WO2007097220A1 - Visible light-responsive photocatalyst - Google Patents

Visible light-responsive photocatalyst Download PDF

Info

Publication number
WO2007097220A1
WO2007097220A1 PCT/JP2007/052457 JP2007052457W WO2007097220A1 WO 2007097220 A1 WO2007097220 A1 WO 2007097220A1 JP 2007052457 W JP2007052457 W JP 2007052457W WO 2007097220 A1 WO2007097220 A1 WO 2007097220A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
visible light
atomic ratio
titania
titanium
Prior art date
Application number
PCT/JP2007/052457
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Iwamoto
Hirotaka Ozaki
Masashi Inoue
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2008501678A priority Critical patent/JPWO2007097220A1/en
Publication of WO2007097220A1 publication Critical patent/WO2007097220A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof

Definitions

  • the present invention relates to a visible light responsive photocatalyst. Specifically, the present invention relates to a titer photocatalyst having excellent visible light response. Specifically, a background art relating to a titania-based photocatalyst in which a transition metal is supported on a carrier based on a titanium-based catalyst containing a specific element as an essential component.
  • Photocatalysts have environmental purification functions such as air purification, water purification, deodorization, antibacterial, and antifouling! For this reason, as the need for environmental considerations increases, the photocatalyst market is expanding.
  • titer (acid titanium) is known as a photocatalyst exhibiting a catalytic action for organic substance decomposition reaction, water decomposition reaction, and the like by light irradiation.
  • the photocatalytic action of titaure is that when the titer absorbs light with energy larger than its band gap energy, electrons in the valence band are excited to the conduction band, and holes are generated in the valence band. Is exhibited by causing an oxidation / reduction reaction with an external substance on the catalyst surface (for example, see Patent Document 1)
  • the titanium exhibits super hydrophilicity when irradiated with ultraviolet light. For this reason, for example, fogging of glass or mirrors can be prevented by irradiating glass or mirrors or the like whose surface is coated with titaure with ultraviolet light (see, for example, Patent Document 2).
  • Chitar exhibits photoresponsiveness (catalytic activity) only in the ultraviolet region, and does not exhibit photoresponsiveness in the visible light region that is abundant in sunlight.
  • the ultraviolet light contained in sunlight is only about 3%.
  • the conventional titer cannot exhibit sufficient catalytic activity by solar energy.
  • a conventional titer cannot be used as a photocatalyst in a place where light irradiation in the ultraviolet region cannot be sufficiently performed.
  • Patent Document 1 JP-A-10-121266
  • Patent Document 2 Pamphlet of International Publication No. 96Z29375
  • Patent Document 3 Japanese Patent Laid-Open No. 9-192496
  • Patent Document 4 International Publication No. 01Z010552 Pamphlet
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-200057
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2006-21112
  • An object of the present invention is to provide a titania-based visible light responsive photocatalyst having greatly improved responsiveness to the visible light region.
  • the visible light responsive photocatalyst of the present invention is a catalyst in which a titanium catalyst containing Ti, N, and O as essential components is used as a carrier, and a transition metal is supported on the carrier.
  • the carrier further contains Si.
  • the visible light responsive photocatalyst of the present invention is
  • the atomic ratio of SiZTi is 0.01 to 1.
  • the visible light responsive photocatalyst of the present invention is the transition metal.
  • the visible light responsive photocatalyst of the present invention is the above transition metal. Includes W.
  • the atomic ratio of WZTi is 0.03 to 0.15.
  • the transition metal contains Mo.
  • the atomic ratio of MoZTi is 0.01-0.05.
  • the visible light responsive photocatalyst of the present invention contains the above transition metal force.
  • the atomic ratio of VZTi is 0.0001-0.05.
  • the visible light responsive photocatalyst of the present invention contains the transition metal force SFe.
  • the atomic ratio of FeZTi is 0.0001-0.
  • a titanium-based visible light responsive photocatalyst exhibiting excellent responsiveness not only in the ultraviolet light region but also in the visible light region can be provided.
  • the visible light responsive photocatalyst of the present invention has greatly improved responsiveness to the visible light region, and can exhibit excellent catalytic activity even in places with low light intensity, such as indoors.
  • FIG. 1 is a view showing an XRD pattern of a tungsten-supported titanium-based photocatalyst and XG (0.2).
  • FIG. 2 is a graph showing measurement results of photocatalytic activity with respect to visible light in Examples 1 to 1-10 and Comparative Examples 1 and 2.
  • FIG. 3 is a diagram showing an XRD pattern of molybdenum-supported titanium photocatalyst and XG (0.2).
  • FIG. 4 is a graph showing measurement results of photocatalytic activity with respect to visible light in Examples 2-1 to 2-7 and Comparative Examples 1 and 2.
  • FIG. 5 is a diagram showing XRD patterns of vanadium-supported titanium photocatalyst and XG (0.2).
  • FIG. 6 is a graph showing the measurement results of photocatalytic activity with respect to visible light in Examples 3-1 to 3-8 and Comparative Examples 1 and 2.
  • FIG. 7 is a graph showing the measurement results of photocatalytic activity with respect to visible light in Examples 41 to 47 and Comparative Example 1.
  • FIG. 8 is a graph showing the results of Examples 1-6, 2-5, 3-6, 4-4, and Comparative Example 1, and the photocatalytic activity for visible light as a CO production rate. It is.
  • the visible light responsive photocatalyst of the present invention uses a titanium catalyst (A) containing Ti, N, and O as essential components as a carrier.
  • the titanium catalyst (A) is preferably a catalyst in which N is taken into the structure of titanium (acid titanium).
  • the crystal structure of tita (acid titanium) can be either anatase or rutile. Anatase type is preferable.
  • the titanium catalyst (A) may further contain Si.
  • the titanium catalyst (A) is preferably represented by the general formula (1).
  • the titanium catalyst (A) is It can be obtained by performing nitrogen introduction treatment on titaure. Any appropriate treatment method may be adopted as the nitrogen introduction treatment. Preferable is ammonia treatment, and examples thereof include methods described in JP-A-2003-200057 (Patent Document 5) and JP-A-2006-21112 (Patent Document 6).
  • the titanium catalyst (A) contains Si as a component (that is, when 0 ⁇ x ⁇ 1 in the general formula (1))
  • the titanium catalyst (A) is silica Nitrogen similar to the above in the modified titaure It can be obtained by performing an entry process.
  • any appropriate method can be adopted as long as Si can be inserted or substituted into the titania crystal structure.
  • JP-A-2000-254493 and JP-A-2006-21112 Patent Document 6 can be used.
  • the atomic ratio of SiZTi is preferably from 0.01 to 1, more preferably from 0.03 to 0.7.
  • the power is more preferably from 05 to 0.5, and particularly preferably from 0.07 to 0.4.
  • the visible light responsive photocatalyst of the present invention is one in which the titania-based catalyst (A) is used as a carrier and a transition metal is supported on the carrier.
  • any appropriate transition metal can be adopted as the transition metal.
  • V, Cr, Mn, Fe ⁇ Co, Ni ⁇ Cu ⁇ Zn, Nb ⁇ Mo, Tc ⁇ Ru ⁇ Rh, Pd ⁇ Ag ⁇ Ta ⁇ W ⁇ Re ⁇ Os, Ir, Pt, Au, and more Preferred are V, Cr, Mn, Fe, Co, Ni ⁇ Nb, Mo, Ta, and W, and more preferred are W, Mo, V, and Fe.
  • These transition metals may be used alone or in combination of two or more.
  • the transition metal / Ti atom is preferably from 0.0001 to 0.50, more preferably from 0.0001 to 0.50, and even more preferably from 0.0001 to 0.20.
  • the atomic ratio of the transition metal ZTi is in such a range, the effect of the present invention is more easily exhibited.
  • any suitable loading method can be adopted as long as it is a loading method of the transition metal on the solid catalyst.
  • it is supported by an impregnation method.
  • W is used as the transition metal
  • ammonium tungstate is dissolved in a small amount of water, and the above-mentioned titanium catalyst (A) is added and heated (for example, in a water bath at 80 ° C).
  • the support can be carried out by impregnation by stirring in (above) and then firing at a high temperature (for example, 500 ° C.).
  • the atomic ratio of WZTi is preferably 0.01 to 0.20, more preferably 0.03 to 0.15.
  • the effect of the present invention is more easily exhibited. Further, the effect of the present invention can be sufficiently exerted even with such a small amount of W against Ti.
  • Mo is used as the transition metal, for example, ammonium molybdate is dissolved in a small amount of water, and the above-mentioned titanium catalyst (A) is added and heated (for example, on a water bath at 80 ° C). The impregnation can be carried out by stirring, followed by firing at a high temperature (for example, 500 ° C.) for supporting.
  • the atomic ratio of MoZTi is preferably 0.001 to 0.10, more preferably 0.01 to 0.05.
  • the effects of the present invention are more easily exhibited. Further, even if the amount of Mo with respect to Ti is such a small amount, the effect of the present invention can be sufficiently exerted.
  • V is used as the transition metal
  • ammonium vanadate is dissolved in a small amount of water, and the above-mentioned titanium catalyst (A) is added and heated (for example, on a water bath at 80 ° C).
  • the impregnation can be performed by stirring, and then the support can be performed by firing at a high temperature (for example, 500 ° C.).
  • the atomic ratio of VZTi is preferably 0.00005-0.10, more preferably 0.0001-0.05.
  • the V / Ti atomic ratio is in such a range, the effects of the present invention are more easily exhibited. Further, even if the amount of V with respect to Ti is very small, the effect of the present invention can be sufficiently exerted.
  • Fe is used as the transition metal
  • iron nitrate is dissolved in a small amount of water, and the above-mentioned titania-based catalyst (A) is added and stirred under heating (for example, on a water bath at 80 ° C). It is possible to carry out the support by impregnating the mixture and then baking at a high temperature (for example, 500 ° C.).
  • the atomic ratio of FeZTi is preferably 0.0001-0.2, more preferably 0.0001-0.1, and even more preferably 0.005-0.07. .
  • the Fe / Ti atomic ratio is in such a range, the effects of the present invention are more easily exhibited. Further, the effect of the present invention can be sufficiently exerted even with such a small amount of Fe with respect to Ti.
  • any suitable transition metal can be used for a titanium-based catalyst containing Ti, N, and O as essential components, preferably a nitrogen-doped silica-modified titanium-based catalyst.
  • the addition of at least one transition metal selected from W, Mo, V, and Fe can significantly improve the photocatalytic activity under visible light irradiation.
  • the effects when a transition metal is added to a titanium catalyst are as follows: (1) Since the transition metal itself absorbs visible light, visible light responsiveness is expressed.
  • the effect of the above (2) is considered to be greater than the effect of the above (3) in the form in which the transition metal is added to the titania-based catalyst containing Ti, N, and O as essential components.
  • the reason for this is thought to be that the titanium catalyst used in the present invention containing Ti, N, and O as essential components has excellent characteristics.
  • the effects of (3) are greater than the effects of (2) above in some cases where a significant improvement in activity is observed due to the addition of transition metals to the titanium catalyst. In many cases, responsiveness decreases.
  • At least one transition metal selected from W, Mo, V, and Fe is added as a transition metal to a titanium catalyst containing Ti, N, and O as essential components.
  • these transition metals which have higher photocatalytic activity for visible light
  • the addition of Fe as a transition metal has extremely high photocatalytic activity for visible light.
  • the nitrogen-doped silica modified titanium catalyst added with either W, Mo, or V has a photocatalytic activity for visible light as compared to a nitrogen-doped silica modified titanium catalyst with no transition metal added.
  • a nitrogen-doped silica modified titanium catalyst added with Fe can be expressed about 8 times or more.
  • the nitrogen-doped silica modified titanium catalyst added with Fe can exhibit high activity even when a fluorescent lamp is used as a light source.
  • the visible light responsive photocatalyst of the present invention has a structure in which a transition metal is supported on a titania-based catalyst containing a specific element such as Ti, N, and O as an essential component. In addition, it exhibits excellent responsiveness not only in the visible light region, but particularly in the responsiveness in the visible light region.
  • the absorbance at a wavelength of 300 nm is 1, the absorbance at a wavelength of 450 nm (visible light region) is preferably 0.2 or more, more preferably Is 0.25 or more, more preferably 0.3 or more, particularly preferably 0.35 or more, and most preferably 0.4 or more.
  • the upper limit of the absorbance is practically preferably 1.0 or less.
  • the visible light responsive photocatalyst of the present invention has greatly improved responsiveness to the visible light region, and the photocatalytic activity for visible light is much higher than that of a titania-based catalyst that does not carry a transition metal. Excellent!
  • the visible light responsive photocatalyst of the present invention is used on the wall surface, floor surface, ceiling surface, etc. of buildings and equipment; coating on furniture, glass, mirrors, lighting, tools, paper, cloth, plates, etc .; It can be used for various purposes such as application to photoelectric conversion materials; application to fields related to chemical 'electric reactions such as organic matter decomposition, radical generation, bleaching, etc.
  • the catalyst composition was measured by an X-ray photoelectron spectrometer (XPS) (manufactured by ULVAC—PHI, model number: Model 5500).
  • XPS X-ray photoelectron spectrometer
  • 0.2 g of the photocatalyst to be measured was uniformly dispersed on a 90 mm ⁇ glass filter paper and placed in a 1 L glass container to be sealed. In this state, 0.2 mmol of acetoaldehyde was added to the container and left in the dark for 1 hour. After that, light irradiation was performed using a 300W xenon lamp equipped with a cut-off filter capable of cutting ultraviolet light as a light source, and the amount of CO produced after a predetermined time was measured by gas chromatography.
  • the UV-vis spectrum was measured with a UV-vis spectrum measuring apparatus (manufactured by Shimadzu Corporation, model number: MPS-2000).
  • silica modified titer After 0.3 g of the obtained silica modified titer was filled into the tube, ammonia gas was poured into the tube at lOOmLZmin, and heat treatment was performed at 600 ° C for 1 hour, and then in the air. Annealing was performed at 500 ° C. Thereby, ammonia treatment was performed uniformly and efficiently, and a nitrogen-introduced silica-modified titania photocatalyst in which nitrogen was introduced into the crystal structure was obtained.
  • the nitrogen-introduced silica modified titer photocatalyst obtained by this method is represented as XG (0.2).
  • the silica was modified, and the titanium was treated with ammonia in the same manner as in Production Example 1 to obtain a nitrogen-introduced titania photocatalyst.
  • the nitrogen-introduced titania photocatalyst obtained by this method is represented as X G (O).
  • Figure 1 shows the XRD pattern of the titanium photocatalyst (11).
  • the photocatalytic activity for visible light was measured by the method described above. The result is shown in figure 2.
  • Fig. 1 shows the XRD pattern of the titanium photocatalyst (1-2).
  • Ammonium tungstate 0.0852 g dissolved in 3 ml of water was prepared in the same manner as in Example 1-1 except that 0.3 g of XG (0.2) obtained in Production Example 1 was added.
  • TiZSiZW A titanium photocatalyst (13) having an atomic ratio of 100Z20Z10 was obtained.
  • Figure 1 shows the XRD pattern of the titanium photocatalyst (13).
  • Fig. 1 shows the XRD pattern of the titanium photocatalyst (1-4).
  • Fig. 1 shows the XRD pattern of the titanium photocatalyst (1-7).
  • a titer photocatalyst (1-9) of 100Z20Z3 was obtained.
  • Figure 1 shows the RD pattern
  • Example 1 Except that 0.3 g of XG (0.2) obtained in Production Example 1 was added to a solution obtained by dissolving 0.00085 g of ammonium tungstate in 3 ml of water, the same procedure as in Example 1-1 was performed, and TiZSiZW A titanium photocatalyst (1-10) having an atomic ratio of 100Z20Z1 was obtained.
  • Fig. 1 shows the XRD pattern of the titanium photocatalyst (1-10).
  • the absorbance at wavelength 300nm (ultraviolet region) was 1.
  • the absorbance at a wavelength of 450 nm (visible light region) was 0.433.
  • a titanium-based photocatalyst (2-2) of 100Z20Z7 was obtained. X-rays of titanium photocatalyst (2-2)
  • Figure 3 shows the RD pattern
  • Fig. 3 shows the XRD pattern of the titanium photocatalyst (2-3).
  • Example 2 Except that 0.3 g of XG (0.2) obtained in Production Example 1 was added to 0.0230 g of molybdenum molybdate dissolved in 3 ml of water, the same procedure as in Example 2-1 was performed, and TiZSiZMo A titania photocatalyst (2-4) having an atomic ratio of 100Z20Z4 was obtained.
  • Fig. 3 shows the XRD pattern of the titanium photocatalyst (2-5).
  • the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 4.
  • a graph showing photocatalytic activity for visible light in terms of CO production rate is shown in Fig. 8.
  • Figure 3 shows the XRD pattern of the photocatalyst (2-7).
  • the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1.
  • the absorbance at a wavelength of 450 nm visible light region was 0.393.
  • Figure 5 shows the XRD pattern of the titanium photocatalyst (3-1).
  • the photocatalytic activity with respect to visible light was measured by the method described above.
  • Fig. 5 shows the XRD pattern of the titanium photocatalyst (3-2).
  • Fig. 5 shows the XRD pattern of the titanium photocatalyst (3-3).
  • Fig. 5 shows the XRD pattern of the titanium photocatalyst (3-4).
  • the photocatalytic activity with respect to visible light was measured by the method described above.
  • a graph showing photocatalytic activity for visible light in terms of CO production rate is shown in Fig. 8.
  • Figure 7 shows the results.
  • a graph showing photocatalytic activity for visible light in terms of CO production rate is shown in Fig. 8.
  • absorbance at a wavelength of 300 nm ultraviolet light region
  • Absorbance at a wavelength of 450 nm visible light region
  • a titer photocatalyst (C2) was obtained by adding 0.3 g of XG (0) obtained in Production Example 2 to 3 ml of water and drying at 80 ° C.
  • the titania photocatalyst (C2) obtained was measured for photocatalytic activity with respect to visible light by the method described above. The results are shown in Figs.
  • the transition metal-supported titanium photocatalysts (1 1) to (1 1 0) (in particular, (1 3) to (1 8)), (2 — 1) to (2-7), (3-1) to (3-8) (especially (3-3) to (3-8)), (4 1) to (4 7) (especially , (4 2) to (4 6)) show that the photocatalytic activity for visible light is very high compared to titania-based photocatalysts (C1) and (C2) that do not carry transition metals. . Further, it can be seen that the effect of the present invention is sufficiently exhibited even when the amount of the transition metal to be supported is extremely small.
  • the titanium-based photocatalyst of the present invention has a very high photocatalytic activity for visible light. Therefore, it can be used not only in places where sunlight can be irradiated, but also in places where sufficient UV intensity cannot be obtained, such as indoors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a visible light-responsive titania photocatalyst which is greatly improved in response to the visible light. Specifically disclosed is a visible light-responsive photocatalyst wherein a titania catalyst containing Ti, N and O as indispensable components is used as a carrier on which a transition metal is loaded.

