WO2007099778A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2007099778A1
WO2007099778A1 PCT/JP2007/052723 JP2007052723W WO2007099778A1 WO 2007099778 A1 WO2007099778 A1 WO 2007099778A1 JP 2007052723 W JP2007052723 W JP 2007052723W WO 2007099778 A1 WO2007099778 A1 WO 2007099778A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
light
light emitting
emitting device
pixel
Prior art date
Application number
PCT/JP2007/052723
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinobu Ono
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2007099778A1 publication Critical patent/WO2007099778A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to a light emitting device having a light emitting layer containing an organic substance, and more specifically, a light emitting device having two or more pixels capable of independently controlling an applied voltage (or current) (eg, ONZOFF control). Relates to the device.
  • an applied voltage or current
  • organic EL elements an organic electoluminescence device having a two-layer structure in which an organic fluorescent dye is used as a light-emitting layer and an organic charge transport compound used in electrophotographic photoreceptors or the like is laminated (hereinafter referred to as “electroluminescent port luminescence device”) (Sometimes referred to as organic EL elements) (Patent Document 1). Compared to conventional inorganic EL elements, organic EL elements have low voltage drive and high brightness, and can easily emit light of many colors. Many attempts have been reported on dyes and organic charge transport compounds (Non-patent Documents 1 and 2).
  • polymer light-emitting devices (hereinafter sometimes referred to as polymer LEDs) using high-molecular-weight light-emitting materials (hereinafter referred to as polymer phosphors) are disclosed in Patent Documents 2 and 3. It is disclosed in Reference 3.
  • Patent Document 2 a poly (p-phenolene-ylene) converted to a conjugated polymer by forming a film of a soluble precursor on an electrode and performing heat treatment (hereinafter sometimes referred to as PPV). It is disclosed that a thin film can be obtained and a device using the same.
  • Patent Document 3 discloses a conjugated polymer that is itself soluble in a solvent and does not require heat treatment. Non-Patent Document 3 also discloses a high-molecular phosphor soluble in a solvent and a polymer LED prepared using the same.
  • Polymer phosphors used in these polymer LEDs include polyfluorene (Non-patent document 4), polyparaphenylene derivatives (Non-patent document 5), in addition to the above poly (p-phenylenediamine). ) Etc. are disclosed.
  • the polymer LED uses a polymer fluorescent substance that is soluble in a solvent, and can easily form a light emitting layer by coating, so compared with the case of depositing a low molecular phosphor. do it, It has a feature that it is advantageous for large area and low cost.
  • a light-emitting material used for a light-emitting layer of a light-emitting element a material that emits light from a triplet excited state (phosphorescence) is also known.
  • a material that emits light from a triplet excited state phosphorescence
  • high molecular light emitting materials hereinafter sometimes referred to as triplet polymer light emitting materials
  • an optical system using a semiconductor laser and an optical system in which a mirror and a lens are combined are arranged to draw an image on a photoconductor, and an inorganic LED is wired.
  • Several devices have been developed to form an image using LED arrays arranged in a row.
  • Patent Documents 4 and 5 An electrophotographic image forming apparatus using an organic EL element as a light source was reported by Oki Electric Industry in 1996 (Patent Documents 4 and 5). By using an organic EL element as a light source, a light-emitting element array can be formed at a time, which is expected to reduce the size and price. After that, there are several reports on optical printer heads (Patent Document 6, 7).
  • Patent Document 8 Japanese Patent Application Laid-Open No. 59-194393
  • Patent Document 2 Published specification of WO9013148
  • Patent Document 3 Japanese Patent Laid-Open No. 3-244630
  • Patent Document 4 JP-A-8-48052
  • Patent Document 5 JP-A-8-244272
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-246780
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2002-19177
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2004-227975
  • Non-Patent Document 1 Japanese 'Journal' of 'Applied' Physics (Jpn. J. Appl. Phys .; pp. 27, L269 (1988)
  • Non-Patent Document 2 Journal 'Ob' Applied 'Phys. (J. Appl. Phys.) 65, 3610 (1989)
  • Non-Patent Document 3 Applied 'Physics' Letters (Appl. Phys. Lett.), Vol. 58, 198, p. 2 (1991)
  • Non-patent document 4 Japanese 'Journal' of 'Applied' Physics (Jpn. J. Appl. Phys .;) 30th page, L1941 (1991)
  • Non-Patent Document 5 Advanced 'Materials (Adv. Mater.) Vol. 4, p. 36 (1992) Disclosure of the Invention
  • An object of the present invention is to provide a light emitting device having an organic EL element as a light source and having a small size and sufficient durability.
  • the present inventors have made the pixel layout, the shape of the pixel, the condensing characteristic of the condensing functional element constituting the image forming apparatus, etc. specific. It was found that the durability can be greatly improved.
  • the present invention is as follows.
  • a light-emitting device having an anode and a cathode, and a light-emitting layer including at least one organic substance sandwiched between them, and having two or more pixels having elemental power that emits light by passing a current between the electrodes. All pixels are formed on or above the same substrate, and at least one of the electrode electrodes of each pixel is connected to the drive circuit independently for each pixel, and the applied voltage or current can be controlled independently. If the minimum value of the interval between adjacent pixels is L and the maximum pixel width is L, then LX n ⁇ L (where n is 0.1 or more and 3
  • n represents a number of 0.1 or more and 2 or less.
  • the light-emitting element array force in which the light-emitting devices are arranged linearly, and the size of each pixel is greater in the length in the direction perpendicular to the straight line than in the length in the linear direction.
  • the light-emitting device according to any one of 1).
  • the light emitting device according to one item.
  • the image forming apparatus operates as an image forming apparatus having a light condensing element having a function of condensing light emitted from the pixel on the light receiving element between the pixel and the light receiving element opposite to the pixel (5).
  • At least one of the organic substances contained in the light-emitting layer is a polymer compound containing one or more repeating units represented by formula (1). In one paragraph The light emitting device.
  • Ar is an arylene group, a divalent heterocyclic compound group or a divalent aromatic amine group
  • the light-emitting layer containing the organic substance is applied to a solution containing a light-emitting material on or above the substrate.
  • the said manufacturing method including forming by.
  • a light emitting device of the present invention has a light emitting layer containing at least one organic substance sandwiched between an anode and a cathode, and a pixel having element power that emits light by passing a current between the electrodes. Has two or more ( Figure 1). All pixels are formed on or above the same substrate.
  • the substrate is a member having a surface on which pixels serving as the organic EL element force used in the light emitting part of the light emitting device of the present invention can be formed, and may be any member as long as the surface is flat in a region larger than the pixel size.
  • Materials that can form organic EL elements such as glass, plastic, Si, and metal can be used.
  • Examples of the shape include a plate shape and a rod shape. In the case of a plate shape, the shape may be flat or curved.
  • Specific examples of the substrate include a glass plate, a plastic plate, a plastic film, Si Ueno, and a metal foil.
  • a pixel is a minimum unit for forming an image.
  • an applied voltage (or current) for light emission is controlled independently (for example, ONZOFF). The part of the light emitting element that can be controlled).
  • pixels There are two or more pixels, and their arrangement may be a straight line or a plurality of columns may be arranged in parallel.
  • the applied voltage (or current) can be controlled independently (eg, ONZO FF control) (Fig. 2).
  • the drive circuit has the function of switching between energized and de-energized states, and it may be a simple ONZOFF-only switch function, but it may be capable of switching voltage (or current) in multiple stages.
  • a force such as a rectangular wave, a triangular wave, a sine wave, or a pulse wave of any shape can be selected as appropriate.
  • the minimum value of the interval between adjacent pixels is L
  • the maximum width of the pixel is L
  • the minimum value of the distance between adjacent pixels refers to the smallest value of the distances between adjacent pixels.
  • the maximum width of a pixel means the length of the longer side in the case of a rectangle, the diameter in the case of a circle, and the length of the largest possible portion in other shapes.
  • the pixel pitch (periphery) is a factor that directly determines the resolution, and is therefore determined at the device design stage.
  • a light-emitting device with higher brightness is required under the limitation of the pixel pitch.
  • the organic EL element has a property that the lifetime is shortened when driven at high brightness. Selection is required.
  • the above conditional expression states that the interval L between pixels is not less than 1 / n of the pixel size L.
  • n is a condition.
  • the interval between pixels can be reduced.
  • the ratio of the area occupied by the pixels on or above the substrate is increased, and the amount of light per unit area is increased, but the generated heat is released. It becomes difficult.
  • n is small, it is advantageous for heat dissipation, but the light intensity becomes small, so that a light-sensitive part with higher sensitivity is required, or the resolution of the formed image is lowered.
  • the resolution can be substantially increased by arranging a plurality of pixel rows in parallel.
  • n is a number from 0.1 to 3, preferably from 0.1 to 2.5, more preferably from 0.1 to 2, more preferably from 0.3 to 2. Is the number of It is preferable that the pixel interval is regularly constant.
  • n in the above conditional expression can be changed as appropriate according to the use of the light emitting device.
  • the range force of 0.1 ⁇ ⁇ ⁇ 1 is usually n.
  • L L> L.
  • the value of the range force n usually 1 ⁇ n ⁇ 3 is selected.
  • the maximum width of the pixel is 100 m or less, preferably less than 100 ⁇ m, more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the electrophotographic system by arranging a photosensitive drum or the like, it is possible to form an image depending on the presence or absence of surface charge and to print using toner.
  • a light receiving element such as a CCD, it can be directly converted into electronic information.
  • the light emitting device of the present invention is preferably used with an average light emission luminance of 5, OOOcd / m 2 or more during pixel light emission. For normal display applications, it is often used with a lower average emission luminance. However, the light-emitting device of the present invention does not assume a method of direct viewing with the naked eye, and appropriately emits light when necessary with high luminance. It is important to let
  • a light receiving element that functions by receiving light emitted from the pixel is arranged relative to the surface of the pixel, and operates as an image forming device.
  • a pixel is formed that includes a light-emitting element array in which light-emitting elements are arranged in a straight line, a light-receiving device such as a photosensitive drum, and a light-collecting element that is located between them and has a light-collecting function.
  • a light-emitting element array in which light-emitting elements are arranged in a straight line
  • a light-receiving device such as a photosensitive drum
  • a light-collecting element that is located between them and has a light-collecting function.
  • each pixel of the light emitting element array in which the light emitting elements are arranged linearly It is preferable that the size of the length is larger in the length (T2) in the direction perpendicular to the linear direction than in the length in the linear direction (T1) (T1 ⁇ T2) (Fig. 4).
  • the ratio between ⁇ 2 and T1 depends on the light condensing function of the lens, but the preferred range is approximately 1 or more and 10 or less.
  • ONZOFF of light emission needs to be switched at a sufficiently high speed. If the switching level is slow or the OFF level is not low enough due to afterglow, the image will be unclear. It is preferable that the ONZOFF switching force can be done in less than 100 ⁇ s U.
  • the light emitting device of the present invention preferably has at least one peak in the visible region in the emission spectrum. Although it can be selected as appropriate in relation to the sensitivity of the light receiving unit, if the emission spectrum is shifted to the short wavelength side, the drive voltage becomes high, or if it is immediately shifted to the long wavelength side. This is not preferable because the light emission efficiency tends to be low.
  • the structure of the organic EL device of the present invention has a light emitting layer between a pair of positive and negative electrodes, at least one of which is transparent or translucent. ) Is contained in the light emitting layer.
  • examples of the layer other than the cathode, the anode and the light emitting layer include those provided between the cathode and the light emitting layer, and those provided between the anode and the light emitting layer.
  • Examples of the material provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the layer in contact with the cathode is the electron injection layer, and the other layers Is called an electron transport layer.
  • the electron injection layer is a layer having a function of improving electron injection efficiency from the cathode, and the electron transport layer has a function of improving electron injection efficiency from the electron injection layer or the electron transport layer closer to the cathode. Is a layer.
  • the electron injection layer or the electron transport layer has a function of blocking hole transport
  • these layers may be referred to as a hole blocking layer.
  • blocking hole transport is, for example, an element that allows only hole current to flow. It is possible to confirm the effect of making a child and blocking it by reducing the current value.
  • Examples of the material provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • the layer in contact with the anode is the hole injection layer.
  • the layer is referred to as a hole transport layer.
  • the hole injection layer is a layer having a function of improving the hole injection efficiency of the cathode cover.
  • the hole transport layer is a positive hole from the hole injection layer or the hole transport layer closer to the anode. This layer has a function of improving the injection efficiency.
  • these layers may be referred to as an electron block layer.
  • blocking electron transport makes it possible, for example, to produce an element that allows only electron current to flow and confirm the blocking effect by reducing the current value.
  • an organic EL element used in the light emitting part of the light emitting device of the present invention an organic EL element in which an electron transport layer is provided between the cathode and the light emitting layer, and a positive electrode between the anode and the light emitting layer.
  • examples thereof include an organic EL device provided with a hole transport layer, an organic EL device provided with an electron transport layer between the cathode and the light emitting layer, and a hole transport layer provided between the anode and the light emitting layer.
  • the light emitting layer is a layer having a function of emitting light
  • the hole transporting layer is a layer having a function of transporting holes
  • the electron transporting layer is a function of transporting electrons. It is a layer which has.
  • the electron transport layer and the hole transport layer are collectively referred to as a charge transport layer.
  • Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently.
  • charge injection layer It may be generally called a hole injection layer or an electron injection layer.
  • the charge injection layer or an insulating layer having a thickness of 2 nm or less may be provided adjacent to the electrode. Insert a thin buffer layer at the interface between the charge transport layer and the light-emitting layer to improve interfacial adhesion and prevent mixing.
  • the order and number of layers to be laminated, and the thickness of each layer can be appropriately used in consideration of the light emission efficiency and the element lifetime.
  • the organic EL device provided with the charge injection layer is adjacent to the organic EL device provided with the charge injection layer adjacent to the cathode and the anode.
  • Organic EL devices with a charge injection layer are adjacent to the organic EL device provided with the charge injection layer adjacent to the cathode and the anode.
  • the charge injection layer include a layer containing a conductive polymer, a hole transport material provided between the anode and the hole transport layer, provided between the anode and the hole transport layer. Between the negative electrode material and the electron transport material contained in the electron transport layer, and is provided between the cathode and the electron transport layer. Examples include a layer containing a material.
  • the charge injection layer is a layer containing an electric conductive polymer
  • the electric conductivity of the conducting polymer, leakage between the preferred instrument emitting pixel is at 10 3 SZcm inclusive 10- 5 SZcm in order to reduce the current is, 10- 5 S / cm or more 10 2 S / cm or less and more preferably fixture 10 "5 S / cm or higher lC S / cm and more preferably less.
  • the electrical conductivity of the conducting polymer in order to more than 10- 5 SZcm least 10 3 SZcm, a suitable amount of ions are doped into the conducting polymer.
  • the kind of ions to be doped is an anion for the hole injection layer and a cation for the electron injection layer.
  • cation include polystyrene sulfonate ion, alkylbenzene sulfonate ion, camphor sulfonate ion, etc.
  • examples of cation include lithium ion, sodium ion, potassium ion, tetraptyl ammonium ion, etc. Is exemplified.
  • the thickness of the charge injection layer is, for example, 1 nm to 100 nm, and preferably 2 nm to 50 nm.
  • the material used for the charge injection layer may be appropriately selected depending on the electrode and the material of the adjacent layer.
  • the insulating layer having a thickness of 2 nm or less has a function of facilitating charge injection.
  • the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials.
  • an organic EL element having an insulating layer having a thickness of 2 nm or less an organic EL element having an insulating layer having a thickness of 2 nm or less adjacent to the cathode and an insulating layer having a thickness of 2 nm or less adjacent to the anode are provided.
  • Organic EL elements are provided.
  • the film forming methods of the solution force method include spin coating, nozzle coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating.
  • Coating methods such as a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a slit coating method, a chiral coat method, a dispenser method, and a micro dispenser method can be used.
  • Printing methods such as screen printing, freso printing, offset printing, and inkjet printing are preferred because they allow easy pattern formation and multi-color coating.
  • the viscosity of the ink composition varies depending on the printing method.When the ink composition passes through the discharge device such as the inkjet printing method, the viscosity is 25 to 25 ° C to prevent clogging and flight bending during discharge. A range of 20 mPa's is preferred, and a range of 5-20 mPa's is more preferred. A range of 7-20 mPa's is even more preferred.
  • the solution (ink composition) used in the printing method or the like may contain an additive for adjusting viscosity and Z or surface tension in addition to the polymer compound.
  • an additive for adjusting viscosity and Z or surface tension in addition to the polymer compound.
  • a high molecular weight polymer compound (thickener) for increasing the viscosity, a poor solvent, a low molecular weight compound for decreasing the viscosity, a surfactant for decreasing the surface tension, and the like are appropriately combined. Use it.
  • the high molecular weight polymer compound may be any compound that is soluble in the same solvent as the polymer compound of the present invention and does not inhibit light emission or charge transport.
  • high molecular weight polystyrene, polymethyl methacrylate, or a high molecular weight compound of the present invention can be used.
  • the weight average molecular weight in terms of polystyrene is preferably 500,000 or more, more preferably 1,000,000 or more.
  • a poor solvent can also be used as a thickener. That is, the viscosity can be increased by adding a small amount of a poor solvent for the solid content in the solution.
  • the type and amount of the solvent should be selected as long as the solid content in the solution does not precipitate.
  • the amount of the poor solvent is preferably 50 wt% or less, more preferably 30 wt% or less with respect to the whole solution.
  • the solution of the present invention may contain an antioxidant in order to improve storage stability.
  • examples of the antioxidant are those that are soluble in the same solvent as the polymeric fluorescent substance and that do not inhibit light emission and charge transport, such as phenol-based antioxidants and phosphorus-based antioxidants.
  • the solvent used is not particularly limited, but is a material other than the solvent constituting the ink composition. That can dissolve or uniformly disperse
  • chloro solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, benzene, o-dichlorobenzene, ethers such as tetrahydrofuran, dioxane, and azole.
  • Aromatics such as toluene, xylene, ethylbenzene, dimethylbenzene, trimethylbenzene, n-propylbenzene, isopropylbenzene, n-butylbenzene, isobutylbenzene, s-butylbenzene, ethoxybenzene, cyclohexylbenzene, 1-methylnaphthalene, etc.
  • organic solvents can be used alone or in combination.
  • aromatic hydrocarbon solvents aliphatic hydrocarbon solvents, ester solvents, ketone solvents are used from the viewpoint of solubility of polymer compounds, uniformity during film formation, viscosity characteristics, and the like.
  • the type of solvent in the solution is preferably 2 or more, more preferably 2 or 3 from the viewpoints of film-forming properties, device characteristics, and the like. It is even better to be.
  • the solution contains two solvents, one of them may be in a solid state at 25 ° C.
  • one kind of solvent is preferably a solvent having a boiling point of 180 ° C or higher, more preferably 200 ° C or higher.
  • 1 wt% or more of the aromatic polymer dissolves at 60 ° C in both of the two types of solvents. It is preferable that 1 wt% or more aromatic polymer is dissolved in C.
  • the solvent power with the highest boiling point is preferably 40 to 90 wt% of the weight of all the solvents in the solution. More preferably, it is 50 to 90 wt%, and more preferably 65 to 85 wt%.
  • the light emitting layer may contain a known organic substance (organic light emitting material).
  • the organic substance is a compound having fluorescence and Z or phosphorescence at room temperature, and may be a low molecule or a polymer.
  • the organic compound contained in the light emitting layer is a compound having at least one kind of fluorescent compound or a compound having phosphorescence, or a polymer compound containing one or more types of repeating units represented by the formula (1) described later. Preferably there is.
  • Examples of phosphorescent compounds include iridium complexes and platinum complexes.
  • the low-molecular compound having fluorescence known compounds can be used as appropriate.
  • polystyrene equivalent weight average molecular weight of 1000 or more examples are those having a repeating unit force represented by the following formula (1).
  • Ar is an arylene group, a divalent heterocyclic compound group or a divalent aromatic amine group;
  • Ar is an arylene group, a divalent heterocyclic compound group, and a divalent aromatic amine group.
  • Group power is the group chosen.
  • the arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, having a condensed ring, two or more independent benzene rings or condensed rings directly or beylene, etc. Also included are those bonded through the group of.
  • the arylene group may have a substituent.
  • the carbon number of the portion other than the substituent in the arylene group is usually about 6 to 60, preferably 6 to 20. Further, the total number of carbon atoms including the substituent of the arylene group is usually about 6 to: LOO.
  • Examples of the arylene group include the formulas 1 ⁇ -1 to 1 ⁇ -20 shown below.
  • R represents a hydrogen atom, a bond, or a bond.
  • Ra represents a hydrogen atom or a substituent. When there are a plurality of substituents represented by Ra, they may be the same or different.
  • two Ras exist on the same atom they may be combined to form an oxo group or thixo group, or may be bonded to each other to form a ring! /.
  • the substituent represented by R is a substituent on adjacent atoms, and may contain a hetero atom such as an oxygen atom, a sulfur atom, or a nitrogen atom.
  • a ring or a 5- to 7-membered aromatic ring may be formed.
  • —1 naphthalene diyl group (formula 1A-2), dihydrophenanthrene diyl group (formula 1A-10), fluorene diyl group (formula 1A-13), indenonaphthalene diyl group (formula 1A-14), bif ⁇
  • -len groups (Formula 1A-15) and terferene groups (Formula 1A-16: LA-18)
  • phenylene groups (Formula 1A-1), naphthalene diyl groups (Formula 1A— 2), a fluorene diyl group (formula 1A-13) and an indenonaphthalene monodiyl group (formula 1A-14) are more preferred.
  • the divalent heterocyclic compound group is a remaining atomic group excluding two heterocyclic compound power hydrogen atoms, having a condensed ring, an independent monocyclic heterocyclic compound or two condensed rings. Those in which the above are bonded directly or through a group such as beylene are also included. Also included are those in which a heterocyclic compound and an aromatic hydrocarbon are bonded.
  • the divalent heterocyclic compound group may have a substituent! /. Except for the substituents in the divalent heterocyclic compound group, the number of carbon atoms in the portion is usually about 4 to 60, preferably 2 to 20. Further, the total number of carbon atoms including the substituents of the divalent heterocyclic compound group is usually about 2 to 100.
  • a heterocyclic compound is an organic compound having a cyclic structure that contains heteroatoms such as oxygen, sulfur, nitrogen, phosphorus, and boron in which the elements constituting the ring are not only carbon atoms.
  • Examples of the divalent heterocyclic compound group include the following formulas 2A-1 to 2A-53 and 2A-101 to 2A-116. ) 6700
  • R represents a hydrogen atom, a bond, or a substituent.
  • Arbitrary two of plural Rs represent a bond, and any one or more of them represent a hydrogen atom.
  • There are multiple substituents represented by R In the case, they may be the same or different.
  • Ra represents a hydrogen atom or a substituent. When a plurality of substituents represented by Ra are present, they may be the same or different.
  • two Ras exist on the same atom they may be combined to form an oxo group or a thixo group, or may be bonded to each other to form a ring.
  • the substituent represented by R is a 5- to 7-membered aliphatic group including hetero atoms such as an oxygen atom, a sulfur atom, and a nitrogen atom among the substituents on adjacent atoms.
  • a ring or a 5- to 7-membered aromatic ring which may contain a hetero atom such as an oxygen atom, a sulfur atom or a nitrogen atom may be formed.
  • Examples of the divalent heterocyclic compound group represented by Ar include the above formulas 2A-1 to 2A-53, and 2
  • pyridine-diyl group (formula 2A-1), quinoline-diyl group (formula 2A-6), isoquinoline monozyl group (formula 2A-7), quinoxaline monozyl group (formula 2A — 8), phenantyl group (2A-18), thiopheneyl group (formula 2A-22), imidazole luzyl group (2A-24), oxazole-zyl group (formula 2A-26), thiazol diyl Group (2A-27), a 5-membered heterocyclic compound group containing nitrogen, sulfur, oxygen or selenium as a heteroatom and condensed with a benzene ring (formula 2A-30 to 2A-32, and 2A-34 to 2A 40), heterocyclic compound groups having a fluorene-like skeleton containing nitrogen, oxygen, or sulfur as heteroatoms (Formula 2A—41 to 2A—44 and 2
  • the divalent aromatic amine group is a remaining atomic group obtained by removing two hydrogen atoms from an aromatic amine group.
  • the divalent aromatic amine group may have a substituent. Except for the substituents in the divalent aromatic amine group, the carbon number of the other part is usually about 4 to 60.
  • Examples of the divalent aromatic amine group include a group represented by the following general formula (12).
  • Ar 5 and Ar each independently represent an arylene group or a divalent heterocyclic group.
  • Ar 9 each independently represents an aryl group or a monovalent heterocyclic group.
  • Ar 3 , Ar 4 , Ar 5 , Ar 8 and Ar 9 may have a substituent.
  • r and rr each independently represent 0 or 1.
  • divalent aromatic amine group examples include groups represented by the following formulas 3A-1 to 3A-8. [0078] [Chemical 12]
  • R represents a hydrogen atom, a bond, or a bond.
  • the substituent represented by R is a 5- to 7-membered aliphatic group including a hetero atom such as an oxygen atom, a sulfur atom, or a nitrogen atom among the substituents on adjacent atoms.
  • a ring or a 5- to 7-membered aromatic ring which may contain a hetero atom such as an oxygen atom, a sulfur atom or a nitrogen atom may be formed.
  • Examples of the substituent represented by R or Ra include an alkyl group, an aryl group, an aralkyl group, a monovalent heterocyclic group, an arylalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an aralkyloxy group, and an alkylthio group. And arylothio group, aralkylthio group, substituted amino group, substituted silyl group, sulfonic acid group, phosphono group, cyano group, nitro group and the like.
  • the alkyl group represented by R or Ra has a carbon number of about 1 to 20, preferably 3 to 20, preferably linear, branched or cyclic, and specific examples thereof include methyl Group, ethyl group, propyl group, isopropyl group, n butyl group, isobutyl group, s butyl group, t butyl group, pentyl group, isopentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2 Ethylhexyl group, nonyl group, decyl group, 3,7 dimethyloctyl group, dodecyl group, octadecyl group and the like.
  • solubility in organic solvents are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, Isopentyl, hexyl, cyclohexyl, heptyl, cyclohexylmethyl, octyl, 2-ethylhexyl, 2-cyclohexylethyl, nonyl, decyl, 3,7-dimethyloctyl Methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sbutyl group, tbutyl group, pentyl group, isopentyl group, hexyl group, cyclohexyl group , Heptyl, o
  • the aryl group is an atomic group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon, and includes those having a condensed ring.
  • the aryl group usually has about 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms. Specific examples thereof include a phenyl group, a C to C alkylphenol group (C
  • Examples include a naphthyl group, a 1 anthracene group, a 2 anthracyl group, and a 9 anthracyl group.
  • the ru group is preferred.
  • C to C alkylphenol group examples include a methylphenol group and an ethylphenol group.
  • the aralkyl group usually has about 7 to 60 carbon atoms, preferably 7 to 48, and examples thereof include a ferro-c-c alkyl group and a c-c alkyl ferro-c-c alkyl.
  • a rho C to C alkyl group is preferred.
  • the monovalent heterocyclic compound group is a remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound, and usually has about 4 to 60 carbon atoms, preferably 4 to 20 carbon atoms.
  • the carbon number of the heterocyclic compound group does not include the carbon number of the substituent.
  • a heterocyclic compound is an organic compound having a cyclic structure that contains heteroatoms such as oxygen, sulfur, nitrogen, phosphorus, and boron in which the elements constituting the ring are not only carbon atoms.
  • a chael group, a c to c alkyl chael group, a pyrrolyl group, a furyl group, a pyridyl group, and a c to c alkyl pin a chael group, a c to c alkyl chael group, a pyrrolyl group, a furyl group, a pyridyl group, and a c to c alkyl pin.
  • Examples include 1 12 1 12 lysyl group, piperidyl group, quinolyl group, isoquinolyl group and the like.
  • Alkyl phenyl groups, pyridyl groups, and C to C alkyl pyridyl groups are preferred.
  • the arylalkyl group usually has about 8 to 60 carbon atoms. Specifically, the ferroc c-c alkal group and the c-c alkyl ferrule are used.
  • a rho C to C alkenyl group is preferred.
  • the aryl alkynyl group usually has about 8 to 60 carbon atoms, specifically, a ferro-c to alkenyl group,
  • a rho C to C alkynyl group is preferred.
  • the alkoxy group may be linear, branched or cyclic, and usually has about 1 to 20 carbon atoms, preferably 3 to 20 carbon atoms. Specific examples thereof include a methoxy group and an ethoxy group. , Propyloxy group, isopropyloxy group, n butoxy group, isobutoxy group, t butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyl Examples include an oxy group, an octyloxy group, a 2-ethylhexyloxy group, a noroxy group, a decyloxy group, a 3,7-dimethyloctyloxy group, and a dodecyloxy group.
  • pentyloxy group, hexyloxy group, octyloxy group, 2-ethylhexyloxy group, decyloxy group, and 3,7-dimethyloctyloxy group preferable.
  • the aryloxy group usually has about 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms. Specific examples thereof include a phenoxy group, a C to C alkylphenoxy group, and 1 naphthyloxy group.
  • a xy group is preferred.
  • alkylphenoxy group examples include a methylphenoxy group and an ethylphenoxy group.
  • Si group dimethylphenoxy group, propylphenoxy group, 1, 3, 5 trimethylphenoxy group, methylethylphenoxy group, isopropylphenoxy group, n-butylphenoxy group, isobutylphenoxy group, t-butylphenoxy group Group, pentylphenoxy group, isopentylphenoxy group, hexylphenoxy group, heptylphenoxy group, octylphenoxy group, nonylphenoxy group, decylphenoxy group, dodecylphenoxy group and the like.
  • the aralkyloxy group usually has about 7 to 60 carbon atoms, preferably 7 to 48 carbon atoms. Specific examples thereof include a phenylmethoxy group, a phenyloxy group, and a phenyl n-butoxy group. , Phenpentyloxy group, phenylhexyloxy group, phenylhexyloxy group, phenyloctyloxy group, C-C alkoxy group, C
  • Examples include 12 1 12 1 12 group, 2-naphthyl C-C alkoxy group and the like.
  • a leuco C to C alkoxy group is preferred.
  • the alkylthio group has a carbon number of about 1-20, preferably 3-20, and may be linear, branched or cyclic. Specific examples thereof include a methylthio group and an ethylthio group. , Propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, t-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group And heptylthio group, octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, dodecylthio group and the like.
  • the allylthio group usually has about 3 to 60 carbon atoms, and specific examples thereof include a phenylthio group, a C to C alkylphenolthio group, a 1 naphthylthio group, and a 2-naphthyl group.
  • Examples are thio group and the like.
  • a ruthio group is preferred.
  • the aralkylthio group usually has about 7 to 60 carbon atoms, preferably 7 to 48 carbon atoms. Specific examples thereof include a phenyl C-C alkylthio group, a C-C alkyl group.
  • Illustrative examples include a thyl c-c alkylthio group.
  • a rou c to c alkylthio group is preferred.
  • Examples of the substituted amino group include an alkyl group, an aryl group, an aryl group, or an amino group substituted with one or two groups selected from a monovalent heterocyclic group, and usually has a carbon number. About 1 to 60, preferably 2 to 48 carbon atoms.
  • Examples include 1 12 1 12 naphthyl-c-c alkylamino groups.
  • di-substitution such as dimethylamino group, dimethylamino group, diphenylamino group, di (C to C alkylphenol) amino group, etc.
  • Preferred diaminoamino groups and di (c-c alkylphenol) amino groups are preferred.
  • a diarylamino group such as is more preferable.
  • Examples of the substituted silyl group include an alkyl group, an aryl group, an aryl group, or a silyl group substituted with 1, 2 or 3 groups selected from a monovalent bicyclic ring group.
  • the substituted silyl group usually has about 1 to 60 carbon atoms, preferably 3 to 48 carbon atoms.
  • trimethylsilyl group triethylsilyl group, triprovirsilyl group, triisobutylsilyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethyl Xylose methylsilyl group, nordimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyldimethylsilyl group, dodecyldimethylsilyl group, phenyl C to C alkyl
  • Examples thereof include a thiol group, a tribenzylsilyl group, a diphenylmethylsilyl group, a t-butyldiphenylsilyl group, and a dimethylphenylsilyl group.
  • the hydrogen atom on the aryl group or monovalent heterocyclic group is an aryl group or an aralkyl group.
  • aryl group, aralkyl group, monovalent heterocyclic group, alkoxy group Alkyl group, aryl group, thio group, aryloxy group, aralkyloxy group, alkylthio group, aralkylthio group, aralkylthio group, substituted amino group, substituted silyl group, sulfonic acid group, phosphono group, cyano group, and -tro group are preferred.
  • An aralkyl group, a monovalent heterocyclic group, an alkoxy group, an aryloxy group, an aralkyloxy group, an alkylthio group, an aralkylthio group, an aralkylthio group, and an alkoxy group, and an alkylthio group are more preferable.
  • a C to C alkoxy file group a C to C alkoxy file group
  • Examples include a group having a 1 12 1 12 1 12 xy substituent.
  • c-c As alkoxy, specifically, meth
  • any CH- group in the alkylene chain may be a divalent heteroatom such as oxygen, sulfur or nitrogen, or a heteroatom.
  • divalent hetero atom and the divalent group containing a hetero atom include groups represented by the following formulas X-1 to X-5 and X-7 to X-10.
  • R g has the same meaning as R, and Ar represents a trivalent group in the formulas (X-7) and (X-8), and a tetravalent group in the formula (X-9).
  • examples of the divalent group formed by combining two or more divalent heteroatoms or two or more divalent groups containing a heteroatom are represented by the following formulas XX-1 to XX-4 Groups.
  • R ⁇ has the same meaning as R.
  • the substituent represented by R in the group represented by Ar includes an alkyl group, an aryl group, and R
  • Aralkyl group monovalent heterocyclic group, alkoxy group, aryloxy group, aralkyloxy group, alkylthio group, aryloxy group, aralkylthio group, substituted amino group, substituted silyl group, sulfonic acid group, phosphono group, cyano group, and -tro group
  • alkyl groups aryl groups, aralkyl groups, monovalent heterocyclic groups, alkoxy groups, aryloxy groups, aralkyloxy groups, alkylthio groups, aryloxy groups, aralkylthio groups, and substituted amino groups.
  • Particularly preferred are alkyl groups, more preferred alkyl groups, alkoxy groups, and alkylthio groups.
  • the substituent represented by Ra in the group represented by Ar includes an alkyl group, an aryl group,
  • Aralkyl groups monovalent heterocyclic groups, alkoxy groups, aryloxy groups, aralkyloxy groups, alkylthio groups, aryloxy groups, aralkylthio groups, substituted amino groups, substituted silyl groups, oxo groups, and thixo groups are preferred alkyl groups, alkoxy groups Particularly preferred are alkyl groups, more preferably alkyl groups, alkylthio groups, alkylsilyl groups, oxo groups, and thixo groups, and more preferred alkyl groups.
  • copolymer may be a homopolymer containing a single repeating unit, it may be a copolymer containing a plurality of types of repeating units.
  • a copolymer is preferably used in order to obtain a structure having both functions of light emission and charge transport as appropriate.
  • the structure of the polymer compound may be any force such as random, block, or graft, or a combination thereof. For a type with branches, it may be a hyperbranch rather than just a branch.
  • luminescent materials those that are soluble in an organic solvent can be formed by a force coating method, which is advantageous in terms of process and is preferable.
  • the film thickness of the light-emitting layer varies depending on the material used and may be selected so that the drive voltage and the light emission efficiency are appropriate.
  • the thickness is from 1 nm to 1 ⁇ m, preferably from 2 nm to 500 nm. More preferably 5 nm to 200 nm.
  • a polymer light emitting material can be used for the light emitting layer, but other light emitting materials may be used.
  • a light emitting layer containing a light emitting material may be laminated with a light emitting layer containing another light emitting material.
  • examples of the light-emitting material that can be used in the organic EL element used in the light-emitting portion of the light-emitting device of the present invention include known low-molecular compounds and triplet light-emitting complexes.
  • Examples of the low molecular weight compound include naphthalene derivatives, anthracene or derivatives thereof, perylene or derivatives thereof, dyes such as polymethine, xanthene, coumarin, and cyanine, metal complexes of 8-hydroxyquinoline or derivatives thereof, Aromatic amine, te Troughenyl cyclopentagen or a derivative thereof, tetraphenylbutadiene or a derivative thereof can be used.
  • JP-A-57-51781 and 59-194393 can be used.
  • triplet light-emitting complexes include Nature, (1998), 395, 151, Appl. Phys. Lett. (1999), 75 (1), 4, Proc. SPIE— Int. Soc. Opt. Eng. (2001), 41 05 (Organic Light ⁇ Emitting Materials and Devices IV), 119, J. Am. Chem. Soc., (2001), 123, 4304, Appl. Phys. Lett., (1997) , 71 (18), 2 596, Syn. Met., (1998), 94 (1), 103, Syn. Met., (1999), 99 (2), 1361, Adv. Mater., (1999), 11 (10), 852, Jpn. J. Appl. Phys., 34, 1883 (199 5).
  • a method for forming a light emitting layer containing an organic substance a method of applying a solution containing a light emitting material on or above a substrate, a vacuum deposition method, a transfer method, or the like can be used.
  • the light emitting device is preferably manufactured by a method including forming the light emitting layer containing the organic substance by applying a solution containing a light emitting material on or above the substrate.
  • a method for applying a solution containing a light emitting material on or above a substrate spin coating, nozzle coating, dip coating, ink jet, flexographic printing lj, gravure printing lj, slit coating, one-coat coating, dispenser, micro
  • An application method such as a dispenser can be used.
  • a vacuum deposition method can be used.
  • a method of forming a light emitting layer only at a desired place by laser transfer or thermal transfer can be used.
  • the hole transport material used may be polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, or a side chain.
  • a polysiloxane derivative having an aromatic amine in the main chain a pyrazoline derivative, an arylamine derivative, a stilbene derivative, a trifluorodiamine derivative, a polyarine or a derivative thereof, a polythiophene or a derivative thereof, a polypyrrole or a derivative thereof, a poly ( p-phenol-lenylene) or a derivative thereof, Examples thereof include poly (2,5-chalenbiylene) or a derivative thereof.
  • JP-A-63-70257, JP-A-63-17586, JP-A-2-135359, JP-A-2-135361, JP-A-2- Examples include those described in No. 209988, No. 3-37992 and No. 3-152184.
  • a hole transport material used for the hole transport layer polybulur rubazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain
  • Polymer holes such as polyaline or derivatives thereof, polythiophene or derivatives thereof, poly (p-phenolene-ylene) or derivatives thereof, or poly (2,5-cerene vinylene) or derivatives thereof
  • the transport material is preferably a polybulur rubazole or a derivative thereof, polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain.
  • a low-molecular hole transport material it is preferably used by dispersing it in a polymer binder.
  • Polybour strength rubazole or a derivative thereof can be obtained, for example, by cation polymerization or radical polymerization of bulur monomer strength.
  • Polysilane or its derivatives include chemical 'review (Chem. Rev.) No. 89
  • the polysiloxane or derivative thereof has almost no hole transporting property in the siloxane skeleton structure
  • those having the structure of the above low molecular hole transporting material in the side chain or main chain are preferably used.
  • those having a hole transporting aromatic amine in the side chain or main chain are exemplified.
  • the method for forming the hole transport layer is not limited, but for the low molecular hole transport material, a method by film formation with a mixed solution force with a polymer binder is exemplified. In the case of a polymer hole transport material, a method by film formation from a solution is exemplified.
  • Solvents used for film formation with a solution strength are not particularly limited as long as they can dissolve the hole transport material.
  • the solvent include chlorine solvents such as chloroform, methylene chloride and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; Examples include ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate.
  • the solution force film-forming methods include spin coating from solution, nozzle coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, Dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, slit coating method, chiral coating method, dispenser method, micro dispenser method, etc. can be used. .
  • the polymer binder to be mixed is preferably one that does not extremely inhibit charge transport, and one that does not strongly absorb visible light is preferably used.
  • the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like.
  • the film thickness of the hole transport layer varies depending on the material used, and is selected so that the drive voltage and the light emission efficiency are appropriate. However, at least pinholes do not occur! Such a thickness is necessary, and if it is too thick, the drive voltage of the element becomes high, which is not preferable. Therefore, the film thickness of the hole transport layer is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 50 Onm, and more preferably 5 ⁇ ! ⁇ 200nm.
  • the organic EL element used in the light emitting part of the light emitting device of the present invention has an electron transport layer
  • known electron transport materials can be used, such as oxadiazole derivatives, anthraquinodimethane, or the like.
  • benzoquinone or derivative thereof naphthoquinone or derivative thereof, anthraquinone or derivative thereof, tetracyananthraquinodimethane or derivative thereof, fluorenone derivative, diphenyldisyanoethylene or derivative thereof, diphenoquinone derivative, or 8-hydroxyquinoline or Examples thereof include metal complexes of the derivatives, polyquinoline or a derivative thereof, polyquinoxaline or a derivative thereof, polyfluorene or a derivative thereof.
  • JP-A-63-70257, JP-A-63-175860, JP-A-2-13 Examples are those described in Japanese Patent Nos. 5359, 2-135361, 2-209988, 3-37992, and 3-152184.
  • oxadiazole derivatives benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof 2- (4-biphenyl) 5- (4 t-butylphenol) 1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.
  • the film formation method of the electron transport layer in the case of a low molecular electron transport material, a vacuum evaporation method from a powder or a film formation method from a solution or a molten state is used.
  • the material include a method by film formation from a solution or a molten state.
  • a polymer binder may be used in combination during film formation of a solution or molten state force.
  • the solvent used for the film formation by the solution force is not particularly limited as long as it dissolves the electron transport material and Z or the polymer binder.
  • the solvent include chlorine solvents such as chloroform, methyl chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketone solvents such as acetone and methyl ethyl ketone.
  • ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate.
  • a film forming method from a solution or a molten state a spin coating method, a nozzle coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, A coating method such as a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a slit coating method, a capillary coating method, a dispenser method, or a microdispenser method can be used.
  • polymer binder to be mixed those not extremely disturbing charge transport are preferable, and those showing no strong absorption against visible light are suitably used.
  • the polymer binder include poly (N-butylcarbazole), polyaline or a derivative thereof, polythiophene or a derivative thereof, poly (p-phenylene-lene) or a derivative thereof, poly (2 , 5-Cha-lenbiylene) or derivatives thereof, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polychlorinated butyl, or polysiloxane.
  • the thickness of the electron transport layer varies depending on the material used, and is selected so that the drive voltage and light emission efficiency are appropriate. However, the thickness is such that at least no pinholes are generated. If the thickness is too thick, the driving voltage of the element increases, which is not preferable. Therefore, the thickness of the electron transport layer is, for example, 1 nm to 1 ⁇ m, and preferably 2 ⁇ ! ⁇ 500 nm, more preferably 5 ⁇ ! ⁇ 200nm.
  • the substrate on which the organic EL element used in the light-emitting portion of the light-emitting device of the present invention is formed is not particularly limited as long as it forms an electrode and does not change when an organic layer is formed, for example, glass, plastic, Examples thereof include a polymer film and a silicon substrate (substrate). In the case of an opaque substrate, the opposite electrode is preferably transparent or translucent.
  • the anode side is preferably transparent or translucent, but as the material of the anode, a conductive metal oxide film, a translucent metal thin film, or the like is used.
  • a conductive metal oxide film, a translucent metal thin film, or the like is used as the material of the anode.
  • indium oxide, zinc oxide, tin oxide, and their composites such as indium 'sud' oxide (ITO), indium 'zinc' oxide, etc. NES A, etc.), gold, platinum, silver, copper and the like are used, and ITO, indium “lead” oxide and tin oxide are preferable.
  • the production method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method.
  • an organic transparent conductive film such as polyarylene or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
  • the film thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity.
  • 1S For example, lOnm to 10 ⁇ m, preferably 20 nm to l ⁇ m, more preferably 50 nm to 500 nm.
  • an average film thickness such as a phthalocyanine derivative, a conductive polymer, a layer such as carbon, or a metal oxide, metal fluoride, organic insulating material, etc.
  • a layer of 2 nm or less may be provided.
  • a material with a low work function is preferred.
  • the alloy include magnesium silver alloy, magnesium mu indium alloy, magnesium aluminum alloy, indium silver alloy, lithium aluminum alloy, lithium magnesium alloy, lithium indium alloy, calcium aluminum alloy, and the like.
  • the cathode may have a laminated structure of two or more layers.
  • the film thickness of the cathode can be appropriately selected in consideration of electrical conductivity and durability.
  • the thickness is 10 ⁇ m from lOnm, preferably 20 nm to 1 ⁇ m, and more preferably. Is ⁇ s for 50 ⁇ m ⁇ 500nm.
  • a method for producing the cathode a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression-bonded, or the like is used.
  • a cathode made of a conductive polymer, or a layer having an average film thickness of 2 nm or less such as a metal oxide, metal fluoride, or organic insulating material may be provided between the cathode and the organic material layer.
  • a protective layer for protecting the polymer LED may be attached. In order to use the polymer LED stably for a long period of time, it is preferable to attach a protective layer and Z or a protective cover in order to protect the element from the outside.
  • the protective layer a polymer compound, metal oxide, metal fluoride, metal boride and the like can be used.
  • a glass plate, a plastic plate having a low water permeability treatment on the surface, or the like can be used, and the cover is bonded to the element substrate with a heat effect resin or a photocured resin and sealed.
  • a heat effect resin or a photocured resin and sealed are preferably used. If the space is maintained using a spacer, it is easy to prevent the element from being damaged. If an inert gas such as nitrogen or argon is sealed in the space, it is possible to prevent the oxidation of the cathode, and further, by installing a desiccant such as barium oxide in the space in the manufacturing process.
  • a transparent substrate formed with a transparent electrode such as ITO is used, and an organic EL element serving as a light-emitting portion is formed on or above the transparent substrate. Power can also extract light. In this case, it is sufficient if the substrate is transparent or translucent. Examples thereof include glass and plastic.
  • the substrate is formed by sequentially forming a light emitting layer containing an electrode and an organic substance on or above the substrate, and making the electrode formed on or above the substrate transparent.
  • Light can be extracted in the opposite direction.
  • the transparent electrode include a combination of a thin metal film thin enough to transmit light and a transparent electrode such as a bag.
  • a Si wafer or the like can be used.
  • the light-emitting device of the present invention uses an organic EL element as a light source, and needs to be appropriately sealed.
  • a sealing method a method of attaching a metal can, a glass plate, or the like with a back force is simple, but a film sealing with a multilayer laminated film of organic matter Z inorganic matter (a thin film in which organic matter and inorganic matter are alternately laminated) is sealed. Stops can also be used.
  • the thickness of the thin film is preferably less than 1 mm in total.
  • the anode and the cathode may be arranged so as to overlap each other.
  • a method of providing a pixel by providing a window corresponding to the light-emitting part an organic layer of a non-light-emitting part is formed extremely thick and substantially non-light-emitting Or a method of forming either or both of the anode and the cathode in a desired pattern.
  • a pixel is formed by one of these methods, and several electrodes are arranged so that the applied voltage (or current) can be controlled independently (for example, ONZOFF control) and connected to the drive circuit. It can be set as the light emission part of the light-emitting device of invention.
  • the light-emitting device of the present invention can be used for a copying machine, a facsimile, a printer, a scanner, and the like, for example, in combination with an electrophotographic photosensitive part.
  • images can be replaced with electronic information and recorded.
  • the light emitting device of the present invention operates as an image forming apparatus by further disposing an element that functions by receiving light emitted from the pixel relative to the surface of the pixel.
  • An element that receives light and functions as an electrophotographic photosensitive part (transfers charges and loses charge when exposed to light. Etc.), CCD etc. are exemplified.
  • FIG. 5 shows an example in which an electrophotographic photosensitive portion is used as a light receiving portion and combined with a light emitting portion.
  • FIG. 6 shows an example of an image forming apparatus combining a light emitting portion and a photosensitive portion, which is used in a copying machine, a facsimile, and the like.
  • Fig. 9 shows an example of an apparatus that can record and replace an image with electronic information by combining a CCD or the like with a light emitting part as a light receiving part, and is used for a scanner.
  • the light emitting unit of the light emitting device of the present invention may have a pixel force arranged in one dimension, or may have a pixel force arranged two-dimensionally on a plane.
  • two-dimensional image information can be sequentially drawn.
  • a thin film with a thickness of about 70 nm is formed by spin coating, and dried on a hot plate at 200 ° C. for 10 minutes.
  • using xylene solvent solution of polymer light-emitting material (1-2 wt 0/0) to form a light emitting layer of about 80nm by spin-coating. Further, this is dried at 80 ° C.
  • cathode is formed in a pattern using a mask or the like so that the portion overlapping with ITO has the desired size and layout.
  • an organic EL element array with a pixel pitch of 50 ⁇ m and a pixel size of 25 mX m is manufactured.
  • Example 2 (Example using phosphorescent material)
  • An organic EL device is fabricated in the same manner as in Example 1 except that instead of the polymer light emitting material in Example 1, a mixture of the polymer light emitting material and the triplet light emitting complex is used. This element emits light when it is driven and generates heat. However, when the pixel size and the pixel interval are formed under the same conditions as in Example 1, heat dissipation tends to occur to the surroundings. The damage can be reduced, and a longer driving time is possible.
  • Example 3 Example using low-molecular fluorescent material
  • Example 1 instead of applying a polymer light-emitting material (spin coating), the sample was placed in a vacuum evaporator and a suspension of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid was used. On the coating layer, a low molecular fluorescent material is vapor-deposited to form a light emitting layer, and then a low molecular electron transporting material is vapor-deposited to form an electron transport layer. Subsequently, the cathode is formed by depositing 5 nm of force and about 80 nm of aluminum. The organic EL device is fabricated using the same cathode pattern as in Example 1.
  • This element generates heat in the pixel that emits light during driving.
  • the pixel size and pixel spacing are formed under the same conditions as in Example 1, heat dissipation to the surroundings is likely to occur, so heat damage can be reduced. Can be driven for a longer time.
  • FIG. 1 is a diagram showing a structure (cross section) of a light emitting device.
  • FIG. 2 is a diagram showing a configuration example of a light emitting device.
  • FIG. 3 is a diagram illustrating a pixel width (L) and an interval (L) between adjacent pixels.
  • FIG. 4 is a diagram showing a linear direction length (T1) and a perpendicular direction length (T2) of the light emitting element array.
  • FIG. 5 is a diagram showing an arrangement example of a light emitting unit and a light receiving unit.
  • FIG. 6 is a diagram illustrating an example of an image forming apparatus.
  • FIG. 7 is a diagram illustrating an arrangement example of a light emitting unit, a light receiving unit, and a light collecting element.
  • FIG. 8 is a diagram showing light collection by a light collecting element.
  • FIG. 9 is a diagram showing an example of an image storage device.

