WO2007097817A2 - Alliage d'aluminium coulable, de qualite balistique, soudable, de grande tenacite et de grande resistance, traitement thermique dudit alliage et articles produits a partir dudit alliage - Google Patents

Alliage d'aluminium coulable, de qualite balistique, soudable, de grande tenacite et de grande resistance, traitement thermique dudit alliage et articles produits a partir dudit alliage Download PDF

Info

Publication number
WO2007097817A2
WO2007097817A2 PCT/US2006/060675 US2006060675W WO2007097817A2 WO 2007097817 A2 WO2007097817 A2 WO 2007097817A2 US 2006060675 W US2006060675 W US 2006060675W WO 2007097817 A2 WO2007097817 A2 WO 2007097817A2
Authority
WO
WIPO (PCT)
Prior art keywords
weight
aluminum alloy
cast
product
psi
Prior art date
Application number
PCT/US2006/060675
Other languages
English (en)
Other versions
WO2007097817A3 (fr
Inventor
Alan Druschitz
Original Assignee
Bac Of Virginia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bac Of Virginia filed Critical Bac Of Virginia
Publication of WO2007097817A2 publication Critical patent/WO2007097817A2/fr
Publication of WO2007097817A3 publication Critical patent/WO2007097817A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • This invention relates to 1 ) an aluminum alloy for casting operations, such as sand, investment or permanent mold casting operations, 2) a heat treatment process for aluminum alloys and 3) the application of the newly invented aluminum alloy casting alloy for cast products for racing, aerospace and military (land, sea and air) applications.
  • Aluminum alloy casting alloys 354, C355, A356 and A357 have good castability but do not have good mechanical properties.
  • Aluminum alloy casting alloys A201 and A206 have good mechanical properties but do not have good castability, good resistance to stress corrosion cracking or good weldability. Both A201 and A206 alloy have poor fluidity and poor resistance to hot tearing during casting.
  • the ASTM does not list A206 alloy as an aluminum alloy sand casting or high- strength aluminum alloy.
  • Aluminum alloy wrought alloy 2519 is currently the premier aluminum alloy wrought alloy because of its excellent tensile strength and ballistic qualities.
  • aluminum alloy wrought alloy 2519 requires "stretching" to achieve these properties (see e.g. US Patent No. 4,610,733, entitled “High Strength Weldable Aluminum Base Alloy Product and Method of Making Same” and issued Sept. 9, 1986 to Sanders, Jr., et al.). Because "stretching" is a cold working process, the benefit of stretching is lost if the product is welded or heat treated after "stretching". Further, products that are cast to shape cannot be “stretched”.
  • US Patent No. 2,706,680 (entitled “Aluminum Base Alloy” and issued April 19, 1955 to Criner) describes aluminum base alloys that are adapted for service at elevated temperatures, particularly such as required in certain parts of jet engines.
  • This patent discloses a magnesium-free aluminum base alloy containing copper as the chief added component and small amounts of manganese, vanadium and zirconium which displays a combination of strength and resistance to fatigue and creep at high temperatures. More specifically the aluminum alloy includes from 5 to 13% copper, 0.15 to 1.7% manganese, 0.05 to 0.20% vanadium, 0.05 to 0.30% zirconium, with an iron impurity not exceeding 0.75% and a silicon impurity not exceeded 0.40%.
  • the disclosed alloy contains no more than about 0.02% magnesium, hence it is referred to as being "magnesium-free".
  • To obtain a finer grain size or enhance minor characteristics of the alloy it is disclosed to be desirable to add 0.01 to 0.25% of one or more of the following elements: cobalt, nickel, molybdenum, tungsten, chromium, titanium, boron, tantalum and niobium.
  • the thermal treatment disclosed to enhance the alloy properties consists of heating to a temperature between 960 and 1000 0 F for a period of 2 to 24 hours followed by quenching, preferably in water at 70 to 16O 0 F. The quenched alloys are then reheated to 350 to 45O 0 F for a period of 1 to 50 hours.
  • US Patent No. 2,784,126 (entitled “Aluminum Base Alloy” and issued Mar. 5, 1957 to Criner) is similar to US Patent No. 2,706,680 (discussed above) and discloses an aluminum base alloy that is adapted for service at elevated temperatures.
  • the disclosed chemistry of the alloy consists of from 5 to 13% copper, 0.15 to 1.7% manganese, 0.05 to 0.20% vanadium, 0.05 to 0.30% zirconium and the addition of 0.05 to 0.70% magnesium.
  • the disclosed addition of magnesium is claimed to improve the strength and resistance to creep and fatigue at high temperatures.
  • samples were cast in the form of ingots and forged to 1 " square bars. The bars were given a solution heat treatment of 2 hours at 990 - 1000 0 F, quenched in cold water and precipitation hardened by heating them for 12 hours at
  • the disclosed room temperature properties of an alloy of composition 5.98 wt% Cu, 0.1 1 wt% Fe, 0.07 wt% Si, 0.21 wt% Mn, 0.10 wt% V and 0.23 wt% Zr are an average ultimate tensile strength of 61 ,600 psi, an average 0.2% offset yield strength of 43,000 psi and an average elongation of 17%.
  • the disclosed room temperature properties of an alloy of composition 6.09 wt% Cu, 0.15 wt% Fe, 0.1 1 wt% Si, 0.32 wt% Mn, 0.18 wt% V, 0.20 wt% Zr and 0.25 wt% Mg are an average ultimate tensile strength of 71 ,100 psi, an average 0.2% offset yield strength of 55,700 psi and an average elongation of 13%.
  • forging was required to increase the density of the disclosed aluminum alloy. This patent does not disclose information on the properties of castings made from the disclosed alloy.
  • HIP hot isostatic pressing
  • a casting is made from an aluminum alloy containing, in weight percent:
  • the aluminum alloy casting is solution heat treated, then hot isostatically pressed, then solution heat treated again. This process produces a cast product having a multitude of second phase particles, and in particular a cast product in which an interdendritic network of second phase particles is eliminated.
