WO2007095771A1 - Chambre de centrifugation circulaire pour la separation du sang - Google Patents

Chambre de centrifugation circulaire pour la separation du sang Download PDF

Info

Publication number
WO2007095771A1
WO2007095771A1 PCT/CH2007/000086 CH2007000086W WO2007095771A1 WO 2007095771 A1 WO2007095771 A1 WO 2007095771A1 CH 2007000086 W CH2007000086 W CH 2007000086W WO 2007095771 A1 WO2007095771 A1 WO 2007095771A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
chamber
centrifugation
centrifugation chamber
circular
Prior art date
Application number
PCT/CH2007/000086
Other languages
English (en)
Inventor
Jean-Denis Rochat
Original Assignee
Jean-Denis Rochat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jean-Denis Rochat filed Critical Jean-Denis Rochat
Priority to EP07701886A priority Critical patent/EP1986784A1/fr
Priority to US12/280,093 priority patent/US20090065424A1/en
Publication of WO2007095771A1 publication Critical patent/WO2007095771A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B1/00Centrifuges with rotary bowls provided with solid jackets for separating predominantly liquid mixtures with or without solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B11/00Feeding, charging, or discharging bowls
    • B04B11/06Arrangement of distributors or collectors in centrifuges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • B04B2005/0464Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation with hollow or massive core in centrifuge bowl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B5/00Other centrifuges
    • B04B5/04Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers
    • B04B5/0442Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation
    • B04B2005/0478Radial chamber apparatus for separating predominantly liquid mixtures, e.g. butyrometers with means for adding or withdrawing liquid substances during the centrifugation, e.g. continuous centrifugation with filters in the separation chamber

