WO2007099849A1 - Mag-lev device - Google Patents

Mag-lev device Download PDF

Info

Publication number
WO2007099849A1
WO2007099849A1 PCT/JP2007/053285 JP2007053285W WO2007099849A1 WO 2007099849 A1 WO2007099849 A1 WO 2007099849A1 JP 2007053285 W JP2007053285 W JP 2007053285W WO 2007099849 A1 WO2007099849 A1 WO 2007099849A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
value
excitation voltage
mode
excitation
Prior art date
Application number
PCT/JP2007/053285
Other languages
French (fr)
Japanese (ja)
Inventor
Mimpei Morishita
Original Assignee
Toshiba Elevator Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Kabushiki Kaisha filed Critical Toshiba Elevator Kabushiki Kaisha
Priority to CN200780006369.1A priority Critical patent/CN101390282B/en
Publication of WO2007099849A1 publication Critical patent/WO2007099849A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/02Guideways; Guides
    • B66B7/04Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Definitions

  • the present invention relates to a magnetic levitation apparatus that supports a levitated body in a non-contact manner by normal conducting magnetic levitation.
  • Normally-conducting suction type magnetic levitation equipment is a clean room transport system in railways and semiconductor factories such as H SST (High Speed Surface Transport) and Trans-Rabbit where noise and dust generation are eliminated. Has already been put to practical use. In addition, attempts have been made to apply this magnetic levitation device to elevator car guide devices (see Patent Document 1) and to doors.
  • an electromagnet is opposed to a ferromagnetic member, and the levitated body is levitated by using an attractive force generated between the electromagnet and the ferromagnetic member.
  • the magnetic levitation system is basically unstable, and it is necessary to take measures to stabilize it.
  • the gap height is detected by a gap sensor, and it is feed-knocked to the drive system to achieve stability.
  • a sensor target suitable for the gap sensor to be used is necessary, and the sensor target must be laid along with the ferromagnetic member.
  • the excitation current value of the electromagnet is compared with the reference value with a hysteresis comparator, and when the excitation current is larger than the reference value, the excitation voltage is switched to negative, and when the excitation current is smaller, the excitation voltage is switched to positive.
  • a method of making the switching frequency proportional to the floating gap length see Non-Patent Document 3).
  • the excitation current of the electromagnet converges to zero, so there is no problem.
  • the electromagnet As a result, a transient control current continues to flow through the coil and the coil temperature rises. As the temperature rises, the electrical resistance of the coil increases, and the excitation current force also increases the output error of the observer that estimates the levitating gear length. As a result, it becomes increasingly difficult to maintain the floating state, and the floating body comes into contact.
  • levitation control is performed while measuring the resistance value of the coil, and based on the measured resistance value.
  • the excitation voltage when the current target value is zero can be expressed as the sum of all offset voltages mixed in the closed loop of the magnetic levitation control system at that time.
  • the accuracy of resistance estimation can be improved by subtracting the stored excitation voltage value from the excitation voltage value stored and used for resistance estimation.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-19286
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-204609
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-117705
  • Patent Document 4 Japanese Patent Application Laid-Open No. 61-102105
  • Non-Patent Document 1 Mizuno, et al .: “Research on practical application of displacement sensorless magnetic bearing”, Electrical Proceedings of the conference D volume, 116, No. 1, 35 (1996)
  • Non-Patent Document 2 Moriyama: “AC Magnetic Levitation Using a Differential Feedback Power Amplifier” 1997 IEEJ National Convention Proceedings, No. 1215
  • Non-Patent Document 3 Mizuno, et al .: “Self-sensing magnetic levitation using hysteresis amplifier”, Transactions of the Society of Instrument and Control Engineers, 32, No. 7, 1043 (1996)
  • the conventional magnetic levitation apparatus requires a gap sensor and a sensor target in order to realize a stable levitation state of the levitated body. For this reason, there is a problem that the apparatus becomes large and complicated, resulting in an increase in cost.
  • the present invention has been made on the basis of a forceful situation. Coil resistance is always estimated with good accuracy in consideration of the buoyancy of the levitated body, and stable levitation control is performed regardless of the buoyancy of the levitated body.
  • An object of the present invention is to provide a magnetic levitation device capable of performing the above.
  • a magnetic levitation apparatus includes a guide made of a ferromagnetic member and an electromagnet opposed to the guide through a gap.
  • An excitation voltage calculation unit for calculating an excitation voltage value for stabilizing a magnetic circuit formed by the magnet unit based on the value, a speed detection unit for detecting a fluctuation speed of the gap displacement, and the excitation voltage calculation
  • a coil resistance of the electromagnet based on the exciting voltage value obtained by the sensor, the coil current value obtained by the sensor, and the fluctuation speed obtained by the speed detector. Calculate resistance A resistance measuring unit, and a control unit that feeds back the coil resistance value obtained by the resistance measuring unit to the excitation voltage calculating unit to control the floating of the
  • the magnetic levitation apparatus is based on the basic configuration, and includes a magnet unit including a permanent magnet sharing a magnetic path with the electromagnet in the gap, and the coil current of the electromagnet.
  • the target value setting unit that alternately sets a target value to a zero value or a non-zero value, a coil current converging unit that converges the coil current of the electromagnet to the target value set by the target value setting unit, and the coil
  • An excitation voltage calculation unit for calculating an excitation voltage value for stabilizing a magnetic circuit formed by the magnet unit based on the coil current value obtained by the sensor unit in accordance with a convergence operation by the current convergence unit;
  • the target value is set to a zero value, the excitation voltage value obtained by the excitation voltage calculation unit, the coil current value obtained by the sensor unit, and the speed detection unit
  • An offset calculation unit that calculates a DC component of the excitation voltage value based on the fluctuation speed, a voltage storage unit that stores a calculation result of the offset calculation unit,
  • the magnetic levitation device is based on the basic configuration, and at least the attitude of the levitation body and the attitude change speed with respect to the ferromagnetic member are determined based on the coil current value and the excitation voltage value.
  • a posture estimation unit for estimation is further provided, and the speed detection unit calculates the fluctuation speed based on the posture change speed estimated by the posture estimation unit.
  • the magnetic levitation device is the one according to the second configuration, wherein the auxiliary support portion maintains the positional relationship between the levitation body and the guide in a predetermined state when the levitation body is not in the levitation state.
  • a contact detection unit for detecting contact between the floating body and the guide, and the contact detection A posture calculation unit that outputs the posture of the floating body with respect to the guide at the time of contact based on the output of the unit, an estimation initialization unit that initializes the posture estimation unit at the time of contact based on the output of the contact detection unit, and the posture And an initial value setting unit that sets an output value of the posture calculation unit as an initial value of the posture estimation unit when the estimation unit is initialized.
  • the magnetic levitation device is the one according to the second configuration, wherein the estimated value of the posture change speed obtained by the posture estimation unit is integrated by multiplying by a predetermined gain, and the integration result is integrated with the excitation voltage. And an estimation error correction unit that feeds back the addition result to the posture estimation unit as a new excitation voltage value.
  • the magnetic levitation apparatus is based on the second configuration, and mode excitation that calculates an excitation voltage for generating an attractive force that contributes to the degree of freedom of movement of the levitated body for each predetermined mode.
  • the apparatus further includes a voltage calculation unit and a mode excitation current calculation unit that calculates an excitation current for generating a suction force that contributes to the degree of freedom of movement of the levitated body for each predetermined mode.
  • the attitude of the levitating body with respect to the ferromagnetic member and the temporal change of the attitude are determined for each degree of freedom of movement of the levitating body. It is characterized by estimation.
  • a magnetic levitation apparatus is the one according to the fifth configuration, wherein the estimated value of the posture change speed obtained by the posture estimation unit is multiplied by a predetermined gain and integrated, and the integration result is integrated for each mode.
  • a mode estimation error correction unit that adds the excitation voltage value to the posture estimation unit as a new mode excitation voltage value is added to the excitation voltage value.
  • the magnetic levitation device is based on the basic configuration, wherein the resistance measurement unit calculates a power calculation result obtained by multiplying at least a linear combination of the excitation voltage value and the coil current value by the coil current.
  • An integrator for integrating is provided.
  • the coil resistance value can be accurately measured even if the levitation body is shaken due to some disturbance, and the levitation state is stabilized based on the measured value.
  • the levitation control parameters can be adapted so that the characteristics can be maintained. As a result, the stability of the magnetic levitation system and the transient response to disturbances can always be maintained at the time of design, improving the reliability of the equipment.
  • FIG. 1 is a diagram showing a configuration of a magnetic levitation apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a basic configuration of a magnetic levitation apparatus for explaining the principle of the present invention.
  • FIG. 3 is a block diagram showing a detailed configuration of a suction force control unit of the apparatus according to the first embodiment.
  • FIG. 4 is a block diagram showing a detailed configuration of a suction force control unit of the apparatus according to the first embodiment.
  • FIG. 5 is a block diagram showing a detailed configuration of a suction force control unit of the apparatus according to the first embodiment.
  • FIG. 6 is a diagram showing a configuration of a magnetic levitation apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a perspective view showing a configuration of a frame portion of a magnetic levitation apparatus according to a second embodiment.
  • FIG. 8 is a perspective view showing a configuration around a magnet unit of an apparatus according to a second embodiment.
  • FIG. 9 is an elevation view showing the configuration of the magnet unit of the apparatus according to the second embodiment.
  • FIG. 10 is a block diagram showing a detailed configuration of a control device of the device according to the second embodiment.
  • FIG. 11 is a block diagram showing a configuration of a mode control voltage arithmetic circuit in the control device of the second embodiment.
  • FIG. 12 is a block diagram showing the configuration of another mode control voltage calculation circuit in the controller of the magnetic levitation apparatus according to the second embodiment.
  • FIG. 13 is a diagram showing a configuration of a magnetic levitation apparatus according to a third embodiment.
  • FIG. 14 is a diagram showing a configuration of a magnetic levitation apparatus according to a fourth embodiment.
  • FIG. 2 is a diagram showing a basic configuration of a magnetic levitation apparatus for explaining the principle of the present invention.
  • the magnetic levitation apparatus 1 is fixed to the ground with a magnet unit 107 composed of a permanent magnet 103 and an electromagnet 105, a levitated body 111 composed of the magnet unit 107 and a load load 109, and a structural member (not shown).
  • the guide 113 is provided.
  • the magnetic levitation device 1 controls the attractive force of the magnet mute 107 to stably support the levitated body 111 in a non-contact manner, and the attractive force control unit 115 And a driver 116 for exciting the electromagnet 105 based on the output.
  • Reference numeral 131 denotes an auxiliary support portion.
  • the auxiliary support portion 131 has a U-shaped cross section, and the magnet unit 107 is fixed to the upper surface of the lower inner side. It also serves as a table for the anti-vibration table.
  • the guide 113 is made of a ferromagnetic member.
  • the electromagnet 105 is configured by installing coils 119 and 119 on iron cores 117a and 117b, and iron cores 117a and 117b are arranged at both magnetic pole ends of the permanent magnet 103, respectively.
  • the coils 119 and 119 ′ are connected in series so that the magnetic flux of the magnetic path formed by the guide 113 to the iron core 117a to the permanent magnet 103 to the iron core 117b to the guide 113 is strengthened (weakened) by the excitation of the electromagnet 105.
  • the attractive force control unit 115 includes an excitation voltage calculation unit 125.
  • the excitation voltage calculator 125 calculates a voltage for exciting the magnet 105 based on the flying gap length obtained by the gap sensor 121 and the coil current value obtained by the current sensor 123.
  • the driver 116 supplies an excitation current to the coils 119 and 119 ′ via the lead wire 128 based on the excitation voltage calculated by the excitation voltage calculation unit 125.
  • F is the attractive force of the magnet unit 107
  • m is the mass of the levitated body 111
  • R is the electrical resistance when the coils 119, 119, and the lead wire 128 are connected in series (hereinafter referred to as coil resistance)
  • Z is the levitation gap length
  • i is the excitation current of the electromagnet 105
  • is the main magnetic flux of the magnet unit 107
  • e is the excitation voltage of the electromagnet 105
  • symbol " ⁇ " is dZdt
  • L is L ⁇ , self-inductance of electromagnet 105 when ⁇ is ⁇
  • Equation 1 has the following equation of state.
  • the state vector x, the system matrix A, the control matrix b, and the disturbance matrix d are expressed as follows.
  • U is an external force.
  • Equation 4 each parameter in Equation 4 is as follows.
  • Each element of x in Equation 3 is a levitation state quantity
  • C is an output matrix, and is determined by a state quantity detection method used for calculating the excitation voltage e.
  • the gap sensor 121 and the current sensor 123 are used, and when the speed is obtained by differentiating the signal of the gap sensor 121, C becomes a unit matrix.
  • F is the proportional gain of X
  • K is the integral gain of A i
  • the excitation voltage e is
  • the levitated body 111 is levitated with zero power control.
  • the magnetic levitation apparatus 1 does not use the gap sensor 121, but as an estimation means for estimating the levitation gap length deviation ⁇ z and its velocity d ( ⁇ z) Zdt from the excitation current A i.
  • an observer a same-dimensional state observer (hereinafter referred to as an observer) is applied.
  • the observer is expressed by the following equation.
  • Equation 8 is the estimated state vector of the observer, and ⁇ , ⁇ , and ⁇ are the parameters that determine the poles of the observer.
  • the estimation error of the state observer of Equation 7 is the initial value at the start of operations of Equation 3 and Equation 7, respectively.
  • Equation 15 Equation 11 In other words, if the values of the flying gap length deviation ⁇ , its speed dAz) / dt and the excitation current ⁇ are known, the initial value of the observer
  • Equation 17 Is set to be equal to, the estimated initial force error and the levitating gear from the excitation current ⁇ with little error
  • FIG. 1 is a diagram showing the configuration of the magnetic levitation apparatus according to the first embodiment of the present invention, and the overall configuration thereof is indicated by 1 ′.
  • the gap sensor 121 is omitted.
  • the floating body 111 and the contact detection unit 130 are provided in the vicinity of the floating body 111.
  • the contact detection unit 130 detects that the floating body 111 has changed from the non-contact state to the contact state using, for example, the piezoelectric rubber 129.
  • the attractive force control unit 115 includes a posture estimation unit 133, a posture calculation unit 135, an estimation initialization unit 137, and an initial value setting unit 139.
  • Attitude estimation unit 133 uses excitation current Ai force and levitation gap length deviation ⁇ and its speed.
  • the posture calculation unit 135 calculates X that should be the initial value of the observer when shifting to the posture force floating state maintained by the auxiliary support unit 131.
  • the estimation initialization unit 137 first calculates the output value of the observer by contact.
  • the initial value setting unit 139 sets X calculated by the attitude calculation unit 135 to the initialized observer.
  • the levitated body 111 can be reliably transferred to the levitation state and maintained in the levitation state.
  • the magnetic levitation device 1 ′ is provided with a resistance measurement unit 140 for measuring the resistance R of the coils 119 and 119 ′.
  • the resistance measuring unit 140 measures the coil resistance R as follows.
  • Equation 16 When R is measured as a measured value r at a certain time, the right side of Equation 16 has a residual represented by the following equation:
  • the residual ⁇ is positive when the measured value r is larger than R, and negative when the measured value r is small. Measured value r as an appropriate residual gain
  • Equation 12 Even if Z changes, the residual ⁇ is not affected by shaking. Substituting Equation 12 into Equation 13, and finally the measured value r can be calculated by the following equation.
  • Equation 14 can be calculated using. Then, if appropriate noise removal processing such as a low-pass filter or average value calculation is applied to the input (coil current, estimated speed value, excitation voltage) and output of Equation 20, the value of the coil resistance R is increased. It can be measured with accuracy.
  • appropriate noise removal processing such as a low-pass filter or average value calculation is applied to the input (coil current, estimated speed value, excitation voltage) and output of Equation 20, the value of the coil resistance R is increased. It can be measured with accuracy.
  • Equation 4 increased due to temperature rise.
  • an estimation error correction unit 142 is provided so as not to cause an error in the values and speed estimation values.
  • This estimation error correction unit 142 adds a predetermined gain to the velocity estimation value of the posture estimation unit 133.
  • Multiplier gain compensator 144 integrator 146 that integrates the output of gain compensator 144, and adder 148 that adds the output of integrator 146 and the excitation voltage value of excitation voltage calculator 125 . Then, the output of the adder 148 is output as an excitation voltage value introduced into the posture estimation unit 133. With such a configuration, even if the offset voltage changes due to temperature fluctuation, the influence on the estimated posture value can be minimized.
  • a target value is set in the excitation voltage calculator 125 so that the offset voltage does not affect the measured value.
  • a part 150 and a coil current converging part 152 are provided.
  • the target value setting unit 150 alternately sets the target value of the coil current to a zero or non-zero value at a predetermined time interval.
  • the coil current converging unit 152 converges the coil current value, which is a sensor output, to the target value set by the target value setting unit 150.
  • the resistance value measuring unit 140 includes a voltage storage unit 154, a voltage input compensation unit 156, and a resistance calculation unit 158.
  • the voltage storage unit 154 stores the excitation voltage value when the target value setting unit 150 sets the target value to zero.
  • the voltage input compensation unit 156 subtracts the offset voltage value output from the voltage storage unit 154 from the excitation voltage value of the electromagnet 105 obtained based on the coil current value that is the sensor output as the excitation voltage compensation value. Output.
  • the resistance calculation unit 158 measures the coil resistance R according to Equation 14 using the excitation voltage compensation value and the coil current value.
  • the voltage storage unit 154 detects the DC component of the excitation voltage value during that time, and the target value setting unit 150 is not zero.
  • the value of the DC component is output to the voltage input compensation unit 156. Therefore, the coil resistance value output from the resistance calculation unit 158 is calculated based on the latest value of the DC component every time the target value setting unit 150 changes the output from zero to a non-zero value. .
  • the current sensor 123 is used. Now, let us consider output offsets depending on the respective temperatures of the current sensor 123 and the driver 116.
  • the former offset is the current offset i
  • the latter zoff offset is the voltage offset e.
  • the voltage storage unit 154 receives a signal reporting that zero is output from the target value setting unit 150, extracts the DC component value of e, and outputs the previous extraction result. .
  • the DC component value of e is extracted as follows.
  • the measured value e is set with ⁇ as an appropriate residual gain.
  • Equation 19 Even if Equation 19 changes, the residual ⁇ is not affected by the fluctuation.
  • Equation 25 the final measured value e can be calculated by the following equation.
  • Equation 27 uses the symbol of Equation 5,
  • Equations 27 and 28 can be calculated using. Then, if appropriate noise removal processing such as a low-pass filter or average value calculation is applied to the input (coil current, estimated speed value, excitation voltage) and output of Equation 27, zero is output from the target value setting unit 150.
  • the DC component e of the excitation voltage e when it is output can be measured with high accuracy.
  • Figure 4 shows the configuration of the zz DC DC voltage storage unit 154 that calculates this DC component e.
  • the voltage storage unit 154 includes a multiplier 160 that multiplies the resistance value R input from the resistance calculation unit 158 and the current value i input from the current sensor 123, and a coil resistance unit mO output from the multiplier 160.
  • Subtraction mO zz unit 162 for subtracting the excitation voltage e introduced from the coil current converging unit 152 from the voltage drop Ri of the coil, and the velocity estimation value obtained from the posture estimation unit 133
  • Gain gain compensator 164 that multiplies gain a / h and gain compensator 1 from the output of subtractor 162
  • Subtracter 166 that subtracts the calculation result of DC component e of 64 outputs and excitation voltage e, and subtraction zz dc
  • Integrator 168 that integrates the output of 166, and the current value i multiplied by gain lZb
  • Gain compensator 170 that outputs back electromotive force due to self-inductance, adder 172 that adds the outputs of gain compensator 170 and integrator 168, and the speed of convergence of DC component e to the output of adder 172
  • the gain compensator 174 that multiplies the convergence gain, the initial value setter 176 that outputs the initial value of the DC component e dc dc ac, the output of the gain compensator 174 and the output of the initial value setter 176 are added and the addition result And the subtractor dc
  • Adder 177 whose output result is introduced to 166, multiplier 178 that squares the current target value introduced from target value setting unit 150, and 1 is output only when the output of multiplier 178 rises from zero. Rising detector 180 to be selected, contact b is selected only when the output of the detector 180 is 1 and the output becomes 1, and in other cases, switch 182 that selects contact a is stored, and the output of switch 182 is stored. It consists of memory 184. Here, the output of the memory 184 is introduced into the contact point a of the switch 182, and the output of the adder 177 is introduced into the contact point b through the low-pass filter 186 for noise removal. With this configuration, the voltage storage unit 154 stores the DC component e at the moment when the output of the target setting unit shifts from zero to a non-zero value in the memory dc
  • the one-pass filter 186 may be inserted at the input end of the input signal.
  • Equation 2 9 e ⁇ ! Off Ri ! + N ⁇ + L ! 0 ⁇ -[0068]
  • the voltage storage unit 154 holds the voltage value e extracted when the target value setting unit 150 outputs zero. Part 154
  • the value While being stored, the value is output to the voltage input compensator 156 as an offset voltage.
  • the output value e of the input voltage storage unit 154 and the driver In the excitation voltage compensation unit 156, the output value e of the input voltage storage unit 154 and the driver
  • the compensation excitation voltage e is calculated according to the following equation.
  • the number 31 uses e,
  • Equation 5 Equation 5
  • i is a force that is an offset current of the current sensor, and its time derivative is zero
  • the detected value im including the offset of
  • the resistance calculation unit 158 uses the algorithm related to Equation 20 described above based on the compensation excitation voltage e output from the excitation voltage compensation unit 156 and the detection value i of the current sensor 123 to zm m
  • Coil resistance R is calculated. That is, the number 20
  • Equation 36 If the coil resistance is calculated by Equation 36, the measurement result agrees with the coil resistance value R.
  • the speed of the calculation of Equation 36 is
  • Equation 36 can be calculated using. Then, if appropriate noise removal processing such as low-pass filter and average value calculation is applied to the input (coil current, speed estimation value, excitation voltage) and output of Equation 36, the value of coil resistance R is increased. It can be measured with accuracy.
  • Figure 5 shows the configuration of the resistance calculation unit 158 that calculates the coil resistance R.
  • the resistance calculation unit 158 calculates the current value i input from the current sensor 123 and the coil resistance m
  • a multiplier 188 that multiplies the measured value r, which is the result, a subtracter 190 that subtracts the compensation voltage e of the voltage input compensation unit 156 from the output of the multiplier 188, and a velocity estimation value zm obtained from the attitude estimation unit 133
  • Gain compensator 192 that multiplies gain a / h and gain compensator 1 from the output of subtractor 190
  • Subtractor 194 that subtracts the output of 92, and multiplication m that multiplies the output of subtractor 194 by the current value i.
  • an integrator 198 that integrates the output of the multiplier 196, a gain compensator 200 that multiplies the current value i by the gain lZ (2b) m 31 and outputs the magnetic energy stored in the coil, and a gain compensator 200.
  • an adder 202 that adds the outputs of the integrator 198, a gain compensator 204 that multiplies the output of the adder 172 by a convergence gain related to the convergence speed of the measurement value r, and an initial value of the measurement value r.
  • the output of the initial value setter 206 and the gain compensator 204 is added to the output of the initial value setter 206, and the result of the addition is used as the calculation result of the measured value r, and the output result is introduced into the multiplier 188.
  • An adder 207 and a low-pass filter 208 that removes noise from the output of the adder 207 are configured. With such a configuration, the resistance calculation unit 158 performs the calculation based on Equation 36, and the measurement value r, which is the calculation result, converges to the true coil resistance value R. Then, the calculation result is output to the attitude estimation unit 133 and the coil current convergence unit 152 via the low-pass filter 208.
  • the input signal may be introduced into the resistance calculation unit 158 via the low-pass filter 208.
  • the resistance calculation unit 158 when the value of the coil resistance connected to the driver 116 is measured by using the output value e of the voltage input compensation unit 156 as zm, the current offset i, zof, and voltage Even if the offset e fluctuates, the zoff
  • the measurement result can always match the true value. In other words, even if an offset voltage is generated in the current detection unit (current sensor 123) or the excitation unit (driver 116) due to temperature fluctuations, etc., it is always corrected using the compensation value of the excitation voltage according to the offset voltage. Resistance value can be measured. Also, before starting ascent, zero is output from the target value setting unit 150 and the DC component e
  • the coil resistance R can be measured with high accuracy even if the DC component e before the start of levitation is used. Then again the target value setting section
  • Zero target value is output from 150, and measurement of DC component e of excitation voltage e starts zz DC
  • posture estimation section 133 can always output a correct gap length estimation value and speed estimation value based on the resistance value. As a result, it is possible to always maintain a stable floating state against temperature fluctuations and disturbance to the floating body 111.