Abstract

A light-emitting device comprises positive and negative electrodes, at least one light-emitting layer including an organic material and sandwiched between the positive and negative electrodes, and at least two pixels made up of elements that emit light by having a current flow between the electrodes. All of the pixels are formed on or above an identical substrate. At least one of the electrodes of each pixel is independently connected to a drive circuit by pixel, and an applied voltage or current can be independently controlled. In each of the pixels, when the minimum distance between adjacent pixels is denoted by L1 and the maximum pixel width is denoted by L2, the light-emitting device meets the inequalities of L1 × n ≥ L2 (where, n is a number greater than or equal to 0.1 and less than or equal to 3) and L2 ≤ 100 µm.

Description

明 細 書  Specification
発光装置  Light emitting device
技術分野  Technical field
[0001] 本発明は、有機物を含む発光層を有する発光装置に関し、そして詳細には、独立 に印加電圧 (又は電流)の制御(例えば、 ONZOFFの制御)が可能な画素 2個以上 を有する発光装置に関する。  [0001] The present invention relates to a light emitting device having a light emitting layer containing an organic substance, and more specifically, a light emitting device having two or more pixels capable of independently controlling an applied voltage (or current) (eg, ONZOFF control). Relates to the device.
背景技術  Background art
[0002] 近年、有機蛍光色素を発光層とし、これと電子写真の感光体等に用いられている 有機電荷輸送ィ匕合物とを積層した二層構造を有する有機エレクト口ルミネッセンス素 子 (以下、有機 EL素子ということがある。)が開示されている (特許文献 1)。有機 EL 素子は、従来の無機 EL素子に比べ、低電圧駆動、高輝度であることに加えて、多数 の色の発光が容易に得られると 、う特徴があることから、素子構造や有機蛍光色素、 有機電荷輸送ィ匕合物について多くの試みが報告されている (非特許文献 1、 2) In recent years, an organic electoluminescence device having a two-layer structure in which an organic fluorescent dye is used as a light-emitting layer and an organic charge transport compound used in electrophotographic photoreceptors or the like is laminated (hereinafter referred to as “electroluminescent port luminescence device”) (Sometimes referred to as organic EL elements) (Patent Document 1). Compared to conventional inorganic EL elements, organic EL elements have low voltage drive and high brightness, and can easily emit light of many colors. Many attempts have been reported on dyes and organic charge transport compounds (Non-patent Documents 1 and 2).
[0003] また、高分子量の発光材料 (以下、高分子蛍光体と呼ぶ。)を用いる高分子発光素 子 (以下、高分子 LEDということがある。)が、特許文献 2、 3、非特許文献 3に開示さ れている。 [0003] In addition, polymer light-emitting devices (hereinafter sometimes referred to as polymer LEDs) using high-molecular-weight light-emitting materials (hereinafter referred to as polymer phosphors) are disclosed in Patent Documents 2 and 3. It is disclosed in Reference 3.
特許文献 2には、可溶性前駆体を電極上に成膜し、熱処理を行うことにより共役系 高分子に変換されたポリ(p—フエ-レンビ-レン)(以下、 PPVということがある。)薄 膜が得られること及びそれを用いた素子が開示されている。  In Patent Document 2, a poly (p-phenolene-ylene) converted to a conjugated polymer by forming a film of a soluble precursor on an electrode and performing heat treatment (hereinafter sometimes referred to as PPV). It is disclosed that a thin film can be obtained and a device using the same.
特許文献 3には、それ自身が溶媒に可溶であり、熱処理が不要であるという特徴を 有する共役系高分子が開示されている。また、非特許文献 3にも、溶媒に可溶な高 分子蛍光体及びそれを用いて作成した高分子 LEDが開示されている。  Patent Document 3 discloses a conjugated polymer that is itself soluble in a solvent and does not require heat treatment. Non-Patent Document 3 also discloses a high-molecular phosphor soluble in a solvent and a polymer LED prepared using the same.
[0004] これら高分子 LEDに用いられる高分子蛍光体としては、上記ポリ(p—フエ-レンビ 二レン)以外にも、ポリフルオレン (非特許文献 4)、ポリパラフエ-レン誘導体 (非特許 文献 5)などが開示されている。 [0004] Polymer phosphors used in these polymer LEDs include polyfluorene (Non-patent document 4), polyparaphenylene derivatives (Non-patent document 5), in addition to the above poly (p-phenylenediamine). ) Etc. are disclosed.
[0005] 上述のとおり、高分子 LEDは、溶媒に可溶な高分子蛍光体を用い、塗布により容 易に発光層を成膜することができるので、低分子蛍光体を蒸着する場合と比較して、 大面積化や低コスト化に有利であるという特徴を有する。 [0005] As described above, the polymer LED uses a polymer fluorescent substance that is soluble in a solvent, and can easily form a light emitting layer by coating, so compared with the case of depositing a low molecular phosphor. do it, It has a feature that it is advantageous for large area and low cost.
[0006] さらに、発光素子の発光層に用いる発光材料として、三重項励起状態からの発光( 燐光)を示す材料も知られている。このような材料としては、低分子のものの他、高分 子発光材料 (以下、三重項高分子発光材料と 、うことがある)も知られて 、る。  [0006] Further, as a light-emitting material used for a light-emitting layer of a light-emitting element, a material that emits light from a triplet excited state (phosphorescence) is also known. As such materials, in addition to low molecular materials, high molecular light emitting materials (hereinafter sometimes referred to as triplet polymer light emitting materials) are also known.
[0007] 従来の、有機 EL素子、無機 EL素子、半導体レーザーや無機 LED (発光ダイォー ド)などの発光素子は、ディスプレイ用途に用いられることが多い。画素がそれぞれ独 立に制御可能であるように、電極を格子状に組み合わせたドットマトリックス素子の場 合は、複数の画素が同一の電極で駆動回路と接続されていた。また、複数の発光セ グメントを並べて数字や文字を表示させる装置が知られている。  [0007] Conventional light-emitting elements such as organic EL elements, inorganic EL elements, semiconductor lasers, and inorganic LEDs (light-emitting diodes) are often used for display applications. In the case of a dot matrix element in which electrodes are combined in a grid pattern so that each pixel can be controlled independently, a plurality of pixels are connected to the drive circuit by the same electrode. In addition, a device that displays a number or a character by arranging a plurality of light emitting segments is known.
[0008] また、半導体レーザーを用い、ミラーやレンズを組み合わせた光学系を配置して、 感光体の上に画像を描画することを利用した電子写真方式の画像形成装置や、無 機 LEDを線状に複数並べて LEDアレイとし、これを用いて同様に画像形成する装置 などが開発されている。  [0008] In addition, an optical system using a semiconductor laser and an optical system in which a mirror and a lens are combined are arranged to draw an image on a photoconductor, and an inorganic LED is wired. Several devices have been developed to form an image using LED arrays arranged in a row.
[0009] 半導体レーザーを用いた画像形成装置では、光学系を配置し、機械的に駆動する ことが必要であるために、小型化が困難であった。また、 LEDアレイを用いる場合は 、複数の LEDチップを配列する必要があり、位置ずれや LEDチップの特性ばらつき により、画質が低下する問題があった。  [0009] In an image forming apparatus using a semiconductor laser, it is difficult to reduce the size because it is necessary to dispose an optical system and mechanically drive it. In addition, when an LED array is used, it is necessary to arrange a plurality of LED chips, and there is a problem in that the image quality is deteriorated due to misalignment and variations in characteristics of the LED chips.
[0010] 有機 EL素子を光源に用いた電子写真方式の画像形成装置は、 1996年に沖電気 工業から報告されている (特許文献 4、 5)。有機 EL素子を光源に用いることにより、 発光素子アレイを一度に形成できることより、小型化、低価格化が期待されており、そ の後も光プリンタヘッドに関していくつか報告がある(特許文献 6、 7)。  An electrophotographic image forming apparatus using an organic EL element as a light source was reported by Oki Electric Industry in 1996 (Patent Documents 4 and 5). By using an organic EL element as a light source, a light-emitting element array can be formed at a time, which is expected to reduce the size and price. After that, there are several reports on optical printer heads (Patent Document 6, 7).
[0011] また、実用的に問題となるダークスポットの影響を低減するために、初期状態での ダークスポットのサイズを限定することが有効であると報告されて 、る(特許文献 8)。 しかしながら、実用的には十分な特性を有する装置は、いまだ実現されていな力 た 特許文献 1:特開昭 59— 194393号公報  [0011] In addition, it is reported that it is effective to limit the size of the dark spot in the initial state in order to reduce the influence of the dark spot which is a practical problem (Patent Document 8). However, a device having sufficient characteristics for practical use has not yet been realized. Patent Document 1: Japanese Patent Application Laid-Open No. 59-194393
特許文献 2 :WO9013148号公開明細書  Patent Document 2: Published specification of WO9013148
特許文献 3:特開平 3 - 244630号公報 特許文献 4:特開平 8—48052号公報 Patent Document 3: Japanese Patent Laid-Open No. 3-244630 Patent Document 4: JP-A-8-48052
特許文献 5:特開平 8 - 244272号公報  Patent Document 5: JP-A-8-244272
特許文献 6:特開 2001— 246780号公報  Patent Document 6: Japanese Patent Laid-Open No. 2001-246780
特許文献 7:特開 2002— 19177号公報  Patent Document 7: Japanese Unexamined Patent Application Publication No. 2002-19177
特許文献 8:特開 2004 - 227975号公報  Patent Document 8: Japanese Patent Application Laid-Open No. 2004-227975
[0013] 非特許文献 1:ジャパニーズ 'ジャーナル'ォブ 'アプライド 'フィジックス (Jpn. J. Appl . Phys.;)第 27卷、 L269頁(1988年) [0013] Non-Patent Document 1: Japanese 'Journal' of 'Applied' Physics (Jpn. J. Appl. Phys .; pp. 27, L269 (1988)
非特許文献 2 :ジャーナル'ォブ 'アプライド 'フィジックス (J. Appl. Phys. )第 65卷、 3610頁(1989年)  Non-Patent Document 2: Journal 'Ob' Applied 'Phys. (J. Appl. Phys.) 65, 3610 (1989)
非特許文献 3 :アプライド 'フィジックス 'レターズ (Appl. Phys. Lett. )第 58卷、 198 2頁(1991年)  Non-Patent Document 3: Applied 'Physics' Letters (Appl. Phys. Lett.), Vol. 58, 198, p. 2 (1991)
非特許文献 4:ジャパニーズ 'ジャーナル'ォブ 'アプライド 'フィジックス (Jpn. J. Appl . Phys.;)第 30卷、 L1941頁(1991年)  Non-patent document 4: Japanese 'Journal' of 'Applied' Physics (Jpn. J. Appl. Phys .;) 30th page, L1941 (1991)
非特許文献 5 :アドバンスト'マテリアルズ (Adv. Mater. )第 4巻、 36頁(1992年) 発明の開示  Non-Patent Document 5: Advanced 'Materials (Adv. Mater.) Vol. 4, p. 36 (1992) Disclosure of the Invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] しかしながら、従来知られて!/ヽる素子では、高輝度で発光させるために、大電流を 流すと、発熱の影響や輝度低下が大きぐ十分な寿命が得られなかった。 [0014] However, in the conventionally known device! / The device that emits light with high luminance, when a large current is applied, a sufficient life span due to the influence of heat generation and large luminance reduction cannot be obtained.
本発明の目的は、有機 EL素子を光源とし、小型で十分な耐久性を有する発光装 置を提供することにある。  An object of the present invention is to provide a light emitting device having an organic EL element as a light source and having a small size and sufficient durability.
課題を解決するための手段  Means for solving the problem
[0015] 本発明者等は、上記課題を解決すべく鋭意検討した結果、画素レイアウト、画素の 形状、画像形成装置を構成する集光機能素子の集光特性などを特定のものにする ことにより、大幅な耐久性の改善ができることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have made the pixel layout, the shape of the pixel, the condensing characteristic of the condensing functional element constituting the image forming apparatus, etc. specific. It was found that the durability can be greatly improved.
発明の効果  The invention's effect
[0016] 本発明の発光装置を用いることにより、小型で十分な耐久性を有し、かつ低価格の 電子写真方式の画像形成装置、あるいは画像記録装置が得られる。 発明を実施するための最良の形態 By using the light-emitting device of the present invention, an electrophotographic image forming apparatus or an image recording apparatus that is small and has sufficient durability and is inexpensive can be obtained. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施形態を示す。  Embodiments of the present invention will be described below.
本発明は、以下の通りである。  The present invention is as follows.
(1)陽極及び陰極と、その間に挟まれた、少なくとも 1層の有機物を含む発光層を 有し、電極間に電流を流すことで発光する素子力 なる画素 2個以上を有する発光 装置において、すべての画素が同一の基体の上又は上方に形成されており、各画 素の電極のうち少なくとも一方の電極力 各画素ごとに独立に駆動回路と接続され、 独立に印加電圧又は電流の制御が可能であり、各画素において隣接する画素との 間隔の最小値を L、画素の最大幅を Lとすると、 L X n≥L〔ここで、 nは 0. 1以上 3  (1) In a light-emitting device having an anode and a cathode, and a light-emitting layer including at least one organic substance sandwiched between them, and having two or more pixels having elemental power that emits light by passing a current between the electrodes. All pixels are formed on or above the same substrate, and at least one of the electrode electrodes of each pixel is connected to the drive circuit independently for each pixel, and the applied voltage or current can be controlled independently. If the minimum value of the interval between adjacent pixels is L and the maximum pixel width is L, then LX n≥L (where n is 0.1 or more and 3
1 2 1 2  1 2 1 2
以下の数を表す。〕であり、かっしが 100 m以下であることを特徴とする上記発光 It represents the following number. The above-mentioned light emission characterized by having a bracket of 100 m or less
2  2
装置。 apparatus.
(2)前記 nが 0. 1以上 2以下の数を表す前記(1)記載の発光装置。  (2) The light emitting device according to (1), wherein n represents a number of 0.1 or more and 2 or less.
(3)前記 L力 100 m未満である前記(1)又は(2)に記載の発光装置。  (3) The light emitting device according to (1) or (2), wherein the L force is less than 100 m.
2  2
(4)前記発光装置が直線的に配列した発光素子アレイ力 なり、各画素の大きさが 直線方向の長さよりも、直線と直角方向の長さの方が大きい、前記(1)〜(3)のいず れか一項に記載の発光装置。  (4) The light-emitting element array force in which the light-emitting devices are arranged linearly, and the size of each pixel is greater in the length in the direction perpendicular to the straight line than in the length in the linear direction. The light-emitting device according to any one of 1).
(5)前記画素の面に相対して、該画素が発した光を受光して機能する受光素子を 更に配置してなり、画像形成装置として作動する前記(1)〜 (4)のいずれか一項に 記載の発光装置。  (5) Any of the above (1) to (4), wherein a light receiving element that functions by receiving the light emitted from the pixel is further disposed relative to the surface of the pixel, and operates as an image forming apparatus. The light emitting device according to one item.
(6)前記画素とこれに相対する前記受光素子との間に、該画素が発した光を受光 素子上に集光する機能を有する集光素子を有する画像形成装置として作動する前 記(5)記載の発光装置。  (6) The image forming apparatus operates as an image forming apparatus having a light condensing element having a function of condensing light emitted from the pixel on the light receiving element between the pixel and the light receiving element opposite to the pixel (5). ) The light emitting device described.
(7)前記集光素子の集光機能が、主に発光素子アレイの直線方向と垂直面内で、 光を集光する作用を有する前記 (6)記載の発光装置。  (7) The light emitting device according to (6), wherein the light condensing function of the light condensing element has a function of condensing light mainly in a plane perpendicular to the linear direction of the light emitting element array.
(8)前記発光層に含まれる有機物のうち少なくとも 1種類が、燐光を有する化合物 である前記(1)〜(7)の 、ずれか一項に記載の発光装置。  (8) The light emitting device according to any one of (1) to (7), wherein at least one of the organic substances contained in the light emitting layer is a phosphorescent compound.
(9)前記発光層に含まれる有機物のうち少なくとも 1種類が、式(1)で表される繰り 返し単位を 1種類以上含む高分子化合物である前記(1)〜(8)の 、ずれか一項に記 載の発光装置。 (9) At least one of the organic substances contained in the light-emitting layer is a polymer compound containing one or more repeating units represented by formula (1). In one paragraph The light emitting device.
Ar …ひ)  Ar ... hi)
1  1
〔ここで、 Arは、ァリーレン基、二価の複素環化合物基及び二価の芳香族アミン基か  [Where Ar is an arylene group, a divalent heterocyclic compound group or a divalent aromatic amine group;
1  1
らなる群から選ばれる基を示す。〕  A group selected from the group consisting of: ]
( 10)前記発光層に含まれる有機物のうち少なくとも 1種類が、蛍光を有する化合物 である前記(1)〜(9)の 、ずれか一項に記載の発光装置。  (10) The light-emitting device according to any one of (1) to (9), wherein at least one of the organic substances contained in the light-emitting layer is a fluorescent compound.
( 11)前記(1)〜(10)のいずれか一項に記載の発光装置の製造方法において、前 記有機物を含む発光層を、発光材料を含む溶液を基体の上又は上方に塗布するこ とにより形成することを含む上記製造方法。  (11) In the method for manufacturing a light-emitting device according to any one of (1) to (10), the light-emitting layer containing the organic substance is applied to a solution containing a light-emitting material on or above the substrate. The said manufacturing method including forming by.
[0018] 本発明の発光装置は、陽極及び陰極と、その間に挟まれた、少なくとも 1層の有機 物を含む発光層を有し、該電極間に電流を流すことで発光する素子力 なる画素 2 個以上を有する(図 1)。また、すべての画素が同一の基体の上又は上方に形成され ている。  [0018] A light emitting device of the present invention has a light emitting layer containing at least one organic substance sandwiched between an anode and a cathode, and a pixel having element power that emits light by passing a current between the electrodes. Has two or more (Figure 1). All pixels are formed on or above the same substrate.
基体とは、本発明の発光装置の発光部に用いる有機 EL素子力 なる画素が形成 できる表面を有する部材であり、表面が、画素サイズよりも大きな領域で平坦になつ ている部材であればよい。ガラス、プラスチック、 Si、金属など、画素となる有機 EL素 子を形成することのできる素材を用いることができる。形状は、板状、棒状などが例示 され、板状の場合は、平面でも曲面でもよい。前記基体としては、具体的には、ガラス 板やプラスチック板、プラスチックフィルム、 Siウエノ、、金属箔などが例示される。  The substrate is a member having a surface on which pixels serving as the organic EL element force used in the light emitting part of the light emitting device of the present invention can be formed, and may be any member as long as the surface is flat in a region larger than the pixel size. . Materials that can form organic EL elements such as glass, plastic, Si, and metal can be used. Examples of the shape include a plate shape and a rod shape. In the case of a plate shape, the shape may be flat or curved. Specific examples of the substrate include a glass plate, a plastic plate, a plastic film, Si Ueno, and a metal foil.
[0019] ここで、画素とは、画像を形成する最小単位のことであり、本発明の発光装置にお いては、独立に発光のための印加電圧 (又は電流)を制御(例えば、 ONZOFFの制 御)できる発光素子の部分を指す。 Here, a pixel is a minimum unit for forming an image. In the light emitting device of the present invention, an applied voltage (or current) for light emission is controlled independently (for example, ONZOFF). The part of the light emitting element that can be controlled).
画素は 2個以上あり、それらの並び方は、一直線状でもよいし、複数列が平行に並 んでいてもよい。  There are two or more pixels, and their arrangement may be a straight line or a plurality of columns may be arranged in parallel.
すべての画素は同一の基体の上又は上方にある。ここで、「画素が基体の上方に ある」とは、熱伝導を妨げない範囲で、画素となる有機 EL素子と基体との間に別の層 が存在してもよ!/ヽことを意味する。  All pixels are on or above the same substrate. Here, “the pixel is above the substrate” means that another layer may exist between the organic EL element that forms the pixel and the substrate as long as the heat conduction is not hindered! To do.
[0020] 該発光装置において、各画素の電極のうち少なくとも一方の電極力 各画素ごとに 独立に駆動回路と接続され、独立に印加電圧 (又は電流)の制御(例えば、 ONZO FFの制御)が可能である(図 2)。駆動回路は通電状態と非通電状態の切り替えを行 う働きを有し、単純な ONZOFFのみのスィッチ機能だけでもよいが、多段階に電圧 (又は電流)を切り替えることができるものでもよ 、。印加する電圧 (又は電流)の波形 としては、矩形波、三角波、正弦波、任意の形状のパルス波など力 適宜選択できる [0020] In the light emitting device, at least one electrode force among the electrodes of each pixel Independently connected to the drive circuit, the applied voltage (or current) can be controlled independently (eg, ONZO FF control) (Fig. 2). The drive circuit has the function of switching between energized and de-energized states, and it may be a simple ONZOFF-only switch function, but it may be capable of switching voltage (or current) in multiple stages. As the waveform of the voltage (or current) to be applied, a force such as a rectangular wave, a triangular wave, a sine wave, or a pulse wave of any shape can be selected as appropriate.
[0021] また、各画素において隣接する画素との間隔の最小値を L、画素の最大幅を Lと [0021] Further, in each pixel, the minimum value of the interval between adjacent pixels is L, and the maximum width of the pixel is L
1 2 すると、 L X n≥L〔ここで、 nは 0. 1以上 3以下の数を表す。〕である(図 3)。ここで、  1 2 then L X n≥L [where n represents a number between 0.1 and 3 inclusive. ] (Fig. 3). here,
1 2  1 2
隣接する画素との間隔の最小値とは、周囲に存在する画素との間隔のうち最小のも のを指す。また、画素の最大幅とは、長方形であれば縦と横の長い方の辺の長さ、円 形であれば直径、それ以外の形状では、最も大きな長さの取れる部分の長さを指す  The minimum value of the distance between adjacent pixels refers to the smallest value of the distances between adjacent pixels. The maximum width of a pixel means the length of the longer side in the case of a rectangle, the diameter in the case of a circle, and the length of the largest possible portion in other shapes.
[0022] 画素のピッチ (周囲)は解像度を直接決定する要因となるので装置設計の段階で決 められる。画素ピッチの制限下で、より高輝度の発光装置が必要とされるが、有機 EL 素子には高輝度で駆動すると寿命が短くなるという性質があるため、これを回避する 画素のレイアウトと形状の選択が必要になる。 The pixel pitch (periphery) is a factor that directly determines the resolution, and is therefore determined at the device design stage. A light-emitting device with higher brightness is required under the limitation of the pixel pitch. However, the organic EL element has a property that the lifetime is shortened when driven at high brightness. Selection is required.
上記の条件式は、画素間の間隔 Lが画素サイズ Lの n分の 1の値以上であるという  The above conditional expression states that the interval L between pixels is not less than 1 / n of the pixel size L.
1 2  1 2
条件である。 nの値が大きいと、画素間の間隔が小さくなり得るということであり基体の 上又は上方で画素の占める面積の割合が大きくなり、単位面積当たりの光量が多く なるものの、発生した熱を逃がすことが難しくなる。また、 nが小さいと、放熱には有利 であるが、光量力 、さくなるために、より高い感度の受光部が必要となったり、形成さ れる画像の解像度が低くなつたりする。ただし、画素の列を平行に複数並べることで 、実質的には解像度を上げることができる。  It is a condition. When the value of n is large, the interval between pixels can be reduced. The ratio of the area occupied by the pixels on or above the substrate is increased, and the amount of light per unit area is increased, but the generated heat is released. It becomes difficult. Further, if n is small, it is advantageous for heat dissipation, but the light intensity becomes small, so that a light-sensitive part with higher sensitivity is required, or the resolution of the formed image is lowered. However, the resolution can be substantially increased by arranging a plurality of pixel rows in parallel.
nの範囲は 0. 1以上 3以下の数であり、好ましくは 0. 1以上 2. 5以下の数、より好ま しくは 0. 1以上 2以下の数、さらに好ましくは 0. 3以上 2以下の数である。画素の間隔 は、規則正しく一定であることが好ましい。  The range of n is a number from 0.1 to 3, preferably from 0.1 to 2.5, more preferably from 0.1 to 2, more preferably from 0.3 to 2. Is the number of It is preferable that the pixel interval is regularly constant.
上記条件式中の nの値は、発光装置の用途等に応じて適宜変更することが可能で ある。例えばスキャナ一等の用途においては、通常 0. 1≤η< 1の範囲力も nの値が 選択され、この場合は常に L >Lとなる。また例えば、複写機、プリンタ等の用途に The value of n in the above conditional expression can be changed as appropriate according to the use of the light emitting device. For example, in applications such as a scanner, the range force of 0.1 ≤ η <1 is usually n. Selected, in this case always L> L. Also, for example, for copying machines, printers, etc.
1 2  1 2
ぉ 、ては、通常 1≤n≤ 3の範囲力 nの値が選択される。  て For this reason, the value of the range force n usually 1≤n≤3 is selected.
[0023] また、画素のサイズは、大きいと発光時の放熱に不利である力 画素が小さすぎると 、出力できる光量が十分に取れなくなる。したがって、画素の最大幅は、 100 m以 下、好ましくは 100 μ m未満であり、より好ましくは 10 μ m以上 50 μ m以下である。 画像を形成又は記録するためには、発光部の画素の面に相対して、該画素の発し た光を受光して機能する素子を配置する必要がある。電子写真方式では、感光ドラ ムなどを配置することにより、表面電荷の有無により画像を形成し、トナーを利用して 印刷することが可能である。また、 CCDなどの受光素子で、該画素からの光を受ける ことにより、直接電子情報に変換することも可能である。  [0023] If the size of the pixel is large, it is disadvantageous for heat dissipation during light emission. If the pixel is too small, a sufficient amount of light can be output. Therefore, the maximum width of the pixel is 100 m or less, preferably less than 100 μm, more preferably 10 μm or more and 50 μm or less. In order to form or record an image, it is necessary to dispose an element that receives light emitted from the pixel and functions so as to face the pixel surface of the light emitting unit. In the electrophotographic system, by arranging a photosensitive drum or the like, it is possible to form an image depending on the presence or absence of surface charge and to print using toner. In addition, by receiving light from the pixel with a light receiving element such as a CCD, it can be directly converted into electronic information.
