WO2007099610A1 - リーダ装置 - Google Patents

リーダ装置 Download PDF

Info

Publication number
WO2007099610A1
WO2007099610A1 PCT/JP2006/303776 JP2006303776W WO2007099610A1 WO 2007099610 A1 WO2007099610 A1 WO 2007099610A1 JP 2006303776 W JP2006303776 W JP 2006303776W WO 2007099610 A1 WO2007099610 A1 WO 2007099610A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
communication channel
reader device
frequency
Prior art date
Application number
PCT/JP2006/303776
Other languages
English (en)
French (fr)
Inventor
Kazuya Toki
Masao Otani
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to PCT/JP2006/303776 priority Critical patent/WO2007099610A1/ja
Priority to JP2008502597A priority patent/JPWO2007099610A1/ja
Publication of WO2007099610A1 publication Critical patent/WO2007099610A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer

Definitions

  • the present invention relates to a reader device, and more particularly to a reader device for reading information of an RF tag.
  • Wireless LAN devices and RFID tag systems use high frequency radio waves such as UHF (Ultra High Frequency) band, for example, and operate in cooperation with similar devices existing at relatively short power distances.
  • UHF Ultra High Frequency
  • a receiver of a direct conversion system corresponds to a carrier sense multiple access packet radio communication system, and a narrow band low pass filter is inserted into a received signal converted to a radio frequency power baseband frequency to detect electric field strength.
  • the wireless tag is made to receive a transmission radio wave from a portable telephone as a general-purpose radio wave transmission source, the transmission radio wave is used as an operation power source to put the wireless tag into an operable state, and the transmission radio wave is received While the radio wave is being received,
  • the operating power of the wireless tag S can be easily and economically secured for the transmission radio wave power other than that of the S reader / writer.
  • Patent Document 1 Japanese Patent Application Publication No. 2003-347946
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-54515
  • the wireless tag detects and rectifies the RF signal sent out by the reader device to generate an electromotive force, and applies load modulation to a CW (Carrier Wave) signal shown in FIG. 1 sent out by the reader device. respond.
  • the reader device applies ASK (Amplitude Shift Keying) modulation or the like to transmit a spectrum signal as shown in FIG.
  • the transmission frequency and the reception frequency are the same, when transmitting a CW signal, after frequency conversion by the direct conversion method, it becomes OHz, that is, DC, and this DC component interferes with the reception system.
  • the DC component is cut by a high-pass filter (HPF) or a DC cut capacitor after frequency conversion.
  • HPF high-pass filter
  • the reader apparatus is provided with a carrier sense function while trying to detect signal power other than that of its own station, and if the detection target is a CW signal, then HPF as shown in FIG. This causes a problem that the power detection of the CW signal can not be performed correctly because it is cut off together with the removal of the DC component by this. Also, as shown in FIG. 4, in the case of a modulated spectral signal (modulated signal), most of the energy of the spectral signal is f
  • the object of the present invention is to shift the oscillation frequency of the local signal within the range of the signal passband of the filter used for the reception system during carrier sensing, to obtain a CW signal or spectrum signal. It is to provide a reader device that correctly detects the received power of the
  • a reader device is a reader device that reads information from a wireless tag by wireless communication, and includes: oscillating means for oscillating a local signal according to communication channel settings; and a received signal received from the wireless tag.
  • oscillating means for oscillating with a local signal
  • filtering means for filtering the demodulated demodulated signal to extract a predetermined frequency band signal, and for scanning a communication channel between the wireless tag
  • control means for supplying to the oscillation means a control signal for shifting the communication channel set in the oscillation means within the signal pass band of the filter means.
  • the oscillation frequency of the local signal is shifted within the range of the signal passband of the filter used for the receiving system to correctly detect the received power of the CW signal or the spectrum signal. be able to.
  • FIG. 1 is a view showing an example of a CW signal transmitted by a conventional reader device.
  • FIG. 2 A diagram showing an example of a modulation signal transmitted by a conventional reader device.
  • FIG. 4 A diagram showing an example of interruption of a modulation signal by HPF in a conventional reader device
  • FIG. 5 A block diagram showing the configuration of a reader device according to an embodiment of the present invention
  • FIG. 6 A diagram for explaining the principle of the operation of shifting the frequency of the local signal according to the present embodiment.
  • FIG. 7 A diagram showing an example of a signal received by another station at the time of carrier sensing according to the present embodiment is a modulated signal.
  • FIG. 8 A diagram showing frequency characteristics of HPF and LPF of the receiving system of the reader apparatus according to the present embodiment.
  • FIG. 9 A diagram showing the setting range of the local signal frequency in the reader device according to the present embodiment.
  • FIG. 10 Carrier sense processing performed by the control unit in the reader device according to the present embodiment Flow chart
  • FIG. 11 A diagram showing an example of channel arrangement at the time of carrier sensing according to the present embodiment.
  • FIG. 12 A diagram showing a specific example of channel scan operation in carrier sense processing according to the present embodiment.
  • FIG. 13A A diagram showing received power of each channel at the time of carrier sense according to the present embodiment.
  • FIG. 13B A diagram showing transmission operation state according to the present embodiment.
  • FIG. 14A A diagram showing an example of dividing a power detection section at the time of carrier sensing according to the present embodiment.
  • FIG. 14B A diagram showing a transmission operation state according to the present embodiment.
  • FIG. 5 is a block diagram showing a configuration of a reader device of an embodiment to which the present invention is applied.
  • the reader device 100 includes a transmission system 100A including an antenna 101, a coupler 102, an LPF 103, a mixer 104, an amplifier 105 and a BPF (Band Pass Filter) 106, a B PF 107, and an orthogonal demodulation.
  • a receiver system 100B including an HPF 109, 110, an LPF (Low Pass Filter) 111, 112, an amplifier 113, 114, and an AZD converter 115, 116, a low power oscillator 117, a control unit 118, Force is also configured.
  • the reader device 100 of the present embodiment has a communication function of the direct conversion system by the configuration of the transmission system 100A and the reception system 100B.