Definitions

  • the present invention relates to a circular centifugation chamber for the separation of blood, this chamber being elongated along its axis of revolution and one of its ends having means of sealing and preserving the sterility of the blood.
  • interior of the chamber surrounding a fixed portion concentric with its axis of revolution and traversed by a feed channel for the centrifuging blood and at least one evacuation channel for the component separated from the blood whose density is the lower, these supply and discharge channels being intended to be connected to blood circulation means from one to the other through the centrifuge chamber by forming an axial flow against the circular side wall of this a chamber, the inlet opening of the said discharge channel being at a distance from the said axis of revolution corresponding to the concentration zone of the said separate constituent of which the density is the lowest to continuously remove it, at least one circular baffle being located between the outlet of the feed channel and the inlet opening of the discharge channel to form an axial flow of blood against the current of that formed against said side wall.
  • the current centrifuge chambers have a separation
  • Speed of rotation it is limited by the risk of haemolysis of red blood cells, heating of the blood, by the mechanical forces or the sound level that it generates, or to guarantee the safety of the user.
  • the small size centrifuge chambers have the advantage of being able to rotate at high rotational speeds, but offer a centrifugation radius R f small dimensions, as well as a reduced effective separation area S.
  • the large size centrifuges make it possible to work on a large centrifugation radius R f , as well as to have a large separating useful area.
  • they are limited in rotation speed and have the major disadvantage of being bulky, increasing storage volumes and requiring a large centrifuge machine.
  • US 6,629,919 and JP 59-069166 both relate to batch centrifugation enclosures comprising two separation compartments, one for separating red blood cells and plasma and a second for purifying the plasma.
  • These speakers do not allow to increase the separation surface on which takes place the process of separating all the constituents of the blood, but to proceed to a separation in stages, each step serving to separate a specific constituent, the component (red blood cells) separated in the first step not passing into the second compartment .
  • Such speakers do not allow, as will be explained later to increase the effective area for the separation of a continuous flow of blood and optimize both the volume of the chamber and its separating power.
  • the object of the present invention is to overcome, at least in part, the disadvantages of these solutions.
  • this invention relates to a circular centrifugation chamber for the separation of blood of the type mentioned above in which the circular deflector has an alternation of concave parts and contiguous convex portions which have or define between them lines crest or thalweg of which at least a portion of these lines are inclined towards the axis of revolution of the chamber.
  • the concept of the proposed centrifuge chamber is to combine the advantages of small centrifuge chambers, which can therefore rotate at a high speed, while having a large separation area S, thanks to the presence of several separation stages. and the passage from one stage to another without re-mixing constituents already at least partially separated. This makes it possible to optimize the separating power of the centrifugation chamber, and finally to have a maximum blood flow to be separated (and thus to reduce the separation time of a given whole blood volume).
  • Figure 1 is for explanatory purposes a perspective view of a centrifuge chamber on which are indicated the various parameters used in the general explanation of the concept of the invention
  • Figure 2 is a diametrical sectional view of the embodiment of the invention showing only half of the centrifuge chamber
  • Figure 3 is a perspective view of a detail of the centrifuge chamber of Figure 2
  • Figure 4 is a sectional view along the line IV-IV of Figure 2
  • Figures 4a and 4b are views similar to that of Figure 4 and respectively illustrate a first and a second embodiment of the cylindrical baffle of the centrifuge chamber
  • Figure 5 is a view similar to Figure 2 of a variant of the centrifuge chamber.
  • V p Volume of the particle [m 3 ]
  • the centrifugal force applied to the particle is given by the following formula:
  • the separating power of a centrifugation chamber defines the fluid flow to be separated that it can absorb while achieving the desired sedimentation.
  • S represents the useful area of the centrifuge chamber.
  • the concept of the proposed centrifuge chamber is to combine the advantages of small centrifuge chambers, which can therefore rotate at a high speed, while having a large separation area S.
  • the circular centrifuge chamber 1 illustrated in FIGS. 2 to 4 has the general shape of an elongate cylinder comprising two parts 1, 1 ", upper, respectively lower vein, made of thermoplastic material, welded to one another and is crossed at its upper end by a fixed portion centered on the axis of revolution of the centrifuge chamber 1, crossed by a feed conduit 2 blood WB complete and, in this example, by - two discharge pipes 10, 11 for PL plasma, respectively for RBC RBCs.
  • a sealing and sterility preservation system such as a rotary joint (not shown), for example, well known in this type of centrifugation chamber is disposed between the fixed part through which the ducts 2, 10, 11 and the duct pass through. rotating part constituted by the cylindrical chamber 1.
  • the ducts 2, 10, 11 are intended to be connected, in known manner, to a patient and / or to the collection and storage pockets of the components, possibly via circulation pumps (elements not shown).