[0024] 本発明の発光装置は、好ましくは、画素発光時の平均発光輝度は 5, OOOcd/m2 以上で使用される。通常のディスプレイ用途であれば、より低い平均発光輝度で用い られることが多いが、本発明の発光装置は、肉眼で直接見るという使用方法は想定 せず、高 、輝度で必要なときに適宜発光させることが重要である。 [0024] The light emitting device of the present invention is preferably used with an average light emission luminance of 5, OOOcd / m 2 or more during pixel light emission. For normal display applications, it is often used with a lower average emission luminance. However, the light-emitting device of the present invention does not assume a method of direct viewing with the naked eye, and appropriately emits light when necessary with high luminance. It is important to let
前記発光装置の一実施形態としては、(1)前記画素の面に相対して、該画素が発 した光を受光して機能する受光素子を更に配置してなり、画像形成装置として作動 するものや、(2)前記画素とこれに相対する前記受光素子との間に、該画素が発した 光を受光素子上に集光する機能を有する画像形成装置として作動するものなどが挙 げられる。  As one embodiment of the light emitting device, (1) a light receiving element that functions by receiving light emitted from the pixel is arranged relative to the surface of the pixel, and operates as an image forming device. And (2) an apparatus that operates as an image forming apparatus having a function of condensing the light emitted by the pixel on the light receiving element between the pixel and the light receiving element opposite to the pixel.
図 7に示すように、直線状に発光素子が配列した発光素子アレイと、感光ドラムなど の受光装置と、両者の間に位置し集光機能を有する集光素子とを備えてなる画素形 成装置の場合には、上記説明した発光素子のレイアウトに加えて発光素子の形状の 選択により輝度と寿命の問題を解決することができる。すなわち集光素子による集光 機能が、主に、発光素子アレイの直線方向と垂直な面内で発現される素子を利用す ると、長方形形状の発光部からの光を集光して受光素子表面で円形又は正方形に 近 、形にすることができるので、正方形の発光素子の場合よりも大きな面積で発光さ せることができ、受光部表面でより大きな光強度を利用することができる(図 8)。  As shown in FIG. 7, a pixel is formed that includes a light-emitting element array in which light-emitting elements are arranged in a straight line, a light-receiving device such as a photosensitive drum, and a light-collecting element that is located between them and has a light-collecting function. In the case of an apparatus, in addition to the layout of the light emitting element described above, the problem of brightness and life can be solved by selecting the shape of the light emitting element. In other words, when using an element whose condensing function by the condensing element is mainly expressed in a plane perpendicular to the linear direction of the light emitting element array, the light from the rectangular light emitting unit is condensed to receive the light receiving element. Since it can be shaped like a circle or a square on the surface, light can be emitted in a larger area than in the case of a square light emitting element, and a greater light intensity can be utilized on the surface of the light receiving unit (see FIG. 8).
発光素子の形状としては、直線状に発光素子が配列した発光素子アレイの各画素 の大きさが、直線方向の長さ (T1)よりも、直線方向に直角な方向の長さ (T2)の方が 大きい形状が好ましい (T1 <T2) (図 4)。 Τ2と T1の比はレンズの集光機能に依存 するが、好ましい範囲は概ね 1以上 10以下である。 As the shape of the light emitting element, each pixel of the light emitting element array in which the light emitting elements are arranged linearly It is preferable that the size of the length is larger in the length (T2) in the direction perpendicular to the linear direction than in the length in the linear direction (T1) (T1 <T2) (Fig. 4). The ratio between Τ2 and T1 depends on the light condensing function of the lens, but the preferred range is approximately 1 or more and 10 or less.
[0025] 画像形成を十分に高速に行うためには、例えば発光の ONZOFFが十分に高速 に切り替えられることが必要である。切り替えが遅力つたり、残光などのために OFF水 準が十分に低くない場合には、画像が不鮮明になる。 ONZOFFの切り替え力 10 0 μ秒以下で行うことができることが好ま U、。  [0025] In order to perform image formation at a sufficiently high speed, for example, ONZOFF of light emission needs to be switched at a sufficiently high speed. If the switching level is slow or the OFF level is not low enough due to afterglow, the image will be unclear. It is preferable that the ONZOFF switching force can be done in less than 100 μs U.
[0026] 本発明の発光装置は、発光スペクトルにおいて、少なくとも 1つのピークが可視領 域にあることが好ましい。受光部の感度との関係で適宜選択ができるが、発光スぺク トルが短波長側にシフトしている場合には、駆動電圧が高くなりやすぐ長波長側に シフトしている場合には、発光効率が低くなる傾向があるので、好ましくない。  [0026] The light emitting device of the present invention preferably has at least one peak in the visible region in the emission spectrum. Although it can be selected as appropriate in relation to the sensitivity of the light receiving unit, if the emission spectrum is shifted to the short wavelength side, the drive voltage becomes high, or if it is immediately shifted to the long wavelength side. This is not preferable because the light emission efficiency tends to be low.
[0027] 次に、本発明の発光装置の発光部に用いる有機 EL素子について説明する。本発 明の有機 EL素子の構造としては、少なくとも一方が透明又は半透明である一対の陽 極及び陰極力 なる電極間に発光層を有するものであり、有機物 (低分子及び Ζ又 は高分子)が発光層中に含まれる。  Next, the organic EL element used for the light emitting part of the light emitting device of the present invention will be described. The structure of the organic EL device of the present invention has a light emitting layer between a pair of positive and negative electrodes, at least one of which is transparent or translucent. ) Is contained in the light emitting layer.
[0028] 有機 EL素子において、陰極、陽極、発光層以外の層としては、陰極と発光層の間 に設けるもの、陽極と発光層の間に設けるものが挙げられる。  In the organic EL element, examples of the layer other than the cathode, the anode and the light emitting layer include those provided between the cathode and the light emitting layer, and those provided between the anode and the light emitting layer.
陰極と発光層の間に設けるものとしては、電子注入層、電子輸送層、正孔ブロック 層等が挙げられる。  Examples of the material provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
例えば陰極と発光層の間に一層のみ設けた場合は電子注入層であり、陰極と発光 層の間に二層以上設けた場合は陰極に接している層を電子注入層とし、それ以外の 層は電子輸送層と称する。  For example, when only one layer is provided between the cathode and the light emitting layer, it is an electron injection layer, and when two or more layers are provided between the cathode and the light emitting layer, the layer in contact with the cathode is the electron injection layer, and the other layers Is called an electron transport layer.
[0029] 電子注入層は、陰極からの電子注入効率を改善する機能を有する層であり、電子 輸送層は、電子注入層又は陰極により近い電子輸送層からの電子注入効率を改善 する機能を有する層である。 [0029] The electron injection layer is a layer having a function of improving electron injection efficiency from the cathode, and the electron transport layer has a function of improving electron injection efficiency from the electron injection layer or the electron transport layer closer to the cathode. Is a layer.
[0030] また、電子注入層、若しくは電子輸送層が正孔の輸送を堰き止める機能を有する 場合には、これらの層を正孔ブロック層と称することがある。 [0030] When the electron injection layer or the electron transport layer has a function of blocking hole transport, these layers may be referred to as a hole blocking layer.
正孔の輸送を堰き止める機能を有することは、例えば、ホール電流のみを流す素 子を作製し、その電流値の減少で堰き止める効果を確認することが可能である。 Having the function of blocking hole transport is, for example, an element that allows only hole current to flow. It is possible to confirm the effect of making a child and blocking it by reducing the current value.
[0031] 陽極と発光層の間に設けるものとしては、正孔注入層 '正孔輸送層、電子ブロック 層等があげられる。  [0031] Examples of the material provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
陽極と発光層の間に一層のみ設けた場合は正孔注入層であり、陽極と発光層の間 に二層以上設けた場合は陽極に接している層を正孔注入層とし、それ以外の層は正 孔輸送層と称する。正孔注入層は、陰極カゝらの正孔注入効率を改善する機能を有す る層であり、正孔輸送層とは、正孔注入層又は陽極により近い正孔輸送層からの正 孔注入効率を改善する機能を有する層である。また、正孔注入層、又は正孔輸送層 が電子の輸送を堰き止める機能を有する場合には、これらの層を電子ブロック層と称 することがある。  When only one layer is provided between the anode and the light emitting layer, it is a hole injection layer. When two or more layers are provided between the anode and the light emitting layer, the layer in contact with the anode is the hole injection layer. The layer is referred to as a hole transport layer. The hole injection layer is a layer having a function of improving the hole injection efficiency of the cathode cover. The hole transport layer is a positive hole from the hole injection layer or the hole transport layer closer to the anode. This layer has a function of improving the injection efficiency. In addition, when the hole injection layer or the hole transport layer has a function of blocking electron transport, these layers may be referred to as an electron block layer.
電子の輸送を堰き止める機能を有することは、例えば、電子電流のみを流す素子 を作製し、その電流値の減少で堰き止める効果を確認することが可能である。  Having the function of blocking electron transport makes it possible, for example, to produce an element that allows only electron current to flow and confirm the blocking effect by reducing the current value.
[0032] また、本発明の発光装置の発光部に用いる有機 EL素子としては、陰極と発光層と の間に、電子輸送層を設けた有機 EL素子、陽極と発光層との間に、正孔輸送層を 設けた有機 EL素子、陰極と発光層との間に、電子輸送層を設け、かつ陽極と発光層 との間に、正孔輸送層を設けた有機 EL素子等が挙げられる。 [0032] Further, as the organic EL element used in the light emitting part of the light emitting device of the present invention, an organic EL element in which an electron transport layer is provided between the cathode and the light emitting layer, and a positive electrode between the anode and the light emitting layer. Examples thereof include an organic EL device provided with a hole transport layer, an organic EL device provided with an electron transport layer between the cathode and the light emitting layer, and a hole transport layer provided between the anode and the light emitting layer.
例えば、具体的には、以下の a)〜d)の構造が例示される。  For example, the following structures a) to d) are specifically exemplified.
a)陽極 Z発光層 Z陰極  a) Anode Z Light emitting layer Z cathode
b)陽極 Z正孔輸送層 Z発光層 Z陰極  b) Anode Z hole transport layer Z light emitting layer Z cathode
c)陽極 Z発光層 Z電子輸送層 Z陰極  c) Anode Z light emitting layer Z electron transport layer Z cathode
d)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極  d) Anode Z hole transport layer Z light emitting layer Z electron transport layer Z cathode
(ここで、 Zは各層が隣接して積層されていることを示す。以下同じ。 )  (Here, Z indicates that each layer is laminated adjacently. The same shall apply hereinafter.)
[0033] ここで、発光層とは、発光する機能を有する層であり、正孔輸送層とは、正孔を輸送 する機能を有する層であり、電子輸送層とは、電子を輸送する機能を有する層である 。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。  [0033] Here, the light emitting layer is a layer having a function of emitting light, the hole transporting layer is a layer having a function of transporting holes, and the electron transporting layer is a function of transporting electrons. It is a layer which has. The electron transport layer and the hole transport layer are collectively referred to as a charge transport layer.
発光層、正孔輸送層、電子輸送層は、それぞれ独立に 2層以上用いてもよい。  Two or more light emitting layers, hole transport layers, and electron transport layers may be used independently.
[0034] また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善 する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層( 正孔注入層、電子注入層)と一般に呼ばれることがある。 [0034] Of the charge transport layers provided adjacent to the electrode, those having a function of improving the charge injection efficiency from the electrode and having the effect of lowering the driving voltage of the element are in particular the charge injection layer ( It may be generally called a hole injection layer or an electron injection layer.
[0035] さらに電極との密着性向上や電極力ゝらの電荷注入の改善のために、電極に隣接し て前記の電荷注入層又は膜厚 2nm以下の絶縁層を設けてもよぐまた、界面の密着 性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファ一層を 挿人してちょい。  [0035] Further, in order to improve the adhesion with the electrode and the improvement of charge injection such as electrode force, the charge injection layer or an insulating layer having a thickness of 2 nm or less may be provided adjacent to the electrode. Insert a thin buffer layer at the interface between the charge transport layer and the light-emitting layer to improve interfacial adhesion and prevent mixing.
積層する層の順番や数、及び各層の厚さについては、発光効率や素子寿命を勘 案して適宜用いることができる。  The order and number of layers to be laminated, and the thickness of each layer can be appropriately used in consideration of the light emission efficiency and the element lifetime.
[0036] 本発明において、電荷注入層(電子注入層、正孔注入層)を設けた有機 EL素子と しては、陰極に隣接して電荷注入層を設けた有機 EL素子、陽極に隣接して電荷注 入層を設けた有機 EL素子が挙げられる。 In the present invention, the organic EL device provided with the charge injection layer (electron injection layer, hole injection layer) is adjacent to the organic EL device provided with the charge injection layer adjacent to the cathode and the anode. Organic EL devices with a charge injection layer.
例えば、具体的には、以下の e)〜p)の構造が挙げられる。  For example, the following structures e) to p) are specifically mentioned.
e)陽極 Z電荷注入層 Z発光層 Z陰極  e) Anode Z Charge injection layer Z Light emitting layer Z Cathode
f)陽極 Z発光層 Z電荷注入層 Z陰極  f) Anode Z light emitting layer Z charge injection layer Z cathode
g)陽極 Z電荷注入層 Z発光層 Z電荷注入層 Z陰極  g) Anode Z charge injection layer Z light emitting layer Z charge injection layer Z cathode
h)陽極 Z電荷注入層 Z正孔輸送層 Z発光層 Z陰極  h) Anode Z Charge injection layer Z Hole transport layer Z Light emitting layer Z Cathode
i)陽極 Z正孔輸送層 Z発光層 Z電荷注入層 Z陰極  i) Anode Z hole transport layer Z light emitting layer Z charge injection layer Z cathode
j)陽極 Z電荷注入層 Z正孔輸送層 Z発光層 Z電荷注入層 Z陰極  j) Anode Z charge injection layer Z hole transport layer Z light emitting layer Z charge injection layer Z cathode
k)陽極 Z電荷注入層 Z発光層 Z電荷輸送層 Z陰極  k) Anode Z charge injection layer Z light emitting layer Z charge transport layer Z cathode
1)陽極 Z発光層 Z電子輸送層 Z電荷注入層 Z陰極  1) Anode Z Light emitting layer Z Electron transport layer Z Charge injection layer Z Cathode
m)陽極 Z電荷注入層 Z発光層 Z電子輸送層 Z電荷注入層 Z陰極  m) Anode Z charge injection layer Z light emitting layer Z electron transport layer Z charge injection layer Z cathode
n)陽極 Z電荷注入層 Z正孔輸送層 Z発光層 Z電荷輸送層 Z陰極  n) Anode Z Charge injection layer Z Hole transport layer Z Light emitting layer Z Charge transport layer Z Cathode
o)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z電荷注入層 Z陰極  o) Anode Z hole transport layer Z light emitting layer Z electron transport layer Z charge injection layer Z cathode
P)陽極 Z電荷注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z電荷注入層 Z陰極 P) Anode Z Charge injection layer Z Hole transport layer Z Light emitting layer Z Electron transport layer Z Charge injection layer Z Cathode
[0037] 電荷注入層の具体的な例としては、導電性高分子を含む層、陽極と正孔輸送層と の間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のィ オン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰 極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する 材料を含む層などが例示される。 [0038] 上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導 度は、 10— 5SZcm以上 103SZcm以下であることが好ましぐ発光画素間のリーク電 流を小さくするためには、 10— 5S/cm以上 102S/cm以下がより好ましぐ 10"5S/c m以上 lC S/cm以下がさらに好まし 、。 [0037] Specific examples of the charge injection layer include a layer containing a conductive polymer, a hole transport material provided between the anode and the hole transport layer, provided between the anode and the hole transport layer. Between the negative electrode material and the electron transport material contained in the electron transport layer, and is provided between the cathode and the electron transport layer. Examples include a layer containing a material. [0038] When the charge injection layer is a layer containing an electric conductive polymer, the electric conductivity of the conducting polymer, leakage between the preferred instrument emitting pixel is at 10 3 SZcm inclusive 10- 5 SZcm in order to reduce the current is, 10- 5 S / cm or more 10 2 S / cm or less and more preferably fixture 10 "5 S / cm or higher lC S / cm and more preferably less.
通常は該導電性高分子の電気伝導度を 10—5SZcm以上 103SZcm以下とするた めに、該導電性高分子に適量のイオンをドープする。 Typically the electrical conductivity of the conducting polymer in order to more than 10- 5 SZcm least 10 3 SZcm, a suitable amount of ions are doped into the conducting polymer.
[0039] ドープするイオンの種類は、正孔注入層であればァニオン、電子注入層であれば カチオンである。ァ-オンの例としては、ポリスチレンスルホン酸イオン、アルキルベン ゼンスルホン酸イオン、樟脳スルホン酸イオンなどが例示され、カチオンの例としては 、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラプチルアンモ -ゥムイオンな どが例示される。  [0039] The kind of ions to be doped is an anion for the hole injection layer and a cation for the electron injection layer. Examples of cation include polystyrene sulfonate ion, alkylbenzene sulfonate ion, camphor sulfonate ion, etc., and examples of cation include lithium ion, sodium ion, potassium ion, tetraptyl ammonium ion, etc. Is exemplified.
電荷注入層の膜厚としては、例えば lnm〜100nmであり、 2nm〜50nmが好まし い。  The thickness of the charge injection layer is, for example, 1 nm to 100 nm, and preferably 2 nm to 50 nm.
[0040] 電荷注入層に用いる材料は、電極や隣接する層の材料との関係で適宜選択すれ ばよぐポリア-リン及びその誘導体、ポリチォフェン及びその誘導体、ポリピロール 及びその誘導体、ポリフエ-レンビ-レン及びその誘導体、ポリチェ-レンビ-レン及 びその誘導体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、芳香 族ァミン構造を主鎖又は側鎖に含む重合体などの導電性高分子、金属フタロシア- ン (銅フタロシアニンなど)、カーボンなどが例示される。  [0040] The material used for the charge injection layer may be appropriately selected depending on the electrode and the material of the adjacent layer. Polyarine and its derivatives, polythiophene and its derivatives, polypyrrole and its derivatives, polyphenylene bilene And its derivatives, poly-ethylene biylene and its derivatives, polyquinoline and its derivatives, polyquinoxaline and its derivatives, conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain, metal phthalocyanine ( Examples thereof include copper phthalocyanine) and carbon.
[0041] 膜厚 2nm以下の絶縁層は電荷注入を容易にする機能を有するものである。上記絶 縁層の材料としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。 膜厚 2nm以下の絶縁層を設けた有機 EL素子としては、陰極に隣接して膜厚 2nm以 下の絶縁層を設けた有機 EL素子、陽極に隣接して膜厚 2nm以下の絶縁層を設け た有機 EL素子が挙げられる。  [0041] The insulating layer having a thickness of 2 nm or less has a function of facilitating charge injection. Examples of the material for the insulating layer include metal fluorides, metal oxides, and organic insulating materials. As an organic EL element having an insulating layer having a thickness of 2 nm or less, an organic EL element having an insulating layer having a thickness of 2 nm or less adjacent to the cathode and an insulating layer having a thickness of 2 nm or less adjacent to the anode are provided. Organic EL elements.
[0042] 具体的には、例えば、以下の q)〜ab)の構造が挙げられる。  [0042] Specific examples include the following structures q) to ab).
q)陽極 Z膜厚 2nm以下の絶縁層 Z発光層 Z陰極  q) Anode Z thickness 2nm or less insulating layer Z light emitting layer Z cathode
r)陽極 Z発光層 Z膜厚 2nm以下の絶縁層 Z陰極  r) Anode Z Light emitting layer Z Insulating layer with a thickness of 2 nm or less Z cathode
s)陽極 Z膜厚 2nm以下の絶縁層 Z発光層 Z膜厚 2nm以下の絶縁層 Z陰極 t)陽極 Z膜厚 2nm以下の絶縁層 Z正孔輸送層 Z発光層 Z陰極 s) Anode Z film thickness 2 nm or less insulation layer Z light-emitting layer Z film thickness 2 nm or less insulation layer Z cathode t) Anode Z thickness 2nm or less insulating layer Z hole transport layer Z light emitting layer Z cathode
u)陽極 Z正孔輸送層 Z発光層 Z膜厚 2nm以下の絶縁層 Z陰極  u) Anode Z Hole transport layer Z Light emitting layer Z Insulating layer with a thickness of 2 nm or less Z cathode
V)陽極 Z膜厚 2nm以下の絶縁層 Z正孔輸送層 Z発光層 Z膜厚 2nm以下の絶縁 層 Z陰極  V) Anode Z film thickness 2 nm or less insulation layer Z hole transport layer Z light-emitting layer Z film thickness 2 nm or less insulation layer Z cathode
w)陽極 Z膜厚 2nm以下の絶縁層 Z発光層 Z電子輸送層 Z陰極  w) Anode Z thickness 2nm or less insulating layer Z light emitting layer Z electron transport layer Z cathode
X)陽極 Z発光層 Z電子輸送層 Z膜厚 2nm以下の絶縁層 Z陰極  X) Anode Z Light emitting layer Z Electron transport layer Z Insulating layer with a thickness of 2 nm or less Z Cathode
y)陽極 Z膜厚 2nm以下の絶縁層 Z発光層 Z電子輸送層 Z膜厚 2nm以下の絶縁 層 Z陰極  y) Anode Z Insulating layer with a thickness of 2 nm or less Z Light emitting layer Z Electron transport layer Z Insulating layer with a thickness of 2 nm or less Z cathode
z)陽極 Z膜厚 2nm以下の絶縁層 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極 aa)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z膜厚 2nm以下の絶縁層 Z陰極 ab)陽極 Z膜厚 2nm以下の絶縁層 Z正孔輸送層 Z発光層 Z電子輸送層 Z膜厚 2n m以下の絶縁層 Z陰極  z) Anode Z film thickness 2nm or less insulating layer Z hole transport layer Z light emitting layer Z electron transport layer Z cathode aa) Anode Z hole transport layer Z light emitting layer Z electron transport layer Z film thickness 2nm or less insulating layer Z cathode ab) Anode Z Insulating layer with a film thickness of 2 nm or less Z Hole transport layer Z Light emitting layer Z Electron transport layer Z Insulating layer with a film thickness of 2 nm or less Z Cathode
[0043] 有機 EL素子の作製の際に、これらの有機溶媒可溶性の高分子蛍光体を用いるこ とにより、溶液力ゝら成膜する場合、この溶液を塗布後乾燥により溶媒を除去するだけ でよぐまた電荷輸送材料や発光材料を混合した場合においても同様な手法が適用 でき、製造上非常に有利である。  [0043] By using these organic solvent-soluble polymer phosphors in the production of an organic EL device, when forming a film with a solution force, simply removing the solvent by drying after coating this solution. In addition, the same technique can be applied to the case where a charge transport material or a light emitting material is mixed, which is very advantageous in production.
[0044] 溶液力ゝらの成膜方法としては、スピンコート法、ノズルコート法、キャスティング法、マ イクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバ 一コート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、 オフセット印刷法、インクジェットプリント法、スリットコート法、キヤビラリ一コート法、デ イスペンサ一法、マイクロディスペンサー法等の塗布法を用いることができる。パター ン形成や多色の塗分けが容易であるという点で、スクリーン印刷法、フレソ印刷法、ォ フセット印刷法、インクジェットプリント法等の印刷法が好まし 、。  [0044] The film forming methods of the solution force method include spin coating, nozzle coating, casting, micro gravure coating, gravure coating, bar coating, roll coating, wire bar coating, dip coating. Coating methods such as a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a slit coating method, a chiral coat method, a dispenser method, and a micro dispenser method can be used. Printing methods such as screen printing, freso printing, offset printing, and inkjet printing are preferred because they allow easy pattern formation and multi-color coating.
[0045] 溶液を用いて薄膜を積層する場合には、溶液に接する層が、用いる溶液により溶 解しないことが必要である。したがって上記の方法により溶液力も積層する場合には 、薄膜形成に用いる溶液力 溶液の接する層を溶力さないように適当な溶媒種を選 ぶことや、光架橋や熱架橋により溶液が接する層を不溶化させた後に、溶液により積 層する方法などが例として挙げられる。 [0046] 印刷法等で用いる溶液 (インク組成物)としては、少なくとも 1種類の高分子蛍光体 が含有されていればよぐ高分子蛍光体以外に正孔輸送材料、電子輸送材料、発光 材料、溶媒、安定剤などの添加剤を含んでいてもよい。 [0045] When a thin film is laminated using a solution, it is necessary that the layer in contact with the solution is not dissolved by the solution used. Therefore, when the solution force is also laminated by the above method, an appropriate solvent type is selected so that the layer in contact with the solution force solution used for forming the thin film does not melt, or the layer in contact with the solution by photocrosslinking or thermal crosslinking. An example is a method of insolubilizing and then stacking with a solution. [0046] As a solution (ink composition) used in the printing method or the like, a hole transport material, an electron transport material, and a light emitting material may be used in addition to the polymer phosphor as long as at least one kind of polymer phosphor is contained. In addition, additives such as a solvent and a stabilizer may be included.