  • the antenna 101 wirelessly transmits the CW signal and the modulation signal transmitted from the coupler 102 to the wireless tag 200, and outputs a reception signal received from the wireless tag 200 to the coupler 102.
  • the coupler 102 performs impedance matching with the antenna 101 connected to the antenna connection terminal 120, transmits a transmission signal input from the transmission system 100A from the antenna 101, and receives a reception signal received from the antenna 101. Output to the above reception system 100B.
  • the LPF 103 of the transmission system 100 A removes high frequency noise components of transmission data input from the control unit 118 and outputs the result to the mixer 104.
  • the mixer 104 modulates transmission data input from the LPF 103 with a local signal input from the local oscillator 117, and outputs the modulated signal to the amplifier 105.
  • the amplifier 105 amplifies the modulation signal to which the mixer 104 power is also input, and outputs the amplified modulation signal to the BPF 106.
  • the BPF 106 extracts a signal of a necessary frequency band that is also required for the modulation signal power input from the amplifier 105 and outputs the extracted signal to the coupler 102.
  • the BPF 107 of the reception system 100 B extracts a signal of a necessary frequency band from the reception signal input from the coupler 102 and outputs the signal to the quadrature demodulation unit 108.
  • the quadrature demodulator 108 includes a phase shifter 108 a and mixers 108 b and 108 c.
  • the phase shifter 108a shifts the phase of the local signal input from the local oscillator 117 by 0 ° to 90 ° to supply the local signal of 0 ° to the mixer 108b, and the local signal of 90 ° to the mixer 108c.
  • Supply to The mixer 108 b demodulates the reception signal input from the BPF 107 into a baseband signal according to the 0 ° local signal input from the phase shifter 108 a, and outputs a demodulated 1 (real part) signal to the HPF 109.
  • the mixer 108 c demodulates the reception signal input from the BPF 107 into a baseband signal according to the 90 ° local signal input from the phase shifter 108 a, and outputs the demodulated Q (imaginary part) signal to the HPF 110.
  • the HPF 109 and the LPF 111 extract a signal of a necessary frequency band that is also required for the I signal power input from the quadrature demodulation unit 108, and output the extracted signal to the amplifier 113.
  • the HPF 110 and the LPF 112 extract the signal of the necessary frequency band input from the quadrature demodulator 108 and output it to the amplifier 114.
  • the amplifier 113 amplifies the I signal input from the LPF 111 and outputs the amplified I signal to the AZD converter 115.
  • the amplifier 114 amplifies the I signal input from the LPF 112 and outputs the amplified I signal to the AZD converter 116.
  • the AZD converter 115 AZD converts the I signal input from the amplifier 113 and outputs the converted digital signal to the control unit 118.
  • the AZD converter 116 AZD converts the Q signal input from the amplifier 114 and outputs the converted digital signal to the control unit 118.
  • the local oscillator 117 includes a PLL (Phase Locked Loop) circuit 117 a and a VCO (Voltage Controlled Oscillator) 117 b.
  • PLL Phase Locked Loop
  • VCO Voltage Controlled Oscillator
  • the PLL circuit 117a outputs the oscillation frequency control signal (voltage signal) to the VCO 17b. Also, a shift control signal (voltage signal) for shifting the frequency of the local signal oscillated from the VC 0117 b according to the local shift control signal input from the control unit 118 is output to the VCO 17 b.
  • VC0117b determines the oscillation frequency according to the oscillation frequency control signal (voltage signal) input to PLL circuit 117a and supplies the local signal to mixer 104 and phase shifter 108a, and the shift input to PLL circuit 117a.
  • the oscillation frequency of the local signal is shifted by the control signal (voltage signal).
  • the control unit 118 generates transmission data to be sent to the transmission system 100A at the time of normal data communication, and digital signals respectively input from the eight 70 converters 115 and 116 of the reception system 100. And a local oscillation control function of supplying a local shift control signal for shifting the oscillation frequency of the local signal to the local oscillator 117 at the time of carrier sensing.
  • the wireless tag 200 includes an antenna 201, a communication unit for communicating with the reader apparatus 100, and a tag main body 202 including a non-volatile memory for storing data and the like. Be done.
  • the reader device 100 first transmits the CW signal for power supply to the wireless tag 200 as a basic operation at the time of normal data communication and carrier sensing, and the wireless tag receives this power supply. A response signal including data transmitted from 200 is received.
  • the frequencies of the transmit signal and the receive signal are both f
  • part of the transmission signal TX gets into the reception system via the coupler 102, and due to a mismatch with the antenna 101, etc.
  • the reflected wave of the transmission signal TX leaks to the reception system via the coupler 102 and interferes, which may cause sensitivity degradation when the tag signal is received.
  • the transmission signal is a CW signal
  • HPFs 109 and 110 are inserted into the outputs of mixers 108b and 108c, and the DC component by the CW transmission signal of the own station is Cut and prevent the amplifiers 113 and 114 and the AZD ⁇ ⁇ 115 and 116 from suppressing.
  • control unit 118 controls the low power oscillator 108 to shift the frequency of the local signal within the frequency band of the HPF and the LPF during carrier sensing. It is characterized by
  • FIG. 6 is a diagram for explaining the principle of the operation of shifting the frequency of the local signal.
  • the oscillation frequency of the local signal is shifted by ⁇ to shift the reception frequency of the detection target frequency by ⁇ f, and HPFs 109 and 110 and LPFs 111 and 112 of reception system 100B are shifted. It is in the signal passband and this received power is measured every carrier sense interval.
  • the quadrature demodulator 108 is the received frequency converter, the reception power is calculated by sqrt ( ⁇ ⁇ 2 + Q A 2).
  • FIG. 6 shows the operation of detecting the CW signal power of another station by shifting the frequency of the local signal by 50 kHz with respect to the channel width of 200 kHz.
  • the interference to the reception system 100B due to the leak of the transmission signal of the own station becomes OHz (DC) because the frequency of the transmission signal and the frequency of the reception local signal are completely equal, and can be eliminated by the HPFs 109 and 110.
  • FIG. 7 shows an example of a signal that is received by another station at the time of carrier sensing is a modulated signal.
  • most of the modulation wave power can be detected with a shift of 100 kHz, but there are parts out of the HPFs 109 and 110 and LPFs 111 and 112 of the reception system 100B, and the reception power can not be received accurately.