  • the coil resistance R measured by the resistance measurement unit 140 is introduced into the excitation voltage calculation unit 125.
  • a predetermined transient response to the disturbance For example, the feedback constant F in Equation 13 is determined so as to be obtained.
  • F is given as a function of the coil resistance R at the time of control system design, if the value of F is changed based on the coil resistance R, the transient response of the levitated body to the disturbance becomes constant with respect to the temperature fluctuation.
  • the floating body 11 Since the value of the feedback constant F is changed in the coil current converging unit 152 based on the coil resistance R measured by the resistance measuring unit 140, the floating body 11 The response of 1 is constant with respect to temperature fluctuation, and the stability of the floating state can be secured. Also, when measuring resistance, the speed of change of the floating gap length of the levitated body 111 is taken into consideration, and as a result, the reliability can be improved, the gap sensor is not required, the device can be simplified and the size can be reduced. Cost reduction can be realized.
  • the second embodiment is characterized in that the excitation voltage and the excitation current are calculated for each mode of the levitating body motion coordinate system.
  • the magnetic levitation apparatus of the present invention is applied to an elevator will be described as an example.
  • FIG. 6 is a diagram showing a configuration of a magnetic levitation apparatus according to the second embodiment of the present invention, and a configuration in a case where this magnetic levitation apparatus is applied to an elevator is indicated by reference numeral 10 as a whole.
  • FIG. 7 is a perspective view showing the configuration of the frame portion of the magnetic levitation device
  • FIG. 8 is a perspective view showing the configuration around the magnet unit of the magnetic levitation device
  • FIG. 9 is the configuration of the magnet unit of the magnetic levitation device.
  • guide rails 14, 14, a moving body 16, and four guide units 18 a to 18 d are formed on the inner surface of the elevator shaft 12.
  • the guide rails 14 and 14 are made of a ferromagnetic member and are laid in the elevator shaft 12 by a predetermined mounting method.
  • the moving body 16 corresponds to the floating body of the magnetic levitation apparatus described above.
  • the moving body 16 moves up and down along the guide rails 14 and 14 'through a driving mechanism (not shown) such as a rope 15 lifting machine.
  • the guide units 18a to 18d are attached to the moving body 16, and guide the moving body 16 to the guide rails 14, 14 'without contact.
  • Car 20 and guide units 18a to 18d are attached to moving body 16.
  • the moving body 16 includes a frame portion 22 having a strength capable of maintaining a predetermined positional relationship between the guide units 18a to 18d. As shown in FIG. 5, guide units 18a to 18d facing the guide rails 14 and 14 'are attached to the four corners of the frame portion 22 by a predetermined method.
  • the guide unit 18 includes a base 24 made of non-magnetic material (for example, aluminum or stainless steel) or plastic, an X-direction proximity sensor 26 (26b, 26b '), and a y-direction proximity sensor. 28 (28b, 28b ') and the magnet unit 30 are mounted by a predetermined method. Proximity sensors 26 and 28 function as contact detectors that detect contact between guide unit 18 and guide rails 14 and 14.
  • the magnet unit 30 is composed of a central iron core 32, permanent magnets 34 and 34 ', and electromagnets 36 and 36', and as shown in Fig. 9, the same polarity as the permanent magnets 34 and 34 '. They face each other through the central iron core 32! / As a whole, they are assembled into an E shape.
  • the electromagnets 36 and 36 are inserted into the coil 40 (40,) after the L-shaped iron core 38 (38,) is inserted into the iron core 38.
  • a flat core 42 is attached to the tip of (38 ').
  • a solid lubricating member 43 is attached to the tip of the central iron core 32 and the electromagnets 36 and 36 ′.
  • This solid lubricating member 43 prevents the magnet unit 30 from being attracted and fixed to the guide rail 14 (14 ') by the attractive force of the permanent magnets 34, 34' when the electromagnets 36, 36 'are not excited, and It is provided to prevent the moving body 16 from moving up and down even in the adsorbed state.
  • this solid lubricating member 43 for example, there is a material containing Teflon (registered trademark), graphite, disulfurium molybdenum or the like.
  • the coils 40b and 40b ' can be individually excited to independently control the direction of the attractive force acting on the guide rail 14' and the X direction. Since details of this control method are described in Patent Document 1, detailed explanation is omitted here.
  • Each suction force of the guide units 18a to 18d is controlled by the control device 44 used as the suction force control unit described above, and the car 20 and the frame part 22 are not in contact with the guide rails 14, 14, and so on. Be guided to.
  • the control device 44 can be configured as a single force as a whole as shown in FIG. 10, for example, as shown in FIG.
  • FIG. 10 is a block diagram showing a configuration in the control device in the same embodiment
  • FIG. 11 is a block diagram showing a configuration of a mode control voltage arithmetic circuit in the control device.
  • an arrow line indicates a signal path
  • a bar line indicates a power path around the coil 40.
  • the control device 44 includes a sensor unit 61, an arithmetic circuit 62, and power amplifiers 63a, 63a, to 63d, 6
  • the sensor unit 61 is attached to the car 20 and detects magnetomotive force or magnetic resistance in the magnetic circuit formed by the magnet units 30a to 30d, or changes in the movement of the moving body 16.
  • the arithmetic circuit 62 calculates an applied voltage for exciting the coils 40a, 40a, ⁇ 40d, 40d ′ that guide the moving body 16 in a non-contact manner based on the signal from the sensor unit 61. Used as a suction force control unit.
  • the power amplifiers 63a, 63a ′ to 63d, 63d ′ are used as excitation units for supplying power to the coils 40 based on the output of the arithmetic circuit 62.
  • the power supply 46 supplies power to the power amplifiers 63a, 63a 'to 63d, 63d' and also supplies power to the constant voltage generator 48 at the same time.
  • the power source 46 has a function of converting the alternating current supplied from the elevator shaft 12 external force by a power line (not shown) for lighting and door opening / closing to a direct current suitable for supplying power to the amplifier. .
  • the constant voltage generator 48 Even if the voltage of the power supply 46 fluctuates due to the supply of a large current to the power amplifier 63, the constant voltage generator 48 always operates with the constant voltage 62 and the proximity sensors 26a, 26a 'to 26d, 26d. ', 28a, 28a' to 28d, 28d '[Supply power. Thus, the arithmetic circuit 62 and the proximity sensors 26a, 26a ′ to 26d, 26d ′, 28a, 28a ′ to 28d, and 28d ′ always operate normally.
  • the sensor unit 61 includes the proximity sensors 26a, 26a 'to 26d, 26d', 28a, 28a 'to 28d, 28d, and the current detectors 66a, 66a, to detect the excitation current of each coil 40. 66d, 66d '.
  • the arithmetic circuit 62 performs guidance control of the moving body 16 in each mode of the motion coordinate system shown in FIG. Is doing.
  • the above-mentioned modes are y mode (back and forth motion mode) representing the back and forth movement along the y coordinate of the center of gravity of the moving body 16, X mode (left and right motion mode) representing the left and right motion along the X coordinate, and movement.
  • ⁇ mode rolling mode representing rolling around the center of gravity of the body 16
  • mode representing pitching around the center of the moving body 16 (pitch mode)
  • ⁇ mode yo mode representing gyration around the center of gravity of the moving body 16 is there.
  • the arithmetic circuit 62 also performs guidance control for the ⁇ mode (full suction mode), ⁇ mode (twist mode), and ⁇ mode (distortion mode).
  • the “total attractive force” exerted on the guide rails 14 and 14 ′ by the magnet units 30a to 30d the “torsion torque” around the z-axis exerted on the frame portion 22 by the magnet boots 30a to 30d, and the magnet unit 30a.
  • 30d force S frame ⁇ 22 and magnet unit 30b, 30c force S frame ⁇ 22 three modes regarding ⁇ distortion force '' which distorts frame part 22 symmetrically with respect to z axis by rotating ⁇ nore It is.
  • the coil current of the magnet units 30a to 30d is converged to zero, so that the moving body can be stably supported only by the attractive force of the permanent magnet 34 regardless of the weight of the load.
  • the guidance control is performed by so-called “zero power control”.
  • the arithmetic circuit 62 has a function of calculating an excitation current for each mode expressed by a linear combination of excitation currents that generate an attractive force that contributes to the freedom of movement of the moving body 16 that is a levitating body. It has a function to calculate the excitation voltage for each mode expressed by linear combination. Specifically, it is structured as follows.
  • the calculation circuit 62 includes a target value setting unit 74, a resistance measurement unit 64, a current deviation coordinate conversion circuit 83, a control voltage calculation circuit 84, and a control voltage coordinate reverse conversion.
  • a circuit 85 and a speed estimated value coordinate inverse transform circuit 87 are included.
  • the target value setting unit 74 outputs zero or non-zero values alternately in a predetermined cycle as the excitation current target value of the ⁇ mode (all-suction mode) among the eight modes. In the mode and X mode, a predetermined value is output when the device is stopped as described later.
  • the resistance measuring unit 64 is configured to detect the excitation current detection values of the coils 40a, 40a 'to 40d, 40d' and the excitation voltage signals to the respective amplifiers 63a, 63a, to 63d, 63d of the calculation circuit 62. ea, ea, ⁇ ed, ed ′, the output value of the target value setting unit 74, and the output value of the speed estimated value coordinate inverse transformation circuit 87 Based on! /, The electrical resistance value of each coil is output.
  • the current deviation coordinate conversion circuit 83 has a current deviation signal Aia,
  • ⁇ ia, ⁇ ⁇ id, ⁇ id 'causes current deviation related to the movement of the center of gravity of the moving body 16 in the y direction ⁇ iy, electrical deviation related to the movement in the X direction Aix, current deviation related to rolling around the center of gravity ⁇ , A current deviation Ai ⁇ related to pitching of the moving body 16, a current deviation ⁇ related to the bowing around the same center of gravity, and a current deviation ⁇ , ⁇ , ⁇ relating to ⁇ , ⁇ , ⁇ applying stress to the frame portion 22 are calculated.
  • the control voltage calculation circuit 84 serves as a mode excitation voltage calculation unit, and outputs Aiy, ⁇ , ⁇ , ⁇ , ⁇ , and the output of the resistance measurement unit 64, the target value setting unit 74, and the current deviation coordinate conversion circuit 83, respectively. From ⁇ , ⁇ , ⁇ , y-, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -, ⁇ -mode electromagnet control voltages ey, ex, e ⁇ , e6 , ⁇ , e ⁇ , e ⁇ , ey ⁇ S.
  • the control voltage coordinate inverse transformation circuit 85 is the output of the control voltage calculation circuit 84, ey, ex, e ⁇ , e6, e ⁇ , e ⁇ , e ⁇ , and the respective magnet excitation voltages of the magnet units 30a to 30d. ea, ea 'to ed, ed' are calculated.
  • the operation result of the control voltage coordinate inverse transformation circuit 85, that is, ea, ea 'to ed, ed', and a single amplifier 63a, 63a 'to 63d, 63d' is given.
  • Speed estimated value coordinate inverse transform circuit 87 is a mode-specific displacement speed estimated value calculated by control voltage calculation circuit 86 for each mode of y, x, 0, ⁇ , ⁇ in control voltage calculation circuit 84.
  • ⁇ xa ⁇ ⁇ xd is given to the resistance measuring unit 64.
  • the target value setting unit 74 may be configured by at least one target value setting unit 140 in the first embodiment. Further, when the target value setting unit 74 is configured by a plurality of target value setting units 140, it goes without saying that there is no phase shift in the period in which each output value becomes zero! /. [0109] In addition, the target power to supply a minute current for resistance measurement to all coils in the period in which a non-zero value is output. If the target value in at least one mode is a non-zero value, good target value setting is possible. It does not matter if there is a mode in which part 74 always outputs zero as the excitation current target value.
  • the target value setting unit 74 is configured so that the ⁇ mode (all suction mode) becomes a non-zero value. In this case, the same excitation current is applied to all coils. Can be supplied. Since the suction force generated at that time acts as a stress on the frame part 22, the rider can feel comfortable against the change in the output value of the target value setting part 74 in which the posture of the moving body 16 does not change. There is no evil.
  • control voltage calculation circuit 84 includes a forward / reverse motion mode control voltage calculation circuit 86a, a left / right movement mode control voltage calculation circuit 86b, a roll mode control voltage calculation circuit 86c, a pitch mode control voltage calculation circuit 86d, and a mode.
  • the control voltage calculation circuit 86e, the all suction mode control voltage calculation circuit 88a, the torsion mode control voltage calculation circuit 88b, and the distortion mode control voltage calculation circuit 88c are configured.
  • the longitudinal motion mode control voltage calculation circuit 86a calculates the y-mode electromagnet control voltage ey from A iy.
  • the left / right mode control voltage calculation circuit 86b calculates the X mode electromagnet control voltage ex from Aix.
  • the roll mode control voltage calculation circuit 86c calculates the 0 mode electromagnet control voltage e ⁇ from A i 0.
  • the pitch mode control voltage calculation circuit 86d calculates the ⁇ mode electromagnet control voltage e ⁇ from A i.
  • the mode control voltage calculation circuit 86e calculates the ⁇ -mode electromagnet control voltage e ⁇ from A i ⁇ .
  • the full suction mode control voltage calculation circuit 88a calculates the ⁇ -mode electromagnet control voltage e ⁇ from A i ⁇ .
  • the torsion mode control voltage calculation circuit 88b calculates a ⁇ mode electromagnet control voltage e ⁇ from A i ⁇ .
  • the distortion mode control voltage calculation circuit 88c calculates the ⁇ -mode electromagnet control voltage e ⁇ from ⁇ ⁇ ⁇ .
  • the longitudinal movement mode control voltage calculation circuit 86a includes a resistance value averaging unit 90, a gain compensator 91, a resistance value imbalance correction unit 92, a subtractor 93, and an integral compensator. 94, an adder 95, a subtractor 96, an estimation error correction unit 142, a figure mode posture estimation unit 97, an estimation initialization unit 98, a posture calculation unit 99, an initial value setting unit 100, and an adder 101.
  • the resistance value averaging unit 90 calculates the average value of the resistance values of the coils 40a, 40a ′ to 40d, 40d ′ measured by the resistance measurement unit 64.
  • the gain compensator 91 multiplies the estimated values of ⁇ and Ay (indicated by “′” in the figure) and ⁇ iy by an appropriate feedback gain.
  • the resistance value imbalance correction unit 92 is a linear combination of the coil resistance values based on the output of the resistance measurement unit 64 based on the excitation currents ( ⁇ ix to ⁇ i ⁇ ) for each of the seven modes other than the forward / backward movement mode. Multiply the obtained resistance correction gains for each mode and output the sum of these seven multiplication results.
  • the subtracter 93 subtracts Aiy from the output of the target value setting unit 74.
  • the integral compensator 94 integrates the output value of the subtractor 93 and multiplies it by an appropriate feedback gain.
  • the adder 95 calculates the sum of the output values of the gain compensator 91.
  • the subtractor 96 subtracts the output value of the adder 95 from the output value of the integral compensator 94 and outputs the first mode excitation voltage eyl in the y mode (forward / reverse operation mode).
  • the estimation error correction unit 142 as a mode estimation error correction unit, corrects the offset voltage component of the power amplifier 63 in the first mode-specific excitation voltage for each mode.
  • the mode posture estimation unit 97 calculates the estimated values of Ay, ⁇ , and ⁇ iy from the output value of the estimation error correction unit 142 and the current deviation Aiy for each mode.
  • the estimation initialization unit 98 initializes the integration operation in the mode posture estimation unit 97 based on ONZOFF of the 16 proximity sensor signals.
  • the attitude calculation unit 99 calculates the attitude when the moving body 16 is in contact based on ONZOFF of the 16 proximity sensor signals, and outputs the position deviation of each magnet unit 30 by mode.
  • the initial value setting unit 100 sets the calculation result of the posture calculation unit 99 as the initial value of the integration operation when the mode posture estimation unit 97 is initialized.
  • the adder 101 adds the first mode-specific excitation voltage eyl and the output of the resistance value imbalance correction unit 92, and outputs the addition result as the second mode-specific excitation voltage ey.
  • Mode posture estimation unit 97, estimation initialization unit 98, posture calculation unit 99, and initial value setting Part 100 is disclosed in detail in Patent Document 4. Further, the estimated error correction unit 142 and the resistance value imbalance correction unit 92 are constituent elements that are preconditions for the characteristic configuration of the present invention, and are described in detail in the prior application of the applicant of the present application. Omitted.
  • the left / right mode control voltage calculation circuit 86b, the roll mode control voltage calculation circuit 86c, the pitch mode control calculation circuit 86d, and the short mode control calculation circuit 86e are the same as the vertical mode control voltage calculation circuit 86a.
  • the corresponding input / output signal is indicated by the signal name, and the description thereof is omitted.
  • each of the three mode control voltage calculation circuits 88a to 88c of ⁇ , ⁇ , and ⁇ has the same configuration, and has the same components as the vertical movement mode control voltage calculation circuit 86a.
  • the same reference numerals are given to the parts, and “′” is added for distinction, and the configuration is shown in FIG.
  • the control device 44 causes each of the electromagnets 36a, 36a 'to generate a magnetic flux in the same direction as or opposite to the magnetic flux generated by the permanent magnet 34 by the action of the levitation control calculation unit 65.
  • 36d, 36d, and the current flowing in each coil 40 for maintaining a predetermined gap length between the magnet units 30a-30d and the guide rails 14, 14 is controlled.
  • the gap length in the gaps G, G ', G " is determined by the magnetomotive force of the permanent magnet 34.
  • the magnetic attraction force of the stone units 30a to 30d acts on the center of gravity of the moving body 16.
  • the longitudinal force in the y-axis, the left-right force in the X-direction, the torque around the X-axis passing through the center of gravity of the moving body 16, and the torque around the same y-axis And the length is just the same as the torque around the z axis.
  • the control device 44 controls the excitation current of the electromagnets 36a, 36a, 36d, and 36d when an external force is applied to the moving body 16 in order to maintain this balance. As a result, so-called zero power control is performed. Now, when the moving body 16 that is being non-contact guided by zero power control starts to move up and down along the guide rails 14 and 14 'by an unillustrated lifting machine, it moves due to the distortion of the guide rails 14 and 14'. Assume that body 16 shakes. Even in such a case, the magnet units 30a to 30d have permanent magnets that share a magnetic path with the electromagnet in the air gap, so that the attraction force of the magnet units 30a to 30d can be quickly controlled by exciting the electromagnet coils. This can be suppressed.
  • the offset voltage of the power amplifier and the current detector is accurately calculated by Equation 28 by the action of the target value setting unit 74 and the resistance measurement unit 64, and Based on 36, the resistance of the coil 40 is accurately measured in consideration of the fluctuation of the moving body 16.
  • the parameters of the mode posture estimation unit 97 and the resistance value imbalance correction units 92 and 92 ′ adjusted by the output value of the resistance measurement unit 64 are accurately adjusted, and the gain compensators 91 and 91 are integrated.
  • the gain can be set with the compensators 94 and 94 using the resistance value as a parameter. Therefore, if the stability of the non-contact guidance is maintained with respect to the fluctuation of the offset voltage and the coil resistance value, it is possible to maintain a good and always constant riding comfort without force.
  • an estimation error occurs in the displacement for each mode and the displacement speed for each mode with respect to fluctuations in the offset voltage of the power amplifier, but these errors are also zero by the operation of the estimation error correction unit 142.
  • the resistance measurement unit 67 performs accurate resistance measurement taking the offset voltage into account.
  • the estimated value of the mode posture estimation unit 97 quickly converges to the true value.
  • the estimated error correction unit 142 does not cause an error in the estimated value of the mode-specific displacement speed, it is possible to perform an accurate calculation in Equations 28 and 36.
  • the target value setting unit 74 gradually sets the target values in the y mode and the X mode to negative values from zero force.
  • the moving body 16 gradually moves in the y-axis and X-axis directions, and finally the electromagnet is formed on the opposite surface of the guide rail 14 via the tip 1S solid lubricating member 43 of the central core 32 of the magnet units 30a and 30d.
  • the tips of 36a 'and 36d' are adsorbed to the opposing surface of the guide rail 14 through the solid lubricating member 43, respectively.
  • the magnet unit is mounted on the floating body side, but this does not limit the mounting position of the magnet unit at all. As shown in FIG. It may be arranged on the side. For simplification of description, the same reference numerals are used for portions common to the first and second embodiments.
  • FIG. 13 is a diagram showing the configuration of the magnetic levitation apparatus according to the third embodiment of the present invention.
  • the overall configuration is indicated by reference numeral 300.
  • the magnetic levitation apparatus 300 includes an auxiliary support 302, a magnet unit 107, a guide 304, a vibration isolation table 306, a linear guide 308, an attractive force controller 115, a power amplifier 313, and a current sensor 1.
  • the auxiliary support portion 302 has a U-shaped cross section, and is formed of a non-magnetic material such as an aluminum member.
  • the auxiliary support 302 is installed on the ground, and the magnet unit 107 is an auxiliary.
  • the support portion 302 is attached to the lower surface of the upper portion downward.
  • the guide 304 has a U-shaped cross section facing the magnet unit 107, and is formed of a ferromagnetic member such as iron.
  • the anti-vibration table 306 includes the guide 304 on the upper surface of the bottom, and is formed in a U shape as a whole.
  • the linear guide 308 is attached to the side surface of the vibration isolation table 306 and gives the vibration isolation table 306 freedom of movement only in the direction perpendicular to the ground.
  • the attraction force control unit 115 controls the attraction force of the magnet unit 107 to support the vibration isolation table 306 in a non-contact manner.
  • the power amplifier 313 is connected to a power source (not shown) for exciting the magnet unit 107 based on the output of the attractive force control unit 115.
  • the current sensor 123 detects the excitation current of the magnet unit 107.
  • the suction force control unit 115 has the following configuration. That is, the attractive force control unit 115 includes a resistance measurement unit 140, a contact detection unit 130, an attitude calculation unit 135, an attitude estimation unit 133, an initial value setting unit 139, an estimation initialization unit 137, and an excitation voltage calculation unit 125. Yes.
  • the resistance measurement unit 140 measures the series resistance value of the lead wire 128 and the coils 119 and 119 'from the excitation current and excitation voltage to the magnet unit 107.
  • the contact detection unit 130 includes a micro switch 310 attached to the bottom upper surface of the auxiliary support unit 302 and a piezoelectric rubber 312 attached to the magnetic pole surface of the magnet unit 107.
  • the posture calculation unit 135 calculates the floating gap length when the contact detection signal force of the contact detection unit 130 is in contact with the auxiliary support 302 or the magnet unit 107 of the vibration isolation table 306.
  • the posture estimation unit 133 estimates the flying posture of the vibration isolation table 306 based on the output of the resistance measurement unit 130, the excitation current to the magnet unit 107, and the excitation voltage force.
  • the initial value setting unit 139 sets an estimated initial value in the posture estimation unit 133 based on the output of the posture calculation unit 135.
  • the estimation initialization unit 137 initializes the posture estimation unit 133 based on the output of the contact detection unit 130.
  • the excitation voltage calculation unit 125 calculates the excitation voltage to the magnet unit 107 for magnetically levitating the vibration isolation table 306 based on the output of the posture estimation unit 133.
  • the present invention is not limited to application to a sensorless magnetic levitation device, but may be applied to an attraction type magnetic levitation device using a gap sensor as shown in FIG.
  • the same reference numerals are used for the portions common to the first to third embodiments.
  • FIG. 12 is a diagram showing the configuration of the magnetic levitation apparatus according to the fourth embodiment, and the overall configuration is denoted by reference numeral 400.
  • the gap sensor 121 and the pseudo-differential information that the information on the levitation gap length and the velocity used for the stability of the magnetic levitation system are not included in the attitude estimation unit 133 of the first embodiment. Acquire using vessel 40 2.
  • the output of the gap sensor 121 is directly input to the excitation voltage calculation unit 125 as information on the flying gap length, is converted into a speed signal via the pseudo-differentiator 402, and is input to the excitation voltage calculation unit 125. Further, the excitation current of the coils 119 and 119 ′ is input to the excitation voltage calculation unit 125 by the current sensor 123.
  • the oscillating body 111 and the power amplifier of the levitation body 111 are also similar to the first embodiment in this embodiment.
  • the coil resistance value is measured in consideration of the offset voltage of 313 and the current sensor 123. Then, in the coil current converging unit 125, based on the coil resistance value!
  • the excitation voltage for levitating the levitated body 111 with a stable and constant transient response is calculated. According to such a configuration, it is possible to always maintain a stable floating state against temperature fluctuations with a simple control device.
  • the control device (attraction force control unit 115) that performs magnetic levitation is described as an analog configuration, but the present invention is limited to an analog control system. It is also possible to configure with digital control.
  • the power using the power amplifier as the configuration of the excitation part. This does not limit the driver method, and for example, a pulse width modulation (PWM) type can be used.
  • PWM pulse width modulation
  • various modifications can be made without departing from the scope of the present invention.
  • the present invention is not limited to the above-described embodiments as they are, but can be specifically modified by modifying constituent elements without departing from the scope of the invention.
  • various forms can be formed by appropriately combining a plurality of constituent elements disclosed in the respective embodiments. For example, some constituent elements such as all the constituent elements shown in the embodiment may be omitted. Furthermore, constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Provided is a mag-lev device capable of always performing stable levitation control by considering the affect given to a coil resistance estimated value by a displacement of a levitated body. A resistance measuring unit (140) calculates a resistance value of coils (119, 119') according to a current value iz flowing in the coils (119, 119') of a magnetic unit (107) detected by a sensor unit (123), an output of a excitation voltage calculation unit (125) calculating an excitation voltage value for stabilizing a magnetic circuit formed by the magnetic unit according to the coil current value obtained by the sensor unit (123), and a displacement speed estimated by a posture estimation unit (133) as a speed detection unit for detecting fluctuation speed of a space of the magnetic unit (107) opposing to a guide (113). According to the calculation result, the posture estimation unit (133) and the excitation voltage calculation unit 125 performs levitation control. Thus, even if the levitated body (111) is displaced, the coil resistance estimated value will not fluctuate and it is possible to always perform a stable levitation control according to the value.