インク組成物の粘度は印刷法によって異なる力 インクジェットプリント法などインク 組成物中が吐出装置を経由する場合には、吐出時の目づまりや飛行曲がりを防止 するために粘度が 25°Cにおいて l〜20mPa ' sの範囲であることが好ましぐ 5〜20 mPa ' sの範囲であることがより好ましぐ 7〜20mPa' sの範囲であることがさらに好ま しい。  The viscosity of the ink composition varies depending on the printing method.When the ink composition passes through the discharge device such as the inkjet printing method, the viscosity is 25 to 25 ° C to prevent clogging and flight bending during discharge. A range of 20 mPa's is preferred, and a range of 5-20 mPa's is more preferred. A range of 7-20 mPa's is even more preferred.
[0047] 印刷法等で用いる溶液 (インク組成物)は、高分子化合物の他に、粘度及び Z又は 表面張力を調節するための添加剤を含有していてもよい。該添加剤としては、粘度を 高めるための高分子量の高分子化合物 (増粘剤)や貧溶媒、粘度を下げるための低 分子量の化合物、表面張力を下げるための界面活性剤などを適宜組み合わせて使 用すればよい。  [0047] The solution (ink composition) used in the printing method or the like may contain an additive for adjusting viscosity and Z or surface tension in addition to the polymer compound. As the additive, a high molecular weight polymer compound (thickener) for increasing the viscosity, a poor solvent, a low molecular weight compound for decreasing the viscosity, a surfactant for decreasing the surface tension, and the like are appropriately combined. Use it.
[0048] 前記の高分子量の高分子化合物としては、本発明の高分子化合物と同じ溶媒に可 溶性で、発光や電荷輸送を阻害しないものであればよい。例えば、高分子量のポリス チレン、ポリメチルメタタリレート、又は本発明の高分子化合物のうち分子量が大きい ものなどを用いることができる。ポリスチレン換算の重量平均分子量が 50万以上が好 ましぐ 100万以上がより好ましい。  [0048] The high molecular weight polymer compound may be any compound that is soluble in the same solvent as the polymer compound of the present invention and does not inhibit light emission or charge transport. For example, high molecular weight polystyrene, polymethyl methacrylate, or a high molecular weight compound of the present invention can be used. The weight average molecular weight in terms of polystyrene is preferably 500,000 or more, more preferably 1,000,000 or more.
[0049] 貧溶媒を増粘剤として用いることもできる。すなわち、溶液中の固形分に対する貧 溶媒を少量添加することで、粘度を高めることができる。この目的で貧溶媒を添加す る場合、溶液中の固形分が析出しない範囲で、溶媒の種類と添加量を選択すればよ い。保存時の安定性も考慮すると、貧溶媒の量は、溶液全体に対して 50wt%以下 であることが好ましぐ 30wt%以下であることが更に好ましい。  [0049] A poor solvent can also be used as a thickener. That is, the viscosity can be increased by adding a small amount of a poor solvent for the solid content in the solution. When a poor solvent is added for this purpose, the type and amount of the solvent should be selected as long as the solid content in the solution does not precipitate. Considering the stability during storage, the amount of the poor solvent is preferably 50 wt% or less, more preferably 30 wt% or less with respect to the whole solution.
[0050] また、本発明の溶液は、保存安定性を改善するために、酸化防止剤を含有して ヽ てもよい。酸ィ匕防止剤としては、高分子蛍光体と同じ溶媒に可溶性で、発光や電荷 輸送を阻害しないものであればよぐフエノール系酸ィ匕防止剤、リン系酸化防止剤な どが例示される。  [0050] The solution of the present invention may contain an antioxidant in order to improve storage stability. Examples of the antioxidant are those that are soluble in the same solvent as the polymeric fluorescent substance and that do not inhibit light emission and charge transport, such as phenol-based antioxidants and phosphorus-based antioxidants. The
[0051] 用いる溶媒としては特に制限はないが、インク組成物を構成する溶媒以外の材料 を溶解又は均一に分散できるものが好ましい [0051] The solvent used is not particularly limited, but is a material other than the solvent constituting the ink composition. That can dissolve or uniformly disperse
該溶媒としてクロ口ホルム、塩化メチレン、 1, 2—ジクロロエタン、 1, 1, 2—トリクロ口 ェタン、クロ口ベンゼン、 o ジクロロベンゼン等の塩素系溶媒、テトラヒドロフラン、ジ ォキサン、ァ-ソール等のエーテル系溶媒、トルエン、キシレン、ェチルベンゼン、ジ ェチルベンゼン、トリメチルベンゼン、 n プロピルベンゼン、イソプロピルベンゼン、 n ブチルベンゼン、イソブチルベンゼン、 s ブチルベンゼン、エトキシベンゼン、シ クロへキシルベンゼン、 1—メチルナフタレン、等の芳香族炭化水素系溶媒、シクロへ キサン、メチルシクロへキサン、 n—ペンタン、 n キサン、 n—ヘプタン、 n—ォクタ ン、 n—ノナン、 n—デカン、ビシクロへキシル、 n プチルシクロへキサン、 n キ シルシクロへキサン、ビシクロへキシル等の脂肪族炭化水素系溶媒、アセトン、メチル ェチノレケトン、シクロへキサノン、ベンゾフエノン、ァセトフエノン、シクロへキセニノレシ クロへキサノン、 2 プロビルシクロへキサノン、 2 へプタノン、 3 へプタノン、 4 ヘプタノン、 2—ォクタノン、 2—ノナノン、 2—デカノン、ジシクロへキシルケトンビシク 口へキシル等のケトン系溶媒、酢酸ェチル、酢酸ブチル、ェチルセルソルブァセテー ト、安息香酸メチル、酢酸フエ-ル等のエステル系溶媒、エチレングリコール、ェチレ ングリコーノレモノブチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、エチレン グリコールモノメチルエーテル、ジメトキシェタン、プロピレングリコール、ジエトキシメ タン、トリエチレングリコールモノェチルエーテル、グリセリン、 1, 2—へキサンジォー ル等の多価アルコール及びその誘導体、メタノール、エタノール、プロパノール、イソ プロパノール、シクロへキサノール等のアルコール系溶媒、ジメチルスルホキシド等の スルホキシド系溶媒、 N—メチル—2—ピロリドン、 N, N ジメチルホルムアミド等の アミド系溶媒が例示される。  As the solvent, chloro solvents such as chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, benzene, o-dichlorobenzene, ethers such as tetrahydrofuran, dioxane, and azole. Aromatics such as toluene, xylene, ethylbenzene, dimethylbenzene, trimethylbenzene, n-propylbenzene, isopropylbenzene, n-butylbenzene, isobutylbenzene, s-butylbenzene, ethoxybenzene, cyclohexylbenzene, 1-methylnaphthalene, etc. Group hydrocarbon solvents, cyclohexane, methylcyclohexane, n-pentane, n-xane, n-heptane, n-octane, n-nonane, n-decane, bicyclohexyl, n-butylcyclohexane, n-xylcyclo Aliphatics such as hexane and bicyclohexyl Hydrofluoric solvents, acetone, methyl ethenoleketone, cyclohexanone, benzophenone, acetophenone, cyclohexenole clohexanone, 2 provircyclohexanone, 2 heptanone, 3 heptanone, 4 heptanone, 2-octanone, 2-nonanone , 2-decanone, dicyclohexylketone Bisketone Ketone solvent such as hexyl, ester solvent such as ethyl acetate, butyl acetate, ethyl cellosolvate, methyl benzoate, phenyl acetate, ethylene glycol , Ethylene glycol monobutino oleate, ethylene glycol mono ethino enoate, ethylene glycol monomethyl ether, dimethoxyethane, propylene glycol, diethoxy methane, triethylene glycol monoethyl ether, glycerin, 1, 2 Polyhydric alcohols such as hexanediol and its derivatives, alcohol solvents such as methanol, ethanol, propanol, isopropanol, cyclohexanol, sulfoxide solvents such as dimethyl sulfoxide, N-methyl-2-pyrrolidone, N, N dimethyl Examples include amide solvents such as formamide.
これらの有機溶媒は、単独で、又は複数組み合わせて用いることができる。  These organic solvents can be used alone or in combination.
これらのうち、高分子化合物等の溶解性、成膜時の均一性、粘度特性等の観点か ら、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、エステル系溶媒、ケトン系溶 媒が好ましぐトルエン、キシレン、ェチルベンゼン、ジェチルベンゼン、トリメチルベ ンゼン、 n プロピルベンゼン、イソプロピルベンゼン、 n—ブチノレベンゼン、イソブチ ルベンゼン、 s ブチルベンゼン、ァニソール、エトキシベンゼン、 1 メチルナフタレ ン、シクロへキサン、シクロへキサノン、シクロへキシノレベンゼン、ビシクロへキシル、 シクロへキセニノレシクロへキサノン、 n ヘプチノレシクロへキサン、 n—へキシノレシクロ へキサン、 2 プロピノレシクロへキサノン、 2 へプタノン、 3 へプタノン、 4一へプタ ノン、 2—ォクタノン、 2—ノナノン、 2—デカノン、ジシクロへキシノレケトン、ァセトフエノ ン、ベンゾフエノンがより好ましい。 Among these, aromatic hydrocarbon solvents, aliphatic hydrocarbon solvents, ester solvents, ketone solvents are used from the viewpoint of solubility of polymer compounds, uniformity during film formation, viscosity characteristics, and the like. Preferred toluene, xylene, ethylbenzene, jetylbenzene, trimethylbenzene, n-propylbenzene, isopropylbenzene, n-butynolebenzene, isobutylbenzene, s-butylbenzene, anisole, ethoxybenzene, 1-methylnaphthalene , Cyclohexane, cyclohexanone, cyclohexenolebenzene, bicyclohexyl, cyclohexenolecyclohexanone, n-heptinorecyclohexane, n-hexenorecyclohexane, 2 propinorecyclohexanone, 2 heptanone, 3 heptanone 4, 4-heptanone, 2-octanone, 2-nonanone, 2-decanone, dicyclohexylenoketone, acetophenone, and benzophenone are more preferred.
[0053] 溶液中の溶媒の種類は、成膜性の観点や素子特性等の観点から、 2種類以上であ ることが好ましぐ 2〜3種類であることがより好ましぐ 2種類であることがさらに好まし い。 [0053] The type of solvent in the solution is preferably 2 or more, more preferably 2 or 3 from the viewpoints of film-forming properties, device characteristics, and the like. It is even better to be.
溶液中に 2種類の溶媒が含まれる場合、そのうちの 1種類の溶媒は 25°Cにおいて 固体状態でもよい。成膜性の観点から、 1種類の溶媒は沸点が 180°C以上の溶媒で あることが好ましぐ 200°C以上の溶媒であることがより好ましい。また、粘度の観点か ら、 2種類の溶媒ともに、 60°Cにおいて lwt%以上の芳香族重合体が溶解すること が好ましぐ 2種類の溶媒のうちの 1種類の溶媒には、 25°Cにおいて lwt%以上の芳 香族重合体が溶解することが好まし ヽ。  If the solution contains two solvents, one of them may be in a solid state at 25 ° C. From the viewpoint of film formability, one kind of solvent is preferably a solvent having a boiling point of 180 ° C or higher, more preferably 200 ° C or higher. In addition, from the viewpoint of viscosity, it is preferable that 1 wt% or more of the aromatic polymer dissolves at 60 ° C in both of the two types of solvents. It is preferable that 1 wt% or more aromatic polymer is dissolved in C.
[0054] 溶液中に 2種類以上の溶媒が含まれる場合、粘度及び成膜性の観点から、最も沸 点が高い溶媒力 溶液中の全溶媒の重量の 40〜90wt%であることが好ましぐ 50 〜90wt%であることがより好ましぐ 65〜85wt%であることがさらに好ましい。  [0054] When two or more kinds of solvents are contained in the solution, from the viewpoint of viscosity and film formability, the solvent power with the highest boiling point is preferably 40 to 90 wt% of the weight of all the solvents in the solution. More preferably, it is 50 to 90 wt%, and more preferably 65 to 85 wt%.
[0055] 本発明の発光装置において、発光層は、公知の有機物 (有機発光材料)を含んで いればよい。該有機物としては、室温で蛍光及び Z又は燐光を有する化合物であり 、低分子でも高分子でもよい。前記発光層に含まれる有機物のうち少なくとも 1種類 力 蛍光を有する化合物であるか、燐光を有する化合物である力、後述の式(1)で表 される繰り返し単位を 1種類以上含む高分子化合物であることが好ましい。  [0055] In the light emitting device of the present invention, the light emitting layer may contain a known organic substance (organic light emitting material). The organic substance is a compound having fluorescence and Z or phosphorescence at room temperature, and may be a low molecule or a polymer. The organic compound contained in the light emitting layer is a compound having at least one kind of fluorescent compound or a compound having phosphorescence, or a polymer compound containing one or more types of repeating units represented by the formula (1) described later. Preferably there is.
[0056] 燐光を有する化合物としては、イリジウム錯体、白金錯体などが例示される。蛍光を 有する低分子の化合物としては、公知のものを適宜用いることができる。  [0056] Examples of phosphorescent compounds include iridium complexes and platinum complexes. As the low-molecular compound having fluorescence, known compounds can be used as appropriate.
高分子化合物である場合は、一般的には、ポリスチレン換算の重量平均分子量が 1000以上の化合物である。下記式(1)で示される繰り返し単位力もなるものが例示 される。  In the case of a polymer compound, it is generally a compound having a polystyrene equivalent weight average molecular weight of 1000 or more. Examples are those having a repeating unit force represented by the following formula (1).
Ar · · ·式(1) 〔ここで、 Arは、ァリーレン基、二価の複素環化合物基及び二価の芳香族アミン基かAr · · · Formula (1) [Where Ar is an arylene group, a divalent heterocyclic compound group or a divalent aromatic amine group;
1 1
らなる群から選ばれる基を示す。〕  A group selected from the group consisting of: ]
[0057] Arは、ァリーレン基、二価の複素環化合物基及び二価の芳香族ァミン基力 なる  [0057] Ar is an arylene group, a divalent heterocyclic compound group, and a divalent aromatic amine group.
1  1
群力 選ばれる基である。  Group power is the group chosen.
[0058] ァリーレン基とは、芳香族炭化水素から、水素原子 2個を除いた原子団であり、縮 合環を持つもの、独立したベンゼン環又は縮合環 2個以上が直接又はビ-レン等の 基を介して結合したものも含まれる。ァリーレン基は置換基を有していてもよい。ァリ 一レン基における置換基を除いた部分の炭素数は通常 6〜60程度であり、好ましく は 6〜20である。また、ァリーレン基の置換基を含めた全炭素数は、通常 6〜: LOO程 度である。ァリーレン基としては、下図の式 1Α—1〜1Α—20などが例示される。  [0058] The arylene group is an atomic group obtained by removing two hydrogen atoms from an aromatic hydrocarbon, having a condensed ring, two or more independent benzene rings or condensed rings directly or beylene, etc. Also included are those bonded through the group of. The arylene group may have a substituent. The carbon number of the portion other than the substituent in the arylene group is usually about 6 to 60, preferably 6 to 20. Further, the total number of carbon atoms including the substituent of the arylene group is usually about 6 to: LOO. Examples of the arylene group include the formulas 1Α-1 to 1Α-20 shown below.
[0059] [化 1]  [0059] [Chemical 1]
Figure imgf000018_0001
Figure imgf000018_0001
1A-1 1A-2 1A-3 1A-
Figure imgf000018_0002
1A-1 1A-2 1A-3 1A-
Figure imgf000018_0002
[0060] [化 2] [0060] [Chemical 2]
Figure imgf000019_0001
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0002
1A-12 1A-13 1A-14  1A-12 1A-13 1A-14
[0061] [化 3] [0061] [Chemical 3]
R R R R R R
1A-15  1A-15
Figure imgf000019_0003
Figure imgf000019_0003
[0062] 上記式 1A— 1〜1A— 20で示される Arにおいて、 Rは、水素原子、結合手又は置 [0062] In Ar represented by the above formulas 1A-1 to 1A-20, R represents a hydrogen atom, a bond, or a bond.
1  1
換基を表す。複数存在する Rの内の任意の 2つは結合手を表し、任意の 1つ以上は 水素原子を表す。 Rで表される置換基が複数存在する場合、それらは同一でも異な つていてもよい。 Raは水素原子又は置換基を表す。 Raで表される置換基が複数存 在する場合、それらは同一でも異なっていてもよい。同一原子上に 2つの Raが存在 する場合、それらは 2つ併せて、ォキソ基又はチォキソ基を形成してもよぐまた、互 Vヽに結合して環を形成して 、てもよ!/、。 Represents a substituent. Any two of the multiple R's represent bonds, and any one or more Represents a hydrogen atom. When there are a plurality of substituents represented by R, they may be the same or different. Ra represents a hydrogen atom or a substituent. When there are a plurality of substituents represented by Ra, they may be the same or different. When two Ras exist on the same atom, they may be combined to form an oxo group or thixo group, or may be bonded to each other to form a ring! /.
また、前記 Rで表される置換基は、隣接した原子上の置換基同士で、酸素原子、硫 黄原子、窒素原子等のへテロ原子が含まれてもよい 5〜7員環の脂肪族環、又は 5〜 7員環の芳香環を形成してもよ 、。  The substituent represented by R is a substituent on adjacent atoms, and may contain a hetero atom such as an oxygen atom, a sulfur atom, or a nitrogen atom. A ring or a 5- to 7-membered aromatic ring may be formed.
[0063] Arで表されるァリーレン基としては、上記式 1Α—1〜1Α—20のうち、フエ二レン基 [0063] As the arylene group represented by Ar, among the above formulas 1Α-1 to 1Α-20, a phenylene group
1  1
(式 1A—1)、ナフタレン ジィル基(式 1Α—2)、アントラセン ジィル基(1Α—3)、 ジヒドロフエナントレン ジィル基(式 1A— 10)、フルオレン ジィル基(式 1A— 13) 、インデノナフタレン ジィル基(式 1A— 14)、ビフエ-レン基(式 1A— 15)、ターフ ェ-レン基(式1八ー16〜1八ー18)が好ましぐフエ-レン基(式 1A—1)、ナフタレン ジィル基(式 1A— 2)、ジヒドロフエナントレン ジィル基(式 1A— 10)、フルオレン ジィル基(式 1A— 13)、インデノナフタレン ジィル基(式 1A— 14)、ビフヱ-レン 基(式 1A— 15)、ターフェ-レン基(式 1A— 16〜: LA— 18)がより好ましぐ中でも、 フエ-レン基(式 1A—1)、ナフタレン ジィル基(式 1A— 2)、フルオレン ジィル基 (式 1A— 13)、インデノナフタレン一ジィル基(式 1A— 14)がさらに好ましい。  (Formula 1A-1), Naphthalene diyl group (Formula 1Α-2), Anthracene diyl group (1Α-3), Dihydrophenanthrene diyl group (Formula 1A-10), Fluorene diyl group (Formula 1A-13), Inde Nonaphthalene diyl groups (Formula 1A-14), biphenylene groups (Formula 1A-15), and phthalene groups (Formula 1-18-16 to 18-18) are preferred. —1), naphthalene diyl group (formula 1A-2), dihydrophenanthrene diyl group (formula 1A-10), fluorene diyl group (formula 1A-13), indenonaphthalene diyl group (formula 1A-14), bif ヱAmong the more preferred are -len groups (Formula 1A-15) and terferene groups (Formula 1A-16: LA-18), phenylene groups (Formula 1A-1), naphthalene diyl groups (Formula 1A— 2), a fluorene diyl group (formula 1A-13) and an indenonaphthalene monodiyl group (formula 1A-14) are more preferred.
[0064] 2価の複素環化合物基とは、複素環化合物力 水素原子 2個を除いた残りの原子 団であり、縮合環を持つもの、独立した単環式複素環化合物又は縮合環 2個以上が 直接又はビ-レン等の基を介して結合したものも含まれる。また、複素環化合物と、 芳香族炭化水素が結合したものも含まれる。 2価の複素環化合物基は置換基を有し てもよ!/、。 2価の複素環化合物基における置換基を除 、た部分の炭素数は通常 4〜 60程度であり、好ましくは 2〜20である。また、 2価の複素環化合物基の置換基を含 めた全炭素数は、通常 2〜100程度である。ここに複素環化合物とは、環式構造をも つ有機化合物のうち、環を構成する元素が炭素原子だけでなぐ酸素、硫黄、窒素、 リン、ホウ素などのへテロ原子を環内に含むものをいう。 2価の複素環化合物基として は、下図の式 2A— 1〜2A— 53、及び 2A— 101〜2A— 116などが例示される。 置〕6700
Figure imgf000021_0001
[0064] The divalent heterocyclic compound group is a remaining atomic group excluding two heterocyclic compound power hydrogen atoms, having a condensed ring, an independent monocyclic heterocyclic compound or two condensed rings. Those in which the above are bonded directly or through a group such as beylene are also included. Also included are those in which a heterocyclic compound and an aromatic hydrocarbon are bonded. The divalent heterocyclic compound group may have a substituent! /. Except for the substituents in the divalent heterocyclic compound group, the number of carbon atoms in the portion is usually about 4 to 60, preferably 2 to 20. Further, the total number of carbon atoms including the substituents of the divalent heterocyclic compound group is usually about 2 to 100. Here, a heterocyclic compound is an organic compound having a cyclic structure that contains heteroatoms such as oxygen, sulfur, nitrogen, phosphorus, and boron in which the elements constituting the ring are not only carbon atoms. Say. Examples of the divalent heterocyclic compound group include the following formulas 2A-1 to 2A-53 and 2A-101 to 2A-116. ) 6700
Figure imgf000021_0001
65400 OAV 65400 OAV
CM CM
βマ νε  β-ma νε
〔〕8900
Figure imgf000022_0001
[] 8900
Figure imgf000022_0001
屋〔〕6900 Shop [] 6900
〔§冒 0
Figure imgf000023_0001
[§ 0
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000024_0001
2A-106  2A-106
Figure imgf000024_0002
Figure imgf000024_0002
2A-107 2A-10S 2A-109  2A-107 2A-10S 2A-109
Figure imgf000024_0003
Figure imgf000024_0003
[0071] [化 10] [0071] [Chemical 10]
Figure imgf000024_0004
Figure imgf000024_0004
2A一 ill 2A-112
Figure imgf000024_0005
Ill 2A-112
Figure imgf000024_0005
2A-113 2A-114  2A-113 2A-114
Figure imgf000024_0006
Figure imgf000024_0006
2A-I1S 2A-116  2A-I1S 2A-116
[0072] 上記式 2A— l〜2A—53、及び 2A— 101〜2A— 116で示される Arにおいて、 R は、水素原子、結合手又は置換基を表す。複数存在する Rの内の任意の 2つは結合 手を表し、任意の 1つ以上は水素原子を表す。 Rで表される置換基が複数存在する 場合、それらは同一でも異なっていてもよい。 Raは水素原子又は置換基を表す。 Ra で表される置換基が複数存在する場合、それらは同一でも異なっていてもよい。同一 原子上に 2つの Raが存在する場合、それらは 2つ併せて、ォキソ基又はチォキソ基を 形成してもよぐまた、互いに結合して環を形成していてもよい。 [0072] In Ar represented by the above formulas 2A-l to 2A-53 and 2A-101 to 2A-116, R represents a hydrogen atom, a bond, or a substituent. Arbitrary two of plural Rs represent a bond, and any one or more of them represent a hydrogen atom. There are multiple substituents represented by R In the case, they may be the same or different. Ra represents a hydrogen atom or a substituent. When a plurality of substituents represented by Ra are present, they may be the same or different. When two Ras exist on the same atom, they may be combined to form an oxo group or a thixo group, or may be bonded to each other to form a ring.
[0073] また、前記 Rで表される置換基は、隣接した原子上の置換基同士で、酸素原子、硫 黄原子、窒素原子等のへテロ原子が含まれる 5〜7員環の脂肪族環、又は酸素原子 、硫黄原子、窒素原子等のへテロ原子が含まれてもよい 5〜7員環の芳香環を形成し てもよい。 [0073] Further, the substituent represented by R is a 5- to 7-membered aliphatic group including hetero atoms such as an oxygen atom, a sulfur atom, and a nitrogen atom among the substituents on adjacent atoms. A ring or a 5- to 7-membered aromatic ring which may contain a hetero atom such as an oxygen atom, a sulfur atom or a nitrogen atom may be formed.
[0074] Arで表される 2価の複素環化合物基としては、上記式 2A— 1〜2A— 53、及び 2  [0074] Examples of the divalent heterocyclic compound group represented by Ar include the above formulas 2A-1 to 2A-53, and 2
1  1
A— 101〜2A— 116のうち、ピリジン—ジィル基(式 2A—1)、キノリン—ジィル基(式 2A— 6)、イソキノリン一ジィル基 (式 2A— 7)、キノキサリン一ジィル基 (式 2A— 8)、 フエナント口リン ジィル基(2A— 18)、チォフェン ジィル基(式 2A— 22)、イミダゾ 一ルージィル基(2A— 24)、ォキサゾールージィル基(式 2A— 26)、チアゾールー ジィル基(2A— 27)、ヘテロ原子として窒素、硫黄、酸素又はセレンを含み、ベンゼ ン環の縮環した 5員環複素環化合物基 (式 2A— 30〜2A— 32、及び 2A— 34〜2A 40)、ヘテロ原子としてケィ素、窒素、酸素、又は硫黄を含むフルオレン類似骨格 を有する複素環化合物基(式 2A— 41〜2A— 44、及び 2A— 46〜2A— 47)、式 2 A— 48〜2A— 53で示される縮環構造を有する複素環化合物基、ジァザフヱ-レン 基 (式 2A— 101)、ヘテロ原子として窒素、酸素、又は硫黄を含む 5員環複素環化合 物基の 2, 5—位でフエ-ル基又はチェ-ル基が結合した化合物基(式 2A— 103、 2 A— 105〜2A— 106、及び 2A— 108〜2A— 110)、ヘテロ原子として窒素、酸素、 又は硫黄を含み、ベンゼン環の縮環した 5員環複素環化合物基にフ -ル基又はチ ェニル基が結合した化合物基 (式 2A— 111〜2A— 116)が好ましぐピリジンージィ ル基 (式 2A— 1)、キノリン ジィル基 (式 2A— 6)、イソキノリン ジィル基 (式 2A— 7 )、キノキサリン—ジィル基 (式 2A— 8)、フエナント口リン—ジィル基(2A— 18)、へテ 口原子としてケィ素、窒素、酸素、又は硫黄を含むフルオレン類似骨格を有する複素 環化合物基(式2八ー41〜2八ー44、及び2八ー46〜2八ー47)、式2八ー48〜2八 53で示される縮環構造を有する複素環化合物基、ジァザフ 二レン基 (式 2A— 1 01)、ヘテロ原子として窒素、酸素、又は硫黄を含む 5員環複素環化合物基の 2, 5 一位でフエ-ル基が結合した化合物基(式 2A— 103、 2A— 105〜2A— 106、及び 2A— 108〜2A— 110)、ヘテロ原子として窒素、酸素、又は硫黄を含み、ベンゼン 環の縮環した 5員環複素環化合物基にフエニル基が結合した化合物基 (式 2A— 11 1〜2A— 116)がより好ましぐヘテロ原子としてケィ素、窒素、酸素、又は硫黄を含 むフルオレン類似骨格を有する複素環基(式 2A— 41〜2A— 44、及び 2A— 46〜2 A— 47)、式 2A— 48〜2A— 53で示される縮環構造を有する複素環基、ヘテロ原 子として窒素、酸素、又は硫黄を含む 5員環複素環化合物基の 2, 5—位でフ ニル 基が結合した化合物基(式 2A— 103、 2A—105〜2A—106、及び 2A—108〜2 A— 110)、ヘテロ原子として窒素、酸素、又は硫黄を含み、ベンゼン環の縮環した 5 員環複素環化合物基にフエニル基が結合した化合物基 (式 2A— 111〜2A— 116) 力 Sさらに好ましい。 Among A—101 to 2A—116, pyridine-diyl group (formula 2A-1), quinoline-diyl group (formula 2A-6), isoquinoline monozyl group (formula 2A-7), quinoxaline monozyl group (formula 2A — 8), phenantyl group (2A-18), thiopheneyl group (formula 2A-22), imidazole luzyl group (2A-24), oxazole-zyl group (formula 2A-26), thiazol diyl Group (2A-27), a 5-membered heterocyclic compound group containing nitrogen, sulfur, oxygen or selenium as a heteroatom and condensed with a benzene ring (formula 2A-30 to 2A-32, and 2A-34 to 2A 40), heterocyclic compound groups having a fluorene-like skeleton containing nitrogen, oxygen, or sulfur as heteroatoms (Formula 2A—41 to 2A—44 and 2A—46 to 2A—47), Formula 2 A— 48-2A— a heterocyclic compound group having a condensed ring structure represented by 53, a diaza-lene group (formula 2A—101), a heteroatom A compound group (formula 2A-103, 2A-105-2A) in which a phenyl group or a chael group is bonded to the 2,5-position of a 5-membered heterocyclic compound group containing nitrogen, oxygen or sulfur as — 106, and 2A—108 to 2A—110), containing a nitrogen atom, oxygen, or sulfur as a hetero atom, and a full group or a phenyl group bonded to a 5-membered heterocyclic compound group condensed with a benzene ring. Pyridine-zyl groups (formula 2A-1), quinoline diyl groups (formula 2A-6), isoquinoline diyl groups (formula 2A-7), quinoxaline-diyl groups preferred by compound groups (formula 2A—111 to 2A-116) (Formula 2A-8), a phenanthrene phosphorus-zyl group (2A-18), and a heterocyclic compound group having a fluorene-like skeleton containing nitrogen, oxygen, or sulfur as a heteroatom (Formula 28-41 A heterocyclic compound group having a condensed ring structure represented by formulas 2-48-28-53, diazaf Ren group (formula 2A- 1 01), compound groups (formula 2A-103, 2A-105 to 2A-106) in which a phenyl group is bonded at the 1,5-position of a 5-membered heterocyclic compound group containing nitrogen, oxygen or sulfur as a hetero atom 2A—108 to 2A—110), a compound group containing nitrogen, oxygen, or sulfur as a hetero atom, and a phenyl group bonded to a 5-membered heterocyclic compound group condensed with a benzene ring (formula 2A—11 1 ~ 2A-116) heterocycles having a fluorene-like skeleton containing a heteroatom as a more preferred heteroatom (Formula 2A-41-2A-44, and 2A-46-2A — 47), a heterocyclic group having a condensed ring structure represented by the formulas 2A—48-2A-53, and a 5-membered heterocyclic compound group containing nitrogen, oxygen, or sulfur as a hetero atom in the 2,5-position. Compound groups (formula 2A-103, 2A-105-2A-106, and 2A-108-2A-110) to which a phenyl group is bonded, nitrogen, oxygen, or sulfur as a hetero atom See, condensed with 5-membered ring heterocyclic compound compound group phenyl group is bonded to the group of the benzene ring (wherein 2A- 111~2A- 116) force S more preferred.