Description

明 細 書  Specification
可視光応答型光触媒  Visible light responsive photocatalyst
技術分野  Technical field
[0001] 本発明は、可視光応答型光触媒に関する。詳しくは、優れた可視光応答性を有す るチタ-ァ系光触媒に関する。具体的には、特定元素を必須成分として含むチタ- ァ系触媒を担体として該担体に遷移金属が担持された、チタニア系光触媒に関する 背景技術  [0001] The present invention relates to a visible light responsive photocatalyst. Specifically, the present invention relates to a titer photocatalyst having excellent visible light response. Specifically, a background art relating to a titania-based photocatalyst in which a transition metal is supported on a carrier based on a titanium-based catalyst containing a specific element as an essential component.
[0002] 光触媒は、空気浄化、水質浄化、脱臭、抗菌、防汚など、環境浄化機能を有して!/、 る。このため、環境配慮に対するニーズの増大とともに、光触媒の巿場は拡大傾向に ある。  [0002] Photocatalysts have environmental purification functions such as air purification, water purification, deodorization, antibacterial, and antifouling! For this reason, as the need for environmental considerations increases, the photocatalyst market is expanding.
[0003] 光照射により有機物分解反応や水の分解反応等に対して触媒作用を示す光触媒 として、チタ-ァ (酸ィ匕チタン)が知られている。チタユアの光触媒作用は、チタ-ァが そのバンドギャップエネルギーより大き 、エネルギーをもつ光を吸収すると、価電子 帯の電子が伝導帯に励起され、価電子帯には正孔が生成して、これらが触媒表面で 外部の物質と酸化 ·還元反応を起こすことにより発揮される (例えば、特許文献 1参照 [0003] As a photocatalyst exhibiting a catalytic action for organic substance decomposition reaction, water decomposition reaction, and the like by light irradiation, titer (acid titanium) is known. The photocatalytic action of titaure is that when the titer absorbs light with energy larger than its band gap energy, electrons in the valence band are excited to the conduction band, and holes are generated in the valence band. Is exhibited by causing an oxidation / reduction reaction with an external substance on the catalyst surface (for example, see Patent Document 1)
) o ) o
[0004] また、チタ-ァは、紫外光を照射することにより、超親水性を示す。このため、表面 にチタユアが塗布されたガラスや鏡等に紫外光を照射することにより、例えば、ガラス や鏡の曇りを防止することができる(例えば、特許文献 2参照)。  [0004] In addition, the titanium exhibits super hydrophilicity when irradiated with ultraviolet light. For this reason, for example, fogging of glass or mirrors can be prevented by irradiating glass or mirrors or the like whose surface is coated with titaure with ultraviolet light (see, for example, Patent Document 2).
[0005] チタ-ァは紫外光領域においてのみ光応答性 (触媒活性)を示し、太陽光に多く含 まれる可視光領域においては光応答性を示さない。太陽光に含まれる紫外光はおよ そ 3%程度にすぎない。このため、従来のチタ-ァは、太陽光エネルギーによって十 分な触媒活性を発揮することができない。また、紫外光領域の光照射が十分に行え ない場所では、光触媒として従来のチタ-ァを利用することができない。  [0005] Chitar exhibits photoresponsiveness (catalytic activity) only in the ultraviolet region, and does not exhibit photoresponsiveness in the visible light region that is abundant in sunlight. The ultraviolet light contained in sunlight is only about 3%. For this reason, the conventional titer cannot exhibit sufficient catalytic activity by solar energy. In addition, a conventional titer cannot be used as a photocatalyst in a place where light irradiation in the ultraviolet region cannot be sufficiently performed.
[0006] 上記問題を解決する方法として、チタユアにクロムや鉄等をドーピング処理したり、 チタ-ァをアンモニアで処理したりする方法が提案されて 、る。このような処理が施さ れたチタニアは、紫外光領域のみならず可視光領域に対しても応答性を示すように なる(例えば、特許文献 3〜5参照)。従って、例えば、室内(例えばトイレや風呂など )において上記処理が施されたチタ-ァを光触媒として用いると、蛍光灯の光を照射 することにより、有機物を分解することや、防汚'脱臭作用を発揮させることが可能と なる。 [0006] As a method for solving the above problem, a method of doping titanium with chromium or iron or a method of treating titanium with ammonia has been proposed. Such a treatment The titania thus produced becomes responsive not only to the ultraviolet light region but also to the visible light region (see, for example, Patent Documents 3 to 5). Therefore, for example, when a titer that has been subjected to the above treatment is used as a photocatalyst in a room (for example, a toilet or a bath), the organic matter is decomposed or the antifouling / deodorizing action is caused by irradiation with fluorescent light. Can be demonstrated.
[0007] 可視光領域に対する応答性を向上させるために、シリカ修飾チタ-ァをアンモニア で処理した光触媒が提案されている (例えば、特許文献 6参照)。しかし、可視光領 域に対する応答性としては、まだまだ不十分なものである。したがって、可視光領域 に対する応答性を大幅に向上させた光触媒の提供が望まれている。  [0007] In order to improve the response to the visible light region, a photocatalyst in which a silica-modified titer is treated with ammonia has been proposed (for example, see Patent Document 6). However, the response to the visible light region is still insufficient. Therefore, it is desired to provide a photocatalyst with greatly improved response to the visible light region.
特許文献 1 :特開平 10— 121266号公報  Patent Document 1: JP-A-10-121266
特許文献 2:国際公開第 96Z29375号パンフレット  Patent Document 2: Pamphlet of International Publication No. 96Z29375
特許文献 3:特開平 9 - 192496号公報  Patent Document 3: Japanese Patent Laid-Open No. 9-192496
特許文献 4:国際公開第 01Z010552号パンフレット  Patent Document 4: International Publication No. 01Z010552 Pamphlet
特許文献 5:特開 2003 - 200057号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2003-200057
特許文献 6:特開 2006— 21112号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2006-21112
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明の課題は、可視光領域に対する応答性を大幅に向上させた、チタニア系の 可視光応答型光触媒を提供することにある。 [0008] An object of the present invention is to provide a titania-based visible light responsive photocatalyst having greatly improved responsiveness to the visible light region.
課題を解決するための手段  Means for solving the problem
[0009] 本発明の可視光応答型光触媒は、 Ti、 N、 Oを必須成分として含むチタ-ァ系触 媒を担体とし、該担体に遷移金属が担持されたものである。 [0009] The visible light responsive photocatalyst of the present invention is a catalyst in which a titanium catalyst containing Ti, N, and O as essential components is used as a carrier, and a transition metal is supported on the carrier.
[0010] 好ましい実施形態においては、本発明の可視光応答型光触媒は、上記担体が Si をさらに含む。より好ましい実施形態においては、本発明の可視光応答型光触媒は[0010] In a preferred embodiment, in the visible light responsive photocatalyst of the present invention, the carrier further contains Si. In a more preferred embodiment, the visible light responsive photocatalyst of the present invention is
、 SiZTiの原子比が 0. 01〜1である。 The atomic ratio of SiZTi is 0.01 to 1.
[0011] 好ましい実施形態においては、本発明の可視光応答型光触媒は、上記遷移金属[0011] In a preferred embodiment, the visible light responsive photocatalyst of the present invention is the transition metal.
1S W、 Mo、 V、 Feから選ばれる少なくとも 1種を含む。 Includes at least one selected from 1S W, Mo, V, and Fe.
[0012] 好ましい実施形態においては、本発明の可視光応答型光触媒は、上記遷移金属 が Wを含む。より好ましい実施形態においては、 WZTiの原子比が 0. 03〜0. 15で ある。 [0012] In a preferred embodiment, the visible light responsive photocatalyst of the present invention is the above transition metal. Includes W. In a more preferred embodiment, the atomic ratio of WZTi is 0.03 to 0.15.
[0013] 好ましい実施形態においては、本発明の可視光応答型光触媒は、上記遷移金属 が Moを含む。より好ましい実施形態においては、 MoZTiの原子比が 0. 01-0. 0 5である。  [0013] In a preferred embodiment, in the visible light responsive photocatalyst of the present invention, the transition metal contains Mo. In a more preferred embodiment, the atomic ratio of MoZTi is 0.01-0.05.
[0014] 好ましい実施形態においては、本発明の可視光応答型光触媒は、上記遷移金属 力 を含む。より好ましい実施形態においては、 VZTiの原子比が 0. 0001-0. 05 である。  In a preferred embodiment, the visible light responsive photocatalyst of the present invention contains the above transition metal force. In a more preferred embodiment, the atomic ratio of VZTi is 0.0001-0.05.
[0015] 好ましい実施形態においては、本発明の可視光応答型光触媒は、上記遷移金属 力 SFeを含む。より好ましい実施形態においては、 FeZTiの原子比が 0. 0001-0. 1 である。  [0015] In a preferred embodiment, the visible light responsive photocatalyst of the present invention contains the transition metal force SFe. In a more preferred embodiment, the atomic ratio of FeZTi is 0.0001-0.
発明の効果  The invention's effect
[0016] 本発明によれば、紫外光領域のみならず可視光領域に対しても優れた応答性を示 すチタ-ァ系の可視光応答型光触媒を提供することができる。特に、本発明の可視 光応答型光触媒は、可視光領域に対する応答性が大幅に向上したものであり、室内 など光強度の弱い場所でも優れた触媒活性を発揮することができる。  According to the present invention, a titanium-based visible light responsive photocatalyst exhibiting excellent responsiveness not only in the ultraviolet light region but also in the visible light region can be provided. In particular, the visible light responsive photocatalyst of the present invention has greatly improved responsiveness to the visible light region, and can exhibit excellent catalytic activity even in places with low light intensity, such as indoors.
このような効果は、 Ti、 N、 Oという特定元素を必須成分として含むチタ-ァ系触媒 を担体として該担体に遷移金属が担持された可視光応答型光触媒によって発揮す ることができる。また、担持させる遷移金属の量が極めて少量であっても本発明の効 果を十分に発揮させることができる。 図面の簡単な説明  Such an effect can be exhibited by a visible light responsive photocatalyst in which a transition metal is supported on a carrier based on a titanium catalyst containing specific elements such as Ti, N, and O as essential components. In addition, even if the amount of the transition metal to be supported is very small, the effects of the present invention can be sufficiently exerted. Brief Description of Drawings
[0017] [図 1]タングステン担持チタ-ァ系光触媒および XG (0. 2)の XRDパターンを示す図 である。  FIG. 1 is a view showing an XRD pattern of a tungsten-supported titanium-based photocatalyst and XG (0.2).
[図 2]実施例 1 1〜1 10、比較例 1〜2における、可視光に対する光触媒活性の 測定結果を示す図である。  FIG. 2 is a graph showing measurement results of photocatalytic activity with respect to visible light in Examples 1 to 1-10 and Comparative Examples 1 and 2.
[図 3]モリブデン担持チタ-ァ系光触媒および XG (0. 2)の XRDパターンを示す図で ある。 [図 4]実施例 2— 1〜2— 7、比較例 1〜2における、可視光に対する光触媒活性の測 定結果を示す図である。 FIG. 3 is a diagram showing an XRD pattern of molybdenum-supported titanium photocatalyst and XG (0.2). FIG. 4 is a graph showing measurement results of photocatalytic activity with respect to visible light in Examples 2-1 to 2-7 and Comparative Examples 1 and 2.
[図 5]バナジウム担持チタ-ァ系光触媒および XG (0. 2)の XRDパターンを示す図 である。  FIG. 5 is a diagram showing XRD patterns of vanadium-supported titanium photocatalyst and XG (0.2).
[図 6]実施例 3— 1〜3— 8、比較例 1〜2における、可視光に対する光触媒活性の測 定結果を示す図である。  FIG. 6 is a graph showing the measurement results of photocatalytic activity with respect to visible light in Examples 3-1 to 3-8 and Comparative Examples 1 and 2.
[図 7]実施例 4 1〜4 7、比較例 1における、可視光に対する光触媒活性の測定結 果を示す図である。  FIG. 7 is a graph showing the measurement results of photocatalytic activity with respect to visible light in Examples 41 to 47 and Comparative Example 1.
[図 8]実施例 1— 6、実施例 2— 5、実施例 3— 6、実施例 4—4、比較例 1の結果を、可 視光に対する光触媒活性を CO生成速度で示したグラフ図である。  FIG. 8 is a graph showing the results of Examples 1-6, 2-5, 3-6, 4-4, and Comparative Example 1, and the photocatalytic activity for visible light as a CO production rate. It is.
2  2
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 本発明の可視光応答型光触媒は、 Ti、 N、 Oを必須成分として含むチタ-ァ系触 媒 (A)を担体とする。チタ-ァ系触媒 (A)は、好ましくは、チタ-ァ (酸ィ匕チタン)の構 造内部に Nが取り込まれたものである。チタ-ァ(酸ィ匕チタン)の結晶構造は、アナタ ース型でもルチル型でもよ 、。好ましくはアナタース型である。 [0018] The visible light responsive photocatalyst of the present invention uses a titanium catalyst (A) containing Ti, N, and O as essential components as a carrier. The titanium catalyst (A) is preferably a catalyst in which N is taken into the structure of titanium (acid titanium). The crystal structure of tita (acid titanium) can be either anatase or rutile. Anatase type is preferable.
[0019] チタ-ァ系触媒 (A)は、 Siをさらに含んでいても良い。 Siを含むチタ-ァ系触媒 (A[0019] The titanium catalyst (A) may further contain Si. Ti-containing catalyst containing Si (A
)は、主にアナタース型結晶構造を有するチタユアの結晶格子中のテトラへドラルホ ールゃ Tiの部位に、 Siが挿入あるいは置換されたものである。 ) Is the one in which Si is inserted or substituted at the site of tetrahedral hole Ti in the crystal lattice of titaure mainly having anatase type crystal structure.
[0020] チタ-ァ系触媒 (A)は、好ましくは、一般式(1)で表すことができる。 [0020] The titanium catalyst (A) is preferably represented by the general formula (1).
TiSixNyOz (1)  TiSixNyOz (1)
ここで、 0≤x< l、 0<y< 0. 3、 0< z< 2 + 2xである。  Where 0≤x <l, 0 <y <0.3, 0 <z <2 + 2x.
[0021] チタ-ァ系触媒 (A)が Siを成分として含まな 、場合 (すなわち、一般式(1)にお!/ヽ て x=0の場合)、チタ-ァ系触媒 (A)は、チタユアに窒素導入処理を行うことにより 得ることができる。窒素導入処理としては、任意の適切な処理方法を採用し得る。好 ましくは、アンモニア処理であり、例えば、特開 2003— 200057号公報 (特許文献 5) ゃ特開 2006— 21112号公報 (特許文献 6)に記載の方法が挙げられる。  [0021] When the titanium catalyst (A) does not contain Si as a component (that is, when x = 0 in the general formula (1)), the titanium catalyst (A) is It can be obtained by performing nitrogen introduction treatment on titaure. Any appropriate treatment method may be adopted as the nitrogen introduction treatment. Preferable is ammonia treatment, and examples thereof include methods described in JP-A-2003-200057 (Patent Document 5) and JP-A-2006-21112 (Patent Document 6).
[0022] チタ-ァ系触媒 (A)が Siを成分として含む場合 (すなわち、一般式(1)にお 、て 0 <x< 1の場合)、チタ-ァ系触媒 (A)は、シリカ修飾チタユアに上記と同様の窒素導 入処理を行うことにより得ることができる。シリカ修飾チタ-ァを得る方法としては、チ タニアの結晶構造中に Siを挿入あるいは置換できる限りにお 、て、任意の適切な方 法を採用し得る。好ましくは、特開 2000— 254493号公報ゃ特開 2006— 21112号 公報 (特許文献 6)に記載の方法が挙げられる。チタニア系触媒 (A)が Siを成分とし て含む場合、 SiZTiの原子比は、 0. 01〜1であることが好ましぐ 0. 03〜0. 7であ ること力より好ましく、 0. 05〜0. 5であること力さらに好ましく、 0. 07〜0. 4であること が特に好ましい。 SiZTiの原子比がこのような範囲にあることにより、本発明の効果 力 り一層発揮され易くなる。 [0022] When the titanium catalyst (A) contains Si as a component (that is, when 0 <x <1 in the general formula (1)), the titanium catalyst (A) is silica Nitrogen similar to the above in the modified titaure It can be obtained by performing an entry process. As a method for obtaining the silica-modified titer, any appropriate method can be adopted as long as Si can be inserted or substituted into the titania crystal structure. Preferably, JP-A-2000-254493 and JP-A-2006-21112 (Patent Document 6) can be used. When the titania-based catalyst (A) contains Si as a component, the atomic ratio of SiZTi is preferably from 0.01 to 1, more preferably from 0.03 to 0.7. The power is more preferably from 05 to 0.5, and particularly preferably from 0.07 to 0.4. When the atomic ratio of SiZTi is in such a range, the effects of the present invention are more easily exhibited.
