近年の液晶表示装置の高精細化にともなって、フォトマスクに形成されるパターン の最小線幅は 2〜3 μ m程度であったものが、 1 μ m程度以下まで微細化されてきて いる。そのような状況下において、その他の寸法精度 (線幅公差、トータルピッチ精度 、重ね合わせ精度)もより厳しくなる傾向にある。 [0006] With the recent high definition of liquid crystal display devices, the minimum line width of a pattern formed on a photomask has been reduced to about 1 μm, although the minimum line width was about 2 to 3 μm. ing. Under such circumstances, other dimensional accuracy (line width tolerance, total pitch accuracy, overlay accuracy) tends to become more severe.
また、このように液晶表示装置のパターンを高精細化するには、微細化されたマス クパターンの精度の良好なパターン転写を行う必要がある。このためには、大型の基 板全面に渡って形成されるマスクパターンにギザが生じず、断面形状が良好であるこ とが望まれる。例えば、フォトマスクに形成されるマスクパターンの断面形状は、膜面 に対して略垂直形状であることが望ま 、。  In addition, in order to increase the resolution of the liquid crystal display device in this way, it is necessary to perform pattern transfer with good accuracy of the miniaturized mask pattern. For this purpose, it is desirable that the mask pattern formed over the entire surface of the large substrate is free from jaggedness and has a good cross-sectional shape. For example, it is desirable that the cross-sectional shape of the mask pattern formed on the photomask is substantially perpendicular to the film surface.
[0007] 特許文献 1 :特公昭 62— 32782号公報  [0007] Patent Document 1: Japanese Patent Publication No. 62-32782
特許文献 2:特許第 2983020号公報  Patent Document 2: Japanese Patent No. 2983020
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0008] 従来、液晶表示装置の製造に使われるフォトマスクの原版となるフォトマスクブラン クとしては、ガラス基板上に酸化クロム (CrO)膜とクロム (Cr)膜を積層した遮光膜が 形成されたものや、ガラス基板上に酸化クロム (CrO)膜とクロム (Cr)膜と酸化クロム( CrO)膜を積層した遮光膜が形成されたものを使用していた。尚、上述の酸化クロム( CrO)膜は、露光光に対する膜面の反射を低減させる反射防止機能を持った反射防 止膜である。 Problems to be solved by the invention [0008] Conventionally, as a photomask blank that is an original photomask used for manufacturing a liquid crystal display device, a light shielding film in which a chromium oxide (CrO) film and a chromium (Cr) film are laminated on a glass substrate is formed. And a light-shielding film formed by laminating a chromium oxide (CrO) film, a chromium (Cr) film, and a chromium oxide (CrO) film on a glass substrate. The chromium oxide (CrO) film described above is an antireflection film having an antireflection function that reduces reflection of the film surface with respect to exposure light.
そして、上述のフォトマスクブランクを、硝酸第二セリウムアンモンと過塩素酸と純水 のエツチャントを用いて、遮光膜上に形成されたレジストパターンをマスクにしてゥエツ トエッチングにより遮光膜パターンを形成して、フォトマスクを作製して 、た。  Then, the photomask blank is formed by wet etching using the etchant of ceric ammonium nitrate, perchloric acid and pure water with the resist pattern formed on the light shielding film as a mask. A photomask was made.
[0009] しかしながら、近年のマスクパターンの微細化が進んで!/、る状況下にお!/、ては、従 来の遮光膜では、マスクパターンのギザ (マスクパターンを平面視したときのパターン エッジラフネス (パターンエッジの凹部と凸部の最大距離) )が無視できな 、状況とな り、また、断面形状が良好 (垂直)なパターンが得られないという問題が生じた。このマ スクパターンにおけるギザや、パターンの断面形状は、フォトマスクを使って液晶表示 装置を作製した場合に、表示むらを引き起こす原因となる。 [0009] However, in recent years, the miniaturization of the mask pattern has advanced! / Under the circumstances! / In the conventional light-shielding film, the mask pattern is not smooth (the pattern when the mask pattern is viewed in plan). The edge roughness (maximum distance between the concave and convex portions of the pattern edge)) cannot be ignored, and the problem arises that a pattern having a good cross-sectional shape (vertical) cannot be obtained. The unevenness in the mask pattern and the cross-sectional shape of the pattern cause uneven display when a liquid crystal display device is manufactured using a photomask.
[0010] そこで本発明は、従来の問題点を解決するべくなされたものであり、その目的とする ところは、遮光膜のウエットエッチング特性を最適化させることで断面形状の良好な遮 光膜のパターンを形成することができ、更に、パターンのギザが極めて小さい遮光膜 のパターンを形成することができるフォトマスクブランク及びフォトマスク、並びにそれ らの製造方法を提供することである。 [0010] Therefore, the present invention has been made to solve the conventional problems, and an object of the present invention is to optimize the wet etching characteristics of the light shielding film to thereby improve the cross-sectional shape of the light shielding film. It is another object of the present invention to provide a photomask blank and a photomask capable of forming a pattern, and further capable of forming a light-shielding film pattern with extremely small pattern irregularities, and a manufacturing method thereof.
課題を解決するための手段  Means for solving the problem
[0011] 前述したように、従来は、遮光膜の膜厚や、遮光膜の深さ方向での組成傾斜などの 制約から、ウエットエッチング処理により形成される遮光膜パターンの断面形状を良 好に仕上げることが困難であるとの問題に鑑み、本発明者は鋭意研究した結果、クロ ム系遮光膜を構成するクロムの結晶性と遮光膜のウエットエッチング特性とは相関関 係があることを突き止め、さらにこのクロムの結晶性を制御することにより、遮光膜のゥ エツトエッチング特性を制御して、結果、遮光膜パターンの断面形状が良好な形状と なるようにコントロールでき、またパターンギザが極めて小さくなることを見い出した。 [0012] すなわち、上記課題を解決するため、本発明は以下の構成を有する。 As described above, conventionally, the cross-sectional shape of the light-shielding film pattern formed by the wet etching process is favorable due to restrictions such as the film thickness of the light-shielding film and the composition gradient in the depth direction of the light-shielding film. In light of the problem that it is difficult to finish, the present inventor has intensively studied and found that there is a correlation between the crystallinity of chromium constituting the chromium-based light-shielding film and the wet etching characteristics of the light-shielding film. Furthermore, by controlling the chromium crystallinity, the wet etching characteristics of the light-shielding film can be controlled, and as a result, the cross-sectional shape of the light-shielding film pattern can be controlled to be good, and the pattern roughness is extremely small. I found out. That is, in order to solve the above problems, the present invention has the following configuration.
(構成 1)透光性基板上に遮光膜を有するフォトマスクブランクにおいて、前記フォトマ スタブランクは、前記遮光膜上に形成されるマスクパターンをマスクにしてウエットエツ チング処理により、前記遮光膜をパターニングするフォトマスクの作製方法に対応す るウエットエッチング処理用のフォトマスクブランクであって、前記遮光膜は、クロムを 含む材料力もなり、かつ、 X線回折による CrN (200)の回折ピーク力も算出される結 晶子サイズが lOnm以下であることを特徴とするフォトマスクブランクである。  (Configuration 1) In a photomask blank having a light-shielding film on a light-transmitting substrate, the photomaster blank is patterned by wet etching using a mask pattern formed on the light-shielding film as a mask. A photomask blank for wet etching processing corresponding to a photomask manufacturing method, wherein the light-shielding film also has a material force including chromium, and a diffraction peak force of CrN (200) by X-ray diffraction is also calculated. A photomask blank characterized by a crystallite size of lOnm or less.
(構成 2)前記遮光膜は、 X線回折法により得られる回折ピークが CrN (200)の回折 ピークと Cr (110)の回折ピークをもつ膜であることを特徴とする構成 1記載のフォトマ スタブランクである。  (Configuration 2) The photomask according to Configuration 1, wherein the light-shielding film is a film having diffraction peaks obtained by an X-ray diffraction method having a diffraction peak of CrN (200) and a diffraction peak of Cr (110). It is blank.
(構成 3)前記遮光膜は、深さ方向の略全域において窒素 (N)が含まれていることを 特徴とする構成 1又は 2記載のフォトマスクブランクである。  (Configuration 3) The photomask blank according to Configuration 1 or 2, wherein the light-shielding film contains nitrogen (N) in substantially the entire region in the depth direction.
[0013] (構成 4)前記遮光膜の上層部に酸素を含む反射防止層を形成することを特徴とする 構成 1乃至 3の何れか一に記載のフォトマスクブランクである。 (Configuration 4) The photomask blank according to any one of Configurations 1 to 3, wherein an antireflection layer containing oxygen is formed on an upper layer portion of the light shielding film.
(構成 5)前記フォトマスクブランクは、 FPDデバイスを製造するためのフォトマスクブラ ンクであることを特徴とする構成 1乃至 4の何れか一に記載のフォトマスクブランクであ る。  (Configuration 5) The photomask blank according to any one of Configurations 1 to 4, wherein the photomask blank is a photomask blank for manufacturing an FPD device.
(構成 6)構成 1乃至 5の何れか一に記載のフォトマスクブランクにおける前記遮光膜 を、ウエットエッチング処理によりパターユングして前記透光性基板上に遮光膜バタ ーンが形成されたことを特徴とするフォトマスクである。  (Configuration 6) The light shielding film in the photomask blank according to any one of Configurations 1 to 5 is patterned by wet etching to form a light shielding film pattern on the translucent substrate. This is a featured photomask.