  • the shift width of the oscillation frequency of the local signal is carefully calculated, and the maximum power detected at the time of the shift is treated as the power of the corresponding channel. Detection is possible.
  • f-hp is the high cut frequency of the HPFs 109 and 110
  • f-lp is the low cut frequency of the LPFs 111 and 112
  • the range from f_hp to Up should process the received signal. It is a pass band of the sub band filter.
  • the frequency of the local signal at the time of communication with the wireless tag 200 is set to f.
  • the frequency setting range of the local signal is the same as HPFs 109 and 110 in Figure 8.
  • the frequencies of the signals output from mixers 108 b and 108 c are in the range of f_lp to f_hp, which is the passband of the baseband filter in FIG. Can be determined accurately.
  • control unit 118 Next, the control operation in control unit 118 will be described with reference to the flowchart shown in FIG.
  • control section 118 of reader apparatus 100 when the carrier sense mode is started, control section 118 of reader apparatus 100 generates a transmission command (step S 101), and sets a channel (frequency) to which the generated transmission command is transmitted. (Step S102). At this time, the channel is set by the following equation (1). An example of channel arrangement is shown in FIG.
  • n is the number of configurable channels
  • control unit 118 performs lock weight processing until the PLL circuit 117a in the local oscillator 117 stabilizes at a desired frequency with respect to the supplied local shift control signal (step S104). Then, when a signal transmitted from other than the own station is received by the receiving system 100B, and the ADC data (I, Q data) is fetched by the AZD conversions 115 and 116 (step S105), the control unit 118 Are averaged over the carrier sense interval t (ms) (step S1 06) The average power Pt is compared with a predetermined power Ps set in advance to determine whether the average power Pt is larger than the predetermined power Ps (step S107).
  • control unit 118 determines that averaged power Ps is smaller than prescribed power P (step
  • step S 107 the frequency corresponding to the channel setting set in step S 102 is set in the local oscillator 117 (step S 108), and transmission processing for the wireless tag 200 is started.
  • step S 107 when the control unit 118 determines that the average power Ps is greater than or equal to the specified power Pt (step S 107: NO), the channel setting fch set in step S 102 can be set for the number of channels. It is determined whether or not n or more (step S110).
  • control section 118 returns to step S102, performs the next channel setting, and proceeds to step S1.
  • step 03 to step S 107 are repeatedly executed.
  • step S 110 determines that transmission is not possible (step S 111), and ends this processing.
  • the received powers of channels ch ⁇ 1, ch_2,..., Ch ⁇ k are each measured, and in each carrier sense interval t (ms), if the received power of the other station is less than the specified power Ps, Check the available channels by repeating the channel scan by changing the oscillation frequency of the signal.
  • the wait section (the above-mentioned mouth wait) is set until the frequency of the PLL circuit 117a is stabilized.
  • FIG. 13 shows another operation example.
  • (A) is a diagram showing received power of each channel at the time of carrier sense
  • (B) is a diagram showing a transmission operation state.
  • the received power Ps of the other station in channels ch-1 and ch-2 is equal to or higher than the prescribed power Pt (Pt ⁇ Ps), and in FIG. It is not possible to transmit the reader device 100 which is the own station, but (TX OFF), in the same figure (A)! /, Channel ch-3! /, And the received power of other stations Ps Is smaller than the specified power Pt (Pt> Ps), so in the same figure (B) Transmission by a certain reader device 100 is possible (TX ON).
  • FIG. 14 shows a reception power detection section of each channel at the time of carrier sense, and (B) shows a transmission operation state.
  • the device configuration is achieved by controlling the oscillation frequency of the local signal to shift within the HPF and LPF frequency bands at the time of carrier sensing. It is possible to correctly measure the received power of the CW signal or spectrum signal without changing or adding.
  • a first aspect of the reader device of the present invention is a reader device that reads information from a wireless tag by wireless communication, and includes: oscillating means for oscillating a local signal according to communication channel setting; and receiving from the wireless tag Means for demodulating the received signal with the local signal, filtering means for filtering the demodulated signal to extract a predetermined frequency band signal, and a carrier for scanning a communication channel between the wireless tag And control means for supplying a control signal for shifting the communication channel set in the oscillation means within the signal passband of the filter means to the oscillation means at the time of sensing.
  • the oscillation frequency of the local signal is shifted within the range of the signal passband of the filter used for the receiving system, and the received power of the CW signal or the spectrum signal is detected correctly. be able to.
  • a second aspect of the reader device is the reader device according to the first aspect, wherein the control means detects the reception power of the frequency band signal for each carrier sense period, and the carrier sense period is within the carrier sense period.
  • the setting of the communication channel is changed based on the result of comparison between the average power value of and the specified power value.
  • a third aspect of the reader apparatus of the present invention is the reader apparatus of the second aspect, wherein the control means changes the setting of the communication channel when the average power value is smaller than the specified power value. If the average power value is larger than the specified power value, a configuration is adopted in which a communication frequency corresponding to the current communication channel setting is set in the oscillation means.
  • communication can be started according to the communication channel used by another station without changing or adding the configuration of the reader device.
  • a fourth aspect of the reader device is the reader device according to the third aspect, wherein the control means divides the carrier sense section into a plurality of sections, and the power detection ends in the entire divided period. If the average power value has become equal to or higher than the specified power value before, the configuration of the communication channel is changed.
  • the oscillation frequency of the local signal is shifted within the signal passband of the filter used in the receiving system to correctly detect the received power of the CW signal or the spectrum signal. It is useful for a wireless tag system etc. in the point which enables it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 制御部118は、キャリアセンス時は、ローカル発振器117のローカル信号の発振周波数をΔfずつシフトさせることによって検出対象周波数の受信周波数変換後の周波数をΔfずらして受信系100BのHPF109,110及びLPF111,112の信号通過帯域内にいれ、この受信電力をキャリアセンス区間毎に平均化し、この平均化電力を規定電力と比較して、平均化電力が規定電力より大きい場合に通信周波数を設定する。