  • the aluminum alloy casting is solution heat treated at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 980 - 1005 0 F (527 - 541 0 C) for 16 - 120 hours followed by quenching in water, hot isostatically pressed (HIP) at 950 - 975 0 F (510 - 524 0 C) and 15,000 ⁇ 500 psi (103 ⁇ 3.4 MPa) for 2 to 3 hours, solution heat treated at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 980 - 1005 0 F (527 - 541 0 C) for 16 - 120 hours followed by quenching in water and aged.
  • the casting may be either naturally aged at room temperature or artificially aged at 310 - 39O 0 F (154 - 199 0 C) for 1 to 96 hours.
  • the resulting aluminum alloy product in the naturally aged condition T4 has a minimum ultimate tensile strength of 57,100 psi (394 MPa), a minimum 0.2% offset yield strength of 38,500 psi (265 MPa), a minimum elongation of 6.2%, a minimum unnotched impact strength of 88 joules/cm 2 and passes the ASTM G47 test for resistance to stress corrosion cracking at an applied stress of 30,000 psi (207 MPa).
  • the resulting aluminum alloy product in the artificially aged condition T6 has a minimum ultimate tensile strength of 66,100 psi (458 MPa), a minimum 0.2% offset yield strength of 47,800 psi (330 MPa) and a minimum elongation of 3.1 %.
  • the resulting aluminum alloy product in the artificially aged condition T7 has a minimum ultimate tensile strength of 48,600 psi (335 MPa), a minimum 0.2% offset yield strength of 43,900 psi (303 MPa), a minimum elongation of 1.0%, a minimum unnotched impact strength of 28 joules/cm 2 and passes the ASTM G47 test for resistance to stress corrosion cracking at an applied stress of 40,000 psi (276 MPa).
  • the resulting aluminum alloy product in the artificially aged condition T61 has an average ultimate tensile strength of 69,660 psi (480 MPa), an average 0.2% offset yield strength of 59,390 psi (409 MPa), an average elongation of 6.3% and an average unnotched impact strength of 41 joules/cm 2 and has similar ballistic performance to aluminum alloy wrought alloy 2519 in the T87 condition.
  • the aluminum alloy casting alloy of the present invention is desirable because it is weldable and retains the desired properties when heat treated after welding.
  • Fig. 1 is a picture of a seat frame cast with a prior art aluminum alloy
  • Fig. 2 is a picture of a seat frame cast with an aluminum alloy according to principles of the present invention
  • Fig. 3 is a picture of a single plate of a known aluminum alloy wrought alloy and a single plate of the aluminum cast alloy according to the present invention after ballistic testing;
  • Fig. 4 is a picture of a double plate of a known aluminum alloy wrought alloy and a double plate of the aluminum cast alloy according to the present invention after ballistic testing.
  • Aluminum alloy casting alloys A201 and A206 were purchased as ingots from a supplier.
  • the aluminum alloy casting alloy in the illustrated embodiment was produced using A206 ingot with addition of aluminum-copper, aluminum-manganese, aluminum- chromium, aluminum-vanadium, aluminum-zirconium master alloys and pure magnesium.
  • Commercially available aluminum-titanium-boron and aluminum-titanium- carbon grain refiners were used.
  • Table 7 The chemical compositions of a plurality of aluminum alloy casting alloys produced are shown in Table 7. In Table 7, the columns represent a weight percentage of the indicated element and each row represents one mixture of the constituent elements, termed a heat and designated by a letter A through W.
  • the castability of the aluminum alloy casting alloys of the illustrated embodiment is determined by qualitatively comparing the fluidity and hot tearing tendency of A201 and A206 alloys to that of the illustrated embodiment.
  • a complex seat frame casting that has thick and thin sections is poured from each alloy at various temperatures in chemically bonded sand molds that contain aluminum chills. Pictures of such seat frame castings are shown in Fig. 1 and Fig. 2.
  • Aluminum alloy casting alloys A201 and A206 typically have very limited pouring temperature ranges since 1 ) the alloy must be poured at a temperature sufficiently high to completely fill the mold but 2) the alloy must be poured at as low a temperature as possible to prevent hot tearing.
  • good castings could not be produced in aluminum alloy casting alloy A206.
  • Good castings could be produced in aluminum alloy casting alloy A201 when poured in the temperature range 1350-1360 0 F.
  • Good castings could be produced in the aluminum alloy casting alloy of this embodiment (Heats A, B, D & E) when poured in the temperature range 1330-138O 0 F, a wider temperature range than with aluminum alloy casting alloy A201.
  • Good seat frame castings could not be poured from Heat C.
  • an aluminum alloy casting alloy should have a minimum copper content of about 5.20 wt% to produce good fluidity and good resistance to hot tearing.
  • Seat frame castings were not poured from Heats F-W.
  • FIG. 1 An example of an aluminum alloy casting alloy A206 casting with hot tears is shown in Fig. 1 and an example of a good casting poured in the aluminum alloy casting alloy of the illustrated embodiment is shown in Fig. 2.
  • the larger pouring range of the aluminum alloy casting alloy of the illustrated embodiment is due to improved fluidity (ability to flow and fill a mold) and improved feeding (ability to supply metal during liquid contraction and the liquid-to-solid phase transformation). Good castability allows the production of complex castings at low scrap rates and, therefore, minimum cost.
  • the aluminum alloy casting alloy of the illustrated embodiment is processed using a pre-HIP solution heat treatment. That is, instead of applying a HIP process to the cast product, that product is first heat treated.
  • the mechanical properties of an aluminum alloy cast product are determined by soundness, chemistry and microstructure. Soundness is a measure of porosity, which is determined by the feeding characteristics of the aluminum alloy cast alloy. Soundness can be improved by hot isostatic pressing (HIP) the cast product.