Description

磁気浮上装置  Magnetic levitation device
技術分野  Technical field
[0001] 本発明は、常電導吸引式磁気浮上により浮上体を非接触で支持する磁気浮上装 置に関する。  TECHNICAL FIELD [0001] The present invention relates to a magnetic levitation apparatus that supports a levitated body in a non-contact manner by normal conducting magnetic levitation.
背景技術  Background art
[0002] 常電導吸引式磁気浮上装置は、騒音や発塵がなぐ超高速地表輸送機 (以下、 H SST— High Speed Surface Transport—)やトランスラビッド等の鉄道や半導体工場で のクリーンルーム内搬送システムにおいて、既に実用化が図られている。また、この 磁気浮上装置をエレベータの乗りかごの案内装置に適用すること (特許文献 1参照) や、ドアへ適用することも試みられている。  [0002] Normally-conducting suction type magnetic levitation equipment is a clean room transport system in railways and semiconductor factories such as H SST (High Speed Surface Transport) and Trans-Rabbit where noise and dust generation are eliminated. Has already been put to practical use. In addition, attempts have been made to apply this magnetic levitation device to elevator car guide devices (see Patent Document 1) and to doors.
[0003] このような磁気浮上装置は、電磁石を強磁性部材に対向させ、電磁石の励磁によ つて強磁性部材との間に生じる吸引力を利用して浮上体を浮上させる。このため、基 本的に磁気浮上系が不安定であり、それを安定化させるための対策が必要となる。 一般的には、ギャップセンサにより浮上ギャップ長を検出し、それを駆動系へフィード ノ ック制御することで安定ィ匕を図っている。しかし、ギャップセンサにて浮上ギャップ 長を検出する場合、使用するギャップセンサに適したセンサターゲットが必要であり、 そのセンサターゲットを強磁性部材に付随して敷設しなければならない。  In such a magnetic levitation device, an electromagnet is opposed to a ferromagnetic member, and the levitated body is levitated by using an attractive force generated between the electromagnet and the ferromagnetic member. For this reason, the magnetic levitation system is basically unstable, and it is necessary to take measures to stabilize it. In general, the gap height is detected by a gap sensor, and it is feed-knocked to the drive system to achieve stability. However, when the flying gap length is detected by the gap sensor, a sensor target suitable for the gap sensor to be used is necessary, and the sensor target must be laid along with the ferromagnetic member.
[0004] このように、磁気浮上系の安定ィ匕を図るためには、ギャップセンサやセンサターゲッ トといった部品が必要であり、その分コストが掛かると共に、その設置スペースを確保 するために装置が大型化するといった問題があった。また、鉄道や搬送システムにお いては、強磁性ガイドで構成される軌道に分岐個所が設けられるため、センサターゲ ットとガイドが交差してギャップ長の検出を妨げな 、ような仕組みが必要であり、シス テムが複雑ィ匕するといつた問題もある。  [0004] Thus, in order to achieve stability of the magnetic levitation system, parts such as a gap sensor and a sensor target are required, which increases the cost, and the apparatus is required to secure the installation space. There was a problem of increasing the size. Also, in railways and transport systems, a branch point is provided on a track composed of ferromagnetic guides, so a mechanism that prevents the sensor target and guide from intersecting and preventing gap length detection is necessary. Yes, there are problems when the system becomes complicated.
[0005] このような問題を解決するため、ギャップセンサを必要としない様々な手法が提案さ れている。例えば、電磁石の励磁電流力 オブザーバ(状態観測器)によりギャップ 長を推定する方法 (非特許文献 1参照)や、磁気浮上により生じる電磁石の励磁電圧 と励磁電流の位相差にギャップ情報を含ませ、これを励磁電圧にフィードバックする 方法 (非特許文献 2参照)がある。また、電磁石の励磁電流値をヒステリシスコンパレ ータで基準値と比較し、励磁電流が基準値より大きい場合には励磁電圧を負に、小 さ 、場合には励磁電圧を正に切替えることで、スイッチング周波数を浮上ギャップ長 に比例させる方法 (非特許文献 3参照)がある。 [0005] In order to solve such problems, various methods that do not require a gap sensor have been proposed. For example, a method of estimating the gap length using an exciting current force observer (state observer) of an electromagnet (see Non-Patent Document 1) or an exciting voltage of an electromagnet generated by magnetic levitation There is a method in which gap information is included in the phase difference between the excitation current and the excitation current, and this is fed back to the excitation voltage (see Non-Patent Document 2). In addition, the excitation current value of the electromagnet is compared with the reference value with a hysteresis comparator, and when the excitation current is larger than the reference value, the excitation voltage is switched to negative, and when the excitation current is smaller, the excitation voltage is switched to positive. There is a method of making the switching frequency proportional to the floating gap length (see Non-Patent Document 3).
[0006] しかし、このような解決策であっても、オブザーバを使用する場合にあっては、ォブ ザーバが浮上状態における磁気浮上系の線型モデル力 導出されるため、浮上状 態にないときの浮上ギャップ長を推定することができない。そのため、浮上開始時の 制御が困難となるという問題や、また、浮上体が他の構造物に一旦接触した場合に、 再び浮上状態に復帰できないといった問題がある。また、ギャップ情報を含む物理量 で電磁石の励磁電圧を制御する場合には、浮上制御系が非線形制御系になる。こ のため、制御系の安定判別が困難であり、浮上体の質量の変化や励磁による温度上 昇で電磁石コイルに電気抵抗の変動があると、浮上状態の維持ができなくなるなどの 問題がある。 [0006] However, even with such a solution, when the observer is used, the linear model force of the magnetic levitation system in the levitation state is derived, so that the observer is not in the levitation state. Cannot be estimated. Therefore, there are problems that it becomes difficult to control at the start of levitation, and that the levitation body cannot return to the levitation state again once it comes into contact with another structure. In addition, when the excitation voltage of the electromagnet is controlled by a physical quantity including gap information, the levitation control system becomes a nonlinear control system. For this reason, it is difficult to determine the stability of the control system, and there is a problem that the floating state cannot be maintained if there is a variation in the electrical resistance of the electromagnet coil due to a change in the mass of the floating body or a rise in temperature due to excitation. .
[0007] このような問題に対処するため、電磁石の励磁電流力 オブザーバによりギャップ 長を推定するセンサレス化方法において、浮上体が浮上状態にない場合に浮上体 の接触を検出してオブザーバの積分器を初期化すると共に、浮上体の接触状態力 幾何学的に接触時のギャップ長を推定し、このギャップ長推定値に基づ ヽてォブザ ーバの積分器に初期値を与えることで、浮上状態への復帰を行なう手法 (特許文献 2 参照)がある。し力しながら、この手法をゼロパワー制御(特許文献 4参照)に適用した 場合には、以下のような問題が生じる。  [0007] In order to cope with such a problem, in the sensorless method of estimating the gap length by the exciting current force observer of the electromagnet, when the floating body is not in the floating state, the contact of the floating body is detected and the integrator of the observer is detected. In addition, the contact state force of the levitated body is estimated, and the gap length at the time of contact is estimated geometrically, and the initial value is given to the integrator of the observer based on the estimated gap length. There is a method for returning to a state (see Patent Document 2). However, when this method is applied to zero power control (see Patent Document 4), the following problems arise.
[0008] すなわち、浮上体が定常浮上状態にあるときは、電磁石の励磁電流がゼロに収束 しているため、何ら問題はないが、浮上体に大きな外力が長時間加えられた場合に、 電磁石のコイルに過渡的な制御電流が流れ続け、コイルの温度が上昇することにな る。この温度の上昇に伴い、コイルの電気抵抗が大きくなり、励磁電流力も浮上ギヤッ プ長を推定するオブザーバの出力誤差が大きくなる。その結果、浮上状態の維持が 次第に困難になり、浮上体が接触してしまう。  That is, when the levitated body is in a steady levitating state, the excitation current of the electromagnet converges to zero, so there is no problem. However, when a large external force is applied to the levitated body for a long time, the electromagnet As a result, a transient control current continues to flow through the coil and the coil temperature rises. As the temperature rises, the electrical resistance of the coil increases, and the excitation current force also increases the output error of the observer that estimates the levitating gear length. As a result, it becomes increasingly difficult to maintain the floating state, and the floating body comes into contact.
[0009] なお、浮上体が接触した場合には、浮上状態への復帰制御が試みられるが、浮上 状態に復帰しても浮上時の浮上ギャップ長推定値の誤差が大きいため、再び浮上体 は接触し、接触状態と浮上状態が交互に繰返されることになる。こうした状態では、電 磁石には大きな制御電流が流れ続けるため、電磁石のコイル抵抗値がさらに上昇し 、ついには浮上体が接触したままで励磁電流が流れ続けることになる。その流れ続け る励磁電流が大きいと、浮上状態の信頼性が損なわれるば力りでなぐ電磁石が発 火する可能性がある。 [0009] It should be noted that when the levitated body comes into contact, control to return to the levitated state is attempted. Even after returning to the state, the error in the estimated value of the floating gap at the time of ascent is large, so that the levitation body contacts again, and the contact state and the levitation state are repeated alternately. In such a state, since a large control current continues to flow through the electromagnet, the coil resistance value of the electromagnet further increases, and finally the excitation current continues to flow while the floating body is in contact. If the exciting current that continues to flow is large, an electromagnet that squeezes with force may ignite if the reliability of the floating state is impaired.
[0010] 一方、このようなセンサレスの磁気浮上における電磁石のコイル抵抗値の変動に関 し、コイルの抵抗値を測定しながら浮上制御を行ない、その測定される抵抗値に基づ [0010] On the other hand, with respect to fluctuations in the coil resistance value of the electromagnet in such sensorless magnetic levitation, levitation control is performed while measuring the resistance value of the coil, and based on the measured resistance value.
V、て、ギャップ長を推定するオブザーバのパラメータを変更する方法 (特許文献 3参 照)が提案されている。また、電磁石に過渡的な励磁電流が流れ続ける場合に、コィ ル抵抗値の増加に加え、オフセット電圧が温度の上昇に伴って変動する問題がある 。このオフセット電圧の変動は、前記コイル抵抗値の変動と同様に、浮上ギャップ長 を推定するオブザーバの出力誤差を大きくする。 V, and a method of changing an observer parameter for estimating the gap length (see Patent Document 3) has been proposed. In addition, when a transient excitation current continues to flow through the electromagnet, there is a problem that the offset voltage fluctuates with an increase in temperature in addition to an increase in coil resistance. The fluctuation of the offset voltage increases the output error of the observer that estimates the floating gap length, similarly to the fluctuation of the coil resistance value.
[0011] このような問題に対して、オブザーバの速度推定値の直流分をゼロにするための補 償、すなわち、オブザーバに入力される励磁電圧にオフセット補償量を加算すること で、オブザーバの出力誤差を抑制することができる。しかし、上述の対策を用いたとし ても、オブザーバ中で用いるコイルの抵抗値については、これを励磁電圧と励磁電 流の直流成分から算出すると、励磁電圧にオフセット電圧が混入して、正確な抵抗 値を測定できなと 、つた問題がある。  [0011] To solve such a problem, compensation for reducing the DC component of the observer speed estimation value to zero, that is, adding the offset compensation amount to the excitation voltage input to the observer, the output of the observer Errors can be suppressed. However, even if the measures described above are used, the resistance value of the coil used in the observer is calculated from the excitation voltage and the DC component of the excitation current. If the resistance value cannot be measured, there is a problem.
[0012] この問題に対しては、電流目標値がゼロのときの励磁電圧がその時点での磁気浮 上制御系の閉ループに混入する全オフセット電圧の総和で表せることから、この励磁 電圧値を記憶し、抵抗推定時に使用する励磁電圧値から記憶した励磁電圧値を減 算すれば抵抗推定の精度を向上させることができる。  For this problem, the excitation voltage when the current target value is zero can be expressed as the sum of all offset voltages mixed in the closed loop of the magnetic levitation control system at that time. The accuracy of resistance estimation can be improved by subtracting the stored excitation voltage value from the excitation voltage value stored and used for resistance estimation.
特許文献 1 :特開 2001— 19286号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-19286
特許文献 2:特開 2003 - 204609号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-204609
特許文献 3:特開 2005 - 117705号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-117705
特許文献 4:特開昭 61— 102105号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 61-102105
非特許文献 1 :水野,他:「変位センサレス磁気軸受の実用化に関する研究」,電気学 会論文集 D分冊, 116, No. 1, 35 (1996) Non-Patent Document 1: Mizuno, et al .: “Research on practical application of displacement sensorless magnetic bearing”, Electrical Proceedings of the conference D volume, 116, No. 1, 35 (1996)
非特許文献 2 :森山:「差動帰還形パワーアンプを用いた AC磁気浮上」 1997年電気 学会全国大会予稿集, No. 1215  Non-Patent Document 2: Moriyama: “AC Magnetic Levitation Using a Differential Feedback Power Amplifier” 1997 IEEJ National Convention Proceedings, No. 1215
非特許文献 3 :水野,他:「ヒステリシスアンプを利用したセルフセンシング磁気浮上」 ,計測自動制御学会論文集, 32, No. 7, 1043 (1996)  Non-Patent Document 3: Mizuno, et al .: “Self-sensing magnetic levitation using hysteresis amplifier”, Transactions of the Society of Instrument and Control Engineers, 32, No. 7, 1043 (1996)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 上述したように、従来の磁気浮上装置にあっては、浮上体の安定な浮上状態を実 現するために、ギャップセンサおよびセンサターゲットを必要とした。このため、装置 が大型化して複雑になり、コストアップを招くなどの問題があった。  [0013] As described above, the conventional magnetic levitation apparatus requires a gap sensor and a sensor target in order to realize a stable levitation state of the levitated body. For this reason, there is a problem that the apparatus becomes large and complicated, resulting in an increase in cost.
[0014] また、このような問題を避けるために、ギャップセンサを用いずにギャップ長の情報 をフィードバック制御したとしても、浮上系の安定性力 Sコイル抵抗値とオフセット電圧 に依存するため、浮上体が大きく揺れると、それに伴うコイル電流および励磁電圧の 変動により、コイル抵抗推定の精度が低下し、安定した制御を行なうことができなかつ た。  [0014] In order to avoid such a problem, even if the gap length information is feedback-controlled without using a gap sensor, it depends on the levitation stability force S coil resistance value and offset voltage. When the body shakes greatly, the coil current estimation accuracy decreases due to fluctuations in the coil current and excitation voltage that accompany it, and stable control cannot be performed.
[0015] 本発明は、力かる事情に基づきなされたもので、浮上体の揺れを考慮して常に良 好な精度でコイル抵抗推定を行な 、、浮上体の動揺にかかわらず安定した浮上制御 を行なうことのできる磁気浮上装置を提供することを目的とする。  [0015] The present invention has been made on the basis of a forceful situation. Coil resistance is always estimated with good accuracy in consideration of the buoyancy of the levitated body, and stable levitation control is performed regardless of the buoyancy of the levitated body. An object of the present invention is to provide a magnetic levitation device capable of performing the above.
課題を解決するための手段  Means for solving the problem
[0016] 上記課題を解決するための手段として、本発明の基本構成に係る磁気浮上装置は 、強磁性部材で構成されるガイドと、このガイドに空隙を介して対向する電磁石で構 成される磁石ユニットと、前記ガイドに作用する前記磁石ユニットの吸引力により非接 触で支持される浮上体と、前記電磁石のコイルに流れる電流値を検出するセンサ部 と、前記センサ部により得られるコイル電流値に基づいて前記磁石ユニットが形成す る磁気回路を安定化させるための励磁電圧値を演算する励磁電圧演算部と、前記 空隙の変位の変動速度を検出する速度検出部と、前記励磁電圧演算部により得ら れた前記励磁電圧値、前記センサ部により得られた前記コイル電流値、前記速度検 出部により得られた前記変動速度に基づ 、て、前記電磁石のコイル抵抗値を演算す る抵抗測定部と、前記抵抗測定部により得られた前記コイル抵抗値を前記励磁電圧 演算部にフィードバックして前記浮上体の浮上を制御する制御部とを具備したことを 特徴とする。 [0016] As means for solving the above problems, a magnetic levitation apparatus according to the basic configuration of the present invention includes a guide made of a ferromagnetic member and an electromagnet opposed to the guide through a gap. A magnet unit; a levitated body supported in a non-contact manner by the attraction force of the magnet unit acting on the guide; a sensor unit for detecting a current value flowing in the coil of the electromagnet; and a coil current obtained by the sensor unit An excitation voltage calculation unit for calculating an excitation voltage value for stabilizing a magnetic circuit formed by the magnet unit based on the value, a speed detection unit for detecting a fluctuation speed of the gap displacement, and the excitation voltage calculation A coil resistance of the electromagnet based on the exciting voltage value obtained by the sensor, the coil current value obtained by the sensor, and the fluctuation speed obtained by the speed detector. Calculate resistance A resistance measuring unit, and a control unit that feeds back the coil resistance value obtained by the resistance measuring unit to the excitation voltage calculating unit to control the floating of the floating body.
[0017] このような基本構成によれば、浮上体の揺れに対して変動の少ないコイル抵抗値を 得ることができる。このため、励磁電圧演算部の演算結果が変動せず、外乱で浮上 体に動揺が生じても、常に安定した浮上制御を行なうことができる。  [0017] According to such a basic configuration, it is possible to obtain a coil resistance value with little fluctuation with respect to the swinging of the levitated body. Therefore, the calculation result of the excitation voltage calculation unit does not fluctuate, and stable levitation control can always be performed even if the levitation body fluctuates due to disturbance.
[0018] 第 1構成に係る磁気浮上装置は、基本構成によるものにおいて、前記空隙内で前 記電磁石と磁路を共有する永久磁石を備えた磁石ユニットと、前記電磁石の前記コ ィル電流の目標値をゼロ値または非ゼロ値に交互に設定する前記目標値設定部と、 前記目標値設定部により設定された目標値に前記電磁石の前記コイル電流を収束 させるコイル電流収束部と、前記コイル電流収束部による収束動作に伴い、前記セン サ部により得られる前記コイル電流値に基づいて前記磁石ユニットが形成する磁気 回路を安定化させるための励磁電圧値を演算する励磁電圧演算部と、前記目標値 がゼロ値に設定されているときに前記励磁電圧演算部により得られた前記励磁電圧 値、前記センサ部により得られた前記コイル電流値、前記速度検出部により得られた 前記変動速度に基づいて前記励磁電圧値の直流分を演算するオフセット演算部と、 前記オフセット演算部の演算結果を保存する電圧保存部と、前記電磁石の励磁電圧 値から前記電圧保存部に保存された励磁電圧値をオフセット電圧値として減算する ことにより前記励磁電圧値の補償値を求める励磁電圧補償部と、をさらに具備したこ とを特徴とする。  [0018] The magnetic levitation apparatus according to the first configuration is based on the basic configuration, and includes a magnet unit including a permanent magnet sharing a magnetic path with the electromagnet in the gap, and the coil current of the electromagnet. The target value setting unit that alternately sets a target value to a zero value or a non-zero value, a coil current converging unit that converges the coil current of the electromagnet to the target value set by the target value setting unit, and the coil An excitation voltage calculation unit for calculating an excitation voltage value for stabilizing a magnetic circuit formed by the magnet unit based on the coil current value obtained by the sensor unit in accordance with a convergence operation by the current convergence unit; When the target value is set to a zero value, the excitation voltage value obtained by the excitation voltage calculation unit, the coil current value obtained by the sensor unit, and the speed detection unit An offset calculation unit that calculates a DC component of the excitation voltage value based on the fluctuation speed, a voltage storage unit that stores a calculation result of the offset calculation unit, and an excitation voltage value of the electromagnet to the voltage storage unit. An excitation voltage compensator for obtaining a compensation value of the excitation voltage value by subtracting the stored excitation voltage value as an offset voltage value is further provided.
[0019] 第 2構成に係る磁気浮上装置は、基本構成によるものにおいて、少なくとも前記コィ ル電流値と前記励磁電圧値とに基づいて前記強磁性部材に対する前記浮上体の姿 勢および姿勢変化速度を推定する姿勢推定部をさらに備え、前記速度検出部は前 記姿勢推定部により推定された前記姿勢変化速度に基づいて前記変動速度を演算 することを特徴とする。  [0019] The magnetic levitation device according to the second configuration is based on the basic configuration, and at least the attitude of the levitation body and the attitude change speed with respect to the ferromagnetic member are determined based on the coil current value and the excitation voltage value. A posture estimation unit for estimation is further provided, and the speed detection unit calculates the fluctuation speed based on the posture change speed estimated by the posture estimation unit.
[0020] 第 3構成に係る磁気浮上装置は、第 2構成によるものにおいて、前記浮上体が浮上 状態にないときに前記浮上体と前記ガイドの位置関係を所定の状態に維持する補助 支持部と、前記浮上体と前記ガイドとの接触を検出する接触検出部と、この接触検出 部の出力に基づき接触時の前記ガイドに対する前記浮上体の姿勢を出力する姿勢 演算部と、この接触検出部の出力に基づき接触時に前記姿勢推定部を初期化する 推定初期化部と、前記姿勢推定部が初期化される際に前記姿勢演算部の出力値を 前記姿勢推定部の初期値として設定する初期値設定部とをさらに備えたことを特徴 とする。 [0020] The magnetic levitation device according to the third configuration is the one according to the second configuration, wherein the auxiliary support portion maintains the positional relationship between the levitation body and the guide in a predetermined state when the levitation body is not in the levitation state. , A contact detection unit for detecting contact between the floating body and the guide, and the contact detection A posture calculation unit that outputs the posture of the floating body with respect to the guide at the time of contact based on the output of the unit, an estimation initialization unit that initializes the posture estimation unit at the time of contact based on the output of the contact detection unit, and the posture And an initial value setting unit that sets an output value of the posture calculation unit as an initial value of the posture estimation unit when the estimation unit is initialized.
[0021] 第 4構成に係る磁気浮上装置は、第 2構成によるものにおいて、前記姿勢推定部に よって得られる姿勢変化速度の推定値に所定のゲイン乗じて積分し、その積分結果 を前記励磁電圧値に加算すると共に、その加算結果を新たな励磁電圧値として前記 姿勢推定部にフィードバックする推定誤差補正部を備えたことを特徴とする。  [0021] The magnetic levitation device according to the fourth configuration is the one according to the second configuration, wherein the estimated value of the posture change speed obtained by the posture estimation unit is integrated by multiplying by a predetermined gain, and the integration result is integrated with the excitation voltage. And an estimation error correction unit that feeds back the addition result to the posture estimation unit as a new excitation voltage value.
[0022] 第 5構成に係る磁気浮上装置は、第 2構成によるものにおいて、前記浮上体の運動 の自由度に寄与する吸引力を発生させるための励磁電圧を所定のモード毎に演算 するモード励磁電圧演算部と、前記浮上体の運動の自由度に寄与する吸引力を発 生させるための励磁電流を所定のモード毎に演算するモード励磁電流演算部をさら に備え、前記姿勢推定部は、少なくとも前記モード励磁電流演算部と前記モード励 磁電圧演算部の出力とに基づいて、前記浮上体の前記強磁性部材に対する姿勢お よび当該姿勢の時間変化を前記浮上体の運動の自由度毎に推定することを特徴と する。  [0022] The magnetic levitation apparatus according to the fifth configuration is based on the second configuration, and mode excitation that calculates an excitation voltage for generating an attractive force that contributes to the degree of freedom of movement of the levitated body for each predetermined mode. The apparatus further includes a voltage calculation unit and a mode excitation current calculation unit that calculates an excitation current for generating a suction force that contributes to the degree of freedom of movement of the levitated body for each predetermined mode. Based on at least the outputs of the mode excitation current calculation unit and the mode excitation voltage calculation unit, the attitude of the levitating body with respect to the ferromagnetic member and the temporal change of the attitude are determined for each degree of freedom of movement of the levitating body. It is characterized by estimation.
[0023] 第 6構成に係る磁気浮上装置は、第 5構成によるものにおいて、前記姿勢推定部に よって得られる姿勢変化速度の推定値に所定のゲイン乗じて積分し、その積分結果 を前記モード別励磁電圧値に加算すると共に、その加算結果を新たなモード別の励 磁電圧値として前記姿勢推定部にフィードバックするモード推定誤差補正部を備え たことを特徴とする。  [0023] A magnetic levitation apparatus according to a sixth configuration is the one according to the fifth configuration, wherein the estimated value of the posture change speed obtained by the posture estimation unit is multiplied by a predetermined gain and integrated, and the integration result is integrated for each mode. A mode estimation error correction unit that adds the excitation voltage value to the posture estimation unit as a new mode excitation voltage value is added to the excitation voltage value.
[0024] 第 7構成に係る磁気浮上装置は、基本構成によるものにおいて、前記抵抗測定部が 、少なくとも前記励磁電圧値と前記コイル電流値の線形結合に前記コイル電流を乗 じた電力演算結果を積分する積分器を備えていることを特徴とする。  [0024] The magnetic levitation device according to a seventh configuration is based on the basic configuration, wherein the resistance measurement unit calculates a power calculation result obtained by multiplying at least a linear combination of the excitation voltage value and the coil current value by the coil current. An integrator for integrating is provided.
発明の効果  The invention's effect
[0025] 本発明に係る磁気浮上装置によれば、何らかの外乱で浮上体に揺れが生じても、 コイル抵抗値を正確に測定することができ、その測定値に基づ 、て浮上状態の安定 性が維持できるように浮上制御パラメータを適応させることができる。これにより、磁気 浮上系の安定性や外乱に対する過渡応答を常に設計時の状態に維持することがで き、装置の信頼性が向上する。 [0025] According to the magnetic levitation device of the present invention, the coil resistance value can be accurately measured even if the levitation body is shaken due to some disturbance, and the levitation state is stabilized based on the measured value. The levitation control parameters can be adapted so that the characteristics can be maintained. As a result, the stability of the magnetic levitation system and the transient response to disturbances can always be maintained at the time of design, improving the reliability of the equipment.
図面の簡単な説明  Brief Description of Drawings
