WO2007097179A1 - Method for manufacturing soi substrate - Google Patents

Method for manufacturing soi substrate Download PDF

Info

Publication number
WO2007097179A1
WO2007097179A1 PCT/JP2007/051894 JP2007051894W WO2007097179A1 WO 2007097179 A1 WO2007097179 A1 WO 2007097179A1 JP 2007051894 W JP2007051894 W JP 2007051894W WO 2007097179 A1 WO2007097179 A1 WO 2007097179A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
soi
substrate
single crystal
crystal silicon
Prior art date
Application number
PCT/JP2007/051894
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Takeno
Nobuhiko Noto
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Publication of WO2007097179A1 publication Critical patent/WO2007097179A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3226Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering of silicon on insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76256Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques using silicon etch back techniques, e.g. BESOI, ELTRAN

Definitions

  • the present invention relates to a method for manufacturing an SOI (Silicon On Insulator) substrate by a bonding method, and more particularly to a method for manufacturing an SOI substrate having an excellent gettering ability for metal impurities.
  • SOI Silicon On Insulator
  • an SOI substrate in which an SOI layer (silicon layer) is formed on a silicon oxide film that is an insulating film.
  • SOI layer silicon layer
  • the SOI layer on the surface layer of the substrate which is a device manufacturing region, is electrically isolated from the inside of the substrate by the silicon oxide film (buried oxide film layer (BOX layer)).
  • BOX layer buried oxide film layer
  • this SOI substrate As a method for manufacturing this SOI substrate, for example, the following method is known. In other words, prepare two mirror-polished single crystal silicon substrates (single crystal silicon substrate (bonded UENO), which will be the SOI layer, and single crystal silicon substrate (base wafer), which will be the support substrate). A silicon oxide film is formed on the surface of one silicon substrate. These single crystal silicon substrates are bonded together with a silicon oxide film interposed therebetween, and then heat-treated to increase the bond strength. Thereafter, a bond substrate is thinned to obtain an SOI substrate on which an SOI (Silicon on Insulator) layer is formed. Examples of the thin film method include polishing the bond wafer to a desired thickness I ”, a polishing method, a method called ion implantation separation method, and a method of peeling the bond wafer with an ion implantation layer.
  • the thin film method include polishing the bond wafer to a desired thickness I ”, a polishing method, a method called ion implantation
  • the SOI substrate has many structural advantages from the viewpoint of electrical characteristics. It has structural disadvantages from the viewpoint of resistance to metal impurity contamination. That is, in many cases, the diffusion rate of metal impurities is slower in the silicon oxide film than in silicon. As a result, if the SOI layer surface force is also contaminated, Since it does not easily pass through the conoxide film (BOX layer), it accumulates in a thin SOI layer. As a result, the adverse effects of metal contamination are greater than in the case of a silicon substrate without an SOI structure. Therefore, in the SOI substrate, one of the more important qualities is to have the ability to capture metal impurities and remove them from the region that becomes the active layer of the semiconductor element (gettering ability).
  • Gettering methods oxygen precipitates, high-concentration boron addition, backside polycrystalline silicon film, etc. that are generally used in the case of a silicon substrate without an SOI structure are all opposite to the active layer.
  • a gettering layer is introduced into the supporting substrate.
  • the metal impurities do not easily pass through the silicon oxide film (BOX layer) as described above. This gettering layer does not function sufficiently, and there is a problem that these methods cannot be applied to SOI substrates as they are.
  • Japanese Patent Application Laid-Open No. 6-275525 discloses a method of forming a polycrystalline silicon layer in the SOI layer region near the interface between the SOI layer and the BOX layer, and gettering metal impurities. It is shown.
  • the number of steps for forming the polycrystalline silicon layer is increased, the cost is increased, and the productivity is lowered.
  • the SOI layer is thin, it is very difficult to form a polycrystalline silicon layer.
  • an SOI substrate on which an SOI layer having a high-concentration buried diffusion layer is formed as a three-dimensional structure and a high breakdown voltage of a bipolar IC or the like.
  • active impurities are gas diffused in a single crystal silicon substrate (bondueha).
  • a high concentration layer is formed by introduction by an ion implantation method and bonded to another single crystal silicon substrate (base wafer) having a silicon oxide film formed on the surface.
  • the high concentration buried diffusion layer is not provided for gettering as described in Japanese Patent Laid-Open No. 10-32209.
  • the (active element) arsenic antimony, which is not phosphorus or boron as described in JP-A-10-32209, is often used. Therefore, the gettering ability of an SOI substrate having a high concentration buried diffusion layer containing arsenic or antimony has become important.
  • the present invention provides an SOI substrate in which an SOI layer having a high concentration buried diffusion layer and an excellent gettering capability against metal contamination is added.
  • An object is to provide a method for manufacturing a substrate.
  • the present invention provides a single crystal silicon substrate in which a high concentration layer is formed by introducing at least arsenic or antimony as active impurities, and a single crystal silicon substrate in which a high concentration layer is not formed Are bonded to each other through a silicon oxide film, and after a bonding heat treatment, the single crystal silicon substrate on which the high-concentration layer is formed is thinned to form 1 X on the silicon oxide film.
  • a method of manufacturing an SOI substrate having an SOI layer having a high concentration buried diffusion layer containing arsenic or antimony of 10 18 atomsZcm 3 or more the introduction of the active impurity is performed by ion implantation. Acceleration energy at the time of 130keV
  • a method for manufacturing an SOI substrate is provided, which is performed as follows and the thickness of the SOI layer to be formed is 3 m or more.
  • the acceleration energy is set to 130 keV or less, so that the SOI layer Z silicon oxide film (BOX Layer) Excellent gettering ability can be added near the interface. It also serves as the formation of a high-concentration buried diffusion layer necessary for the structure, and does not add a special new process. As a result, the SOI substrate can be efficiently manufactured without reducing productivity and increasing the cost and cost.
  • the SOI layer has a thickness of 3 m or more, there is little risk that ion-implanted Sb and As are thermally diffused and overlapped with the active layer of the semiconductor element during heat treatment such as bonding heat treatment. There is also little risk of overlapping of the tulling site and the active layer of the semiconductor element. Therefore, the electrical characteristics of the active layer of the semiconductor device will not be adversely affected!
  • acceleration energy at the time of ion implantation of the active impurities is 30 keV or more.
  • acceleration energy at the time of ion implantation of the active impurity is higher than lOOkeV.
  • arsenic or antimony can be introduced at a sufficiently deep position in the single crystal silicon substrate.
  • the silicon oxide film is formed on a surface of a single crystal silicon substrate on which the high concentration layer is not formed, and the high concentration layer is interposed through the silicon oxide film. It is preferable to bond the single crystal silicon substrate on which the second layer is formed.
  • the bonding heat treatment is performed at a heat treatment temperature of 1000 ° C. to 1300 ° C. and a heat treatment time of 0.5 hours to 8 hours. Can do.
  • the thickness of the SOI layer is 3 ⁇ m or more, even if high-temperature and long-time bonding heat treatment is performed in this way, the ion-implanted Sb and As are thermally diffused, and the semiconductor element There is little risk of overlapping with the active layer. Thus, a strong bond is achieved.
  • an SOI substrate having a high concentration buried diffusion layer when manufacturing an SOI substrate having a high concentration buried diffusion layer, active impurities are introduced by an ion implantation method, and the acceleration energy at the time of ion implantation is 130 keV or less.
  • the thickness of the SOI layer to be formed is 3 m or more.
  • FIG. 1 is a flow sheet showing an example of a method for manufacturing an SOI substrate according to the present invention.
  • FIG. 2 is a graph showing an example of a measurement result of a depth distribution of Ni concentration.
  • the present inventors have sufficient gettering ability for the SOI layer without adding any special process such as a process of introducing impurities such as phosphorus and boron and a process of forming a polycrystalline silicon layer. We have been eagerly investigating whether or not.
  • the present inventors have focused on performing ion implantation to form a high concentration layer by introducing arsenic or antimony into a single crystal silicon substrate in an SOI substrate having a high concentration buried diffusion layer. The inventors have found that by devising the ion implantation conditions, the gettering ability can be enhanced without adding a special process.
  • the present inventors have found that the acceleration energy at the time of ion implantation of active impurities is closely related to the gettering ability, and completed the present invention.
  • FIG. 1 is a flow sheet showing an example of a method for manufacturing an SOI substrate by a bonding method.
  • An outline of a method for manufacturing an SOI substrate by a bonding method to which the present invention is applied is as follows.
  • step (a) a single crystal silicon substrate (Bondeha) 11 as an SOI layer for forming a semiconductor element and a single crystal silicon substrate (base wafer) 12 as a support substrate are prepared.
  • step (b) a silicon oxide film 13 to be a BOX layer is formed on the surface of the single crystal silicon substrate 12.