  • the chemistry of the aluminum alloy cast alloy ultimately determines what microstructural phases can be produced.
  • the size, quantity and distribution of the microstructural phases and porosity determine the mechanical properties.
  • the size, quantity and distribution of the microstructural phases are determined by heat treatment.
  • the aluminum alloy casting alloys of the illustrated embodiment produced less porosity than A201 but more porosity than A206 alloy.
  • the average porosity for A201 alloy was 3.2%
  • for A206 alloy was 0.5%
  • for the aluminum alloy casting alloy of the illustrated embodiment was 1.5%.
  • the aluminum alloy casting alloy of the illustrated embodiment produced better mechanical properties compared to A201 alloy.
  • Table 8 compares the mechanical properties of samples cut from seat frame castings produced from aluminum alloy casting alloy A201 and aluminum alloy casting alloy of heat A of the illustrated embodiment.
  • Hot isostatic pressing is a well known, commercial process for reducing the porosity in castings. HIP'ing is typically performed before any other heat treatment. In the illustrated embodiment, however, solution heat treatment performed before HIP'ing produces improved mechanical properties, particularly improved resistance to stress corrosion cracking. However, solution heat treatment before HIP'ing is not a requirement to produce satisfactory properties using the aluminum alloy casting alloy of the illustrated embodiment.
  • Sections were cut from castings produced from the aluminum alloy casting alloy of the illustrated embodiment and heat treated in various ways to quantitatively determine the effect of HIP'ing and heat treatment cycle on mechanical properties.
  • the heat treatment cycles were: (1 ) a long pre-HIP solution heat treatment at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 990 - 995 0 F (532 - 535 0 C) for 68 - 96 hours followed by quenching in water, followed by HIP'ing at 950 - 975 0 F (510 - 524 0 C), 15,000 +/- 500 psi (103 +/- 3.4 MPa) for 2 to 3 hours, followed by a post-HIP solution heat treatment (see below) and age; (2) a short pre-HIP solution heat treatment at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 990 - 995 0 F for 16-20 hours followed by quenching in water, followed by HIP'ing at 950 - 975 0 F (510 - 524 0 C), 15,000 +/- 500 psi (103 +/
  • the T4 condition was produced by post-HIP solution heat treatment at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 990 - 995 0 F (532 - 535 0 C) for 16-20 hours followed by quenching in warm water at 120 - 18O 0 F (49 - 82 0 C) and then naturally aging at room temperature for a minimum of seven days before testing.
  • the T6 condition was produced by post-HIP solution heat treatment at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 990 - 995 0 F (532 - 535 0 C) for 16-20 hours followed by quenching in warm water at 120 - 18O 0 F (49 - 82 0 C), naturally aging at room temperature for 8 - 24 hours and then artificially aging at 325 0 F (163 0 C) for 24 hours.
  • Material heat treated to the T6 condition exhibited the best combination of strength and ductility: HIP'ing increased the tensile ductility by 60 to 101 %.
  • the T61 condition was produced by post-HIP solution heat treatment at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 990 - 995 0 F (532 - 535 0 C) for 16-20 hours followed by quenching in warm water at 120 - 18O 0 F (49 - 82 0 C), naturally aging at room temperature for 8 - 24 hours and then artificially aging at 325 0 F (163 0 C) for 36 hours.
  • the T7 condition was produced by post-HIP solution heat treatment at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 990 - 995 0 F (532 - 535 0 C) for 16-20 hours followed by quenching in warm water at 120 - 18O 0 F (49 - 82 0 C), naturally aging at room temperature for 8 - 24 hours and then artificially aging at 39O 0 F (199 0 C) for 24 hours.
  • the aluminum alloy cast alloy of the illustrated embodiment has improved yield (design) strength in all heat treatment conditions. Also, the tensile ductility increased by 167% when subjected to the short solution heat treatment, followed by HIP'ing, followed by the T6 heat treatment. For comparison, sections from seat frame castings of each alloy were heat treated using identical processing conditions (e.g. solution heat treated, HIP'ed or not HIP'ed, then T6) and the results are listed in Table 10.
  • the heat treatment cycle was a long pre-HIP solution heat treatment at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 990 - 995 0 F (532 - 535 0 C) for 96 - 120 hours followed by quenching in water, HIP'ing at 950 - 975 0 F (510 - 524 0 C), 15,000 +/- 500 psi (103 +/- 3.4 MPa) for 2 to 3 hours, followed by a post-HIP solution heat treatment and age.
  • the T4 condition was produced by post-HIP solution heat treatment at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 990 - 995 0 F (532 - 535 0 C) for 16-20 hours followed by quenching in warm water at 120 - 18O 0 F (49 - 82 0 C) and then naturally aging at room temperature for a minimum of seven days before testing.
  • the T6 condition was produced by post-HIP solution heat treatment at 950 -
  • the T7 condition was produced by post-HIP solution heat treatment at 950 -
  • copper content should be limited to about 6.25 wt%
  • chromium content should be limited to about 0.20 wt%
  • magnesium content should be limited to about 0.50 wt%.
  • the addition of silver was shown to significantly increase yield strength.
  • the resulting data shows that ductility (e.g. tensile elongation) decreases as copper content increases, as chromium content increases and as magnesium content increases.
  • ductility e.g. tensile elongation
  • manganese content or vanadium content was shown to decrease yield strength and increase ductility.
  • zirconium content was shown to have an inconsistent effect on mechanical properties.