[0014] (構成 7)透光性基板上に、クロムを含む材料力もなるターゲットを用いたスパッタリン グ成膜により、クロムを含む遮光膜を形成する工程を有するフォトマスクブランクの製 造方法において、前記フォトマスクブランクは、前記遮光膜上に形成されるレジストパ ターンをマスクにしてウエットエッチング処理により、前記遮光膜をパターニングするフ オトマスクの作製方法に対応するウエットエッチング処理用のフォトマスクブランクであ つて、前記ウエットエッチング処理により形成される遮光膜パターンの断面形状が所 定の形状となるように、前記遮光膜を構成するクロムの結晶性を制御することを特徴 とするフォトマスクブランクの製造方法である。 [0015] (構成 8)前記遮光膜を形成した後、該遮光膜に加わる熱処理条件を調整すること〖こ より前記遮光膜を構成するクロムの結晶性を制御することを特徴とする構成 7記載の フォトマスクブランクの製造方法である。 [0014] (Configuration 7) In a photomask blank manufacturing method including a step of forming a light-shielding film containing chromium on a light-transmitting substrate by sputtering film formation using a target having a material strength containing chromium. The photomask blank is a photomask blank for wet etching corresponding to a photomask manufacturing method in which the light shielding film is patterned by wet etching using a resist pattern formed on the light shielding film as a mask. A method of manufacturing a photomask blank, characterized by controlling the crystallinity of chromium constituting the light shielding film so that a cross-sectional shape of the light shielding film pattern formed by the wet etching process has a predetermined shape It is. (Structure 8) The structure 7 is characterized in that after forming the light shielding film, the crystallinity of chromium constituting the light shielding film is controlled by adjusting a heat treatment condition applied to the light shielding film. This is a method for producing a photomask blank.
(構成 9)前記熱処理は、前記遮光膜上に形成するレジスト膜形成前、又はレジスト膜 形成後の加熱処理であることを特徴とする構成 7又は 8記載のフォトマスクブランクの 製造方法である。  (Structure 9) The photomask blank manufacturing method according to Structure 7 or 8, wherein the heat treatment is a heat treatment before or after the formation of the resist film formed on the light shielding film.
(構成 10)前記ウエットエッチング処理により形成される遮光膜パターンの断面形状 が膜面に対して略垂直となる形状であることを特徴とする構成 7乃至 9の何れか一に 記載のフォトマスクブランクの製造方法である。  (Configuration 10) The photomask blank according to any one of Configurations 7 to 9, wherein a cross-sectional shape of the light shielding film pattern formed by the wet etching process is a shape that is substantially perpendicular to the film surface. It is a manufacturing method.
[0016] (構成 11)前記フォトマスクブランクは、 FPDデバイスを製造するためのフォトマスクブ ランクであることを特徴とする構成 7乃至 10の何れか一に記載のフォトマスクブランク の製造方法である。 [0016] (Configuration 11) The photomask blank manufacturing method according to any one of Configurations 7 to 10, wherein the photomask blank is a photomask blank for manufacturing an FPD device. .
(構成 12)構成 7乃至 11の何れか一に記載の製造方法により得られるフォトマスクブ ランクにおける前記遮光膜を、ウエットエッチング処理によりパターユングする工程を 有することを特徴とするフォトマスクの製造方法である。  (Configuration 12) A photomask manufacturing method comprising a step of patterning the light-shielding film in the photomask blank obtained by the manufacturing method according to any one of configurations 7 to 11 by a wet etching process It is.
[0017] 構成 1にあるように、本発明のフォトマスクブランクは、透光性基板上に遮光膜を有 するフォトマスクブランクにおいて、前記フォトマスクブランクは、前記遮光膜上に形成 されるマスクパターンをマスクにしてウエットエッチング処理により、前記遮光膜をパタ 一-ングするフォトマスクの作製方法に対応するウエットエッチング処理用のフォトマ スタブランクであって、前記遮光膜は、クロムを含む材料力もなり、かつ、 X線回折によ る CrN (200)の回折ピーク力も算出される結晶子サイズが lOnm以下である膜とする このように、遮光膜の結晶性を、 CrN (200)の回折ピークから算出される結晶子サ ィズが lOnm以下とすることによって、遮光膜をウエットエッチングによりパターユング した際に、遮光膜パターンのギザも極めて小さくすることが可能となり、更に遮光膜パ ターンの断面形状が良好な形状となる。上記遮光膜パターンのギザを小さくする点に お!、ては、 CrN (200)の回折ピーク力も算出される結晶子サイズがより小さ!/、方が好 ましいが、遮光膜パターンの断面形状や成膜速度などの生産性からは、結晶子サイ ズは小さすぎても好ましくな 、。上記の点を考慮すると CrN (200)の回折ピークから 算出される結晶子サイズは、 5nm以上 lOnm以下とすることが好ましい。 As described in Configuration 1, the photomask blank of the present invention is a photomask blank having a light shielding film on a light-transmitting substrate, and the photomask blank is a mask pattern formed on the light shielding film. A photomask blank for wet etching corresponding to a method for producing a photomask for patterning the light shielding film by wet etching using the mask as a mask, and the light shielding film also has a material force including chromium, In addition, the diffraction peak force of CrN (200) by X-ray diffraction is calculated as a film whose crystallite size is lOnm or less. Thus, the crystallinity of the light shielding film is calculated from the diffraction peak of CrN (200). By reducing the crystallite size to be lOnm or less, the pattern of the light shielding film can be made extremely small when the light shielding film is patterned by wet etching. It becomes possible, cross-sectional shape of the light shielding Makupa turn a good shape. In order to reduce the jaggedness of the light-shielding film pattern, the crystallite size for calculating the diffraction peak force of CrN (200) is smaller! /, But the cross-sectional shape of the light-shielding film pattern is preferred. From the productivity such as film formation speed It is preferable that the size is too small. Considering the above points, the crystallite size calculated from the diffraction peak of CrN (200) is preferably 5 nm or more and lOnm or less.
[0018] また、構成 2にあるように、さらに遮光膜の結晶性は、 X線回折法により得られる回 折ピークが CrN (200)の回折ピークと Cr ( 110)の回折ピークをもつことで、遮光膜パ ターンの形状を制御しやすくなるので好まし 、。 [0018] Further, as in Configuration 2, the crystallinity of the light-shielding film is that the diffraction peak obtained by the X-ray diffraction method has a diffraction peak of CrN (200) and a diffraction peak of Cr (110). This is preferable because it makes it easier to control the shape of the light-shielding film pattern.
また、構成 3にあるように、遮光膜は、深さ方向の全領域において窒素 (N)を含む 膜とすることで、ウエットエッチング速度を高めることができ、遮光膜上に形成するレジ スト膜の薄膜ィ匕に対応することができるので、より微細かつ高精細な遮光膜パターン を形成することができる。  In addition, as described in Configuration 3, the light shielding film is a film containing nitrogen (N) in the entire region in the depth direction, so that the wet etching rate can be increased and the resist film formed on the light shielding film. Therefore, a finer and higher-definition light-shielding film pattern can be formed.
また、構成 4にあるように、前記遮光膜はその上層部に酸素を含む反射防止層を形 成することができる。このような反射防止層を形成することにより、露光波長における 反射率を低反射率に抑えることができるので、マスクパターンを被転写体に転写する ときに投影露光面との間で多重反射を抑制し、結像特性の低下を抑制することがで きる。  Further, as described in Configuration 4, the light shielding film can form an antireflection layer containing oxygen in the upper layer portion thereof. By forming such an antireflection layer, the reflectance at the exposure wavelength can be suppressed to a low reflectance, so that multiple reflections with the projection exposure surface are suppressed when the mask pattern is transferred to the transfer target. In addition, it is possible to suppress a decrease in imaging characteristics.
[0019] また、構成 5にあるように、前記フォトマスクブランクは、大型の基板であって、基板 全面に渡って遮光膜パターンの寸法精度が求められる FPDデバイスを製造するた めのフォトマスクブランクに適して!/、る。  [0019] Further, as described in Configuration 5, the photomask blank is a large substrate, and a photomask blank for manufacturing an FPD device that requires dimensional accuracy of a light-shielding film pattern over the entire surface of the substrate. Suitable for!
また、構成 6にあるように、構成 1乃至 5の何れか一に記載のフォトマスクブランクに おける前記遮光膜を、ウエットエッチング処理によりパターニングして形成された遮光 膜パターンは、断面形状が良好で、かつ遮光膜パターンのギザが極めて小さい良好 なフォトマスクとなる。  Further, as shown in Configuration 6, the light-shielding film pattern formed by patterning the light-shielding film in the photomask blank according to any one of Configurations 1 to 5 by a wet etching process has a good cross-sectional shape. In addition, the photomask is a good photomask with extremely small shading of the light shielding film pattern.
[0020] また、構成 7にあるように、透光性基板上に、クロムを含む材料力もなるターゲットを 用いたスパッタリング成膜により、クロムを含む遮光膜を形成する工程を有するフォト マスクブランクの製造方法において、前記フォトマスクブランクは、前記遮光膜上に形 成されるレジストパターンをマスクにしてウエットエッチング処理により、前記遮光膜を パター-ングするフォトマスクの作製方法に対応するウエットエッチング処理用のフォ トマスクブランクであって、前記ウエットエッチング処理により形成される遮光膜パター ンの断面形状が所定の形状となるように、前記遮光膜を構成するクロムの結晶性を 制御する。 [0020] Further, as in Configuration 7, a photomask blank having a step of forming a light-shielding film containing chromium on a light-transmitting substrate by sputtering film formation using a target having a material strength containing chromium In the method, the photomask blank is used for a wet etching process corresponding to a photomask manufacturing method for patterning the light shielding film by a wet etching process using a resist pattern formed on the light shielding film as a mask. In the photomask blank, the crystallinity of chromium constituting the light-shielding film is adjusted so that the cross-sectional shape of the light-shielding film pattern formed by the wet etching process is a predetermined shape. Control.
このように、遮光膜の結晶性を制御することで、遮光膜のウエットエッチング特性を 制御することができ、これによつて、遮光膜パターンの断面形状が良好な形状となり、 更に遮光膜パターンのギザが極めて小さくなるようにコントロールすることができる。  Thus, by controlling the crystallinity of the light shielding film, it is possible to control the wet etching characteristics of the light shielding film, which results in a favorable cross-sectional shape of the light shielding film pattern, and further the light shielding film pattern. It can be controlled so that the jaggedness becomes extremely small.