  • a silicon oxide film is formed on the surface of a single crystal silicon substrate (Bondueno), on which a high concentration layer is formed, the damage layer and high concentration layer described later are consumed by the silicon oxide film. There is a risk. In this case, the gettering ability may be reduced. For this reason, it is preferable to form a silicon oxide film on the surface of a single crystal silicon substrate (base wafer) that does not form a high-concentration layer as described above in order to more reliably add excellent gettering capability. ,.
  • an active element arsenic or antimony is introduced near the surface of the single crystal silicon substrate 11 to form the high concentration layer 14.
  • active impurities are introduced by ion implantation with an acceleration energy at the time of ion implantation of 130 keV or less.
  • an excellent gettering capability can be added near the interface of the SOI layer Z silicon oxide film (BOX layer) of the manufactured SOI substrate. It also serves as the formation of a high-concentration buried diffusion layer that is necessary for the structure. It does not add a process. Therefore, it is possible to efficiently manufacture an SOI substrate without reducing productivity and increasing the cost.
  • the acceleration energy at the time of ion implantation is set to 30 keV or more, arsenic or antimony can be introduced to a certain depth deep in the single crystal silicon substrate. For this reason, even if the single crystal silicon substrate is cleaned before bonding, there is little risk that the damage layer for forming the gettering site is removed by the etching operation of the cleaning liquid.
  • the dose of the active element is determined in consideration of the electrical characteristics of a semiconductor element manufactured on the SOI layer, be, for example, 4 X 10 15 at O msZcm 2 about Can do.
  • a screen oxide film (surface protective acid film) may be formed on the surface of a single crystal silicon substrate (Bondeino) on which a high concentration layer is formed. Also, what is the order of step (b) and step (c)?
  • the single crystal silicon substrate 11 on which the high concentration layer 14 is formed and the single crystal silicon substrate 12 on which the silicon oxide film 13 is formed and on which the high concentration layer is not formed are high concentration.
  • the layer 14 and the silicon oxide film 13 are adhered and bonded together. In this way, you will get Lamination 15
  • step (e) a bonding heat treatment for increasing the bonding strength is performed.
  • the elements in the high concentration layer are activated and diffused to form the high concentration buried diffusion layer 17.
  • this bonding heat treatment is preferably performed at a heat treatment temperature of 1000 ° C. to 1300 ° C. and a heat treatment time of 0.5 hours to 8 hours. More preferably, the heat treatment temperature is from 1050 ° C. to 1200 ° C., and the heat treatment time is from 1 hour to 3 hours. This allows two wafers to be tightly coupled.
  • step (f) the single crystal silicon substrate 11 on which the high concentration layer is formed is formed to a desired thickness.
  • the SOI substrate 19 having the SOI layer 16, the high-concentration buried diffusion layer 17, and the silicon oxide film (buried oxide film (BOX layer)) 18 is obtained.
  • the thinning at this time can be performed, for example, by surface grinding, mirror polishing or etching, etc.
  • the high-concentration buried diffusion layer 17 on the silicon oxide film (BOX layer) 18 is 1 ⁇ 10 18 ato Contains at least 3 msZcm of arsenic or antimony. Since the concentration of arsenic or antimony is appropriately selected according to the standard, the upper limit is not particularly limited, but is, for example, 5 ⁇ 10 19 atoms Zcm 3 or less.
  • the thickness of the SOI layer 16 to be formed is 3 m or more by this thin film.
  • the thickness of the SOI layer 16 is less than 3 ⁇ m, for example, a heat treatment temperature of 1000 ° C or higher and 1300 ° C or lower and a heat treatment time of 0.5 hours or longer and 8 hours or shorter can be used. Due to the heat treatment in the device manufacturing process, ion-implanted Sb and As may thermally diffuse and overlap with the active layer of the semiconductor element. Therefore, the electrical characteristics of the active layer of the semiconductor element can be adversely affected. Also, the gettering site must be separated from the active layer of the semiconductor element to some extent. If the thickness of the SOI layer is less than 3 m, the active layer of the semiconductor element and the gettering site may overlap. This also leads to deterioration of the electrical characteristics of the active layer itself of the semiconductor element.
  • the thickness of the SOI layer to be formed is set to 3 m or more, so that these problems can be effectively prevented from occurring.
  • the upper limit of the thickness of the SOI layer is not particularly limited as long as it is determined according to the standard. For example, it is as follows.
  • the present inventors have found that acceleration energy at the time of ion implantation of active impurities is closely related to gettering ability. Then, we thought that the gettering ability of the finally manufactured SOI substrate could be improved by optimizing the acceleration energy during ion implantation of active impurities. Therefore, the following experiment was conducted to optimize the acceleration energy during ion implantation.
  • a silicon oxide film 13 having a thickness of about 1 ⁇ m to be a BOX layer was formed on the surface of the single crystal silicon substrate 12 to be a support substrate by a thermal acid (see step (b) in FIG. 1).
  • arsenic was ion-implanted into the entire surface of one surface of the single crystal silicon substrate 11 to be the SOI layer under the following conditions to form a high concentration layer 14 (see step (c) in FIG. 1). That is, the dose was 4E15 atoms / cm 2 (4 ⁇ 10 15 atoms / cm 2 ), and the acceleration energy during ion implantation was 60, 100, 110, 130, 140, and 160 keV, respectively.
  • the single crystal silicon substrate 11 serving as the SOI layer and the single crystal silicon substrate serving as the support substrate were adhered to each other with the high-concentration layer 14 and the silicon oxide film 13 sandwiched therebetween (step of FIG. 1). (See (d)).
  • step (e) in FIG. 1 a bonding heat treatment was performed to increase the bonding strength (see step (e) in FIG. 1).
  • This bonding heat treatment was performed at 1150 ° C. for 2 hours using a resistance heating type heat treatment furnace (batch furnace).
  • the single crystal silicon substrate 11 side on which the high-concentration layer 14 of the bonded wafer 15 was formed was thinned to a thickness of about 12 m by surface grinding and mirror polishing to obtain an SOI substrate 19 ( Step (f)).
  • Ni was applied to the surface of the SOI layer at a concentration of about 5E12 atoms / cm 2 (5 ⁇ 10 12 atoms / cm 2 ), and was diffused inside by heat treatment at 1000 ° C. for 1 hour.
  • the surface oxide film, SOI layer, and silicon oxide film were etched stepwise, and the Ni concentration in the solution was measured by ICP-MS (inductively coupled plasma mass spectrometry). This measured the distribution of Ni concentration in the depth direction.
  • Surface oxide film and BOX layer silicon oxide film were measured in 1 step each with HF solution, and SOI layer was measured in 6 steps with about 2 m steps.
  • FIG. 2 shows an example of the measurement result of the Ni concentration in the depth direction.
  • Ni concentration is high in the depth region of 10 to 12 m including the surface layer intentionally contaminated with Ni, and the interface region of the silicon oxide film (BOX layer) and SOI layer. That is, Figure 2
  • the Ni concentration in the depth region of 10 to 12 m (near the bonding interface) in can be regarded as the concentration of Ni gettered near the bonding interface.
  • Table 1 shows each SOI substrate (acceleration energy during ion implantation: 60, 100, 110, 130, 1
  • Ni concentration in Table 1 is the Ni concentration gettered near the bonding interface.
  • the Ni concentration in the vicinity of the force coupling interface of 60, 100, 110, and 130 keV is higher than when acceleration energy during ion implantation is 140 keV and 160 keV. I understand. In other words, in the ion implantation for forming the high-concentration layer, when the acceleration energy is set to 130 keV or less, a better gettering ability can be added near the bonding interface.
  • an SOI substrate was fabricated as follows.
  • a silicon oxide film 13 with a film thickness of about 1 ⁇ m to be a BOX layer was formed on the surface of the single crystal silicon substrate 12 to be a support substrate by thermal oxidation (see step (b) in FIG. 1). ).
  • arsenic was ion-implanted under the following conditions on the entire surface of one surface of the single crystal silicon substrate 11 to be the SOI layer, thereby forming a high concentration layer 14 (see step (c) in FIG. 1). That is, the dose amount was 2E15 atoms / cm 2 (2 ⁇ 10 15 atoms / cm 2 ), and the acceleration energy was l lOkeV.
  • the single crystal silicon substrate 11 serving as the SOI layer and the single crystal silicon substrate serving as the support substrate were adhered to each other with the high-concentration layer 14 and the silicon oxide film 13 sandwiched therebetween (step of FIG. 1). (See (d)).
  • step (e) in FIG. 1 a bonding heat treatment was performed to increase the bonding strength (see step (e) in FIG. 1).
  • This bonding heat treatment was performed at 1150 ° C. for 2 hours using a resistance heating type heat treatment furnace (batch furnace).
  • the active layer side of the bonded wafer 15 was thinned to a thickness of about 12 m by surface grinding or mirror polishing to obtain an SOI substrate 19 (see step (f) in FIG. 1). .
  • the SOI substrate was manufactured in the same manner as in Example 1 except that the acceleration energy during ion implantation was 160 keV.
  • the step of adding gettering capability also serves as the step of forming a high-concentration buried diffusion layer necessary for the structure. Therefore, it is necessary to add a special new step separately. Don't be. For this reason, it can be seen that the SOI substrate can be manufactured efficiently without reducing productivity and increasing the cost.
  • Example 1 Furthermore, in Example 1, it was found that the SOI layer had a thickness of 12 / zm, and Fe gettering was concentrated in a depth region of 10 to 12 m including the bonding interface. Therefore, it can be seen that when a device is fabricated on this SOI substrate, the electrical characteristics of the device region where the active layer, for example, the 1 ⁇ m depth region of the surface and the gettering layer do not overlap, may be degraded.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and has any configuration that is substantially the same as the technical idea described in the claims of the present invention and that exhibits the same operational effects. Are also included in the technical scope of the present invention.