Description

リーダ装置
技術分野
[0001] 本発明はリーダ装置に関し、特に RFタグの情報を読み取るリーダ装置に関する。
背景技術
[0002] 近時、無線通信を利用する機器が多く存在し、その利用する無線周波数帯域も狭 帯域かつ隣接する周波数帯域を利用する機器が増加する傾向にある。このような無 線周波数帯域を利用する機器として、例えば、無線 LANを利用する機器や、アンテ ナと ICチップを内蔵した電子タグを使用する RFID (Radio Frequency Identification) タグシステム等がある。
[0003] 無線 LAN機器や RFIDタグシステムでは、例えば、 UHF(Ultra High Frequency)帯 等の高周波の無線電波を使用し、比較的小電力で近距離に存在する同種の機器と 連携して動作する利用形態のものが多ぐ機器間で送受信する電波の利用効率を高 める技術が望まれている。
[0004] このような技術として、例えば、特許文献 1に記載されたダイレクトコンバージョン方 式の受信機がある。この受信機は、キャリアセンス多重接続方式のパケット無線通信 システムに対応するものであり、無線周波数力 ベースバンド帯域周波数に変換され た受信信号に対して狭帯域ローパスフィルタを挿入して電界強度検出を行!、、当該 検出結果力 キャリアセンス判定を行い、当該判定結果からキャリアと認定された場 合に前記ベースバンド帯域周波数に変換された受信信号に対して広帯域ローバスフ ィルタを挿入して復調することにより、隣接する複数の周波数セル境界領域近傍付近 に存在する各セルにそれぞれ個別に帰属した複数の端末間で互いの受信隣接チヤ ネル干渉特性を改善して 、る。
[0005] また、特許文献 2に記載された無線タグシステムがある。この無線タグシステムでは 、汎用電波送信源としての携帯電話機からの送信電波を無線タグに受信させ、その 送信電波を動作電源として無線タグを動作可能状態におき、当該送信電波をリーダ ライタに受信させて、その送信電波が受信されている間に無線タグに対するデータの 書込、または無線タグからのデータの読出が行われるようにして、無線タグの動作源 力 Sリーダライタ以外の送信電波力 容易、且つ経済的に確保可能としている。
特許文献 1:特開 2003— 347946号公報
特許文献 2:特開 2004 - 54515号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記従来の特許文献 1の受信機や特許文献 2のリーダライタでは、ダ ィレクトコンバージョン方式が用いられて 、るが、これらの受信機やリーダライタにキヤ リアセンス機能を設けた場合に、以下のような問題がある。
[0007] 無線タグは、リーダ装置により送出される RF信号を検波'整流して起電力とし、また リーダ装置により送出される図 1に示す CW (Carrier Wave)信号に対して負荷変調を かけて応答する。また、リーダ装置は無線タグに対してコマンドを送出する際は ASK (Amplitude Shift Keying)変調等をかけて図 2に示すようなスペクトル信号を送出する
[0008] リーダ装置では、送信周波数と受信周波数が同一であるため、 CW信号を送信する 場合はダイレクトコンバージョン方式による周波数変換後は OHzつまり DCとなり、この DC成分が受信系へ干渉する。リーダ装置では、この DC成分を除去するため、周波 数変換後に HPF (High-Pass Filter )または DCカット用コンデンサによって DC成分 をカットするようにしている。
[0009] し力しながら、リーダ装置にキャリアセンス機能を設けて、自局以外の信号電力を検 出しようとした場合、その検出対象が CW信号である場合は、図 3に示すように HPF による DC成分の除去とともに遮断されるため、 CW信号の電力検出を正しく行うこと ができないという問題が発生する。また、図 4に示すように、変調したスペクトル信号( 変調信号)の場合においても、そのスペクトル信号のエネルギーの多くは f
0付近にあ るため、 HPFによる DC成分の除去とともに遮断されて、スペクトル信号の電力検出を 正しく行うことはできない。
[0010] 本発明の目的は、キャリアセンス時はローカル信号の発振周波数を受信系に用い られるフィルタの信号通過帯域の範囲内でシフトさせて、 CW信号又はスペクトル信 号の受信電力を正しく検出するリーダ装置を提供することである。
課題を解決するための手段
[0011] 本発明のリーダ装置は、無線通信により無線タグから情報を読み取るリーダ装置で あって、通信チャネル設定に応じたローカル信号を発振する発振手段と、前記無線 タグから受信する受信信号を前記ローカル信号により復調する復調手段と、前記復 調された復調信号をフィルタリングして所定の周波数帯域信号を抽出するフィルタ手 段と、前記無線タグとの間の通信チャネルをスキャンするキャリアセンス時に、前記発 振手段に設定する通信チャネルを前記フィルタ手段の信号通過帯域内でシフトさせ る制御信号を前記発振手段に供給する制御手段と、を具備する構成を採る。
発明の効果
[0012] 本発明によれば、キャリアセンス時はローカル信号の発振周波数を受信系に用いら れるフィルタの信号通過帯域の範囲内でシフトさせて、 CW信号又はスペクトル信号 の受信電力を正しく検出することができる。
図面の簡単な説明
[0013] [図 1]従来のリーダ装置により送出される CW信号の一例を示す図
[図 2]従来のリーダ装置により送出される変調信号の一例を示す図
[図 3]従来のリーダ装置における HPFによる CW信号の遮断例を示す図
[図 4]従来のリーダ装置における HPFによる変調信号の遮断例を示す図
[図 5]本発明の一実施の形態に係るリーダ装置の構成を示すブロック図
[図 6]本実施の形態に係るローカル信号の周波数をシフトさせる動作の原理を説明 するための図
[図 7]本実施の形態に係るキャリアセンス時に他局力 受信する信号が変調信号の 例を示す図
[図 8]本実施の形態に係るリーダ装置の受信系の HPFと LPFの周波数特性を示す 図
[図 9]本実施の形態に係るリーダ装置におけるローカル信号周波数の設定範囲を示 す図