[0023] 本発明の可視光応答型光触媒は、上記チタニア系触媒 (A)を担体とし、該担体に 遷移金属が担持されたものである。  [0023] The visible light responsive photocatalyst of the present invention is one in which the titania-based catalyst (A) is used as a carrier and a transition metal is supported on the carrier.
[0024] 上記遷移金属としては、任意の適切な遷移金属を採用し得る。好ましくは、 V、 Cr、 Mn、 Feゝ Co、 Niゝ Cuゝ Zn、 Nbゝ Mo、 Tcゝ Ruゝ Rh、 Pdゝ Agゝ Taゝ Wゝ Reゝ Os、 Ir 、 Pt、 Auであり、より好ましくは、 V、 Cr、 Mn、 Fe、 Co、 Niゝ Nb、 Mo、 Ta、 Wであり、 さらに好ましくは、 W、 Mo、 V、 Feである。これら遷移金属は 1種のみを用いても良い し、 2種以上を併用しても良い。  [0024] Any appropriate transition metal can be adopted as the transition metal. Preferably, V, Cr, Mn, Fe ゝ Co, Ni ゝ Cu ゝ Zn, Nb ゝ Mo, Tc ゝ Ru ゝ Rh, Pd ゝ Ag ゝ Ta ゝ W ゝ Re ゝ Os, Ir, Pt, Au, and more Preferred are V, Cr, Mn, Fe, Co, Ni ゝ Nb, Mo, Ta, and W, and more preferred are W, Mo, V, and Fe. These transition metals may be used alone or in combination of two or more.
[0025] 遷移金属/ Tiの原子 it ίま、好ましく ίま 0. 00001〜0. 50、より好ましく ίま 0. 0000 5〜0. 30、さらに好ましくは 0. 0001〜0. 20である。遷移金属 ZTiの原子比がこの ような範囲にあることにより、本発明の効果がより一層発揮され易くなる。  [0025] The transition metal / Ti atom is preferably from 0.0001 to 0.50, more preferably from 0.0001 to 0.50, and even more preferably from 0.0001 to 0.20. When the atomic ratio of the transition metal ZTi is in such a range, the effect of the present invention is more easily exhibited.
[0026] 上記遷移金属の担持は、固体触媒への遷移金属の担持方法であれば、任意の適 切な担持方法を採用し得る。好ましくは、含浸法による担持である。  [0026] For the loading of the transition metal, any suitable loading method can be adopted as long as it is a loading method of the transition metal on the solid catalyst. Preferably, it is supported by an impregnation method.
[0027] 遷移金属として Wを用いる場合は、例えば、タングステン酸アンモ-ゥムを少量の 水に溶解し、上記チタ-ァ系触媒 (A)を加えて加温下 (例えば 80°Cの水浴上)で撹 拌することで含浸させ、その後、高温 (例えば 500°C)で焼成することによって、担持 を行うことができる。  [0027] When W is used as the transition metal, for example, ammonium tungstate is dissolved in a small amount of water, and the above-mentioned titanium catalyst (A) is added and heated (for example, in a water bath at 80 ° C). The support can be carried out by impregnation by stirring in (above) and then firing at a high temperature (for example, 500 ° C.).
[0028] 遷移金属として Wを用いる場合、 WZTiの原子比は、好ましくは 0. 01〜0. 20、よ り好ましくは 0. 03〜0. 15である。 W/Tiの原子比がこのような範囲にあることにより 、本発明の効果がより一層発揮され易くなる。また、 Tiに対する Wの量力このように少 量であっても本発明の効果が十分に発揮できる。 [0029] 遷移金属として Moを用いる場合は、例えば、モリブデン酸アンモニゥムを少量の水 に溶解し、上記チタ-ァ系触媒 (A)を加えて加温下 (例えば 80°Cの水浴上)で撹拌 することで含浸させ、その後、高温 (例えば 500°C)で焼成することによって、担持を 行うことができる。 [0028] When W is used as the transition metal, the atomic ratio of WZTi is preferably 0.01 to 0.20, more preferably 0.03 to 0.15. When the atomic ratio of W / Ti is in such a range, the effect of the present invention is more easily exhibited. Further, the effect of the present invention can be sufficiently exerted even with such a small amount of W against Ti. [0029] When Mo is used as the transition metal, for example, ammonium molybdate is dissolved in a small amount of water, and the above-mentioned titanium catalyst (A) is added and heated (for example, on a water bath at 80 ° C). The impregnation can be carried out by stirring, followed by firing at a high temperature (for example, 500 ° C.) for supporting.
[0030] 遷移金属として Moを用いる場合、 MoZTiの原子比は、好ましくは 0. 001〜0. 10 、より好ましくは 0. 01〜0. 05である。 Mo/Tiの原子比がこのような範囲にあること により、本発明の効果がより一層発揮され易くなる。また、 Tiに対する Moの量がこの ように少量であっても本発明の効果が十分に発揮できる。  [0030] When Mo is used as the transition metal, the atomic ratio of MoZTi is preferably 0.001 to 0.10, more preferably 0.01 to 0.05. When the atomic ratio of Mo / Ti is in such a range, the effects of the present invention are more easily exhibited. Further, even if the amount of Mo with respect to Ti is such a small amount, the effect of the present invention can be sufficiently exerted.
[0031] 遷移金属として Vを用いる場合は、例えば、バナジン酸アンモニゥムを少量の水に 溶解し、上記チタ-ァ系触媒 (A)を加えて加温下 (例えば 80°Cの水浴上)で撹拌す ることで含浸させ、その後、高温 (例えば 500°C)で焼成することによって、担持を行う ことができる。  [0031] When V is used as the transition metal, for example, ammonium vanadate is dissolved in a small amount of water, and the above-mentioned titanium catalyst (A) is added and heated (for example, on a water bath at 80 ° C). The impregnation can be performed by stirring, and then the support can be performed by firing at a high temperature (for example, 500 ° C.).
[0032] 遷移金属として Vを用いる場合、 VZTiの原子比は、好ましくは 0. 00005-0. 10 、より好ましくは 0. 0001-0. 05である。 V/Tiの原子比がこのような範囲にあること により、本発明の効果がより一層発揮され易くなる。また、 Tiに対する Vの量がこのよ うに極めて少量であっても本発明の効果が十分に発揮できる。  [0032] When V is used as the transition metal, the atomic ratio of VZTi is preferably 0.00005-0.10, more preferably 0.0001-0.05. When the V / Ti atomic ratio is in such a range, the effects of the present invention are more easily exhibited. Further, even if the amount of V with respect to Ti is very small, the effect of the present invention can be sufficiently exerted.
[0033] 遷移金属として Feを用いる場合は、例えば、硝酸鉄を少量の水に溶解し、上記チ タニア系触媒 (A)を加えて加温下 (例えば 80°Cの水浴上)で撹拌することで含浸さ せ、その後、高温 (例えば 500°C)で焼成することによって、担持を行うことができる。  [0033] When Fe is used as the transition metal, for example, iron nitrate is dissolved in a small amount of water, and the above-mentioned titania-based catalyst (A) is added and stirred under heating (for example, on a water bath at 80 ° C). It is possible to carry out the support by impregnating the mixture and then baking at a high temperature (for example, 500 ° C.).
[0034] 遷移金属として Feを用いる場合、 FeZTiの原子比は、好ましくは 0. 0001-0. 2、 より好ましくは 0. 0001〜0. 1、さらに好ましくは 0. 005〜0. 07である。 Fe/Tiの原 子比がこのような範囲にあることにより、本発明の効果がより一層発揮され易くなる。ま た、 Tiに対する Feの量力このように極めて少量であっても本発明の効果が十分に発 揮できる。  [0034] When Fe is used as the transition metal, the atomic ratio of FeZTi is preferably 0.0001-0.2, more preferably 0.0001-0.1, and even more preferably 0.005-0.07. . When the Fe / Ti atomic ratio is in such a range, the effects of the present invention are more easily exhibited. Further, the effect of the present invention can be sufficiently exerted even with such a small amount of Fe with respect to Ti.
[0035] 本発明にお 、ては、 Ti、 N、 Oを必須成分として含むチタ-ァ系触媒、好ましくは、 窒素ドープしたシリカ修飾チタ-ァ系触媒に対して、任意の適切な遷移金属、好まし くは、 W、 Mo、 V、 Feから選ばれる少なくとも 1種の遷移金属を添加することによって 、可視光照射下での光触媒活性が大幅に向上し得る。 [0036] 一般に、チタ-ァ系触媒に遷移金属を添加した場合の効果としては、(1)遷移金属 自体が可視光を吸収するので、可視光応答性が発現する、(2)遷移金属が電子の ァクセプターとして働き、光照射により生成した電子を受け取ることで、電子一正孔が 分離され、再結合が起こりに《なり、可視光応答性の効率が上がる、(3)遷移金属 自体が再結合サイトとして働き、逆に、可視光応答性の効率が下がる、の 3つが主と して考えられる。上記(2)と(3)は、ともに起こり得る力 どちらが優先的になっている のかは、もとのチタ-ァ系触媒の性質に大きく依存し、また、遷移金属の添加量ゃ存 在している状態によっても異なる。本発明において、 Ti、 N、 Oを必須成分として含む チタ-ァ系触媒に遷移金属を添加する形態では、遷移金属の添加量が少なぐ遷移 金属自体による光吸収の増加は少ないと考えられる。よって、上記(1)の効果はあま り大きくないと考えられる。なお、本発明において、 Ti、 N、 Oを必須成分として含む チタニア系触媒に遷移金属を添加する形態では、上記(2)の効果は上記(3)の効果 よりも大きいと考えられる。この理由は、本発明で用いる Ti、 N、 Oを必須成分として 含むチタ-ァ系触媒が優れた特性を持っためと考えられる。一般には、チタ-ァ系 触媒への遷移金属の添加によって大幅な活性向上が認められる例は少なぐ場合に よっては上記(2)の効果よりも上記(3)の効果が大きくなり、可視光応答性が低下し てしまうことが多い。 [0035] In the present invention, any suitable transition metal can be used for a titanium-based catalyst containing Ti, N, and O as essential components, preferably a nitrogen-doped silica-modified titanium-based catalyst. Preferably, the addition of at least one transition metal selected from W, Mo, V, and Fe can significantly improve the photocatalytic activity under visible light irradiation. [0036] In general, the effects when a transition metal is added to a titanium catalyst are as follows: (1) Since the transition metal itself absorbs visible light, visible light responsiveness is expressed. (2) By acting as an electron acceptor and receiving electrons generated by light irradiation, one electron hole is separated, recombination occurs, and the efficiency of visible light response increases, and (3) the transition metal itself re- The three main reasons are that it works as a binding site and the efficiency of visible light response decreases. In (2) and (3), which force is likely to be given priority depends largely on the nature of the original titanium catalyst, and the amount of transition metal added is also present. It depends on the status. In the present invention, in the form of adding a transition metal to a titanium-based catalyst containing Ti, N, and O as essential components, it is considered that the increase in light absorption by the transition metal itself with a small amount of transition metal added is small. Therefore, the effect of (1) above is not so great. In the present invention, the effect of the above (2) is considered to be greater than the effect of the above (3) in the form in which the transition metal is added to the titania-based catalyst containing Ti, N, and O as essential components. The reason for this is thought to be that the titanium catalyst used in the present invention containing Ti, N, and O as essential components has excellent characteristics. In general, the effects of (3) are greater than the effects of (2) above in some cases where a significant improvement in activity is observed due to the addition of transition metals to the titanium catalyst. In many cases, responsiveness decreases.
[0037] 本発明にお 、ては、 Ti、 N、 Oを必須成分として含むチタ-ァ系触媒に、遷移金属 として、 W、 Mo、 V、 Feから選ばれる少なくとも 1種の遷移金属を添カ卩した場合力 可 視光に対する光触媒活性がより高ぐこれらの遷移金属の中でも、遷移金属として Fe を添加した場合が、可視光に対する光触媒活性が極めて高い。具体的には、可視光 に対する光触媒活性が、遷移金属未添加の窒素ドープシリカ修飾チタ-ァ系触媒に 比べて、 W、 Mo、 Vのいずれかを添カ卩した窒素ドープシリカ修飾チタ-ァ系触媒は 約 3倍以上、 Feを添加した窒素ドープシリカ修飾チタ-ァ系触媒は約 8倍以上発現 し得る。また、 Feを添加した窒素ドープシリカ修飾チタ-ァ系触媒は、蛍光灯を光源 に用いた場合でも高 、活性を示しうる。  [0037] In the present invention, at least one transition metal selected from W, Mo, V, and Fe is added as a transition metal to a titanium catalyst containing Ti, N, and O as essential components. The power when visible. Among these transition metals, which have higher photocatalytic activity for visible light, the addition of Fe as a transition metal has extremely high photocatalytic activity for visible light. Specifically, the nitrogen-doped silica modified titanium catalyst added with either W, Mo, or V has a photocatalytic activity for visible light as compared to a nitrogen-doped silica modified titanium catalyst with no transition metal added. Can be expressed about 3 times or more, and a nitrogen-doped silica modified titanium catalyst added with Fe can be expressed about 8 times or more. In addition, the nitrogen-doped silica modified titanium catalyst added with Fe can exhibit high activity even when a fluorescent lamp is used as a light source.
[0038] 最近は、チタ-ァベースの触媒では高活性ィヒは困難であるとの認識が一部では広 まりつつあり、ニオブ、タンタル、ガリウム、希土類元素などをベースにした種々の複 合酸化物やこれらを部分的に窒化した化合物につ 、ての検討が広く行われるように なっている。し力しながら、ニオブ、タンタル、ガリウム、希土類元素などの元素は、高 価であり、安全性や安定性についての検討は十分に行われていない。本発明の可 視光応答型光触媒は、安価であり、無害で安定な酸化チタンをベースとしているので 、実用化の可能性が高い。 [0038] Recently, the recognition that high activity is difficult with a titer-based catalyst is partially spreading, and various composites based on niobium, tantalum, gallium, rare earth elements and the like are spreading. Studies on mixed oxides and compounds obtained by partially nitriding them have been widely conducted. However, elements such as niobium, tantalum, gallium, and rare earth elements are expensive, and safety and stability have not been sufficiently studied. Since the visible light responsive photocatalyst of the present invention is based on inexpensive, harmless and stable titanium oxide, it has a high possibility of practical use.
[0039] 本発明の可視光応答型光触媒は、 Ti、 N、 Oという特定元素を必須成分として含む チタニア系触媒を担体として該担体に遷移金属を担持させた構造を有することにより 、紫外光領域のみならず可視光領域に対しても優れた応答性を示し、特に、可視光 領域に対する応答性が大幅に向上したものである。具体的には、 UV— visスペクトル の測定結果において、波長 300nm (紫外光領域)における吸光度を 1とした場合に、 波長 450nm (可視光領域)における吸光度が、好ましくは 0. 2以上、より好ましくは 0 . 25以上、さらに好ましくは 0. 3以上、特に好ましくは 0. 35以上、最も好ましくは 0. 4以上である。上記吸光度の上限は、実用的には、好ましくは、 1. 0以下である。この ように、本発明の可視光応答型光触媒は可視光領域に対する応答性が大幅に向上 したものであり、遷移金属が担持されていないチタニア系触媒に比較すると、可視光 に対する光触媒活性が非常に優れて!/ヽる。  [0039] The visible light responsive photocatalyst of the present invention has a structure in which a transition metal is supported on a titania-based catalyst containing a specific element such as Ti, N, and O as an essential component. In addition, it exhibits excellent responsiveness not only in the visible light region, but particularly in the responsiveness in the visible light region. Specifically, in the UV-vis spectrum measurement result, when the absorbance at a wavelength of 300 nm (ultraviolet light region) is 1, the absorbance at a wavelength of 450 nm (visible light region) is preferably 0.2 or more, more preferably Is 0.25 or more, more preferably 0.3 or more, particularly preferably 0.35 or more, and most preferably 0.4 or more. The upper limit of the absorbance is practically preferably 1.0 or less. As described above, the visible light responsive photocatalyst of the present invention has greatly improved responsiveness to the visible light region, and the photocatalytic activity for visible light is much higher than that of a titania-based catalyst that does not carry a transition metal. Excellent!