Abstract

This invention provides a method for manufacturing an SOI substrate, comprising applying a single crystal silicon substrate, into which at least arsenic or antimony as an active impurity has been introduced to form a high-concentration layer, to a high-concentration layer-free single crystal silicon substrate through a silicon oxide film, heat treating the assembly for bonding, and then thinning the high-concentration layer-formed single crystal silicon substrate to form an SOI substrate comprising an SOI layer provided on the silicon oxide film, the SOI layer having an arsenic or antimony-containing high-concentration buried diffusion layer, wherein the active impurity is introduced by ion implantation, the acceleration energy in the ion implantation is brought to not more than 130 keV, and the thickness of the SOI layer is brought to not less than 3 μm. According to the method for manufacturing an SOI substrate, an SOI substrate in which an excellent metal contamination gettering capability has been imparted to an SOI layer having a high-concentration-buried diffusion layer, can be efficiently manufactured with high productivity at low cost.

Description

明 細 書  Specification
SOI基板の製造方法  Manufacturing method of SOI substrate
技術分野  Technical field
[0001] 本発明は、貼り合わせ法による SOI (Silicon On Insulator)基板の製造方法に 関し、より詳しくは、金属不純物に対して優れたゲッタリング能力を有する SOI基板の 製造方法に関する。 背景技術  The present invention relates to a method for manufacturing an SOI (Silicon On Insulator) substrate by a bonding method, and more particularly to a method for manufacturing an SOI substrate having an excellent gettering ability for metal impurities. Background art
[0002] 半導体素子用の基板の一つとして、絶縁膜であるシリコン酸ィ匕膜の上に SOI層(シ リコン層)を形成した SOI基板がある。この SOI基板は、デバイス作製領域となる基板 表層部の SOI層が前記シリコン酸ィ匕膜 (埋め込み酸ィ匕膜層(BOX層))により基板内 部と電気的に分離されているため、寄生容量が小さぐ耐放射性能力が高いなどの 特徴を有する。そのため、高速'低消費電力動作、ソフトエラー防止などの効果が期 待され、高性能半導体素子用の基板として有望視されている。  As one of semiconductor device substrates, there is an SOI substrate in which an SOI layer (silicon layer) is formed on a silicon oxide film that is an insulating film. In this SOI substrate, the SOI layer on the surface layer of the substrate, which is a device manufacturing region, is electrically isolated from the inside of the substrate by the silicon oxide film (buried oxide film layer (BOX layer)). It has features such as small capacity and high radiation resistance. Therefore, high-speed, low-power consumption operation, soft error prevention, and other effects are expected, and it is promising as a substrate for high-performance semiconductor devices.
[0003] この SOI基板の製造方法として、例えば、以下の方法が知られている。すなわち、 鏡面研磨された 2枚の単結晶シリコン基板 (SOI層となる単結晶シリコン基板 (ボンド ゥエーノ、)と支持基板となる単結晶シリコン基板 (ベースウェーノ、) )を用意し、少なくと も一方のシリコン基板の表面にシリコン酸ィ匕膜を形成させる。そして、これらの単結晶 シリコン基板をシリコン酸ィ匕膜を挟んで貼り合わせた後、熱処理して結合強度を高め る。その後、ボンドゥエーハを薄膜ィ匕して SOI (Silicon on Insulator)層が形成さ れた SOI基板を得る。この薄膜ィ匕の方法としては、ボンドゥエーハを所望の厚さまで 研肖 I』、研磨する方法や、イオン注入剥離法と呼ばれる方法でイオン注入層でボンドウ ーハを剥離する方法等がある。  As a method for manufacturing this SOI substrate, for example, the following method is known. In other words, prepare two mirror-polished single crystal silicon substrates (single crystal silicon substrate (bonded UENO), which will be the SOI layer, and single crystal silicon substrate (base wafer), which will be the support substrate). A silicon oxide film is formed on the surface of one silicon substrate. These single crystal silicon substrates are bonded together with a silicon oxide film interposed therebetween, and then heat-treated to increase the bond strength. Thereafter, a bond substrate is thinned to obtain an SOI substrate on which an SOI (Silicon on Insulator) layer is formed. Examples of the thin film method include polishing the bond wafer to a desired thickness I ”, a polishing method, a method called ion implantation separation method, and a method of peeling the bond wafer with an ion implantation layer.
[0004] 前述したように、 SOI基板は、電気的特性の観点から構造上のメリットを多く有する 力 金属不純物汚染に対する耐性という観点では構造上のデメリットを有している。 すなわち、多くの場合、金属不純物の拡散速度は、シリコン中よりもシリコン酸ィ匕膜 中の方が遅くなる。それにより、 SOI層表面力も汚染された場合、金属不純物がシリ コン酸ィ匕膜 (BOX層)を通過しにくいために、薄い SOI層に蓄積されることになる。そ のため、 SOI構造を有しないシリコン基板の場合よりも金属汚染の悪影響がより大きく なる。したがって、 SOI基板では、金属不純物を捕獲して半導体素子の活性層となる 領域から除去する能力(ゲッタリング能力)を有することが、より一層重要な品質の一 つとなる。 [0004] As described above, the SOI substrate has many structural advantages from the viewpoint of electrical characteristics. It has structural disadvantages from the viewpoint of resistance to metal impurity contamination. That is, in many cases, the diffusion rate of metal impurities is slower in the silicon oxide film than in silicon. As a result, if the SOI layer surface force is also contaminated, Since it does not easily pass through the conoxide film (BOX layer), it accumulates in a thin SOI layer. As a result, the adverse effects of metal contamination are greater than in the case of a silicon substrate without an SOI structure. Therefore, in the SOI substrate, one of the more important qualities is to have the ability to capture metal impurities and remove them from the region that becomes the active layer of the semiconductor element (gettering ability).
[0005] SOI構造を有しな 、シリコン基板の場合に一般的に用いられるゲッタリング手法 (酸 素析出物、高濃度ホウ素添加、裏面多結晶シリコン膜等)は、いずれも活性層とは逆 の支持基板にゲッタリング層が導入される。しかし、 SOI基板において同様の手法を 用 ヽて支持基板側にゲッタリング層を導入しても、前述のように金属不純物がシリコ ン酸ィ匕膜 (BOX層)を通過しにくいために、上述のゲッタリング層が十分機能せず、こ れらの手法はそのままでは SOI基板には適用できないという問題がある。  [0005] Gettering methods (oxygen precipitates, high-concentration boron addition, backside polycrystalline silicon film, etc.) that are generally used in the case of a silicon substrate without an SOI structure are all opposite to the active layer. A gettering layer is introduced into the supporting substrate. However, even if a gettering layer is introduced on the support substrate side using the same method in the SOI substrate, the metal impurities do not easily pass through the silicon oxide film (BOX layer) as described above. This gettering layer does not function sufficiently, and there is a problem that these methods cannot be applied to SOI substrates as they are.
[0006] これらの問題を解決するため、 SOI基板の SOI層近傍にゲッタリング領域を導入す る方法が従来力 幾つ力提案されて 、る。  [0006] In order to solve these problems, methods for introducing a gettering region in the vicinity of the SOI layer of the SOI substrate have been proposed several times.
例えば、 SOI層の選択的な領域に、例えばリンやホウ素などの不純物を高濃度に 含んだ領域をゲッタリング用として設ける方法が特開平 6— 163862号公報ゃ特開平 10— 32209号公報に開示されて 、る。  For example, a method of providing a region containing a high concentration of an impurity such as phosphorus or boron as a gettering in a selective region of an SOI layer is disclosed in JP-A-6-163862 and JP-A-10-32209. It has been.
しかし、このような方法では、不純物を導入する工程が増えることにより、コストが高 くなり生産性が低下するという問題がある。また、 SOI基板の製造工程やデバイスプ ロセスにおける熱処理により、ゲッタリング用に導入した不純物が拡散して半導体素 子の活性層に達すると、電気的特性への悪影響が懸念される。  However, such a method has a problem that the number of steps for introducing impurities increases, resulting in an increase in cost and a decrease in productivity. Moreover, if impurities introduced for gettering diffuse and reach the active layer of the semiconductor element due to heat treatment in the SOI substrate manufacturing process or device process, there is a concern about adverse effects on electrical characteristics.
[0007] また、他の方法として、 SOI層と BOX層との界面近傍の SOI層領域に多結晶シリコ ン層を形成し、金属不純物をゲッタリングする方法が特開平 6— 275525号公報に開 示されている。しかし、この場合も、多結晶シリコン層を形成する工程が増えること〖こ なり、コストが高くなり生産性が低下するという問題がある。また、 SOI層の厚さが薄い 場合には、多結晶シリコン層の形成が極めて難しくなる。  [0007] As another method, Japanese Patent Application Laid-Open No. 6-275525 discloses a method of forming a polycrystalline silicon layer in the SOI layer region near the interface between the SOI layer and the BOX layer, and gettering metal impurities. It is shown. However, in this case as well, there is a problem that the number of steps for forming the polycrystalline silicon layer is increased, the cost is increased, and the productivity is lowered. Further, when the SOI layer is thin, it is very difficult to form a polycrystalline silicon layer.
[0008] 一方、バイポーラ IC等の 3次元構造化、高耐圧化を図るものとして、高濃度埋め込 み拡散層を有する SOI層を形成した SOI基板がある。そのような SOI基板を製造する 方法として、例えば、単結晶シリコン基板 (ボンドゥエーハ)に活性不純物をガス拡散 あるいはイオン注入法により導入して高濃度層を形成し、表面にシリコン酸ィ匕膜を形 成した別の単結晶シリコン基板 (ベースゥヱーハ)と貼り合わせて製造する方法があるOn the other hand, there is an SOI substrate on which an SOI layer having a high-concentration buried diffusion layer is formed as a three-dimensional structure and a high breakdown voltage of a bipolar IC or the like. As a method for manufacturing such an SOI substrate, for example, active impurities are gas diffused in a single crystal silicon substrate (bondueha). Alternatively, there is a method in which a high concentration layer is formed by introduction by an ion implantation method and bonded to another single crystal silicon substrate (base wafer) having a silicon oxide film formed on the surface.
(例えば特開 2000— 196047号公報参照)。 (See, for example, JP 2000-196047 A).