[0075] 2価の芳香族ァミン基とは、芳香族アミンカも水素原子 2個を除いた残りの原子団で ある。 2価の芳香族アミン基は置換基を有していてもよい。 2価の芳香族ァミン基にお ける置換基を除 、た部分の炭素数は通常 4〜60程度である。 2価の芳香族ァミン基 としては、例えば、下記一般式(1 2)で示される基が挙げられる。  [0075] The divalent aromatic amine group is a remaining atomic group obtained by removing two hydrogen atoms from an aromatic amine group. The divalent aromatic amine group may have a substituent. Except for the substituents in the divalent aromatic amine group, the carbon number of the other part is usually about 4 to 60. Examples of the divalent aromatic amine group include a group represented by the following general formula (12).
[0076] [化 11]  [0076] [Chemical 11]
Figure imgf000026_0001
Figure imgf000026_0001
(式中、 Ar5及び Ar それぞれ独立にァリーレン基、又は 2価の複素環基 を示す。
Figure imgf000026_0002
及び Ar9はそれぞれ独立にァリール基、又は 1価の複素環基を示 す。 Ar3、 Ar4、 Ar5
Figure imgf000026_0003
Ar8及び Ar9は置換基を有していてもよい。 r及び rrは それぞれ独立に 0又は 1を示す。 )
(In the formula, Ar 5 and Ar each independently represent an arylene group or a divalent heterocyclic group.
Figure imgf000026_0002
And Ar 9 each independently represents an aryl group or a monovalent heterocyclic group. Ar 3 , Ar 4 , Ar 5 ,
Figure imgf000026_0003
Ar 8 and Ar 9 may have a substituent. r and rr each independently represent 0 or 1. )
[0077] 2価の芳香族ァミン基として、具体的には以下の式 3A— 1〜3A— 8で示される基 が例示される。 [0078] [化 12][0077] Specific examples of the divalent aromatic amine group include groups represented by the following formulas 3A-1 to 3A-8. [0078] [Chemical 12]
Figure imgf000027_0001
Figure imgf000027_0001
3A-1 3A-2
Figure imgf000027_0002
3A-1 3A-2
Figure imgf000027_0002
[0079] [化 13] [0079] [Chemical 13]
Figure imgf000027_0003
Figure imgf000027_0003
3A-5 3A-6
Figure imgf000027_0004
3A-5 3A-6
Figure imgf000027_0004
[0080] 上記式 3A— 1〜3A— 8で示される Arにおいて、 Rは、水素原子、結合手又は置  [0080] In Ar represented by the above formulas 3A-1 to 3A-8, R represents a hydrogen atom, a bond, or a bond.
1  1
換基を表す。複数存在する Rの内の任意の 2つは結合手を表し、任意の 1つ以上は 水素原子を表す。 Rで表される置換基が複数存在する場合、それらは同一でも異な つていてもよい。 Represents a substituent. Any two of the multiple R's represent bonds, and any one or more Represents a hydrogen atom. When there are a plurality of substituents represented by R, they may be the same or different.
Arで表される 2価の芳香族ァミン基としては、上記式 3A— 1〜3A— 8のうち、式 3 As the divalent aromatic amine group represented by Ar, among the above formulas 3A-1 to 3A-8, formula 3
1 1
A— 1〜3A— 4で示される 2価の芳香族ァミン基が好ましぐ式 3A— 1〜3A— 3で示 される 2価の芳香族ァミン基がより好ましぐ式 3A—2、 3A— 3で示される基がさらに 好ましい。  A— 1 to 3A— A formula in which a divalent aromatic amin group represented by 4 is preferred 3A— A formula in which a divalent aromatic amin group represented by 3 to 3A— 3 is preferred 3A—2, The group represented by 3A-3 is more preferable.
[0081] また、前記 Rで表される置換基は、隣接した原子上の置換基同士で、酸素原子、硫 黄原子、窒素原子等のへテロ原子が含まれる 5〜7員環の脂肪族環、又は酸素原子 、硫黄原子、窒素原子等のへテロ原子が含まれてもよい 5〜7員環の芳香環を形成し てもよい。  [0081] In addition, the substituent represented by R is a 5- to 7-membered aliphatic group including a hetero atom such as an oxygen atom, a sulfur atom, or a nitrogen atom among the substituents on adjacent atoms. A ring or a 5- to 7-membered aromatic ring which may contain a hetero atom such as an oxygen atom, a sulfur atom or a nitrogen atom may be formed.
R又は Raで表される置換基としては、アルキル基、ァリール基、ァラルキル基、 1価 の複素環基、ァリールァルケ-ル基、ァリールアルキ-ル基、アルコキシ基、ァリール ォキシ基、ァラルキルォキシ基、アルキルチオ基、ァリールチオ基、ァラルキルチオ 基、置換アミノ基、置換シリル基、スルホン酸基、ホスホノ基、シァノ基、ニトロ基など が例示される。  Examples of the substituent represented by R or Ra include an alkyl group, an aryl group, an aralkyl group, a monovalent heterocyclic group, an arylalkyl group, an arylalkyl group, an alkoxy group, an aryloxy group, an aralkyloxy group, and an alkylthio group. And arylothio group, aralkylthio group, substituted amino group, substituted silyl group, sulfonic acid group, phosphono group, cyano group, nitro group and the like.
[0082] R又は Raで示されるアルキル基は、直鎖、分岐又は環状のいずれでもよぐ炭素数 が通常 1〜20程度、好ましくは炭素数 3〜20であり、その具体例としては、メチル基、 ェチル基、プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 s ブチル基、 t ブチル基、ペンチル基、イソペンチル基、へキシル基、シクロへキシル基、へプチ ル基、ォクチル基、 2 ェチルへキシル基、ノニル基、デシル基、 3, 7 ジメチルォク チル基、ドデシル基、ォクタデシル基などが挙げられる。  [0082] The alkyl group represented by R or Ra has a carbon number of about 1 to 20, preferably 3 to 20, preferably linear, branched or cyclic, and specific examples thereof include methyl Group, ethyl group, propyl group, isopropyl group, n butyl group, isobutyl group, s butyl group, t butyl group, pentyl group, isopentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, 2 Ethylhexyl group, nonyl group, decyl group, 3,7 dimethyloctyl group, dodecyl group, octadecyl group and the like.
有機溶媒への溶解性、合成の行いやすさ等の観点カゝらは、メチル基、ェチル基、 プロピル基、イソプロピル基、 n ブチル基、イソブチル基、 s ブチル基、 t ブチル 基、ペンチル基、イソペンチル基、へキシル基、シクロへキシル基、ヘプチル基、シク 口へキシルメチル基、ォクチル基、 2—ェチルへキシル基、 2—シクロへキシルェチル 基、ノニル基、デシル基、 3, 7—ジメチルォクチル基、及びドデシル基が好ましぐメ チル基、ェチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 s ブチ ル基、 t ブチル基、ペンチル基、イソペンチル基、へキシル基、シクロへキシル基、 ヘプチル基、ォクチル基、 2 ェチルへキシル基、ノニル基、デシル基、及び 3, 7- ジメチルォクチル基がより好ましぐプロピル基、イソプロピル基、ブチル基、イソプチ ル基、 s ブチル基、 t ブチル基、ペンチル基、イソペンチル基、へキシル基、シク 口へキシル基、ヘプチル基、ォクチル基、 2—ェチルへキシル基、ノニル基、デシル 基、及び 3, 7—ジメチルォクチル基がさらに好ましい。 From the viewpoints of solubility in organic solvents, ease of synthesis, etc., they are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, Isopentyl, hexyl, cyclohexyl, heptyl, cyclohexylmethyl, octyl, 2-ethylhexyl, 2-cyclohexylethyl, nonyl, decyl, 3,7-dimethyloctyl Methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sbutyl group, tbutyl group, pentyl group, isopentyl group, hexyl group, cyclohexyl group , Heptyl, octyl, 2-ethylhexyl, nonyl, decyl, and 3,7-dimethyloctyl are more preferred propyl, isopropyl, butyl, isopropyl, sbutyl, tbutyl , A pentyl group, an isopentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a 2-ethylhexyl group, a nonyl group, a decyl group, and a 3,7-dimethyloctyl group.
[0083] ァリール基は、芳香族炭化水素から、芳香環上の水素原子 1個を除いた原子団で あり、縮合環を持つものも含まれる。ァリール基は、炭素数が通常 6〜60程度、好まし くは 7〜48であり、その具体例としては、フエ-ル基、 C〜C アルキルフエ-ル基(C [0083] The aryl group is an atomic group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon, and includes those having a condensed ring. The aryl group usually has about 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms. Specific examples thereof include a phenyl group, a C to C alkylphenol group (C
1 12 1 1 12 1
〜C は、炭素数 1〜12であることを示す。以下も同様である。)、 1 ナフチル基、 2-C shows that it is C1-C12. The same applies to the following. ), 1 naphthyl group, 2
12 12
ナフチル基、 1 アントラセ-ル基、 2 アントラセ-ル基、 9 アントラセ-ル基な どが例示される。  Examples include a naphthyl group, a 1 anthracene group, a 2 anthracyl group, and a 9 anthracyl group.
有機溶媒への溶解性、合成の行いやすさ等の観点からは、 C〜C アルキルフエ- From the viewpoints of solubility in organic solvents and ease of synthesis, C to C alkylphenols
1 12 1 12
ル基が好ましい。  The ru group is preferred.
[0084] C〜C アルキルフエ-ル基として具体的にはメチルフエ-ル基、ェチルフヱ-ル基  [0084] Specific examples of the C to C alkylphenol group include a methylphenol group and an ethylphenol group.
1 12  1 12
、ジメチルフエ-ル基、ジメチルー t ブチルフエ-ル基、プロピルフエ-ル基、メシチ ル基、メチルェチルフエ-ル基、イソプロピルフエ-ル基、 n ブチルフエ-ル基、イソ ブチルフエ-ル基、 s ブチルフエ-ル基、 t ブチルフエ-ル基、ペンチルフヱ-ル 基、イソペンチルフエ-ル基、へキシルフエ-ル基、ヘプチルフエ-ル基、ォクチルフ ェ-ル基、ノ -ルフヱ-ル基、デシルフヱ-ル基、 3, 7—ジメチルォクチルフヱ-ル基 、ドデシルフェニル基などが例示され、ジメチルフエニル基、ジメチルー tーブチルフ ェニル基、プロピルフエ-ル基、メシチル基、メチルェチルフエ-ル基、イソプロピルフ ェ-ル基、 n ブチルフエ-ル基、イソブチルフエ-ル基、 s ブチルフエ-ル基、 t ブチルフエ-ル基、ペンチルフエ-ル基、イソペンチルフエ-ル基、へキシルフエ-ル 基、ヘプチルフエ-ル基、ォクチルフエ-ル基、ノ-ルフエ-ル基、デシルフエ-ル基 、 3, 7—ジメチルォクチルフヱ-ル基及びドデシルフヱ-ル基が好まし!/、。  , Dimethylphenol, dimethyl-tert-butyl, propyl, mesyl, methylethyl, isopropyl, n-butyl, iso-butyl, s-butyl , T-butylphenol group, pentylphenol group, isopentylphenol group, hexylphenol group, heptylphenol group, octylphenol group, norphenol group, decylphenyl group, 3, Examples include 7-dimethyloctylphenyl group, dodecylphenyl group, and the like. Dimethylphenyl group, dimethyl-tert-butylphenyl group, propylphenyl group, mesityl group, methylethylphenyl group, isopropylphenyl group, n Butylphenol group, Isobutylphenol group, s Butylphenol group, t Butylphenol group, Pentylphenol group, Isopentylphenol group, Hexylphenol group Hepuchirufue - group, Okuchirufue - group, Bruno - Rufue - group, Deshirufue - group, 3,7-dimethyl O Chi Ruch We - Le group and Dodeshirufuwe - Le group preferably /,.
[0085] ァラルキル基は、炭素数が通常 7〜60程度、好ましくは 7〜48であり、その具体例 としては、フエ-ルー c〜c アルキル基、 c〜c アルキルフエ-ルー c〜c アル [0085] The aralkyl group usually has about 7 to 60 carbon atoms, preferably 7 to 48, and examples thereof include a ferro-c-c alkyl group and a c-c alkyl ferro-c-c alkyl.
1 12 1 12 1 12 キル基、 1 ナフチルー C〜C アルキル基、 2—ナフチルー C〜C アルキル基な どが例示される。 1 12 1 12 1 12 Kill group, 1 naphthyl C-C alkyl group, 2-naphthyl C-C alkyl group Are illustrated.
有機溶媒への溶解性、合成の行いやすさ等の観点からは、 c〜c アルキルフエ- From the viewpoints of solubility in organic solvents and ease of synthesis, c to c alkylphenols
1 12 1 12
ルー C〜C アルキル基が好ましい。  A rho C to C alkyl group is preferred.
1 12  1 12
[0086] 1価の複素環化合物基は、複素環化合物から水素原子 1個を除いた残りの原子団 であり、炭素数は通常 4〜60程度、好ましくは 4〜20である。なお、複素環化合物基 の炭素数には、置換基の炭素数は含まれない。ここに複素環化合物とは、環式構造 を持つ有機化合物のうち、環を構成する元素が炭素原子だけでなぐ酸素、硫黄、窒 素、燐、硼素などのへテロ原子を環内に含むものをいう。具体的には、チェ-ル基、 c〜c アルキルチェ-ル基、ピロリル基、フリル基、ピリジル基、 c〜c アルキルピ [0086] The monovalent heterocyclic compound group is a remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound, and usually has about 4 to 60 carbon atoms, preferably 4 to 20 carbon atoms. The carbon number of the heterocyclic compound group does not include the carbon number of the substituent. Here, a heterocyclic compound is an organic compound having a cyclic structure that contains heteroatoms such as oxygen, sulfur, nitrogen, phosphorus, and boron in which the elements constituting the ring are not only carbon atoms. Say. Specifically, a chael group, a c to c alkyl chael group, a pyrrolyl group, a furyl group, a pyridyl group, and a c to c alkyl pin.
1 12 1 12 リジル基、ピペリジル基、キノリル基、イソキノリル基などが例示される。 Examples include 1 12 1 12 lysyl group, piperidyl group, quinolyl group, isoquinolyl group and the like.
有機溶媒への溶解性、合成の行いやすさ等の観点からは、チェ-ル基、 C〜C  From the viewpoints of solubility in organic solvents and ease of synthesis, chael groups, C to C
1 12 アルキルチェニル基、ピリジル基、及び C〜C アルキルピリジル基が好ましい。  1 12 Alkyl phenyl groups, pyridyl groups, and C to C alkyl pyridyl groups are preferred.
1 12  1 12
[0087] ァリールァルケ-ル基としては、炭素数は通常 8〜60程度であり、具体的には、フ ェ-ルー c〜c ァルケ-ル基、 c〜c アルキルフエ-ルー  [0087] The arylalkyl group usually has about 8 to 60 carbon atoms. Specifically, the ferroc c-c alkal group and the c-c alkyl ferrule are used.
2 12 1 12 c〜  2 12 1 12 c ~
2 c ァルケ-ル基、 12  2 c alkenyl group, 12
1 ナフチルー C〜C ァルケ-ル基、 2—ナフチルー C〜C ァルケ-ル基などが  1 naphthyl C-C alkenyl group, 2-naphthyl C-C alkenyl group, etc.
2 12 2 12  2 12 2 12
例示される。  Illustrated.
有機溶媒への溶解性、合成の行いやすさ等の観点からは、 c〜  From the viewpoint of solubility in organic solvents and ease of synthesis, c ~
1 c アルキルフエ- 12  1c Alkyl Hue-12
ルー C〜C アルケニル基が好ましい。  A rho C to C alkenyl group is preferred.
2 12  2 12
[0088] ァリールアルキニル基としては、炭素数は通常 8〜60程度であり、具体的には、フ ェ-ルー c〜 アルキ-ル基、  [0088] The aryl alkynyl group usually has about 8 to 60 carbon atoms, specifically, a ferro-c to alkenyl group,
2 c 12 c〜 ルキルフエ-ル  2 c 12 c ~ rukirfeel
1 c ア ー  1 c
12 c〜  12 c ~
2 c アルキ-ル基、 12  2c alkyl group, 12
1 ナフチルー C〜C アルキ-ル基、 2—ナフチルー C〜C アルキニル基などが  1 naphthyl C to C alkynyl group, 2-naphthyl C to C alkynyl group, etc.
2 12 2 12  2 12 2 12
例示される。  Illustrated.
有機溶媒への溶解性、合成の行いやすさ等の観点からは、 c〜c アルキルフエ- From the viewpoints of solubility in organic solvents and ease of synthesis, c to c alkylphenols
1 12 1 12
ルー C〜C アルキニル基が好ましい。  A rho C to C alkynyl group is preferred.
2 12  2 12
[0089] アルコキシ基としては、直鎖、分岐又は環状のいずれでもよぐ炭素数が通常 1〜2 0程度、好ましくは炭素数 3〜20であり、その具体例としては、メトキシ基、エトキシ基 、プロピルォキシ基、イソプロピルォキシ基、 n ブトキシ基、イソブトキシ基、 t ブト キシ基、ペンチルォキシ基、へキシルォキシ基、シクロへキシルォキシ基、ヘプチル ォキシ基、ォクチルォキシ基、 2—ェチルへキシルォキシ基、ノ-ルォキシ基、デシル ォキシ基、 3, 7—ジメチルォクチルォキシ基、ドデシルォキシ基などが挙げられる。 有機溶媒への溶解性、合成の行いやすさ等の観点からは、ペンチルォキシ基、へ キシルォキシ基、ォクチルォキシ基、 2—ェチルへキシルォキシ基、デシルォキシ基 、及び 3, 7—ジメチルォクチルォキシ基が好ましい。 [0089] The alkoxy group may be linear, branched or cyclic, and usually has about 1 to 20 carbon atoms, preferably 3 to 20 carbon atoms. Specific examples thereof include a methoxy group and an ethoxy group. , Propyloxy group, isopropyloxy group, n butoxy group, isobutoxy group, t butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyl Examples include an oxy group, an octyloxy group, a 2-ethylhexyloxy group, a noroxy group, a decyloxy group, a 3,7-dimethyloctyloxy group, and a dodecyloxy group. From the viewpoints of solubility in organic solvents and ease of synthesis, pentyloxy group, hexyloxy group, octyloxy group, 2-ethylhexyloxy group, decyloxy group, and 3,7-dimethyloctyloxy group preferable.
[0090] ァリールォキシ基としては、炭素数が通常 6〜60程度、好ましくは 7〜48であり、そ の具体例としては、フエノキシ基、 C〜C アルキルフエノキシ基、 1 ナフチルォキシ [0090] The aryloxy group usually has about 6 to 60 carbon atoms, preferably 7 to 48 carbon atoms. Specific examples thereof include a phenoxy group, a C to C alkylphenoxy group, and 1 naphthyloxy group.
1 12  1 12
基、 2—ナフチルォキシ基などが例示される。  Group, 2-naphthyloxy group and the like are exemplified.
有機溶媒への溶解性、合成の行いやすさ等の観点からは、 C〜C アルキルフエノ  From the standpoints of solubility in organic solvents and ease of synthesis, C to C alkylphenols
1 12  1 12
キシ基が好ましい。  A xy group is preferred.
c〜c アルキルフエノキシ基として具体的にはメチルフエノキシ基、ェチルフエノキ c to c Specific examples of the alkylphenoxy group include a methylphenoxy group and an ethylphenoxy group.
1 12 1 12
シ基、ジメチルフエノキシ基、プロピルフエノキシ基、 1, 3, 5 トリメチルフエノキシ基 、メチルェチルフエノキシ基、イソプロピルフエノキシ基、 n ブチルフエノキシ基、イソ ブチルフエノキシ基、 t ブチルフエノキシ基、ペンチルフエノキシ基、イソペンチルフ エノキシ基、へキシルフエノキシ基、ヘプチルフエノキシ基、ォクチルフエノキシ基、ノ 二ルフヱノキシ基、デシルフヱノキシ基、ドデシルフヱノキシ基などが例示される。  Si group, dimethylphenoxy group, propylphenoxy group, 1, 3, 5 trimethylphenoxy group, methylethylphenoxy group, isopropylphenoxy group, n-butylphenoxy group, isobutylphenoxy group, t-butylphenoxy group Group, pentylphenoxy group, isopentylphenoxy group, hexylphenoxy group, heptylphenoxy group, octylphenoxy group, nonylphenoxy group, decylphenoxy group, dodecylphenoxy group and the like.
[0091] ァラルキルォキシ基としては、炭素数が通常 7〜60程度、好ましくは炭素数 7〜48 であり、その具体例としては、フエ-ルメトキシ基、フエ-ルェトキシ基、フエ二ルー n— ブトキシ基、フエ-ルペンチルォキシ基、フエ-ルへキシルォキシ基、フエ-ルへプチ ルォキシ基、フエ-ルォクチルォキシ基などのフエ-ルー C〜C アルコキシ基、 C [0091] The aralkyloxy group usually has about 7 to 60 carbon atoms, preferably 7 to 48 carbon atoms. Specific examples thereof include a phenylmethoxy group, a phenyloxy group, and a phenyl n-butoxy group. , Phenpentyloxy group, phenylhexyloxy group, phenylhexyloxy group, phenyloctyloxy group, C-C alkoxy group, C
1 12 1 1 12 1
〜C アルキルフエ-ルー C〜C アルコキシ基、 1 ナフチルー c〜c アルコキシ~ C Alkylphenol C ~ C alkoxy group, 1 naphthyl c ~ c alkoxy
12 1 12 1 12 基、 2—ナフチルー C〜C アルコキシ基などが例示される。 Examples include 12 1 12 1 12 group, 2-naphthyl C-C alkoxy group and the like.
1 12  1 12
有機溶媒への溶解性、合成の行いやすさ等の観点からは、 c〜c アルキルフエ- From the viewpoints of solubility in organic solvents and ease of synthesis, c to c alkylphenols
1 12 1 12
ルー C〜C アルコキシ基が好ましい。  A leuco C to C alkoxy group is preferred.
1 12  1 12
[0092] アルキルチオ基としては、直鎖、分岐又は環状のいずれでもよぐ炭素数が通常 1 〜20程度、好ましくは炭素数 3〜20であり、その具体例としては、メチルチオ基、ェ チルチオ基、プロピルチオ基、イソプロピルチオ基、 n—ブチルチオ基、イソブチルチ ォ基、 tーブチルチオ基、ペンチルチオ基、へキシルチオ基、シクロへキシルチオ基 、へプチルチオ基、ォクチルチオ基、 2—ェチルへキシルチオ基、ノニルチオ基、デ シルチオ基、 3, 7—ジメチルォクチルチオ基、ドデシルチオ基などが例示される。 有機溶媒への溶解性、合成の行いやすさ等の観点からは、ペンチルチオ基、へキ シルチオ基、ォクチルチオ基、 2 ェチルへキシルチオ基、デシルチオ基、及び 3, 7 ジメチルォクチルチオ基が好まし ヽ。 [0092] The alkylthio group has a carbon number of about 1-20, preferably 3-20, and may be linear, branched or cyclic. Specific examples thereof include a methylthio group and an ethylthio group. , Propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, t-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group And heptylthio group, octylthio group, 2-ethylhexylthio group, nonylthio group, decylthio group, 3,7-dimethyloctylthio group, dodecylthio group and the like. From the standpoints of solubility in organic solvents and ease of synthesis, pentylthio, hexylthio, octylthio, 2-ethylhexylthio, decylthio, and 3,7 dimethyloctylthio are preferred.ヽ.
[0093] ァリールチオ基としては、炭素数が通常 3〜60程度であり、その具体例としては、フ ェ-ルチオ基、 C〜C アルキルフエ-ルチオ基、 1 ナフチルチオ基、 2—ナフチル [0093] The allylthio group usually has about 3 to 60 carbon atoms, and specific examples thereof include a phenylthio group, a C to C alkylphenolthio group, a 1 naphthylthio group, and a 2-naphthyl group.
1 12  1 12
チォ基などが例示される。  Examples are thio group and the like.
有機溶媒への溶解性、合成の行いやすさ等の観点からは、 c〜c アルキルフエ- From the viewpoints of solubility in organic solvents and ease of synthesis, c to c alkylphenols
1 12 1 12
ルチオ基が好ましい。  A ruthio group is preferred.
[0094] ァラルキルチオ基としては、炭素数が通常 7〜60程度、好ましくは炭素数 7〜48で あり、その具体例としては、フエ二ルー C〜C アルキルチオ基、 C〜C アルキルフ  [0094] The aralkylthio group usually has about 7 to 60 carbon atoms, preferably 7 to 48 carbon atoms. Specific examples thereof include a phenyl C-C alkylthio group, a C-C alkyl group.
1 12 1 12  1 12 1 12
ェ-ルー C〜C アルキルチオ基、 1 ナフチルー C〜C アルキルチオ基、 2—ナフ  Yellow C-C alkylthio group, 1 naphthyl C-C alkylthio group, 2-naphthyl
1 12 1 12  1 12 1 12
チルー c〜c アルキルチオ基などが例示される。  Illustrative examples include a thyl c-c alkylthio group.
1 12  1 12
有機溶媒への溶解性、合成の行いやすさ等の観点からは、 C〜C アルキルフエ- From the viewpoints of solubility in organic solvents and ease of synthesis, C to C alkylphenols
1 12 1 12
ルー c〜c アルキルチオ基が好ましい。  A rou c to c alkylthio group is preferred.
1 12  1 12
[0095] 置換アミノ基としては、アルキル基、ァリール基、ァリールアルキル基又は 1価の複 素環基力 選ばれる 1又は 2個の基で置換されたァミノ基が挙げられ、炭素数が通常 1〜60程度、好ましくは炭素数 2〜48である。  [0095] Examples of the substituted amino group include an alkyl group, an aryl group, an aryl group, or an amino group substituted with one or two groups selected from a monovalent heterocyclic group, and usually has a carbon number. About 1 to 60, preferably 2 to 48 carbon atoms.
具体的には、メチルァミノ基、ジメチルァミノ基、ェチルァミノ基、ジェチルァミノ基、 プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、 n—ブチルァミノ基、イソブチルァミノ基、 tーブチルァミノ基、ペンチルァミノ基、へキ シルァミノ基、シクロへキシルァミノ基、ヘプチルァミノ基、ォクチルァミノ基、 2—ェチ ルへキシルァミノ基、ノ-ルァミノ基、デシルァミノ基、 3, 7—ジメチルォクチルァミノ 基、ドデシルァミノ基、シクロペンチルァミノ基、ジシクロペンチルァミノ基、シクロへキ シルァミノ基、ジシクロへキシルァミノ基、ピロリジル基、ピペリジル基、ジフエ-ルアミ ノ基、(C〜C アルキルフエ-ル)アミノ基、ジ(C〜C アルキルフエ-ル)アミノ基、 1  Specifically, methylamino group, dimethylamino group, ethylamino group, jetylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, n-butylamino group, isobutylamino group, t-butylamino group, pentylamino group Hexylamino group, cyclohexylamino group, heptylamino group, octylamino group, 2-ethylhexylamino group, noramino group, decylamino group, 3,7-dimethyloctylamino group, dodecylamino group, cyclopentylamino group Mino group, dicyclopentylamino group, cyclohexylamino group, dicyclohexylamino group, pyrrolidyl group, piperidyl group, diphenylamino group, (C-C alkylphenol) amino group, di (C-C alkylphenol) L) Amino group, 1
1 12 1 12  1 12 1 12
ナフチルァミノ基、 2—ナフチルァミノ基、ピリジルァミノ基、ピリダジ -ルァミノ基、ピ リミジルアミノ基、ビラジルァミノ基、トリアジルァミノ基、フエ-ル一 c〜c アルキルァ Naphthylamino group, 2-naphthylamino group, pyridylamino group, pyridaziluamino group, Limidylamino group, Virazilamino group, Triazylamino group, Phenyl c-c alkyla
1 12 ミノ基、 C〜C アルキルフエ-ルー C〜C アルキルアミノ基、ジ(C〜C アルキル  1 12 Mino group, C-C alkylphenol C-C alkylamino group, di (C-C alkyl)
1 12 1 12 1 12 フエ-ルー C〜C アルキル)アミノ基、 1—ナフチル— C〜C アルキルアミノ基、 2  1 12 1 12 1 12 Phenol C-C alkyl) amino group, 1-naphthyl-C-C alkylamino group, 2
1 12 1 12 ナフチルー c〜c アルキルアミノ基などが例示される。  Examples include 1 12 1 12 naphthyl-c-c alkylamino groups.
1 12  1 12
有機溶媒への溶解性、合成の行いやすさ等の観点からは、ジメチルァミノ基、ジェ チルァミノ基、ジフエ-ルァミノ基、ジ(C〜C アルキルフエ-ル)アミノ基等のジ置換  From the standpoint of solubility in organic solvents and ease of synthesis, di-substitution such as dimethylamino group, dimethylamino group, diphenylamino group, di (C to C alkylphenol) amino group, etc.
1 12  1 12
ァミノ基が好ましぐジフエ-ルァミノ基、及びジ(c〜c アルキルフエ-ル)アミノ基  Preferred diaminoamino groups and di (c-c alkylphenol) amino groups are preferred.
1 12  1 12
等のジァリールアミノ基がより好ましい。  A diarylamino group such as is more preferable.
[0096] 置換シリル基としては、アルキル基、ァリール基、ァリールアルキル基又は 1価の複 素環基力 選ばれる 1、 2又は 3個の基で置換されたシリル基が挙げられる。置換シリ ル基の炭素数は通常 1〜60程度、好ましくは炭素数 3〜48である。  [0096] Examples of the substituted silyl group include an alkyl group, an aryl group, an aryl group, or a silyl group substituted with 1, 2 or 3 groups selected from a monovalent bicyclic ring group. The substituted silyl group usually has about 1 to 60 carbon atoms, preferably 3 to 48 carbon atoms.
具体的には、トリメチルシリル基、トリェチルシリル基、トリプロビルシリル基、トリイソ ブチルシリルジメチルシリル基、ペンチルジメチルシリル基、へキシルジメチルシリル 基、へプチルジメチルシリル基、ォクチルジメチルシリル基、 2—ェチルへキシルージ メチルシリル基、ノ-ルジメチルシリル基、デシルジメチルシリル基、 3, 7—ジメチル ォクチルージメチルシリル基、ドデシルジメチルシリル基、フエ二ルー C〜C アルキ  Specifically, trimethylsilyl group, triethylsilyl group, triprovirsilyl group, triisobutylsilyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethyl Xylose methylsilyl group, nordimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyldimethylsilyl group, dodecyldimethylsilyl group, phenyl C to C alkyl
1 12 ルシリル基、 C〜C アルキルフエ-ルー C〜C アルキルシリル基、 1 ナフチルー  1 12 rusilyl group, C-C alkyl ferro-C-C alkyl silyl group, 1 naphthyl
1 12 1 12  1 12 1 12
C〜C アルキルシリル基、 2—ナフチルー C〜C アルキルシリル基、フエ-ルー C C to C alkylsilyl group, 2-naphthyl C to C alkylsilyl group, ferrule C
1 12 1 12 11 12 1 12 1
〜C アルキルジメチルシリル基、トリフ -ルシリル基、トリー p メチルフエ-ルシリ~ C Alkyldimethylsilyl group, tributylsilyl group, tri-p-methylphenol
12 12
ル基、トリベンジルシリル基、ジフエ-ルメチルシリル基、 tーブチルジフエ-ルシリル 基、ジメチルフヱニルシリル基などが例示される。  Examples thereof include a thiol group, a tribenzylsilyl group, a diphenylmethylsilyl group, a t-butyldiphenylsilyl group, and a dimethylphenylsilyl group.