[0026] [図 1]本発明の第 1実施形態に係る磁気浮上装置の構成を示す図である。  FIG. 1 is a diagram showing a configuration of a magnetic levitation apparatus according to a first embodiment of the present invention.
[図 2]本発明の原理を説明するための磁気浮上装置の基本構成を示す図である。  FIG. 2 is a diagram showing a basic configuration of a magnetic levitation apparatus for explaining the principle of the present invention.
[図 3]第 1実施形態の装置の吸引力制御部の詳細な構成を示すブロック図である。  FIG. 3 is a block diagram showing a detailed configuration of a suction force control unit of the apparatus according to the first embodiment.
[図 4]第 1実施形態の装置の吸引力制御部の詳細な構成を示すブロック図である。  FIG. 4 is a block diagram showing a detailed configuration of a suction force control unit of the apparatus according to the first embodiment.
[図 5]第 1実施形態の装置の吸引力制御部の詳細な構成を示すブロック図である。  FIG. 5 is a block diagram showing a detailed configuration of a suction force control unit of the apparatus according to the first embodiment.
[図 6]本発明の第 2実施形態に係る磁気浮上装置の構成を示す図である。  FIG. 6 is a diagram showing a configuration of a magnetic levitation apparatus according to a second embodiment of the present invention.
[図 7]第 2実施形態の磁気浮上装置のフレーム部の構成を示す斜視図である。  FIG. 7 is a perspective view showing a configuration of a frame portion of a magnetic levitation apparatus according to a second embodiment.
[図 8]第 2実施形態に係る装置の磁石ユニット周辺の構成を示す斜視図である。  FIG. 8 is a perspective view showing a configuration around a magnet unit of an apparatus according to a second embodiment.
[図 9]第 2実施形態に係る装置の磁石ユニットの構成を示す立面図である。  FIG. 9 is an elevation view showing the configuration of the magnet unit of the apparatus according to the second embodiment.
[図 10]第 2実施形態に係る装置の制御装置の詳細構成を示すブロック図である。  FIG. 10 is a block diagram showing a detailed configuration of a control device of the device according to the second embodiment.
[図 11]第 2実施形態の制御装置内のモード制御電圧演算回路の構成を示すブロック 図である。  FIG. 11 is a block diagram showing a configuration of a mode control voltage arithmetic circuit in the control device of the second embodiment.
[図 12]第 2実施形態による磁気浮上装置の制御装置内の他のモード制御電圧演算 回路の構成を示すブロック図である。  FIG. 12 is a block diagram showing the configuration of another mode control voltage calculation circuit in the controller of the magnetic levitation apparatus according to the second embodiment.
[図 13]第 3実施形態に係る磁気浮上装置の構成を示す図である。  FIG. 13 is a diagram showing a configuration of a magnetic levitation apparatus according to a third embodiment.
[図 14]第 4実施形態に係る磁気浮上装置の構成を示す図である。  FIG. 14 is a diagram showing a configuration of a magnetic levitation apparatus according to a fourth embodiment.
符号の説明  Explanation of symbols
[0027] 107 磁石ユニット [0027] 107 Magnet unit
111 浮上体  111 Floating body
113 ガイド  113 Guide
115 制御部(吸引力制御部)  115 Control unit (suction force control unit)
119 コィノレ  119 Koinore
123 センサ部  123 Sensor unit
125 励磁電圧演算部 133 姿勢推定部 125 Excitation voltage calculator 133 Attitude estimation unit
140 抵抗測定部  140 Resistance measurement unit
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、添付図面を参照しながら本発明に係る磁気浮上装置の実施形態について 詳細に説明する。まず、本発明の基本的な原理について、図 2を参照して説明する。 図 2は本発明の原理を説明するための磁気浮上装置の基本構成を示す図であり、一 質点系の磁気浮上装置の全体構成が符号 1で示されている。  Hereinafter, embodiments of a magnetic levitation apparatus according to the present invention will be described in detail with reference to the accompanying drawings. First, the basic principle of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing a basic configuration of a magnetic levitation apparatus for explaining the principle of the present invention.
[0029] 磁気浮上装置 1は、永久磁石 103および電磁石 105で構成される磁石ユニット 107 と、磁石ユニット 107と負荷荷重 109からなる浮上体 111と、図示せぬ構造部材で地 上に対して固定されるガイド 113とを備える。また、この磁気浮上装置 1は、磁石ュ- ット 107の吸引力を制御して、浮上体 111を安定に非接触支持するための吸引力制 御部 115と、この吸引力制御部 115の出力に基づいて電磁石 105を励磁するための ドライバ 116とを備える。なお、 131は補助支持部である。この補助支持部 131は、コ の字形状の断面を持ち、下部内側上面に磁石ユニット 107が固定されると共に、例 えば図示せぬリニアガイド等の上下方向に力が作用しない案内部で地上側から案内 される防振台のテーブルを兼ねている。  [0029] The magnetic levitation apparatus 1 is fixed to the ground with a magnet unit 107 composed of a permanent magnet 103 and an electromagnet 105, a levitated body 111 composed of the magnet unit 107 and a load load 109, and a structural member (not shown). The guide 113 is provided. In addition, the magnetic levitation device 1 controls the attractive force of the magnet mute 107 to stably support the levitated body 111 in a non-contact manner, and the attractive force control unit 115 And a driver 116 for exciting the electromagnet 105 based on the output. Reference numeral 131 denotes an auxiliary support portion. The auxiliary support portion 131 has a U-shaped cross section, and the magnet unit 107 is fixed to the upper surface of the lower inner side. It also serves as a table for the anti-vibration table.
[0030] ここで、磁石ユニット 107の磁気的吸引力で浮上体 111を非接触で支持するため、 ガイド 113は強磁性部材で構成されている。電磁石 105は鉄心 117a, 117bにコィ ル 119, 119,を卷装して構成され、永久磁石 103の両磁極端部にそれぞれ鉄心 11 7a, 117bが配置されている。コイル 119, 119 'は電磁石 105の励磁によってガイド 113〜鉄心 117a〜永久磁石 103〜鉄心 117b〜ガイド 113で形成される磁路の磁 束が強まる(弱まる)ように直列に接続されている。また、吸引力制御部 115は、励磁 電圧演算部 125を備えている。励磁電圧演算部 125は、ギャップセンサ 121で得ら れる浮上ギャップ長および電流センサ 123で得られるコイル電流値に基づいて電磁 石 105を励磁する電圧を演算する。ドライバ 116は、この励磁電圧演算部 125によつ て演算された励磁電圧に基づいて、リード線 128を介してコイル 119, 119 'に励磁 電流を供給している。  Here, in order to support the levitated body 111 in a non-contact manner by the magnetic attractive force of the magnet unit 107, the guide 113 is made of a ferromagnetic member. The electromagnet 105 is configured by installing coils 119 and 119 on iron cores 117a and 117b, and iron cores 117a and 117b are arranged at both magnetic pole ends of the permanent magnet 103, respectively. The coils 119 and 119 ′ are connected in series so that the magnetic flux of the magnetic path formed by the guide 113 to the iron core 117a to the permanent magnet 103 to the iron core 117b to the guide 113 is strengthened (weakened) by the excitation of the electromagnet 105. In addition, the attractive force control unit 115 includes an excitation voltage calculation unit 125. The excitation voltage calculator 125 calculates a voltage for exciting the magnet 105 based on the flying gap length obtained by the gap sensor 121 and the coil current value obtained by the current sensor 123. The driver 116 supplies an excitation current to the coils 119 and 119 ′ via the lead wire 128 based on the excitation voltage calculated by the excitation voltage calculation unit 125.
[0031] このとき、磁気浮上装置 1の磁気浮上系は、磁石ユニット 107の吸引力が浮上体 11 1の重量と等しくなるときの浮上ギャップ長 zの近傍で線型近似でき、以下の微分方 程式で記述される。 At this time, in the magnetic levitation system of the magnetic levitation apparatus 1, the attractive force of the magnet unit 107 is increased by the levitation body 11. A linear approximation can be made in the vicinity of the floating gap length z when it becomes equal to the weight of 1, and is described by the following differential equation.
[数 1]  [Number 1]
数 1  Number 1
Figure imgf000011_0001
Figure imgf000011_0001
[0032] Fは磁石ユニット 107の吸引力、 mは浮上体 111の質量、 Rはコイル 119, 119,と リード線 128とを直列に接続したときの電気抵抗 (以下、コイル抵抗と記載する)、 zは 浮上ギャップ長、 iは電磁石 105の励磁電流、 φは磁石ユニット 107の主磁束、 eは 電磁石 105の励磁電圧、 Δは定常浮上状態 (z = z , i =i (定常浮上状態でコイル 電流がゼロの場合は i = Δ ί ) )からの偏差、記号 "·"は dZdt、偏微分 3 Z 3 h (h= z, i )は定常浮上状態 (z = z , i =i )における被偏微分関数のそれぞれの偏微分 値である。 L は、 L∞を∑が∞のときの電磁石 105の自己インダクタンス、 Nをコイル 1 [0032] F is the attractive force of the magnet unit 107, m is the mass of the levitated body 111, R is the electrical resistance when the coils 119, 119, and the lead wire 128 are connected in series (hereinafter referred to as coil resistance) , Z is the levitation gap length, i is the excitation current of the electromagnet 105, φ is the main magnetic flux of the magnet unit 107, e is the excitation voltage of the electromagnet 105, Δ is the steady levitation state (z = z, i = i (in the steady levitation state) Deviation from i = Δ ί)) when coil current is zero, symbol "·" is dZdt, partial differential 3 Z 3 h (h = z, i) is steady levitation state (z = z, i = i) Is the partial differential value of the partial differential function at. L is L∞, self-inductance of electromagnet 105 when ∞ is ∞, N is coil 1
19、 119 'の総卷回数として、以下のように表わせる。 It can be expressed as the following as the total number of times of 19 and 119 '.
[数 2]  [Equation 2]
数 2
Figure imgf000011_0002
Number 2
Figure imgf000011_0002
[0033] また、前記数 1の浮上系モデルは、下記のような状態方程式となる。  [0033] Further, the levitation system model of Equation 1 has the following equation of state.
[数 3] 数 3  [Equation 3] Equation 3
i; = Ax + bez + aus i; = Ax + be z + au s
y = Cx  y = Cx
[0034] ただし、状態ベクトル x、システム行列 A、制御行列 bおよび外乱行列 dは、以下のよ うに表される。なお、 uは外力である。 [0034] However, the state vector x, the system matrix A, the control matrix b, and the disturbance matrix d are expressed as follows. U is an external force.
[数 4]
Figure imgf000012_0001
[Equation 4]
Figure imgf000012_0001
[0035] ここで、数 4中の各パラメータは、以下のようになる。 [0035] Here, each parameter in Equation 4 is as follows.
[数 5]  [Equation 5]
数 5  Number 5
1 dF 1 dFz Ν δφ 1 dF 1 dF z Ν δφ
,' = , α,, ,α3, -―" -—— , , '=, Α ,,, α 3 , -― "-——,
21 m dz 2。 m diz Lz0 dz
Figure imgf000012_0002
m
21 m dz 2 . m di z L z0 dz
Figure imgf000012_0002
m
[0036] 数 3中の xの各要素が浮上系の状態量であり、 Cは出力行列であり、励磁電圧 eの 計算に用いる状態量の検出方法により決定される。磁気浮上装置 1では、ギャップセ ンサ 121と電流センサ 123を使用しており、ギャップセンサ 121の信号を微分して速 度を得る場合に、 Cは単位行列となる。ここで、 Fを Xの比例ゲイン、 Kを A iの積分ゲ インとして励磁電圧 eを例えば、 [0036] Each element of x in Equation 3 is a levitation state quantity, C is an output matrix, and is determined by a state quantity detection method used for calculating the excitation voltage e. In the magnetic levitation apparatus 1, the gap sensor 121 and the current sensor 123 are used, and when the speed is obtained by differentiating the signal of the gap sensor 121, C becomes a unit matrix. Where F is the proportional gain of X, K is the integral gain of A i, and the excitation voltage e is
[数 6]  [Equation 6]
数 6 Number 6
Figure imgf000012_0003
で与えれば、浮上体 111はゼロパワー制御で浮上することになる。
Figure imgf000012_0003
In this case, the levitated body 111 is levitated with zero power control.
[0037] なお、ゼロパワー制御については、例えば特許文献 4に開示されているため、ここ では詳しい説明は省略する。また、励磁電圧演算部 125において、前記数 6が演算 されることは言うまでちな!、。 [0037] Note that zero power control is disclosed in, for example, Patent Document 4, and therefore detailed description thereof is omitted here. Needless to say, the excitation voltage calculation unit 125 calculates the number 6 above.
[0038] また、磁気浮上装置 1においてギャップセンサ 121を使用せずに、励磁電流 A iか ら浮上ギャップ長偏差 Δ zおよびその速度 d ( Δ z) Zdtを推定するための推定手段と して、例えば同一次元状態観測器 (以下、オブザーバと称す)を適用する場合を考え る。このとき、線型制御理論によれば、オブザーバは、以下のような式で表される。 [0038] In addition, the magnetic levitation apparatus 1 does not use the gap sensor 121, but as an estimation means for estimating the levitation gap length deviation Δz and its velocity d (Δz) Zdt from the excitation current A i. For example, consider the case where a same-dimensional state observer (hereinafter referred to as an observer) is applied. At this time, according to the linear control theory, the observer is expressed by the following equation.
[数 7] x = Ax + By + Ee
Figure imgf000013_0001
で与えられる。ただし、
[Equation 7] x = Ax + By + Ee
Figure imgf000013_0001
Given in. However,
[数 8]  [Equation 8]
数 8 はオブザーバの推定値状態ベクトル, α , α , αはオブザーバの極を決定するパ Equation 8 is the estimated state vector of the observer, and α, α, and α are the parameters that determine the poles of the observer.
1 2 3  one two Three
ラメータ Parameter
[数 9]  [Equation 9]
数 9  Number 9
ダ = <: で C = [0 0 1] である。  Da = <: and C = [0 0 1].
この場合、数 7の状態観測器の推定誤差は、数 3および数 7の演算開始時の初期 値をそれぞれ、  In this case, the estimation error of the state observer of Equation 7 is the initial value at the start of operations of Equation 3 and Equation 7, respectively.
[数 10] [Equation 10]
数 1 0  Number 1 0
および and
[数 11] 数 1 1 とすれば、 数 12 [Equation 11] If Equation 1 is 1, then Number 12
x(t)-x(t) = eAt{xe-x0) このとき、励磁電圧演算部 125においては、例えば、 x (t) -x (t) = e At (x e -x 0 ) At this time, in the excitation voltage calculation unit 125, for example,
[数 13] [Equation 13]
数 13  Number 13
e2 = -FDTDx - FCTy - \K,MZ At が演算され、磁気浮上系の安定化が達成される.ただし、 Tは転置行列であり、 [数 14] e 2 = -FD T Dx-FC T y-\ K, M Z At is calculated, and stabilization of the magnetic levitation system is achieved, where T is a transposed matrix and [Equation 14]
数 14 Number 14
D D
0 1 0 である。  0 1 0.
一般に、常電導吸引式磁気浮上系は不安定なため、状態観測器の推定値に誤差 があると安定ィ匕が非常に困難となるが、数 12から明らかなようにあら力じめォブザー バが動作を開始するときの  In general, the normal conducting magnetic levitation system is unstable, so if there is an error in the estimated value of the state observer, stability becomes very difficult. When the operation starts
[数 15] 数 11 すなわち、浮上ギャップ長偏差 Δζ、その速度 dAz)/dtおよび励磁電流 Δίの値が既 知であればオブザーバの初期値 [Equation 15] Equation 11 In other words, if the values of the flying gap length deviation Δζ, its speed dAz) / dt and the excitation current Δί are known, the initial value of the observer
[数 16] [Equation 16]
数 10  Number 10
をできるだけ As much as possible
[数 17] に等しく設定することで推定当初力 誤差が少ない状態で励磁電流 Δίから浮上ギヤ [Equation 17] Is set to be equal to, the estimated initial force error and the levitating gear from the excitation current Δί with little error
ζ  ζ
ップ長偏差 Δ ζおよびその速度 d( Δ z)/dtを推定することができる。  And the velocity d (Δz) / dt can be estimated.
[0042] ここで、推定当初の誤差が大きいと、数 9で異常な励磁電圧が演算されるため、浮 上状態の安定ィ匕ができなくなる。  [0042] Here, if the error at the initial estimation is large, an abnormal excitation voltage is calculated in Equation 9, so that the floating state cannot be stabilized.
[0043] 以下、本発明の具体的な実施形態について、図面を参照して詳しく説明する。  Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
[0044] (第 1実施形態)  [0044] (First embodiment)
図 1は本発明の第 1実施形態に係る磁気浮上装置の構成を示す図であり、その全 体構成が 1 'で示されている。この磁気浮上装置 1 'にあっては、ギャップセンサ 121 が省略されている。その代わりに、浮上体 111およびその浮上体 111の近傍に接触 検出部 130が備えられる。接触検出部 130は、浮上体 111が非接触状態から接触状 態になったことを、例えば圧電ゴム 129を用いて検出する。  FIG. 1 is a diagram showing the configuration of the magnetic levitation apparatus according to the first embodiment of the present invention, and the overall configuration thereof is indicated by 1 ′. In the magnetic levitation apparatus 1 ′, the gap sensor 121 is omitted. Instead, the floating body 111 and the contact detection unit 130 are provided in the vicinity of the floating body 111. The contact detection unit 130 detects that the floating body 111 has changed from the non-contact state to the contact state using, for example, the piezoelectric rubber 129.
[0045] また、吸引力制御部 115には、前記接触検出部 130に加えて、姿勢推定部 133、 姿勢演算部 135、推定初期化部 137、初期値設定部 139が備えられている。姿勢推 定部 133は、励磁電流 Ai力も浮上ギャップ長偏差 Δ ζおよびその速度  In addition to the contact detection unit 130, the attractive force control unit 115 includes a posture estimation unit 133, a posture calculation unit 135, an estimation initialization unit 137, and an initial value setting unit 139. Attitude estimation unit 133 uses excitation current Ai force and levitation gap length deviation Δζ and its speed.
z d( A z)Zdt を推定するものであり、例えばオブザーバで構成される。姿勢演算部 135は、補助支 持部 131で維持された姿勢力 浮上状態へ移行する場合のオブザーバの初期値と なるべき Xを演算する。推定初期化部 137は、接触によりオブザーバの出力値を初  z d (A z) Zdt is estimated, and is composed of, for example, an observer. The posture calculation unit 135 calculates X that should be the initial value of the observer when shifting to the posture force floating state maintained by the auxiliary support unit 131. The estimation initialization unit 137 first calculates the output value of the observer by contact.
0  0
期状態に戻す。初期値設定部 139は、初期化されたオブザーバに姿勢演算部 135 で計算された X して  Return to the initial state. The initial value setting unit 139 sets X calculated by the attitude calculation unit 135 to the initialized observer.
0を初期値と 設定する。  Set 0 as the initial value.
[0046] 励磁電流 Δ iおよび姿勢推定部 133によって推定された浮上ギャップ長偏差 Δ zお  [0046] Excitation current Δ i and levitation gap length deviation Δ z estimated by posture estimation unit 133
z  z
よびその速度 d ( Δ z) Zdtは励磁電圧演算部 125に入力され、この励磁電圧演算部 125の出力によりドライバ 116を介して電磁石 105が励磁される。  And the speed d (Δz) Zdt are input to the excitation voltage calculation unit 125, and the electromagnet 105 is excited via the driver 116 by the output of the excitation voltage calculation unit 125.
[0047] このように、オブザーバを初期化すると共に所定の初期値を与えることにより、浮上 体 111が停止状態から浮上する場合や、外力やその他の理由により浮上状態から接 触状態になった場合でも、励磁電流 Ai力 浮上ギャップ長偏差 Δ ζおよびその速度 [0047] As described above, when the observer is initialized and given a predetermined initial value, the levitated body 111 floats from the stopped state, or the levitated state is brought into contact with the external force or other reasons. But exciting current Ai force levitation gap length deviation Δ ζ and its speed
ζ  ζ
d( A z) Zdtを推定当初力も誤差を抑えて推定することができる。その結果、浮上体 1 11を確実に浮上状態へ移行させて、その浮上状態を維持することができる。  d (A z) Zdt can be estimated with an initial error and error being suppressed. As a result, the levitated body 111 can be reliably transferred to the levitation state and maintained in the levitation state.
[0048] し力しながら、浮上状態にある浮上体 111に過渡的な外力が持続的に加えられると 、その外力に対して浮上状態を保っための吸引力制御がなされるため、コイル 119, 119 'には励磁電流が持続的に流れて、コイル 119, 119 'の温度が上昇し、それに 伴いコイル抵抗 Rが増加する。すると、数 4中のパラメータ a が増大するが、その一方 [0048] When a transient external force is continuously applied to the levitated body 111 that is in the levitating state while Because the attraction force is controlled to keep the floating state against the external force, the exciting current continuously flows through the coils 119 and 119 ′, and the temperature of the coils 119 and 119 ′ rises. Resistance R increases. Then, the parameter a in Equation 4 increases,
33  33
で数 7により説明したオブザーバでは、ノ メータ a が設定時のままとなる。このため  In the observer explained in Eq. 7, the parameter a remains as set. For this reason
33  33
、実際の磁気浮上系とオブザーバの間に差異が生じ、励磁電流 A i、浮上ギャップ z  A difference occurs between the actual magnetic levitation system and the observer, and the excitation current A i and the levitation gap z
長偏差 Δ zおよびその速度 d ( Δ z) Zdtの実際の値と推定値が乖離することになる。 本来不安定な常電導吸引式磁気浮上系では、実際の値と推定値の乖離はフィード ノ ック制御による浮上状態の安定ィ匕を非常に困難なものにする。  The actual value and the estimated value of the long deviation Δz and its velocity d (Δz) Zdt will be different. In the normally unstable normally attracted magnetic levitation system, the difference between the actual value and the estimated value makes it very difficult to stabilize the levitation state by feed knock control.
[0049] ここで、例えば特許文献 4のように、磁気浮上装置 1 'には、コイル 119, 119 'の抵 抗 Rを測定するための抵抗測定部 140が備えられている。この抵抗測定部 140は以 下のようにしてコイル抵抗 Rを測定する。  Here, as in Patent Document 4, for example, the magnetic levitation device 1 ′ is provided with a resistance measurement unit 140 for measuring the resistance R of the coils 119 and 119 ′. The resistance measuring unit 140 measures the coil resistance R as follows.
[0050] 励磁電圧 eがコイルに印加された場合の電圧方程式は、  [0050] The voltage equation when the excitation voltage e is applied to the coil is
z  z
[数 18] 数 1 5 e = Ri2 + N^ + Lza ^ [Equation 18] Number 1 5 e = Ri 2 + N ^ + L za ^
z 2 dz dt であるから両辺にコイル電流 iを掛けると次の電力方程式を得る。 Since z 2 dz dt, multiplying both sides by the coil current i gives the following power equation:
[数 19] 数 1 6
Figure imgf000016_0001
[Equation 19] Number 1 6
Figure imgf000016_0001
[0051] Rがある時刻に測定値 rとして測定された場合、数 16の右辺には次式で示す残差  [0051] When R is measured as a measured value r at a certain time, the right side of Equation 16 has a residual represented by the following equation:
0  0
εが発生する。  ε is generated.
[数 20]  [Equation 20]
数 1 7 dz at  Number 1 7 dz at
[0052] 残差 εは測定値 rが Rより大きい場合には正、小さい場合には負となるから、 λを 適当な残差ゲインとして測定値 rを [0052] The residual ε is positive when the measured value r is larger than R, and negative when the measured value r is small. Measured value r as an appropriate residual gain
[数 21] [Number 21]
数 1 8 Number 1 8
Figure imgf000017_0001
Figure imgf000017_0001
で新たに定義すると、残差 εが正の場合は rが小さくなり、負の場合は rが大きくなる ように調整され、最終的に残差 εはゼロとなり、 r=Rが成立して測定値は真値に等し くなる。このとき、数 11ではギャップ長 zの変化速度 If the residual ε is positive, r is adjusted to be small, and if it is negative, r is adjusted to be large. Finally, the residual ε is zero, and r = R is satisfied. The value is equal to the true value. At this time, the change speed of the gap length z in Equation 11
[数 22] z による磁石ユニットの発電エネルギーが含まれており、浮上体 111の揺れで速度 [数 23] [Numerical equation 22] The generated energy of the magnet unit due to z is included.
Z が変化しても残差 εが揺れの影響を受けることはない。数 12を数 13に代入し、最終 的に測定値 rは次式で計算することができる。 Even if Z changes, the residual ε is not affected by shaking. Substituting Equation 12 into Equation 13, and finally the measured value r can be calculated by the following equation.
[数 24] [Number 24]
¾ 2 0. ¾ 2 0.
L 20 L 20
Figure imgf000017_0002
Figure imgf000017_0002
ここで、数 20の演算には速度  Here, the calculation of number 20 is speed
[数 25] [Equation 25]
数 1 9  Number 1 9
Ζ が必要となるが、本実施例では速度  Ζ is required, but in this example, speed
[数 26] 数 1 9 [Equation 26] Number 1 9
z  z
を検出する手段がない。しかし、速度  There is no means to detect But speed
[数 27]  [Equation 27]
数 1 9  Number 1 9
Z  Z
は浮上ギャップ長偏差 Δ zの変化速度に等しいので、姿勢推定部 133にお 、て推定 される速度推定値  Is equal to the change speed of the levitation gap length deviation Δ z, so the estimated speed estimated by the posture estimation unit 133 is
[数 28] 数 2 1  [Equation 28] Number 2 1
Δ I  Δ I
を用いて数 14が演算できる。そして、数 20の入力(コイル電流、速度推定値、励磁電 圧)や出力に、例えば、低域通過フィルタや平均値演算等の適当なノイズ除去処理 を施せば、コイル抵抗 Rの値を高精度で測定することができる。  Equation 14 can be calculated using. Then, if appropriate noise removal processing such as a low-pass filter or average value calculation is applied to the input (coil current, estimated speed value, excitation voltage) and output of Equation 20, the value of the coil resistance R is increased. It can be measured with accuracy.
[0054] このようにして得られたコイル抵抗値を抵抗測定部 140から出力し、前記姿勢推定 部 133に導入して数 7中のパラメータ a を変更すれば、温度上昇により増大した数 4 [0054] If the coil resistance value obtained in this way is output from the resistance measurement unit 140, introduced into the posture estimation unit 133, and the parameter a in Equation 7 is changed, Equation 4 increased due to temperature rise.
33  33
中のパラメータ a の値と数 7中のパラメータ a の値が一致する。よって、実際の磁気  The value of parameter a in the value matches the value of parameter a in number 7. Therefore, the actual magnetic
33 33  33 33
浮上系とオブザーバの間に構造上の差異が生じることがなぐ励磁電流 Ai、浮上ギ z ヤップ長偏差 Δ zおよびその速度 d ( Δ z) Zdtの実際の値と推定値が乖離することも ない。  There is no difference between the actual value and the estimated value of the excitation current Ai, the levitation gap z yap length deviation Δ z, and its velocity d (Δ z) Zdt where there is no structural difference between the levitating system and the observer. .
[0055] さらに、本発明では、過渡的な外力の印加等により励磁電流が増加し、その影響で ドライバ 116にオフセット電圧が発生しても、当該オフセット電圧の発生が浮上ギヤッ プ長偏差の推定値や速度推定値に誤差を生じないように推定誤差補正部 142が備 えられている。  [0055] Furthermore, in the present invention, even if an excitation voltage increases due to the application of a transient external force or the like, and an offset voltage is generated in the driver 116 due to the increase, the generation of the offset voltage is an estimation of the floating gear length deviation. An estimation error correction unit 142 is provided so as not to cause an error in the values and speed estimation values.
[0056] この推定誤差補正部 142は、姿勢推定部 133の速度推定値に所定のゲインえ を  This estimation error correction unit 142 adds a predetermined gain to the velocity estimation value of the posture estimation unit 133.
OS  OS
乗じるゲイン補償器 144と、ゲイン補償器 144の出力を積分する積分器 146と、積分 器 146の出力と励磁電圧演算部 125の励磁電圧値を加算する加算器 148とからなる 。そして、加算器 148の出力を前記姿勢推定部 133に導入される励磁電圧値として 出力する。このような構成により、温度変動によりオフセット電圧が変化したとしても、 姿勢推定値への影響を最小限に抑えることができる。 Multiplier gain compensator 144, integrator 146 that integrates the output of gain compensator 144, and adder 148 that adds the output of integrator 146 and the excitation voltage value of excitation voltage calculator 125 . Then, the output of the adder 148 is output as an excitation voltage value introduced into the posture estimation unit 133. With such a configuration, even if the offset voltage changes due to temperature fluctuation, the influence on the estimated posture value can be minimized.