[0009] そのような高濃度埋め込み拡散層を有する SOI基板の場合、高濃度埋め込み拡散 層は特開平 10— 32209号公報に記載されているようなゲッタリング用に設けたもの ではなぐまた活性不純物 (活性元素)としては、特開平 10— 32209号公報に記載さ れているようなリンやホウ素ではなぐヒ素ゃアンチモンが多く用いられている。従って 、ヒ素又はアンチモンを含む高濃度埋め込み拡散層を有する SOI基板のゲッタリング 能力が重要となってきている。  In the case of an SOI substrate having such a high concentration buried diffusion layer, the high concentration buried diffusion layer is not provided for gettering as described in Japanese Patent Laid-Open No. 10-32209. As the (active element), arsenic antimony, which is not phosphorus or boron as described in JP-A-10-32209, is often used. Therefore, the gettering ability of an SOI substrate having a high concentration buried diffusion layer containing arsenic or antimony has become important.
[0010] このようなヒ素又はアンチモンを含む高濃度埋め込み拡散層を有する SOI基板に 十分なゲッタリング能力を付加するために、前記リンやホウ素などの不純物を高濃度 に含んだ領域を高濃度埋め込み拡散層とは別に SOI層に設ける方法や、前記多結 晶シリコン層を SOI層に形成する方法を採用することも考えられる。し力しながら、こ れらの方法を採用すると、リンやホウ素などの不純物を導入する工程や多結晶シリコ ン層を形成する工程など別途特別な新たな工程が増えることになり、コストが高くなり 、生産性が低下し、非効率的である。 発明の開示  In order to add sufficient gettering capability to an SOI substrate having such a high concentration buried diffusion layer containing arsenic or antimony, a region containing a high concentration of impurities such as phosphorus and boron is buried in a high concentration. It is conceivable to adopt a method of providing the SOI layer separately from the diffusion layer or a method of forming the polycrystalline silicon layer on the SOI layer. However, if these methods are adopted, additional special new processes such as a process for introducing impurities such as phosphorus and boron and a process for forming a polycrystalline silicon layer will be added, resulting in high costs. As a result, productivity decreases and is inefficient. Disclosure of the invention
[0011] 本発明は、高濃度埋め込み拡散層を有する SOI層に金属汚染に対して優れたゲッ タリング能力を付加した SOI基板を、生産性良ぐ低コストで効率的に製造することの できる SOI基板の製造方法を提供することを目的とする。  [0011] The present invention provides an SOI substrate in which an SOI layer having a high concentration buried diffusion layer and an excellent gettering capability against metal contamination is added. An object is to provide a method for manufacturing a substrate.
[0012] 上記目的を達成するため、本発明は、少なくとも、活性不純物であるヒ素又はアン チモンを導入して高濃度層を形成した単結晶シリコン基板と、高濃度層を形成しない 単結晶シリコン基板とを、シリコン酸ィ匕膜を介して貼り合わせ、結合熱処理を施した後 、前記高濃度層を形成した単結晶シリコン基板を薄膜化することにより、前記シリコン 酸ィ匕膜の上に 1 X 1018atomsZcm3以上のヒ素又はアンチモンを含む高濃度埋め 込み拡散層を有する SOI層を形成した SOI基板を製造する方法にお ヽて、前記活 性不純物の導入を、イオン注入法により、イオン注入時の加速エネルギーを 130keV 以下として行い、かつ、前記形成する SOI層の厚さを 3 m以上とすることを特徴とす る SOI基板の製造方法を提供する。 In order to achieve the above object, the present invention provides a single crystal silicon substrate in which a high concentration layer is formed by introducing at least arsenic or antimony as active impurities, and a single crystal silicon substrate in which a high concentration layer is not formed Are bonded to each other through a silicon oxide film, and after a bonding heat treatment, the single crystal silicon substrate on which the high-concentration layer is formed is thinned to form 1 X on the silicon oxide film. In a method of manufacturing an SOI substrate having an SOI layer having a high concentration buried diffusion layer containing arsenic or antimony of 10 18 atomsZcm 3 or more, the introduction of the active impurity is performed by ion implantation. Acceleration energy at the time of 130keV A method for manufacturing an SOI substrate is provided, which is performed as follows and the thickness of the SOI layer to be formed is 3 m or more.
[0013] このように、活性不純物であるヒ素又はアンチモンをイオン注入法により導入する際 に、加速エネルギーを 130keV以下とすることにより、製造された SOI基板の SOI層 Zシリコン酸ィ匕膜 (BOX層)界面付近に優れたゲッタリング能力を付加できる。また、 構造として必要な高濃度埋め込み拡散層の形成を兼ねており、別途特別な新たなェ 程を追加することにはならない。このため、生産性も低下させず、し力もコストを高くす ることなく、効率的に SOI基板を製造できる。  [0013] In this way, when introducing the active impurity arsenic or antimony by the ion implantation method, the acceleration energy is set to 130 keV or less, so that the SOI layer Z silicon oxide film (BOX Layer) Excellent gettering ability can be added near the interface. It also serves as the formation of a high-concentration buried diffusion layer necessary for the structure, and does not add a special new process. As a result, the SOI substrate can be efficiently manufactured without reducing productivity and increasing the cost and cost.
また、 SOI層の厚さを 3 m以上とするので、結合熱処理等の熱処理の際に、ィォ ン注入された Sbや Asが熱拡散し、半導体素子の活性層と重なる恐れも少なぐゲッ タリングサイトと半導体素子の活性層が重なる恐れも少ない。従って、半導体素子の 活性層の電気特性に悪影響を及ぼすこともな!/、。  In addition, since the SOI layer has a thickness of 3 m or more, there is little risk that ion-implanted Sb and As are thermally diffused and overlapped with the active layer of the semiconductor element during heat treatment such as bonding heat treatment. There is also little risk of overlapping of the tulling site and the active layer of the semiconductor element. Therefore, the electrical characteristics of the active layer of the semiconductor device will not be adversely affected!
[0014] そして、本発明の SOI基板の製造方法では、前記活性不純物のイオン注入時の加 速エネルギーを、 30keV以上とするのが好ましい。  [0014] In the method for manufacturing an SOI substrate according to the present invention, it is preferable that acceleration energy at the time of ion implantation of the active impurities is 30 keV or more.
[0015] このように、イオン注入時の加速エネルギーを、 30keV以上とすれば、単結晶シリコ ン基板のある程度深い位置にまで、ヒ素又はアンチモンを導入することができる。この ため、貼り合わせ前にその単結晶シリコン基板を洗浄したとしても、洗浄液のエツチン グ作用によりゲッタリングサイトを形成するためのダメージ層が除去されてしまうという 恐れが少ない。  [0015] As described above, when the acceleration energy at the time of ion implantation is set to 30 keV or more, arsenic or antimony can be introduced to a certain depth in the single crystal silicon substrate. For this reason, even if the single crystal silicon substrate is cleaned before bonding, the damage layer for forming the gettering site due to the etching action of the cleaning liquid is less likely to be removed.
[0016] さらに、本発明の SOI基板の製造方法では、前記活性不純物のイオン注入時の加 速エネルギーを、 lOOkeVより高くするのが好ましい。  Furthermore, in the method for manufacturing an SOI substrate of the present invention, it is preferable that acceleration energy at the time of ion implantation of the active impurity is higher than lOOkeV.
[0017] このように、前記活性不純物のイオン注入時の加速エネルギーを、 lOOkeVより高く することで、単結晶シリコン基板の十分に深い位置にヒ素又はアンチモンを導入する ことができる。 As described above, by setting the acceleration energy at the time of ion implantation of the active impurities higher than lOOkeV, arsenic or antimony can be introduced at a sufficiently deep position in the single crystal silicon substrate.
[0018] また、本発明の SOI基板の製造方法では、前記シリコン酸化膜を、前記高濃度層を 形成しない単結晶シリコン基板の表面に形成し、該シリコン酸ィ匕膜を介して前記高濃 度層を形成した単結晶シリコン基板と貼り合せるのが好ましい。  [0018] Further, in the method for manufacturing an SOI substrate of the present invention, the silicon oxide film is formed on a surface of a single crystal silicon substrate on which the high concentration layer is not formed, and the high concentration layer is interposed through the silicon oxide film. It is preferable to bond the single crystal silicon substrate on which the second layer is formed.
[0019] 高濃度層を形成した単結晶シリコン基板の表面にシリコン酸ィ匕膜を形成すると、ィ オン注入により形成されるダメージ層や高濃度層がシリコン酸ィ匕膜に消費されること により、ゲッタリング能力が低下してしまう恐れがある。このことから、より確実に優れた ゲッタリング能力を付加するために、上記のように高濃度層を形成しない単結晶シリ コン基板の表面にシリコン酸ィ匕膜を形成するのが好ましい。 [0019] When a silicon oxide film is formed on the surface of a single crystal silicon substrate on which a high concentration layer is formed, If the damaged layer or the high concentration layer formed by the on implantation is consumed by the silicon oxide film, the gettering ability may be lowered. From this, it is preferable to form a silicon oxide film on the surface of the single crystal silicon substrate on which the high concentration layer is not formed as described above, in order to more reliably add an excellent gettering capability.
[0020] また、本発明の SOI基板の製造方法では、前記結合熱処理を、熱処理温度を 100 0°C以上 1300°C以下とし、熱処理時間を 0. 5時間以上 8時間以下の範囲として行う ことができる。  In the method for manufacturing an SOI substrate of the present invention, the bonding heat treatment is performed at a heat treatment temperature of 1000 ° C. to 1300 ° C. and a heat treatment time of 0.5 hours to 8 hours. Can do.
[0021] 本発明では、 SOI層の厚さを 3 μ m以上とするので、このように高温、長時間の結合 熱処理を行っても、イオン注入された Sbや Asが熱拡散し、半導体素子の活性層と重 なる恐れが少ない。従って、強固な結合が達成される。  In the present invention, since the thickness of the SOI layer is 3 μm or more, even if high-temperature and long-time bonding heat treatment is performed in this way, the ion-implanted Sb and As are thermally diffused, and the semiconductor element There is little risk of overlapping with the active layer. Thus, a strong bond is achieved.
[0022] 以上説明したように、本発明では、高濃度埋め込み拡散層を有する SOI基板を製 造する際に、活性不純物の導入を、イオン注入法により、イオン注入時の加速エネル ギーを 130keV以下として行い、かつ、形成する SOI層の厚さを 3 m以上とする。こ のため、高濃度埋め込み拡散層を有する SOI層に金属汚染に対して優れたゲッタリ ング能力を付加した SOI基板を、電気特性を劣化させることなぐ生産性良ぐ低コス トで効率的に製造することができる。 図面の簡単な説明  As described above, in the present invention, when manufacturing an SOI substrate having a high concentration buried diffusion layer, active impurities are introduced by an ion implantation method, and the acceleration energy at the time of ion implantation is 130 keV or less. The thickness of the SOI layer to be formed is 3 m or more. For this reason, an SOI substrate in which an SOI layer having a high-concentration buried diffusion layer is added with an excellent gettering ability against metal contamination can be efficiently manufactured at a low cost with good productivity without deteriorating electrical characteristics. can do. Brief Description of Drawings