[0097] また、 R又は Raで表される置換基がァリール基、又は 1価の複素環基を含む場合、 該ァリール基、 1価の複素環基上の水素原子は、ァリール基、ァラルキル基、 1価の 複素環基、ァリールァルケ-ル基、ァリールアルキ-ル基、アルコキシ基、ァリールォ キシ基、ァラルキルォキシ基、アルキルチオ基、ァリールチオ基、ァラルキルチオ基、 置換アミノ基、置換シリル基、スルホン酸基、ホスホノ基、シァノ基、又は-トロ基により 置換されていてもよい。中でもァリール基、ァラルキル基、 1価の複素環基、アルコキ シ基、ァリールォキシ基、ァラルキルォキシ基、アルキルチオ基、ァリールチオ基、ァ ラルキルチオ基、置換アミノ基、置換シリル基、スルホン酸基、ホスホノ基、シァノ基、 及び-トロ基が好ましぐアルキル基、ァリール基、ァラルキル基、 1価の複素環基、 アルコキシ基、ァリールォキシ基、ァラルキルォキシ基、アルキルチオ基、ァリールチ ォ基、ァラルキルチオ基、及び置換アミノ基がより好ましぐアルコキシ基、及びアル キルチオ基がより好ましい。 [0097] When the substituent represented by R or Ra includes an aryl group or a monovalent heterocyclic group, the hydrogen atom on the aryl group or monovalent heterocyclic group is an aryl group or an aralkyl group. Monovalent heterocyclic group, arylalkyl group, arylalkyl group, alkoxy group, aryloxy group, aralkyloxy group, alkylthio group, arylthio group, aralkylthio group, substituted amino group, substituted silyl group, sulfonic acid group, phosphono group Optionally substituted by a group, a cyano group, or a -tro group. Among them, aryl group, aralkyl group, monovalent heterocyclic group, alkoxy group Alkyl group, aryl group, thio group, aryloxy group, aralkyloxy group, alkylthio group, aralkylthio group, aralkylthio group, substituted amino group, substituted silyl group, sulfonic acid group, phosphono group, cyano group, and -tro group are preferred. , An aralkyl group, a monovalent heterocyclic group, an alkoxy group, an aryloxy group, an aralkyloxy group, an alkylthio group, an aralkylthio group, an aralkylthio group, and an alkoxy group, and an alkylthio group are more preferable.
[0098] 具体的には、例えば、 C〜C アルコキシフエ-ル基、 C〜C アルコキシフエ-ル  [0098] Specifically, for example, a C to C alkoxy file group, a C to C alkoxy file group
1 12 1 12  1 12 1 12
— c〜c アルキル基、 c〜c アルコキシフエ-ルー c〜c ァルケ-ル基、 c〜c  — C-c alkyl group, c-c alkoxy ferrule c-c alkell group, c-c
1 12 1 12 2 12 1 アルコキシフエ-ルー C〜C アルキ-ル基、 C〜C アルコキシフエノキシ基、 C 1 12 1 12 2 12 1 Alkoxyphenol C to C alkyl group, C to C alkoxyphenoxy group, C
12 2 12 1 12 112 2 12 1 12 1
〜c アルコキシフエ-ルー c〜c アルコキシ基、 c〜c アルコキシフエ-ルチオ~ C alkoxyphenol c ~ c alkoxy group, c ~ c alkoxyphenolthio
12 1 12 1 12 12 1 12 1 12
基、 C〜C アルコキシフエ-ルー C〜C アルキルチオ基、 C〜C アルコキシフエ Group, C to C alkoxyphenol C to C alkylthio group, C to C alkoxyphenol
1 12 1 12 1 121 12 1 12 1 12
-ルァミノ基、ジ(c〜c アルコキシフエ-ル)アミノ基、 c〜c アルコキシフエ-ル -Luamino group, di (c-c alkoxyphenyl) amino group, c-c alkoxyphenyl
1 12 1 12  1 12 1 12
— C〜C アルキルアミノ基、ジ(C〜C アルコキシフエ-ルー C〜C アルキル)アミ — C-C alkylamino group, di (C-C alkoxyphenol C-C alkyl) amino
1 12 1 12 1 12 ノ基、 c〜c アルコキシフエ-ルー c〜c アルキルシリル基などの c〜c アルコ1 12 1 12 1 12 group, c to c alkoxyphenol c to c alkyl cyl group such as alkylsilyl group
1 12 1 12 1 12 キシ置換基を有する基などが例示される。 c〜c アルコキシとして具体的には、メト Examples include a group having a 1 12 1 12 1 12 xy substituent. c-c As alkoxy, specifically, meth
1 12  1 12
キシ、エトキシ、プロピルォキシ、イソプロピルォキシ、 n ブトキシ、イソブトキシ、 s— ブトキシ、 t ブトキシ、ペンチルォキシ、へキシルォキシ、シクロへキシルォキシ、へ プチルォキシ、ォクチルォキシ、 2—ェチルへキシルォキシ、ノニルォキシ、デシルォ キシ、 3, 7—ジメチルォクチルォキシ、ドデシルォキシなどが例示される。  Xy, ethoxy, propyloxy, isopropyloxy, n-butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy, octyloxy, 2-ethyl hexyloxy, nonyloxy, decyloxy, 3, 7 -Examples include dimethyloctyloxy, dodecyloxy and the like.
[0099] また、 R又は Raで表される置換基がアルキレン鎖を含む場合、該アルキレン鎖中の 任意の CH—基は、酸素、硫黄、窒素などの 2価のへテロ原子、ヘテロ原子を含 [0099] Further, when the substituent represented by R or Ra includes an alkylene chain, any CH- group in the alkylene chain may be a divalent heteroatom such as oxygen, sulfur or nitrogen, or a heteroatom. Including
2  2
む 2価の基、又はそれらが 2個以上組み合わされた 2価の基により置換されて ヽても よい。 2価のへテロ原子、及びへテロ原子を含む 2価の基としては、例えば以下の式 X— 1〜X— 5、及び X—7〜X— 10で示される基が挙げられる。なお、 Rグ は前記 R と同じ意味を有し、 Arは、式 (X— 7)及び (X— 8)では 3価の基、式 (X— 9)では 4価 の基を表す。  It may be substituted with a divalent group or a divalent group in which two or more of them are combined. Examples of the divalent hetero atom and the divalent group containing a hetero atom include groups represented by the following formulas X-1 to X-5 and X-7 to X-10. R g has the same meaning as R, and Ar represents a trivalent group in the formulas (X-7) and (X-8), and a tetravalent group in the formula (X-9).
[0100] [化 14] ― O― 一 S一 一[0100] [Chemical 14] ― O― One S One One
Figure imgf000035_0001
Figure imgf000035_0001
X-1 X-2 X^3 X-  X-1 X-2 X ^ 3 X-
― C≡C―
Figure imgf000035_0002
― C≡C―
Figure imgf000035_0002
X-7 X-S X-9 X-10  X-7 X-S X-9 X-10
[0101] また、上記 2価のへテロ原子、又はへテロ原子を含む 2価の基が 2個以上組み合わ された 2価の基としては、例えば以下式 XX— 1〜XX— 4で示される基が挙げられる。 なお、 R〃 は前記 Rと同じ意味を有する。 [0101] In addition, examples of the divalent group formed by combining two or more divalent heteroatoms or two or more divalent groups containing a heteroatom are represented by the following formulas XX-1 to XX-4 Groups. R〃 has the same meaning as R.
[0102] [化 15]
Figure imgf000035_0003
[0102] [Chemical 15]
Figure imgf000035_0003
XX-1 XX-2 XX-3 XX-4  XX-1 XX-2 XX-3 XX-4
[0103] 上記式 X— 1〜X— 5、 X— 6〜X— 10、及び XX— 1〜: XX— 4の中では、式 X— 1、 X— 2、 X— 3、 X— 5、及び X— 7で示される基が好ましぐ式 X— 1、及び X— 2で示さ れる基がより好ましぐ式 (X—1)で示される基がさらに好ましい。具体的には、メトキ シメチルォキシ基、 2—メトキシェチルォキシ基などが例示される。 [0103] In the above formulas X—1 to X—5, X—6 to X—10, and XX—1 to: In XX—4, the formulas X—1, X—2, X—3, X—5 And a group represented by the formula (X-1) in which a group represented by X-7 is preferred, and a group represented by X-2 is more preferred. Specific examples include a methoxymethyloxy group and a 2-methoxyethyloxy group.
[0104] Arで示される基における Rで示される置換基としては、アルキル基、ァリール基、了  [0104] The substituent represented by R in the group represented by Ar includes an alkyl group, an aryl group, and R
1  1
ラルキル基、 1価の複素環基、アルコキシ基、ァリールォキシ基、ァラルキルォキシ基 、アルキルチオ基、ァリールチオ基、ァラルキルチオ基、置換アミノ基、置換シリル基 、スルホン酸基、ホスホノ基、シァノ基、及び-トロ基が好ましぐアルキル基、ァリー ル基、ァラルキル基、 1価の複素環基、アルコキシ基、ァリールォキシ基、ァラルキル ォキシ基、アルキルチオ基、ァリールチオ基、ァラルキルチオ基、及び置換アミノ基 力 り好ましぐアルキル基、アルコキシ基、及びアルキルチオ基がさらに好ましぐァ ルキル基が特に好ましい。 Aralkyl group, monovalent heterocyclic group, alkoxy group, aryloxy group, aralkyloxy group, alkylthio group, aryloxy group, aralkylthio group, substituted amino group, substituted silyl group, sulfonic acid group, phosphono group, cyano group, and -tro group Are preferred alkyl groups, aryl groups, aralkyl groups, monovalent heterocyclic groups, alkoxy groups, aryloxy groups, aralkyloxy groups, alkylthio groups, aryloxy groups, aralkylthio groups, and substituted amino groups. Particularly preferred are alkyl groups, more preferred alkyl groups, alkoxy groups, and alkylthio groups.
[0105] Arで示される基における Raで示される置換基としては、アルキル基、ァリール基、  [0105] The substituent represented by Ra in the group represented by Ar includes an alkyl group, an aryl group,
1  1
ァラルキル基、 1価の複素環基、アルコキシ基、ァリールォキシ基、ァラルキルォキシ 基、アルキルチオ基、ァリールチオ基、ァラルキルチオ基、置換アミノ基、置換シリル 基、ォキソ基、及びチォキソ基が好ましぐアルキル基、アルコキシ基、アルキルチオ 基、アルキルシリル基、ォキソ基、及びチォキソ基がより好ましぐアルキル基、及びァ ルコキシ基がさらに好ましぐアルキル基が特に好ましい。  Aralkyl groups, monovalent heterocyclic groups, alkoxy groups, aryloxy groups, aralkyloxy groups, alkylthio groups, aryloxy groups, aralkylthio groups, substituted amino groups, substituted silyl groups, oxo groups, and thixo groups are preferred alkyl groups, alkoxy groups Particularly preferred are alkyl groups, more preferably alkyl groups, alkylthio groups, alkylsilyl groups, oxo groups, and thixo groups, and more preferred alkyl groups.
[0106] 単一の繰り返し単位を含むホモポリマーでもよいが、複数種類の繰り返し単位を含 む共重合体でもよ 、。発光と電荷輸送の両方の機能を適宜有する構造とするために は、共重合体を用いることが好ましい。  [0106] Although it may be a homopolymer containing a single repeating unit, it may be a copolymer containing a plurality of types of repeating units. A copolymer is preferably used in order to obtain a structure having both functions of light emission and charge transport as appropriate.
高分子化合物の構造は、ランダム、ブロック、グラフトなどのいずれ力、又はそれら の組合せであってもよい。分岐のあるタイプの場合は、単なる分岐ではなくハイパー ブランチであってもよい。  The structure of the polymer compound may be any force such as random, block, or graft, or a combination thereof. For a type with branches, it may be a hyperbranch rather than just a branch.
[0107] これら発光材料のうち、有機溶媒に可溶であるもの力 塗布法により成膜できるの で、プロセス的に有利であり、好ましい。  Among these luminescent materials, those that are soluble in an organic solvent can be formed by a force coating method, which is advantageous in terms of process and is preferable.
発光層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率 が適度な値となるように選択すればよいが、例えば lnmから 1 μ mであり、好ましくは 2nm〜500nmであり、さらに好ましくは 5nm〜200nmである。  The film thickness of the light-emitting layer varies depending on the material used and may be selected so that the drive voltage and the light emission efficiency are appropriate. For example, the thickness is from 1 nm to 1 μm, preferably from 2 nm to 500 nm. More preferably 5 nm to 200 nm.
[0108] 本発明の発光装置の発光部に用いる有機 EL素子において発光層に高分子発光 材料を用いることができるが、それ以外の発光材料を使用してもよい。また、本発明 の発光装置の発光部に用いる有機 EL素子においては、発光材料を含む発光層が、 別の発光材料を含む発光層と積層されて 、てもよ 、。  [0108] In the organic EL element used in the light emitting part of the light emitting device of the present invention, a polymer light emitting material can be used for the light emitting layer, but other light emitting materials may be used. In the organic EL element used for the light emitting portion of the light emitting device of the present invention, a light emitting layer containing a light emitting material may be laminated with a light emitting layer containing another light emitting material.
また、本発明の発光装置の発光部に用いる有機 EL素子で用いることのできる発光 材料としては、公知の低分子化合物、三重項発光錯体も挙げられる。  In addition, examples of the light-emitting material that can be used in the organic EL element used in the light-emitting portion of the light-emitting device of the present invention include known low-molecular compounds and triplet light-emitting complexes.
[0109] 低分子化合物では、例えば、ナフタレン誘導体、アントラセン若しくはその誘導体、 ペリレン若しくはその誘導体、ポリメチン系、キサンテン系、クマリン系、シァニン系な どの色素類、 8—ヒドロキシキノリン若しくはその誘導体の金属錯体、芳香族ァミン、テ トラフエニルシクロペンタジェン若しくはその誘導体、又はテトラフェニルブタジエン若 しくはその誘導体などを用いることができる。 [0109] Examples of the low molecular weight compound include naphthalene derivatives, anthracene or derivatives thereof, perylene or derivatives thereof, dyes such as polymethine, xanthene, coumarin, and cyanine, metal complexes of 8-hydroxyquinoline or derivatives thereof, Aromatic amine, te Troughenyl cyclopentagen or a derivative thereof, tetraphenylbutadiene or a derivative thereof can be used.
具体的には、例えば特開昭 57— 51781号、同 59— 194393号公報に記載されて いるもの等、公知のものが使用可能である。  Specifically, known ones such as those described in JP-A-57-51781 and 59-194393 can be used.
[0110] 三重項発光錯体としては、例えば、イリジウムを中心金属とする Ir(ppy) Btp Ir (a [0110] As the triplet light-emitting complex, for example, Ir (ppy) Btp Ir (a
3 2 cac)、白金を中心金属とする PtOEP、ユーロピウムを中心金属とする Eu (TTA) ph  3 2 cac), PtOEP with platinum as the central metal, Eu (TTA) ph with europium as the central metal
3 en等が挙げられる。  3 en etc.
[0111] [化 16] [0111] [Chemical 16]
PtOEP
Figure imgf000037_0001
PtOEP
Figure imgf000037_0001
[0114] [化 19]
Figure imgf000038_0001
[0114] [Chemical 19]
Figure imgf000038_0001
[0115] 三重項発光錯体は具体的には、例えば Nature, (1998) , 395, 151、Appl. Ph ys. Lett. (1999) , 75 (1) , 4、 Proc. SPIE— Int. Soc. Opt. Eng. (2001) , 41 05 (Organic Light― Emitting Materials and Devices IV) , 119、 J. Am. Chem. Soc. , (2001) , 123, 4304、 Appl. Phys. Lett. , (1997) , 71 (18) , 2 596、 Syn. Met. , (1998) , 94 (1) , 103、 Syn. Met. , (1999) , 99 (2) , 1361 、 Adv. Mater. , (1999) , 11 (10) , 852、Jpn. J. Appl. Phys. , 34, 1883 (199 5)などに記載されている。 [0115] Specific examples of triplet light-emitting complexes include Nature, (1998), 395, 151, Appl. Phys. Lett. (1999), 75 (1), 4, Proc. SPIE— Int. Soc. Opt. Eng. (2001), 41 05 (Organic Light― Emitting Materials and Devices IV), 119, J. Am. Chem. Soc., (2001), 123, 4304, Appl. Phys. Lett., (1997) , 71 (18), 2 596, Syn. Met., (1998), 94 (1), 103, Syn. Met., (1999), 99 (2), 1361, Adv. Mater., (1999), 11 (10), 852, Jpn. J. Appl. Phys., 34, 1883 (199 5).
[0116] 有機物を含む発光層の成膜方法としては、発光材料を含む溶液を基体の上又は 上方に塗布する方法、真空蒸着法、転写法などを用いることができる。  [0116] As a method for forming a light emitting layer containing an organic substance, a method of applying a solution containing a light emitting material on or above a substrate, a vacuum deposition method, a transfer method, or the like can be used.
前記発光装置は、前記有機物を含む発光層を、発光材料を含む溶液を基体の上 又は上方に塗布することにより形成することを含む方法で製造されることが好ましい。 発光材料を含む溶液を基体の上又は上方に塗布する方法としては、スピンコート、 ノズルコート、ディップコート、インクジェット、フレキソ印居 lj、グラビア印居 lj、スリットコー ト、キヤビラリ一コート、ディスペンサー、マイクロディスペンサー等の塗布法を用いる ことができる。また、昇華性の低分子化合物の場合は、真空蒸着法を用いることがで きる。さらには、レーザーによる転写や熱転写により、所望のところのみに発光層を形 成する方法も用いることができる。  The light emitting device is preferably manufactured by a method including forming the light emitting layer containing the organic substance by applying a solution containing a light emitting material on or above the substrate. As a method for applying a solution containing a light emitting material on or above a substrate, spin coating, nozzle coating, dip coating, ink jet, flexographic printing lj, gravure printing lj, slit coating, one-coat coating, dispenser, micro An application method such as a dispenser can be used. In the case of a sublimable low molecular weight compound, a vacuum deposition method can be used. Furthermore, a method of forming a light emitting layer only at a desired place by laser transfer or thermal transfer can be used.
[0117] 本発明の発光装置の発光部に用いる有機 EL素子が正孔輸送層を有する場合、使 用される正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシ ラン若しくはその誘導体、側鎖若しくは主鎖に芳香族ァミンを有するポリシロキサン誘 導体、ピラゾリン誘導体、ァリールァミン誘導体、スチルベン誘導体、トリフ 二ルジァ ミン誘導体、ポリア-リン若しくはその誘導体、ポリチオフ ン若しくはその誘導体、ポ リピロール若しくはその誘導体、ポリ(p—フエ-レンビ-レン)若しくはその誘導体、又 はポリ(2, 5—チェ-レンビ-レン)若しくはその誘導体などが例示される。 [0117] When the organic EL element used in the light emitting part of the light emitting device of the present invention has a hole transport layer, the hole transport material used may be polyvinyl carbazole or a derivative thereof, polysilane or a derivative thereof, or a side chain. Alternatively, a polysiloxane derivative having an aromatic amine in the main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, a trifluorodiamine derivative, a polyarine or a derivative thereof, a polythiophene or a derivative thereof, a polypyrrole or a derivative thereof, a poly ( p-phenol-lenylene) or a derivative thereof, Examples thereof include poly (2,5-chalenbiylene) or a derivative thereof.
[0118] 具体的には、該正孔輸送材料として、特開昭 63— 70257号公報、同 63— 17586 0号公報、特開平 2— 135359号公報、同 2— 135361号公報、同 2— 209988号公 報、同 3— 37992号公報、同 3— 152184号公報に記載されているもの等が例示さ れる。 [0118] Specifically, as the hole transport material, JP-A-63-70257, JP-A-63-17586, JP-A-2-135359, JP-A-2-135361, JP-A-2- Examples include those described in No. 209988, No. 3-37992 and No. 3-152184.
[0119] これらの中で、正孔輸送層に用いる正孔輸送材料として、ポリビュル力ルバゾール 若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミ ン化合物基を有するポリシロキサン誘導体、ポリア二リン若しくはその誘導体、ポリチ ォフェン若しくはその誘導体、ポリ(p—フエ-レンビ-レン)若しくはその誘導体、又 はポリ(2, 5—チェ-レンビ-レン)若しくはその誘導体等の高分子正孔輸送材料が 好ましぐさらに好ましくはポリビュル力ルバゾール若しくはその誘導体、ポリシラン若 しくはその誘導体、側鎖若しくは主鎖に芳香族ァミンを有するポリシロキサン誘導体 である。低分子の正孔輸送材料の場合には、高分子ノ インダ一に分散させて用いる ことが好ましい。  [0119] Among these, as a hole transport material used for the hole transport layer, polybulur rubazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine compound group in a side chain or a main chain, Polymer holes such as polyaline or derivatives thereof, polythiophene or derivatives thereof, poly (p-phenolene-ylene) or derivatives thereof, or poly (2,5-cerene vinylene) or derivatives thereof The transport material is preferably a polybulur rubazole or a derivative thereof, polysilane or a derivative thereof, and a polysiloxane derivative having an aromatic amine in the side chain or main chain. In the case of a low-molecular hole transport material, it is preferably used by dispersing it in a polymer binder.
[0120] ポリビュル力ルバゾール若しくはその誘導体は、例えばビュルモノマー力もカチォ ン重合又はラジカル重合によって得られる。  [0120] Polybour strength rubazole or a derivative thereof can be obtained, for example, by cation polymerization or radical polymerization of bulur monomer strength.
[0121] ポリシラン若しくはその誘導体としては、ケミカル 'レビュー(Chem. Rev. )第 89卷[0121] Polysilane or its derivatives include chemical 'review (Chem. Rev.) No. 89
、 1359頁(1989年)、英国特許 GB2300196号公開明細書に記載の化合物等が 例示される。合成方法もこれらに記載の方法を用いることができるが、特にキッピング 法が好適に用いられる。 1359 (1989), British Patent GB2300196, and the like. As the synthesis method, the methods described in these can be used, but the Kipping method is particularly preferably used.
[0122] ポリシロキサン若しくはその誘導体は、シロキサン骨格構造には正孔輸送性がほと んどな 、ので、側鎖又は主鎖に上記低分子正孔輸送材料の構造を有するものが好 適に用いられる。特に正孔輸送性の芳香族ァミンを側鎖又は主鎖に有するものが例 示される。 [0122] Since the polysiloxane or derivative thereof has almost no hole transporting property in the siloxane skeleton structure, those having the structure of the above low molecular hole transporting material in the side chain or main chain are preferably used. Used. In particular, those having a hole transporting aromatic amine in the side chain or main chain are exemplified.
[0123] 正孔輸送層の成膜の方法に制限はないが、低分子正孔輸送材料では、高分子バ インダ一との混合溶液力 の成膜による方法が例示される。また、高分子正孔輸送材 料では、溶液からの成膜による方法が例示される。  [0123] The method for forming the hole transport layer is not limited, but for the low molecular hole transport material, a method by film formation with a mixed solution force with a polymer binder is exemplified. In the case of a polymer hole transport material, a method by film formation from a solution is exemplified.
[0124] 溶液力もの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであれば特 に制限はない。該溶媒として、クロ口ホルム、塩化メチレン、ジクロロェタン等の塩素系 溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水 素系溶媒、アセトン、メチルェチルケトン等のケトン系溶媒、酢酸ェチル、酢酸ブチル 、ェチルセルソルブアセテート等のエステル系溶媒が例示される。 [0124] Solvents used for film formation with a solution strength are not particularly limited as long as they can dissolve the hole transport material. There is no limit. Examples of the solvent include chlorine solvents such as chloroform, methylene chloride and dichloroethane; ether solvents such as tetrahydrofuran; aromatic hydrocarbon solvents such as toluene and xylene; ketone solvents such as acetone and methyl ethyl ketone; Examples include ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate.
[0125] 溶液力 の成膜方法としては、溶液からのスピンコート法、ノズルコート法、キャステ イング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法 、ワイア一バーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレ キソ印刷法、オフセット印刷法、インクジェットプリント法、スリットコート法、キヤビラリ一 コート法、ディスペンサー法、マイクロディスペンサー法等の塗布法を用いることがで きる。  [0125] The solution force film-forming methods include spin coating from solution, nozzle coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, Dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, slit coating method, chiral coating method, dispenser method, micro dispenser method, etc. can be used. .
[0126] 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく 、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダー として、ポリカーボネート、ポリアタリレート、ポリメチルアタリレート、ポリメチルメタクリレ ート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が例示される。  [0126] The polymer binder to be mixed is preferably one that does not extremely inhibit charge transport, and one that does not strongly absorb visible light is preferably used. Examples of the polymer binder include polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polysiloxane and the like.
[0127] 正孔輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光 効率が適度な値となるように選択すればょ 、が、少なくともピンホールが発生しな!、よ うな厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って 、該正孔輸送層の膜厚としては、例えば lnmから 1 μ mであり、好ましくは 2nm〜50 Onmであり、さらに好ましくは 5ηπ!〜 200nmである。  [0127] The film thickness of the hole transport layer varies depending on the material used, and is selected so that the drive voltage and the light emission efficiency are appropriate. However, at least pinholes do not occur! Such a thickness is necessary, and if it is too thick, the drive voltage of the element becomes high, which is not preferable. Therefore, the film thickness of the hole transport layer is, for example, 1 nm to 1 μm, preferably 2 nm to 50 Onm, and more preferably 5ηπ! ~ 200nm.
[0128] 本発明の発光装置の発光部に用いる有機 EL素子が電子輸送層を有する場合、使 用される電子輸送材料としては公知のものが使用でき、ォキサジァゾール誘導体、ァ ントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン 若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシァノアンスラキノジメ タン若しくはその誘導体、フルォレノン誘導体、ジフエニルジシァノエチレン若しくは その誘導体、ジフエノキノン誘導体、又は 8—ヒドロキシキノリン若しくはその誘導体の 金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポ リフルオレン若しくはその誘導体等が例示される。  [0128] When the organic EL element used in the light emitting part of the light emitting device of the present invention has an electron transport layer, known electron transport materials can be used, such as oxadiazole derivatives, anthraquinodimethane, or the like. Derivative, benzoquinone or derivative thereof, naphthoquinone or derivative thereof, anthraquinone or derivative thereof, tetracyananthraquinodimethane or derivative thereof, fluorenone derivative, diphenyldisyanoethylene or derivative thereof, diphenoquinone derivative, or 8-hydroxyquinoline or Examples thereof include metal complexes of the derivatives, polyquinoline or a derivative thereof, polyquinoxaline or a derivative thereof, polyfluorene or a derivative thereof.
[0129] 具体的には、特開昭 63— 70257号公報、同 63— 175860号公報、特開平 2— 13 5359号公報、同 2— 135361号公報、同 2— 209988号公報、同 3— 37992号公報 、同 3— 152184号公報に記載されているもの等が例示される。 Specifically, JP-A-63-70257, JP-A-63-175860, JP-A-2-13 Examples are those described in Japanese Patent Nos. 5359, 2-135361, 2-209988, 3-37992, and 3-152184.
[0130] これらのうち、ォキサジァゾール誘導体、ベンゾキノン若しくはその誘導体、アントラ キノン若しくはその誘導体、又は 8—ヒドロキシキノリン若しくはその誘導体の金属錯 体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルォ レン若しくはその誘導体が好ましぐ 2- (4ービフエ-リル) 5—(4 t ブチルフエ -ル) 1, 3, 4—ォキサジァゾール、ベンゾキノン、アントラキノン、トリス(8 キノリノ ール)アルミニウム、ポリキノリンがさらに好ましい。  [0130] Of these, oxadiazole derivatives, benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, or metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorene or derivatives thereof 2- (4-biphenyl) 5- (4 t-butylphenol) 1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline are more preferable.
[0131] 電子輸送層の成膜法としては特に制限はないが、低分子電子輸送材料では、粉末 からの真空蒸着法、又は溶液若しくは溶融状態からの成膜による方法が、高分子電 子輸送材料では溶液又は溶融状態からの成膜による方法がそれぞれ例示される。 溶液又は溶融状態力 の成膜時には、高分子バインダーを併用してもよい。  [0131] Although there is no particular limitation on the film formation method of the electron transport layer, in the case of a low molecular electron transport material, a vacuum evaporation method from a powder or a film formation method from a solution or a molten state is used. Examples of the material include a method by film formation from a solution or a molten state. A polymer binder may be used in combination during film formation of a solution or molten state force.
[0132] 溶液力ゝらの成膜に用いる溶媒としては、電子輸送材料及び Z又は高分子バインダ 一を溶解させるものであれば特に制限はない。該溶媒として、クロ口ホルム、塩化メチ レン、ジクロロェタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルェ ン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルェチルケトン等のケトン系 溶媒、酢酸ェチル、酢酸ブチル、ェチルセルソルブアセテート等のエステル系溶媒 が例示される。  [0132] The solvent used for the film formation by the solution force is not particularly limited as long as it dissolves the electron transport material and Z or the polymer binder. Examples of the solvent include chlorine solvents such as chloroform, methyl chloride and dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, and ketone solvents such as acetone and methyl ethyl ketone. And ester solvents such as ethyl acetate, butyl acetate and ethyl cellosolve acetate.