  • Table 1 The mechanical properties of samples cut from castings produced from the aluminum alloy casting alloy of the illustrated embodiment and heat treated in similar ways are displayed in Table 1 1.
  • the aluminum alloy casting alloy of the illustrated embodiment has good stress corrosion cracking properties that are enhanced when solution heat treated before HIP'ing.
  • Aluminum alloy cast alloys and wrought alloys that contain copper typically have unacceptable stress corrosion cracking properties in the T6 condition but often have acceptable stress corrosion cracking properties in the T4 or T7 conditions.
  • Samples from two heats (Heat B, Heat D) were given a variety of heat treatments and then subjected to the standard stress corrosion cracking test, ASTM G47-98 (2004).
  • the heat subjected to long solution heat treatment prior to HIP'ing (Heat D) exhibited significantly improved resistance to stress corrosion cracking (almost produced "acceptable” results) in the T6 condition.
  • the stress corrosion cracking performance, as determined by ASTM G47-98 (2004), for the two different heat treatment processes and aluminum alloy casting alloys of the illustrated embodiment are displayed in Table 12.
  • the aluminum alloy casting alloy of the illustrated embodiment is weldable. Aluminum alloy casting alloys are not normally welded so little or no published data exists for comparison purposes. However, aluminum alloy wrought alloys are often welded and the aluminum alloy casting alloy of the illustrated embodiment compared favorably to published data for material tested in the heat treated then welded condition. The welder had no prior experience welding the aluminum alloy casting alloy of the illustrated embodiment and very little experience with aluminum alloy 2319 welding wire.
  • the aluminum alloy casting alloy of the illustrated embodiment can be heat treated after welding to develop improved properties. Further, solution treatment after welding but prior to HIP'ing results in significantly improved yield strength. Solution treatment after welding but prior to HIP'ing resulted in an 85% increase in yield strength in the T4 condition and a 27% increase in yield strength in the T6 condition.
  • the aluminum alloy casting alloy of the illustrated embodiment in the T61 condition has ballistic properties similar to aluminum alloy wrought alloy 2519 in the T87 condition.
  • Samples of the aluminum alloy casting alloy of the illustrated embodiment in the T61 condition and aluminum alloy wrought alloy 2519 in the T87 condition were machined to the same size and dimensions and shot at with 0.223 caliber standard rounds at a distance of approximately 50 meters (150 feet).
  • Single plates, 0.5" thick, of the aluminum alloy casting alloy of the illustrated embodiment in the T61 condition and the aluminum alloy wrought alloy 2519 in the T87 condition were completely penetrated, as illustrated in Fig. 3.
  • Fig. 3a is a picture of a single plate of the aluminum alloy casting alloy of the illustrated embodiment after the ballistic testing described above
  • Fig. 3b is a picture of a single plate of the aluminum alloy wrought alloy 2519 after the ballistic testing described above.
  • Double plates of the aluminum alloy casting alloy of the illustrated embodiment in the T61 condition and the aluminum alloy wrought alloy 2519 in the T87 condition were not penetrated after the same ballistic testing described above, as illustrated in Fig. 4.
  • Fig. 4a is a picture of a double plate of the aluminum alloy casting alloy of the illustrated embodiment after the ballistic testing described above
  • Fig. 4b is a picture of a double plate of the aluminum alloy wrought alloy 2519 after the ballistic testing described above.
  • the aluminum alloy casting alloy of the present illustrated embodiment is ideally suited for articles requiring high strength, high toughness, resistance to penetration by ballistic objects, resistance to stress corrosion cracking and light in weight. These articles are commonly used in racing, aerospace and military (land, sea and air) vehicles. Specifically, a seat frame for a military vehicle, (Fig. 1 and Fig. 2), was used as a test casting for developing the aluminum alloy casting alloy of the illustrated embodiment. Light-weight armor, a turret rotor, a turret housing and hatches for a military weapon system, bolts and welding wire are currently being developed and evaluated.
  • the aluminum alloy casting alloy of the illustrated embodiment could be a replacement for aluminum alloy casting alloy A201 , which is currently used for the steering deflector on the AAAV amphibious military vehicle.
  • the applications for the aluminum alloy casting alloy of the illustrated embodiment are not limited to only those articles discussed above.
  • composition for an aluminum alloy casting alloy according to principles of the present invention is as follows:
  • the aluminum alloy casting alloy is grain refined using a 0.04 - 2.00 weight % addition of aluminum-5 weight % titanium-1 weight % boron and a 0.07 - 2.00 weight % addition of aluminum-3 weight % titanium-0.15 weight % carbon containing grain refiner.
  • the aluminum alloy casting alloy is grain refined using a 0.04 - 0.08 weight % addition of aluminum-5 weight % titanium-1 weight % boron and a 0.07 - 0.10 weight % addition of aluminum-3 weight % titanium-0.15 weight % carbon containing grain refiner.
  • a heat treatment for an aluminum alloy casting alloy is as follows: 1. Solution heat treat at 950 - 96O 0 F (510 - 516 0 C) for 2 - 4 hours followed by 980
  • Hot isostatic pressing at 950 - 975 0 F (510 - 524 0 C), 15,000 +/- 500 psi (103 +/- 3.4 MPa) for 2 to 3 hours
  • the optimum heat treatment for the aluminum alloy casting alloy is as follows:
  • Hot isostatic pressing at 950 - 975 0 F (510 - 524 0 C), 15,000 +/- 500 psi (103 +/- 3.4 MPa) for 2 to 3 hours
  • T4 Naturally age at room temperature
  • T6 Artificially age at 325 0 F (163 0 C) for 24 hours
  • T61 Artificially age at 325-340 0 F (163 - 171 0 C) for 24 - 36 hours;
  • T7 Artificially age at 39O 0 F (199 0 C) for 24 hours.