[0040] 本発明の可視光応答型光触媒は、建造物や機器の壁面、床面、天井面などへの 使用;什器、ガラス、鏡、照明、道具、紙、布、板等へのコーティング;光電変換材料 への使用;有機物分解、ラジカル発生、漂白等の化学的'電気的反応に関する分野 への適用;など、様々な目的に使用することが可能である。  [0040] The visible light responsive photocatalyst of the present invention is used on the wall surface, floor surface, ceiling surface, etc. of buildings and equipment; coating on furniture, glass, mirrors, lighting, tools, paper, cloth, plates, etc .; It can be used for various purposes such as application to photoelectric conversion materials; application to fields related to chemical 'electric reactions such as organic matter decomposition, radical generation, bleaching, etc.
実施例  Example
[0041] 本発明について、実施例および比較例を用いて更に説明する。なお、本発明は、 これらの実施例のみに限定されるものではない。なお、実施例で用いた各分析方法 は、以下の通りである。  [0041] The present invention will be further described using examples and comparative examples. In addition, this invention is not limited only to these Examples. The analysis methods used in the examples are as follows.
[0042] 〔触媒組成〕  [0042] [Catalyst composition]
触媒組成は、 X線光電子分光分析装置 (XPS) (ULVAC— PHI製、型番: Model 5500)により測定した。  The catalyst composition was measured by an X-ray photoelectron spectrometer (XPS) (manufactured by ULVAC—PHI, model number: Model 5500).
〔XRD測定〕 XRD測定は、 XRD測定装置(島津製作所製、型番: XD— D1)により測定した。 〔可視光に対する光触媒活性の測定〕 [XRD measurement] XRD measurement was performed with an XRD measurement apparatus (manufactured by Shimadzu Corporation, model number: XD—D1). [Measurement of photocatalytic activity to visible light]
測定対象の光触媒 0. 2gを 90mm Φのガラス製ろ紙上に均一に分散させ、 1Lのガ ラス容器内に設置して密閉状態とした。この状態で、ァセトアルデヒドを 0. 2mmolを 容器内に添加し、暗所で 1時間放置した。その後、紫外光をカットできるカットオフフィ ルターを取り付けた 300Wキセノンランプを光源として光照射を行い、所定時間後に 生成した CO量をガスクロマトグラフィーによって測定した。  0.2 g of the photocatalyst to be measured was uniformly dispersed on a 90 mm Φ glass filter paper and placed in a 1 L glass container to be sealed. In this state, 0.2 mmol of acetoaldehyde was added to the container and left in the dark for 1 hour. After that, light irradiation was performed using a 300W xenon lamp equipped with a cut-off filter capable of cutting ultraviolet light as a light source, and the amount of CO produced after a predetermined time was measured by gas chromatography.
2  2
〔UV— visスペクトルの測定〕  [Measurement of UV-vis spectrum]
UV— visスペクトルは、 UV— visスペクトル測定装置(島津製作所製、型番: MPS - 2000)により測定した。  The UV-vis spectrum was measured with a UV-vis spectrum measuring apparatus (manufactured by Shimadzu Corporation, model number: MPS-2000).
[0043] 〔製造例 1〕:窒素導入シリカ修飾チタ-ァ光触媒 XG (0. 2)の製造  [Production Example 1]: Production of nitrogen-introduced silica-modified titanium photocatalyst XG (0.2)
チタンテトライソプロポキシド 12. 573g、オルトケィ酸テトラェチル 1. 848g、 1, 4— ブタンジオール lOOmLを混合後(SiZTi仕込み比(モル比) =0. 2)、オートクレー ブに載置した。系内を窒素で置換した後、 2. 3°CZ分で室温から 300°Cまで昇温し 、 300°Cで 2時間保持した。温度を 300°C付近に保持したままオートクレーブのノ レ ブを開き、溶媒を溜去して、キセロゲル生成物とした。これを空気中において 500°C で 30分間焼成して、シリカ修飾チタ-ァを得た。  12.573 g of titanium tetraisopropoxide, 1.848 g of tetraethyl orthokeate, and lOOmL of 1,4-butanediol were mixed (SiZTi charge ratio (molar ratio) = 0.2) and then placed on an autoclave. After substituting the system with nitrogen, the temperature was raised from room temperature to 300 ° C in 2.3 ° CZ minutes and kept at 300 ° C for 2 hours. The autoclave nozzle was opened with the temperature kept at around 300 ° C, and the solvent was distilled off to obtain a xerogel product. This was calcined in air at 500 ° C. for 30 minutes to obtain a silica modified titer.
[0044] 得られたシリカ修飾チタ-ァ 0. 3gをチューブ内に充填した後、チューブ内にアンモ ユアガスを lOOmLZminで流し、 600°Cで 1時間加熱処理を行った後、空気中にお いて 500°Cでァニール処理を行った。これにより、均一かつ効率よくアンモニア処理 が行われ、結晶構造中に窒素が導入された窒素導入シリカ修飾チタニア光触媒が 得られた。この方法で得られた窒素導入シリカ修飾チタ-ァ光触媒を XG (0. 2)と表 す。  [0044] After 0.3 g of the obtained silica modified titer was filled into the tube, ammonia gas was poured into the tube at lOOmLZmin, and heat treatment was performed at 600 ° C for 1 hour, and then in the air. Annealing was performed at 500 ° C. Thereby, ammonia treatment was performed uniformly and efficiently, and a nitrogen-introduced silica-modified titania photocatalyst in which nitrogen was introduced into the crystal structure was obtained. The nitrogen-introduced silica modified titer photocatalyst obtained by this method is represented as XG (0.2).
[0045] 〔製造例 2〕:窒素導入チタニア光触媒 XG (0)の製造  [Production Example 2]: Production of nitrogen-introduced titania photocatalyst XG (0)
シリカ修飾して ヽな 、チタ-ァに対して、製造例 1と同様にアンモニア処理を行 、、 窒素導入チタニア光触媒を得た。この方法で得られた窒素導入チタニア光触媒を X G (O)と表す。  The silica was modified, and the titanium was treated with ammonia in the same manner as in Production Example 1 to obtain a nitrogen-introduced titania photocatalyst. The nitrogen-introduced titania photocatalyst obtained by this method is represented as X G (O).
[0046] 〔実施例 1 1〕:チタニア系光触媒(1 1) (TiZSiZW (原子比) =100Z20Z20) タングステン酸アンモ-ゥム 0. 170gを水 5mlに溶解したものに製造例 1で得られた XG (0. 2)を 0. 3g加え、 80°Cの水浴上で撹拌し、その後、 500°Cで焼成すること〖こ よって、タングステンが担持されたチタ-ァ系光触媒(1— 1)が得られた。得られたチ タニア系光触媒(1— 1)は、 TiZSiZW (原子比) =100Z20Z20であった。チタ二 ァ系光触媒(1 1)の XRDパターンを図 1に示す。 [Example 1 1]: Titania photocatalyst (1 1) (TiZSiZW (atomic ratio) = 100Z20Z20) Add 0.3 g of XG (0.2) obtained in Production Example 1 to 0.1 g of ammonium tungstate dissolved in 5 ml of water, stir on an 80 ° C water bath, and then 500 ° By firing with C, a titanium-based photocatalyst (1-1) carrying tungsten was obtained. The resulting titania photocatalyst (1-1) was TiZSiZW (atomic ratio) = 100Z20Z20. Figure 1 shows the XRD pattern of the titanium photocatalyst (11).
[0047] 得られたチタ-ァ系光触媒(1 1) (TiZSiZW (原子比) =100Ζ20Ζ20)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 2に示す。 [0047] With respect to the obtained titanium photocatalyst (11) (TiZSiZW (atomic ratio) = 100 to 20 to 20), the photocatalytic activity for visible light was measured by the method described above. The result is shown in figure 2.
[0048] 得られたチタ-ァ系光触媒(1 1) (TiZSiZW (原子比) =100Ζ20Ζ20)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 327であった。  [0048] As a result of measuring the UV-vis spectrum of the obtained titanium photocatalyst (11) (TiZSiZW (atomic ratio) = 100-2020), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In this case, the absorbance at a wavelength of 450 nm (visible light region) was 0.327.
[0049] 〔実施例 1 2〕:チタニア系光触媒(1 2) (TiZSiZW (原子比) = 100Z20Z15) タングステン酸アンモ-ゥム 0. 128gを水 5mlに溶解したものに製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 1— 1と同様に行い、 TiZSiZW (原子比) = 100Z20Z15のチタ-ァ系光触媒(1— 2)を得た。チタ-ァ系光触媒( 1— 2)の XRDパターンを図 1に示す。  [Example 1 2]: Titania-based photocatalyst (1 2) (TiZSiZW (atomic ratio) = 100Z20Z15) obtained in Preparation Example 1 in which 0.1 g of ammonium tungstate was dissolved in 5 ml of water A titanium photocatalyst (1-2) with TiZSiZW (atomic ratio) = 100Z20Z15 was obtained in the same manner as in Example 1-1 except that 0.3 g of XG (0.2) was added. Fig. 1 shows the XRD pattern of the titanium photocatalyst (1-2).
[0050] 得られたチタ-ァ系光触媒(1 2) (TiZSiZW (原子比) = 100Z20Z15)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 2に示す。  [0050] The obtained photocatalyst activity (12) (TiZSiZW (atomic ratio) = 100Z20Z15) was measured for photocatalytic activity with respect to visible light by the method described above. The result is shown in figure 2.
[0051] 得られたチタ-ァ系光触媒(1 2) (TiZSiZW (原子比) =100Ζ20Ζ15)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 314であった。  [0051] As a result of measuring the UV-vis spectrum of the obtained titanium photocatalyst (12) (TiZSiZW (atomic ratio) = 100 to 20-15), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In this case, the absorbance at a wavelength of 450 nm (visible light region) was 0.314.
[0052] 〔実施例 1 3〕:チタニア系光触媒(1 3) (TiZSiZW (原子比) =100Z20Z10)  [0052] [Example 1 3]: Titania-based photocatalyst (1 3) (TiZSiZW (atomic ratio) = 100Z20Z10)
タングステン酸アンモ-ゥム 0. 0852gを水 3mlに溶解したものに製造例 1で得られ た XG (0. 2)を 0. 3gカ卩えた以外は実施例 1— 1と同様に行い、 TiZSiZW (原子比) = 100Z20Z10のチタ-ァ系光触媒(1 3)を得た。チタ-ァ系光触媒(1 3)の XRDパターンを図 1に示す。  Ammonium tungstate 0.0852 g dissolved in 3 ml of water was prepared in the same manner as in Example 1-1 except that 0.3 g of XG (0.2) obtained in Production Example 1 was added. TiZSiZW A titanium photocatalyst (13) having an atomic ratio of 100Z20Z10 was obtained. Figure 1 shows the XRD pattern of the titanium photocatalyst (13).
[0053] 得られたチタ-ァ系光触媒(1 3) (TiZSiZW (原子比) =100Z20Z10)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図[0053] The obtained titanium photocatalyst (1 3) (TiZSiZW (atomic ratio) = 100Z20Z10) Then, the photocatalytic activity for visible light was measured by the method described above. Figure the result
2に示す。 Shown in 2.
[0054] 得られたチタ-ァ系光触媒(1 3) (TiZSiZW (原子比) =100Z20Z10)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 446であった。  [0054] As a result of measuring the UV-vis spectrum of the obtained titanium photocatalyst (13) (TiZSiZW (atomic ratio) = 100Z20Z10), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In this case, the absorbance at a wavelength of 450 nm (visible light region) was 0.446.
[0055] 〔実施例 1 4〕:チタニア系光触媒(1 4) (TiZSiZW (原子比) = 100Z20Z8) タングステン酸アンモ-ゥム 0. 0682gを水 3mlに溶解したものに製造例 1で得られ た XG (0. 2)を 0. 3gカ卩えた以外は実施例 1— 1と同様に行い、 TiZSiZW (原子比) = 100Z20Z8のチタ-ァ系光触媒(1— 4)を得た。チタ-ァ系光触媒(1—4)の X RDパターンを図 1に示す。  [Example 14]: Titania-based photocatalyst (14) (TiZSiZW (atomic ratio) = 100Z20Z8) Obtained in Preparation Example 1 by dissolving 0.0682 g of ammonium tungstate in 3 ml of water A titanium photocatalyst (1-4) with TiZSiZW (atomic ratio) = 100Z20Z8 was obtained in the same manner as in Example 1-1 except that 0.3 g of XG (0.2) was added. Fig. 1 shows the XRD pattern of the titanium photocatalyst (1-4).
[0056] 得られたチタ-ァ系光触媒(1 4) (TiZSiZW (原子比) = 100Z20Z8)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 2 に示す。  With respect to the obtained titer photocatalyst (14) (TiZSiZW (atomic ratio) = 100Z20Z8), the photocatalytic activity for visible light was measured by the method described above. The result is shown in figure 2.
[0057] 得られたチタ-ァ系光触媒(1 4) (TiZSiZW (原子比) = 100Ζ20Ζ8)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 348であった。  [0057] The obtained titer photocatalyst (14) (TiZSiZW (atomic ratio) = 100 ~ 20 ~ 8) was measured for UV-vis spectrum. As a result, the absorbance at wavelength 300nm (ultraviolet light region) was 1. Further, the absorbance at a wavelength of 450 nm (visible light region) was 0.348.
[0058] 〔実施例 1 5〕:チタニア系光触媒(1 5) (TiZSiZW (原子比) = 100Z20Z7) タングステン酸アンモ-ゥム 0. 060gを水 3mlに溶解したものに製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 1— 1と同様に行い、 TiZSiZW (原子比) = 100Z20Z7のチタニア系光触媒(1— 5)を得た。  [Example 15]: Titania-based photocatalyst (15) (TiZSiZW (atomic ratio) = 100Z20Z7) Obtained in Preparation Example 1 by dissolving 0.0060 g of ammonium tungstate in 3 ml of water A titania photocatalyst (1-5) having TiZSiZW (atomic ratio) = 100Z20Z7 was obtained in the same manner as in Example 1-1 except that 0.3 g of XG (0.2) was added.
[0059] 得られたチタ-ァ系光触媒(1 5) (TiZSiZW (原子比) = 100Z20Z7)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 2 に示す。  [0059] The obtained photocatalyst activity (15) (TiZSiZW (atomic ratio) = 100Z20Z7) was measured for photocatalytic activity with respect to visible light by the method described above. The result is shown in figure 2.
[0060] 得られたチタ-ァ系光触媒(1 5) (TiZSiZW (原子比) =100Ζ20Ζ7)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 398であった。  [0060] As a result of measuring the UV-vis spectrum of the obtained tita-based photocatalyst (15) (TiZSiZW (atomic ratio) = 100 to 20-7), the absorbance at a wavelength of 300 nm (ultraviolet light region) is 1. Further, the absorbance at a wavelength of 450 nm (visible light region) was 0.398.
[0061] 〔実施例 1 6〕:チタニア系光触媒(1 6) (TiZSiZW (原子比) = 100Z20Z6) タングステン酸アンモ-ゥム 0. 05 llgを水 3mlに溶解したものに製造例 1で得られ た XG(0. 2)を 0. 3gカ卩えた以外は実施例 1— 1と同様に行い、 TiZSiZW (原子比) = 100Z20Z6のチタニア系光触媒(1— 6)を得た。 [0061] [Example 16]: Titania-based photocatalyst (16) (TiZSiZW (atomic ratio) = 100Z20Z6) Obtained in Preparation Example 1 by dissolving ammonium tungstate 0.05 llg in 3 ml of water The titania photocatalyst (1-6) with TiZSiZW (atomic ratio) = 100Z20Z6 was obtained in the same manner as in Example 1-1 except that 0.3 g of XG (0.2) was added.
[0062] 得られたチタ-ァ系光触媒(1 6) (TiZSiZW (原子比) = 100Z20Z6)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 2 に示す。また、可視光に対する光触媒活性を CO生成速度で示したグラフ図を図 [0062] With respect to the obtained titer photocatalyst (16) (TiZSiZW (atomic ratio) = 100Z20Z6), the photocatalytic activity for visible light was measured by the method described above. The result is shown in figure 2. In addition, a graph showing photocatalytic activity for visible light in terms of CO production rate is shown.
2 8 に示す。  It is shown in 2-8.
[0063] 得られたチタ-ァ系光触媒(1 6) (TiZSiZW (原子比) =100Z20Z6)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 385であった。  [0063] As a result of measuring the UV-vis spectrum of the obtained titer photocatalyst (16) (TiZSiZW (atomic ratio) = 100Z20Z6), the absorbance at a wavelength of 300 nm (ultraviolet light region) is 1. Further, the absorbance at a wavelength of 450 nm (visible light region) was 0.385.