[0133] 溶液又は溶融状態からの成膜方法としては、スピンコート法、ノズルコート法、キヤ スティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコー ト法、ワイア一バーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、 フレキソ印刷法、オフセット印刷法、インクジェットプリント法、スリットコート法、キヤビラ リーコート法、ディスペンサー法、マイクロディスペンサー法等の塗布法を用いること ができる。  [0133] As a film forming method from a solution or a molten state, a spin coating method, a nozzle coating method, a casting method, a micro gravure coating method, a gravure coating method, a bar coating method, a roll coating method, a wire bar coating method, A coating method such as a dip coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a slit coating method, a capillary coating method, a dispenser method, or a microdispenser method can be used.
[0134] 混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく 、また、可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダ 一として、ポリ(N—ビュルカルバゾール)、ポリア-リン若しくはその誘導体、ポリチォ フェン若しくはその誘導体、ポリ(p フエ-レンビ-レン)若しくはその誘導体、ポリ(2 , 5—チェ-レンビ-レン)若しくはその誘導体、ポリカーボネート、ポリアタリレート、ポ リメチルアタリレート、ポリメチルメタタリレート、ポリスチレン、ポリ塩化ビュル、又はポリ シロキサンなどが例示される。 [0134] As the polymer binder to be mixed, those not extremely disturbing charge transport are preferable, and those showing no strong absorption against visible light are suitably used. Examples of the polymer binder include poly (N-butylcarbazole), polyaline or a derivative thereof, polythiophene or a derivative thereof, poly (p-phenylene-lene) or a derivative thereof, poly (2 , 5-Cha-lenbiylene) or derivatives thereof, polycarbonate, polyacrylate, polymethyl acrylate, polymethyl methacrylate, polystyrene, polychlorinated butyl, or polysiloxane.
[0135] 電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光 効率が適度な値となるように選択すればょ 、が、少なくともピンホールが発しな 、よう な厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、 該電子輸送層の膜厚としては、例えば lnmから 1 μ mであり、好ましくは 2ηπ!〜 500 nmであり、さらに好ましくは 5ηπ!〜 200nmである。  [0135] The thickness of the electron transport layer varies depending on the material used, and is selected so that the drive voltage and light emission efficiency are appropriate. However, the thickness is such that at least no pinholes are generated. If the thickness is too thick, the driving voltage of the element increases, which is not preferable. Therefore, the thickness of the electron transport layer is, for example, 1 nm to 1 μm, and preferably 2ηπ! ~ 500 nm, more preferably 5ηπ! ~ 200nm.
[0136] 本発明の発光装置の発光部に用いる有機 EL素子を形成する基体は、電極を形成 し、有機物の層を形成する際に変化しないものであればよぐ例えばガラス、プラスチ ック、高分子フィルム、シリコン基体 (基板)などが例示される。不透明な基体の場合 には、反対の電極が透明又は半透明であることが好ましい。  [0136] The substrate on which the organic EL element used in the light-emitting portion of the light-emitting device of the present invention is formed is not particularly limited as long as it forms an electrode and does not change when an organic layer is formed, for example, glass, plastic, Examples thereof include a polymer film and a silicon substrate (substrate). In the case of an opaque substrate, the opposite electrode is preferably transparent or translucent.
[0137] 本発明にお 、て、陽極側が透明又は半透明であることが好ま 、が、該陽極の材 料としては、導電性の金属酸化物膜、半透明の金属薄膜等が用いられる。具体的に は、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム'ス ズ 'オキサイド (ITO)、インジウム '亜鉛'オキサイド等力もなる導電性ガラスを用いて 作成された膜 (NES Aなど)や、金、白金、銀、銅等が用いられ、 ITO、インジウム '亜 鉛'オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング 法、イオンプレーティング法、メツキ法等が挙げられる。また、該陽極として、ポリア-リ ン若しくはその誘導体、ポリチオフヱン若しくはその誘導体などの有機の透明導電膜 を用いてもよい。  [0137] In the present invention, the anode side is preferably transparent or translucent, but as the material of the anode, a conductive metal oxide film, a translucent metal thin film, or the like is used. Specifically, indium oxide, zinc oxide, tin oxide, and their composites such as indium 'sud' oxide (ITO), indium 'zinc' oxide, etc. NES A, etc.), gold, platinum, silver, copper and the like are used, and ITO, indium “lead” oxide and tin oxide are preferable. Examples of the production method include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Further, an organic transparent conductive film such as polyarylene or a derivative thereof, polythiophene or a derivative thereof may be used as the anode.
[0138] 陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができる [0138] The film thickness of the anode can be appropriately selected in consideration of light transmittance and electrical conductivity.
1S 例えば lOnmから 10 μ mであり、好ましくは 20nm〜l μ mであり、さらに好ましく は 50nm〜500nmである。 1S For example, lOnm to 10 μm, preferably 20 nm to l μm, more preferably 50 nm to 500 nm.
また、陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高 分子、カーボンなどカゝらなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材 料等力もなる平均膜厚 2nm以下の層を設けてもよい。  Also, on the anode, in order to facilitate charge injection, an average film thickness such as a phthalocyanine derivative, a conductive polymer, a layer such as carbon, or a metal oxide, metal fluoride, organic insulating material, etc. A layer of 2 nm or less may be provided.
[0139] 本発明の発光装置の発光部に用いる有機 EL素子で用いる陰極の材料としては、 仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジゥ ム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、ノ リウム、アルミ二 ゥム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、 ユーロピウム、テルビウム、イッテルビウムなどの金属、又はそれらのうち 2つ以上の合 金、又はそれらのうち 1つ以上と、金、銀、白金、銅、マンガン、チタン、コノ レト、 -ッ ケル、タングステン、錫のうち 1つ以上との合金、又はグラフアイト若しくはグラフアイト 層間化合物等が用いられる。合金の例としては、マグネシウム 銀合金、マグネシゥ ムーインジウム合金、マグネシウム アルミニウム合金、インジウム 銀合金、リチウム アルミニウム合金、リチウム マグネシウム合金、リチウム インジウム合金、カルシ ゥム—アルミニウム合金などが挙げられる。陰極を 2層以上の積層構造としてもよい。 [0139] As a material of the cathode used in the organic EL element used in the light emitting portion of the light emitting device of the present invention, A material with a low work function is preferred. For example, lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, norium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, etc. Metal, or two or more of them, or one or more of them, and one or more of gold, silver, platinum, copper, manganese, titanium, conoret, nickel, tungsten, tin Or graphite or graphite intercalation compound. Examples of the alloy include magnesium silver alloy, magnesium mu indium alloy, magnesium aluminum alloy, indium silver alloy, lithium aluminum alloy, lithium magnesium alloy, lithium indium alloy, calcium aluminum alloy, and the like. The cathode may have a laminated structure of two or more layers.
[0140] 陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例 えば lOnmから 10 μ mであり、好ましくは 20nm〜l μ mであり、さらに好ましくは 50η m〜500nmでめ <s。 [0140] The film thickness of the cathode can be appropriately selected in consideration of electrical conductivity and durability. For example, the thickness is 10 μm from lOnm, preferably 20 nm to 1 μm, and more preferably. Is <s for 50ηm ~ 500nm.
[0141] 陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着 するラミネート法等が用いられる。また、陰極と有機物層との間に、導電性高分子から なる層、又は金属酸化物や金属フッ化物、有機絶縁材料等カゝらなる平均膜厚 2nm 以下の層を設けてもよぐ陰極作製後、該高分子 LEDを保護する保護層を装着して いてもよい。該高分子 LEDを長期安定的に用いるためには、素子を外部から保護す るために、保護層及び Z又は保護カバーを装着することが好まし 、。  [0141] As a method for producing the cathode, a vacuum deposition method, a sputtering method, a laminating method in which a metal thin film is thermocompression-bonded, or the like is used. In addition, a cathode made of a conductive polymer, or a layer having an average film thickness of 2 nm or less such as a metal oxide, metal fluoride, or organic insulating material may be provided between the cathode and the organic material layer. After fabrication, a protective layer for protecting the polymer LED may be attached. In order to use the polymer LED stably for a long period of time, it is preferable to attach a protective layer and Z or a protective cover in order to protect the element from the outside.
[0142] 該保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物など を用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を 施したプラスチック板などを用いることができ、該カバーを熱効果榭脂ゃ光硬化榭脂 で素子基体と貼り合わせて密閉する方法が好適に用いられる。スぺーサーを用いて 空間を維持すれば、素子が傷付くのを防ぐことが容易である。該空間に窒素やアル ゴンのような不活性なガスを封入すれば、陰極の酸ィ匕を防止することができ、さらに 酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分 が素子にダメージを与えるのを抑制することが容易となる。これらのうち、いずれか 1 つ以上の方策をとることが好ま 、。 [0143] 本発明の発光装置の実施形態としては、 ITOなどの透明電極を形成した透明な基 体を用い、その上又は上方に発光部となる有機 EL素子を形成することにより、基体 の側力も光を取り出すことができる。この場合、基体は透明又は半透明であればよぐ ガラス、プラスチックなどが例示される。 [0142] As the protective layer, a polymer compound, metal oxide, metal fluoride, metal boride and the like can be used. Further, as the protective cover, a glass plate, a plastic plate having a low water permeability treatment on the surface, or the like can be used, and the cover is bonded to the element substrate with a heat effect resin or a photocured resin and sealed. Are preferably used. If the space is maintained using a spacer, it is easy to prevent the element from being damaged. If an inert gas such as nitrogen or argon is sealed in the space, it is possible to prevent the oxidation of the cathode, and further, by installing a desiccant such as barium oxide in the space in the manufacturing process. It becomes easy to suppress the adsorbed moisture from damaging the device. Of these, it is preferable to take one or more measures. As an embodiment of the light-emitting device of the present invention, a transparent substrate formed with a transparent electrode such as ITO is used, and an organic EL element serving as a light-emitting portion is formed on or above the transparent substrate. Power can also extract light. In this case, it is sufficient if the substrate is transparent or translucent. Examples thereof include glass and plastic.
[0144] また別の実施形態としては、基体の上又は上方に電極と有機物を含む発光層を順 次形成し、その上又は上方に形成する電極を透明なものにすることで、基体とは反対 の方向に光を取出すことができる。該透明電極としては、光が透過する程度に薄い 金属薄膜と ΙΤΟなどの透明電極を組み合わせたものが例示される。この場合、基体 は必ずしも透明でなくてもよいので、 Siウェハなどを用いることもできる。  [0144] In another embodiment, the substrate is formed by sequentially forming a light emitting layer containing an electrode and an organic substance on or above the substrate, and making the electrode formed on or above the substrate transparent. Light can be extracted in the opposite direction. Examples of the transparent electrode include a combination of a thin metal film thin enough to transmit light and a transparent electrode such as a bag. In this case, since the substrate is not necessarily transparent, a Si wafer or the like can be used.
[0145] 本発明の発光装置は、有機 EL素子を光源としており、適宜封止を行うことが必要 である。封止の方法としては、金属缶やガラス板などを背面力 貼り付ける方法が簡 便であるが、有機物 Z無機物の多層積層膜 (有機物と無機物を交互に重ねて組み 合わせた薄膜)による膜封止を用いることもできる。この場合、膜封止のメリットを生か すためには、該薄膜の厚さが全部で lmm未満であることが好ましい。  [0145] The light-emitting device of the present invention uses an organic EL element as a light source, and needs to be appropriately sealed. As a sealing method, a method of attaching a metal can, a glass plate, or the like with a back force is simple, but a film sealing with a multilayer laminated film of organic matter Z inorganic matter (a thin film in which organic matter and inorganic matter are alternately laminated) is sealed. Stops can also be used. In this case, in order to take advantage of membrane sealing, the thickness of the thin film is preferably less than 1 mm in total.
[0146] 本発明の発光装置の発光部に用いる有機 EL素子では、陽極と陰極が重なり合うよ うに配置すればよい。また、特定の部分に発光する画素を形成するためには、発光 部分に対応する窓を設けて画素を設置する方法、非発光部の有機物層を極端に厚 く形成し実質的に非発光とする方法、陽極又は陰極のいずれか一方、又は両方の電 極を所望のパターン状に形成する方法などがある。これらの ヽずれかの方法で画素 を形成し、いくつかの電極を独立に印加電圧 (又は電流)の制御(例えば ONZOFF の制御)できるように配置して、駆動回路と接続することで、本発明の発光装置の発 光部とすることができる。  [0146] In the organic EL element used in the light emitting portion of the light emitting device of the present invention, the anode and the cathode may be arranged so as to overlap each other. In addition, in order to form a pixel that emits light in a specific part, a method of providing a pixel by providing a window corresponding to the light-emitting part, an organic layer of a non-light-emitting part is formed extremely thick and substantially non-light-emitting Or a method of forming either or both of the anode and the cathode in a desired pattern. A pixel is formed by one of these methods, and several electrodes are arranged so that the applied voltage (or current) can be controlled independently (for example, ONZOFF control) and connected to the drive circuit. It can be set as the light emission part of the light-emitting device of invention.
[0147] 本発明の発光装置は、例えば、電子写真方式の感光部と組み合わせることで、複 写機、ファクシミリ、プリンタ、スキャナーなどに用いることができる。また、 CCDなどと 組み合わせることで、画像を電子情報に置き換えて、記録することもできる。  [0147] The light-emitting device of the present invention can be used for a copying machine, a facsimile, a printer, a scanner, and the like, for example, in combination with an electrophotographic photosensitive part. In combination with a CCD, images can be replaced with electronic information and recorded.
[0148] 本発明の発光装置は、画素の面に相対して、該画素が発した光を受光して機能す る素子を更に配置することで、画像形成装置として作動する。受光して機能する素子 としては、電子写真方式の感光部(光を受けることにより、電荷の移動、電荷の消失 などが起こる)、 CCDなどが例示される。 [0148] The light emitting device of the present invention operates as an image forming apparatus by further disposing an element that functions by receiving light emitted from the pixel relative to the surface of the pixel. An element that receives light and functions as an electrophotographic photosensitive part (transfers charges and loses charge when exposed to light. Etc.), CCD etc. are exemplified.
例えば、図 5は、電子写真方式の感光部を受光部とし、発光部と組み合わせた例で ある。図 6は、複写機、ファクシミリ等に用いられる、発光部と感光部を組み合わせた 画像形成装置の例である。また、図 9は、 CCD等を受光部として発光部と組み合わ せることで、画像を電子情報に置きかえ記録することができる装置の例であり、スキヤ ナ一に利用される。  For example, FIG. 5 shows an example in which an electrophotographic photosensitive portion is used as a light receiving portion and combined with a light emitting portion. FIG. 6 shows an example of an image forming apparatus combining a light emitting portion and a photosensitive portion, which is used in a copying machine, a facsimile, and the like. Fig. 9 shows an example of an apparatus that can record and replace an image with electronic information by combining a CCD or the like with a light emitting part as a light receiving part, and is used for a scanner.
[0149] さらに、本発明の発光装置の発光部は、一次元に並んだ画素力 なっていてもよい し、平面に二次元に配置した画素力もなつていてもよい。また、相対する受光部に対 して、間隔を一定に保ったままで移動する機構を有していれば、二次元の画像情報 を順次描画することが可能となる。  [0149] Further, the light emitting unit of the light emitting device of the present invention may have a pixel force arranged in one dimension, or may have a pixel force arranged two-dimensionally on a plane. In addition, if there is a mechanism for moving the light-receiving portions facing each other while maintaining a constant interval, two-dimensional image information can be sequentially drawn.
[0150] 以下、本発明をさらに詳細に説明するために実施形態の例を示すが、本発明はこ れらに限定されるものではない。  [0150] Hereinafter, examples of the embodiment will be shown to describe the present invention in more detail, but the present invention is not limited to these.
[0151] 例 1  [0151] Example 1
スパッタ法により 150nmの厚みで ITO膜を付けたガラス基体に対し、フォトレジスト を用いて ITOと、後ほど形成する陰極とが重なる部分 (画素)が所望のサイズとレイァ ゥトとなるように、エッチングする。  Etch a glass substrate with a 150 nm thick ITO film by sputtering so that the portion (pixel) where ITO overlaps with the cathode that will be formed later is the desired size and layout using a photoresist. To do.
前記 ITO付きガラス基体上に、ポリ(3, 4—エチレンジォキシチォフェン) Zポリスチ レンスルホン酸(Bayer社製、 BaytronP AI4083)の懸濁液を 0. 2 /z mメンブラン フィルターで濾過した液を用いて、スピンコートにより約 70nmの厚みで薄膜を形成し 、ホットプレート上で 200°C、 10分間乾燥する。次に、高分子発光材料のキシレン溶 液(1〜2重量0 /0)を用いて、スピンコートにより約 80nmの発光層を形成する。さらに 、これを減圧下 80°Cで 1時間乾燥した後、カルシウムを約 5nm、次いでアルミニウム を約 80nm蒸着して陰極を形成する。陰極は ITOと重なる部分が所望のサイズとレイ アウトとなるように、マスク等を用いてパターン状に形成する。 A solution obtained by filtering a suspension of poly (3,4-ethylenedioxythiophene) Z-polystyrene sulfonic acid (Bayer, BaytronP AI4083) through a 0.2 / zm membrane filter onto the ITO glass substrate. A thin film with a thickness of about 70 nm is formed by spin coating, and dried on a hot plate at 200 ° C. for 10 minutes. Next, using xylene solvent solution of polymer light-emitting material (1-2 wt 0/0), to form a light emitting layer of about 80nm by spin-coating. Further, this is dried at 80 ° C. under reduced pressure for 1 hour, and then, about 5 nm of calcium and then about 80 nm of aluminum are evaporated to form a cathode. The cathode is formed in a pattern using a mask or the like so that the portion overlapping with ITO has the desired size and layout.
上記方法により、画素ピッチ 50 μ m、画素サイズ 25 mX mの有機 EL素子 アレイを作製する。この際に、画素の間隔は、 25 ^ 111-eL X 2=Lとなるように配置  By the above method, an organic EL element array with a pixel pitch of 50 μm and a pixel size of 25 mX m is manufactured. At this time, the pixel spacing is 25 ^ 111-eL X 2 = L
1 2  1 2
する(Τ1 = 25 πι、 Τ2 = 50 πι、 L = 25 m、: L = 50 m、 n= 2の例)。  (Τ1 = 25 πι, Τ2 = 50 πι, L = 25 m, L: 50 m, n = 2)
1 2  1 2
駆動時には、発光させている画素において発熱する力 画素サイズと画素の間隔 を上記条件で形成した場合は、周囲への放熱もより起こりやすくなるため、熱によるダ メージを小さくすることができ、より長時間の駆動が可能となる。 Force that generates heat in the light-emitting pixels during driving Pixel size and pixel spacing When the film is formed under the above conditions, heat radiation to the surroundings is more likely to occur, so that damage caused by heat can be reduced and driving for a longer time is possible.
[0152] 例 2 (燐光材料を用いた例)  [0152] Example 2 (Example using phosphorescent material)
例 1における高分子発光材料に代えて、高分子発光材料と三重項発光錯体の混 合物を用いたことを除いては例 1と同様にして有機 EL素子を作製する。この素子は 駆動時には発光させて 、る画素にぉ 、て発熱するが、画素サイズと画素の間隔を例 1と同じ条件で形成する場合、周囲への放熱が起こりやすくなるので、熱〖こよるダメー ジを小さくすることができ、より長時間の駆動が可能となる。  An organic EL device is fabricated in the same manner as in Example 1 except that instead of the polymer light emitting material in Example 1, a mixture of the polymer light emitting material and the triplet light emitting complex is used. This element emits light when it is driven and generates heat. However, when the pixel size and the pixel interval are formed under the same conditions as in Example 1, heat dissipation tends to occur to the surroundings. The damage can be reduced, and a longer driving time is possible.
[0153] 例 3 (低分子蛍光材料を用いた例)  [0153] Example 3 (Example using low-molecular fluorescent material)
例 1において、高分子発光材料を塗布 (スピンコート)する代わりに、試料を真空蒸 着装置に入れて、ポリ(3, 4—エチレンジォキシチォフェン)/ポリスチレンスルホン酸 の懸濁液の塗布層の上に、低分子蛍光材料を蒸着して発光層を形成し、引き続いて 低分子の電子輸送性材料を蒸着して電子輸送層を形成する。さらに引き続いて、力 ルシゥムを 5nm、アルミニウムを約 80nm蒸着して陰極を形成する。陰極のパターン は例 1と同じものを使用して有機 EL素子を作製する。  In Example 1, instead of applying a polymer light-emitting material (spin coating), the sample was placed in a vacuum evaporator and a suspension of poly (3,4-ethylenedioxythiophene) / polystyrene sulfonic acid was used. On the coating layer, a low molecular fluorescent material is vapor-deposited to form a light emitting layer, and then a low molecular electron transporting material is vapor-deposited to form an electron transport layer. Subsequently, the cathode is formed by depositing 5 nm of force and about 80 nm of aluminum. The organic EL device is fabricated using the same cathode pattern as in Example 1.
この素子は駆動時には発光させている画素において発熱する力 画素サイズと画 素の間隔を例 1と同じ条件で形成する場合、周囲への放熱が起こりやすくなるので、 熱によるダメージを小さくすることができ、より長時間の駆動が可能となる。  This element generates heat in the pixel that emits light during driving.When the pixel size and pixel spacing are formed under the same conditions as in Example 1, heat dissipation to the surroundings is likely to occur, so heat damage can be reduced. Can be driven for a longer time.
[0154] 比較例  [0154] Comparative Example
例 1にお!/、て、画素ピッチ 50 μ m、画素サイズ 40 m X 50 mの有機 EL素子ァ レイを作製する。この際に、画素間の間隔は、 10 /z mで L X 5 =Lとなるように配置  In Example 1, an organic EL element array with a pixel pitch of 50 μm and a pixel size of 40 m × 50 m is fabricated. At this time, the spacing between the pixels is 10 / z m, so that L X 5 = L
1 2  1 2
する(Tl =40 m、T2 = 50 m、L = 10 m、L = 50 m、 n= 5の例)。例 1と同  (Tl = 40 m, T2 = 50 m, L = 10 m, L = 50 m, n = 5) Same as example 1
1 2  1 2
様にして有機 EL素子を作製する。この素子は駆動時における放熱が不十分である ため熱ダメージを受け劣化速度が速 、。  In this way, an organic EL device is manufactured. Because this element has insufficient heat dissipation during driving, it is damaged by heat and has a high rate of deterioration.
[0155] 例 1〜3と比較例とを比較すると、画素レイアウトを適宜選定することで、耐久性が改 善することが分かる。これらの特性は、画像形成のための発光装置として非常に優れ た'性質である。 [0155] When Examples 1 to 3 are compared with the comparative example, it can be seen that the durability is improved by appropriately selecting the pixel layout. These characteristics are very excellent properties as a light emitting device for image formation.
図面の簡単な説明 [0156] [図 1]発光装置の構造 (断面)を示す図である。 Brief Description of Drawings FIG. 1 is a diagram showing a structure (cross section) of a light emitting device.
[図 2]発光装置の構成例を示す図である。  FIG. 2 is a diagram showing a configuration example of a light emitting device.
[図 3]画素の幅 (L )と隣接する画素との間隔 (L )を示す図である。  FIG. 3 is a diagram illustrating a pixel width (L) and an interval (L) between adjacent pixels.
2 1  twenty one
[図 4]発光素子アレイの直線方向長さ (T1)と直角方向長さ (T2)を示す図である。  FIG. 4 is a diagram showing a linear direction length (T1) and a perpendicular direction length (T2) of the light emitting element array.
[図 5]発光部と受光部の配置例を示す図である。  FIG. 5 is a diagram showing an arrangement example of a light emitting unit and a light receiving unit.
[図 6]画像形成装置の例を示す図である。  FIG. 6 is a diagram illustrating an example of an image forming apparatus.
[図 7]発光部、受光部、集光素子の配置例を示す図である。  FIG. 7 is a diagram illustrating an arrangement example of a light emitting unit, a light receiving unit, and a light collecting element.
[図 8]集光素子による集光を示す図である。  FIG. 8 is a diagram showing light collection by a light collecting element.
[図 9]画像記憶装置の例を示す図である。  FIG. 9 is a diagram showing an example of an image storage device.
符号の説明  Explanation of symbols
[0157] 1 基体 [0157] 1 Base
2 陽極  2 Anode
3 有機物を含む層  3 Layer containing organic matter
4 陰極  4 Cathode
5 封止層  5 Sealing layer
6 画素  6 pixels
7 駆動回路  7 Drive circuit
8 制御回路  8 Control circuit
9 発光している画素  9 Pixels emitting light
10 発光していない画素  10 Pixels not emitting light
11 受光して電荷移動した部分  11 The part that received charge and moved
12 受光せず表面帯電した部分  12 Surface-charged part that does not receive light
13 感光ドラム  13 Photosensitive drum
14 帯電器  14 Charger
15 光源 (有機 EL)  15 Light source (organic EL)
16 現像器  16 Developer
17 転写器  17 Transfer device
18 定着器 除電器 18 Fixing unit Static eliminator
クリーナー Cleaner
Paper
光源 (有機 EL) 受光素子(CCDなど) 制御回路 Light source (organic EL) Light receiving element (CCD, etc.) Control circuit
記憶装置 Storage device
集光素子 Condensing element