[0021] たとえば、構成 8にあるように、前記遮光膜を形成した後、該遮光膜に加わる熱処 理条件を調整することにより前記遮光膜を構成するクロムの結晶性を好適に制御す ることがでさる。  For example, as in Configuration 8, after the formation of the light shielding film, the crystallinity of chromium constituting the light shielding film is suitably controlled by adjusting the heat treatment conditions applied to the light shielding film. That's right.
ここで、クロムの結晶'性は、例えば CrN (200)の結晶子サイズであり、構成 8にある ように、前記遮光膜を形成した後、該遮光膜に加わる熱処理条件を調整することによ り、前記遮光膜を構成するクロムの結晶子サイズを制御することが好適である。  Here, the crystallinity of chromium is, for example, the crystallite size of CrN (200), and the heat treatment condition applied to the light shielding film is adjusted after the light shielding film is formed as in the structure 8. Therefore, it is preferable to control the crystallite size of chromium constituting the light shielding film.
[0022] また、構成 9にあるように、遮光膜に対する熱処理は、前記遮光膜上に形成するレ ジスト膜形成前、又はレジスト膜形成後の加熱処理である。一般に、フォトマスクブラ ンクの製造工程において、遮光膜形成後に、レジスト膜形成前に行われる付着力向 上を目的としたベータ処理、又はレジスト膜形成後のプリベータ処理が行われる。従 つて、これらの加熱処理条件を調整することにより、遮光膜を構成するクロムの結晶 性 (例えばクロムの結晶子サイズ)を制御することが好適である。 [0022] Further, as in Configuration 9, the heat treatment for the light shielding film is a heat treatment before or after the formation of the resist film formed on the light shielding film. In general, in the photomask blank manufacturing process, after the light shielding film is formed, a beta process for the purpose of improving the adhesion force, which is performed before the resist film is formed, or a pre-beta process after the resist film is formed. Therefore, it is preferable to control the crystallinity of chromium (for example, the crystallite size of chromium) constituting the light-shielding film by adjusting these heat treatment conditions.
また、構成 10にあるように、前記ウエットエッチング処理により形成される遮光膜パタ ーンの断面形状は、膜面に対して略垂直となる形状であることが望ましぐ本発明に よれば、遮光膜パターンの断面形状を良好にコントロールすることができるため好適 である。  According to the present invention, it is desirable that the cross-sectional shape of the light-shielding film pattern formed by the wet etching process is substantially perpendicular to the film surface, as in Configuration 10. This is preferable because the cross-sectional shape of the light shielding film pattern can be well controlled.
[0023] また、構成 11にあるように、前記フォトマスクブランクは、大型の基板であって、基板 全面に渡って遮光膜パターンの寸法精度が求められる FPDデバイスを製造するた めのフォトマスクブランクに適して!/、る。  [0023] Further, as described in Configuration 11, the photomask blank is a large substrate, and a photomask blank for manufacturing an FPD device that requires dimensional accuracy of a light-shielding film pattern over the entire surface of the substrate. Suitable for!
また、構成 12にあるように、構成 7乃至 11の何れか一に記載の製造方法により得ら れるフォトマスクブランクにおける前記遮光膜を、ウエットエッチング処理によりパター ユングする工程を有するフォトマスクの製造方法により、ウエットエッチング処理により ノターニングして形成された遮光膜パターンは、断面形状が良好で、かつ遮光膜パ ターンのギザが極めて小さい良好なフォトマスクが得られる。 発明の効果 Further, as in Configuration 12, a photomask manufacturing method comprising a step of patterning the light-shielding film in the photomask blank obtained by the manufacturing method according to any one of Configurations 7 to 11 by wet etching treatment As a result, the light-shielding film pattern formed by performing the wet etching process has a good cross-sectional shape, and a good photomask with extremely small shading of the light-shielding film pattern can be obtained. The invention's effect
[0024] 本発明によれば、遮光膜の結晶性を CrN (200)の回折ピーク力 算出される結晶 子サイズを lOnm以下とすることにより、遮光膜のウエットエッチング特性を最適化さ せ、遮光膜パターンの断面形状が良好な形状となり、更には遮光膜パターンのギザ も極めて小さくすることができるフォトマスクブランクを提供することができる。  [0024] According to the present invention, the wet etching characteristics of the light-shielding film are optimized and the light-shielding film is optimized by setting the crystallinity of the light-shielding film to a crystallite size for calculating the diffraction peak force of CrN (200). It is possible to provide a photomask blank in which the cross-sectional shape of the film pattern has a favorable shape, and further, the shading of the light-shielding film pattern can be extremely reduced.
また、本発明により得られるフォトマスクブランクにおける遮光膜をウエットエッチング 処理を用いてパターユングすることで、断面形状が良好で、かつパターンギザが極め て小さい良好な遮光膜パターンが形成されたフォトマスクを提供することができる。 図面の簡単な説明  Further, by patterning the light-shielding film in the photomask blank obtained by the present invention using a wet etching process, a photomask having a good light-shielding film pattern with a good cross-sectional shape and extremely small pattern roughness Can be provided. Brief Description of Drawings
[0025] [図 1]本発明により得られるフォトマスクブランクの一実施の形態を示す断面図である  FIG. 1 is a cross-sectional view showing an embodiment of a photomask blank obtained by the present invention.
[図 2]フォトマスクブランクを用いたフォトマスクの製造工程を示す断面図である。 符号の説明 FIG. 2 is a cross-sectional view showing a photomask manufacturing process using a photomask blank. Explanation of symbols
[0026] 1 透光性基板 [0026] 1 Translucent substrate
2 遮光膜  2 Shading film
3 レジスト膜  3 Resist film
2a 遮光膜のパターン  2a Light shielding film pattern
3a レジストパターン  3a resist pattern
10 フォトマスクブランク  10 Photomask blank
20 フォトマスク  20 Photomask
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、図面を参照して、本発明の実施の形態を詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図 1は本発明におけるフォトマスクブランクの第一の実施の形態を示す断面図であ る。  FIG. 1 is a cross-sectional view showing a first embodiment of a photomask blank according to the present invention.
図 1のフォトマスクブランク 10は、透光性基板 1上に遮光膜 2を有する FPD作製用 のフォトマスクブランクの形態のものである。  A photomask blank 10 in FIG. 1 is in the form of a photomask blank for manufacturing an FPD having a light-shielding film 2 on a translucent substrate 1.
上記フォトマスクブランク 10は、前記遮光膜 2上に形成されるレジストパターンをマ スクにしてウエットエッチング処理により、前記遮光膜 2をパターユングするフォトマス クの作製方法に対応するウエットエッチング処理用のマスクブランクである。また、前 記遮光膜 2は、透光性基板 1上に、クロムを含むターゲットを用いたスパッタリング成 膜により形成される、クロムを含む遮光膜である。 The photomask blank 10 is a resist pattern formed on the light shielding film 2. This is a mask blank for wet etching corresponding to a method for producing a photomask for patterning the light-shielding film 2 by wet etching. The light-shielding film 2 is a light-shielding film containing chromium formed on the light-transmitting substrate 1 by a sputtering film using a target containing chromium.
ここで、透光性基板 1としては、ガラス基板が一般的である。ガラス基板は、平坦度 及び平滑度に優れるため、フォトマスクを使用して被転写基板上へのパターン転写を 行う場合、転写パターンの歪み等が生じな 、で高精度のパターン転写が行える。  Here, as the translucent substrate 1, a glass substrate is generally used. Since a glass substrate is excellent in flatness and smoothness, when pattern transfer onto a transfer substrate using a photomask is performed, highly accurate pattern transfer can be performed without causing distortion of the transfer pattern.
[0028] 本発明にお 、て、前記遮光膜 2は、ウエットエッチング処理により形成される遮光膜 パターンのギザが極めて小さぐ且つ断面形状が所定の形状となるように、前記遮光 膜 2を構成するクロムの結晶性を、 CrN (200)の回折ピークから算出される結晶子サ ィズを lOnm以下となるようにしている。さらに、好ましくは、上記結晶子サイズに加え 、遮光膜パターンの形状制御性を高めるために、遮光膜 2を構成するクロムの結晶性 を X線回折法により得られる回折ピーク力 CrN (200)の回折ピークと Cr(l lO)の回 折ピークとなるようにして 、る。 In the present invention, the light-shielding film 2 is configured so that the light-shielding film pattern formed by wet etching treatment has extremely small irregularities and has a predetermined cross-sectional shape. The crystallinity of chrome is calculated so that the crystallite size calculated from the diffraction peak of CrN (200) is less than lOnm. Further, preferably, in addition to the crystallite size, in order to improve the shape controllability of the light shielding film pattern, the crystallinity of chromium constituting the light shielding film 2 is expressed by a diffraction peak force CrN (200) obtained by an X-ray diffraction method. The diffraction peak and Cr (l lO) diffraction peak are set.
このような、結晶性を有する遮光膜 2とすることで、遮光膜 2のウエットエッチング特 性を制御することができ、これによつて、遮光膜パターンの断面形状が良好で、かつ 遮光膜パターンのギザが極めて小さくすることができる。  By using the light-shielding film 2 having crystallinity as described above, the wet etching characteristics of the light-shielding film 2 can be controlled, whereby the light-shielding film pattern has a good cross-sectional shape and the light-shielding film pattern. The jaggedness can be extremely small.
遮光膜 2を構成するクロムの結晶性は、たとえば前記遮光膜 2を形成した後、該遮 光膜 2に加わる熱処理条件を調整することにより制御することができる。  The crystallinity of chromium constituting the light shielding film 2 can be controlled, for example, by adjusting the heat treatment conditions applied to the light shielding film 2 after the light shielding film 2 is formed.