  • the interior space of the centrifugation chamber 1 is divided by a circular baffle 3 which can be fixed to this centrifugation chamber 1 by fins 3 'sandwiched between the edges of the two parts 1', 1 'welded to each other. the other of this centrifuge chamber 1.
  • This circular deflector 3 is preferably concentric with the axis of revolution of the centrifuge chamber 1. According to the preferred embodiment illustrated in detail in FIG.
  • this deflector comprises a surface 4 "circular, preferably slightly conical, which ends at its lower part located at the downstream end of the deflector 3, by a second conical portion 4" whose taper angle is more marked than that of the circular surface 4 '
  • the surface of this second conical portion 4 is interrupted by an alternation of concave portions 5 which are progressively widening in the downstream axial direction, giving it the appearance of a toothed wheel e truncated toothing, as shown FIG. 4.
  • the integration of the concave portions 5 on the surface of the second conical portion 4 "defines convex portions 4 alternating with the concave portions 5.
  • the concave and convex portions are thus related to the downstream perimeter of the circular surface 4 '
  • the downstream median portions of these concave portions 5 progressively reentrant downstream are tangent to a common line which is preferably circular and concentric with the axis of revolution of the centrifugation chamber 1 and whose diameter is slightly greater than that of the junction between the circular surface 4 'and the second conical portion 4 "of the circular deflector 3, so as to ensure a flow of blood down the centrifuge chamber, on all the inner faces of the concave portions 5 when the rotation of the centrifugation chamber 1 around its axis of revolution.
  • the upstream upper end of the baffle 3 ends with an inner annular flange 3a, to separate the whole blood WB entering, separate components.
  • the two evacuation conduits 10, 11 each have an intake portion radially oriented with respect to the axis of revolution of the centrifugation chamber 1, to plunge into the thickness of the PL plasma layers and globules. red RBCs to allow their extraction.
  • a deflector, preferably in the form of a flat ring 14, concentric with the axis of revolution of the centrifugation chamber 1 is disposed between the inlet ends of the discharge ducts 10 and 11, to prevent the mixing of these two components.
  • the outer diameter of the annular deflector 14 is greater than the diameter of the interface between the RBC RBC layer which is furthest from the axis of revolution of the centrifuge chamber 1 and which is adjacent to the side wall 7 of this centrifugation chamber and the PL plasma layer located between the red blood cell layer and the outer face of the circular baffle 3.
  • the internal diameter of this partition 14 is smaller than the internal diameter of the two layers of the separate components.
  • the whole blood WB undergoes a first separation into PL plasma and red blood cell concentrate.
  • RBC red blood cell concentrate.
  • the latter are flattened on the largest radius of centrifugation because of their greater density and form a layer adjacent to the inner face of the circular baffle 3.
  • the advantageously hollowed out shape of the concave parts 5 progressively reentrant located between two convex portions 4 has for This is because the red blood cells, being denser than the plasma, are pushed outwards and the shape of the internal faces of the concave parts 5 direct them towards the inner faces of the convex portions 4, since the latter are situated on the outer surface. large diameter of the internal centrifugation space delimited by the inner face of the deflector 3.
  • the RBC red blood cells form confined layers inside the truncated tooth forms formed by the convex portions 4 alternating with the reentrant surfaces of the concave portions 5, whereas the plasma remains on a smaller centrifugation radius, adjacent to the inner surface of the RBC RBC layers formed against the inner faces of the convex portions 4.
  • the lower extremities or downstream 6 convex portions 4 are adjacent to the junction of the side wall 7 of the centrifuge chamber 1 and the bottom 13 of this chamber and are located at a distance from this bottom 13. Preferably this distance is such that the The downstream ends 6 are immersed in the RBC RBC layer, namely in the layer formed of the constituent separated from the blood whose density is the highest.
  • FIG. 2 shows that the lower downstream end 6 of the convex portions 4 in which the red blood cells are concentrated are located outside the lower downstream ends 8 of the concave portions 5. Thanks to this arrangement, when the two components are already partially separated, the one which essentially comprises RBC RBCs out of the downstream edge 6 of the deflector 3, to a diameter which is outside the one 8 from which the PL plasma comes out, canceling the risk of re-mixing of the two components since the red blood cells, which constitute the particles of greater density, leave the bottom of the deflector 3 near the side wall 7 of the centrifugation chamber 1, against which they will go up towards the evacuation duct 11 while continuing to to concentrate.
  • Pl plasma PL it emerges along the lower edges 8 of the concave portions 5, so that it is deposited inside the RBC red blood cell layer by continuing to drop the heavier red blood cells it still contains and which are repelled by the centrifugal force in the RBC RBC layer as the plasma flows towards the inlet opening of the exhaust duct 10.
  • centrifugation chamber 1 by suction through their respective evacuation conduits 10 and 11.
  • FIG. 4a it illustrates, in a view similar to that of Figure 4, a first variant of the cylindrical deflector 3.
  • the convex portions 4 and the concave portions 5 form a succession of slots at the periphery of the cylindrical baffle 3, particularly at the periphery of the second conical portion 4 "of this baffle according to a preferred embodiment
  • Fig. 4b illustrates convex portions 4 as well as concave portions 5 forming a plurality of joined surfaces.