Abstract

L'invention concerne un produit moulé en alliage d'aluminium, composé de : Cu de 5,00 à 6,75 % en poids, Mg de 0,05 à 0,50 % en poids, Mn de 0,05 à 0,65 % en poids, Ti de 0,05 à 0,40 % en poids, Ag de 0,00 à 0,40 % en poids, Cr de 0,00 à 0,20 % en poids, V de 0,00 à 0,40 % en poids, Zr de 0,00 à 0,30 % en poids, Fe moins de 0,15 % en poids, Si moins de 0,15 % en poids, Ni moins de 0,05 % en poids, Zn moins de 0,05 % en poids, impuretés moins de 0,05 % en poids chacune, moins de 0,25 % du poids total, le reste étant de l'Al. Un tel produit moulé en alliage d'aluminium est traité thermiquement afin d'éliminer le réseau interdendritique de particules de seconde phase. Le traitement thermique d'un tel moulage en alliage d'aluminium comprend un traitement thermique par une solution avec un pressage isostatique à chaud.
PCT/US2006/060675 2005-11-09 2006-11-08 Alliage d'aluminium coulable, de qualite balistique, soudable, de grande tenacite et de grande resistance, traitement thermique dudit alliage et articles produits a partir dudit alliage WO2007097817A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/270,767 US20070102071A1 (en) 2005-11-09 2005-11-09 High strength, high toughness, weldable, ballistic quality, castable aluminum alloy, heat treatment for same and articles produced from same
US11/270,767 2005-11-09

Publications (2)

Publication Number Publication Date
WO2007097817A2 true WO2007097817A2 (fr) 2007-08-30
WO2007097817A3 WO2007097817A3 (fr) 2007-11-08

Family

ID=38002534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/060675 WO2007097817A2 (fr) 2005-11-09 2006-11-08 Alliage d'aluminium coulable, de qualite balistique, soudable, de grande tenacite et de grande resistance, traitement thermique dudit alliage et articles produits a partir dudit alliage

Country Status (2)