[0057] これにカ卩えて本発明においては、図 3に示すように、コイル抵抗値を測定する際に 、前記オフセット電圧が測定値に影響しないように、励磁電圧演算部 125に目標値 設定部 150とコイル電流収束部 152が備えられている。目標値設定部 150は、コイル 電流の目標値を所定の時間間隔でゼロまたは非ゼロの値に交互に設定する。コイル 電流収束部 152は、センサ出力であるコイル電流値を前記目標値設定部 150によつ て設定される目標値に収束させる。また、抵抗値測定部 140においては、電圧保存 部 154と、電圧入力補償部 156と、抵抗演算部 158とが備えられている。  In contrast to this, in the present invention, as shown in FIG. 3, when measuring the coil resistance value, a target value is set in the excitation voltage calculator 125 so that the offset voltage does not affect the measured value. A part 150 and a coil current converging part 152 are provided. The target value setting unit 150 alternately sets the target value of the coil current to a zero or non-zero value at a predetermined time interval. The coil current converging unit 152 converges the coil current value, which is a sensor output, to the target value set by the target value setting unit 150. The resistance value measuring unit 140 includes a voltage storage unit 154, a voltage input compensation unit 156, and a resistance calculation unit 158.
[0058] 電圧保存部 154は、前記目標値設定部 150が目標値をゼロ設定しているときの励 磁電圧値を保存する。電圧入力補償部 156は、センサ出力であるコイル電流値に基 づいて得られる電磁石 105の励磁電圧値から電圧保存部 154の出力であるオフセッ ト電圧値を減算した値を励磁電圧の補償値として出力する。抵抗演算部 158は、そ の励磁電圧補償値およびコイル電流値を用いて、前記数 14に従ってコイル抵抗 Rを 測定する。  The voltage storage unit 154 stores the excitation voltage value when the target value setting unit 150 sets the target value to zero. The voltage input compensation unit 156 subtracts the offset voltage value output from the voltage storage unit 154 from the excitation voltage value of the electromagnet 105 obtained based on the coil current value that is the sensor output as the excitation voltage compensation value. Output. The resistance calculation unit 158 measures the coil resistance R according to Equation 14 using the excitation voltage compensation value and the coil current value.
[0059] このような構成において、電圧保存部 154は、目標値設定部 150がゼロを出力する 度に、その間の励磁電圧値の直流成分を検出し、前記目標値設定部 150がゼロから 非ゼロ値に出力を変更する度に、前記直流成分の値を電圧入力補償部 156に出力 する。したがって、抵抗演算部 158から出力されるコイル抵抗値は目標値設定部 15 0がゼロから非ゼロ値に出力を変更する度に前記直流成分の最新値に基づいて演 算されること〖こなる。  In such a configuration, every time the target value setting unit 150 outputs zero, the voltage storage unit 154 detects the DC component of the excitation voltage value during that time, and the target value setting unit 150 is not zero. Each time the output is changed to zero, the value of the DC component is output to the voltage input compensation unit 156. Therefore, the coil resistance value output from the resistance calculation unit 158 is calculated based on the latest value of the DC component every time the target value setting unit 150 changes the output from zero to a non-zero value. .
[0060] 一般に、常電導吸引式の磁気浮上装置では、前記励磁電流 iを検出するために z  [0060] Generally, in a normal conducting attraction type magnetic levitation device, z is used to detect the exciting current i.
電流センサ 123を使用する。今、電流センサ 123およびドライバ 116でそれぞれの温 度に依存する出力オフセットを考える。前者のオフセットを電流オフセット i 、後者の zoff オフセットを電圧オフセット e とする。  The current sensor 123 is used. Now, let us consider output offsets depending on the respective temperatures of the current sensor 123 and the driver 116. The former offset is the current offset i, and the latter zoff offset is the voltage offset e.
zoff  zoff
[0061] 浮上体 111が浮上状態にあり、目標値設定部 150からゼロが出力されている場合 には、ドライバ 116への励磁電圧の値を e 、電流センサ 123の検出電流を i とすれ ば、以下の電圧方程式が成立する。 [0061] When the levitated body 111 is in the levitating state and zero is output from the target value setting unit 150, e is the excitation voltage value to the driver 116 and i is the detection current of the current sensor 123. For example, the following voltage equation holds.
[数 29]  [Equation 29]
数 2 2
Figure imgf000020_0001
Number 2 2
Figure imgf000020_0001
[0062] この間、電圧保存部 154は、目標値設定部 150よりゼロが出力されていることを報 知する信号を受けて、 e の直流成分値を抽出すると共に前回の抽出結果を出力す る。 During this time, the voltage storage unit 154 receives a signal reporting that zero is output from the target value setting unit 150, extracts the DC component value of e, and outputs the previous extraction result. .
ここで、 e の直流成分値は次のようにして抽出される。  Here, the DC component value of e is extracted as follows.
数 15中、直流成分を e とすれば、  In Equation 15, if the direct current component is e,
[数 30]  [Equation 30]
数 2 3  Number 2 3
であるから、数 22は So the number 22 is
[数 31]  [Equation 31]
数 2 4 ; - H と変形できる。  Number 2 4;-Can be transformed to H.
[0063] e がある時刻に測定値 e として測定された場合、数 24の右辺には次式で示す残 差 εが発生する。  [0063] When e is measured as a measurement value e at a certain time, a residual ε represented by the following equation is generated on the right side of Equation 24.
[数 32]  [Equation 32]
数 2 5 十 十 つ ^十  Number 2 5 Ten Ten ^ Ten
[0064] 残差 εは測定値 e 力 より大きい場合には正、小さい場合には負となるから、 λ を適当な残差ゲインとして測定値 e を [0064] Since the residual ε is positive when it is larger than the measured value e force, and negative when it is small, the measured value e is set with λ as an appropriate residual gain.
[数 33] 数 2 6 [Equation 33] Number 2 6
= - dt で新たに定義すると、残差 εが正の場合は e 力 、さくなり、負の場合は e が大きくな  =-When dt is newly defined, e force is reduced when the residual ε is positive, and e becomes large when the residual ε is negative.
dc ac  dc ac
るように調整され、最終的に残差 εはゼロとなり、 e =e が成立して測定値は真値 Finally, the residual ε becomes zero, and e = e holds, and the measured value is the true value.
dc DC  dc DC
に等しくなる。このとき、数 17ではギャップ長 zの変化速度 Is equal to At this time, the change speed of the gap length z in Equation 17
[数 34] [Equation 34]
数 1 9 による磁石ユニットの発電エネルギーが含まれており、浮上体 111の揺れで速度 [数 35]  The generated energy of the magnet unit according to Equation 1 9 is included, and the speed [Equation 35]
数 1 9 が変化しても残差 εが揺れの影響を受けることはない。数 25を数 26に代入し、最終 的に測定値 e は次式で計算することができる。  Even if Equation 19 changes, the residual ε is not affected by the fluctuation. Substituting Eq. 25 into Eq. 26, the final measured value e can be calculated by the following equation.
dc  dc
[数 36]  [Equation 36]
数 2 7 dt - l L 20*m0 Number 2 7 dt-l L 20 * m0
Figure imgf000021_0001
Figure imgf000021_0001
数 27は数 5の記号を用いれば、 Equation 27 uses the symbol of Equation 5,
[数 37] [Equation 37]
数— 2 8
Figure imgf000021_0002
と表せる。
Number—2 8
Figure imgf000021_0002
It can be expressed.
ここで、数 20および数 21の演算には速度  Here, the speed of the calculation of Equation 20 and Equation 21 is
[数 38] 数 1 9 [Equation 38] Number 1 9
z  z
が必要となるが、本実施例では速度 In this example, speed is required.
[数 39]  [Equation 39]
数 1 9  Number 1 9
Z  Z
を検出する手段がない。しかし、速度 There is no means to detect But speed
[数 40]  [Equation 40]
数 1 9  Number 1 9
Z  Z
は浮上ギャップ長偏差 Δ zの変化速度に等しいので、姿勢推定部 133にお 、て推定 される速度推定値 Is equal to the change speed of the levitation gap length deviation Δ z, so the estimated speed estimated by the posture estimation unit 133 is
[数 41] [Equation 41]
数 2 1  Number 2 1
Δ I  Δ I
を用いて数 27および数 28が演算できる。そして、数 27の入力(コイル電流、速度推 定値、励磁電圧)や出力に、例えば低域通過フィルタや平均値演算等の適当なノィ ズ除去処理を施せば、目標値設定部 150からゼロが出力されている場合の励磁電 圧 e の直流成分 e を高精度で測定することができる。この直流成分 e を演算する zz DC DC 電圧保存部 154の構成を図 4に示す。 Equations 27 and 28 can be calculated using. Then, if appropriate noise removal processing such as a low-pass filter or average value calculation is applied to the input (coil current, estimated speed value, excitation voltage) and output of Equation 27, zero is output from the target value setting unit 150. The DC component e of the excitation voltage e when it is output can be measured with high accuracy. Figure 4 shows the configuration of the zz DC DC voltage storage unit 154 that calculates this DC component e.
電圧保存部 154は、抵抗演算部 158より入力される抵抗値 Rと電流センサ 123より 入力される電流値 i を乗算する乗算器 160と、乗算器 160が出力するコイル抵抗部 mO  The voltage storage unit 154 includes a multiplier 160 that multiplies the resistance value R input from the resistance calculation unit 158 and the current value i input from the current sensor 123, and a coil resistance unit mO output from the multiplier 160.
の電圧降下 Ri からコイル電流収束部 152より導入される励磁電圧 e を減じる減算 mO zz 器 162と、姿勢推定部 133から得られる速度推定値 Subtraction mO zz unit 162 for subtracting the excitation voltage e introduced from the coil current converging unit 152 from the voltage drop Ri of the coil, and the velocity estimation value obtained from the posture estimation unit 133
[数 42] [Number 42]
数 2 1  Number 2 1
Δ にゲイン a /h を乗じるゲイン補償器 164と、減算器 162の出力からゲイン補償器 1Δ Gain gain compensator 164 that multiplies gain a / h and gain compensator 1 from the output of subtractor 162
32 31 32 31
64の出力および励磁電圧 e の直流成分 e の演算結果を減じる減算器 166と、減算 zz dc  Subtracter 166 that subtracts the calculation result of DC component e of 64 outputs and excitation voltage e, and subtraction zz dc
器 166の出力を積分する積分器 168と、電流値 i にゲイン lZb を乗じてコイルの m0 31  Integrator 168 that integrates the output of 166, and the current value i multiplied by gain lZb
自己インダクタンスによる逆起電力を出力するゲイン補償器 170と、ゲイン補償器 17 0および積分器 168の出力を加算する加算器 172と、加算器 172の出力に直流成分 e の収束の速さにかかわる収束ゲインえ を乗じるゲイン補償器 174と、直流成分 e dc dc ac の初期値を出力する初期値設定器 176と、ゲイン補償器 174の出力と初期値設定器 176の出力を加算して加算結果を直流成分 e の演算結果とするとともに前記減算器 dc  Gain compensator 170 that outputs back electromotive force due to self-inductance, adder 172 that adds the outputs of gain compensator 170 and integrator 168, and the speed of convergence of DC component e to the output of adder 172 The gain compensator 174 that multiplies the convergence gain, the initial value setter 176 that outputs the initial value of the DC component e dc dc ac, the output of the gain compensator 174 and the output of the initial value setter 176 are added and the addition result And the subtractor dc
166にその出力結果が導入される加算器 177と、目標値設定部 150から導入される 電流目標値を 2乗する乗算器 178と、乗算器 178の出力がゼロから立ち上がる時刻 でのみ 1を出力する立ち上がり検出器 180と、前記検出器 180の出力を参照し当該 出力が 1になる時のみ接点 bを選択し、他の場合は接点 aを選択するスィッチ 182と、 スィッチ 182の出力を記憶するメモリ 184とで構成されている。ここで、スィッチ 182の 接点 aにはメモリ 184の出力が導入され、接点 bにはノイズ除去用のローパスフィルタ 186を介して加算器 177の出力が導入されている。このような構成により電圧保存部 154は目標設定部の出力がゼロから非ゼロ値に移行する瞬間の直流成分 e をメモリ dc Adder 177 whose output result is introduced to 166, multiplier 178 that squares the current target value introduced from target value setting unit 150, and 1 is output only when the output of multiplier 178 rises from zero. Rising detector 180 to be selected, contact b is selected only when the output of the detector 180 is 1 and the output becomes 1, and in other cases, switch 182 that selects contact a is stored, and the output of switch 182 is stored. It consists of memory 184. Here, the output of the memory 184 is introduced into the contact point a of the switch 182, and the output of the adder 177 is introduced into the contact point b through the low-pass filter 186 for noise removal. With this configuration, the voltage storage unit 154 stores the DC component e at the moment when the output of the target setting unit shifts from zero to a non-zero value in the memory dc
184から出力する。これにより、目標設定部 150がゼロを出力する間に数 27の演算 が収束し、励磁電圧 e の直流成分 e が電圧入力補償部 156に出力される。また、口 zz DC Output from 184. As a result, the calculation of Equation 27 converges while the target setting unit 150 outputs zero, and the DC component e of the excitation voltage e is output to the voltage input compensation unit 156. Also mouth zz DC
一パスフィルタ 186は入力信号の入力端に挿入しても良 、。  The one-pass filter 186 may be inserted at the input end of the input signal.
[0067] 次に、目標値設定部 150が非ゼロの値を出力しているとき、ドライバ 116へ入力さ れる電圧信号 eについて、以下の電圧方程式が成立する。 Next, when the target value setting unit 150 outputs a non-zero value, the following voltage equation is established for the voltage signal e input to the driver 116.
z  z
[数 43]  [Equation 43]
数 2 9 e^ !off = Ri! + N^ +L!0 ^- [0068] 数 29の両辺から直流成分 e を減じると、 Equation 2 9 e ^ ! Off = Ri ! + N ^ + L ! 0 ^-[0068] When the DC component e is subtracted from both sides of Equation 29,
DC  DC
[数 44] 数 30 e2 +ezoff -edc =Ri: + N^Az + Lz0^ + R 2off +ezoff より、 [Number 44] From the number 30 e 2 + e zoff -e dc = Ri : + N ^ Az + L z0 ^ + R 2off + e zoff
[数 45]  [Equation 45]
¾31 z » d ¾31 z » d
ノ Ί 。 dt となる。 No Ί. d t
[0069] 目標値設定部 150が非ゼロの値を出力しているとき、電圧保存部 154では、目標 値設定部 150がゼロを出力して ヽるときに抽出された電圧値 e が電圧保持部 154に  [0069] When the target value setting unit 150 outputs a non-zero value, the voltage storage unit 154 holds the voltage value e extracted when the target value setting unit 150 outputs zero. Part 154
dc  dc
記憶されると共に、その値がオフセット電圧として電圧入力補償部 156に出力される 。励磁電圧補償部 156では、入力される電圧保存部 154の出力値 e およびドライバ  While being stored, the value is output to the voltage input compensator 156 as an offset voltage. In the excitation voltage compensation unit 156, the output value e of the input voltage storage unit 154 and the driver
dc  dc
116への電圧信号 eを用いて、次式に従って補償励磁電圧 e を演算する。  Using the voltage signal e to 116, the compensation excitation voltage e is calculated according to the following equation.
z zm  z zm
[数 46]  [Equation 46]
数 32  Number 32
[0070] 数 31は e を用いて、 [0070] The number 31 uses e,
zm  zm
[数 47]  [Equation 47]
数 33
Figure imgf000024_0001
Number 33
Figure imgf000024_0001
と表せる。また、数 5の記号を用いれば、次式となる。  It can be expressed. Moreover, if the symbol of Equation 5 is used, the following equation is obtained.
[数 48]  [Number 48]
数 34
Figure imgf000024_0002
Number 34
Figure imgf000024_0002
[0071] i は電流センサのオフセット電流である力もその時間微分値はゼロであり、数 15に [0071] i is a force that is an offset current of the current sensor, and its time derivative is zero,
zoff おいて eを e に、 iを i +i に置き換えたものが数 33に一致する。電流センサ 123 z zm z z zof zoff Where e is replaced with e and i is replaced with i + i, which corresponds to Equation 33. Current sensor 123 z zm zz zof
のオフセットを含む検出値 imは、 The detected value im including the offset of
[数 49] 数 3 5 [Number 49] Number 3 5
であるから、抵抗演算部 158では、励磁電圧補償部 156から出力される補償励磁電 圧 e と、電流センサ 123の検出値 iに基づいて上述の数 20に関わるアルゴリズムで zm m Therefore, the resistance calculation unit 158 uses the algorithm related to Equation 20 described above based on the compensation excitation voltage e output from the excitation voltage compensation unit 156 and the detection value i of the current sensor 123 to zm m
コイル抵抗 Rが演算される。すなわち、数 20は Coil resistance R is calculated. That is, the number 20
[数 50] [Number 50]
数 3 6 Number 3 6
 Hmm
Figure imgf000025_0001
Figure imgf000025_0001
となり、数 36でコイル抵抗を演算すれば、測定結果はコイル抵抗値 Rに一致する。こ こで、数 36の演算には速度 If the coil resistance is calculated by Equation 36, the measurement result agrees with the coil resistance value R. Here, the speed of the calculation of Equation 36 is
[数 51] [Equation 51]
数 1 9  Number 1 9
Z が必要となるが、本実施例では速度  Z is required, but in this example the speed is
[数 52]  [Number 52]
数 1 9  Number 1 9
Z  Z
を検出する手段がない。しかし、速度 There is no means to detect But speed
[数 53]  [Equation 53]
数 1 9  Number 1 9
Z  Z
は浮上ギャップ長偏差 Δ zの変化速度に等しいので、姿勢推定部 133にお 、て推定 される速度推定値 [数 54] Is equal to the change speed of the levitation gap length deviation Δ z, so the estimated speed estimated by the posture estimation unit 133 is [Equation 54]
数 2 1  Number 2 1
Δ  Δ
を用いて数 36が演算できる。そして、数 36の入力(コイル電流、速度推定値、励磁電 圧)や出力に、例えば、低域通過フィルタや平均値演算等の適当なノイズ除去処理 を施せば、コイル抵抗 Rの値を高精度で測定することができる。コイル抵抗 Rを演算 する抵抗演算部 158の構成を図 5に示す。 Equation 36 can be calculated using. Then, if appropriate noise removal processing such as low-pass filter and average value calculation is applied to the input (coil current, speed estimation value, excitation voltage) and output of Equation 36, the value of coil resistance R is increased. It can be measured with accuracy. Figure 5 shows the configuration of the resistance calculation unit 158 that calculates the coil resistance R.
抵抗演算部 158は、電流センサ 123より入力される電流値 iとコイル抵抗の演算結 m  The resistance calculation unit 158 calculates the current value i input from the current sensor 123 and the coil resistance m
果である測定値 rを乗算する乗算器 188と、乗算器 188の出力から電圧入力補償部 156の補償電圧 e を減じる減算器 190と、姿勢推定部 133から得られる速度推定値 zm A multiplier 188 that multiplies the measured value r, which is the result, a subtracter 190 that subtracts the compensation voltage e of the voltage input compensation unit 156 from the output of the multiplier 188, and a velocity estimation value zm obtained from the attitude estimation unit 133
[数 55]  [Equation 55]
数 2 1  Number 2 1
Δ £  Δ £
にゲイン a /h を乗じるゲイン補償器 192と、減算器 190の出力からゲイン補償器 1 Gain compensator 192 that multiplies gain a / h and gain compensator 1 from the output of subtractor 190
32 31  32 31
92の出力を減じる減算器 194と、減算器 194の出力に前記電流値 iを乗算する乗算 m  Subtractor 194 that subtracts the output of 92, and multiplication m that multiplies the output of subtractor 194 by the current value i.
器 196と、乗算器 196の出力を積分する積分器 198と、電流値 iにゲイン lZ (2b ) m 31 を乗じてコイルに蓄えられる磁気エネルギーを出力するゲイン補償器 200と、ゲイン 補償器 200および積分器 198の出力を加算する加算器 202と、加算器 172の出力 に測定値 rの収束の速さにかかわる収束ゲインえを乗じるゲイン補償器 204と、測定 値 rの初期値を出力する初期値設定器 206と、ゲイン補償器 204の出力と初期値設 定器 206の出力を加算して加算結果を測定値 rの演算結果とするとともに前記乗算 器 188にその出力結果が導入される加算器 207と、加算器 207の出力からノイズを 除去するローパスフィルタ 208とで構成されている。このような構成により、抵抗演算 部 158は数 36に基づ 、た演算を行な 、、演算結果である測定値 rは真のコイル抵抗 値 Rに収束する。そして、演算結果はローパスフィルタ 208を介して姿勢推定部 133 およびコイル電流収束部 152に出力される。なお、ローパスフィルタ 208を介して入 力信号を抵抗演算部 158に導入しても何ら差し支えな 、。 [0073] 以上述べたように、抵抗演算部 158において、電圧入力補償部 156の出力値 e を zm 用いてドライバ 116に接続されるコイル抵抗の値を測定すると、電流オフセット i 、お zof よび電圧オフセット e が変動したとしても、浮上体 111のギャップ変動にかかわらず zoff 196, an integrator 198 that integrates the output of the multiplier 196, a gain compensator 200 that multiplies the current value i by the gain lZ (2b) m 31 and outputs the magnetic energy stored in the coil, and a gain compensator 200. And an adder 202 that adds the outputs of the integrator 198, a gain compensator 204 that multiplies the output of the adder 172 by a convergence gain related to the convergence speed of the measurement value r, and an initial value of the measurement value r. The output of the initial value setter 206 and the gain compensator 204 is added to the output of the initial value setter 206, and the result of the addition is used as the calculation result of the measured value r, and the output result is introduced into the multiplier 188. An adder 207 and a low-pass filter 208 that removes noise from the output of the adder 207 are configured. With such a configuration, the resistance calculation unit 158 performs the calculation based on Equation 36, and the measurement value r, which is the calculation result, converges to the true coil resistance value R. Then, the calculation result is output to the attitude estimation unit 133 and the coil current convergence unit 152 via the low-pass filter 208. It should be noted that the input signal may be introduced into the resistance calculation unit 158 via the low-pass filter 208. [0073] As described above, in the resistance calculation unit 158, when the value of the coil resistance connected to the driver 116 is measured by using the output value e of the voltage input compensation unit 156 as zm, the current offset i, zof, and voltage Even if the offset e fluctuates, the zoff
測定結果を常に真値に一致させることができる。言い換えれば、温度変動等より電流 検出部 (電流センサ 123)や励磁部(ドライバ 116)にオフセット電圧が発生しても、そ のオフセット電圧に応じた励磁電圧の補償値を用いて常に正し ヽ抵抗値を測定する ことができる。また、浮上開始前に目標値設定部 150よりゼロを出力して直流成分 e  The measurement result can always match the true value. In other words, even if an offset voltage is generated in the current detection unit (current sensor 123) or the excitation unit (driver 116) due to temperature fluctuations, etc., it is always corrected using the compensation value of the excitation voltage according to the offset voltage. Resistance value can be measured. Also, before starting ascent, zero is output from the target value setting unit 150 and the DC component e
DC  DC
を測定すれば、目標値設定部 150よりゼロが出力されていることから i はゼロで、速 m0  If the target value setting unit 150 outputs zero, i is zero and the speed m0
 Every time
[数 56]  [Number 56]
数 1 9  Number 1 9
z および速度推定値  z and speed estimate
[数 57]  [Equation 57]
数 2 1  Number 2 1
Δ i  Δ i
もゼロであり、このときの直流成分 e に依存
Figure imgf000027_0001
Is also zero and depends on the DC component e
Figure imgf000027_0001
しない。その後、目標値設定部 150より非ゼロ値を出力すれば、浮上開始前の直流 成分 e を用いてもコイル抵抗 Rは精度の良く測定できる。その後再び目標値設定部 do not do. Thereafter, if a non-zero value is output from the target value setting unit 150, the coil resistance R can be measured with high accuracy even if the DC component e before the start of levitation is used. Then again the target value setting section
DC DC
150からはゼロ目標値が出力され、励磁電圧 e の直流成分 e の測定が開始される zz DC  Zero target value is output from 150, and measurement of DC component e of excitation voltage e starts zz DC
力 その場合はコイル抵抗値 Rが既に測定済みであるため、浮上開始後であっても 抵抗演算部 158の出力を用 、て数 27もしくは数 29に基づく直流成分 e が測定され  Force In that case, since the coil resistance value R has already been measured, the DC component e based on Equation 27 or Equation 29 is measured using the output of the resistance calculation unit 158 even after the start of levitation.
DC  DC
ることは言うまでもない。  Needless to say.
[0074] さらに、姿勢推定部 133では、その抵抗値に基づいて常に正しいギャップ長推定値 およびその速度推定値を出力することができる。これにより、温度変動や浮上体 111 への外乱に対して常に安定した浮上状態を維持することが可能となる。  Furthermore, posture estimation section 133 can always output a correct gap length estimation value and speed estimation value based on the resistance value. As a result, it is possible to always maintain a stable floating state against temperature fluctuations and disturbance to the floating body 111.
[0075] また、本発明では、抵抗測定部 140で測定されたコイル抵抗 Rは励磁電圧演算部 1 25に導入されている。励磁電圧演算部 125では、外乱に対して所定の過渡応答が 得られるように、例えば数 13中のフィードバック定数 Fが決定されている。制御系設 計時のコイル抵抗 Rの関数で Fが与えられるときには、コイル抵抗 Rに基づいて Fの 値を変更すれば、外乱に対する浮上体の過渡応答が温度変動に対して一定になる In the present invention, the coil resistance R measured by the resistance measurement unit 140 is introduced into the excitation voltage calculation unit 125. In the excitation voltage calculator 125, a predetermined transient response to the disturbance For example, the feedback constant F in Equation 13 is determined so as to be obtained. When F is given as a function of the coil resistance R at the time of control system design, if the value of F is changed based on the coil resistance R, the transient response of the levitated body to the disturbance becomes constant with respect to the temperature fluctuation.
[0076] 以上のように、本発明では、抵抗測定部 140で測定されたコイル抵抗 Rに基づ 、て コイル電流収束部 152中でフィードバック定数 Fの値を変更しているので、浮上体 11 1の応答が温度変動に対して一定となり、浮上状態の安定性が確保できる。また、抵 抗測定の際には浮上体 111の浮上ギャップ長の変化速度が考慮されており、その結 果、信頼性の向上が図れると共に、ギャップセンサを不要として装置の簡素化や小型 ィ匕、コストの低減ィ匕を実現できる。 As described above, in the present invention, since the value of the feedback constant F is changed in the coil current converging unit 152 based on the coil resistance R measured by the resistance measuring unit 140, the floating body 11 The response of 1 is constant with respect to temperature fluctuation, and the stability of the floating state can be secured. Also, when measuring resistance, the speed of change of the floating gap length of the levitated body 111 is taken into consideration, and as a result, the reliability can be improved, the gap sensor is not required, the device can be simplified and the size can be reduced. Cost reduction can be realized.
[0077] (第 2実施形態)  [0077] (Second Embodiment)
次に、本発明の第 2実施形態について説明する。  Next, a second embodiment of the present invention will be described.
[0078] 第 2実施形態では、浮上体の運動座標系のモード毎に励磁電圧、励磁電流を演算 することを特徴とする。ここでは、本発明の磁気浮上装置をエレベータに適用した場 合を例にして説明する。  The second embodiment is characterized in that the excitation voltage and the excitation current are calculated for each mode of the levitating body motion coordinate system. Here, a case where the magnetic levitation apparatus of the present invention is applied to an elevator will be described as an example.