  • the cylindrical deflector 3 obtained according to this second variant therefore has a polyhedron trunk or a kind of pyramid having as a base a star-shaped surface, as can be seen in this figure.
  • the shape of the base of this trunk of polyhedron is neither necessarily regular nor rigorously concentric with the axis of revolution of the cham Therefore, it will be understood that the cylindrical adjective which qualifies the deflector 3 does not mean that the latter is limited to having a perfectly circular shape. At least a portion of the edges common to these surfaces are preferably concurrent in their extension at a point on the axis of revolution of the chamber. This point of competition corresponding to the virtual summit of this trunk of polyhedron which is preferentially right.
  • the shapes that can take the convex portions 4 and concave 5 are very varied.
  • the circular deflector 3 has an alternation of concave portions 5 and contiguous convex portions 4 which possess or define one another ridge or thalweg lines at least a portion of which are inclined towards the axis of revolution of the chamber, preferably concurrent in their extension at a point on the axis of revolution of the chamber.
  • the ridges correspond, for example, to the salient edges which have been referred to in FIG. 4b, whereas the thalweg lines correspond inversely to the re-entrant edges common to two adjacent surfaces in this figure.
  • Each of the convex or concave portions 5 may be formed for example by a curved surface, an angled surface or a plurality of plane and / or left surfaces.
  • the baffle is formed of two distinct portions, namely an upper portion consisting of the circular surface 4 'slightly conical and a lower portion constituted by the second conical portion 4 ". It will be mentioned that this deflector could also see its circular surface 4 'as being a cylindrical surface, therefore with a constant radius over its entire height, In another variant, it would also be possible to produce a cylindrical deflector 3 provided with a circular surface 4 'having an angle of conicity identical to that of the second conical portion 4 ".
  • the circular surface 4 ' would be that of a cone, more precisely that of a frustoconical portion of a cone, the apex of which would preferably be merged with the point of concurrence of the crest or trough lines of the cones.
  • the centrifugal working surface of the centrifugation chamber 1 is equal to:
  • H useful height of the centrifuge chamber.
  • Rl average useful radius of the first centrifugation stage defined by the deflector 3
  • the radius R1 it would theoretically be necessary for the radius R1 to tend towards R2 so that the surface S obtained can be doubled. If in practice this value can not be attained, on the other hand, it can be approached by placing the deflector 3 at an average distance from the side wall 7 of the chamber, which is preferably between 0.5 and 5 mm. In this way, the thickness of the red blood cell layer of the second centrifugation stage would also be very fine. Advantageously, such a small thickness will minimize the volume of red blood cells that will remain trapped in the chamber and will be lost at the end of the cycle after use of the latter.
  • the centrifugation chamber has a diameter of the order of 80 mm, an axial dimension (height) of the order of 100 mm, the flow rate being around 100 ml / min.
  • These parameters may vary according to the applications between 10 and 200 mm, preferably between 50 and 85 mm, for the diameter of the chamber and between 20 and 400 mm, preferably between 60 and 150 mm, for its height.
  • As for its flow it can vary between 10 and 1000 ml / min.
  • the present invention makes it possible to improve the performance of the centrifugation chamber having a given volume. This improvement results in an improvement in the separating power of the centrifugation chamber, making it possible to increase the flow rate of treated blood in a centrifuge chamber of the same volume, and at unchanged rotational speed.
  • the centrifugation chamber 1 comprises a tubular filter or conical trunk which is preferably a leucocyte filter arranged concentrically with the axis of revolution of the centrifuge chamber 1.
  • the diameter of this filter 15 is such that this filter is located under the inner annular flange 3a of the deflector 3 and forms a central compartment 12 in the centrifugation chamber 1.
  • the whole blood WB leaves the fixed supply duct 2 in the central compartment 12 near the bottom of the centrifugation chamber 1. Due to the pressure drop due to the filter 15, the whole blood WB that leaves the supply duct 2 is distributed in a layer on the inner face of the filter 15. Due to the hydraulic pressure of the blood generated by the centrifugal force exerted on him, the blood filtration is much faster than by simple gravity. This rapid filtration avoids a complete filling of the compartment 12 which would lead to an interruption of the incoming flow of whole blood WB. Once the filtered blood, it is projected by the centrifugal forces on the wall of the baffle 3 and flows towards the bottom 13 of the centrifuge chamber 1. The continuation of the separation process is then identical to that which has been described.
  • the same process can be used for the separation of whole blood in more than 2 components (acellular plasma, platelet concentrate, packed red blood cells, white blood cells, .
  • the process of introducing whole blood and subtracting the separated components can be considered both continuously (all the separate components being subdivided simultaneously with the introduction of blood to be separated) and discontinuous (only a part separate components are sub-drawn simultaneously with the introduction of blood, the other component or components being underdrawn after stopping the centrifuge).
  • the process described above is applicable both for purposes of apheresis, separation of blood components from collection bags, or blood washing in the case of autotransfusion, for example.