[0023] [図 1]本発明の SOI基板の製造方法の一例を示すフローシートである。 FIG. 1 is a flow sheet showing an example of a method for manufacturing an SOI substrate according to the present invention.
[図 2]Ni濃度の深さ方向分布の測定結果の一例を示すグラフである。  FIG. 2 is a graph showing an example of a measurement result of a depth distribution of Ni concentration.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 以下、本発明についてより具体的に説明する。 [0024] Hereinafter, the present invention will be described more specifically.
前述のように、高濃度埋め込み拡散層を有する SOI層に金属汚染に対して優れた ゲッタリング能力を付加した SOI基板を、生産性良ぐ低コストで効率的に製造するこ とのできる SOI基板の製造方法の開発が待たれていた。  As described above, an SOI substrate in which an SOI layer having a high-concentration buried diffusion layer and an excellent gettering ability against metal contamination can be efficiently manufactured at low cost with good productivity. The development of the manufacturing method was awaited.
[0025] そこで、本発明者らは、リンやホウ素などの不純物を導入する工程や多結晶シリコ ン層を形成する工程など、別途特別な工程を追加することなぐ SOI層に十分なゲッ タリング能力を付加できな 、か鋭意検討を重ねた。 [0026] その結果、本発明者らは、高濃度埋め込み拡散層を有する SOI基板において、単 結晶シリコン基板にヒ素又はアンチモンを導入して高濃度層を形成するためにイオン 注入を行うことに着目し、このイオン注入の条件を工夫することにより、別途特別なェ 程を追加することなくゲッタリング能力を高めることができることを見出した。 [0025] Therefore, the present inventors have sufficient gettering ability for the SOI layer without adding any special process such as a process of introducing impurities such as phosphorus and boron and a process of forming a polycrystalline silicon layer. We have been eagerly investigating whether or not. [0026] As a result, the present inventors have focused on performing ion implantation to form a high concentration layer by introducing arsenic or antimony into a single crystal silicon substrate in an SOI substrate having a high concentration buried diffusion layer. The inventors have found that by devising the ion implantation conditions, the gettering ability can be enhanced without adding a special process.
すなわち、本発明者らは、活性不純物のイオン注入時の加速エネルギーがゲッタリ ング能力に密接に関わっていることを見出し、本発明を完成させた。  That is, the present inventors have found that the acceleration energy at the time of ion implantation of active impurities is closely related to the gettering ability, and completed the present invention.
[0027] 以下、本発明について図面を参照しながらさらに詳細に説明する力 本発明はこれ らに限定されるものではない。 [0027] Hereinafter, the present invention will be described in more detail with reference to the drawings. The present invention is not limited to these.
図 1は、貼り合わせ法による SOI基板の製造方法の一例を示すフローシートである 。本発明が適用される貼り合わせ法による SOI基板の製造方法の概略は以下に示す 通りである。  FIG. 1 is a flow sheet showing an example of a method for manufacturing an SOI substrate by a bonding method. An outline of a method for manufacturing an SOI substrate by a bonding method to which the present invention is applied is as follows.
[0028] まず、工程 (a)において、半導体素子形成用の SOI層となる単結晶シリコン基板( ボンドゥエーハ) 11と、支持基板となる単結晶シリコン基板 (ベースウェーノヽ) 12を用 意する。  [0028] First, in step (a), a single crystal silicon substrate (Bondeha) 11 as an SOI layer for forming a semiconductor element and a single crystal silicon substrate (base wafer) 12 as a support substrate are prepared.
[0029] 次に、工程 (b)において、単結晶シリコン基板 12の表面に BOX層となるシリコン酸 化膜 13を形成する。  Next, in step (b), a silicon oxide film 13 to be a BOX layer is formed on the surface of the single crystal silicon substrate 12.
これとは逆に、高濃度層を形成した単結晶シリコン基板 (ボンドゥエ一ノ、)の表面に シリコン酸化膜を形成すると、後述のイオン注入のダメージ層や高濃度層がシリコン 酸化膜に消費される恐れがある。この場合、ゲッタリング能力が低下してしまう恐れが ある。このことから、優れたゲッタリング能力をより確実に付加するために、上記のよう に高濃度層を形成しない単結晶シリコン基板 (ベースウェーハ)の表面にシリコン酸 化膜を形成することが好まし 、。  On the other hand, if a silicon oxide film is formed on the surface of a single crystal silicon substrate (Bondueno), on which a high concentration layer is formed, the damage layer and high concentration layer described later are consumed by the silicon oxide film. There is a risk. In this case, the gettering ability may be reduced. For this reason, it is preferable to form a silicon oxide film on the surface of a single crystal silicon substrate (base wafer) that does not form a high-concentration layer as described above in order to more reliably add excellent gettering capability. ,.
[0030] 次に、工程 (c)において、単結晶シリコン基板 11の表面近傍に活性元素であるヒ素 又はアンチモンを導入して高濃度層 14を形成する。 Next, in the step (c), an active element arsenic or antimony is introduced near the surface of the single crystal silicon substrate 11 to form the high concentration layer 14.
この時、本発明では、活性不純物の導入を、イオン注入法により、イオン注入時の 加速エネルギーを 130keV以下として行う。これにより、製造された SOI基板の SOI 層 Zシリコン酸ィ匕膜 (BOX層)界面付近に優れたゲッタリング能力を付加できる。また 、構造として必要な高濃度埋め込み拡散層の形成を兼ねており、別途特別な新たな 工程を追加することにはならない。このため、生産性も低下させず、し力もコストを高く することなぐ効率的に SOI基板を製造できる。 At this time, in the present invention, active impurities are introduced by ion implantation with an acceleration energy at the time of ion implantation of 130 keV or less. As a result, an excellent gettering capability can be added near the interface of the SOI layer Z silicon oxide film (BOX layer) of the manufactured SOI substrate. It also serves as the formation of a high-concentration buried diffusion layer that is necessary for the structure. It does not add a process. Therefore, it is possible to efficiently manufacture an SOI substrate without reducing productivity and increasing the cost.
[0031] また、イオン注入時の加速エネルギーを、 30keV以上とすれば、単結晶シリコン基 板のある程度深い位置まで、ヒ素又はアンチモンを導入することができる。このため、 貼り合わせ前にその単結晶シリコン基板を洗浄したとしても、洗浄液のエッチング作 用によりゲッタリングサイトを形成するためのダメージ層が除去されてしまうという恐れ が少ない。 [0031] If the acceleration energy at the time of ion implantation is set to 30 keV or more, arsenic or antimony can be introduced to a certain depth deep in the single crystal silicon substrate. For this reason, even if the single crystal silicon substrate is cleaned before bonding, there is little risk that the damage layer for forming the gettering site is removed by the etching operation of the cleaning liquid.
[0032] さらに、活性不純物のイオン注入時の加速エネルギーを、 80keV以上、特には 10 OkeVより高くすることで、単結晶シリコン基板のさらに十分に深い位置にヒ素又はァ ンチモンを導入することができる。  [0032] Furthermore, by increasing the acceleration energy at the time of ion implantation of active impurities to 80 keV or higher, particularly higher than 10 OkeV, arsenic or antimony can be introduced into a sufficiently deep position of the single crystal silicon substrate. .
尚、活性元素のドーズ量は、特に限定されるものではないが、 SOI層に作製される 半導体素子の電気的特性を考慮して決定され、例えば 4 X 1015atOmsZcm2程度と することができる。 Incidentally, the dose of the active element, but are not particularly limited, is determined in consideration of the electrical characteristics of a semiconductor element manufactured on the SOI layer, be, for example, 4 X 10 15 at O msZcm 2 about Can do.
[0033] また、イオン注入に先立ち、高濃度層を形成した単結晶シリコン基板 (ボンドゥエ一 ノ、)の表面にスクリーン酸ィ匕膜 (表面保護用酸ィ匕膜)を形成しても構わない。また、ェ 程 (b)と工程 (c)の順番は問わな 、。  Further, prior to ion implantation, a screen oxide film (surface protective acid film) may be formed on the surface of a single crystal silicon substrate (Bondeino) on which a high concentration layer is formed. . Also, what is the order of step (b) and step (c)?
[0034] 次に、工程 (d)において、高濃度層 14を形成した単結晶シリコン基板 11と、シリコ ン酸化膜 13を形成した、高濃度層を形成しない単結晶シリコン基板 12を、高濃度層 14とシリコン酸ィ匕膜 13を介して密着させて貼り合わせる。このようにして貼り合わせゥ エーノヽ 15を得る。  Next, in the step (d), the single crystal silicon substrate 11 on which the high concentration layer 14 is formed and the single crystal silicon substrate 12 on which the silicon oxide film 13 is formed and on which the high concentration layer is not formed are high concentration. The layer 14 and the silicon oxide film 13 are adhered and bonded together. In this way, you will get Lamination 15
[0035] 次に、工程 (e)にお 、て、結合強度を高めるための結合熱処理を行う。この結合熱 処理によって、高濃度層の元素は活性化し、また拡散することにより、高濃度埋め込 み拡散層 17が形成される。  Next, in the step (e), a bonding heat treatment for increasing the bonding strength is performed. By this combined heat treatment, the elements in the high concentration layer are activated and diffused to form the high concentration buried diffusion layer 17.
本発明では、この結合熱処理を、熱処理温度を 1000°C以上 1300°C以下とし、熱 処理時間を 0. 5時間以上 8時間以下の範囲として行うのが好ましい。より好ましくは、 熱処理温度を、 1050°C以上 1200°C以下とし、熱処理時間を 1時間以上 3時間以下 とする。これにより 2つのゥエーハを強固に結合することができる。  In the present invention, this bonding heat treatment is preferably performed at a heat treatment temperature of 1000 ° C. to 1300 ° C. and a heat treatment time of 0.5 hours to 8 hours. More preferably, the heat treatment temperature is from 1050 ° C. to 1200 ° C., and the heat treatment time is from 1 hour to 3 hours. This allows two wafers to be tightly coupled.
[0036] 次に、工程 (f)において、高濃度層を形成した単結晶シリコン基板 11を所望の厚さ まで薄膜ィ匕することによって、 SOI層 16、高濃度埋め込み拡散層 17およびシリコン 酸ィ匕膜 (埋め込み酸ィ匕膜 (BOX層)) 18を有する SOI基板 19を得る。この時の薄膜 化は、例えば、平面研削および鏡面研磨あるいはエッチング等により行うことができる 尚、シリコン酸ィ匕膜 (BOX層) 18の上の高濃度埋め込み拡散層 17は、 1 X 1018ato msZcm3以上のヒ素又はアンチモンを含む。このヒ素又はアンチモンの濃度は、規 格に応じて適宜選択されるため、上限は特に限定されないが、例えば、 5 X 1019ato msZcm3以下とされる。 Next, in step (f), the single crystal silicon substrate 11 on which the high concentration layer is formed is formed to a desired thickness. The SOI substrate 19 having the SOI layer 16, the high-concentration buried diffusion layer 17, and the silicon oxide film (buried oxide film (BOX layer)) 18 is obtained. The thinning at this time can be performed, for example, by surface grinding, mirror polishing or etching, etc. The high-concentration buried diffusion layer 17 on the silicon oxide film (BOX layer) 18 is 1 × 10 18 ato Contains at least 3 msZcm of arsenic or antimony. Since the concentration of arsenic or antimony is appropriately selected according to the standard, the upper limit is not particularly limited, but is, for example, 5 × 10 19 atoms Zcm 3 or less.