[0079] 図 6は本発明の第 2実施形態に係る磁気浮上装置の構成を示す図であり、この磁 気浮上装置をエレベータに適用した場合の構成が全体として符号 10で示されている FIG. 6 is a diagram showing a configuration of a magnetic levitation apparatus according to the second embodiment of the present invention, and a configuration in a case where this magnetic levitation apparatus is applied to an elevator is indicated by reference numeral 10 as a whole.
。また、図 7はその磁気浮上装置のフレーム部の構成を示す斜視図、図 8はその磁気 浮上装置の磁石ユニット周辺の構成を示す斜視図、図 9はその磁気浮上装置の磁 石ユニットの構成を示す立面図である。 . 7 is a perspective view showing the configuration of the frame portion of the magnetic levitation device, FIG. 8 is a perspective view showing the configuration around the magnet unit of the magnetic levitation device, and FIG. 9 is the configuration of the magnet unit of the magnetic levitation device. FIG.
[0080] 図 6に示すように、エレベータシャフト 12の内面にガイドレール 14, 14,と、移動体 1 6と、 4つの案内ユニット 18a〜18dが構成されている。ガイドレール 14, 14,は、強磁 性部材で構成され、エレベータシャフト 12内に所定の取り付け方法で敷設されてい る。  As shown in FIG. 6, guide rails 14, 14, a moving body 16, and four guide units 18 a to 18 d are formed on the inner surface of the elevator shaft 12. The guide rails 14 and 14 are made of a ferromagnetic member and are laid in the elevator shaft 12 by a predetermined mounting method.
[0081] 移動体 16は、上述した磁気浮上装置の浮上体に相当する。この移動体 16は、ガイ ドレール 14, 14'に沿って、例えばロープ 15の卷上げ機等の図示しない駆動機構を 介して上下方向に移動する。案内ユニット 18a〜18dは、移動体 16に取り付けられて おり、この移動体 16をガイドレール 14, 14'に対して非接触で案内する。 [0082] 移動体 16には、乗りかご 20と案内ユニット 18a〜18dが取り付けられる。移動体 16 は、案内ユニット 18a〜18dの所定の位置関係を保持可能な強度を有するフレーム 部 22を備えている。図 5に示すように、このフレーム部 22の四隅には、ガイドレール 1 4, 14'と対向する案内ユニット 18a〜18dが所定の方法で取り付けられている。 [0081] The moving body 16 corresponds to the floating body of the magnetic levitation apparatus described above. The moving body 16 moves up and down along the guide rails 14 and 14 'through a driving mechanism (not shown) such as a rope 15 lifting machine. The guide units 18a to 18d are attached to the moving body 16, and guide the moving body 16 to the guide rails 14, 14 'without contact. [0082] Car 20 and guide units 18a to 18d are attached to moving body 16. The moving body 16 includes a frame portion 22 having a strength capable of maintaining a predetermined positional relationship between the guide units 18a to 18d. As shown in FIG. 5, guide units 18a to 18d facing the guide rails 14 and 14 'are attached to the four corners of the frame portion 22 by a predetermined method.
[0083] 案内ユニット 18は、図 8に示すように、非磁性材料 (例えばアルミやステンレス)もし くはプラスチック製の台座 24に X方向近接センサ 26 (26b, 26b ' )、 y方向近接セン サ 28 (28b, 28b ' )および磁石ユニット 30を所定の方法で取り付けて構成されている 。近接センサ 26, 28は案内ユニット 18とガイドレール 14, 14,の接触を検出する接 触検出部として機能する。  [0083] As shown in Fig. 8, the guide unit 18 includes a base 24 made of non-magnetic material (for example, aluminum or stainless steel) or plastic, an X-direction proximity sensor 26 (26b, 26b '), and a y-direction proximity sensor. 28 (28b, 28b ') and the magnet unit 30 are mounted by a predetermined method. Proximity sensors 26 and 28 function as contact detectors that detect contact between guide unit 18 and guide rails 14 and 14.
[0084] 磁石ユニット 30は、中央鉄心 32、永久磁石 34, 34'、電磁石 36, 36 'で構成され ており、図 9にも示されているように、永久磁石 34, 34'の同極同士が中央鉄心 32を 介して向か!/、合う状態で全体として E字形状に組み立てられて 、る。  [0084] The magnet unit 30 is composed of a central iron core 32, permanent magnets 34 and 34 ', and electromagnets 36 and 36', and as shown in Fig. 9, the same polarity as the permanent magnets 34 and 34 '. They face each other through the central iron core 32! / As a whole, they are assembled into an E shape.
[0085] 電磁石 36, 36,は、 L字形状の鉄心 38 (38,)をコイル 40 (40,)に挿入後、鉄心 38  [0085] The electromagnets 36 and 36 are inserted into the coil 40 (40,) after the L-shaped iron core 38 (38,) is inserted into the iron core 38.
(38 ' )の先端部に平板形状の鉄心 42を取り付けて構成されている。中央鉄心 32お よび電磁石 36, 36 'の先端部には、個体潤滑部材 43が取付けられている。この個体 潤滑部材 43は電磁石 36, 36 'が励磁されていない時に永久磁石 34, 34'の吸引力 で磁石ユニット 30がガイドレール 14 (14' )に吸着して固着することを防止し、かつ、 吸着状態でも移動体 16の昇降に支障が出な 、ようにするために設けられて 、る。こ の個体潤滑部材 43としては、例えばテフロン (登録商標)や黒鉛あるいは二硫ィ匕モリ ブデン等を含有する材料がある。  A flat core 42 is attached to the tip of (38 '). A solid lubricating member 43 is attached to the tip of the central iron core 32 and the electromagnets 36 and 36 ′. This solid lubricating member 43 prevents the magnet unit 30 from being attracted and fixed to the guide rail 14 (14 ') by the attractive force of the permanent magnets 34, 34' when the electromagnets 36, 36 'are not excited, and It is provided to prevent the moving body 16 from moving up and down even in the adsorbed state. As this solid lubricating member 43, for example, there is a material containing Teflon (registered trademark), graphite, disulfurium molybdenum or the like.
[0086] 以下では、簡単のために、主要部分を示す番号に案内ユニット 18a〜18dのアルフ ァベット (a〜d)を付して説明する。  [0086] Hereinafter, for the sake of simplicity, the alphabets (a to d) of the guide units 18a to 18d are attached to the numbers indicating the main parts.
[0087] 磁石ユニット 30bでは、コイル 40b, 40b'を個別に励磁することでガイドレール 14' に作用する吸引力 方向と X方向に関して独立に制御することができる。この制御 方式の詳細は特許文献 1に記載されて ヽるため、ここでは詳し!/ヽ説明を省略する。 [0087] In the magnet unit 30b, the coils 40b and 40b 'can be individually excited to independently control the direction of the attractive force acting on the guide rail 14' and the X direction. Since details of this control method are described in Patent Document 1, detailed explanation is omitted here.
[0088] 案内ユニット 18a〜18dの各吸引力は、上述した吸引力制御部として用いられる制 御装置 44により制御され、乗りかご 20およびフレーム部 22がガイドレール 14, 14, に対して非接触に案内される。 [0089] なお、制御装置 44は図 6の例では分割されている力 例えば図 10に示すように、 全体として 1つに構成されて ヽても良!、。 [0088] Each suction force of the guide units 18a to 18d is controlled by the control device 44 used as the suction force control unit described above, and the car 20 and the frame part 22 are not in contact with the guide rails 14, 14, and so on. Be guided to. [0089] It should be noted that the control device 44 can be configured as a single force as a whole as shown in FIG. 10, for example, as shown in FIG.
[0090] 図 10は同実施形態における制御装置内の構成を示すブロック図、図 11はその制 御装置内のモード制御電圧演算回路の構成を示すブロック図である。なお、ブロック 図において、矢印線は信号経路を、棒線はコイル 40周辺の電力経路を示している。 FIG. 10 is a block diagram showing a configuration in the control device in the same embodiment, and FIG. 11 is a block diagram showing a configuration of a mode control voltage arithmetic circuit in the control device. In the block diagram, an arrow line indicates a signal path, and a bar line indicates a power path around the coil 40.
[0091] 制御装置 44は、センサ部 61と、演算回路 62と、パワーアンプ 63a, 63a,〜63d, 6The control device 44 includes a sensor unit 61, an arithmetic circuit 62, and power amplifiers 63a, 63a, to 63d, 6
3d,とで構成されており、これらで 4つの磁石ユニット 30a〜30dの吸引力を X軸, y軸 につ 、て独立に制御して 、る。 3d, and these control the attraction force of the four magnet units 30a to 30d independently of the X and y axes.
[0092] センサ部 61は、乗りかご 20に取付けられて磁石ユニット 30a〜30dによって形成さ れる磁気回路中の起磁力あるいは磁気抵抗、もしくは、移動体 16の運動の変化を検 出する。 The sensor unit 61 is attached to the car 20 and detects magnetomotive force or magnetic resistance in the magnetic circuit formed by the magnet units 30a to 30d, or changes in the movement of the moving body 16.
[0093] 演算回路 62は、このセンサ部 61からの信号に基づいて移動体 16を非接触案内さ せるベぐ各コイル 40a, 40a,〜40d, 40d'を励磁するための印加電圧を演算する 吸引力制御部として用いられる。パワーアンプ 63a, 63a'〜63d, 63d'は、この演算 回路 62の出力に基づ 、て各コイル 40に電力を供給する励磁部として用いられる。  The arithmetic circuit 62 calculates an applied voltage for exciting the coils 40a, 40a, ˜40d, 40d ′ that guide the moving body 16 in a non-contact manner based on the signal from the sensor unit 61. Used as a suction force control unit. The power amplifiers 63a, 63a ′ to 63d, 63d ′ are used as excitation units for supplying power to the coils 40 based on the output of the arithmetic circuit 62.
[0094] また、電源 46は、パワーアンプ 63a, 63a'〜63d, 63d'に電力を供給すると同時 に定電圧発生装置 48にも電力を供給している。なお、この電源 46は、照明やドアの 開閉のために図示せぬ電源線でエレベータシャフト 12外力 供給される交流をパヮ 一アンプへの電力供給に適した直流に変換する機能を有している。  [0094] Further, the power supply 46 supplies power to the power amplifiers 63a, 63a 'to 63d, 63d' and also supplies power to the constant voltage generator 48 at the same time. The power source 46 has a function of converting the alternating current supplied from the elevator shaft 12 external force by a power line (not shown) for lighting and door opening / closing to a direct current suitable for supplying power to the amplifier. .
[0095] 定電圧発生装置 48は、パワーアンプ 63への大電流の供給などによって電源 46の 電圧が変動しても、常に一定の電圧で演算回路 62および近接センサ 26a, 26a'〜 26d, 26d' , 28a, 28a'〜28d, 28d'【こ電力を供給する。これ【こより、演算回路 62 および近接センサ 26a, 26a'〜26d, 26d' , 28a, 28a'〜28d, 28d'は常に正常 に動作する。  [0095] Even if the voltage of the power supply 46 fluctuates due to the supply of a large current to the power amplifier 63, the constant voltage generator 48 always operates with the constant voltage 62 and the proximity sensors 26a, 26a 'to 26d, 26d. ', 28a, 28a' to 28d, 28d '[Supply power. Thus, the arithmetic circuit 62 and the proximity sensors 26a, 26a ′ to 26d, 26d ′, 28a, 28a ′ to 28d, and 28d ′ always operate normally.
[0096] センサ部 61は、前述した近接センサ 26a, 26a'〜26d, 26d' , 28a, 28a'〜28d , 28d,と、各コイル 40の励磁電流を検出する電流検出器 66a, 66a,〜66d, 66d' で構成されている。  [0096] The sensor unit 61 includes the proximity sensors 26a, 26a 'to 26d, 26d', 28a, 28a 'to 28d, 28d, and the current detectors 66a, 66a, to detect the excitation current of each coil 40. 66d, 66d '.
[0097] 演算回路 62は、図 6に示される運動座標系の各モードで移動体 16の案内制御を 行なっている。ここで、前記各モードとは、移動体 16の重心の y座標に沿った前後動 を表す yモード (前後動モード)、 X座標に沿った左右動を表す Xモード (左右動モード )、移動体 16の重心回りのローリングを表す Θモード(ロールモード)、移動体 16の重 心回りのピッチングを表す モード(ピッチモード)、移動体 16の重心回りのョーイン グを表す Φモード(ョーモード)である。 The arithmetic circuit 62 performs guidance control of the moving body 16 in each mode of the motion coordinate system shown in FIG. Is doing. Here, the above-mentioned modes are y mode (back and forth motion mode) representing the back and forth movement along the y coordinate of the center of gravity of the moving body 16, X mode (left and right motion mode) representing the left and right motion along the X coordinate, and movement. Θ mode (roll mode) representing rolling around the center of gravity of the body 16, mode representing pitching around the center of the moving body 16 (pitch mode), and Φ mode (yo mode) representing gyration around the center of gravity of the moving body 16 is there.
[0098] また、これらのモードに加えて、演算回路 62は、 ζモード (全吸引モード)、 δモー ド(ねじれモード)、 γモード (歪モード)についても案内制御を行なっている。すなわ ち、磁石ユニット 30a〜30dがガイドレール 14, 14'に及ぼす「全吸引力」、磁石ュ- ット 30a〜30dがフレーム部 22に及ぼす z軸周りの「ねじれトルク」、磁石ユニット 30a , 30d力 Sフレーム咅 22に、磁石ユニット 30b, 30c力 Sフレーム咅 22に及ぼ、す回転卜ノレ クでフレーム部 22を z軸に対して左右対称に歪ませる「歪力」に関する 3つのモードで ある。 In addition to these modes, the arithmetic circuit 62 also performs guidance control for the ζ mode (full suction mode), δ mode (twist mode), and γ mode (distortion mode). In other words, the “total attractive force” exerted on the guide rails 14 and 14 ′ by the magnet units 30a to 30d, the “torsion torque” around the z-axis exerted on the frame portion 22 by the magnet boots 30a to 30d, and the magnet unit 30a. , 30d force S frame 咅 22 and magnet unit 30b, 30c force S frame 咅 22 three modes regarding `` distortion force '' which distorts frame part 22 symmetrically with respect to z axis by rotating 卜 nore It is.
[0099] 以上のような 8つのモードに対し、磁石ユニット 30a〜30dのコイル電流をゼロに収 束させることで、積荷の重量に関わらず永久磁石 34の吸引力だけで移動体を安定 に支持する、いわゆる「ゼロパワー制御」にて案内制御を行なっている。  [0099] For the above eight modes, the coil current of the magnet units 30a to 30d is converged to zero, so that the moving body can be stably supported only by the attractive force of the permanent magnet 34 regardless of the weight of the load. The guidance control is performed by so-called “zero power control”.
[0100] 演算回路 62は、浮上体である移動体 16の運動の自由度に寄与する吸引力を発生 させる励磁電流の線形結合で表させるモード別励磁電流を演算する機能と、同じく 励磁電圧の線形結合で表させるモード別励磁電圧を演算する機能を備える。具体的 には、次のように構成される。  [0100] The arithmetic circuit 62 has a function of calculating an excitation current for each mode expressed by a linear combination of excitation currents that generate an attractive force that contributes to the freedom of movement of the moving body 16 that is a levitating body. It has a function to calculate the excitation voltage for each mode expressed by linear combination. Specifically, it is structured as follows.
[0101] すなわち、図 10に示すように、演算回路 62は、目標値設定部 74と、抵抗測定部 6 4と、電流偏差座標変換回路 83と、制御電圧演算回路 84、制御電圧座標逆変換回 路 85と、速度推定値座標逆変換回路 87とで構成されている。  That is, as shown in FIG. 10, the calculation circuit 62 includes a target value setting unit 74, a resistance measurement unit 64, a current deviation coordinate conversion circuit 83, a control voltage calculation circuit 84, and a control voltage coordinate reverse conversion. A circuit 85 and a speed estimated value coordinate inverse transform circuit 87 are included.
[0102] 目標値設定部 74は、前記 8つの各モードのうち、 ζモード (全吸引モード)の励磁 電流目標値として所定の周期で交互にゼロまたは非ゼロの値を出力すると共に、 yモ ードおよび Xモードにおいては後述の装置停止の際に所定の値を出力する。  [0102] The target value setting unit 74 outputs zero or non-zero values alternately in a predetermined cycle as the excitation current target value of the ζ mode (all-suction mode) among the eight modes. In the mode and X mode, a predetermined value is output when the device is stopped as described later.
[0103] 抵抗測定部 64は、各コイル 40a, 40a'〜40d, 40d'の励磁電流検出値と演算回 路 62の各ノ ヮ一アンプ 63a, 63a,〜63d, 63d,への励磁電圧信号 ea, ea,〜ed, e d'と前記目標値設定部 74の出力値および速度推定値座標逆変換回路 87の出力値 に基づ!/、て、それぞれのコイルの電気抵抗値を出力する。 [0103] The resistance measuring unit 64 is configured to detect the excitation current detection values of the coils 40a, 40a 'to 40d, 40d' and the excitation voltage signals to the respective amplifiers 63a, 63a, to 63d, 63d of the calculation circuit 62. ea, ea, ˜ed, ed ′, the output value of the target value setting unit 74, and the output value of the speed estimated value coordinate inverse transformation circuit 87 Based on! /, The electrical resistance value of each coil is output.
[0104] 電流偏差座標変換回路 83は、モード励磁電流演算部として、電流偏差信号 Aia,  [0104] The current deviation coordinate conversion circuit 83 has a current deviation signal Aia,
Δ ia,〜 Δ id, Δ id'により移動体 16の重心の y方向の運動に関わる電流偏差 Δ iy、 X方向の運動に関わる電気偏差 Aix、同重心のまわりのローリングに関わる電流偏差 Δίθ ,移動体 16のピッチングに関わる電流偏差 Ai ξ、同重心のまわりのョーイング に関わる電流偏差 Δίφ、フレーム部 22に応力をかける ζ , δ , γに関する電流偏差 Δίζ , Δίδ , Δίγを演算する。  Δ ia, ~ Δ id, Δ id 'causes current deviation related to the movement of the center of gravity of the moving body 16 in the y direction Δ iy, electrical deviation related to the movement in the X direction Aix, current deviation related to rolling around the center of gravity Δίθ, A current deviation Ai ξ related to pitching of the moving body 16, a current deviation Δίφ related to the bowing around the same center of gravity, and a current deviation Δίζ, Δίδ, Δίγ relating to ζ, δ, γ applying stress to the frame portion 22 are calculated.
[0105] 制御電圧演算回路 84は、モード励磁電圧演算部として、前記抵抗測定部 64、前 記目標値設定部 74および前記電流偏差座標変換回路 83の出力 Aiy, Δίχ, Δίθ , Μξ , Μφ , Δίζ , Δίδ , Δίγより y, χ, θ , ξ , φ , ζ , δ , γの各モードにお いて移動体 16を安定に磁気浮上させるモード別電磁石制御電圧 ey, ex, e Θ , e 6 , βφ , e ζ , e δ , eyを演算す <S。  The control voltage calculation circuit 84 serves as a mode excitation voltage calculation unit, and outputs Aiy, Δίχ, Δίθ, Μξ, Μφ, and the output of the resistance measurement unit 64, the target value setting unit 74, and the current deviation coordinate conversion circuit 83, respectively. From Δίζ, Δίδ, Δίγ, y-, χ-, θ-, ξ-, φ-, ζ-, δ-, γ-mode electromagnet control voltages ey, ex, eΘ, e6 , βφ, e ζ, e δ, ey <S.
[0106] 制御電圧座標逆変換回路 85は制御電圧演算回路 84の出力 ey, ex, e Θ , e 6 , e φ , e ζ , e δ , より前記磁石ユニット 30a〜30dのそれぞれの電磁石励磁電圧 ea , ea'〜ed, ed'を演算する。この制御電圧座標逆変換回路 85の演算結果つまり ea , ea'〜ed, ed' ίまノ ヮ一アンプ 63a, 63a'〜63d, 63d'【こ与えられる。  [0106] The control voltage coordinate inverse transformation circuit 85 is the output of the control voltage calculation circuit 84, ey, ex, eΘ, e6, eφ, eζ, eδ, and the respective magnet excitation voltages of the magnet units 30a to 30d. ea, ea 'to ed, ed' are calculated. The operation result of the control voltage coordinate inverse transformation circuit 85, that is, ea, ea 'to ed, ed', and a single amplifier 63a, 63a 'to 63d, 63d' is given.
[0107] 速度推定値座標逆変換回路 87は、制御電圧演算回路 84の y, x, 0 , ξ , φの各 モード別制御電圧演算回路 86で演算されるモード別変位速度推定値  [0107] Speed estimated value coordinate inverse transform circuit 87 is a mode-specific displacement speed estimated value calculated by control voltage calculation circuit 86 for each mode of y, x, 0, ξ, φ in control voltage calculation circuit 84.
[数 58]  [Equation 58]
数 37  Number 37
[数 59] [Numerical 59]
数 38  Number 38
[数 60] [Equation 60]
数 39 [数 61] Number 39 [Number 61]
数 4 0 Number 4 0
[数 62] [Numerical 62]
黎 4 1 厶 φ  黎 4 1 厶 φ
より前記磁石ユニット 30a〜30dのそれぞれのギャップ長変位速度推定値 From each of the magnet units 30a-30d, the estimated gap length displacement speed
[数 63] [Equation 63]
数 4 2 Number 4 2
Δ ya ~ Δ yd ,  Δ ya ~ Δ yd,
[数 64]  [Equation 64]
数 4 3  Number 4 3
厶 xa ~厶 xd を演算する。この速度推定値座標逆変換回路 87の演算結果つまり  厶 Calculate xa ~ 厶 xd. The calculation result of the speed estimated value coordinate inverse transformation circuit 87, that is,
[数 65] [Equation 65]
数 4 2 Number 4 2
Δ ya ~ Δ yd ,  Δ ya ~ Δ yd,
[数 66]  [Equation 66]
数 4 3  Number 4 3
Δ xa ~厶 xd は、抵抗測定部 64に与えられる。  Δ xa ~ 厶 xd is given to the resistance measuring unit 64.
なお、目標値設定部 74は、前記第 1実施形態における少なくとも 1つの目標値設定 部 140で構成することでも良い。また、複数の目標値設定部 140で当該目標値設定 部 74を構成する場合には、それぞれの出力値がゼロになる周期に位相のずれが存 在しな 、ことは言うまでもな!/、。 [0109] また、非ゼロ値を出力する周期においては、すべてのコイルに抵抗測定用の微小 電流を供給するという目的力 少なくとも 1つのモードの目標値が非ゼロ値であれば 良ぐ目標値設定部 74が励磁電流目標値として常にゼロを出力するモードがあって も何ら差し支えない。 The target value setting unit 74 may be configured by at least one target value setting unit 140 in the first embodiment. Further, when the target value setting unit 74 is configured by a plurality of target value setting units 140, it goes without saying that there is no phase shift in the period in which each output value becomes zero! /. [0109] In addition, the target power to supply a minute current for resistance measurement to all coils in the period in which a non-zero value is output. If the target value in at least one mode is a non-zero value, good target value setting is possible. It does not matter if there is a mode in which part 74 always outputs zero as the excitation current target value.
[0110] ここで、本実施形態では、 ζモード (全吸引モード)が非ゼロ値になるように目標値 設定部 74を構成しており、この場合、すべてのコイルに同じ値の励磁電流を供給す ることができる。し力も、その際に発生する吸引力は前記フレーム部 22への応力とし て作用するので、移動体 16の姿勢が変化することがなぐ目標値設定部 74の出力 値の変化に対して乗り心地が悪ィ匕することはない。  [0110] Here, in the present embodiment, the target value setting unit 74 is configured so that the ζ mode (all suction mode) becomes a non-zero value. In this case, the same excitation current is applied to all coils. Can be supplied. Since the suction force generated at that time acts as a stress on the frame part 22, the rider can feel comfortable against the change in the output value of the target value setting part 74 in which the posture of the moving body 16 does not change. There is no evil.
[0111] なお、後述の説明のため、図 10の電流偏差座標変換回路 83、制御電圧演算回路 84および制御電圧座標逆変換回路 85を浮上制御演算部 65とする。  Note that the current deviation coordinate conversion circuit 83, the control voltage calculation circuit 84, and the control voltage coordinate reverse conversion circuit 85 in FIG.
[0112] さらに、制御電圧演算回路 84は、前後動モード制御電圧演算回路 86a、左右動モ ード制御電圧演算回路 86b、ロールモード制御電圧演算回路 86c、ピッチモード制 御電圧演算回路 86d、ョーモード制御電圧演算回路 86e、全吸引モード制御電圧演 算回路 88a、ねじれモード制御電圧演算回路 88b、歪モード制御電圧演算回路 88c で構成されている。  [0112] Further, the control voltage calculation circuit 84 includes a forward / reverse motion mode control voltage calculation circuit 86a, a left / right movement mode control voltage calculation circuit 86b, a roll mode control voltage calculation circuit 86c, a pitch mode control voltage calculation circuit 86d, and a mode. The control voltage calculation circuit 86e, the all suction mode control voltage calculation circuit 88a, the torsion mode control voltage calculation circuit 88b, and the distortion mode control voltage calculation circuit 88c are configured.
[0113] 前後動モード制御電圧演算回路 86aは、 A iyより yモードの電磁石制御電圧 eyを 演算する。左右動モード制御電圧演算回路 86bは、 A ixより Xモードの電磁石制御 電圧 exを演算する。ロールモード制御電圧演算回路 86cは、 A i 0より 0モードの電 磁石制御電圧 e Θを演算する。ピッチモード制御電圧演算回路 86dは、 A i より ξ モードの電磁石制御電圧 e ξを演算する。ョーモード制御電圧演算回路 86eは、 A i φより φモードの電磁石制御電圧 e φを演算する。  [0113] The longitudinal motion mode control voltage calculation circuit 86a calculates the y-mode electromagnet control voltage ey from A iy. The left / right mode control voltage calculation circuit 86b calculates the X mode electromagnet control voltage ex from Aix. The roll mode control voltage calculation circuit 86c calculates the 0 mode electromagnet control voltage e Θ from A i 0. The pitch mode control voltage calculation circuit 86d calculates the ξ mode electromagnet control voltage e ξ from A i. The mode control voltage calculation circuit 86e calculates the φ-mode electromagnet control voltage e φ from A i φ.
[0114] 全吸引モード制御電圧演算回路 88aは、 A i ζより ζモードの電磁石制御電圧 e ζ を演算する。ねじれモード制御電圧演算回路 88bは、 A i δより δモードの電磁石制 御電圧 e δを演算する。歪モード制御電圧演算回路 88cは、 Δ ί γより γモードの電 磁石制御電圧 e γを演算する。  [0114] The full suction mode control voltage calculation circuit 88a calculates the ζ-mode electromagnet control voltage e ζ from A i ζ. The torsion mode control voltage calculation circuit 88b calculates a δ mode electromagnet control voltage e δ from A i δ. The distortion mode control voltage calculation circuit 88c calculates the γ-mode electromagnet control voltage e γ from Δ ί γ.
[0115] これらモードの制御電圧演算回路が図 2および図 3に示す吸引力制御部 115と同 様の構成を備えている。 [0116] すなわち、前後動モード制御電圧演算回路 86aは、図 11に示すように、抵抗値平 均化部 90、ゲイン補償器 91、抵抗値アンバランス補正部 92、減算器 93、積分補償 器 94、加算器 95、減算器 96、推定誤差補正部 142、姿モード姿勢推定部 97、推定 初期化部 98、姿勢演算部 99、初期値設定部 100および加算器 101で構成されてい る。 [0115] The control voltage calculation circuit in these modes has the same configuration as the attractive force control unit 115 shown in Figs. That is, as shown in FIG. 11, the longitudinal movement mode control voltage calculation circuit 86a includes a resistance value averaging unit 90, a gain compensator 91, a resistance value imbalance correction unit 92, a subtractor 93, and an integral compensator. 94, an adder 95, a subtractor 96, an estimation error correction unit 142, a figure mode posture estimation unit 97, an estimation initialization unit 98, a posture calculation unit 99, an initial value setting unit 100, and an adder 101.
[0117] 抵抗値平均化部 90は抵抗測定部 64で測定されたコイル 40a, 40a'〜40d, 40d' の抵抗値の平均値を演算する。ゲイン補償器 91は、 Δγ, Ayの推定値 (図中'で表 示)および Δ iyに適当なフィードバックゲインを乗じる。抵抗値アンバランス補正部 92 は、当該前後動モード以外の 7つのモード別励磁電流( Δ ix〜 Δ i γ )に抵抗測定部 64の出力に基づ 、て、各コイル抵抗値の線形結合で得られるモード別抵抗補正ゲ インを乗算すると共にそれら 7つの乗算結果の総和を出力する。  The resistance value averaging unit 90 calculates the average value of the resistance values of the coils 40a, 40a ′ to 40d, 40d ′ measured by the resistance measurement unit 64. The gain compensator 91 multiplies the estimated values of Δγ and Ay (indicated by “′” in the figure) and Δ iy by an appropriate feedback gain. The resistance value imbalance correction unit 92 is a linear combination of the coil resistance values based on the output of the resistance measurement unit 64 based on the excitation currents (Δ ix to Δ i γ) for each of the seven modes other than the forward / backward movement mode. Multiply the obtained resistance correction gains for each mode and output the sum of these seven multiplication results.
[0118] 減算器 93は、 Aiyを目標値設定部 74の出力より減じる。積分補償器 94は、減算 器 93の出力値を積分し適当なフィードバックゲインを乗じる。加算器 95は、ゲイン補 償器 91の出力値の総和を演算する。減算器 96は、加算器 95の出力値を積分補償 器 94の出力値より減じて yモード (前後動モード)の第 1のモード別励磁電圧 eylを出 力する。  [0118] The subtracter 93 subtracts Aiy from the output of the target value setting unit 74. The integral compensator 94 integrates the output value of the subtractor 93 and multiplies it by an appropriate feedback gain. The adder 95 calculates the sum of the output values of the gain compensator 91. The subtractor 96 subtracts the output value of the adder 95 from the output value of the integral compensator 94 and outputs the first mode excitation voltage eyl in the y mode (forward / reverse operation mode).