[0029] また、遮光膜 2に対する熱処理は、たとえば遮光膜 2上に形成するレジスト膜形成 前、又はレジスト膜形成後の加熱処理である。一般に、フォトマスクブランクの製造ェ 程において、遮光膜形成後に、レジスト膜形成前に行われる付着力向上を目的とし たベータ処理、又はレジスト膜形成後のプリベータ処理が行われる。従って、これらの 加熱処理条件を調整することにより、遮光膜を構成するクロムの結晶性を制御するこ とが好適である。 [0029] The heat treatment for the light shielding film 2 is, for example, a heat treatment before or after the formation of the resist film formed on the light shielding film 2. In general, in the photomask blank manufacturing process, after the light shielding film is formed, a beta process for the purpose of improving the adhesion force, which is performed before the resist film is formed, or a pre-beta process after the resist film is formed. Therefore, it is preferable to control the crystallinity of chromium constituting the light-shielding film by adjusting these heat treatment conditions.
遮光膜 2の結晶性を X線回折による CrN (200)の回折ピーク力も算出される結晶 子サイズを lOnm以下とし、さらに、 X線回折法により得られる回折ピークが CrN (20 0)の回折ピークと Cr(l lO)の回折ピークをもつ膜とするには、少なくとも遮光膜 2は クロムと窒素とを含む材料、更に好ましくは、クロムと窒素と炭素を含む材料、更に好 ましくは、クロムと窒素と炭素と酸素を含む材料とし、加熱処理条件としては、 80°C以 上 180°C以下、好ましくは 100°C以上 150°C以下の加熱温度で加熱処理することに より得られる。 The crystallinity of the light-shielding film 2 is set to a crystal size of lOnm or less where the diffraction peak force of CrN (200) by X-ray diffraction is also calculated, and the diffraction peak obtained by the X-ray diffraction method is the diffraction peak of CrN (200) And a film having a diffraction peak of Cr (l lO) A material containing chromium and nitrogen, more preferably a material containing chromium, nitrogen, and carbon, more preferably a material containing chromium, nitrogen, carbon, and oxygen. Heat treatment conditions are 80 ° C or higher. It can be obtained by heat treatment at a heating temperature of 180 ° C or lower, preferably 100 ° C or higher and 150 ° C or lower.
[0030] 前述したように、ウエットエッチング処理により形成される遮光膜パターンの断面形 状は、膜面に対して略垂直となる形状であることが望ましい。本発明によれば、遮光 膜 2の結晶性を制御することで、遮光膜 2のウエットエッチング特性を制御することが できる。その結果、遮光膜パターンの断面形状が上記の良好な形状となり、遮光膜 パターンのギザが極めて小さくなるようにコントロールすることができるので、本発明は 好適である。  [0030] As described above, the cross-sectional shape of the light shielding film pattern formed by the wet etching process is desirably a shape that is substantially perpendicular to the film surface. According to the present invention, the wet etching characteristics of the light shielding film 2 can be controlled by controlling the crystallinity of the light shielding film 2. As a result, the cross-sectional shape of the light-shielding film pattern becomes the above-mentioned favorable shape, and the light-shielding film pattern can be controlled to be extremely small, so that the present invention is suitable.
[0031] 具体的な遮光膜 2の材料としては、クロムと窒素とを含む材料が挙げられ、遮光膜 2 中に含まれるクロム (Cr)の含有量を 1としたときに、深さ方向にお 、て窒素 (N)の含 有量が 0. 5以上の領域と、窒素 (N)の含有量が 0. 5未満の領域が存在するようにす る。例えば、遮光膜としては、透光性基板側力もクロム (Cr)の含有量を 1としたときに 窒素(N)の含有量が 0. 5未満の層と、窒素(N)の含有量が 0. 5以上となる層の積層 膜や、透光性基板側からクロム (Cr)の含有量を 1としたときに窒素 (N)の含有量が 0 . 5以上となる層と、窒素 (N)の含有量が 0. 5未満となる層と、窒素 (N)の含有量力 SO . 5以上となる層の積層膜や、透光性基板側からクロム (Cr)の含有量を 1としたときに 窒素(N)の含有量が 0. 5以上となる層と、窒素(N)の含有量が 0. 5未満となる層の 積層膜が挙げられる。尚、遮光膜が積層膜である場合において、遮光膜中に含まれ るクロム (Cr)や窒素 (N)は、段階的に変化してもよいし、連続的に変化しても良い。 また、遮光膜 2には、更に、酸素、炭素、弗素等の添加元素を含んでも良い。  [0031] Specific examples of the material of the light shielding film 2 include a material containing chromium and nitrogen. When the content of chromium (Cr) contained in the light shielding film 2 is 1, the depth of the light shielding film 2 increases. A region where the nitrogen (N) content is 0.5 or more and a region where the nitrogen (N) content is less than 0.5 are present. For example, as the light shielding film, the translucent substrate side force is such that when the chromium (Cr) content is 1, the nitrogen (N) content is less than 0.5 and the nitrogen (N) content is A layer of a layer that is 0.5 or more, a layer that has a nitrogen (N) content of 0.5 or more when the chromium (Cr) content is 1 from the translucent substrate side, and nitrogen ( (N) content of less than 0.5 and nitrogen (N) content strength of SO.5 or more of laminated films, and translucent substrate side chromium (Cr) content of 1 A layered film of a layer in which the nitrogen (N) content is 0.5 or more and a layer in which the nitrogen (N) content is less than 0.5 can be given. When the light shielding film is a laminated film, chromium (Cr) and nitrogen (N) contained in the light shielding film may change stepwise or may change continuously. Further, the light shielding film 2 may further contain an additive element such as oxygen, carbon, or fluorine.
[0032] 上述の遮光膜における積層膜の中でも、 FPDの製造用に使われる 330mm X 450 mm以上の大型の基板全面に渡ってマスクパターンにギザが生じず、断面形状が良 好となる遮光膜パターンをウエットエッチングにより形成するためには、遮光膜の材料 は、クロムと窒素とを含む材料とし、透光性基板側力もクロム (Cr)の含有量を 1とした ときに窒素(N)の含有量が 0. 5未満の層と、窒素(N)の含有量が 0. 5以上となる層 の積層膜とすることが好まし 、。 [0033] 上記遮光膜 2の形成方法は、特に制約する必要はな 、が、なかでもスパッタリング 成膜法が好ましく挙げられる。スパッタリング成膜法によると、均一で膜厚の一定な膜 を形成することが出来るので、本発明には好適である。透光性基板 1上に、スパッタリ ング成膜法によって上記遮光膜 2を成膜する場合、スパッタターゲットとしてクロム (C r)ターゲットを用い、チャンバ一内に導入するスパッタガスは、アルゴンガスやへリウ ムガスなどの不活性ガスに酸素、窒素もしくは二酸ィ匕炭素、一酸化窒素等のガスを 混合したものを用いる。アルゴンガス等の不活性ガスに酸素ガス或いは二酸ィ匕炭素 ガスを混合したスパッタガスを用いると、クロムに酸素を含む遮光膜を形成することが でき、アルゴンガス等の不活性ガスに窒素ガスを混合したスパッタガスを用いると、ク ロムに窒素を含む遮光膜を形成することができ、またアルゴンガス等の不活性ガスに 一酸ィヒ窒素ガスを混合したスパッタガスを用いると、クロムに窒素と酸素を含む遮光 膜を形成することができる。また、アルゴンガス等の不活性ガスにメタンガスを混合し たスパッタガスを用いると、クロムに炭素を含む遮光膜を形成することができる。 [0032] Among the laminated films in the above-described light-shielding film, the light-shielding film has a good cross-sectional shape with no mask pattern over the entire surface of a large substrate of 330 mm x 450 mm or more used for FPD manufacturing. In order to form a pattern by wet etching, the material of the light-shielding film is a material containing chromium and nitrogen, and the translucent substrate side force is nitrogen (N) when the chromium (Cr) content is 1. It is preferable to form a laminated film of a layer having a content of less than 0.5 and a layer having a nitrogen (N) content of 0.5 or more. [0033] The method for forming the light shielding film 2 is not particularly limited, but a sputtering film forming method is particularly preferable. According to the sputtering film forming method, a uniform film having a constant film thickness can be formed, which is suitable for the present invention. When the light shielding film 2 is formed on the translucent substrate 1 by a sputtering film forming method, a chromium (Cr) target is used as the sputtering target, and the sputtering gas introduced into the chamber is argon gas or helium. Use a mixture of an inert gas such as lithium gas and a gas such as oxygen, nitrogen, carbon dioxide, or nitrogen monoxide. When a sputtering gas in which oxygen gas or carbon dioxide gas is mixed with an inert gas such as argon gas, a light-shielding film containing oxygen in chromium can be formed, and nitrogen gas is used as the inert gas such as argon gas. When a sputtering gas mixed with nitrogen is used, a light shielding film containing nitrogen can be formed on the chromium, and when a sputtering gas obtained by mixing nitrogen monoxide gas with an inert gas such as argon gas is used, chromium is added. A light shielding film containing nitrogen and oxygen can be formed. Further, when a sputtering gas in which methane gas is mixed with an inert gas such as argon gas is used, a light shielding film containing carbon in chromium can be formed.
[0034] 上記遮光膜 2の膜厚は、露光光に対して光学濃度が例えば 3. 0以上となるように 設定される。具体的には、 FPDデバイスを製造する際に使用される超高圧水銀灯を 露光光源としたときに、上記遮光膜 2の膜厚は、 200nm以下であることが好ましい。 膜厚が 200nmを超えると、遮光膜 2の基板面内における膜厚ばらつきが大きくなる 傾向となり、遮光膜パターンのパターン精度が悪ィ匕するので好ましくない。尚、遮光 膜 2の膜厚の下限につ 、ては、所望の光学濃度が得られる限りにお 、ては薄くする ことができる。 The film thickness of the light shielding film 2 is set so that the optical density with respect to the exposure light is, for example, 3.0 or more. Specifically, when the ultrahigh pressure mercury lamp used for manufacturing the FPD device is used as the exposure light source, the thickness of the light shielding film 2 is preferably 200 nm or less. If the film thickness exceeds 200 nm, the film thickness variation in the substrate surface of the light shielding film 2 tends to increase, and the pattern accuracy of the light shielding film pattern deteriorates, which is not preferable. Incidentally, the lower limit of the thickness of the light shielding film 2 can be reduced as long as a desired optical density is obtained.