[図 10]本実施の形態に係るリーダ装置内の制御部により実行されるキャリアセンス処 理を示すフローチャート
[図 11]本実施の形態に係るキャリアセンス時のチャネル配置の一例を示す図
[図 12]本実施の形態に係るキャリアセンス処理におけるチャネルスキャン動作の具体 例を示す図
[図 13A]本実施の形態に係るキャリアセンス時の各チャネルの受信電力を示す図 [図 13B]本実施の形態に係る送信動作状態を示す図
[図 14A]本実施の形態に係るキャリアセンス時に電力検出区間を分割する例を示す 図
[図 14B]本実施の形態に係る送信動作状態を示す図
発明を実施するための最良の形態
[0014] 以下、本発明の実施の形態について図面を参照して詳細に説明する。
[0015] 図 5は、本発明を適用した一実施の形態のリーダ装置の構成を示すブロック図であ る。
[0016] 図 5において、リーダ装置 100は、アンテナ 101と、結合器 102と、 LPF103、ミキサ 104、アンプ 105及び BPF (Band Pass Filter) 106から構成される送信系 100Aと、 B PF107、直交復調部 108、 HPF109, 110、 LPF (Low Pass Filter ) 111, 112、ァ ンプ 113, 114及び AZD変翻 115, 116から構成される受信系 100Bと、ロー力 ル発振器 117と、制御部 118と、力も構成される。
[0017] 本実施の形態のリーダ装置 100は、上記送信系 100A及び受信系 100Bの構成に よりダイレクトコンバージョン方式の通信機能を有する。
[0018] アンテナ 101は、結合器 102から送出される上記 CW信号及び変調信号を無線タ グ 200に無線送信するとともに、無線タグ 200から受信する受信信号を結合器 102 に出力する。
[0019] 結合器 102は、アンテナ接続端子 120に接続されるアンテナ 101とインピーダンス 整合を行い、上記送信系 100Aから入力される送信信号をアンテナ 101から送出し、 アンテナ 101から受信される受信信号を上記受信系 100Bに出力する。
[0020] 送信系 100Aの LPF103は、制御部 118から入力される送信データの高周波ノィ ズ成分を除去してミキサ 104に出力する。 [0021] ミキサ 104は、 LPF103から入力される送信データを、ローカル発振器 117から入 力されるローカル信号で変調し、その変調信号をアンプ 105に出力する。
[0022] アンプ 105は、ミキサ 104力も入力される変調信号を増幅して BPF106に出力する 。 BPF106は、アンプ 105から入力される変調信号力も必要な周波数帯の信号を抽 出して結合器 102に出力する。
[0023] 受信系 100Bの BPF107は、結合器 102から入力される受信信号から必要な周波 数帯の信号を抽出して直交復調部 108に出力する。
[0024] 直交復調部 108は、移相器 108aと、ミキサ 108b, 108cから構成される。移相器 1 08aは、ローカル発振器 117から入力されるローカル信号の 0° 〜90° で移相させ て、 0° のローカル信号をミキサ 108bに供給するとともに、 90° のローカル信号をミ キサ 108cに供給する。ミキサ 108bは、移相器 108aから入力される 0° のローカル 信号により BPF107から入力される受信信号をベースバンド信号に復調し、復調した 1 (実数部)信号を HPF109に出力する。また、ミキサ 108cは、移相器 108aから入力 される 90° のローカル信号により BPF107から入力される受信信号をベースバンド 信号に復調し、復調した Q (虚数部)信号を HPF110に出力する。
[0025] HPF109及び LPF111は、直交復調部 108から入力される I信号力も必要な周波 数帯域の信号を抽出してアンプ 113に出力する。 HPF110及び LPF112は、直交 復調部 108から入力される Q信号力 必要な周波数帯域の信号を抽出してアンプ 1 14に出力する。
[0026] アンプ 113は、 LPF111から入力される I信号を増幅して AZD変翻 115に出力 する。アンプ 114は、 LPF112から入力される I信号を増幅して AZD変翻 116に 出力する。
[0027] AZD変翻115は、アンプ 113から入力される I信号を AZD変換し、変換したデ ジタル信号を制御部 118に出力する。 AZD変翻116は、アンプ 114から入力され る Q信号を AZD変換し、変換したデジタル信号を制御部 118に出力する。
[0028] ローカル発振器 117は、 PLL (Phase Locked Loop )回路 117aと、 VCO (Voltage Controlled Oscillator ) 117bと、から構成される。
[0029] PLL回路 117aは、発振周波数制御信号 (電圧信号)を VCOl 17bに出力するとと もに、制御部 118から入力されるローカルシフト制御信号により VC0117bから発振 されるローカル信号の周波数をシフトさせるシフト制御信号 (電圧信号)を VCOl 17b に出力する。
[0030] VC0117bは、 PLL回路 117a入力される発振周波数制御信号 (電圧信号)により 発振周波数を決定してローカル信号をミキサ 104と移相器 108aに供給するとともに、 PLL回路 117aに入力されるシフト制御信号 (電圧信号)によりローカル信号の発振 周波数をシフトする。
[0031] 制御部 118は、通常のデータ通信時に、上記送信系 100Aに対して送出する送信 データを生成するとともに、上記受信系100 の八70変換器115, 116から各々入 力されるデジタル信号からデータを抽出するデータ処理機能と、キャリアセンス時に、 ローカル信号の発振周波数をシフトするローカルシフト制御信号をローカル発振器 1 17に供給するローカル発振制御機能とを有する。
[0032] 図 5において、無線タグ 200は、アンテナ 201と、リーダ装置 100との間で通信を行 う通信部及びデータを記憶する不揮発性メモリ等から構成されるタグ本体 202と、か ら構成される。