[0119] 推定誤差補正部 142は、モード推定誤差補正部として、モード毎の第 1のモード別 励磁電圧におけるパワーアンプ 63のオフセット電圧成分を補正する。モード姿勢推 定部 97は、姿勢推定部 133と同様に推定誤差補正部 142の出力値とモード別電流 偏差 Aiyから Ay, Δγ, Δ iyの推定値を演算する。  [0119] The estimation error correction unit 142, as a mode estimation error correction unit, corrects the offset voltage component of the power amplifier 63 in the first mode-specific excitation voltage for each mode. As with the posture estimation unit 133, the mode posture estimation unit 97 calculates the estimated values of Ay, Δγ, and Δiy from the output value of the estimation error correction unit 142 and the current deviation Aiy for each mode.
[0120] 推定初期化部 98は、 16個の近接センサ信号の ONZOFFに基づいてモード姿勢 推定部 97中の積分演算を初期化する。姿勢演算部 99は、 16個の近接センサ信号 の ONZOFFに基づいて移動体 16の接触時の姿勢を演算して各磁石ユニット 30の モード別位置偏差を出力する。初期値設定部 100は、姿勢演算部 99の演算結果を モード姿勢推定部 97の初期化時に積分動作の初期値として設定する。加算器 101 は、前記第 1のモード別励磁電圧 eylと前記抵抗値アンバランス補正部 92の出力を 加算し、その加算結果を第 2のモード別励磁電圧 eyとして出力する。  [0120] The estimation initialization unit 98 initializes the integration operation in the mode posture estimation unit 97 based on ONZOFF of the 16 proximity sensor signals. The attitude calculation unit 99 calculates the attitude when the moving body 16 is in contact based on ONZOFF of the 16 proximity sensor signals, and outputs the position deviation of each magnet unit 30 by mode. The initial value setting unit 100 sets the calculation result of the posture calculation unit 99 as the initial value of the integration operation when the mode posture estimation unit 97 is initialized. The adder 101 adds the first mode-specific excitation voltage eyl and the output of the resistance value imbalance correction unit 92, and outputs the addition result as the second mode-specific excitation voltage ey.
[0121] なお、モード姿勢推定部 97、推定初期化部 98、姿勢演算部 99および初期値設定 部 100については特許文献 4に詳細に開示されている。また、推定誤差補正部 142 および抵抗値アンバランス補正部 92については本願発明の特徴的な構成の前提と なる構成要素であり、本願出願人の先願に詳細に記述されているので詳しい説明は 省略する。 [0121] Mode posture estimation unit 97, estimation initialization unit 98, posture calculation unit 99, and initial value setting Part 100 is disclosed in detail in Patent Document 4. Further, the estimated error correction unit 142 and the resistance value imbalance correction unit 92 are constituent elements that are preconditions for the characteristic configuration of the present invention, and are described in detail in the prior application of the applicant of the present application. Omitted.
[0122] また、左右動モード制御電圧演算回路 86b、ロールモード制御電圧演算回路 86c 、ピッチモード制御演算回路 86dおよびョーモード制御演算回路 86eについても、前 記上下動モード制御電圧演算回路 86aと同様の構成であり、対応する入出力信号を 信号名で示し、その説明は省略するものとする。  [0122] Also, the left / right mode control voltage calculation circuit 86b, the roll mode control voltage calculation circuit 86c, the pitch mode control calculation circuit 86d, and the short mode control calculation circuit 86e are the same as the vertical mode control voltage calculation circuit 86a. The corresponding input / output signal is indicated by the signal name, and the description thereof is omitted.
[0123] 一方、 ζ , δおよび γの 3つの各モード制御電圧演算回路 88a〜88cはすべて同 じ構成であり、また、上下動モード制御電圧演算回路 86aと同じ構成要素を有するの で、同一部分に同一符号を付すと共に、区別するために「'」を付して図 12にその構 成を示す。本実施形態では、図 12に示した減算器 93, 93 '、ゲイン補償器 91, 91 ' 、積分補償器 94, 94'、減算器 96, 96 'および加算器 95がモード励磁電流収束部 を形成している。  On the other hand, each of the three mode control voltage calculation circuits 88a to 88c of ζ, δ, and γ has the same configuration, and has the same components as the vertical movement mode control voltage calculation circuit 86a. The same reference numerals are given to the parts, and “′” is added for distinction, and the configuration is shown in FIG. In this embodiment, the subtractors 93 and 93 ′, gain compensators 91 and 91 ′, integral compensators 94 and 94 ′, subtractors 96 and 96 ′, and the adder 95 shown in FIG. Forming.
[0124] 次に、以上のように構成された磁気浮上装置の動作について説明する。  Next, the operation of the magnetic levitation apparatus configured as described above will be described.
[0125] 装置が停止状態にあるときは、磁石ユニット 30a, 30dの中央鉄心 32の先端が、固 体潤滑部材 43を介してガイドレール 14の対向面に、電磁石 36a' , 36d'の先端が固 体潤滑部材 43を介してガイドレール 14の対向面にそれぞれ吸着して 、る。このとき に固体潤滑部材 43の働きにより、移動体 16の昇降が妨げられることはない。  [0125] When the apparatus is in a stopped state, the tips of the central iron cores 32 of the magnet units 30a and 30d are opposed to the guide rail 14 through the solid lubricating member 43, and the tips of the electromagnets 36a 'and 36d' are It is adsorbed to the opposing surface of the guide rail 14 via the solid lubricating member 43. At this time, the moving of the moving body 16 is not hindered by the action of the solid lubricating member 43.
[0126] この状態でこの装置を起動させると、制御装置 44は浮上制御演算部 65の働きによ り永久磁石 34が発生する磁束と同じ向きまたは逆向きの磁束を各電磁石 36a, 36a' 〜36d, 36d,に発生させると共に、磁石ユニット 30a〜30dとガイドレーノレ 14, 14,の 間に所定の空隙長を維持させるベく各コイル 40に流す電流を制御する。  [0126] When this device is started in this state, the control device 44 causes each of the electromagnets 36a, 36a 'to generate a magnetic flux in the same direction as or opposite to the magnetic flux generated by the permanent magnet 34 by the action of the levitation control calculation unit 65. 36d, 36d, and the current flowing in each coil 40 for maintaining a predetermined gap length between the magnet units 30a-30d and the guide rails 14, 14 is controlled.
[0127] これによつて、図 9に示すように、永久磁石 34〜鉄心 38, 42〜空隙 G〜ガイドレー ル 14 (14' )〜空隙 G"〜中央鉄心 32〜永久磁石 34の経路からなる磁気回路 Mcお よび永久磁石 34'〜鉄心 38、 42〜空隙 G'〜ガイドレール 14 (14' )〜空隙 G"〜中 央鉄心 32〜永久磁石 34の経路力もなる磁気回路 Mc,が形成される。  Accordingly, as shown in FIG. 9, from the path of the permanent magnet 34 to the iron core 38, 42 to the gap G to the guide rail 14 (14 ') to the gap G "to the central iron core 32 to the permanent magnet 34. The magnetic circuit Mc and the permanent magnet 34 'to the iron core 38, 42 to the gap G' to the guide rail 14 (14 ') to the gap G "to the central iron core 32 to the magnetic circuit Mc that also has the path force of the permanent magnet 34 are formed. Is done.
[0128] このとき、空隙 G, G' , G"におけるギャップ長は、永久磁石 34の起磁力による各磁 石ユニット 30a〜30dの磁気的吸引力が移動体 16の重心に作用する y軸方向前後 力、同 X方向左右力、移動体 16の重心を通る X軸回りのトルク、同 y軸回りのトルクお よび同 z軸回りのトルクと丁度釣合うような長さになる。 [0128] At this time, the gap length in the gaps G, G ', G "is determined by the magnetomotive force of the permanent magnet 34. The magnetic attraction force of the stone units 30a to 30d acts on the center of gravity of the moving body 16. The longitudinal force in the y-axis, the left-right force in the X-direction, the torque around the X-axis passing through the center of gravity of the moving body 16, and the torque around the same y-axis And the length is just the same as the torque around the z axis.
[0129] 制御装置 44はこの釣合いを維持すべく移動体 16に外力が作用すると電磁石 36a , 36a,〜36d, 36d,の励磁電流制御を行なう。これによつて、いわゆるゼロパワー制 御がなされる。今、ゼロパワー制御で非接触案内されている移動体 16が図示せぬ卷 上げ機によってガイドレール 14, 14'に沿って昇降を開始した場合に、ガイドレール 14, 14'の歪曲等により移動体 16に揺れが生じたとする。このよう場合でも、磁石ュ ニット 30a〜30dが空隙中で電磁石と磁路を共有する永久磁石を備えているため、 電磁石コイルの励磁により速やかに磁石ユニット 30a〜30dの吸引力を制御して摇 れを抑えることができる。  The control device 44 controls the excitation current of the electromagnets 36a, 36a, 36d, and 36d when an external force is applied to the moving body 16 in order to maintain this balance. As a result, so-called zero power control is performed. Now, when the moving body 16 that is being non-contact guided by zero power control starts to move up and down along the guide rails 14 and 14 'by an unillustrated lifting machine, it moves due to the distortion of the guide rails 14 and 14'. Assume that body 16 shakes. Even in such a case, the magnet units 30a to 30d have permanent magnets that share a magnetic path with the electromagnet in the air gap, so that the attraction force of the magnet units 30a to 30d can be quickly controlled by exciting the electromagnet coils. This can be suppressed.
[0130] また、人員や積荷の偏った移動、もしくは地震等に起因するロープの揺れ等が原因 で移動体 16に過大な外力が加えられたとする。このような場合、磁石ユニット 30a〜3 Odの電磁石の温度が上昇し、電磁石コイルの電気抵抗およびパワーアンプや電流 検出器のオフセット電圧が変動する。特に、電力消費を極端に抑制できるゼロパワー 制御が用いられている場合には、過大な外力で大きな励磁電流が流れると各電磁石 コイルやパワーアンプが急激に発熱し、ギャップ長一定制御などの他の制御方式より も抵抗値の変動が大きくなる。こうなると、各運動モードでギャップ長推定値とその速 度推定値の誤差が増大し、乗り心地が極端に悪化する。  [0130] Also, it is assumed that an excessive external force is applied to the moving body 16 due to uneven movement of personnel or cargo, or rope swaying caused by an earthquake or the like. In such a case, the temperature of the electromagnets of the magnet units 30a to 3Od rises, and the electric resistance of the electromagnet coil and the offset voltage of the power amplifier and current detector fluctuate. In particular, when zero power control that can extremely reduce power consumption is used, when a large excitation current flows with excessive external force, each electromagnet coil and power amplifier generate heat suddenly, and other control such as constant gap length control. The resistance value fluctuates more than in this control method. If this happens, the error between the gap length estimation value and the speed estimation value increases in each motion mode, and the ride quality is extremely deteriorated.
[0131] しかし、本発明によれば、による目標値設定部 74および抵抗測定部 64の作用によ りパワーアンプおよび電流検出器のオフセット電圧が数 28で正確に演算されるととも に、数 36に基づいて移動体 16の動揺を考慮した上でコイル 40の抵抗値が正確に 測定される。 [0131] However, according to the present invention, the offset voltage of the power amplifier and the current detector is accurately calculated by Equation 28 by the action of the target value setting unit 74 and the resistance measurement unit 64, and Based on 36, the resistance of the coil 40 is accurately measured in consideration of the fluctuation of the moving body 16.
[0132] したがって、抵抗測定部 64の出力値で調整されるモード姿勢推定部 97や抵抗値 アンバランス補正部 92, 92'のパラメータが正確に調整されると共にゲイン補償器 91 , 91,、積分補償器 94, 94,で抵抗値をパラメータとしたゲイン設定が可能である。よ つて、前記オフセット電圧やコイル抵抗値の変動に対して非接触案内の安定性が維 持されるば力りでなぐ良好で常に一定な乗り心地を持続させることができる。 [0133] また、パワーアンプのオフセット電圧の変動に対してはモード別変位およびモード 別変位速度において、推定誤差が生じるが、推定誤差補正部 142の動作によっても これらの誤差はゼロになる。しかし、モード姿勢推定部 97の推定値が真値に収束す る速さはコイル抵抗測定値の正確性に依存して ヽるため、抵抗測定部 67でオフセッ ト電圧を考慮した正確な抵抗測定を行なうことにより、モード姿勢推定部 97の推定値 が真値に迅速に収束する。さらに、推定誤差補正部 142の動作でモード別変位速度 の推定値に誤差が生じないため、数 28および数 36においても正確な演算を行なうこ とがでさる。 Accordingly, the parameters of the mode posture estimation unit 97 and the resistance value imbalance correction units 92 and 92 ′ adjusted by the output value of the resistance measurement unit 64 are accurately adjusted, and the gain compensators 91 and 91 are integrated. The gain can be set with the compensators 94 and 94 using the resistance value as a parameter. Therefore, if the stability of the non-contact guidance is maintained with respect to the fluctuation of the offset voltage and the coil resistance value, it is possible to maintain a good and always constant riding comfort without force. [0133] In addition, an estimation error occurs in the displacement for each mode and the displacement speed for each mode with respect to fluctuations in the offset voltage of the power amplifier, but these errors are also zero by the operation of the estimation error correction unit 142. However, since the speed at which the estimated value of the mode posture estimation unit 97 converges to the true value depends on the accuracy of the coil resistance measurement value, the resistance measurement unit 67 performs accurate resistance measurement taking the offset voltage into account. As a result, the estimated value of the mode posture estimation unit 97 quickly converges to the true value. In addition, since the estimated error correction unit 142 does not cause an error in the estimated value of the mode-specific displacement speed, it is possible to perform an accurate calculation in Equations 28 and 36.
[0134] 本装置が運転を終えて停止する場合には、目標値設定部 74において、 yモードお よび Xモードの目標値をゼロ力ら徐々に負の値とする。これにより、移動体 16は、 y軸 、 X軸方向に徐々に移動し、最終的に磁石ユニット 30a, 30dの中央鉄心 32の先端 1S 固体潤滑部材 43を介してガイドレール 14の対向面に電磁石 36a' , 36d'の先端 が固体潤滑部材 43を介してガイドレール 14の対向面にそれぞれ吸着する。この状 態で装置を停止させると、目標値設定部 74の出力がすべてゼロにリセットされると共 に移動体 16がガイドレールに吸着する。  [0134] When the apparatus stops operation and stops, the target value setting unit 74 gradually sets the target values in the y mode and the X mode to negative values from zero force. As a result, the moving body 16 gradually moves in the y-axis and X-axis directions, and finally the electromagnet is formed on the opposite surface of the guide rail 14 via the tip 1S solid lubricating member 43 of the central core 32 of the magnet units 30a and 30d. The tips of 36a 'and 36d' are adsorbed to the opposing surface of the guide rail 14 through the solid lubricating member 43, respectively. When the apparatus is stopped in this state, the output of the target value setting unit 74 is reset to zero and the moving body 16 is attracted to the guide rail.
[0135] (第 3実施形態)  [0135] (Third embodiment)
次に、本発明の第 3実施形態について説明する。  Next, a third embodiment of the present invention will be described.
[0136] 前記第 1および第 2実施形態では、磁石ユニットが浮上体側に取付けられていたが 、これは磁石ユニットの取付け位置をなんら限定するものでなぐ図 13に示すように、 磁石ユニットを地上側に配置しても良い。なお、説明の簡単化のために、以下、第 1 および第 2実施形態と共通する部分には同一の符号を用いて説明する。  [0136] In the first and second embodiments, the magnet unit is mounted on the floating body side, but this does not limit the mounting position of the magnet unit at all. As shown in FIG. It may be arranged on the side. For simplification of description, the same reference numerals are used for portions common to the first and second embodiments.
[0137] 図 13は本発明の第 3実施形態に係る磁気浮上装置の構成を示す図であり、その 全体の構成が符号 300で示されて 、る。 FIG. 13 is a diagram showing the configuration of the magnetic levitation apparatus according to the third embodiment of the present invention. The overall configuration is indicated by reference numeral 300.
[0138] 磁気浮上装置 300は、補助支持部 302、磁石ユニット 107、ガイド 304、防振台テ 一ブル 306、リニアガイド 308、吸引力制御部 115、パワーアンプ 313、電流センサ 1[0138] The magnetic levitation apparatus 300 includes an auxiliary support 302, a magnet unit 107, a guide 304, a vibration isolation table 306, a linear guide 308, an attractive force controller 115, a power amplifier 313, and a current sensor 1.
23を備えている。 Has 23.
[0139] 補助支持部 302は、断面がコ字形状をなし、例えばアルミ部材などの非磁性体で 形成される。この補助支持部 302は地上に設置されており、磁石ユニット 107は補助 支持部 302の上部下面に下向きに取付けられている。ガイド 304は、磁石ユニット 10 7に対向する断面がコ字形状をなし、例えば鉄などの強磁性部材で形成されて 、る。 防振台テーブル 306は、このガイド 304を底部上面に備えており、全体としてコ字形 状に形成されている。リニアガイド 308は、防振台テーブル 306の側面に取付けられ 、地上に対して垂直方向にのみ動きの自由度を防振台テーブル 306に付与する。 [0139] The auxiliary support portion 302 has a U-shaped cross section, and is formed of a non-magnetic material such as an aluminum member. The auxiliary support 302 is installed on the ground, and the magnet unit 107 is an auxiliary. The support portion 302 is attached to the lower surface of the upper portion downward. The guide 304 has a U-shaped cross section facing the magnet unit 107, and is formed of a ferromagnetic member such as iron. The anti-vibration table 306 includes the guide 304 on the upper surface of the bottom, and is formed in a U shape as a whole. The linear guide 308 is attached to the side surface of the vibration isolation table 306 and gives the vibration isolation table 306 freedom of movement only in the direction perpendicular to the ground.
[0140] 吸引力制御部 115は、磁石ユニット 107の吸引力を制御して防振テーブル 306を 非接触で支持するための制御を行なう。パワーアンプ 313は、吸引力制御部 115の 出力に基づ 、て磁石ユニット 107を励磁するための図示せぬ電源に接続されて 、る 。電流センサ 123は、磁石ユニット 107の励磁電流を検出する。  [0140] The attraction force control unit 115 controls the attraction force of the magnet unit 107 to support the vibration isolation table 306 in a non-contact manner. The power amplifier 313 is connected to a power source (not shown) for exciting the magnet unit 107 based on the output of the attractive force control unit 115. The current sensor 123 detects the excitation current of the magnet unit 107.
[0141] ここで、吸引力制御部 115は以下のような構成を有する。すなわち、吸引力制御部 115は、抵抗測定部 140、接触検出部 130、姿勢演算部 135、姿勢推定部 133、初 期値設定部 139、推定初期化部 137、励磁電圧演算部 125を備えている。  [0141] Here, the suction force control unit 115 has the following configuration. That is, the attractive force control unit 115 includes a resistance measurement unit 140, a contact detection unit 130, an attitude calculation unit 135, an attitude estimation unit 133, an initial value setting unit 139, an estimation initialization unit 137, and an excitation voltage calculation unit 125. Yes.
[0142] 抵抗測定部 140は、磁石ユニット 107への励磁電流および励磁電圧からリード線 1 28およびコイル 119および 119'の直列抵抗値を測定する。接触検出部 130は、補 助支持部 302の底部上面に取付けられたマイクロスィッチ 310と磁石ユニット 107の 磁極面に貼られた圧電ゴム 312を備える。  [0142] The resistance measurement unit 140 measures the series resistance value of the lead wire 128 and the coils 119 and 119 'from the excitation current and excitation voltage to the magnet unit 107. The contact detection unit 130 includes a micro switch 310 attached to the bottom upper surface of the auxiliary support unit 302 and a piezoelectric rubber 312 attached to the magnetic pole surface of the magnet unit 107.
[0143] 姿勢演算部 135は、接触検出部 130の接触検出信号力も防振テーブル 306の補 助支持部 302もしくは磁石ユニット 107への接触時の浮上ギャップ長を計算する。姿 勢推定部 133は、抵抗測定部 130の出力および磁石ユニット 107への励磁電流、励 磁電圧力ゝら防振テーブル 306の浮上姿勢を推定する。  The posture calculation unit 135 calculates the floating gap length when the contact detection signal force of the contact detection unit 130 is in contact with the auxiliary support 302 or the magnet unit 107 of the vibration isolation table 306. The posture estimation unit 133 estimates the flying posture of the vibration isolation table 306 based on the output of the resistance measurement unit 130, the excitation current to the magnet unit 107, and the excitation voltage force.
[0144] 初期値設定部 139は、姿勢演算部 135の出力に基づいて姿勢推定部 133に推定 初期値を設定する。推定初期化部 137は、接触検出部 130の出力に基づいて姿勢 推定部 133を初期化する。励磁電圧演算部 125は、姿勢推定部 133の出力に基づ いて防振テーブル 306を磁気浮上させるための磁石ユニット 107への励磁電圧を演 算する。  The initial value setting unit 139 sets an estimated initial value in the posture estimation unit 133 based on the output of the posture calculation unit 135. The estimation initialization unit 137 initializes the posture estimation unit 133 based on the output of the contact detection unit 130. The excitation voltage calculation unit 125 calculates the excitation voltage to the magnet unit 107 for magnetically levitating the vibration isolation table 306 based on the output of the posture estimation unit 133.
[0145] このような構成によれば、磁石ユニット 107を地上側に配置したことにより、可動部 である防振テーブル 306からの配線がなくなり、装置の信頼性が向上するといつた利 点がある。 [0146] (第 4実施形態) [0145] According to such a configuration, since the magnet unit 107 is arranged on the ground side, there is no longer any wiring from the anti-vibration table 306, which is a movable part, and there is an advantage that the reliability of the apparatus is improved. . [0146] (Fourth embodiment)
次に、第 4実施形態について説明する。前記第 1ないし第 3実施形態では、ギヤッ プセンサを必要としないセンサレス磁気浮上装置に本発明を適用した場合について 説明した。し力しながら、本発明はセンサレス磁気浮上装置への適用を限定するもの ではなぐ図 14に示すように、ギャップセンサを用いた吸引式磁気浮上装置に適用 することでも良い。なお、説明の簡単化のために、以下、第 1ないし第 3実施形態と共 通する部分には同一の符号を用いて説明する。  Next, a fourth embodiment will be described. In the first to third embodiments, the case where the present invention is applied to a sensorless magnetic levitation apparatus that does not require a gap sensor has been described. However, the present invention is not limited to application to a sensorless magnetic levitation device, but may be applied to an attraction type magnetic levitation device using a gap sensor as shown in FIG. In order to simplify the description, the same reference numerals are used for the portions common to the first to third embodiments.
[0147] 図 12は第 4実施形態に係る磁気浮上装置の構成を示す図であり、その全体の構 成が符号 400で示されている。第 4実施形態における磁気浮上装置 400では、磁気 浮上系の安定ィ匕のために用いられる浮上ギャップ長およびその速度の情報を前記 第 1実施形態の姿勢推定部 133ではなぐギャップセンサ 121および擬似微分器 40 2を用いて取得する。ギャップセンサ 121の出力は、浮上ギャップ長の情報として励 磁電圧演算部 125に直接入力されると共に、擬似微分器 402を介して速度信号に 変換されて励磁電圧演算部 125に入力される。また、電流センサ 123によりコイル 11 9, 119 'の励磁電流が励磁電圧演算部 125に入力される。  FIG. 12 is a diagram showing the configuration of the magnetic levitation apparatus according to the fourth embodiment, and the overall configuration is denoted by reference numeral 400. In the magnetic levitation apparatus 400 in the fourth embodiment, the gap sensor 121 and the pseudo-differential information that the information on the levitation gap length and the velocity used for the stability of the magnetic levitation system are not included in the attitude estimation unit 133 of the first embodiment. Acquire using vessel 40 2. The output of the gap sensor 121 is directly input to the excitation voltage calculation unit 125 as information on the flying gap length, is converted into a speed signal via the pseudo-differentiator 402, and is input to the excitation voltage calculation unit 125. Further, the excitation current of the coils 119 and 119 ′ is input to the excitation voltage calculation unit 125 by the current sensor 123.
[0148] ここで、励磁電圧演算部 125中の目標値設定部 150および抵抗測定部 140の機 能により、本実施形態においても前記第 1実施形態と同様にして浮上体 111の動揺 やパワーアンプ 313および電流センサ 123のオフセット電圧を考慮したコイル抵抗値 の測定がなされる。そして、コイル電流収束部 125において、そのコイル抵抗値に基 づ!、て浮上体 111を安定かつ一定の過渡応答で浮上させる励磁電圧が演算される 。このような構成によれば、簡便な制御装置にて温度変動に対して常に安定した浮 上状態を維持することができる。  Here, due to the functions of the target value setting unit 150 and the resistance measurement unit 140 in the excitation voltage calculation unit 125, the oscillating body 111 and the power amplifier of the levitation body 111 are also similar to the first embodiment in this embodiment. The coil resistance value is measured in consideration of the offset voltage of 313 and the current sensor 123. Then, in the coil current converging unit 125, based on the coil resistance value! Thus, the excitation voltage for levitating the levitated body 111 with a stable and constant transient response is calculated. According to such a configuration, it is possible to always maintain a stable floating state against temperature fluctuations with a simple control device.
[0149] なお、前記各実施形態では、磁気浮上を行なう制御装置(吸引力制御部 115)がァ ナログ的な構成として説明されているが、本発明は、アナログの制御方式に限定され るものではなぐデジタル制御にて構成することも可能である。また、励磁部の構成と してパワーアンプを用いている力 これはドライバの方式を何ら限定するものではなく 、例えばパルス幅変調(PWM— Pulse Width Modulation—)形のものでも何ら差し支 えない。 この他、本発明の要旨を逸脱しない範囲で種々変更可能である。要するに、本発 明は前記各実施形態そのままに限定されるものではなぐ実施段階ではその要旨を 逸脱しない範囲で構成要素を変形して具体ィ匕できる。また、前記各実施形態に開示 されている複数の構成要素の適宜な組み合わせにより、種々の形態を形成できる。 例えば、実施形態に示される全構成要素カゝら幾つかの構成要素を省略してもよい。 さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 In each of the above embodiments, the control device (attraction force control unit 115) that performs magnetic levitation is described as an analog configuration, but the present invention is limited to an analog control system. It is also possible to configure with digital control. In addition, the power using the power amplifier as the configuration of the excitation part. This does not limit the driver method, and for example, a pulse width modulation (PWM) type can be used. . In addition, various modifications can be made without departing from the scope of the present invention. In short, the present invention is not limited to the above-described embodiments as they are, but can be specifically modified by modifying constituent elements without departing from the scope of the invention. Moreover, various forms can be formed by appropriately combining a plurality of constituent elements disclosed in the respective embodiments. For example, some constituent elements such as all the constituent elements shown in the embodiment may be omitted. Furthermore, constituent elements over different embodiments may be appropriately combined.