[0064] 〔実施例 1 7〕:チタニア系光触媒(1 7) (TiZSiZW (原子比) = 100Z20Z5) タングステン酸アンモ-ゥム 0. 0425gを水 3mlに溶解したものに製造例 1で得られ た XG(0. 2)を 0. 3gカ卩えた以外は実施例 1— 1と同様に行い、 TiZSiZW (原子比) = 100Z20Z5のチタ-ァ系光触媒(1— 7)を得た。チタ-ァ系光触媒( 1— 7)の X RDパターンを図 1に示す。  [Example 17]: Titania-based photocatalyst (17) (TiZSiZW (atomic ratio) = 100Z20Z5) Obtained in Preparation Example 1 by dissolving 0.0425 g of ammonium tungstate in 3 ml of water A titanium photocatalyst (1-7) with TiZSiZW (atomic ratio) = 100Z20Z5 was obtained in the same manner as in Example 1-1 except that 0.3 g of XG (0.2) was added. Fig. 1 shows the XRD pattern of the titanium photocatalyst (1-7).
[0065] 得られたチタ-ァ系光触媒(1 7) (TiZSiZW (原子比) = 100Z20Z5)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 2 に示す。  The obtained photocatalytic catalyst (17) (TiZSiZW (atomic ratio) = 100Z20Z5) was measured for photocatalytic activity with respect to visible light by the method described above. The result is shown in figure 2.
[0066] 得られたチタ-ァ系光触媒(1 7) (TiZSiZW (原子比) =100Ζ20Ζ5)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 409であった。  [0066] The obtained titer photocatalyst (17) (TiZSiZW (atomic ratio) = 100 to 20 to 5) was measured for UV-vis spectrum. As a result, the absorbance at wavelength 300nm (ultraviolet light region) was 1. Further, the absorbance at a wavelength of 450 nm (visible light region) was 0.409.
[0067] 〔実施例 1 8〕:チタニア系光触媒(1 8) (TiZSiZW (原子比) = 100Z20Z4) タングステン酸アンモ-ゥム 0. 0341gを水 3mlに溶解したものに製造例 1で得られ た XG(0. 2)を 0. 3gカ卩えた以外は実施例 1— 1と同様に行い、 TiZSiZW (原子比) = 100Z20Z4のチタニア系光触媒(1— 8)を得た。  [Example 8]: Titania-based photocatalyst (18) (TiZSiZW (atomic ratio) = 100Z20Z4) obtained in Production Example 1 in which 0.0341 g of ammonium tungstate was dissolved in 3 ml of water A titania photocatalyst (1-8) with TiZSiZW (atomic ratio) = 100Z20Z4 was obtained in the same manner as in Example 1-1 except that 0.3 g of XG (0.2) was added.
[0068] 得られたチタ-ァ系光触媒(1 8) (TiZSiZW (原子比) = 100Z20Z4)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 2 に示す。  [0068] The obtained photocatalyst activity (18) (TiZSiZW (atomic ratio) = 100Z20Z4) was measured for photocatalytic activity with respect to visible light by the method described above. The result is shown in figure 2.
[0069] 得られたチタ-ァ系光触媒(1 8) (TiZSiZW (原子比) = 100Ζ20Ζ4)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 384であった。 [0069] About the resulting titanium photocatalyst (18) (TiZSiZW (atomic ratio) = 100 = 20Ζ4) As a result of measuring the UV-vis spectrum, when the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1, the absorbance at a wavelength of 450 nm (visible light region) was 0.384.
[0070] 〔実施例 1 9〕:チタニア系光触媒(1 9) (TiZSiZW (原子比) = 100Z20Z3) タングステン酸アンモ-ゥム 0. 0255gを水 3mlに溶解したものに製造例 1で得られ た XG (0. 2)を 0. 3gカ卩えた以外は実施例 1— 1と同様に行い、 TiZSiZW (原子比)[Example 1 9]: Titania-based photocatalyst (19) (TiZSiZW (atomic ratio) = 100Z20Z3) Obtained in Production Example 1 by dissolving 0.0255 g of ammonium tungstate in 3 ml of water Except that 0.3g of XG (0.2) was added, the same procedure as in Example 1-1 was performed, and TiZSiZW (atomic ratio)
= 100Z20Z3のチタ-ァ系光触媒(1— 9)を得た。チタ-ァ系光触媒( 1— 9)の XA titer photocatalyst (1-9) of 100Z20Z3 was obtained. X-ray photocatalyst (1-9)
RDパターンを図 1に示す。 Figure 1 shows the RD pattern.
[0071] 得られたチタ-ァ系光触媒(1 9) (TiZSiZW (原子比) = 100Z20Z3)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 2 に示す。 [0071] The obtained photocatalyst activity (19) (TiZSiZW (atomic ratio) = 100Z20Z3) was measured for photocatalytic activity with respect to visible light by the method described above. The result is shown in figure 2.
[0072] 得られたチタ-ァ系光触媒(1 9) (TiZSiZW (原子比) =100Ζ20Ζ3)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 495であった。  [0072] The obtained titer photocatalyst (19) (TiZSiZW (atomic ratio) = 100 to 20 3) was measured for UV-vis spectrum. As a result, the absorbance at wavelength 300nm (ultraviolet region) was 1. Further, the absorbance at a wavelength of 450 nm (visible light region) was 0.495.
[0073] 〔実施例 1 10〕:チタ-ァ系光触媒(1— 10) (TiZSiZW (原子比) =100Z20Z 1)  [Example 10]: Titer-based photocatalyst (1-10) (TiZSiZW (atomic ratio) = 100Z20Z 1)
タングステン酸アンモ-ゥム 0. 0085gを水 3mlに溶解したものに製造例 1で得られ た XG (0. 2)を 0. 3gカ卩えた以外は実施例 1— 1と同様に行い、 TiZSiZW (原子比) = 100Z20Z1のチタ-ァ系光触媒(1— 10)を得た。チタ-ァ系光触媒(1— 10)の XRDパターンを図 1に示す。  Except that 0.3 g of XG (0.2) obtained in Production Example 1 was added to a solution obtained by dissolving 0.00085 g of ammonium tungstate in 3 ml of water, the same procedure as in Example 1-1 was performed, and TiZSiZW A titanium photocatalyst (1-10) having an atomic ratio of 100Z20Z1 was obtained. Fig. 1 shows the XRD pattern of the titanium photocatalyst (1-10).
[0074] 得られたチタ-ァ系光触媒(1 10) (TiZSiZW (原子比) =100Z20Zl)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図[0074] The photocatalytic activity for visible light was measured for the obtained titer photocatalyst (110) (TiZSiZW (atomic ratio) = 100Z20Zl) by the method described above. Figure the result
2に示す。 Shown in 2.
[0075] 得られたチタ-ァ系光触媒(1 10) (TiZSiZW (原子比) =100Z20Zl)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 468であった。  [0075] As a result of measuring the UV-vis spectrum of the obtained titer photocatalyst (110) (TiZSiZW (atomic ratio) = 100Z20Zl), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In this case, the absorbance at a wavelength of 450 nm (visible light region) was 0.468.
[0076] 〔実施例 2— 1〕:チタニア系光触媒(2— 1) (TiZSiZMo (原子比) =100Z20Z10 )  [Example 2-1]: Titania photocatalyst (2-1) (TiZSiZMo (atomic ratio) = 100Z20Z10)
モリブデン酸アンモ-ゥム 0. 0576gを水 3mlに溶解したものに製造例 1で得られた XG (0. 2)を 0. 3g加え、 80°Cの水浴上で撹拌し、その後、 500°Cで焼成すること〖こ よって、モリブデンが担持されたチタ-ァ系光触媒(2—1)が得られた。得られたチタ 二ァ系光触媒(2— 1)は、 TiZSiZMo (原子比) =100Z20Z10であった。チタ二 ァ系光触媒(2— 1)の XRDパターンを図 3に示す。 Ammonium molybdate obtained in Preparation Example 1 in 0.0576 g dissolved in 3 ml of water Add 0.3g of XG (0.2), stir on a water bath at 80 ° C, and then calcinate at 500 ° C, so that the titanium-based photocatalyst (2-1) supporting molybdenum was gotten. The obtained titanium photocatalyst (2-1) was TiZSiZMo (atomic ratio) = 100Z20Z10. Figure 3 shows the XRD pattern of the titanium photocatalyst (2-1).
[0077] 得られたチタニア系光触媒(2— 1) (TiZSiZMo (原子比) =100Ζ20Ζ10)に ついて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を 図 4に示す。 [0077] With respect to the obtained titania-based photocatalyst (2-1) (TiZSiZMo (atomic ratio) = 100 to 20 to 10), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 4.
[0078] 得られたチタニア系光触媒(2— 1) (TiZSiZMo (原子比) =100Ζ20Ζ10)に ついて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸 光度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 433であつ た。  [0078] The obtained titania photocatalyst (2-1) (TiZSiZMo (atomic ratio) = 100 to 20 to 10) was measured for UV-vis spectrum. As a result, the absorbance at wavelength 300nm (ultraviolet region) was 1. The absorbance at a wavelength of 450 nm (visible light region) was 0.433.
[0079] 〔実施例 2— 2〕:チタニア系光触媒(2— 2) (TiZSiZMo (原子比) = 100Z20Z7) モリブデン酸アンモ-ゥム 0. 0403gを水 3mlに溶解したものに製造例 1で得られた [Example 2-2]: Titania-based photocatalyst (2-2) (TiZSiZMo (atomic ratio) = 100Z20Z7) Ammonium molybdate 0.0403 g obtained in Preparation Example 1 dissolved in 3 ml of water Was
XG (0. 2)を 0. 3gカ卩えた以外は実施例 2—1と同様に行い、 TiZSiZMo (原子比)Except that 0.3 g of XG (0.2) was added, the same procedure as in Example 2-1 was performed. TiZSiZMo (atomic ratio)
= 100Z20Z7のチタ-ァ系光触媒(2— 2)を得た。チタ-ァ系光触媒(2— 2)の XA titanium-based photocatalyst (2-2) of 100Z20Z7 was obtained. X-rays of titanium photocatalyst (2-2)
RDパターンを図 3に示す。 Figure 3 shows the RD pattern.
[0080] 得られたチタニア系光触媒(2— 2) (TiZSiZMo (原子比) =100Z20Z7)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図With respect to the obtained titania-based photocatalyst (2-2) (TiZSiZMo (atomic ratio) = 100Z20Z7), the photocatalytic activity with respect to visible light was measured by the method described above. Figure the result
4に示す。 Shown in 4.
[0081] 得られたチタニア系光触媒(2— 2) (TiZSiZMo (原子比) =100Ζ20Ζ7)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 380であった。  [0081] As a result of measuring the UV-vis spectrum of the obtained titania-based photocatalyst (2-2) (TiZSiZMo (atomic ratio) = 100 to 20-7), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In some cases, the absorbance at a wavelength of 450 nm (visible light region) was 0.380.
[0082] 〔実施例 2— 3〕:チタニア系光触媒(2— 3) (TiZSiZMo (原子比) = 100Z20Z5) モリブデン酸アンモ-ゥム 0. 0288gを水 3mlに溶解したものに製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 2—1と同様に行い、 TiZSiZMo (原子比) = 100Z20Z5のチタ-ァ系光触媒(2— 3)を得た。チタ-ァ系光触媒(2— 3)の X RDパターンを図 3に示す。  [Example 2-3]: Titania photocatalyst (2-3) (TiZSiZMo (atomic ratio) = 100Z20Z5) Ammonium molybdate 0.0288 g obtained in Preparation Example 1 in 3 ml of water A titanium photocatalyst (2-3) with TiZSiZMo (atomic ratio) = 100Z20Z5 was obtained except that 0.3 g of the obtained XG (0.2) was added. Fig. 3 shows the XRD pattern of the titanium photocatalyst (2-3).
[0083] 得られたチタニア系光触媒(2— 3) (TiZSiZMo (原子比) = 100Z20Z5)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図[0083] The obtained titania photocatalyst (2-3) (TiZSiZMo (atomic ratio) = 100Z20Z5) Then, the photocatalytic activity for visible light was measured by the method described above. Figure the result
4に示す。 Shown in 4.
[0084] 得られたチタニア系光触媒(2— 3) (TiZSiZMo (原子比) =100Z20Z5)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 378であった。  [0084] UV-vis spectrum of the obtained titania photocatalyst (2-3) (TiZSiZMo (atomic ratio) = 100Z20Z5) was measured, and the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In some cases, the absorbance at a wavelength of 450 nm (visible light region) was 0.378.
[0085] 〔実施例 2— 4〕:チタニア系光触媒(2— 4) (TiZSiZMo (原子比) = 100Z20Z4)  [Example 2-4]: Titania-based photocatalyst (2-4) (TiZSiZMo (atomic ratio) = 100Z20Z4)
モリブデン酸アンモ-ゥム 0. 0230gを水 3mlに溶解したものに製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 2—1と同様に行い、 TiZSiZMo (原子比) = 100Z20Z4のチタニア系光触媒(2—4)を得た。  Except that 0.3 g of XG (0.2) obtained in Production Example 1 was added to 0.0230 g of molybdenum molybdate dissolved in 3 ml of water, the same procedure as in Example 2-1 was performed, and TiZSiZMo A titania photocatalyst (2-4) having an atomic ratio of 100Z20Z4 was obtained.
[0086] 得られたチタニア系光触媒(2— 4) (TiZSiZMo (原子比) =100Z20Z4)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 4に示す。  With respect to the obtained titania photocatalyst (2-4) (TiZSiZMo (atomic ratio) = 100Z20Z4), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 4.
[0087] 得られたチタニア系光触媒(2— 4) (TiZSiZMo (原子比) =100Ζ20Ζ4)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 386であった。  [0087] As a result of measuring the UV-vis spectrum of the obtained titania-based photocatalyst (2-4) (TiZSiZMo (atomic ratio) = 100 to 20-4), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In some cases, the absorbance at a wavelength of 450 nm (visible light region) was 0.386.
[0088] 〔実施例 2— 5〕:チタニア系光触媒(2— 5) (TiZSiZMo (原子比) = 100Z20Z3) モリブデン酸アンモ-ゥム 0. 0173gを水 3mlに溶解したものに製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 2—1と同様に行い、 TiZSiZMo (原子比) = 100Z20Z3のチタ-ァ系光触媒(2— 5)を得た。チタ-ァ系光触媒(2— 5)の X RDパターンを図 3に示す。  [0088] [Example 2-5]: Titania-based photocatalyst (2-5) (TiZSiZMo (atomic ratio) = 100Z20Z3) Obtained in Production Example 1 by dissolving 0.0173 g of ammonium molybdate in 3 ml of water A titanium photocatalyst (2-5) with TiZSiZMo (atomic ratio) = 100Z20Z3 was obtained except that 0.3 g of the obtained XG (0.2) was added. Fig. 3 shows the XRD pattern of the titanium photocatalyst (2-5).
[0089] 得られたチタニア系光触媒(2— 5) (TiZSiZMo (原子比) =100Z20Z3)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 4に示す。また、可視光に対する光触媒活性を CO生成速度で示したグラフ図を図 8  For the obtained titania-based photocatalyst (2-5) (TiZSiZMo (atomic ratio) = 100Z20Z3), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 4. In addition, a graph showing photocatalytic activity for visible light in terms of CO production rate is shown in Fig. 8.
2  2
に示す。  Shown in
[0090] 得られたチタニア系光触媒(2— 5) (TiZSiZMo (原子比) =100Z20Z3)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 390であった。  [0090] As a result of measuring the UV-vis spectrum of the obtained titania photocatalyst (2-5) (TiZSiZMo (atomic ratio) = 100Z20Z3), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In some cases, the absorbance at a wavelength of 450 nm (visible light region) was 0.390.
[0091] 〔実施例 2— 6〕:チタニア系光触媒(2— 6) (TiZSiZMo (原子比) =100Z20Z2) モリブデン酸アンモ-ゥム 0. 0115gを水 3mlに溶解したものに製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 2— 1と同様に行い、 TiZSiZMo (原子比) = 100Z20Z2のチタニア系光触媒(2— 6)を得た。 [Example 2-6]: Titania photocatalyst (2-6) (TiZSiZMo (atomic ratio) = 100Z20Z2) Ammonium molybdate was prepared in the same manner as in Example 2-1 except that 0.315 g of XG (0.2) obtained in Production Example 1 was added to 3 ml of water dissolved in 0.115 g of water, and TiZSiZMo A titania photocatalyst (2-6) of (atomic ratio) = 100Z20Z2 was obtained.
[0092] 得られたチタニア系光触媒(2— 6) (TiZSiZMo (原子比) =100Z20Z2)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 4に示す。 With respect to the obtained titania-based photocatalyst (2-6) (TiZSiZMo (atomic ratio) = 100Z20Z2), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 4.