[0037] 本発明では、この薄膜ィ匕により、形成する SOI層 16の厚さを 3 m以上とする。 In the present invention, the thickness of the SOI layer 16 to be formed is 3 m or more by this thin film.
SOI層 16の厚さを 3 μ m未満とすると、例えば、熱処理温度を 1000°C以上 1300 °C以下、熱処理時間を 0. 5時間以上 8時間以下とした高温長時間の結合熱処理や 、後のデバイス製造工程の熱処理により、イオン注入された Sbや Asが熱拡散し、半 導体素子の活性層と重なる恐れがある。従って、半導体素子の活性層の電気特性に 悪影響を及ぼし得る。また、ゲッタリングサイトも半導体素子の活性層からある程度離 れている必要がある力 SOI層の厚さが 3 m未満と薄くなると、半導体素子の活性 層とゲッタリングサイトが重なる恐れもある。これによつても、半導体素子の活性層自 体の電気特性の劣化につながる。  If the thickness of the SOI layer 16 is less than 3 μm, for example, a heat treatment temperature of 1000 ° C or higher and 1300 ° C or lower and a heat treatment time of 0.5 hours or longer and 8 hours or shorter can be used. Due to the heat treatment in the device manufacturing process, ion-implanted Sb and As may thermally diffuse and overlap with the active layer of the semiconductor element. Therefore, the electrical characteristics of the active layer of the semiconductor element can be adversely affected. Also, the gettering site must be separated from the active layer of the semiconductor element to some extent. If the thickness of the SOI layer is less than 3 m, the active layer of the semiconductor element and the gettering site may overlap. This also leads to deterioration of the electrical characteristics of the active layer itself of the semiconductor element.
し力しながら、本発明では、上記のように、形成する SOI層の厚さを 3 m以上とす るので、これらの問題が生じるのを効果的に防ぐことができる。 SOI層の厚さの上限に ついては規格に従い決定すれば良ぐ特に限定されないが、例えば、 以下と される。  However, in the present invention, as described above, the thickness of the SOI layer to be formed is set to 3 m or more, so that these problems can be effectively prevented from occurring. The upper limit of the thickness of the SOI layer is not particularly limited as long as it is determined according to the standard. For example, it is as follows.
[0038] (実験例) [0038] (Experimental example)
本発明者らは、前述のように、活性不純物のイオン注入時の加速エネルギーがゲッ タリング能力に密接に関わっていることを見出した。そして、活性不純物のイオン注入 時の加速エネルギーを最適化すれば、最終的に製造される SOI基板のゲッタリング 能力を向上させることができると考えた。そこで、イオン注入時の加速エネルギーの 最適化を図るベぐ以下のような実験を行った。  As described above, the present inventors have found that acceleration energy at the time of ion implantation of active impurities is closely related to gettering ability. Then, we thought that the gettering ability of the finally manufactured SOI substrate could be improved by optimizing the acceleration energy during ion implantation of active impurities. Therefore, the following experiment was conducted to optimize the acceleration energy during ion implantation.
[0039] 図 1を参照して、本発明者らが行った実験の一つを説明する。 まず、直径 200mm、面方位 { 100}の鏡面研磨された 2枚の N型単結晶シリコン基 板を用意した (図 1の工程 (a)参照)。 With reference to FIG. 1, one of the experiments conducted by the present inventors will be described. First, two mirror-polished N-type single crystal silicon substrates with a diameter of 200 mm and a plane orientation of {100} were prepared (see step (a) in Fig. 1).
支持基板となる単結晶シリコン基板 12の表面に、 BOX層となる膜厚約 1 μ mのシリ コン酸ィ匕膜 13を熱酸ィ匕により形成した(図 1の工程 (b)参照)。  A silicon oxide film 13 having a thickness of about 1 μm to be a BOX layer was formed on the surface of the single crystal silicon substrate 12 to be a support substrate by a thermal acid (see step (b) in FIG. 1).
次に、 SOI層となる単結晶シリコン基板 11の一方の表面の全面にヒ素を次の各条 件でイオン注入し、高濃度層 14を形成した(図 1の工程 (c)参照)。すなわち、ドーズ 量を 4E15atoms/cm2 (4 X 1015atoms/cm2)として、イオン注入時の加速エネル ギーをそれぞれ 60、 100、 110、 130、 140、 160keVとした。 Next, arsenic was ion-implanted into the entire surface of one surface of the single crystal silicon substrate 11 to be the SOI layer under the following conditions to form a high concentration layer 14 (see step (c) in FIG. 1). That is, the dose was 4E15 atoms / cm 2 (4 × 10 15 atoms / cm 2 ), and the acceleration energy during ion implantation was 60, 100, 110, 130, 140, and 160 keV, respectively.
[0040] その後、 SOI層となる単結晶シリコン基板 11と支持基板となる単結晶シリコン基板 を、高濃度層 14とシリコン酸ィ匕膜 13を挟むようにして密着させて貼り合わせた(図 1 の工程 (d)参照)。 [0040] After that, the single crystal silicon substrate 11 serving as the SOI layer and the single crystal silicon substrate serving as the support substrate were adhered to each other with the high-concentration layer 14 and the silicon oxide film 13 sandwiched therebetween (step of FIG. 1). (See (d)).
次いで、結合強度を高めるための結合熱処理を行った(図 1の工程 (e)参照)。この 結合熱処理は、抵抗加熱式熱処理炉 (バッチ炉)を用いて、 1150°Cで、 2時間行つ た。  Next, a bonding heat treatment was performed to increase the bonding strength (see step (e) in FIG. 1). This bonding heat treatment was performed at 1150 ° C. for 2 hours using a resistance heating type heat treatment furnace (batch furnace).
その後、貼り合わせゥエーハ 15の高濃度層 14を形成した単結晶シリコン基板 11側 を、平面研削と鏡面研磨により、約 12 mの厚さになるまで薄膜ィ匕し、 SOI基板 19を 得た (工程 (f)参照)。  After that, the single crystal silicon substrate 11 side on which the high-concentration layer 14 of the bonded wafer 15 was formed was thinned to a thickness of about 12 m by surface grinding and mirror polishing to obtain an SOI substrate 19 ( Step (f)).
[0041] このように作製した SOI基板のゲッタリング能力を次のように評価した。 [0041] The gettering ability of the SOI substrate thus fabricated was evaluated as follows.
先ず、 SOI層の表面に Niを約 5E12atoms/cm2 (5 X 1012atoms/cm2)の濃度 で塗布し、 1000°Cで 1時間の熱処理により内部に拡散させた。 First, Ni was applied to the surface of the SOI layer at a concentration of about 5E12 atoms / cm 2 (5 × 10 12 atoms / cm 2 ), and was diffused inside by heat treatment at 1000 ° C. for 1 hour.
次に、表面酸化膜、 SOI層、シリコン酸ィ匕膜 (BOX層)を段階的にエッチングして、 その溶液中の Ni濃度を ICP— MS (誘導結合プラズマ質量分析)で測定した。これに より、 Ni濃度の深さ方向分布を測定した。表面酸ィ匕膜と BOX層(シリコン酸ィ匕膜)は HF溶液により各々 1段階で、 SOI層は約 2 mステップで 6段階に分割して測定した  Next, the surface oxide film, SOI layer, and silicon oxide film (BOX layer) were etched stepwise, and the Ni concentration in the solution was measured by ICP-MS (inductively coupled plasma mass spectrometry). This measured the distribution of Ni concentration in the depth direction. Surface oxide film and BOX layer (silicon oxide film) were measured in 1 step each with HF solution, and SOI layer was measured in 6 steps with about 2 m steps.
[0042] ここで、図 2に、 Ni濃度の深さ方向分布の測定結果の一例を示す。 Here, FIG. 2 shows an example of the measurement result of the Ni concentration in the depth direction.
これを見ると、故意に Ni汚染された表層と、シリコン酸ィ匕膜 (BOX層)と SOI層の界 面領域を含む 10〜12 mの深さ領域で Ni濃度が高いことがわかる。すなわち、図 2 における SOI層 10〜12 mの深さ領域 (結合界面付近)での Ni濃度を結合界面付 近にゲッタリングされた Niの濃度と見なすことができる。 From this, it can be seen that the Ni concentration is high in the depth region of 10 to 12 m including the surface layer intentionally contaminated with Ni, and the interface region of the silicon oxide film (BOX layer) and SOI layer. That is, Figure 2 The Ni concentration in the depth region of 10 to 12 m (near the bonding interface) in can be regarded as the concentration of Ni gettered near the bonding interface.
[0043] 下記表 1に各 SOI基板 (イオン注入時の加速エネルギー: 60、 100、 110、 130、 1[0043] Table 1 below shows each SOI substrate (acceleration energy during ion implantation: 60, 100, 110, 130, 1
40、 160keV)の評価結果を示す。表 1中の Ni濃度とは上述の結合界面付近にゲッ タリングされた Ni濃度である。 40, 160keV) is shown. The Ni concentration in Table 1 is the Ni concentration gettered near the bonding interface.
[0044] [表 1] [0044] [Table 1]
Figure imgf000012_0001
Figure imgf000012_0001
[0045] 上記表 1の結果から、イオン注入時の加速エネルギーが 140keVと 160keVの場 合と比較して、 60、 100、 110、 130keVの方力 結合界面付近の Ni濃度が高くなつ ていることがわかる。すなわち、高濃度層を形成するためのイオン注入において、加 速エネルギーを 130keV以下とした場合に、結合界面付近に、より優れたゲッタリン グ能力が付加することができることがわかる。 [0045] From the results in Table 1 above, the Ni concentration in the vicinity of the force coupling interface of 60, 100, 110, and 130 keV is higher than when acceleration energy during ion implantation is 140 keV and 160 keV. I understand. In other words, in the ion implantation for forming the high-concentration layer, when the acceleration energy is set to 130 keV or less, a better gettering ability can be added near the bonding interface.
[0046] 尚、イオン注入時の加速エネルギーは高い方が結晶に形成されるダメージが大きく なるので、イオン注入時の加速エネルギーを高くした方がゲッタリング能力が高くなる と考えるのが通常である。し力しながら、上記実験例を見ると、イオン注入時の加速ェ ネルギ一が低 、方がむしろゲッタリング能力が高くなると!、う当業者にも想定し難 ヽ 結果が得られている。  [0046] It should be noted that the higher the acceleration energy at the time of ion implantation, the greater the damage formed in the crystal. Therefore, it is normal to think that the higher the acceleration energy at the time of ion implantation, the higher the gettering ability. . However, looking at the above experimental example, the acceleration energy at the time of ion implantation is lower, and the gettering ability is rather higher.