Claims

請求の範囲 The scope of the claims
[1] 強磁性部材で構成されるガイドと、 [1] a guide composed of a ferromagnetic member;
このガイドに空隙を介して対向する電磁石で構成される磁石ユニットと、 前記ガイドに作用する前記磁石ユニットの吸引力により非接触で支持される浮上体 と、  A magnet unit composed of an electromagnet opposed to the guide through a gap, and a floating body supported in a non-contact manner by the attractive force of the magnet unit acting on the guide;
前記電磁石のコイルに流れる電流値を検出するセンサ部と、  A sensor unit for detecting a current value flowing in the coil of the electromagnet;
前記センサ部により得られるコイル電流値に基づいて前記磁石ユニットが形成する 磁気回路を安定化させるための励磁電圧値を演算する励磁電圧演算部と、 前記空隙の変位の変動速度を検出する速度検出部と、  An excitation voltage calculation unit for calculating an excitation voltage value for stabilizing a magnetic circuit formed by the magnet unit based on a coil current value obtained by the sensor unit; and a speed detection for detecting a variation rate of the displacement of the air gap. And
前記励磁電圧演算部により得られた前記励磁電圧値、前記センサ部により得られ た前記コイル電流値、前記速度検出部により得られた前記変動速度に基づいて、前 記電磁石のコイル抵抗値を演算する抵抗測定部と、  The coil resistance value of the electromagnet is calculated based on the excitation voltage value obtained by the excitation voltage calculation unit, the coil current value obtained by the sensor unit, and the fluctuation speed obtained by the speed detection unit. A resistance measurement unit to
前記抵抗測定部により得られた前記コイル抵抗値を前記励磁電圧演算部にフィー ドバックして前記浮上体の浮上を制御する制御部と  A control unit that feeds back the coil resistance value obtained by the resistance measurement unit to the excitation voltage calculation unit to control the floating of the floating body;
を具備したことを特徴とする磁気浮上装置。  A magnetic levitation apparatus comprising:
[2] 前記空隙内で前記電磁石と磁路を共有する永久磁石を備えた磁石ユニットと、 前記電磁石の前記コイル電流の目標値をゼロ値または非ゼロ値に交互に設定する 目標値設定部と、 [2] A magnet unit including a permanent magnet that shares a magnetic path with the electromagnet in the gap, and a target value setting unit that alternately sets a target value of the coil current of the electromagnet to a zero value or a non-zero value. ,
前記目標値設定部により設定された目標値に前記電磁石の前記コイル電流を収 束させるコイル電流収束部と、  A coil current converging unit for converging the coil current of the electromagnet to the target value set by the target value setting unit;
前記コイル電流収束部による収束動作に伴い、前記センサ部により得られる前記コ ィル電流値に基づいて前記磁石ユニットが形成する磁気回路を安定ィ匕させるための 励磁電圧値を演算する励磁電圧演算部と、  An excitation voltage calculation for calculating an excitation voltage value for stabilizing the magnetic circuit formed by the magnet unit based on the coil current value obtained by the sensor unit in accordance with the convergence operation by the coil current convergence unit. And
前記目標値がゼロ値に設定されているときに前記励磁電圧演算部により得られた 前記励磁電圧値、前記センサ部により得られた前記コイル電流値、前記速度検出部 により得られた前記変動速度に基づいて前記励磁電圧値の直流分を演算するオフ セット演算部と、  When the target value is set to a zero value, the excitation voltage value obtained by the excitation voltage calculation unit, the coil current value obtained by the sensor unit, the fluctuation speed obtained by the speed detection unit An offset calculation unit for calculating a DC component of the excitation voltage value based on
前記オフセット演算部の演算結果を保存する電圧保存部と、 前記電磁石の励磁電圧値から前記電圧保存部に保存された励磁電圧値をオフセ ット電圧値として減算することにより前記励磁電圧値の補償値を求める励磁電圧補償 部と、 A voltage storage unit for storing a calculation result of the offset calculation unit; An excitation voltage compensation unit for obtaining a compensation value of the excitation voltage value by subtracting the excitation voltage value stored in the voltage storage unit as an offset voltage value from the excitation voltage value of the electromagnet;
を具備したことを特徴とする請求項 1に記載の磁気浮上装置。  The magnetic levitation apparatus according to claim 1, further comprising:
[3] 少なくとも前記コイル電流値と前記励磁電圧値とに基づいて前記強磁性部材に対 する前記浮上体の姿勢および姿勢変化速度を推定する姿勢推定部をさらに備え、 前記速度検出部は前記姿勢推定部により推定された前記姿勢変化速度に基づいて 前記変動速度を演算することを特徴とする請求項 1に記載の磁気浮上装置。 [3] The apparatus further comprises an attitude estimation unit that estimates an attitude of the levitating body with respect to the ferromagnetic member and an attitude change speed based on at least the coil current value and the excitation voltage value, and the speed detection unit includes the attitude 2. The magnetic levitation apparatus according to claim 1, wherein the fluctuation speed is calculated based on the posture change speed estimated by the estimation unit.
[4] 前記浮上体が浮上状態にないときに前記浮上体と前記ガイドの位置関係を所定の 状態に維持する補助支持部と、 [4] An auxiliary support portion that maintains a positional relationship between the floating body and the guide in a predetermined state when the floating body is not in a floating state;
前記浮上体と前記ガイドとの接触を検出する接触検出部と、  A contact detection unit that detects contact between the floating body and the guide;
この接触検出部の出力に基づき接触時の前記ガイドに対する前記浮上体の姿勢を 出力する姿勢演算部と、  A posture calculation unit that outputs the posture of the floating body with respect to the guide at the time of contact based on the output of the contact detection unit;
この接触検出部の出力に基づき接触時に前記姿勢推定部を初期化する推定初期 化部と、  An estimation initialization unit that initializes the posture estimation unit at the time of contact based on the output of the contact detection unit;
前記姿勢推定部が初期化される際に前記姿勢演算部の出力値を前記姿勢推定部 の初期値として設定する初期値設定部と  An initial value setting unit that sets an output value of the posture calculation unit as an initial value of the posture estimation unit when the posture estimation unit is initialized;
をさらに備えたことを特徴とする請求項 3に記載の磁気浮上装置。  The magnetic levitation apparatus according to claim 3, further comprising:
[5] 前記姿勢推定部によって得られる姿勢変化速度の推定値に所定のゲイン乗じて積 分し、その積分結果を前記励磁電圧値に加算すると共に、その加算結果を新たな励 磁電圧値として前記姿勢推定部にフィードバックする推定誤差補正部を備えたことを 特徴とする請求項 3に記載の磁気浮上装置。 [5] The estimated value of attitude change speed obtained by the attitude estimation unit is multiplied by a predetermined gain and integrated, and the integration result is added to the excitation voltage value, and the addition result is used as a new excitation voltage value. 4. The magnetic levitation apparatus according to claim 3, further comprising an estimation error correction unit that feeds back to the posture estimation unit.
[6] 前記浮上体の運動の自由度に寄与する吸引力を発生させるための励磁電圧を所 定のモード毎に演算するモード励磁電圧演算部と、 [6] A mode excitation voltage calculation unit that calculates an excitation voltage for generating a suction force that contributes to the degree of freedom of movement of the levitating body for each predetermined mode;
前記浮上体の運動の自由度に寄与する吸引力を発生させるための励磁電流を所 定のモード毎に演算するモード励磁電流演算部をさらに備え、  A mode excitation current calculation unit that calculates an excitation current for generating a suction force that contributes to the degree of freedom of movement of the levitation body for each predetermined mode;
前記姿勢推定部は、少なくとも前記モード励磁電流演算部と前記モード励磁電圧 演算部の出力とに基づいて、前記浮上体の前記強磁性部材に対する姿勢および当 該姿勢の時間変化を前記浮上体の運動の自由度毎に推定することを特徴とする請 求項 3に記載の磁気浮上装置。 The posture estimation unit is configured to determine the posture of the levitating body with respect to the ferromagnetic member and the contact based on at least the outputs of the mode excitation current calculation unit and the mode excitation voltage calculation unit. 4. The magnetic levitation apparatus according to claim 3, wherein the time change of the posture is estimated for each degree of freedom of movement of the levitating body.
[7] 前記姿勢推定部によって得られる姿勢変化速度の推定値に所定のゲイン乗じて積 分し、その積分結果を前記モード別励磁電圧値に加算すると共に、その加算結果を 新たなモード別の励磁電圧値として前記姿勢推定部にフィードバックするモード推定 誤差補正部を備えたことを特徴とする請求項 6に記載の磁気浮上装置。 [7] The estimated value of attitude change speed obtained by the attitude estimation unit is multiplied by a predetermined gain and integrated, and the integration result is added to the excitation voltage value for each mode, and the addition result for each new mode is added. 7. The magnetic levitation apparatus according to claim 6, further comprising a mode estimation error correction unit that feeds back to the posture estimation unit as an excitation voltage value.
[8] 前記抵抗測定部が、少なくとも前記励磁電圧値と前記コイル電流値の線形結合に 前記コイル電流を乗じた電力演算結果を積分する積分器を備えていることを特徴と する請求項 1に記載の磁気浮上装置。 8. The resistance measuring unit includes an integrator that integrates a power calculation result obtained by multiplying at least a linear combination of the excitation voltage value and the coil current value by the coil current. The magnetic levitation device as described.
PCT/JP2007/053285 2006-02-22 2007-02-22 Mag-lev device WO2007099849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200780006369.1A CN101390282B (en) 2006-02-22 2007-02-22 Magnetic suspension device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006045232A JP4499673B2 (en) 2006-02-22 2006-02-22 Magnetic levitation device
JP2006-045232 2006-02-22

Publications (1)

Publication Number Publication Date
WO2007099849A1 true WO2007099849A1 (en) 2007-09-07

Family

ID=38458960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053285 WO2007099849A1 (en) 2006-02-22 2007-02-22 Mag-lev device

Country Status (3)

Country Link
JP (1) JP4499673B2 (en)
CN (1) CN101390282B (en)
WO (1) WO2007099849A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009130940A1 (en) * 2008-04-22 2009-10-29 株式会社安川電機 Magnetic levitation controller
CN101417619B (en) * 2007-10-23 2011-05-04 东芝电梯株式会社 Magnetic suspension device
WO2014042525A1 (en) * 2012-09-11 2014-03-20 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Reluctance transducer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101059070B1 (en) 2008-07-02 2011-08-24 한국전기연구원 Guide Control System of Magnetic Guide Lift
KR101034240B1 (en) 2008-11-28 2011-05-12 한국전기연구원 Levitation Control Method Using Measured Flux
JP5483692B2 (en) * 2009-12-14 2014-05-07 東芝エレベータ株式会社 Magnetic levitation device
CN101934806B (en) * 2010-09-07 2012-11-14 中国人民解放军国防科学技术大学 High-precision speed measurement positioning method and system for medium and low-speed maglev trains
JP2012125067A (en) * 2010-12-09 2012-06-28 Toshiba Elevator Co Ltd Magnetic levitation apparatus
KR102518084B1 (en) * 2015-05-11 2023-04-06 가부시키가이샤 에바라 세이사꾸쇼 Electromagnet, electromagnet controller, and electromagnet control method
CN105629984A (en) * 2016-02-18 2016-06-01 江西洪都航空工业集团有限责任公司 Attitude control method based on magnetic suspension chassis
CN105629983A (en) * 2016-02-18 2016-06-01 江西洪都航空工业集团有限责任公司 Attitude control device based on magnetic suspension chassis
CN107306099B (en) * 2016-04-18 2019-04-09 复旦大学 Magnetic suspension guiding device and its control method
CN109582023B (en) * 2018-12-21 2019-10-11 费子偕 A kind of novel manned tool and the control method for being applicable in it
JP7222848B2 (en) 2019-08-26 2023-02-15 株式会社荏原製作所 Electromagnet controller and electromagnet system
CN110782758A (en) * 2019-12-05 2020-02-11 上海图菱新能源科技有限公司 Magnetic suspension analytic experiment system and method
CN113340383B (en) * 2020-03-03 2022-12-02 上海锐铼水务科技有限公司 Method and system for detecting magnetic field abnormality and compensating error of electromagnetic water meter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187136A (en) * 1997-09-09 1999-03-30 Ebara Corp Magnetic levitation system
JP2002031134A (en) * 2000-05-08 2002-01-31 Tokyo Denki Univ Sensorless magnetic levitation device
JP2002140116A (en) * 2000-11-01 2002-05-17 Toshin Denki Kk Coating system
JP2003204609A (en) * 2002-01-09 2003-07-18 Toshiba Corp Magnetic levitation apparatus
JP2005117705A (en) * 2003-10-02 2005-04-28 Toshiba Corp Magnetic levitation system
JP2005298073A (en) * 2004-04-06 2005-10-27 Toshiba Elevator Co Ltd Elevating and guiding device for elevator
JP2005333772A (en) * 2004-05-21 2005-12-02 Toshiba Elevator Co Ltd Magnetic levitation device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1569511B (en) * 2004-05-12 2010-10-06 清华大学 High-temperature superconductive magnetic levitation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187136A (en) * 1997-09-09 1999-03-30 Ebara Corp Magnetic levitation system
JP2002031134A (en) * 2000-05-08 2002-01-31 Tokyo Denki Univ Sensorless magnetic levitation device
JP2002140116A (en) * 2000-11-01 2002-05-17 Toshin Denki Kk Coating system
JP2003204609A (en) * 2002-01-09 2003-07-18 Toshiba Corp Magnetic levitation apparatus
JP2005117705A (en) * 2003-10-02 2005-04-28 Toshiba Corp Magnetic levitation system
JP2005298073A (en) * 2004-04-06 2005-10-27 Toshiba Elevator Co Ltd Elevating and guiding device for elevator
JP2005333772A (en) * 2004-05-21 2005-12-02 Toshiba Elevator Co Ltd Magnetic levitation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417619B (en) * 2007-10-23 2011-05-04 东芝电梯株式会社 Magnetic suspension device
WO2009130940A1 (en) * 2008-04-22 2009-10-29 株式会社安川電機 Magnetic levitation controller
WO2014042525A1 (en) * 2012-09-11 2014-03-20 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Reluctance transducer
US10699831B2 (en) 2012-09-11 2020-06-30 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Reluctance transducer

Also Published As

Publication number Publication date
CN101390282A (en) 2009-03-18
JP4499673B2 (en) 2010-07-07
CN101390282B (en) 2011-03-30
JP2007228686A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
WO2007099849A1 (en) Mag-lev device
JP4509053B2 (en) Magnetic levitation device
CN101417619B (en) Magnetic suspension device
JP4744928B2 (en) Magnetic levitation device
JP4587519B2 (en) Elevator guide device
TW200540094A (en) Magent unit, elevator guiding apparatus and weighing apparatus
JP2001019286A (en) Elevator guide device
JP5196367B2 (en) Magnetic guide device
JP2008063065A (en) Non-contact travel type elevator
JP5611790B2 (en) Magnetic levitation device
JP5483692B2 (en) Magnetic levitation device
JP2012125067A (en) Magnetic levitation apparatus
JP3871570B2 (en) Magnetic levitation device
US6671637B2 (en) Thrust ripple measuring apparatus and method in linear motor
JP4216683B2 (en) Magnetic levitation device
JP4146392B2 (en) Magnetic levitation device
Guney et al. Centralized gap clearance control for maglev based steel-plate conveyance system
JP2005036839A (en) Magnetic supporting device
JP2005127858A (en) Basic weight apparatus
JP3940680B2 (en) Weighing device
JP2012012134A (en) Magnetic guide control device
JP5936918B2 (en) Magnetic levitation device
JP2011180009A (en) Position sensor and position detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780006369.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714783

Country of ref document: EP

Kind code of ref document: A1