Landscapes

  • Centrifugal Separators (AREA)
  • External Artificial Organs (AREA)

Abstract

Une des extrémités de cette chambre présente des moyens d'étanchéité et est traversée par un canal d'alimentation (2) pour le sang à centrifuger et au moins un canal d'évacuation (10, 11). Au moins un déflecteur circulaire (3), concentrique à l'axe de révolution est situé entre la sortie du canal d'alimentation (2) et l'ouverture d'admission du canal d'évacuation (10, 11) pour former un écoulement axial du sang à contre-courant de celui formé contre la paroi latérale. Ce déflecteur (3) présente une alternance de parties concaves (5) et de parties convexes (4) jointives qui possèdent ou définissent entre-elles des lignes de crête ou de thalweg dont au moins une portion de ces lignes sont inclinées en direction de l'axe de révolution de la chambre.

Description

CHAMBRE DE CENTRIFUGATION CIRCULAIRE POUR LA SEPARATION DU
SANG
La présente invention se rapporte à une chambre de cen- trifugation circulaire pour la séparation du sang, cette chambre étant allongée le long de son axe de révolution et une de ses extrémités présentant des moyens d' étanchéité et de conservation de la stérilité à l'intérieur de la chambre, entourant une partie fixe concentrique à son axe de révolu- tion et traversée par un canal d'alimentation pour le sang à centrifuger et au moins un canal d'évacuation pour le constituant séparé du sang dont la masse volumique est la plus faible, ces canaux d'alimentation et d'évacuation étant destinés à être reliés à des moyens de circulation du sang de l'un à l'autre à travers la chambre de centrifugation en formant un écoulement axial contre la paroi latérale circulaire de cette chambre, l'ouverture d'admission dudit canal d'évacuation se trouvant à une distance dudit axe de révolution correspondant à la zone de concentration dudit constituant séparé dont la masse volumique est la plus faible pour le retirer en continu, au moins un déflecteur circulaire étant situé entre la sortie du canal d'alimentation et l'ouverture d'admission du canal d' évacuation pour former un écoulement axial du sang à contre-courant de celui formé contre ladite paroi latérale. Les chambres de centrifugation actuelles ont un pouvoir de séparation limité par deux principaux paramètres :
La vitesse de rotation : elle est limitée par les risques d'hémolyse des globules rouges, d' échauffement du sang, par les efforts mécaniques ou le niveau sonore qu'elle engen- dre, ou encore pour garantir la sécurité de l'utilisateur.
L' encombrement : les chambres de centrifugation de faibles dimensions ont l'avantage de pouvoir tourner à haute vitesse de rotation, mais offrent un rayon de centrifugation Rf de faibles dimensions, ainsi qu'une surface utile de séparation S réduite. Les centrifugeuses de fortes dimensions permettent de travailler sur un grand rayon de centrifugation Rf, ainsi que d'avoir une surface utile de séparation S im- portante. Elles sont par contre limitées en vitesse de rotation et présentent l'inconvénient majeur d'être volumineuses, augmentant les volumes de stockage et nécessitant une machine de centrifugation de grande dimension.
On a déjà proposé une chambre de centrifugation du type susmentionné, mais à fonctionnement exclusivement discontinu dans le US 3 145 713, puisque après la séparation d'un certain volume, déterminé par le volume de l'enceinte, les globules rouges sont retirées en les aspirant par l'entrée de sang complet. Dans cette enceinte, le liquide passe d'un com- partiment de séparation externe à un compartiment de séparation interne, ce qui va à l' encontre de la force centrifuge. En outre, rien n'est prévu pour que les constituants déjà séparés ne se re-mélangent pas lors du passage d'un compartiment de séparation à l'autre de cette enceinte de cen- trifugation. Par conséquent, l'allongement du chemin parcouru par le liquide à séparer ne contribue pratiquement pas à améliorer le pouvoir séparateur de la chambre de centrifugation. Le procédé décrit dans le US 6,352,499 est également discontinu, comme dans la solution précédente et l'enceinte décrite ne présente pas de moyens pour éviter le re-mélange des constituants entre le premier compartiment et le second compartiment.
Enfin, le US 6,629,919 et le JP 59-069166 se rapportent tous deux à des enceintes de centrifugation en discontinu comprenant deux compartiments de séparation, un premier pour la séparation des globules rouges et du plasma et un second pour purifier le plasma. Ces enceintes ne permettent pas d' augmenter la surface de séparation sur laquelle se déroule le processus de séparation de l'ensemble des constituants du sang, mais de procéder à une séparation par étapes, chaque étape servant à séparer un constituant spécifique, le constituant (les globules rouges) séparées dans la première étape ne passant pas dans le second compartiment. De telles enceintes ne permettent pas, comme on l'expliquera par la suite d'augmenter la surface utile à la séparation d'un écoulement continu de sang et d'optimiser à la fois le volume de l'enceinte et son pouvoir séparateur. Le but de la présente invention est de remédier, au moins en partie, aux inconvénients de ces solutions.