Country Link
US (1) US20070102071A1 (fr)
WO (1) WO2007097817A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029033A3 (fr) * 2009-09-04 2011-06-30 Alcoa Inc. Procédé de vieillissement d'alliages d'aluminium permettant d'obtenir une performance de protection améliorée contre les balles
CN105002381A (zh) * 2015-06-29 2015-10-28 含山县裕源金属制品有限公司 一种掺混中间相炭微球的高致密增强型复合铝合金汽车零部件及其铸造工艺
CN105039801A (zh) * 2015-06-29 2015-11-11 含山县裕源金属制品有限公司 一种掺混纳米膨胀蛭石的减振降噪复合铝合金汽车零部件及其铸造工艺
CN105177359A (zh) * 2015-06-29 2015-12-23 含山县裕源金属制品有限公司 一种掺混纳米二氧化锡的增韧型复合铝合金汽车零部件及其铸造工艺
CN105177363A (zh) * 2015-06-29 2015-12-23 安徽越天特种车桥有限公司 一种掺混纳米氮化硼的抗腐蚀复合铝合金汽车零部件及其铸造工艺
CN105177471A (zh) * 2015-06-29 2015-12-23 含山县裕源金属制品有限公司 一种掺混四针状氧化锌晶须的减震耐磨复合铝合金汽车零部件及其铸造工艺
CN112281034A (zh) * 2020-10-16 2021-01-29 中国航发北京航空材料研究院 一种铸造铝合金及其制备方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100282061A1 (en) * 2001-12-31 2010-11-11 Asher Peretz Anti-terror lightweight armor plates and a method of producing same
CN102021449A (zh) * 2009-09-11 2011-04-20 贵州华科铝材料工程技术研究有限公司 以c变质的w-re高强耐热铝合金材料及其制备方法
CN102021448B (zh) * 2009-09-11 2013-06-12 贵州华科铝材料工程技术研究有限公司 以C变质的Be-RE高强耐热铝合金材料及其制备方法
CN102021384A (zh) * 2009-09-17 2011-04-20 贵州华科铝材料工程技术研究有限公司 以C变质的Ag-Cr-RE高强耐热铝合金材料及其制备方法
CN102021388B (zh) * 2009-09-17 2013-06-05 贵州华科铝材料工程技术研究有限公司 以C变质的Ag-W-RE高强耐热铝合金材料及其制备方法
CN102021393B (zh) * 2009-09-17 2013-06-05 贵州华科铝材料工程技术研究有限公司 以C变质的Co-W-RE高强耐热铝合金材料及其制备方法
CN102021379B (zh) * 2009-09-17 2013-08-21 贵州华科铝材料工程技术研究有限公司 以C变质的Ag-Be-RE高强耐热铝合金材料及其制备方法
CN102021399B (zh) * 2009-09-17 2013-06-05 贵州华科铝材料工程技术研究有限公司 Ag-Sc-RE高强耐热铝合金材料及其制备方法
CN102021405B (zh) * 2009-09-17 2014-03-12 贵州华科铝材料工程技术研究有限公司 以C变质的Cr-Ni-RE高强耐热铝合金材料及其制备方法
CN102021403B (zh) * 2009-09-17 2013-06-05 贵州华科铝材料工程技术研究有限公司 以C变质的Co-Ni-RE高强耐热铝合金材料及其制备方法
CN102021394B (zh) * 2009-09-17 2013-06-05 贵州华科铝材料工程技术研究有限公司 以C变质的Co-Cr-RE高强耐热铝合金材料及其制备方法
CN102021385B (zh) * 2009-09-17 2013-08-21 贵州华科铝材料工程技术研究有限公司 以C变质的Ag-Mo-RE高强耐热铝合金材料及其制备方法
CN102021412B (zh) * 2009-09-18 2014-03-12 贵州华科铝材料工程技术研究有限公司 以C变质的Mo-W-RE高强耐热铝合金材料及其制备方法
CN102021413B (zh) * 2009-09-18 2013-08-21 贵州华科铝材料工程技术研究有限公司 以C变质的Nb-W-RE高强耐热铝合金材料及其制备方法
CN102021422B (zh) * 2009-09-18 2013-10-02 贵州华科铝材料工程技术研究有限公司 Sc-Cr-RE高强耐热铝合金材料及其制备方法
CN102021431B (zh) * 2009-09-18 2013-08-21 贵州华科铝材料工程技术研究有限公司 以C变质的Be-W-RE高强耐热铝合金材料及其制备方法
CN102021420B (zh) * 2009-09-18 2013-09-18 贵州华科铝材料工程技术研究有限公司 以C变质的Sc-W-RE高强耐热铝合金材料及其制备方法
CN102021414B (zh) * 2009-09-18 2013-09-18 贵州华科铝材料工程技术研究有限公司 以C变质的Mo-Nb-RE高强耐热铝合金材料及其制备方法
CN102021423B (zh) * 2009-09-18 2013-10-02 贵州华科铝材料工程技术研究有限公司 Sc-Co-RE高强耐热铝合金材料及其制备方法
CN102021432B (zh) * 2009-09-18 2013-10-02 贵州华科铝材料工程技术研究有限公司 以C变质的Sc-RE高强耐热铝合金材料及其制备方法
CN102021416B (zh) * 2009-09-18 2013-08-21 贵州华科铝材料工程技术研究有限公司 以C变质的Be-Sc-RE高强耐热铝合金材料及其制备方法
CN102021424B (zh) * 2009-09-18 2013-08-21 贵州华科铝材料工程技术研究有限公司 以C变质的Sc-Li-RE高强耐热铝合金材料及其制备方法
CN102021406B (zh) * 2009-09-18 2013-08-21 贵州华科铝材料工程技术研究有限公司 以C变质的Nb-Ni-RE高强耐热铝合金材料及其制备方法
CN102021434B (zh) * 2009-09-21 2013-12-25 贵州华科铝材料工程技术研究有限公司 以C变质的Nb-RE高强耐热铝合金材料及其制备方法
CN102021435B (zh) * 2009-09-23 2013-07-24 贵州华科铝材料工程技术研究有限公司 以C变质的Be-Li-RE高强耐热铝合金材料及其制备方法
CN102021438B (zh) * 2009-09-23 2013-10-30 贵州华科铝材料工程技术研究有限公司 以C变质的Li-Mo-RE高强耐热铝合金材料及其制备方法
CN102021440B (zh) * 2009-09-23 2013-10-02 贵州华科铝材料工程技术研究有限公司 以C变质的Ag-RE高强耐热铝合金材料及其制备方法
FR2954355B1 (fr) * 2009-12-22 2012-02-24 Alcan Int Ltd Piece moulee en alliage d'aluminium au cuivre a haute resistance mecanique et au fluage a chaud
US9347558B2 (en) * 2010-08-25 2016-05-24 Spirit Aerosystems, Inc. Wrought and cast aluminum alloy with improved resistance to mechanical property degradation
KR101399301B1 (ko) * 2010-10-08 2014-05-27 스미토모 게이 긴조쿠 고교 가부시키가이샤 알루미늄 합금 접합 부재
CN102828079A (zh) * 2011-06-14 2012-12-19 湖南创元新材料有限公司 一种C变质的Nb-Cr铝合金及其制备方法
CN102828077A (zh) * 2011-06-14 2012-12-19 湖南创元新材料有限公司 一种C变质的Cr-Nb铝合金及其制备方法
US9284636B1 (en) 2011-12-21 2016-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Impact toughness and heat treatment for cast aluminum
CN102586654B (zh) * 2012-03-15 2014-05-21 中国科学院长春应用化学研究所 面向轻装甲和基座应用的合金混凝土及其制备方法
CA2932867C (fr) * 2013-12-20 2022-06-21 Alcoa Inc. Alliage de moulage de alsimgcu a performances elevees
RU2573164C1 (ru) * 2014-10-02 2016-01-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Высокопрочный деформируемый сплав на основе алюминия
CN105039789A (zh) * 2015-06-29 2015-11-11 安徽越天特种车桥有限公司 一种掺混纳米活性氧化铝的高韧性复合铝合金汽车零部件及其铸造工艺
US9643651B2 (en) 2015-08-28 2017-05-09 Honda Motor Co., Ltd. Casting, hollow interconnecting member for connecting vehicular frame members, and vehicular frame assembly including hollow interconnecting member
US20190169716A1 (en) * 2017-12-01 2019-06-06 GM Global Technology Operations LLC High temperature cast aluminum alloy for cylinder heads
CN109897999B (zh) * 2019-04-26 2020-04-21 烟台台海玛努尔航空科技有限公司 一种高强高韧2xxx铝合金锻件生产工艺
CN112338190B (zh) * 2020-11-30 2023-01-31 中国航发动力股份有限公司 一种高温合金增材制造件的热处理工艺方法
CN114855039B (zh) * 2021-02-03 2023-06-23 中国石油化工股份有限公司 一种Al-Cu-Mg-Ag合金及其制备方法和应用
CN114150193A (zh) * 2021-11-24 2022-03-08 广西大学 一种Cr改性的耐热铝基合金复合材料及其制备方法
CN114293077B (zh) * 2021-12-29 2022-09-30 北京理工大学 一种用于航空航天结构件的高强铝铜合金及制备方法
CN114381621A (zh) * 2022-01-07 2022-04-22 山东创新精密科技有限公司 一种生产船舶用铝合金型材的工艺
CN115927934B (zh) * 2022-07-01 2024-01-26 湖北汽车工业学院 一种具有{001}<x10>织构的Al-Cu铸造合金及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610733A (en) * 1984-12-18 1986-09-09 Aluminum Company Of America High strength weldable aluminum base alloy product and method of making same
US5194102A (en) * 1991-06-20 1993-03-16 Aluminum Company Of America Method for increasing the strength of aluminum alloy products through warm working
WO1994005820A1 (fr) * 1992-08-28 1994-03-17 Reynolds Metals Company Alliage d'aluminium resistant contenant du cuivre et du magnesium