[0035] また、上記遮光膜 2は、上述の通り積層膜のような多層であることに限られず、単層 でも良い。例えば、遮光膜 2が積層膜である場合において、表層部(上層部)に反射 防止機能を持たせても良い。その場合、反射防止機能を持った反射防止層としては 、例えば、 CrO、 CrCO、 CrNO、 CrCON等の材料が好ましく挙げられる。反射防止 層を設けることによって、露光波長における反射率を例えば、 20%以下、好ましくは 15%以下に抑えることができるので、マスクパターンを被転写体に転写するときに投 影露光面との間で多重反射を抑制し、結像特性の低下を抑制することができる。  Further, the light shielding film 2 is not limited to a multilayer such as a laminated film as described above, and may be a single layer. For example, when the light shielding film 2 is a laminated film, the surface layer portion (upper layer portion) may have an antireflection function. In that case, as the antireflection layer having an antireflection function, for example, materials such as CrO, CrCO, CrNO, CrCON are preferably mentioned. By providing the antireflection layer, the reflectance at the exposure wavelength can be suppressed to, for example, 20% or less, preferably 15% or less. Thus, it is possible to suppress multiple reflections and suppress degradation of imaging characteristics.
[0036] なお、反射防止層は必要に応じて透光性基板側にも設けてもよい。 また、上記遮光膜 2は、クロムと、例えば酸素、窒素、炭素等の元素の含有量が深さ 方向で異なり、表層部の反射防止層と、それ以外の層 (遮光層)で段階的、又は連続 的に組成傾斜した組成傾斜膜としても良い。このような遮光膜を組成傾斜膜とするた めには、例えば前述のスパッタリング成膜時のスパッタガスの種類 (組成)を成膜中に 適宜切替える方法が好適である。 [0036] Note that the antireflection layer may also be provided on the translucent substrate side as necessary. In addition, the light shielding film 2 is different in content of chromium and elements such as oxygen, nitrogen, and carbon in the depth direction, and is stepwise in the antireflection layer of the surface layer portion and the other layers (light shielding layers). Alternatively, a composition gradient film having a composition gradient continuously may be used. In order to use such a light-shielding film as a composition gradient film, for example, a method of appropriately switching the type (composition) of the sputtering gas during the above-described sputtering film formation during the film formation is suitable.
[0037] また、フォトマスクブランクとしては、後述する図 2 (a)にあるように、上記遮光膜 2の 上に、レジスト膜 3を形成した形態であっても構わない。レジスト膜 3の膜厚は、遮光 膜のパターン精度 (CD精度)を良好にするためには、できるだけ薄 、方が好ま 、。 レジスト膜の膜厚の下限は、レジストパターンをマスクにして遮光膜 2をウエットエッチ ングしたときに、レジスト膜が残存するように設定される。  [0037] The photomask blank may have a form in which a resist film 3 is formed on the light shielding film 2 as shown in FIG. The film thickness of the resist film 3 is preferably as thin as possible in order to improve the pattern accuracy (CD accuracy) of the light shielding film. The lower limit of the thickness of the resist film is set so that the resist film remains when the light shielding film 2 is wet etched using the resist pattern as a mask.
[0038] 次に、図 1に示すフォトマスクブランク 10を用いたフォトマスクの製造方法を説明す る。  Next, a method for manufacturing a photomask using the photomask blank 10 shown in FIG. 1 will be described.
このフォトマスクブランク 0を用いたフォトマスクの製造方法は、フォトマスクブランク 1 0の遮光膜 2を、ウエットエッチングを用いてパターユングする工程を有し、具体的に は、フォトマスクブランンク 10上に形成されたレジスト膜に対し、所望のパターン露光 (パターン描画)を施す工程と、所望のパターン露光に従って前記レジスト膜を現像し てレジストパターンを形成する工程と、レジストパターンに沿って前記遮光膜をエッチ ングする工程と、残存したレジストパターンを剥離除去する工程とを有する。  The method of manufacturing a photomask using the photomask blank 0 includes a step of patterning the light shielding film 2 of the photomask blank 10 using wet etching. A step of performing desired pattern exposure (pattern drawing) on the resist film formed on the substrate, a step of developing the resist film in accordance with the desired pattern exposure to form a resist pattern, and the light shielding film along the resist pattern. And a step of peeling and removing the remaining resist pattern.
[0039] 図 2は、フォトマスクブランク 10を用いたフォトマスクの製造工程を順に示す断面図 である。 FIG. 2 is a cross-sectional view sequentially showing photomask manufacturing processes using the photomask blank 10.
図 2 (a)は、図 1のフォトマスクブランク 10の遮光膜 2上にレジスト膜 3を形成した状 態を示している。尚、レジスト材料としては、ポジ型レジスト材料でも、ネガ型レジスト 材料でも用 、ることができる。  FIG. 2 (a) shows a state in which a resist film 3 is formed on the light shielding film 2 of the photomask blank 10 of FIG. As the resist material, either a positive resist material or a negative resist material can be used.
次に、図 2 (b)は、フォトマスクブランク 10上に形成されたレジスト膜 3に対し、所望 のパターン露光 (パターン描画)を施す工程を示す。ノ《ターン露光は、レーザー描画 装置などを用いて行われる。上述のレジスト材料は、レーザーに対応する感光性を有 するものが使用される。  Next, FIG. 2B shows a step of performing desired pattern exposure (pattern drawing) on the resist film 3 formed on the photomask blank 10. Note that turn exposure is performed using a laser lithography system. As the above-described resist material, those having photosensitivity corresponding to laser are used.
次に、図 2 (c)は、所望のパターン露光に従ってレジスト膜 3を現像してレジストパタ ーン 3aを形成する工程を示す。該工程では、フォトマスクブランク 10上に形成したレ ジスト膜 3に対し所望のパターン露光を施した後に現像液を供給して、現像液に可溶 なレジスト膜の部位を溶解し、レジストパターン 3aを形成する。 Next, FIG. 2 (c) shows the resist pattern developed by developing the resist film 3 according to the desired pattern exposure. The process of forming the screen 3a is shown. In this step, the resist film 3 formed on the photomask blank 10 is exposed to a desired pattern, and then a developer is supplied to dissolve a portion of the resist film that is soluble in the developer. Form.
[0040] ウエットエッチングの際使用するエッチング液としては、一般に硝酸第二セリウムァ ンモンに過塩素酸を加えた水溶液が使用される。エッチング液の濃度や温度、処理 時間等のウエットエッチングの条件は、遮光膜のパターン断面特性など力 適宜設定 される。 [0040] As the etchant used in the wet etching, an aqueous solution obtained by adding perchloric acid to ceric nitrate is generally used. The wet etching conditions such as the concentration, temperature, and processing time of the etching solution are appropriately set such as the pattern cross-sectional characteristics of the light shielding film.
[0041] 図 2 (e)は、残存したレジストパターン 3aを剥離除去することにより得られたフォトマ スク 20を示す。こうして、本発明により、断面形状の良好な遮光膜パターンが精度良 く形成されたフォトマスクが出来上がる。  FIG. 2 (e) shows a photomask 20 obtained by peeling off and removing the remaining resist pattern 3a. Thus, according to the present invention, a photomask in which a light-shielding film pattern having a good cross-sectional shape is formed with high accuracy is completed.
なお、本発明は以上説明した実施の形態には限定されない。即ち、透光性基板上 に遮光膜を形成した、所謂バイナリマスク用フォトマスクブランクに限られず、透光性 基板上に露光光を遮光する遮光部と、露光光を透過する透過部と、半透光性領域で あるグレートーン部とを有するグレートーンマスク用フォトマスクブランクであっても良 い。グレートーン部は、露光光に対し所望の透過率となるように材料選定された半透 光性膜であってもよいし、或いは、遮光膜と同じ材料であって、露光光の解像限界以 下の微細な遮光膜パターンであっても良い。半透光性膜パターンが形成されたダレ 一トーンマスクは、半透光性膜パターンが遮光膜パターンの下に形成される半透光 性膜下置きタイプのグレートーンマスクや、半透光性膜パターンが遮光膜パターンの 上に形成される半透光性膜上置きタイプのグレートーンマスクであっても構わない。  The present invention is not limited to the embodiment described above. That is, the photomask blank is not limited to a so-called binary mask photomask blank in which a light-shielding film is formed on a light-transmitting substrate, but a light-shielding portion that shields exposure light, a light-transmitting portion that transmits exposure light, A photomask blank for a gray tone mask having a gray tone portion which is a light transmitting region may be used. The gray tone portion may be a semi-transparent film whose material is selected so as to have a desired transmittance with respect to exposure light, or the same material as the light-shielding film, and the resolution limit of exposure light may be The following fine light-shielding film pattern may be used. A single tone mask with a semi-transparent film pattern is a semi-transparent film-type gray-tone mask in which a semi-transparent film pattern is formed under a light-shielding film pattern. A gray-tone mask of a semi-transparent film placed type in which the film pattern is formed on the light shielding film pattern may be used.
[0042] また、本発明にお 、て、透光性基板としては、一般にガラス基板が挙げられ、合成 石英ガラス基板、ソーダライムガラス基板、無アルカリガラス基板などが挙げられる。 また、 FPDデバイスを製造するための透光性基板としては、例えば、 330mm X 45 Ommから 1400mm X 1600mmの大型サイズの基板を言う。 In the present invention, the translucent substrate generally includes a glass substrate, and includes a synthetic quartz glass substrate, a soda lime glass substrate, an alkali-free glass substrate, and the like. Further, as a light-transmitting substrate for manufacturing an FPD device, for example, a large-sized substrate of 330 mm X 45 Omm to 1400 mm X 1600 mm is meant.