Claims

請求の範囲 The scope of the claims
[1] 陽極及び陰極と、その間に挟まれた、少なくとも 1層の有機物を含む発光層を有し、 電極間に電流を流すことで発光する素子力 なる画素 2個以上を有する発光装置に おいて、すべての画素が同一の基体の上又は上方に形成されており、各画素の電 極のうち少なくとも一方の電極が、各画素ごとに独立に駆動回路と接続され、独立に 印加電圧又は電流の制御が可能であり、各画素において隣接する画素との間隔の 最小値を L、画素の最大幅を Lとすると、 L X n≥L 〔ここで、 nは 0. 1以上 3以下の  [1] A light-emitting device having an anode and a cathode, and a light-emitting layer containing at least one organic substance sandwiched between the anode and the cathode, and having two or more pixels having elemental power that emits light by passing a current between the electrodes. And all the pixels are formed on or above the same substrate, and at least one of the electrodes of each pixel is independently connected to the drive circuit for each pixel, and the applied voltage or current is independently LX n≥L (where n is 0.1 or more and 3 or less, where L is the minimum distance between adjacent pixels and L is the maximum width of each pixel)
1 2 1 2  1 2 1 2
数を表す。〕であり、かっしが 100 m以下であることを特徴とする上記発光装置。  Represents a number. The light emitting device is characterized in that the bracket is 100 m or less.
2  2
[2] 前記 nが 0. 1以上 2以下の数を表す請求項 1記載の発光装置。  2. The light emitting device according to claim 1, wherein n represents a number of 0.1 or more and 2 or less.
[3] 前記 L力 μ m未満である請求項 1又は 2に記載の発光装置。 [3] The light emitting device according to claim 1 or 2, wherein the L force is less than μm.
2  2
[4] 前記発光装置が直線的に配列した発光素子アレイ力 なり、各画素の大きさが直 線方向の長さよりも、直線と直角方向の長さの方が大きい、請求項 1〜3のいずれか 一項に記載の発光装置。  [4] The light-emitting element array force in which the light-emitting devices are linearly arranged, and the size of each pixel is larger in length in the direction perpendicular to the straight line than in length in the straight-line direction. The light emitting device according to any one of the above.
[5] 前記画素の面に相対して、該画素が発した光を受光して機能する受光素子を更に 配置してなり、画像形成装置として作動する請求項 1〜4のいずれか一項に記載の 発光装置。 [5] The method according to any one of [1] to [4], wherein a light receiving element that functions by receiving light emitted from the pixel is further disposed relative to the surface of the pixel, and operates as an image forming apparatus. The light emitting device described.
[6] 前記画素とこれに相対する前記受光素子との間に、該画素が発した光を受光素子 上に集光する機能を有する集光素子を有する画像形成装置として作動する請求項 5 記載の発光装置。  6. The image forming apparatus according to claim 5, wherein the image forming apparatus has a condensing element having a function of condensing light emitted from the pixel on the light receiving element between the pixel and the light receiving element opposed thereto. Light-emitting device.
[7] 前記集光素子の集光機能が、主に発光素子アレイの直線方向と垂直面内で、光を 集光する作用を有する請求項 6記載の発光装置。  7. The light emitting device according to claim 6, wherein the light condensing function of the light condensing element has a function of condensing light mainly in a plane perpendicular to the linear direction of the light emitting element array.
[8] 前記発光層に含まれる有機物のうち少なくとも 1種類が、燐光を有する化合物であ る請求項 1〜7のいずれか一項に記載の発光装置。 [8] The light emitting device according to any one of [1] to [7], wherein at least one of the organic substances contained in the light emitting layer is a phosphorescent compound.
[9] 前記発光層に含まれる有機物のうち少なくとも 1種類が、式(1)で表される繰り返し 単位を 1種類以上含む高分子化合物である請求項 1〜8のいずれか一項に記載の 発光装置。 [9] The organic compound contained in the light emitting layer is at least one type of polymer compound containing one or more types of repeating units represented by the formula (1). Light emitting device.
Ar  Ar
1 …ひ)  1 ... hi)
〔ここで、 Arは、ァリーレン基、二価の複素環化合物基及び二価の芳香族アミン基か らなる群から選ばれる基を示す。〕 [Where Ar is an arylene group, a divalent heterocyclic compound group or a divalent aromatic amine group; A group selected from the group consisting of: ]
[10] 前記発光層に含まれる有機物のうち少なくとも 1種類が、蛍光を有する化合物であ る請求項 1〜9のいずれか一項に記載の発光装置。  [10] The light emitting device according to any one of [1] to [9], wherein at least one of the organic substances contained in the light emitting layer is a compound having fluorescence.
[11] 請求項 1〜10のいずれか一項に記載の発光装置の製造方法において、前記有機 物を含む発光層を、発光材料を含む溶液を基体の上又は上方に塗布することにより 形成することを含む上記製造方法。 [11] In the method for manufacturing a light emitting device according to any one of claims 1 to 10, the light emitting layer containing the organic substance is formed by applying a solution containing a light emitting material on or above the substrate. The said manufacturing method including this.
PCT/JP2007/052723 2006-02-24 2007-02-15 Light-emitting device WO2007099778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006048368 2006-02-24
JP2006-048368 2006-02-24

Publications (1)

Publication Number Publication Date
WO2007099778A1 true WO2007099778A1 (en) 2007-09-07

Family

ID=38458892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052723 WO2007099778A1 (en) 2006-02-24 2007-02-15 Light-emitting device

Country Status (2)

Country Link
TW (1) TW200746411A (en)
WO (1) WO2007099778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140922A (en) * 2007-11-16 2009-06-25 Sumitomo Chemical Co Ltd Coating liquid for application method of discharging coating liquid from slit-shaped discharge port

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127491A (en) * 1998-10-22 2000-05-09 Canon Inc Exposure device and image forming device
JP2000289249A (en) * 1999-04-13 2000-10-17 Canon Inc Exposing unit and imaging apparatus employing it
JP2004034541A (en) * 2002-07-04 2004-02-05 Casio Comput Co Ltd Exposure device
JP2004315809A (en) * 2003-03-31 2004-11-11 Sumitomo Chem Co Ltd Polymer and polymeric light-emitting element by using the same
JP2005138351A (en) * 2003-11-05 2005-06-02 Seiko Epson Corp Line head and image forming apparatus employing the same
JP2005327488A (en) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd Light source, exposing device, image formation device using it, and light entering method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000127491A (en) * 1998-10-22 2000-05-09 Canon Inc Exposure device and image forming device
JP2000289249A (en) * 1999-04-13 2000-10-17 Canon Inc Exposing unit and imaging apparatus employing it
JP2004034541A (en) * 2002-07-04 2004-02-05 Casio Comput Co Ltd Exposure device
JP2004315809A (en) * 2003-03-31 2004-11-11 Sumitomo Chem Co Ltd Polymer and polymeric light-emitting element by using the same
JP2005138351A (en) * 2003-11-05 2005-06-02 Seiko Epson Corp Line head and image forming apparatus employing the same
JP2005327488A (en) * 2004-05-12 2005-11-24 Matsushita Electric Ind Co Ltd Light source, exposing device, image formation device using it, and light entering method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009140922A (en) * 2007-11-16 2009-06-25 Sumitomo Chemical Co Ltd Coating liquid for application method of discharging coating liquid from slit-shaped discharge port

Also Published As

Publication number Publication date
TW200746411A (en) 2007-12-16

Similar Documents

Publication Publication Date Title
JP5257489B2 (en) Polymer phosphor and polymer light emitting device using the same
KR102018491B1 (en) Monoamine compound, charge-transporting material, composition for charge-transporting film, organic electroluminescent element, organic el display device and organic el lighting
US8927115B2 (en) Organic electroluminescent device
JP2011142342A (en) Composition for organic device, polymer membrane, and organic electroluminescent element
JP4934888B2 (en) Polymer phosphor and polymer light emitting device using the same
JP4934889B2 (en) Polymer phosphor and polymer light emitting device using the same
KR102160394B1 (en) Process for manufacturing organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
JP2008098619A (en) Organic electroluminescent device
KR20110000733A (en) Organic electroluminescence element and method for manufacturing the same
WO2008016067A1 (en) Polymer compound and polymer light-emitting device
WO2007064034A1 (en) Polymer compound and polymer light-emitting device using same
WO2008016091A1 (en) Polymer compound and polymer light-emitting device using the same
WO2007081058A1 (en) Polymer compound and polymer light-emitting device using same
JP4985441B2 (en) Polymer compound, organic electroluminescent device material, composition for organic electroluminescent device, and organic electroluminescent device
JP2008056910A (en) Polymeric compound and polymeric light-emitting device using the same
EP1930392B1 (en) Light-emitting material containing metal complex and photoelectric device using same
JP2004362930A (en) Organic electroluminescent element, charge transport material, and organic electroluminescent element material
WO2011019025A1 (en) Organic electroluminescent element, organic el display device, and organic el lighting device
JP2009091559A (en) Metal complex-containing composition and element using the same
JP5402703B2 (en) Organic electroluminescence device, organic EL display, organic EL lighting, and organic EL signal device
WO2007099778A1 (en) Light-emitting device
JP2007258688A (en) Light-emitting device
JP2009132882A (en) Polymer compound and polymer light emitting element using it
WO2007043439A1 (en) Polymer and polymeric luminescent element employing the same
JP4078961B2 (en) Bisaminophenylmethane compounds and charge transport materials, organic electroluminescent device materials and organic electroluminescent devices using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714253

Country of ref document: EP

Kind code of ref document: A1