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2706680A (en) * 1952-02-27 1955-04-19 Aluminum Co Of America Aluminum base alloy
US2784126A (en) * 1953-04-22 1957-03-05 Aluminum Co Of America Aluminum base alloy
US3826688A (en) * 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
US4108688A (en) * 1976-09-30 1978-08-22 Kaiser Aluminum & Chemical Corporation Cast aluminum plate and method therefor
US5120372A (en) * 1990-11-08 1992-06-09 Ford Motor Company Aluminum casting alloy for high strength/high temperature applications
US5115770A (en) * 1990-11-08 1992-05-26 Ford Motor Company Aluminum casting alloy for high strength/high temperature applications
DE69110018T2 (de) * 1990-11-30 1995-11-02 Toyota Motor Co Ltd Hochfester Aluminium-Legierungsguss mit hoher Zähigkeit und Verfahren zu seiner Herstellung.
JPH0762479A (ja) * 1993-08-26 1995-03-07 Hitachi Metals Ltd 高靱性、高強度アルミニウム合金鋳物
US5803994A (en) * 1993-11-15 1998-09-08 Kaiser Aluminum & Chemical Corporation Aluminum-copper alloy
JP2921820B2 (ja) * 1994-05-11 1999-07-19 本田技研工業株式会社 冷間予成形可能な超塑性成形用アルミニウム合金板及びその製造方法
US5597529A (en) * 1994-05-25 1997-01-28 Ashurst Technology Corporation (Ireland Limited) Aluminum-scandium alloys
US5571346A (en) * 1995-04-14 1996-11-05 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
JPH09316581A (ja) * 1996-03-29 1997-12-09 Mazda Motor Corp 高延性アルミニウム合金及び該高延性アルミニウム合金部材の製造方法
US6120621A (en) * 1996-07-08 2000-09-19 Alcan International Limited Cast aluminum alloy for can stock and process for producing the alloy
IL120001A0 (en) * 1997-01-13 1997-04-15 Amt Ltd Aluminum alloys and method for their production
EP0892077A1 (fr) * 1997-07-18 1999-01-20 Aluminum Company Of America Alliage de fonderie à base d'aluminium et produits fabriqués par cet alliage
WO1999011834A1 (fr) * 1997-08-30 1999-03-11 Honsel Ag Alliage et procede de production d'objets a partir de cet alliage
EP0911420B1 (fr) * 1997-10-08 2002-04-24 ALUMINIUM RHEINFELDEN GmbH Alliage de coulée à base d'aluminium
GB9804599D0 (en) * 1998-03-05 1998-04-29 Aeromet International Plc Cast aluminium-copper alloy
JP3403333B2 (ja) * 1998-05-15 2003-05-06 古河電気工業株式会社 自動車用アルミニウム板材とその製造方法
US6630037B1 (en) * 1998-08-25 2003-10-07 Kobe Steel, Ltd. High strength aluminum alloy forgings
JP2001049376A (ja) * 1999-05-12 2001-02-20 Daiki Aluminium Industry Co Ltd 高強度加圧鋳造用アルミニウム合金及び同アルミニウム合金鋳物
US6074501A (en) * 1999-06-28 2000-06-13 General Motors Corporation Heat treatment for aluminum casting alloys to produce high strength at elevated temperatures
US6146477A (en) * 1999-08-17 2000-11-14 Johnson Brass & Machine Foundry, Inc. Metal alloy product and method for producing same
US6645321B2 (en) * 1999-09-10 2003-11-11 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
US6368427B1 (en) * 1999-09-10 2002-04-09 Geoffrey K. Sigworth Method for grain refinement of high strength aluminum casting alloys
EP1118685A1 (fr) * 2000-01-19 2001-07-25 ALUMINIUM RHEINFELDEN GmbH Alliage d'Aluminium coulé
ATE464401T1 (de) * 2000-06-27 2010-04-15 Corus Aluminium Voerde Gmbh Aluminium-gusslegierung
US6412164B1 (en) * 2000-10-10 2002-07-02 Alcoa Inc. Aluminum alloys having improved cast surface quality
WO2003002285A2 (fr) * 2001-05-08 2003-01-09 Fowler White Boggs Banker P A Materiaux automobiles ou aerospatiaux utilises dans une machine de coulee et de remplissage de moules sous pression en continu
EP1260600B1 (fr) * 2001-05-17 2006-10-25 Furukawa-Sky Aluminum Corp. Alliage d'aluminium pour feuilles et son procédé de fabrication
US6783729B2 (en) * 2001-12-11 2004-08-31 Alcan International Limited Aluminum alloy for making naturally aged die cast products