[0033] リーダ装置 100は、通常のデータ通信時及びキャリアセンス時の基本動作として、 無線タグ 200に対して、まず、電力供給のための上記 CW信号を送信し、この電力供 給により無線タグ 200から送信されるデータを含む応答信号を受信する。この信号の 送受信に際して、送信信号及び受信信号の周波数は共に周波数は f
0と同一である。
[0034] このため、リーダ装置 100内では、図 1に示すように、信号送信時に、送信信号 TX の一部が結合器 102を介して受信系に回り込むとともに、アンテナ 101との不整合等 により送信信号 TXの反射波が結合器 102を介して受信系にリークして干渉し、タグ の信号受信時に感度劣化を発生させる恐れがある。特に送信信号が CW信号である 時は同時にタグの信号を受信可能であることが必要であるため、ミキサ 108b, 108c の出力に HPF109, 110を挿入し、自局の CW送信信号による DC成分をカットして アンプ 113, 114および AZD変^ ^115, 116が抑圧することを防止する。
[0035] し力しキャリアセンス機能において自局以外の CW信号を受信しょうとした場合、 D C成分が HPF109, 110でカットされて、 CW信号の電力検出を正しく行うことができ ないという問題があった。
[0036] そこで、本実施の形態のリーダ装置 100では、制御部 118が、キャリアセンス時は、 ローカル信号の周波数を HPF及び LPFの周波数帯域内でシフトさせるようにロー力 ル発振器 108を制御することに特徴がある。
[0037] このリーダ装置 100の制御部 118におけるキャリアセンス時の動作について、以下 に図を参照しながら説明する。
[0038] 図 6は、ローカル信号の周波数をシフトさせる動作の原理を説明するための図であ る。キャリアセンス時は、ローカル信号の発振周波数を Δ ίずつシフトさせることによつ て検出対象周波数の受信周波数変換後の周波数を Δ fずらして受信系 100Bの HP F109, 110及び LPFl l l, 112の信号通過帯域内にいれ、この受信電力をキャリア センス区間毎に測定する。受信周波数変換器である直交復調器 108では、受信電 力は sqrt (ΙΛ 2 + QA 2)で算出する。
[0039] 図 6の例では、 200kHzのチャネル幅に対してローカル信号の周波数を 50kHz ずらすことで他局の CW信号電力を検出する動作を示すものである。この場合、自局 の送信信号のリークによる受信系 100Bへの干渉は、送信信号の周波数と受信ロー カル信号の周波数が完全に等しいため OHz (DC)となり、 HPF109, 110で除去す ることがでさる。
[0040] 次に、キャリアセンス時に他局力 受信する信号が変調信号の例を図 7に示す。こ の例では、 100kHzのシフトで変調波電力の大半は検出できるものの、受信系 100B の HPF109, 110及び LPFl l l, 112の帯域外となる部分があり、受信電力を正確 に受信できない。この場合は、ローカル信号の発振周波数のシフト幅を細力べし、そ のシフト時に検出される最大電力を該当チャネルの電力として扱うことで、周波数帯 域の広い変調波であっても正確な電力検出が可能となる。
[0041] 次に、キャリアセンス時のローカル信号の周波数設定に関して、図 8及び図 9を参 照して説明する。
[0042] 図 5の受信系 100Bにおける HPF109, 110と LPFl l l, 112の特性を図 8に示す 。図 8において、 f— hpは HPF109, 110のハイカット周波数であり、 f—lpは LPFl l l, 112のローカット周波数であり、これら f_hp〜; Upの範囲が受信信号を処理するべ一 スバンドフィルタの通過帯域である。
[0043] 図 1に示したように、無線タグ 200との通信時のローカル信号の周波数を f に設定
0 し、キャリアセンス時はローカル信号の周波数設定範囲は、図 8の HPF109, 110と
LPF111, 112の信号通過帯域の範囲内、つまり、図 9に示すように、 f —f lp〜f o o
—f hpまたは f +f lp〜f +f hpとなる。
0 0
[0044] その結果、受信系 100Bにおいて、ミキサ 108b, 108cから出力される信号の周波 数は f_lp〜; f_hpの範囲となり、図 8のベースバンドフィルタの通過帯域であるため、キ ャリアセンス時に受信電力を正確に求めることが可能となる。
[0045] 次に、制御部 118における制御動作について、図 10に示すフローチャートを参照 して説明する。
[0046] 図 10において、リーダ装置 100の制御部 118は、キャリアセンスモードを開始する と、送信コマンドを生成し (ステップ S 101)、生成した送信コマンドを送信するチヤネ ル (周波数)を設定する (ステップ S102)。この時、チャネルは次の式(1)により設定 するものとする。図 11にチャネル配置の一例を示す。
fch=fch— 1 +kX ch— step (1)
k: 0〜n— 1 (nは設定可能なチャネル数)
ch— step :周波数シフト幅
[0047] 次に、制御部 118は、ステップ S 102のチャネル設定に基づいてローカル信号の周 波数のオフセット設定 fcsを「fcs=fch— Δ ί、又は、 fcs=fch+ Δ ί」により設定し (ス テツプ S 103)、このオフセット設定に対応するローカルシフト制御信号をローカル発 振器 117に供給する。
[0048] この時、ローカル発振器 117では、供給されたローカルシフト制御信号により「fcs
=fch- Δ ί、又は、 fcs=fch+ Δ ί」のローカル信号が発振される。
[0049] 次 、で、制御部 118は、供給したローカルシフト制御信号に対するローカル発振器 117内の PLL回路 117aが所望の周波数に安定するまでのロックウェイト処理を行う( ステップ S 104)。そして、受信系 100Bに自局以外から送信される信号が受信され、 AZD変翻 115, 116により ADCデータ(I, Qデータ)が取り込まれると(ステップ S 105)、制御部 118は、その電力をキャリアセンス区間 t (ms)で平均化し (ステップ S1 06)、その平均化電力 Ptを予め設定した規定電力 Psと比較して、平均化電力 Ptが 規定電力 Psより大き 、か否かを判定する (ステップ S107)。