[0047] 上記のようにイオン注入時の加速エネルギーを低くした場合の方が結合界面付近 のゲッタリング能力が高くなる理由の詳細は明らかではないが、イオン注入時の加速 エネルギーが低い方力イオン注入によるダメージの深さが浅くなり、貼り合わせた場 合にダメージ層が結合界面に近くなることにより、結合界面付近にゲッタリングサイトと なる何らかの欠陥が形成されるものと考えられる。 [0047] Although the details of the reason why the gettering capability near the bonding interface is higher when the acceleration energy during ion implantation is lowered as described above are not clear, the acceleration during ion implantation is not clear. The depth of damage due to low energy ion implantation becomes shallow, and when bonded, the damage layer becomes close to the bonding interface, so that some defect that becomes a gettering site is formed near the bonding interface. Conceivable.
[0048] 以下、実施例、比較例を示して本発明をより具体的に説明するが、本発明はこれら に限定されるものではない。 [0048] Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(実施例 1) (Example 1)
図 1に示した工程に基づ ヽて、以下のように SOI基板を作製した。  Based on the process shown in Fig. 1, an SOI substrate was fabricated as follows.
まず、直径 200mm、面方位 { 100}の鏡面研磨された 2枚の N型単結晶シリコン基 板を用意した (図 1の工程 (a)参照)。  First, two mirror-polished N-type single crystal silicon substrates with a diameter of 200 mm and a plane orientation of {100} were prepared (see step (a) in Fig. 1).
次に、支持基板となる単結晶シリコン基板 12の表面に、 BOX層となる膜厚約 1 μ m のシリコン酸ィ匕膜 13を熱酸ィ匕により形成した(図 1の工程 (b)参照)。  Next, a silicon oxide film 13 with a film thickness of about 1 μm to be a BOX layer was formed on the surface of the single crystal silicon substrate 12 to be a support substrate by thermal oxidation (see step (b) in FIG. 1). ).
次に、 SOI層となる単結晶シリコン基板 11の一方の表面の全面にヒ素を次の条件 でイオン注入し、高濃度層 14を形成した(図 1の工程 (c)参照)。すなわち、ドーズ量 を 2E15atoms/cm2 (2 X 1015atoms/cm2)として、加速エネルギーを l lOkeVと した。 Next, arsenic was ion-implanted under the following conditions on the entire surface of one surface of the single crystal silicon substrate 11 to be the SOI layer, thereby forming a high concentration layer 14 (see step (c) in FIG. 1). That is, the dose amount was 2E15 atoms / cm 2 (2 × 10 15 atoms / cm 2 ), and the acceleration energy was l lOkeV.
[0049] その後、 SOI層となる単結晶シリコン基板 11と支持基板となる単結晶シリコン基板 を、高濃度層 14とシリコン酸ィ匕膜 13を挟むようにして密着させて貼り合わせた(図 1 の工程 (d)参照)。  [0049] After that, the single crystal silicon substrate 11 serving as the SOI layer and the single crystal silicon substrate serving as the support substrate were adhered to each other with the high-concentration layer 14 and the silicon oxide film 13 sandwiched therebetween (step of FIG. 1). (See (d)).
次いで、結合強度を高めるための結合熱処理を行った(図 1の工程 (e)参照)。この 結合熱処理は、抵抗加熱式熱処理炉 (バッチ炉)を用いて、 1150°Cで、 2時間行つ た。  Next, a bonding heat treatment was performed to increase the bonding strength (see step (e) in FIG. 1). This bonding heat treatment was performed at 1150 ° C. for 2 hours using a resistance heating type heat treatment furnace (batch furnace).
その後、貼り合わせゥエーハ 15の活性層側を、平面研削や鏡面研磨などにより、約 12 mの厚さになるまで薄膜ィ匕し、 SOI基板 19を得た(図 1の工程 (f)参照)。  After that, the active layer side of the bonded wafer 15 was thinned to a thickness of about 12 m by surface grinding or mirror polishing to obtain an SOI substrate 19 (see step (f) in FIG. 1). .
[0050] このように作製した SOI基板のゲッタリング能力を前記実験例と同じ方法により評価 した(下記表 2参照)。但し、汚染元素は Feとした。 [0051] (比較例 1) [0050] The gettering ability of the SOI substrate fabricated in this way was evaluated by the same method as in the experimental example (see Table 2 below). However, the contaminating element was Fe. [0051] (Comparative Example 1)
上記実施例 1の SOI基板の作製手順にぉ 、て、イオン注入時の加速エネルギーを 160keVとしたことを除いて、実施例 1と同様にして SOI基板を作製した。  Following the procedure for manufacturing the SOI substrate of Example 1, the SOI substrate was manufactured in the same manner as in Example 1 except that the acceleration energy during ion implantation was 160 keV.
また、このように作製した SOI基板のゲッタリング能力を前記実施例 1と同じ方法に より評価した (下記表 2参照)。  Further, the gettering ability of the SOI substrate manufactured in this way was evaluated by the same method as in Example 1 (see Table 2 below).
[0052] 前記実施例 1および比較例 1のゲッタリング能力の評価結果を下記表 2に示す。 The evaluation results of the gettering ability of Example 1 and Comparative Example 1 are shown in Table 2 below.
[0053] [表 2] [0053] [Table 2]
Figure imgf000014_0001
Figure imgf000014_0001
[0054] 上記表 2に示すように、イオン注入時の加速エネルギーが実施例 1の l lOkeVであ る場合の方が、比較例 1の 160keVと比較すると、結合界面付近の Fe濃度が高くな つていることがわ力る。 [0054] As shown in Table 2 above, when the acceleration energy at the time of ion implantation is l lOkeV of Example 1, compared with 160 keV of Comparative Example 1, the Fe concentration near the bonding interface is higher. It is powerful to be connected.
すなわち、イオン注入時の加速エネルギーが 130keV以下である 1 lOkeVの場合 の方が、より優れたゲッタリング能力が付加されたことがわかる。  That is, it can be seen that a better gettering capability was added in the case of 1 lOkeV, in which the acceleration energy during ion implantation is 130 keV or less.
[0055] また、実施例 1では、ゲッタリング能力を付加する工程が、構造として必要な高濃度 埋め込み拡散層の形成工程を兼ねて ヽるので、別途特別な新たな工程を追加する ことにはならない。このため、生産性も低下させず、し力もコストを高くすることなぐ効 率的に SOI基板を製造できることが判る。  [0055] In addition, in Example 1, the step of adding gettering capability also serves as the step of forming a high-concentration buried diffusion layer necessary for the structure. Therefore, it is necessary to add a special new step separately. Don't be. For this reason, it can be seen that the SOI substrate can be manufactured efficiently without reducing productivity and increasing the cost.
[0056] さらに、実施例 1においては、 SOI層の厚さが 12 /z mあり、 Feのゲッタリングは結合 界面を含んだ 10〜12 mの深さ領域に集中していることが判った。従って、この SO I基板にデバイスを作製した場合、活性層となる例えば表面 1 μ mの深さ領域とゲッタ リング層とが重なることなぐデバイス領域の電気特性を劣化させることもな ヽことが判 つた o なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例 示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的 範囲に包含される。 [0056] Furthermore, in Example 1, it was found that the SOI layer had a thickness of 12 / zm, and Fe gettering was concentrated in a depth region of 10 to 12 m including the bonding interface. Therefore, it can be seen that when a device is fabricated on this SOI substrate, the electrical characteristics of the device region where the active layer, for example, the 1 μm depth region of the surface and the gettering layer do not overlap, may be degraded. I The present invention is not limited to the above embodiment. The above-described embodiment is an example, and has any configuration that is substantially the same as the technical idea described in the claims of the present invention and that exhibits the same operational effects. Are also included in the technical scope of the present invention.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも、活性不純物であるヒ素又はアンチモンを導入して高濃度層を形成した 単結晶シリコン基板と、高濃度層を形成しない単結晶シリコン基板とを、シリコン酸ィ匕 膜を介して貼り合わせ、結合熱処理を施した後、前記高濃度層を形成した単結晶シ リコン基板を薄膜ィ匕することにより、前記シリコン酸ィ匕膜の上に 1 X 1018atoms/cm3 以上のヒ素又はアンチモンを含む高濃度埋め込み拡散層を有する SOI層を形成し た SOI基板を製造する方法において、前記活性不純物の導入を、イオン注入法によ り、イオン注入時の加速エネルギーを 130keV以下として行い、かつ、前記形成する SOI層の厚さを 3 μ m以上とすることを特徴とする SOI基板の製造方法。 [1] At least a single crystal silicon substrate in which an active impurity arsenic or antimony is introduced to form a high concentration layer and a single crystal silicon substrate in which a high concentration layer is not formed are bonded via a silicon oxide film. In addition, after the bonding heat treatment, the single crystal silicon substrate on which the high-concentration layer is formed is thinned to form arsenic or 1 X 10 18 atoms / cm 3 or more on the silicon oxide film. In a method of manufacturing an SOI substrate on which an SOI layer having a high concentration buried diffusion layer containing antimony is formed, the active impurity is introduced by ion implantation with an acceleration energy during ion implantation of 130 keV or less, A method for manufacturing an SOI substrate, wherein the thickness of the SOI layer to be formed is 3 μm or more.
[2] 前記活性不純物のイオン注入時の加速エネルギーを、 30keV以上とすることを特 徴とする請求項 1に記載の SOI基板の製造方法。 [2] The method for manufacturing an SOI substrate according to [1], wherein an acceleration energy at the time of ion implantation of the active impurity is 30 keV or more.
[3] 前記活性不純物のイオン注入時の加速エネルギーを、 lOOkeVより高くすることを 特徴とする請求項 1又は請求項 2に記載の SOI基板の製造方法。 [3] The method for manufacturing an SOI substrate according to [1] or [2], wherein acceleration energy at the time of ion implantation of the active impurity is set higher than lOOkeV.
[4] 前記シリコン酸化膜を、前記高濃度層を形成しない単結晶シリコン基板の表面に形 成し、該シリコン酸ィ匕膜を介して前記高濃度層を形成した単結晶シリコン基板と貼り 合せることを特徴とする請求項 1乃至請求項 3のいずれか 1項に記載の SOI基板の 製造方法。 [4] The silicon oxide film is formed on the surface of a single crystal silicon substrate on which the high concentration layer is not formed, and is bonded to the single crystal silicon substrate on which the high concentration layer is formed via the silicon oxide film. The method for manufacturing an SOI substrate according to any one of claims 1 to 3, wherein:
[5] 前記結合熱処理を、熱処理温度を 1000°C以上 1300°C以下とし、熱処理時間を 0 . 5時間以上 8時間以下の範囲として行うことを特徴とする請求項 1乃至請求項 4のい ずれか 1項に記載の SOI基板の製造方法。 [5] The bonding heat treatment is performed at a heat treatment temperature of 1000 ° C to 1300 ° C and a heat treatment time of 0.5 hours to 8 hours. The method for manufacturing an SOI substrate according to claim 1.
PCT/JP2007/051894 2006-02-21 2007-02-05 Method for manufacturing soi substrate WO2007097179A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-044120 2006-02-21
JP2006044120A JP2007227459A (en) 2006-02-21 2006-02-21 Soi substrate manufacturing method