また、本発明において、 FPDデバイスを製造するためのフォトマスクブランク及びフ オトマスクとしては、 LCD (液晶ディスプレイ)、プラズマディスプレイ、有機 EL (エレク トロルミネッセンス)ディスプレイなどの FPDデバイスを製造するためのマスクブランク 及びフォトマスクが挙げられる。 [0043] ここで、 LCD製造用マスクには、 LCDの製造に必要なすべてのフォトマスクが含ま れ、例えば、 TFT (薄膜トランジスタ)、特に TFTチャンネル部やコンタクトホール部、 低温ポリシリコン TFT、カラーフィルター、反射板などを形成するためのフォトマスクが 含まれる。他の表示デバイス製造用マスクには、有機 EL (エレクト口ルミネッセンス) ディスプレイ、プラズマディスプレイなどの製造に必要なすべてのフォトマスクが含ま れる。 In the present invention, the photomask blank and photomask for manufacturing the FPD device include mask blanks for manufacturing FPD devices such as LCD (liquid crystal display), plasma display, and organic EL (electroluminescence) display. And a photomask. Here, the LCD manufacturing mask includes all photomasks necessary for LCD manufacturing. For example, TFT (thin film transistor), especially TFT channel part and contact hole part, low-temperature polysilicon TFT, color filter In addition, a photomask for forming a reflector or the like is included. Other display device manufacturing masks include all photomasks required for the manufacture of organic EL (electral luminescence) displays, plasma displays, and the like.
実施例  Example
[0044] 以下、実施例により、本発明の実施の形態を更に具体的に説明する。併せて、実 施例に対する比較例についても説明する。  Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples. In addition, a comparative example with respect to the practical example will also be described.
(実施例 1)  (Example 1)
大型ガラス基板 (合成石英 10mm厚、サイズ 850mmX 1200mm)上に大型インラ インスパッタリング装置を使用し、膜表面に反射防止膜が形成された遮光膜の成膜を 行った。成膜は、大型インラインスパッタリング装置内に連続して配置された各スぺー ス(スパッタ室)に Crターゲットを各々配置し、まず、 Arガスと Nガスをスパッタリング  Using a large in-line sputtering device on a large glass substrate (synthetic quartz 10mm thick, size 850mmX 1200mm), a light-shielding film with an antireflection film formed on the film surface was formed. For film formation, Cr targets are placed in each space (sputtering chamber) arranged continuously in a large in-line sputtering system, and Ar gas and N gas are sputtered first.
2  2
ガスとして CrN膜を、さらに Arガスと CHガスをスパッタリングガスとして CrC膜を、さ  CrN film as gas, and CrC film as Ar gas and CH gas as sputtering gas.
4  Four
らに Arガスと NOガスをスパッタリングガスとして CrON膜を連続成膜して、 FPD用大 型フォトマスクブランクを作製した。遮光膜は、超高圧水銀ランプの波長である i線 (3 65nm)から g線 (436nm)において、光学濃度で 3. 5となるような膜厚とした。遮光膜 が形成されたガラス基板をホットプレートに載置し、 130°C、 10分間加熱処理を行つ た。加熱処理を終えた遮光膜について、ラザフォード後方散乱分析 (RBS)により深 さ方向における窒素の割合を測定したところ、ガラス基板側力 クロム (Cr)の含有量 を 1としたときに窒素(N)の含有量が 0. 5未満の層と、窒素(N)の含有量が 0. 5以上 となる層の積層膜であって、窒素が遮光膜の表面側力 ガラス基板側に従って、連 続的に減少して ヽる膜であることが確認された。  In addition, a CrON film was continuously formed using Ar gas and NO gas as sputtering gases to produce a large photomask blank for FPD. The light-shielding film was formed to have an optical density of 3.5 from the i-line (365 nm) to the g-line (436 nm), which is the wavelength of the ultra-high pressure mercury lamp. The glass substrate on which the light-shielding film was formed was placed on a hot plate and heat-treated at 130 ° C for 10 minutes. When the ratio of nitrogen in the depth direction was measured by Rutherford backscattering analysis (RBS) for the light-shielding film after the heat treatment, nitrogen (N) was obtained when the content of chromium (Cr) on the side of the glass substrate was 1. A laminated film of a layer having a nitrogen content of less than 0.5 and a layer having a nitrogen (N) content of 0.5 or more. It was confirmed that the film decreased and decreased.
[0045] また、この遮光膜にっ 、て、 X線回折法により結晶性を測定した。その結果、得られ た遮光膜は、 CrN (200)の回折ピークと Cr ( 110)の回折ピークが確認され、 CrN (2 00)の回折ピーク力も算出される結晶子サイズは、 8nmであった。なお、結晶子サイ ズは、以下に示すシヱラーの式を用いて算出した。 結晶子サイズ (nm) = 0. 9 λ Z j8 cos 0 [0045] The crystallinity of this light-shielding film was measured by an X-ray diffraction method. As a result, in the obtained light-shielding film, the diffraction peak of CrN (200) and the diffraction peak of Cr (110) were confirmed, and the crystallite size from which the diffraction peak force of CrN (200) was also calculated was 8 nm. . The crystallite size was calculated using the Schiller equation shown below. Crystallite size (nm) = 0.9 λ Z j8 cos 0
β = ( β 2 - β 2) 1/2 β = (β 22 ) 1/2
e 0  e 0
ここで、 λ : 0. 15418nm  Where λ: 0. 15418nm
β:回折ピークの半値幅の補正値 (rad)  β: Correction value of half width of diffraction peak (rad)
β :回折ピークの半値幅の測定値  β: Measured value of half-width of diffraction peak
e  e
β :半値幅の装置定数 (0. 12° )  β: Device constant of half width (0.12 °)
0  0
Θ:ブラッグ角(回折角 2 Θの 1Z2)とした。  Θ: Bragg angle (diffraction angle 2 Θ 1Z2).
[0046] 次に、上記で作製した FPD用大型フォトマスクブランクを用い、洗浄処理 (純水、常 温)後、上記遮光膜上にレーザー描画用フォトレジスト (膜厚 1 μ m)を塗布した後、 加熱処理した。次に、上記レーザー描画用フォトレジストに対して、所定のパターンを レーザー描画した後、現像処理によってレジストパターンを形成し、このレジストパタ ーンをマスクにして、遮光膜をウエットエッチングでパターユングして、 5 μ m幅の通常 パターンと、 1 μ m幅のグレートーンパターン(大型 FPD用露光機の解像限界以下の 微細遮光パターン及び微細透過部カゝらなるパターン)を有する FPD用大型フォトマ スクを作製した。 [0046] Next, using the large-sized photomask blank for FPD produced above, after washing treatment (pure water, normal temperature), a laser drawing photoresist (film thickness: 1 μm) was applied on the light shielding film. After that, heat treatment was performed. Next, after laser-drawing a predetermined pattern on the laser drawing photoresist, a resist pattern is formed by development processing, and the light shielding film is patterned by wet etching using the resist pattern as a mask. A large photomask for FPD that has a normal pattern of 5 μm width and a gray-tone pattern of 1 μm width (a fine light-shielding pattern that is less than the resolution limit of a large FPD exposure machine and a pattern that consists of a fine transmission part) Was made.
[0047] この FPD用大型フォトマスクに形成された遮光膜のパターンを、走査型電子顕微 鏡 (SEM)で観察したところ、いずれの遮光膜パターンについても、パターンを平面 視したときのパターンエッジの凹凸(ギザ)は 0. 1 μ m未満と良好であった。また、 FP D用大型フォトマスクの面内のパターン線幅均一性も良好であった。さらに、遮光膜 のパターンの断面形状を観察したところ、断面形状が垂直であり良好であった。  [0047] When the pattern of the light shielding film formed on the large photomask for FPD was observed with a scanning electron microscope (SEM), the pattern edge of each light shielding film pattern when the pattern was viewed in plan was observed. The unevenness (gaggedness) was good, less than 0.1 μm. In addition, the pattern line width uniformity within the surface of the large photomask for FPD was also good. Further, when the cross-sectional shape of the pattern of the light shielding film was observed, the cross-sectional shape was vertical and good.
[0048] (実施例 2)  [0048] (Example 2)
上記実施例 1において、遮光膜成膜後の加熱処理温度を 170°Cとした以外は実施 例 1と同様にして FPD用大型フォトマスクブランク及び、 FPD用大型フォトマスクを作 製した。 FPD用大型フォトマスクブランクにおける遮光膜の結晶性を X線回折法によ り測定したところ、 CrN (200)の回折ピークと Cr ( 110)の回折ピークが確認され、 Cr N (200)の回折ピークから算出される結晶子サイズは、 10nmであった。また、 FPD 用大型フォトマスクの遮光膜パターンについても、パターンを平面視したときのパター ンエッジの凹凸(ギザ)は 0. 1 μ m未満と良好であった。また、 FPD用大型フォトマス クの面内のパターン線幅均一性も良好であった。さらに、遮光膜のパターンの断面形 状を観察したところ、断面形状が垂直であり良好であった。 In Example 1 above, a large photomask blank for FPD and a large photomask for FPD were produced in the same manner as in Example 1 except that the heat treatment temperature after forming the light shielding film was set to 170 ° C. When the crystallinity of the light-shielding film in a large photomask blank for FPD was measured by X-ray diffraction, a CrN (200) diffraction peak and a Cr (110) diffraction peak were confirmed, and Cr N (200) diffraction was confirmed. The crystallite size calculated from the peak was 10 nm. In addition, for the light shielding film pattern of the large photomask for FPD, the unevenness (jaggedness) of the pattern edge when the pattern was viewed in plan was good at less than 0.1 μm. In addition, large photomass for FPD The pattern line width uniformity in the surface of the pattern was also good. Furthermore, when the cross-sectional shape of the pattern of the light shielding film was observed, the cross-sectional shape was vertical and good.