[0093] 得られたチタニア系光触媒(2— 6) (TiZSiZMo (原子比) =100Ζ20Ζ2)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 384であった。  [0093] As a result of measuring the UV-vis spectrum of the obtained titania photocatalyst (2-6) (TiZSiZMo (atomic ratio) = 100 to 20 2), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In some cases, the absorbance at a wavelength of 450 nm (visible light region) was 0.384.
[0094] 〔実施例 2— 7〕:チタニア系光触媒(2— 7) (TiZSiZMo (原子比) = 100Z20ZD モリブデン酸アンモ-ゥム 0. 0058gを水 3mlに溶解したものに製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 2—1と同様に行い、 TiZSiZMo (原子比) = 100Z20Z1のチタ-ァ系光触媒(2— 7)を得た。チタ-ァ系光触媒(2— 7)の X RDパターンを図 3に示す。  [Example 2-7]: Titania-based photocatalyst (2-7) (TiZSiZMo (atomic ratio) = 100Z20ZD Ammonium molybdate 0.005 g obtained in Preparation Example 1 was dissolved in 3 ml of water. Except that 0.3 g of XG (0.2) was added, the same procedure as in Example 2-1 was performed to obtain a titanium photocatalyst (2-7) with TiZSiZMo (atomic ratio) = 100Z20Z1. Figure 3 shows the XRD pattern of the photocatalyst (2-7).
[0095] 得られたチタニア系光触媒(2— 7) (TiZSiZMo (原子比) =100Z20Zl)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 4に示す。  With respect to the obtained titania-based photocatalyst (2-7) (TiZSiZMo (atomic ratio) = 100Z20Zl), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 4.
[0096] 得られたチタニア系光触媒(2— 7) (TiZSiZMo (原子比) =100Z20Zl)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 393であった。  [0096] The obtained titania photocatalyst (2-7) (TiZSiZMo (atomic ratio) = 100Z20Zl) was measured for UV-vis spectrum. As a result, the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In some cases, the absorbance at a wavelength of 450 nm (visible light region) was 0.393.
[0097] 〔実施例 3— 1〕:チタニア系光触媒 (3— 1) (TiZSiZV (原子比) =100Z20Z10) バナジン酸アンモ-ゥム 0. 0382gを水 3mlに溶解したものに製造例 1で得られた X G (0. 2)を 0. 3g加え、 80°Cの水浴上で撹拌し、その後、 500°Cで焼成することによ つて、バナジウムが担持されたチタ-ァ系光触媒 (3— 1)が得られた。得られたチタ- ァ系光触媒(3— 1)は、 TiZSiZV (原子比) =100Z20Z10であった。チタ-ァ系 光触媒(3— 1)の XRDパターンを図 5に示す。  [0097] [Example 3-1]: Titania photocatalyst (3-1) (TiZSiZV (atomic ratio) = 100Z20Z10) Obtained in Production Example 1 by dissolving 0.0382 g of ammonium vanadate in 3 ml of water 0.3 g of the obtained XG (0.2) was added, stirred on a water bath at 80 ° C, and then calcined at 500 ° C, so that a photocatalyst supported on vanadium (3- 1) was obtained. The obtained titanium photocatalyst (3-1) was TiZSiZV (atomic ratio) = 100Z20Z10. Figure 5 shows the XRD pattern of the titanium photocatalyst (3-1).
[0098] 得られたチタニア系光触媒(3— 1) (TiZSiZV (原子比) =100Ζ20Ζ10)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 6に示す。 With respect to the obtained titania-based photocatalyst (3-1) (TiZSiZV (atomic ratio) = 100 to 20 to 10), the photocatalytic activity with respect to visible light was measured by the method described above. Figure the result Shown in 6.
[0099] 得られたチタニア系光触媒(3— 1) (TiZSiZV (原子比) =100Z20Z10)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 690であった。  [0099] As a result of measuring the UV-vis spectrum of the obtained titania photocatalyst (3-1) (TiZSiZV (atomic ratio) = 100Z20Z10), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1. In some cases, the absorbance at a wavelength of 450 nm (visible light region) was 0.690.
[0100] 〔実施例 3— 2〕:チタニア系光触媒 (3— 2) (TiZSiZV (原子比) = 100Z20Z7) バナジン酸アンモ-ゥム 0. 0267gを水 3mlに溶解したものに製造例 1で得られた X G (0. 2)を 0. 3gカ卩えた以外は実施例 3— 1と同様に行い、 Ti/SiZV (原子比) = 1 00Z20Z7のチタ-ァ系光触媒(3— 2)を得た。チタ-ァ系光触媒(3— 2)の XRD パターンを図 5に示す。  [0100] [Example 3-2]: Titania photocatalyst (3-2) (TiZSiZV (atomic ratio) = 100Z20Z7) Ammonium vanadate 0.0267 g obtained in Preparation Example 1 in 3 ml of water Except that 0.3 g of the obtained XG (0.2) was added, the same procedure as in Example 3-1 was performed to obtain a titanium-based photocatalyst (3-2) with Ti / SiZV (atomic ratio) = 100Z20Z7. It was. Fig. 5 shows the XRD pattern of the titanium photocatalyst (3-2).
[0101] 得られたチタ-ァ系光触媒(3— 2) (Ti/Si/V (原子比) = 100/20/7)につ!/ヽ て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 6 に示す。  [0101] For the resulting titanium photocatalyst (3-2) (Ti / Si / V (atomic ratio) = 100/20/7)! Was measured. The results are shown in Fig. 6.
[0102] 得られたチタ-ァ系光触媒(3— 2) (Ti/Si/V (原子比) = 100/20/7)につ!/ヽ て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 631であった。  [0102] As a result of measuring the UV-vis spectrum of the obtained titanium photocatalyst (3-2) (Ti / Si / V (atomic ratio) = 100/20/7)! When the absorbance at 300 nm (ultraviolet light region) was 1, the absorbance at a wavelength of 450 nm (visible light region) was 0.631.
[0103] 〔実施例 3— 3〕:チタニア系光触媒 (3— 3) (TiZSiZV (原子比) = 100Z20Z5) バナジン酸アンモ-ゥム 0. 0191gを水 3mlに溶解したものに製造例 1で得られた X G (0. 2)を 0. 3gカ卩えた以外は実施例 3— 1と同様に行い、 Ti/SiZV (原子比) = 1 OOZ20Z5のチタ-ァ系光触媒(3— 3)を得た。チタ-ァ系光触媒(3— 3)の XRD パターンを図 5に示す。  [Example 3-3]: Titania-based photocatalyst (3-3) (TiZSiZV (atomic ratio) = 100Z20Z5) Obtained in Production Example 1 by dissolving 0.0191 g of ammonium vanadate in 3 ml of water Except that 0.3 g of the obtained XG (0.2) was added, the same procedure as in Example 3-1 was performed to obtain a titanium-based photocatalyst (3-3) with Ti / SiZV (atomic ratio) = 1 OOZ20Z5. It was. Fig. 5 shows the XRD pattern of the titanium photocatalyst (3-3).
[0104] 得られたチタ-ァ系光触媒(3— 3) (Ti/Si/V (原子比) = 100/20/5)につ!/ヽ て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 6 に示す。  [0104] The obtained photocatalytic activity (3-3) (Ti / Si / V (atomic ratio) = 100/20/5) was obtained! Was measured. The results are shown in Fig. 6.
[0105] 得られたチタ-ァ系光触媒(3— 3) (Ti/Si/V (原子比) = 100/20/5)につ!/ヽ て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 493であった。  [0105] As a result of measuring the UV-vis spectrum for the obtained titanium photocatalyst (3-3) (Ti / Si / V (atomic ratio) = 100/20/5)! When the absorbance at 300 nm (ultraviolet light region) was 1, the absorbance at a wavelength of 450 nm (visible light region) was 0.493.
[0106] 〔実施例 3— 4〕:チタニア系光触媒 (3— 4) (TiZSiZV (原子比) = 100Z20Z3) バナジン酸アンモ-ゥム 0. 0115gを水 3mlに溶解したものに製造例 1で得られた X G (0. 2)を 0. 3gカ卩えた以外は実施例 3— 1と同様に行い、 Ti/SiZV (原子比) = 1 OOZ20Z3のチタ-ァ系光触媒(3— 4)を得た。チタ-ァ系光触媒(3— 4)の XRD パターンを図 5に示す。 [Example 3-4]: Titania-based photocatalyst (3-4) (TiZSiZV (atomic ratio) = 100Z20Z3) Obtained in Production Example 1 by dissolving 0.0115 g of ammonium vanadate in 3 ml of water X A titanium photocatalyst (3-4) with Ti / SiZV (atomic ratio) = 1 OOZ20Z3 was obtained except that 0.3 g of G (0.2) was added. Fig. 5 shows the XRD pattern of the titanium photocatalyst (3-4).
[0107] 得られたチタニア系光触媒(3— 4) (TiZSiZV (原子比) = 100Z20Z3)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 6 に示す。  [0107] With respect to the obtained titania-based photocatalyst (3-4) (TiZSiZV (atomic ratio) = 100Z20Z3), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 6.
[0108] 得られたチタニア系光触媒(3— 4) (TiZSiZV (原子比) = 100Ζ20Ζ3)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 394であった。  [0108] As a result of measuring the UV-vis spectrum of the obtained titania photocatalyst (3-4) (TiZSiZV (atomic ratio) = 100 ~ 20 ~ 3), the absorbance at wavelength 300nm (ultraviolet light region) is 1. The absorbance at a wavelength of 450 nm (visible light region) was 0.394.
[0109] 〔実施例 3— 5〕:チタニア系光触媒 (3— 5) (TiZSiZV (原子比) =100Z20Zl) バナジン酸アンモ-ゥム 0. 0038gを水 3mlに溶解したものに製造例 1で得られた X G (0. 2)を 0. 3gカ卩えた以外は実施例 3— 1と同様に行い、 Ti/SiZV (原子比) = 1 00Z20Z1のチタ-ァ系光触媒(3— 5)を得た。チタ-ァ系光触媒(3— 5)の XRD パターンを図 5に示す。  [Example 3-5]: Titania-based photocatalyst (3-5) (TiZSiZV (atomic ratio) = 100Z20Zl) Ammonium vanadate 0.003 g obtained in Preparation Example 1 was dissolved in 3 ml of water. Except that 0.3 g of the obtained XG (0.2) was added, the same procedure as in Example 3-1 was performed to obtain a titanium photocatalyst (3-5) with Ti / SiZV (atomic ratio) = 100Z20Z1. It was. Fig. 5 shows the XRD pattern of the titanium photocatalyst (3-5).
[0110] 得られたチタニア系光触媒(3— 5) (TiZSiZV (原子比) =100Z20Zl)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 6 に示す。  [0110] The obtained titania photocatalyst (3-5) (TiZSiZV (atomic ratio) = 100Z20Zl) was measured for photocatalytic activity with respect to visible light by the method described above. The results are shown in Fig. 6.
[0111] 得られたチタニア系光触媒(3— 5) (TiZSiZV (原子比) =100Z20Zl)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 427であった。  [0111] The obtained titania photocatalyst (3-5) (TiZSiZV (atomic ratio) = 100Z20Zl) was measured for UV-vis spectrum. As a result, the absorbance at wavelength 300nm (ultraviolet region) was 1. The absorbance at a wavelength of 450 nm (visible light region) was 0.427.
[0112] 〔実施例 3— 6〕:チタニア系光触媒(3— 6) (TiZSiZV (原子比) =100Z20Z0. 5 )  [Example 3-6]: Titania photocatalyst (3-6) (TiZSiZV (atomic ratio) = 100Z20Z0.5)
1. 0 X 10_2molZLのバナジン酸アンモ-ゥム水溶液 1. 630mlに水 1. 470mlを 加えたものに製造例 1で得られた XG (0. 2)を 0. 3g加えた以外は実施例 3—1と同 様に行い、 TiZSiZV (原子比) =100Z20Z0. 5のチタ-ァ系光触媒(3— 6)を得 た。 1. 0 X 10 _2 molZL of ammonium vanadate aqueous solution 1. Executed except that 470 ml of water 1.470 ml was added and 0.3 g of XG (0.2) obtained in Production Example 1 was added. The same procedure as in Example 3-1 was performed to obtain a titanium photocatalyst (3-6) with TiZSiZV (atomic ratio) = 100Z20Z0.5.
[0113] 得られたチタニア系光触媒(3— 6) (TiZSiZV (原子比) =100Ζ20Ζ0. 5)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 6に示す。また、可視光に対する光触媒活性を CO生成速度で示したグラフ図を図 8 [0113] With respect to the obtained titania-based photocatalyst (3-6) (TiZSiZV (atomic ratio) = 100 to 20 to 0.5), the photocatalytic activity with respect to visible light was measured by the method described above. Figure the result Shown in 6. In addition, a graph showing photocatalytic activity for visible light in terms of CO production rate is shown in Fig. 8.
2  2
に示す。  Shown in
[0114] 得られたチタニア系光触媒(3— 6) (TiZSiZV (原子比) =100Z20Z0. 5)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 427であった。  [0114] As a result of measuring the UV-vis spectrum of the obtained titania photocatalyst (3-6) (TiZSiZV (atomic ratio) = 100Z20Z0.5), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1 The absorbance at a wavelength of 450 nm (visible light region) was 0.427.
[0115] 〔実施例 3— 7〕:チタ-ァ系光触媒 (3— 7) (TiZSiZV (原子比) =100Z20Z0. 1 )  [Example 3-7]: Titer-based photocatalyst (3-7) (TiZSiZV (atomic ratio) = 100Z20Z0.1)
1. 0 X 10_2molZLのバナジン酸アンモ-ゥム水溶液 0. 326mlに水 2. 674mlを 加えたものに製造例 1で得られた XG (0. 2)を 0. 3g加えた以外は実施例 3—1と同 様に行い、 TiZSiZV (原子比) =100Z20Z0. 1のチタ-ァ系光触媒(3— 7)を得 た。 1. 0 X 10 _2 molZL aqueous solution of ammonium vanadate 0. Except for adding 326 ml to water 2.674 ml, adding 0.3 g of XG (0.2) obtained in Production Example 1 The same procedure as in Example 3-1 was performed to obtain a titanium photocatalyst (3-7) with TiZSiZV (atomic ratio) = 100Z20Z0.1.
[0116] 得られたチタニア系光触媒(3— 7) (TiZSiZV (原子比) =100Ζ20Ζ0. 1)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 6に示す。  [0116] With respect to the obtained titania-based photocatalyst (3-7) (TiZSiZV (atomic ratio) = 100 to 20 to 0.1), the photocatalytic activity with respect to visible light was measured by the method described above. The result is shown in FIG.
[0117] 得られたチタニア系光触媒(3— 7) (TiZSiZV (原子比) =100Ζ20Ζ0. 1)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 410であった。  [0117] As a result of measuring the UV-vis spectrum of the obtained titania photocatalyst (3-7) (TiZSiZV (atomic ratio) = 100 to 20 to 0.1), the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1 The absorbance at a wavelength of 450 nm (visible light region) was 0.410.
[0118] 〔実施例 3— 8〕:チタニア系光触媒(3— 8) (TiZSiZV (原子比) =100Z20Z0. 0 1)  [Example 3-8]: Titania photocatalyst (3-8) (TiZSiZV (atomic ratio) = 100Z20Z0. 0 1)
1. 0 X 10_3molZLのバナジン酸アンモ-ゥム水溶液 0. 326mlに水 2. 674mlを 加えたものに製造例 1で得られた XG (0. 2)を 0. 3g加えた以外は実施例 3—1と同 様に行い、 TiZSiZV (原子比) =100Z20Z0. 01のチタ-ァ系光触媒(3— 8)を 得た。 1. 0 X 10 _3 molZL aqueous solution of ammonium vanadate 0. Except for adding 326 ml to water 2.674 ml, adding 0.3 g of XG (0.2) obtained in Production Example 1 A titanium photocatalyst (3-8) with TiZSiZV (atomic ratio) = 100Z20Z0.01 was obtained in the same manner as Example 3-1.
[0119] 得られたチタニア系光触媒(3— 8) (TiZSiZV (原子比) =100Ζ20Ζ0. 01)に ついて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を 図 6に示す。  [0119] With respect to the obtained titania-based photocatalyst (3-8) (TiZSiZV (atomic ratio) = 100 to 20 to 0.01), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 6.
[0120] 得られたチタニア系光触媒(3— 8) (TiZSiZV (原子比) =100Ζ20Ζ0. 01)に ついて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸 光度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 401であつ た。 [0120] As a result of measuring the UV-vis spectrum of the obtained titania-based photocatalyst (3-8) (TiZSiZV (atomic ratio) = 100 to 20 to 0.01), absorption at a wavelength of 300 nm (ultraviolet light region) was observed. When the luminous intensity was 1, the absorbance at a wavelength of 450 nm (visible light region) was 0.401.
[0121] 〔実施例 4 1〕:チタニア系光触媒 (4 1) (TiZSiZFe (原子比) =100Z20Z10 )  [Example 4 1]: Titania-based photocatalyst (4 1) (TiZSiZFe (atomic ratio) = 100Z20Z10)