[0050] 制御部 118は、平均化電力 Psが規定電力 P り小さいと判定した場合は (ステップ
S 107 : YES)、ステップ S 102で設定したチャネル設定に対応する周波数をローカル 発振器 117に設定して (ステップ S 108)、無線タグ 200に対する送信処理を開始して
(ステップ S 109)、本処理を終了する。
[0051] また、制御部 118は、平均化電力 Psが規定電力 Ptより以上と判定した場合は (ステ ップ S 107 : NO)、ステップ S 102で設定したチャネル設定 fchが設定可能なチャネル 数 n以上カゝ否かを判定する (ステップ S 110)。
[0052] 制御部 118は、チャネル設定 fchが設定可能なチャネル数 n未満であれば (ステツ プ S110 :NO)、ステップ S102に戻り、次のチャネル設定を行って、上記ステップ S1
03〜ステップ S 107の処理を繰り返し実行する。
[0053] また、制御部 118は、チャネル設定 fchが設定可能なチャネル数 n以上であれば( ステップ S 110: YES)、送信不可として (ステップ S 111)、本処理を終了する。
[0054] 以上のキャリアセンス処理におけるチャネルスキャン動作の具体例を図 12に示して 説明する。
[0055] この場合、チャネル ch— 1, ch_2,〜, ch— kの受信電力を各々測定し、各キヤリ アセンス区間 t (ms)において、他局の受信電力が規定電力 Ps以下である場合は、口 一カル信号の発振周波数を変更してチャネルスキャンを繰り返し実行することにより、 使用可能なチャネルを確認する。チャネルスキャンにおいて、チャネル設定変更後に 電力を測定する際は、 PLL回路 117aの周波数が安定するまでウェイト区間(上記口 ックウェイト)を設定している。
[0056] また、図 13に他の動作例を示す。図 13において、(A)はキャリアセンス時の各チヤ ネルの受信電力を示す図、(B)は送信動作状態を示す図である。図 13 (A)に示す キャリアセンスの例では、チャネル ch— 1, ch— 2における他局の受信電力 Psは規定 電力 Pt以上であり (Pt≤Ps)、同図(B)にお 、て自局であるリーダ装置 100の送信を 行うことはできな 、が(TX OFF)、同図(A)にお!/、てチャネル ch— 3にお!/、ては他 局の受信電力 Psは規定電力 Ptより小さ 、ため(Pt >Ps)、同図(B)にお 、て自局で あるリーダ装置 100の送信が可能 (TX ON)となる。
[0057] 次に、各チャネルの電力検出区間を複数に分割する場合の動作について図 14を 参照して説明する。図 14において、(A)はキャリアセンス時の各チャネルの受信電力 検出区間を示す図、(B)は送信動作状態を示す図である。
[0058] 図 14 (B)に示すように、キャリアセンス時に各チャネルの受信電力検出区間を複数 に分割することにより、各チャネルの全区間の電力検出が終了する前に規定電力 Pt 以上になった場合は、直ちに次のチャネルの電力検出に移行するように制御部 118 により制御することにより、キャリアセンス動作の高速ィ匕を図ることが可能となる。
[0059] 以上のように、本実施の形態のリーダ装置によれば、キャリアセンス時にローカル信 号の発振周波数を HPFと LPFの周波数帯域内でシフトさせるように制御することによ つて、装置構成を変更又は追加することなぐ CW信号又はスペクトル信号の受信電 力を正しく測定することができる。
[0060] 本発明のリーダ装置の第 1の態様は、無線通信により無線タグから情報を読み取る リーダ装置であって、通信チャネル設定に応じたローカル信号を発振する発振手段 と、前記無線タグから受信する受信信号を前記ローカル信号により復調する復調手 段と、前記復調された復調信号をフィルタリングして所定の周波数帯域信号を抽出 するフィルタ手段と、前記無線タグとの間の通信チャネルをスキャンするキャリアセン ス時に、前記発振手段に設定する通信チャネルを前記フィルタ手段の信号通過帯域 内でシフトさせる制御信号を前記発振手段に供給する制御手段と、を具備する構成 を採る。
[0061] この構成によれば、キャリアセンス時はローカル信号の発振周波数を受信系に用い られるフィルタの信号通過帯域の範囲内でシフトさせて、 CW信号又はスペクトル信 号の受信電力を正しく検出することができる。
[0062] 本発明のリーダ装置の第 2の態様は、第 1の態様のリーダ装置において、前記制御 手段は、前記周波数帯域信号の受信電力をキャリアセンス区間毎に検出し、該キヤリ アセンス区間内の平均電力値と規定電力値とを比較した結果に基づいて、前記通信 チャネルの設定を変更する構成を採る。
[0063] この構成によれば、リーダ装置の構成を変更又は追加することなぐ他局で使用さ れる通信チャネルを確実に検出することができる。
[0064] 本発明のリーダ装置の第 3の態様は、第 2の態様のリーダ装置において、前記制御 手段は、前記平均電力値が前記規定電力値より小さい場合は、前記通信チャネルの 設定を変更し、前記平均電力値が前記規定電力値より大きい場合は、現在の通信チ ャネル設定に対応する通信周波数を前記発振手段に設定する構成を採る。
[0065] この構成によれば、リーダ装置の構成を変更又は追加することなぐ他局で使用さ れる通信チャネルに応じて通信を開始することができる。
[0066] 本発明のリーダ装置の第 4の態様は、第 3の態様のリーダ装置において、前記制御 手段は、前記キャリアセンス区間を複数に分割し、該分割した全期間で電力検出が 終了する前に前記平均電力値が前記規定電力値以上になった場合は、前記通信チ ャネルの設定を変更する構成を採る。
[0067] この構成によれば、キャリアセンス動作の高速ィ匕を図ることが可能になる。
産業上の利用可能性
[0068] 本発明は、キャリアセンス時はローカル信号の発振周波数を受信系に用いられるフ ィルタの信号通過帯域の範囲内でシフトさせて、 CW信号又はスペクトル信号の受信 電力を正しく検出することを可能にする点で無線タグシステム等に有用である。