Publications (1)

Publication Number Publication Date
WO2007097179A1 true WO2007097179A1 (en) 2007-08-30

Family

ID=38437218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051894 WO2007097179A1 (en) 2006-02-21 2007-02-05 Method for manufacturing soi substrate

Country Status (2)

Country Link
JP (1) JP2007227459A (en)
WO (1) WO2007097179A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129170A (en) * 1991-10-30 1993-05-25 Fujitsu Ltd Manufacture of semiconductor device
JPH06151576A (en) * 1992-03-09 1994-05-31 Fuji Electric Co Ltd Soi semiconductor device
JP2006005341A (en) * 2004-05-19 2006-01-05 Sumco Corp Laminating soi substrate and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05129170A (en) * 1991-10-30 1993-05-25 Fujitsu Ltd Manufacture of semiconductor device
JPH06151576A (en) * 1992-03-09 1994-05-31 Fuji Electric Co Ltd Soi semiconductor device
JP2006005341A (en) * 2004-05-19 2006-01-05 Sumco Corp Laminating soi substrate and its manufacturing method

Also Published As

Publication number Publication date
JP2007227459A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP5706391B2 (en) Manufacturing method of SOI wafer
KR101340002B1 (en) SOI Wafer Manufacturing Method
JP2007059704A (en) Method for manufacturing laminated board and laminated board
JP6107709B2 (en) Manufacturing method of bonded SOI wafer
JP5183958B2 (en) Manufacturing method of SOI wafer
WO2002050912A1 (en) Production method for soi wafer and soi wafer
JP5292810B2 (en) Manufacturing method of SOI substrate
KR102408679B1 (en) Manufacturing method of bonded SOI wafer
JP4720163B2 (en) Manufacturing method of SOI wafer
JP2007242699A (en) Method of manufacturing semiconductor element and semiconductor substrate
GB2437995A (en) Semiconductor processing
JP2008159692A (en) Method for manufacturing semiconductor substrate
JPH11191617A (en) Manufacture of soi substrate
JP2009218381A (en) Method for manufacturing soi (silicon on insulator) substrate
CN107154378B (en) Silicon substrate with top layer on insulating layer and manufacturing method thereof
US7799660B2 (en) Method for manufacturing SOI substrate
JP2007019303A (en) Semiconductor substrate and manufacturing method thereof
WO2007097179A1 (en) Method for manufacturing soi substrate
JP3484961B2 (en) Method for manufacturing SOI substrate
JPH11330437A (en) Soi substrate and manufacture thereof
JPH11307471A (en) Manufacture for soi substrate
CN107154347B (en) Silicon substrate with top layer on insulating layer and manufacturing method thereof
JPH11307470A (en) Manufacture for soi substrate
JP5096780B2 (en) Manufacturing method of SOI wafer
WO2012169060A1 (en) Method for producing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 07713822

Country of ref document: EP

Kind code of ref document: A1