硝酸鉄 0. 1319gを水 3mlに溶解したものに、製造例 1で得られた XG (0. 2)を 0. 3g加え、 80°Cの水浴上で撹拌し、その後、 500°Cで焼成することによって、鉄が担 持されたチタニア系光触媒 (4 1)が得られた。得られたチタニア系光触媒 (4 1) は、 TiZSiZFe (原子比) =100Z20Z10であった。  Add 0.3 g of XG (0.2) obtained in Production Example 1 to 0.11319 g of iron nitrate dissolved in 3 ml of water, stir on an 80 ° C water bath, and then calcinate at 500 ° C. As a result, a titania photocatalyst (41) carrying iron was obtained. The obtained titania-based photocatalyst (41) had TiZSiZFe (atomic ratio) = 100Z20Z10.
[0122] 得られたチタニア系光触媒 (4 1) (TiZSiZFe (原子比) =100Ζ20Ζ10)につ いて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 7に示す。 [0122] About the obtained titania-based photocatalyst (41) (TiZSiZFe (atomic ratio) = 100 to 20 to 10), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in FIG.
[0123] 得られたチタニア系光触媒 (4 1) (TiZSiZFe (原子比) =100Ζ20Ζ10)につ いて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光 度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 597であった。  [0123] UV-vis spectrum of the titania-based photocatalyst (4 1) (TiZSiZFe (atomic ratio) = 100 ~ 20 ~ 10) was measured. As a result, the absorbance at wavelength 300nm (ultraviolet light region) was 1. Further, the absorbance at a wavelength of 450 nm (visible light region) was 0.597.
[0124] 〔実施例 4 2〕:チタニア系光触媒 (4 2) (TiZSiZFe (原子比) =10θΖ2θΖ7) 硝酸鉄 0. 0923gを水 3mlに溶解したものに、製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 4—1と同様に行い、 TiZSiZFe (原子比) = 100/20/7 のチタ-ァ系光触媒 (4 2)を得た。  [Example 4 2]: Titania-based photocatalyst (4 2) (TiZSiZFe (atomic ratio) = 10θΖ2θΖ7) Iron nitrate 0.03 g was dissolved in 3 ml of water, and XG (0 (2) was carried out in the same manner as in Example 4-1, except that 0.3 g was obtained, to obtain a titanium photocatalyst (42) with TiZSiZFe (atomic ratio) = 100/20/7.
[0125] 得られたチタニア系光触媒 (4 2) (TiZSiZFe (原子比) = 100Z20Z7)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 7 に示す。  [0125] The obtained titania photocatalyst (4 2) (TiZSiZFe (atomic ratio) = 100Z20Z7) was measured for photocatalytic activity with respect to visible light by the method described above. Figure 7 shows the results.
[0126] 得られたチタニア系光触媒 (4 2) (TiZSiZFe (原子比) = 100Ζ20Ζ7)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 572であった。  [0126] As a result of measuring the UV-vis spectrum of the obtained titania photocatalyst (4 2) (TiZSiZFe (atomic ratio) = 100 to 20-7), when the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1, Absorbance at a wavelength of 450 nm (visible light region) was 0.572.
[0127] 〔実施例 4 3〕:チタニア系光触媒 (4 3) (TiZSiZFe (原子比) =10θΖ2θΖ5) 硝酸鉄 0. 0659gを水 3mlに溶解したものに、製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 4—1と同様に行い、 TiZSiZFe (原子比) = 100/20/5 のチタ-ァ系光触媒 (4 3)を得た。 [0128] 得られたチタニア系光触媒 (4 3) (TiZSiZFe (原子比) = 100Z20Z5)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 7 に示す。 [Example 4 3]: Titania-based photocatalyst (4 3) (TiZSiZFe (atomic ratio) = 10θΖ2θΖ5) 0.0G of iron nitrate dissolved in 3 ml of water was dissolved in XG (0 (2) was carried out in the same manner as in Example 4-1, except that 0.3 g was obtained, to obtain a titanium photocatalyst (43) with TiZSiZFe (atomic ratio) = 100/20/5. The obtained titania photocatalyst (4 3) (TiZSiZFe (atomic ratio) = 100Z20Z5) was measured for photocatalytic activity with respect to visible light by the method described above. Figure 7 shows the results.
[0129] 得られたチタニア系光触媒 (4 3) (TiZSiZFe (原子比) = 100Ζ20Ζ5)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 455であった。  [0129] As a result of measuring the UV-vis spectrum of the obtained titania-based photocatalyst (4 3) (TiZSiZFe (atomic ratio) = 100 to 20-5), when the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1, Absorbance at a wavelength of 450 nm (visible light region) was 0.455.
[0130] 〔実施例 4 4〕:チタニア系光触媒 (4 4) (TiZSiZFe (原子比) = 100Z20Z3) 硝酸鉄 0. 0396gを水 3mlに溶解したものに、製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 4—1と同様に行い、 TiZSiZFe (原子比) = 100/20/3 のチタニア系光触媒 (4 4)を得た。  [Example 4 4]: Titania-based photocatalyst (4 4) (TiZSiZFe (atomic ratio) = 100Z20Z3) 0.0G of iron nitrate was dissolved in 3 ml of water, and XG (0 .2) was carried out in the same manner as in Example 4-1, except that 0.3 g was added, to obtain a titania photocatalyst (44) with TiZSiZFe (atomic ratio) = 100/20/3.
[0131] 得られたチタニア系光触媒 (4 4) (TiZSiZFe (原子比) = 100Z20Z3)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 7 に示す。また、可視光に対する光触媒活性を CO生成速度で示したグラフ図を図 8  The obtained titania photocatalyst (4 4) (TiZSiZFe (atomic ratio) = 100Z20Z3) was measured for photocatalytic activity with respect to visible light by the method described above. Figure 7 shows the results. In addition, a graph showing photocatalytic activity for visible light in terms of CO production rate is shown in Fig. 8.
2  2
に示す。  Shown in
[0132] 得られたチタニア系光触媒 (4 4) (TiZSiZFe (原子比) = 100Z20Z3)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 444であった。  [0132] As a result of measuring the UV-vis spectrum of the obtained titania photocatalyst (4 4) (TiZSiZFe (atomic ratio) = 100Z20Z3), when the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1, Absorbance at a wavelength of 450 nm (visible light region) was 0.444.
[0133] 〔実施例 4 5〕:チタニア系光触媒 (4 5) (TiZSiZFe (原子比) =100Z20ZD 硝酸鉄 0. 0132gを水 3mlに溶解したものに、製造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 4—1と同様に行い、 TiZSiZFe (原子比) = 100/20/1 のチタ-ァ系光触媒 (4 5)を得た。  [Example 4 5]: Titania-based photocatalyst (4 5) (TiZSiZFe (atomic ratio) = 100Z20ZD 0.0G of iron nitrate was dissolved in 3 ml of water, and XG (0. A titanium photocatalyst (45) with TiZSiZFe (atomic ratio) = 100/20/1 was obtained in the same manner as in Example 4-1, except that 0.3 g of 2) was added.
[0134] 得られたチタニア系光触媒 (4 5) (TiZSiZFe (原子比) =100Z20Zl)につい て、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を図 7 に示す。  [0134] With respect to the obtained titania photocatalyst (45) (TiZSiZFe (atomic ratio) = 100Z20Zl), the photocatalytic activity with respect to visible light was measured by the method described above. Figure 7 shows the results.
[0135] 得られたチタニア系光触媒 (4 5) (TiZSiZFe (原子比) =100Z20Zl)につい て、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 397であった。  [0135] The obtained titania photocatalyst (4 5) (TiZSiZFe (atomic ratio) = 100Z20Zl) was measured for UV-vis spectrum. As a result, when the absorbance at a wavelength of 300 nm (ultraviolet light region) was 1, Absorbance at a wavelength of 450 nm (visible light region) was 0.397.
[0136] 〔実施例 4 6〕:チタニア系光触媒 (4 6) (TiZSiZFe (原子比) =10θΖ2θΖ〇. 5) [Example 4 6]: Titania-based photocatalyst (4 6) (TiZSiZFe (atomic ratio) = 10θΖ2θΖ〇. Five)
1. 0 X 10_2molZLの硝酸鉄水溶液 1. 630mlに水 1. 370mlをカ卩えたものに製 造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 4—1と同様に行い、 TiZS iZFe (原子比) =100Z20Z0. 5のチタニア系光触媒 (4 6)を得た。 1. 0 X 10 _2 molZL of iron nitrate solution 1. Example with the exception of adding 0.3 g of XG (0.2) obtained in Production Example 1 to 630 ml with 1.370 ml of water. In the same manner as in 4-1, a titania photocatalyst (4 6) with TiZS iZFe (atomic ratio) = 100Z20Z0.5 was obtained.
[0137] 得られたチタニア系光触媒 (4 6) (TiZSiZFe (原子比) =100Ζ20Ζ0. 5)に ついて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を 図 7に示す。 [0137] With respect to the obtained titania-based photocatalyst (4 6) (TiZSiZFe (atomic ratio) = 100 to 20 to 0.5), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 7.
[0138] 得られたチタニア系光触媒 (4 6) (TiZSiZFe (原子比) =100Ζ20Ζ0. 5)に ついて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸 光度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 392であつ た。  [0138] As a result of measuring the UV-vis spectrum for the obtained titania-based photocatalyst (4 6) (TiZSiZFe (atomic ratio) = 100 to 20 to 0.5), the absorbance at a wavelength of 300 nm (ultraviolet region) was set to 1. In this case, the absorbance at a wavelength of 450 nm (visible light region) was 0.392.
[0139] 〔実施例 4 7〕:チタニア系光触媒 (4 7) (TiZSiZFe (原子比) =10θΖ2θΖ〇.  [Example 4 7]: Titania-based photocatalyst (4 7) (TiZSiZFe (atomic ratio) = 10θΖ2θΖ〇.
1)  1)
1. 0 X 10_2molZLの硝酸鉄水溶液 0. 326mlに水 2. 674mlをカ卩えたものに製 造例 1で得られた XG (0. 2)を 0. 3gカ卩えた以外は実施例 4—1と同様に行い、 TiZS iZFe (原子比) =100Z20Z0. 1のチタ-ァ系光触媒 (4 7)を得た。 1. 0 X 10 _2 molZL of iron nitrate aqueous solution 0.3 Example with the exception of adding 0.3 g of XG (0.2) obtained in Production Example 1 to 2.326 ml with water 2.674 ml This was carried out in the same manner as in 4-1, and a titanium photocatalyst (47) with TiZS iZFe (atomic ratio) = 100Z20Z0.1 was obtained.
[0140] 得られたチタニア系光触媒 (4 7) (TiZSiZFe (原子比) =100Ζ20Ζ0. 1)に ついて、前述の方法によって、可視光に対する光触媒活性の測定を行った。結果を 図 7に示す。 [0140] With respect to the obtained titania-based photocatalyst (47) (TiZSiZFe (atomic ratio) = 100 to 20 to 0.1), the photocatalytic activity with respect to visible light was measured by the method described above. The results are shown in Fig. 7.
[0141] 得られたチタニア系光触媒 (4 7) (TiZSiZFe (原子比) =100Ζ20Ζ0. 1)に ついて、 UV— visスペクトルを測定した結果、波長 300nm (紫外光領域)における吸 光度を 1とした場合に、波長 450nm (可視光領域)における吸光度が 0. 382であつ た。  [0141] As a result of measuring the UV-vis spectrum of the titania photocatalyst (4 7) (TiZSiZFe (atomic ratio) = 100 to 20 to 0.1), the absorbance at a wavelength of 300 nm (ultraviolet region) was set to 1. In this case, the absorbance at a wavelength of 450 nm (visible light region) was 0.382.
[0142] 〔比較例 1〕:チタニア系光触媒 (C1)  [0142] [Comparative Example 1]: Titania photocatalyst (C1)
水 3mlに製造例 1で得られた XG (0. 2)を 0. 3g加え、 80°Cで乾燥することによって 、チタ-ァ系光触媒 (C1)が得られた。チタ-ァ系光触媒 (C1)の XRDパターンを図 1、 3、 5に示す。  By adding 0.3 g of XG (0.2) obtained in Production Example 1 to 3 ml of water and drying at 80 ° C., a titer photocatalyst (C1) was obtained. Figures 1, 3 and 5 show the XRD patterns of the tita-based photocatalyst (C1).
[0143] 得られたチタニア系光触媒 (C1)について、前述の方法によって、可視光に対する 光触媒活性の測定を行った。結果を図 2、 4、 6、 7に示す。また、可視光に対する光 触媒活性を CO生成速度で示したグラフ図を図 8に示す。 [0143] About the obtained titania-based photocatalyst (C1), the above-mentioned method was applied to visible light. The photocatalytic activity was measured. The results are shown in Figs. Figure 8 shows a graph showing the photocatalytic activity for visible light in terms of CO production rate.
2  2
[0144] 〔比較例 2〕:チタニア系光触媒 (C2)  [Comparative Example 2]: Titania photocatalyst (C2)
水 3mlに製造例 2で得られた XG (0)を 0. 3g加え、 80°Cで乾燥することによって、 チタ-ァ系光触媒 (C2)が得られた。  A titer photocatalyst (C2) was obtained by adding 0.3 g of XG (0) obtained in Production Example 2 to 3 ml of water and drying at 80 ° C.
[0145] 得られたチタニア系光触媒 (C2)について、前述の方法によって、可視光に対する 光触媒活性の測定を行った。結果を図 2、 4、 6に示す。 [0145] The titania photocatalyst (C2) obtained was measured for photocatalytic activity with respect to visible light by the method described above. The results are shown in Figs.
[0146] 〔評価〕 [0146] [Evaluation]
図 2、 4、 6、 7によれば、遷移金属が担持されたチタ-ァ系光触媒(1 1)〜(1 1 0) (中でも特に、(1 3)〜(1 8) )、(2— 1)〜(2— 7)、(3— 1)〜(3— 8) (中でも 特に、 (3— 3)〜(3— 8) )、 (4 1)〜(4 7) (中でも特に、 (4 2)〜(4 6) )は、遷 移金属が担持されていないチタニア系光触媒 (C1)や (C2)に比較して、可視光に対 する光触媒活性が非常に高いことが判る。また、担持させる遷移金属の量が極めて 少量であっても本発明の効果が十分に発揮されていることが判る。  According to FIGS. 2, 4, 6 and 7, the transition metal-supported titanium photocatalysts (1 1) to (1 1 0) (in particular, (1 3) to (1 8)), (2 — 1) to (2-7), (3-1) to (3-8) (especially (3-3) to (3-8)), (4 1) to (4 7) (especially , (4 2) to (4 6)) show that the photocatalytic activity for visible light is very high compared to titania-based photocatalysts (C1) and (C2) that do not carry transition metals. . Further, it can be seen that the effect of the present invention is sufficiently exhibited even when the amount of the transition metal to be supported is extremely small.
図 8によれば、 Ti、 N、 Oを必須成分として含むチタ-ァ系触媒に、遷移金属として 、 W、 Mo、 V、 Feから選ばれる少なくとも 1種の遷移金属を添カ卩した場合力 可視光 に対する光触媒活性がより高ぐこれらの遷移金属の中でも、遷移金属として Feを添 カロした場合が、可視光に対する光触媒活性が極めて高いことが判る。  According to FIG. 8, when a titanium catalyst containing Ti, N, and O as an essential component is added with at least one transition metal selected from W, Mo, V, and Fe as a transition metal, the force Among these transition metals, which have higher photocatalytic activity for visible light, it can be seen that when Fe is added as a transition metal, the photocatalytic activity for visible light is extremely high.
遷移金属が担持されたチタニア系光触媒(1 1)〜(1 10)、(2— 1)〜(2— 7)、 (3— 1)〜(3— 8)、(4 1)〜(4 7)は、波長 300nm (紫外光領域)における吸光度 を 1とした場合に、波長 450nm (可視光領域)における吸光度が約 0. 3〜0. 7であり 、可視光領域に対する応答性が非常に高いことが判る。  Titania-based photocatalysts supported by transition metals (11) to (110), (2-1) to (2-7), (3-1) to (3-8), (4 1) to (4 7), when the absorbance at a wavelength of 300 nm (ultraviolet light region) is 1, the absorbance at a wavelength of 450 nm (visible light region) is about 0.3 to 0.7, and the response to the visible light region is very high. It turns out to be expensive.
産業上の利用可能性  Industrial applicability
[0147] 本発明のチタ-ァ系光触媒は、可視光に対する光触媒活性が非常に高い。したが つて、太陽光の照射を受けることが可能な場所はもちろんのこと、十分な紫外線強度 が得られない場所、例えば、室内においても用いることが可能である。 [0147] The titanium-based photocatalyst of the present invention has a very high photocatalytic activity for visible light. Therefore, it can be used not only in places where sunlight can be irradiated, but also in places where sufficient UV intensity cannot be obtained, such as indoors.