Claims

請求の範囲
[1] 無線通信により無線タグ力 情報を読み取るリーダ装置であって、
通信チャネル設定に応じたローカル信号を発振する発振手段と、
前記無線タグ力 受信する受信信号を前記ローカル信号により復調する復調手段 と、
前記復調された復調信号をフィルタリングして所定の周波数帯域信号を抽出するフ ィルタ手段と、
前記無線タグとの間の通信チャネルをスキャンするキャリアセンス時に、前記発振 手段に設定する通信チャネルを前記フィルタ手段の信号通過帯域内でシフトさせる 制御信号を前記発振手段に供給する制御手段と、を具備するリーダ装置。
[2] 前記制御手段は、前記周波数帯域信号の受信電力をキャリアセンス区間毎に検出 し、該キャリアセンス区間内の平均電力値と規定電力値とを比較した結果に基づいて 、前記通信チャネルの設定を変更する請求項 1記載のリーダ装置。
[3] 前記制御手段は、前記平均電力値が前記規定電力値より小さ!、場合は、前記通 信チャネルの設定を変更し、前記平均電力値が前記規定電力値より大きい場合は、 現在の通信チャネル設定に対応する通信周波数を前記発振手段に設定する請求項 2記載のリーダ装置。
[4] 前記制御手段は、前記通信チャネル毎に前記キャリアセンス区間を複数に分割し、 該分割した全期間で電力検出が終了する前に前記平均電力値が前記規定電力値 以上になった場合は、前記通信チャネルの設定を変更する請求項 3記載のリーダ装 置。
PCT/JP2006/303776 2006-02-28 2006-02-28 リーダ装置 WO2007099610A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/303776 WO2007099610A1 (ja) 2006-02-28 2006-02-28 リーダ装置
JP2008502597A JPWO2007099610A1 (ja) 2006-02-28 2006-02-28 リーダ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/303776 WO2007099610A1 (ja) 2006-02-28 2006-02-28 リーダ装置

Publications (1)

Publication Number Publication Date
WO2007099610A1 true WO2007099610A1 (ja) 2007-09-07

Family

ID=38458734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303776 WO2007099610A1 (ja) 2006-02-28 2006-02-28 リーダ装置

Country Status (2)

Country Link
JP (1) JPWO2007099610A1 (ja)
WO (1) WO2007099610A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306241A (ja) * 2006-05-10 2007-11-22 Mitsubishi Electric Corp 無線送受信機
JP2012205138A (ja) * 2011-03-25 2012-10-22 Fujitsu Frontech Ltd Rfidリーダライタ装置及びキャリアセンス方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258666A (ja) * 2002-03-04 2003-09-12 Matsushita Electric Ind Co Ltd 受信機
JP2004054515A (ja) * 2002-07-18 2004-02-19 Sony Corp 無線タグシステム、リーダライタおよびデータ書込・読出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258666A (ja) * 2002-03-04 2003-09-12 Matsushita Electric Ind Co Ltd 受信機
JP2004054515A (ja) * 2002-07-18 2004-02-19 Sony Corp 無線タグシステム、リーダライタおよびデータ書込・読出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306241A (ja) * 2006-05-10 2007-11-22 Mitsubishi Electric Corp 無線送受信機
JP2012205138A (ja) * 2011-03-25 2012-10-22 Fujitsu Frontech Ltd Rfidリーダライタ装置及びキャリアセンス方法

Also Published As

Publication number Publication date
JPWO2007099610A1 (ja) 2009-07-16

Similar Documents

Publication Publication Date Title
US9607186B2 (en) RF tag system which allows a scheduled start RF tag and a remote start RF tag to share the same frequency band
EP2139111B1 (en) Radio wave receiving apparatus
JP2008061218A (ja) 半導体集積回路装置および受信装置
EP2057589B1 (en) Tag device, reader device, and rfid system
US8391817B2 (en) Method of and system for tuning an antenna
JP4516029B2 (ja) リーダライタ装置
EP1734658A1 (en) Direct conversion radio apparatus for RFID system
KR20180046673A (ko) Nfc 수신기 및 이를 포함하는 회로의 동작 방법
JP6234883B2 (ja) Rfidリーダライタ装置、rfidリーダライタシステム、及びrfid読取方法
CN114868427A (zh) 用于无线通信系统中唤醒通信的前导码信号
EP1788715A2 (en) RF receiving apparatus and method for removing leakage component of received signal
WO2007099610A1 (ja) リーダ装置
WO2014141707A1 (ja) 無線受信装置及び無線受信方法
EP1986356B1 (en) Radio tag reader
JP2008022045A (ja) 受信機、送信機及びデータ通信システム
JP5063469B2 (ja) 無線通信装置、インピーダンス整合方法、プログラム及びその記録媒体
JP4323536B2 (ja) 無線タグリーダ
JP4323537B2 (ja) 無線タグリーダ
JP3665562B2 (ja) 移動通信装置及び受信信号処理方法
JP4628992B2 (ja) 無線送受信機
JP2005311657A (ja) 無線受信装置
JP5040890B2 (ja) 通信装置及び通信方法
US20220255587A1 (en) Termination circuit for low power backscatter communication
JP2008283637A (ja) 無線通信装置
CN115021835A (zh) Iq失衡校正方法、通信设备及存储装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008502597

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714904

Country of ref document: EP

Kind code of ref document: A1