[0049] (比較例)  [0049] (Comparative example)
大型ガラス基板 (合成石英 10mm厚、サイズ 850mmX 1200mm)上に大型インラ インスパッタリング装置を使用し、膜表面に反射防止膜が形成された遮光膜の成膜を 行った。成膜は、大型インラインスパッタリング装置内に連続して配置された各スぺー ス(スパッタ室)に Crターゲットを各々配置し、まず、 Arガスと COガスをスパッタリン  Using a large in-line sputtering device on a large glass substrate (synthetic quartz 10mm thick, size 850mmX 1200mm), a light-shielding film with an antireflection film formed on the film surface was formed. For film formation, Cr targets are placed in each space (sputtering chamber) arranged continuously in a large in-line sputtering system, and Ar gas and CO gas are sputtered first.
2  2
グガスとして CrO膜を、さら〖こ、 Arガスと Oガスと Nガスをスパッタリングガスとして Cr  CrO film as the gas, Sarakuko, Cr as the sputtering gas with Ar gas, O gas and N gas
2 2  twenty two
ON膜を連続成膜して、 FPD用大型フォトマスクブランクを作製した。遮光膜は、超高 圧水銀ランプの波長である i線(365nm)から g線 (436nm)において、光学濃度で 3 . 5となるような膜厚とした。遮光膜が形成されたガラス基板について、加熱処理を行 わな力つた。この遮光膜について、ラザフォード後方散乱分析 (RBS)により深さ方向 における窒素の割合を測定したところ、ガラス基板側からクロム (Cr)の含有量を 1とし たときに窒素(N)の含有量が 0. 5未満の層と、窒素(N)の含有量が 0. 5以上となる 層の積層膜であって、窒素が遮光膜の表面側力もガラス基板側に向力つて段階的に 減少して!/ヽる膜であることが確認された。  A large photomask blank for FPD was fabricated by continuously forming an ON film. The light-shielding film was formed to have an optical density of 3.5 from the i-line (365 nm) to the g-line (436 nm), which is the wavelength of the ultra-high pressure mercury lamp. The glass substrate with the light-shielding film was subjected to heat treatment. The ratio of nitrogen in the depth direction of this light-shielding film was measured by Rutherford backscattering analysis (RBS). When the chromium (Cr) content was 1 from the glass substrate side, the nitrogen (N) content was A layered film of less than 0.5 layer and a layer in which the content of nitrogen (N) is 0.5 or more. Nitrogen is gradually reduced as the surface side force of the light shielding film is also directed toward the glass substrate side. It was confirmed that the film was sizzling!
[0050] また、この遮光膜にっ 、て、 X線回折法により結晶性を測定した。その結果、得られ た遮光膜は、実質的に CrN (200)の回折ピークのみ確認され、 CrN (200)の回折ピ 一タカ 算出される結晶子サイズは、 l lnmであった。 [0050] The crystallinity of this light-shielding film was measured by an X-ray diffraction method. As a result, in the obtained light-shielding film, substantially only the diffraction peak of CrN (200) was confirmed, and the crystallite size calculated for the diffraction peak of CrN (200) was l nm.
次に、上記実施例 1と同様に、 FPD用大型フォトマスクを作製した。  Next, in the same manner as in Example 1, a large photomask for FPD was produced.
この FPD用大型フォトマスクに形成された遮光膜のパターンを、走査型電子顕微 鏡 (SEM)で観察したところ、いずれの遮光膜パターンについても、パターンを平面 視したときのパターンエッジの凹凸(ギザ)は 0. 1 μ mをはるかに超えていた。また、 F PD用大型フォトマスクの面内のパターン線幅均一性は悪ィ匕し、遮光膜のパターンの 断面形状を観察したところ、基板側のパターン幅が小さぐ表面側のパターン幅が大 きいパターン形状となり、パターン形状も悪ィ匕する結果となった。  When the pattern of the light-shielding film formed on this large photomask for FPD was observed with a scanning electron microscope (SEM), the pattern edge irregularities (gagged edges) when the pattern was viewed in plan for any light-shielding film pattern. ) Was far above 0.1 μm. In addition, the uniformity of the pattern line width in the surface of a large FPD photomask is poor, and when the cross-sectional shape of the pattern of the light shielding film is observed, the pattern width on the front side is small and the pattern width on the front side is large. The result was a threshold pattern shape, and the pattern shape was also bad.
[0051] 上記の実施例 1、 2、比較例の FPD用大型フォトマスクを用いて、 FPDデバイスを 作製し、表示むらを確認したところ、実施例 2の FPD用大型フォトマスクを用いて 作製した FPDデバイスには表示むらはな力つたが、比較例 1の FPD用大型フォトマ スクを用いて作製した FPDデバイスには、フォトマスクのグレートーンパターン部での ギザが原因と思われる表示むらがあることが確認された。 [0051] An FPD device was fabricated using the large FPD photomasks of Examples 1 and 2 and Comparative Example above, and the display unevenness was confirmed. Using the large FPD photomask of Example 2, Although the manufactured FPD device has a strong display unevenness, the FPD device manufactured using the large FPD photomask of Comparative Example 1 has a display unevenness that seems to be caused by the jaggedness in the gray-tone pattern part of the photomask. It was confirmed that there is.

Claims

請求の範囲 The scope of the claims
[1] 透光性基板上に遮光膜を有するフォトマスクブランクにおいて、  [1] In a photomask blank having a light-shielding film on a light-transmitting substrate,
前記フォトマスクブランクは、前記遮光膜上に形成されるマスクパターンをマスクに してウエットエッチング処理により、前記遮光膜をパターユングするフォトマスクの作製 方法に対応するウエットエッチング処理用のフォトマスクブランクであって、  The photomask blank is a photomask blank for a wet etching process corresponding to a method for producing a photomask for patterning the light shielding film by a wet etching process using a mask pattern formed on the light shielding film as a mask. There,
前記遮光膜は、クロムを含む材料力 なり、かつ、 X線回折による CrN (200)の回 折ピーク力も算出される結晶子サイズが lOnm以下であることを特徴とするフォトマス クブランク。  The photomask blank is characterized in that the light-shielding film has a material force including chromium, and a crystallite size in which a diffraction peak force of CrN (200) by X-ray diffraction is calculated is lOnm or less.
[2] 前記遮光膜は、 X線回折法により得られる回折ピークが CrN (200)の回折ピークと Cr( 110)の回折ピークをもつ膜であることを特徴とする請求項 1記載のフォトマスクブ ランク。  2. The photomask according to claim 1, wherein the light-shielding film is a film having diffraction peaks obtained by an X-ray diffraction method having a diffraction peak of CrN (200) and a diffraction peak of Cr (110). Blank.
[3] 前記遮光膜は、深さ方向の略全域において窒素 (N)が含まれていることを特徴と する請求項 1又は 2記載のフォトマスクブランク。  [3] The photomask blank according to [1] or [2], wherein the light shielding film contains nitrogen (N) in substantially the entire region in the depth direction.
[4] 前記遮光膜の上層部に酸素を含む反射防止層を形成することを特徴とする請求項[4] The antireflection layer containing oxygen is formed on the upper layer portion of the light shielding film.
1乃至 3の何れか一に記載のフォトマスクブランク。 The photomask blank according to any one of 1 to 3.
[5] 前記フォトマスクブランクは、 FPDデバイスを製造するためのフォトマスクブランクで あることを特徴とする請求項 1乃至 4の何れか一に記載のフォトマスクブランク。 5. The photomask blank according to any one of claims 1 to 4, wherein the photomask blank is a photomask blank for manufacturing an FPD device.
[6] 請求項 1乃至 5の何れか一に記載のフォトマスクブランクにおける前記遮光膜を、ゥ エツトエッチング処理によりパター-ングして前記透光性基板上に遮光膜パターンが 形成されたことを特徴とするフォトマスク。 [6] The light-shielding film in the photomask blank according to any one of claims 1 to 5 is patterned by wet etching to form a light-shielding film pattern on the translucent substrate. Characteristic photomask.
[7] 透光性基板上に、クロムを含む材料力もなるターゲットを用いたスパッタリング成膜 により、クロムを含む遮光膜を形成する工程を有するフォトマスクブランクの製造方法 において、 [7] In a photomask blank manufacturing method including a step of forming a light-shielding film containing chromium on a light-transmitting substrate by sputtering film formation using a target having a material strength containing chromium.
前記フォトマスクブランクは、前記遮光膜上に形成されるレジストパターンをマスクに してウエットエッチング処理により、前記遮光膜をパターユングするフォトマスクの作製 方法に対応するウエットエッチング処理用のフォトマスクブランクであって、  The photomask blank is a photomask blank for wet etching corresponding to a method for producing a photomask for patterning the light shielding film by wet etching using a resist pattern formed on the light shielding film as a mask. There,
前記ウエットエッチング処理により形成される遮光膜パターンの断面形状が所定の 形状となるように、前記遮光膜を構成するクロムの結晶性を制御することを特徴とする フォトマスクブランクの製造方法。 The crystallinity of chromium constituting the light shielding film is controlled so that the cross-sectional shape of the light shielding film pattern formed by the wet etching process has a predetermined shape. Photomask blank manufacturing method.
[8] 前記遮光膜を形成した後、該遮光膜に加わる熱処理条件を調整することにより前 記遮光膜を構成するクロムの結晶性を制御することを特徴とする請求項 7記載のフォ トマスクブランクの製造方法。  8. The photomask blank according to claim 7, wherein after forming the light shielding film, the crystallinity of chromium constituting the light shielding film is controlled by adjusting heat treatment conditions applied to the light shielding film. Manufacturing method.
[9] 前記熱処理は、前記遮光膜上に形成するレジスト膜形成前、又はレジスト膜形成後 の加熱処理であることを特徴とする請求項 7又は 8記載のフォトマスクブランクの製造 方法。 [9] The method for producing a photomask blank according to [7] or [8], wherein the heat treatment is a heat treatment before or after the formation of the resist film formed on the light shielding film.
[10] 前記ウエットエッチング処理により形成される遮光膜パターンの断面形状が膜面に 対して略垂直となる形状であることを特徴とする請求項 7乃至 9の何れか一に記載の フォトマスクブランクの製造方法。  10. The photomask blank according to any one of claims 7 to 9, wherein a cross-sectional shape of the light shielding film pattern formed by the wet etching process is substantially perpendicular to the film surface. Manufacturing method.