Claims

請求の範囲  The scope of the claims
[I] Ti、 N、 Oを必須成分として含むチタ-ァ系触媒を担体とし、該担体に遷移金属が 担持された、可視光応答型光触媒。  [I] A visible light responsive photocatalyst using a titanium-based catalyst containing Ti, N, and O as essential components as a carrier and a transition metal supported on the carrier.
[2] 前記担体が Siをさらに含む、請求項 1に記載の可視光応答型光触媒。  [2] The visible light responsive photocatalyst according to claim 1, wherein the carrier further contains Si.
[3] SiZTiの原子比が 0. 01〜1である、請求項 2に記載の可視光応答型光触媒。  [3] The visible light responsive photocatalyst according to claim 2, wherein the atomic ratio of SiZTi is 0.01 to 1.
[4] 前記遷移金属が、 W、 Mo、 V、 Feから選ばれる少なくとも 1種を含む、請求項 1から [4] The transition metal according to claim 1, wherein the transition metal includes at least one selected from W, Mo, V, and Fe.
3までの 、ずれかに記載の可視光応答型光触媒。 The visible light responsive photocatalyst described in any of up to 3.
[5] 前記遷移金属が Wを含む、請求項 4に記載の可視光応答型光触媒。 5. The visible light responsive photocatalyst according to claim 4, wherein the transition metal contains W.
[6] WZTiの原子比が 0. 03〜0. 15である、請求項 5に記載の可視光応答型光触媒 6. The visible light responsive photocatalyst according to claim 5, wherein the atomic ratio of WZTi is 0.03 to 0.15.
[7] 前記遷移金属が Moを含む、請求項 4に記載の可視光応答型光触媒。 7. The visible light responsive photocatalyst according to claim 4, wherein the transition metal contains Mo.
[8] MoZTiの原子比が 0. 01〜0. 05である、請求項 7に記載の可視光応答型光触 媒。 [8] The visible light responsive photocatalyst according to claim 7, wherein the atomic ratio of MoZTi is 0.01 to 0.05.
[9] 前記遷移金属が Vを含む、請求項 4に記載の可視光応答型光触媒。  [9] The visible light responsive photocatalyst according to claim 4, wherein the transition metal contains V.
[10] VZTiの原子比が 0. 0001-0. 05である、請求項 9に記載の可視光応答型光触 媒。 [10] The visible light responsive photocatalyst according to claim 9, wherein the atomic ratio of VZTi is 0.0001-0.05.
[II] 前記遷移金属が Feを含む、請求項 4に記載の可視光応答型光触媒。  [II] The visible light responsive photocatalyst according to claim 4, wherein the transition metal contains Fe.
[12] FeZTiの原子比が 0. 0001-0. 1である、請求項 11に記載の可視光応答型光触 媒。  [12] The visible light responsive photocatalyst according to claim 11, wherein the atomic ratio of FeZTi is 0.0001-0.
PCT/JP2007/052457 2006-02-21 2007-02-13 Visible light-responsive photocatalyst WO2007097220A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008501678A JPWO2007097220A1 (en) 2006-02-21 2007-02-13 Visible light responsive photocatalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-043709 2006-02-21
JP2006043709 2006-02-21

Publications (1)

Publication Number Publication Date
WO2007097220A1 true WO2007097220A1 (en) 2007-08-30

Family

ID=38437259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052457 WO2007097220A1 (en) 2006-02-21 2007-02-13 Visible light-responsive photocatalyst

Country Status (2)

Country Link
JP (1) JPWO2007097220A1 (en)
WO (1) WO2007097220A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277823A (en) * 2009-05-28 2010-12-09 National Institute Of Advanced Industrial Science & Technology Visible light responsive composition, and photoelectrode and photocatalyst as well as optical sensor using the same
JP2017170441A (en) * 2014-09-30 2017-09-28 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Photocatalytic filter for degrading mixed gas efficiently and manufacturing method thereof
US10213779B2 (en) 2014-09-04 2019-02-26 Seoul Viosys Co., Ltd. Photocatalytic filter, method for manufacturing the same, and method for reactivating the same
JP2021175697A (en) * 2020-05-01 2021-11-04 信越化学工業株式会社 Titanium oxide particle, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on its surface, and method for producing titanium oxide particle dispersion
JP2021175696A (en) * 2020-05-01 2021-11-04 信越化学工業株式会社 Titanium oxide particle, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on its surface, and method for producing titanium oxide particle dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254493A (en) * 1999-03-11 2000-09-19 Kansai Electric Power Co Inc:The Production of silica modified titania for catalyst carrier
JP2001205103A (en) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic body
JP2002273220A (en) * 2001-03-21 2002-09-24 Kansai Electric Power Co Inc:The Silica-modified titania for catalyst carrier and its manufacturing method
JP2003200057A (en) * 2002-01-11 2003-07-15 Japan Science & Technology Corp High efficiency atmospheric nitrogen fixation compounded photocatalytic material composed of visible ray responsible titanium oxide/conductive polymer compounded material
JP2006021112A (en) * 2004-07-07 2006-01-26 Kyoto Univ Ultraviolet and visible ray responsive titania based photocatalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1525338B1 (en) * 2002-07-09 2009-09-09 Leibniz-Institut für Neue Materialien gemeinnützige GmbH Substrate comprising a photocatalytic tio2 layer
JP2005138008A (en) * 2003-11-05 2005-06-02 National Institute For Materials Science Visible light responding type titanium oxide composite photocatalyst and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000254493A (en) * 1999-03-11 2000-09-19 Kansai Electric Power Co Inc:The Production of silica modified titania for catalyst carrier
JP2001205103A (en) * 2000-01-27 2001-07-31 Toyota Central Res & Dev Lab Inc Photocatalytic body
JP2002273220A (en) * 2001-03-21 2002-09-24 Kansai Electric Power Co Inc:The Silica-modified titania for catalyst carrier and its manufacturing method
JP2003200057A (en) * 2002-01-11 2003-07-15 Japan Science & Technology Corp High efficiency atmospheric nitrogen fixation compounded photocatalytic material composed of visible ray responsible titanium oxide/conductive polymer compounded material
JP2006021112A (en) * 2004-07-07 2006-01-26 Kyoto Univ Ultraviolet and visible ray responsive titania based photocatalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OZAKI H. ET AL.: "Seni-i Kinzoku Tanji ni yoru N-Si Kyo Doped-Titanium no Hikarishokubai Seino no ojo", DAI 98 KAI SHOKUBAI TORONKAI TORONKAI A YOKOSHU, vol. 98, 26 September 2006 (2006-09-26), pages 72, XP003017271 *
OZAKI H. ET AL.: "Shushu no Sen'i Kinzoku o Tanji shita N-Si Kyo Doped-Titanium no Hikarishokubai Seino", CSJ: THE CHEMICAL SOCIETY OF JAPAN, DAI 86 SHUNKI NENKAI KOEN YOKOSHU, vol. 86, no. 1, 13 March 2006 (2006-03-13), pages 179, XP003017270 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277823A (en) * 2009-05-28 2010-12-09 National Institute Of Advanced Industrial Science & Technology Visible light responsive composition, and photoelectrode and photocatalyst as well as optical sensor using the same
US10213779B2 (en) 2014-09-04 2019-02-26 Seoul Viosys Co., Ltd. Photocatalytic filter, method for manufacturing the same, and method for reactivating the same
US11565246B2 (en) 2014-09-04 2023-01-31 Seoul Viosys Co., Ltd. Photocatalytic filter, method for manufacturing the same, and method for reactivating the same
JP2017170441A (en) * 2014-09-30 2017-09-28 ソウル バイオシス カンパニー リミテッドSeoul Viosys Co.,Ltd. Photocatalytic filter for degrading mixed gas efficiently and manufacturing method thereof
JP2021175697A (en) * 2020-05-01 2021-11-04 信越化学工業株式会社 Titanium oxide particle, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on its surface, and method for producing titanium oxide particle dispersion
JP2021175696A (en) * 2020-05-01 2021-11-04 信越化学工業株式会社 Titanium oxide particle, dispersion thereof, photocatalyst thin film, member having photocatalyst thin film on its surface, and method for producing titanium oxide particle dispersion
JP7362224B2 (en) 2020-05-01 2023-10-17 信越化学工業株式会社 Titanium oxide particles, a dispersion thereof, a photocatalyst thin film, a member having a photocatalyst thin film on the surface, and a method for producing a titanium oxide particle dispersion
JP7466993B2 (en) 2020-05-01 2024-04-15 信越化学工業株式会社 Titanium oxide particles, dispersion thereof, photocatalytic thin film, member having photocatalytic thin film on its surface, and method for producing titanium oxide particle dispersion

Also Published As

Publication number Publication date
JPWO2007097220A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5711582B2 (en) Photocatalyst and organic compound oxidation method using the same
US7153808B2 (en) Ultraviolet and visible-light-sensitive titania-based photocatalyst
Chaker et al. Photocatalytic degradation of methyl orange and real wastewater by silver doped mesoporous TiO2 catalysts
Ohno et al. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light
Zaleska Doped-TiO2: a review
Nikazar et al. Photocatalytic degradation of azo dye Acid Red 114 in water with TiO2 supported on clinoptilolite as a catalyst
Yang et al. Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal
JP5537858B2 (en) Photocatalyst material and method for producing the same
JP4878141B2 (en) Composite photocatalyst
KR20090083239A (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
Chand et al. Enhanced photocatalytic activity of TiO2/SiO2 by the influence of Cu-doping under reducing calcination atmosphere
Anson-Casaos et al. Evaluation of sol–gel TiO2 photocatalysts modified with carbon or boron compounds and crystallized in nitrogen or air atmospheres
WO2007097220A1 (en) Visible light-responsive photocatalyst
KR20090127084A (en) Photocatalyst dispersion liquid and process for producing the same
KR101548296B1 (en) Manufacturing method of bimetallic transition metal doped titanium dioxide
WO2005087371A1 (en) Photocatalyst based on composite oxide responsive to visible light and method for decomposition and removal of harmful chemical material using the same
Nguyen-Le et al. EDTA-Na2-assisted synthesis of rod-like titanate-TiO2 composite architectures with enhanced visible-light-driven properties
JP5627006B2 (en) Photocatalyst and method for producing the same
TWI272250B (en) Visible light-activated photocatalyst and method for producing the same
KR102362760B1 (en) Photocatalyst and preparing method of the same
JP4883913B2 (en) Photocatalyst and method for producing the same
CN1799688A (en) Method for preparing composite photocatalysis material of titanium dioxide
JP5750319B2 (en) Method for producing brookite type titanium oxide
Fotokatalisis Role of vanadia and titania phases in the removal of methylene blue by adsorption and photocatalytic degradation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008501678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708348

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)