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4610733A (en) * 1984-12-18 1986-09-09 Aluminum Company Of America High strength weldable aluminum base alloy product and method of making same
US5194102A (en) * 1991-06-20 1993-03-16 Aluminum Company Of America Method for increasing the strength of aluminum alloy products through warm working
WO1994005820A1 (fr) * 1992-08-28 1994-03-17 Reynolds Metals Company Alliage d'aluminium resistant contenant du cuivre et du magnesium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAMES J. FISHER, ET AL.: "Aluminium Alloy in Military Vehicles" ADVANCED MATERIALS&PROCESSES, September 2002 (2002-09), pages 43-46, XP009087828 *
LI HUI-ZHONG ET AL.: "Effect of Cu on microstructure and mechanical properties of 2519 aluminium alloy" TRANS. NONFERROUS MET. SOC. CHINA, vol. 15, no. 5, October 2005 (2005-10), pages 1026-1030, XP009087830 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011029033A3 (fr) * 2009-09-04 2011-06-30 Alcoa Inc. Procédé de vieillissement d'alliages d'aluminium permettant d'obtenir une performance de protection améliorée contre les balles
CN102625858A (zh) * 2009-09-04 2012-08-01 美铝公司 用于实现改进的弹道学性能的铝合金时效方法
US8758530B2 (en) 2009-09-04 2014-06-24 Alcoa Inc. Methods of aging aluminum alloys to achieve improved ballistics performance
CN102625858B (zh) * 2009-09-04 2014-10-29 美铝公司 用于实现改进的弹道学性能的铝合金时效方法
CN105002381A (zh) * 2015-06-29 2015-10-28 含山县裕源金属制品有限公司 一种掺混中间相炭微球的高致密增强型复合铝合金汽车零部件及其铸造工艺
CN105039801A (zh) * 2015-06-29 2015-11-11 含山县裕源金属制品有限公司 一种掺混纳米膨胀蛭石的减振降噪复合铝合金汽车零部件及其铸造工艺
CN105177359A (zh) * 2015-06-29 2015-12-23 含山县裕源金属制品有限公司 一种掺混纳米二氧化锡的增韧型复合铝合金汽车零部件及其铸造工艺
CN105177363A (zh) * 2015-06-29 2015-12-23 安徽越天特种车桥有限公司 一种掺混纳米氮化硼的抗腐蚀复合铝合金汽车零部件及其铸造工艺
CN105177471A (zh) * 2015-06-29 2015-12-23 含山县裕源金属制品有限公司 一种掺混四针状氧化锌晶须的减震耐磨复合铝合金汽车零部件及其铸造工艺
CN112281034A (zh) * 2020-10-16 2021-01-29 中国航发北京航空材料研究院 一种铸造铝合金及其制备方法

Also Published As

Publication number Publication date
US20070102071A1 (en) 2007-05-10
WO2007097817A3 (fr) 2007-11-08

Similar Documents

Publication Publication Date Title
WO2007097817A2 (fr) Alliage d'aluminium coulable, de qualite balistique, soudable, de grande tenacite et de grande resistance, traitement thermique dudit alliage et articles produits a partir dudit alliage
CA2418079C (fr) Alliage hautement resistant a base d'aluminium et article fabrique a partir de cet alliage
US6994760B2 (en) Method of producing a high strength balanced Al-Mg-Si alloy and a weldable product of that alloy
EP1778887B1 (fr) Alliage al-si-mg-zn-cu pour pieces coulees utilisees dans l'aerospatiale et l'industrie automobile
CN111032897A (zh) 形成铸造铝合金的方法
KR101333915B1 (ko) 알루미늄-아연-마그네슘-스칸듐 합금 및 이의 제조 방법
EP1524324B1 (fr) Alliage d'aluminium coulé, alliages d'aluminium coulés et leur procédé de fabrication
TWI507532B (zh) High strength aluminum magnesium silicon alloy and its manufacturing process
AU2005238479A1 (en) Heat treatable Al-Zn-Mg-Cu alloy for aerospace and automotive castings
WO2018094535A1 (fr) Alliages d'aluminium destinés à la coulée continue presque aux cotes de pièces structurales et et non structurales, et leurs procédés de fabrication
US20160319400A1 (en) Aluminum Casting Alloy with Improved High-Temperature Performance
US20050238529A1 (en) Heat treatable Al-Zn-Mg alloy for aerospace and automotive castings
JPH0372147B2 (fr)
US20120087826A1 (en) High strength aluminum casting alloy
JP2000144296A (ja) 高強度高靱性アルミニウム合金鍛造材
WO2019167469A1 (fr) Matériau d'alliage d'aluminium de système al-mg-si
US20040261916A1 (en) Dispersion hardenable Al-Ni-Mn casting alloys for automotive and aerospace structural components
GB2553366A (en) A casting alloy
WO2020150830A1 (fr) Alliages de fonderie destinés au coulage sous vide à haute pression
JP3726087B2 (ja) 輸送機構造材用アルミニウム合金鍛造材およびその製造方法
GB2065516A (en) A cast bar of an aluminum alloy for wrought products, having improved mechanical properties and workability
JPH07258784A (ja) 鋳造性に優れた鍛造用Al合金材料および高強度Al合金鍛造品の製法
Druschitz et al. Advanced cast aluminum alloys
Anderson et al. 201.0 and A201. 0
Wang Solution treatment of vacuum high pressure die cast aluminum alloy A380.

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06850123

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 06850123

Country of ref document: EP

Kind code of ref document: A2