[11] 前記フォトマスクブランクは、 FPDデバイスを製造するためのフォトマスクブランクで あることを特徴とする請求項 7乃至 10の何れか一に記載のフォトマスクブランクの製 造方法。 [11] The method for producing a photomask blank according to any one of [7] to [10], wherein the photomask blank is a photomask blank for producing an FPD device.
[12] 請求項 7乃至 11の何れか一に記載の製造方法により得られるフォトマスクブランク における前記遮光膜を、ウエットエッチング処理によりパターユングする工程を有する ことを特徴とするフォトマスクの製造方法。  [12] A method for manufacturing a photomask, comprising: a step of patterning the light shielding film in the photomask blank obtained by the manufacturing method according to any one of [7] to [11] by wet etching.
PCT/JP2007/053528 2006-02-28 2007-02-26 Photomask blank and photomask, and their manufacturing method WO2007099910A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008502774A JP5412107B2 (en) 2006-02-28 2007-02-26 Photomask blank manufacturing method and photomask manufacturing method
KR1020107023098A KR101248740B1 (en) 2006-02-28 2007-02-26 Photomask blank and photomask, and their manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006052621 2006-02-28
JP2006-052621 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007099910A1 true WO2007099910A1 (en) 2007-09-07

Family

ID=38459016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053528 WO2007099910A1 (en) 2006-02-28 2007-02-26 Photomask blank and photomask, and their manufacturing method

Country Status (4)

Country Link
JP (1) JP5412107B2 (en)
KR (2) KR101071471B1 (en)
TW (1) TWI417645B (en)
WO (1) WO2007099910A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203373A (en) * 2007-02-16 2008-09-04 Clean Surface Gijutsu:Kk Halftone blank and method for manufacturing halftone blank
JP2016105158A (en) * 2014-11-20 2016-06-09 Hoya株式会社 Photomask blank and method for manufacturing photomask using the same, and method for manufacturing display device
JP2019117376A (en) * 2017-12-26 2019-07-18 Hoya株式会社 Photomask blank and manufacturing method of photomask, manufacturing method of display device
WO2020261986A1 (en) * 2019-06-27 2020-12-30 Hoya株式会社 Thin film-attached substrate, multilayered reflective film-attached substrate, reflective mask blank, reflective mask, and method of manufacturing semiconductor device
JP2021089422A (en) * 2019-11-26 2021-06-10 Hoya株式会社 Mask blank, transfer mask, and method for producing semiconductor device
TWI838542B (en) 2019-06-27 2024-04-11 日商Hoya股份有限公司 Substrate with thin film, substrate with multi-layer reflective film, reflective mask base, reflective mask and method for manufacturing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390007B1 (en) * 2002-02-05 2003-07-04 주식회사 엔비자인 The mineral preservation was the water Purification method which a namo filtration
JP6301383B2 (en) * 2015-03-27 2018-03-28 Hoya株式会社 Photomask blank, photomask manufacturing method using the same, and display device manufacturing method
JP6540278B2 (en) * 2015-06-29 2019-07-10 大日本印刷株式会社 Optical element manufacturing method
KR102444967B1 (en) * 2021-04-29 2022-09-16 에스케이씨솔믹스 주식회사 Blank mask and photomask using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212841A (en) * 1989-02-14 1990-08-24 Toppan Printing Co Ltd Photomask and photomask blank
JPH05297570A (en) * 1992-04-20 1993-11-12 Toppan Printing Co Ltd Production of photomask blank
JPH07118829A (en) * 1993-10-19 1995-05-09 Nissin Electric Co Ltd Chromium nitride film coated base body and its production
JPH10163105A (en) * 1996-11-23 1998-06-19 Lg Semicon Co Ltd X-ray mask absorber and manufacturing method thereof
JPH11172426A (en) * 1997-12-05 1999-06-29 Ulvac Corp Film formation capable of regulating crystal orientation propety of thin film
JP3276954B2 (en) * 1998-07-31 2002-04-22 ホーヤ株式会社 Photomask blank, photomask, method for producing them, and method for forming fine pattern

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2785313B2 (en) * 1989-04-05 1998-08-13 凸版印刷株式会社 Photomask blank and photomask
JP4256038B2 (en) * 1999-09-21 2009-04-22 株式会社東芝 Heat treatment method
JP2002189280A (en) * 2000-12-19 2002-07-05 Hoya Corp Gray tone mask and method for producing the same
JP4158885B2 (en) * 2002-04-22 2008-10-01 Hoya株式会社 Photomask blank manufacturing method
JPWO2004051369A1 (en) * 2002-12-03 2006-04-06 Hoya株式会社 Photomask blank and photomask
JP3934115B2 (en) * 2003-03-26 2007-06-20 Hoya株式会社 Photomask substrate, photomask blank, and photomask
JP2005101226A (en) * 2003-09-24 2005-04-14 Hoya Corp Substrate holding device, substrate processing apparatus, substrate testing device, and substrate holding method
JP2005317929A (en) * 2004-03-29 2005-11-10 Hoya Corp Method of peeling positive resist film, method of manufacturing exposure mask, and resist peeling device
EP1584979A1 (en) * 2004-04-08 2005-11-15 Schott AG Mask blank having a protection layer
JP4361830B2 (en) * 2004-05-13 2009-11-11 信越化学工業株式会社 Method for evaluating in-plane distribution of resist pattern dimensions, photomask blank manufacturing method, photomask blank, and resist pattern forming process management method
KR20070039910A (en) * 2004-06-02 2007-04-13 호야 가부시키가이샤 Mask blank, manufacturing method thereof and transfer plate manufacturing method
JP2005010814A (en) * 2004-10-01 2005-01-13 Hoya Corp Gray tone mask and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212841A (en) * 1989-02-14 1990-08-24 Toppan Printing Co Ltd Photomask and photomask blank
JPH05297570A (en) * 1992-04-20 1993-11-12 Toppan Printing Co Ltd Production of photomask blank
JPH07118829A (en) * 1993-10-19 1995-05-09 Nissin Electric Co Ltd Chromium nitride film coated base body and its production
JPH10163105A (en) * 1996-11-23 1998-06-19 Lg Semicon Co Ltd X-ray mask absorber and manufacturing method thereof
JPH11172426A (en) * 1997-12-05 1999-06-29 Ulvac Corp Film formation capable of regulating crystal orientation propety of thin film
JP3276954B2 (en) * 1998-07-31 2002-04-22 ホーヤ株式会社 Photomask blank, photomask, method for producing them, and method for forming fine pattern

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203373A (en) * 2007-02-16 2008-09-04 Clean Surface Gijutsu:Kk Halftone blank and method for manufacturing halftone blank
JP2016105158A (en) * 2014-11-20 2016-06-09 Hoya株式会社 Photomask blank and method for manufacturing photomask using the same, and method for manufacturing display device
JP2019117376A (en) * 2017-12-26 2019-07-18 Hoya株式会社 Photomask blank and manufacturing method of photomask, manufacturing method of display device
JP7113724B2 (en) 2017-12-26 2022-08-05 Hoya株式会社 Method for manufacturing photomask blank and photomask, and method for manufacturing display device
WO2020261986A1 (en) * 2019-06-27 2020-12-30 Hoya株式会社 Thin film-attached substrate, multilayered reflective film-attached substrate, reflective mask blank, reflective mask, and method of manufacturing semiconductor device
JP6855645B1 (en) * 2019-06-27 2021-04-07 Hoya株式会社 Manufacturing method of thin film substrate, multilayer reflective coating substrate, reflective mask blank, reflective mask and semiconductor device
TWI838542B (en) 2019-06-27 2024-04-11 日商Hoya股份有限公司 Substrate with thin film, substrate with multi-layer reflective film, reflective mask base, reflective mask and method for manufacturing semiconductor device
JP2021089422A (en) * 2019-11-26 2021-06-10 Hoya株式会社 Mask blank, transfer mask, and method for producing semiconductor device
JP7154626B2 (en) 2019-11-26 2022-10-18 Hoya株式会社 MASK BLANK, TRANSFER MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Also Published As

Publication number Publication date
KR101071471B1 (en) 2011-10-10
KR20100124333A (en) 2010-11-26
KR20080106307A (en) 2008-12-04
TW200739247A (en) 2007-10-16
KR101248740B1 (en) 2013-03-28
TWI417645B (en) 2013-12-01
JPWO2007099910A1 (en) 2009-07-16
JP5412107B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP5086086B2 (en) Photomask blank and manufacturing method thereof, photomask manufacturing method, and semiconductor device manufacturing method
JP5412107B2 (en) Photomask blank manufacturing method and photomask manufacturing method
JP6823703B2 (en) Photomask blank and its manufacturing method, photomask manufacturing method, and display device manufacturing method
KR101145453B1 (en) Mask blank and photomask
CN109254496B (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
WO2007074806A1 (en) Photomask blank, photomask manufacturing method and semiconductor device manufacturing method
EP2657764B1 (en) Manufacturing method of a photomask blank
KR101333931B1 (en) Mask blank, and photomask
JP2012008546A (en) Method for manufacturing multilevel gradation photomask and method for transferring pattern
WO2007074810A1 (en) Mask blank and photomask
CN111801618A (en) Mask blank, phase shift mask and method for manufacturing semiconductor device
KR20160024204A (en) Blankmask for Flat Panel Display and method for fabricating photomask using the same
JP5219201B2 (en) Photomask, photomask blank, photomask manufacturing method, and pattern transfer method
JP7154626B2 (en) MASK BLANK, TRANSFER MASK, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE
KR101543288B1 (en) Multi-gray scale photomask, photomask blank and pattern transcription method
JP5219200B2 (en) Photomask, photomask blank, photomask manufacturing method, and pattern transfer method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008502774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07737380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020107023098

Country of ref document: KR