A cet effet, cette invention a pour objet une chambre de centrifugation circulaire pour la séparation du sang du type mentionné ci-dessus dans laquelle le déflecteur circulaire présente une alternance de parties concaves et de parties convexes jointives qui possèdent ou définissent entre-elles des lignes de crête ou de thalweg dont au moins une portion de ces lignes sont inclinées en direction de l'axe de révolution de la chambre. Le concept de la chambre de centrifugation proposé consiste à réunir les avantages des chambres de centrifugation de petite dimension, pouvant par conséquent tourner à haute vitesse, tout en ayant une surface utile de séparation S importante grâce à la présence de plusieurs étages de sépara- tion et au passage d'un étage à l'autre sans re-mélange des constituants déjà au moins partiellement séparés. Ceci permet d'optimiser le pouvoir de séparation de la chambre de centrifugation, et finalement d'avoir un débit de sang à séparer maximal (et donc de réduire le temps de séparation d'un volu- me de sang complet donné) .
Les dessins annexés illustrent, schématiquement et à titre d'exemple, une forme d'exécution et diverses variantes de la chambre de centrifugation circulaire pour la séparation du sang, objet de la présente invention.
La figure 1 est à titre explicatif une vue en perspective d'une chambre de centrifugation sur laquelle sont indiqués les différents paramètres utilisés dans l'explication générale du concept de l'invention; la figure 2 est une vue en coupe diamétrale de la forme d'exécution de l'invention, ne montrant que la moitié de la chambre de centrifugation; la figure 3 est une vue en perspective d'un détail de la chambre de centrifugation de la figure 2; la figure 4 est une vue en coupe selon la ligne IV-IV de la figure 2; les figures 4a et 4b sont des vues semblables à celle de la figure 4 et illustrent respectivement une première et une seconde variante de réalisation du déflecteur cylindrique de la chambre de centrifugation; la figure 5 est une vue semblable à la figure 2 d'une variante de la chambre de centrifugation. Lors de la séparation des constituants sanguins par centrifugation, la vitesse de sédimentation d'une particule (globule rouge, globule blanc, plaquette) dans le plasma est donnée par l'équilibre des forces de centrifugation et des forces de viscosité qui agissent sur la particule. Soit en se référant notamment aux paramètres indiqués à la figure 1:
• Fc = Force centrifuge [N]
• Fv = Force de viscosité [N]
• ω = Vitesse de rotation de la centrifugeuse [rad/s] • Rf = Rayon de centrifugation de la particule (distance du centre de gravité de la particule à l'axe de rotation) [m] • Rp = rayon de la particule [m]
• Vp = Volume de la particule [m3]
• pp = Masse volumique de la particule [kg/m3]
• Ppia = Masse volumique du plasma [kg/m3]
• ηpia = Viscosité du plasma [kg/ (m. s)]
• C = Vitesse de sédimentation de la particule
La force centrifuge appliquée sur la particule est donnée par la formule suivante :
Fc={pp-ppla)-V-ω1-R [N]
La force de viscosité qui s'oppose à la force centrifuge est donnée par la formule :
Fv=β-π-R -ηpla-C [N]
Quand le système est en équilibre, Fc = Fv.. On peut donc en tirer que :
[m/s]
Figure imgf000007_0001
Dans le cas d'une particule donnée plongée dans un fluide donné, l'équation © devient :
© C = este -CO -R [m/s]
Le pouvoir séparateur d'une chambre de centrifugation définit le débit de fluide à séparer qu'elle peut absorber tout en réalisant la sédimentation désirée.
Soit une chambre de séparation traversée par un flux de liquide annulaire vertical de vitesse Cf, de diamètre intérieur Rf, de hauteur Hf et dont l'épaisseur de la couche de fluide est ef.
Pour qu.'une particule se trouvant à l'entrée de la chambre sur le rayon le plus défavorable Rf ait le temps de sédi- menter complètement, il faut que :
[s]
Figure imgf000007_0002
Soit Q [m3/s] le débit traversant la chambre de centri- fugation. Lorsque Rf>> βf, on a :
Figure imgf000008_0001
Finalement , en insérant < 3) dans © , on obtient
(Z) Q ≤ Cste -ω1 ' */ - Hf - 2 •π -Rf = Cste • 2 • π • Rf -Hf - ω2 • Rf [m3/s]
Or, on peut constater que
2-π-Rf-Hf =S [m2]
S représentant la surface utile de la chambre de centri- fugation.
La formule peut donc être écrite de la manière suivante :
(Z) Q≤Cste-S-ω* -R [m3/s]
A la vue de cette formule, il devient clair que les paramètres permettant de faire varier le pouvoir de séparation d'une chambre de centrifugation sont :
1. La vitesse de rotation de la chambre de centrifugation ω.
2. La distance par rapport à l'axe de rotation du liquide à centrifuger Rf. 3. La surface de la chambre de centrifugation S sur laquelle les forces de séparation sont efficacement utilisées .
Comme on l'a dit précédemment, le concept de la chambre de centrifugation proposé consiste à réunir les avantages des chambres de centrifugation de petite dimension, pouvant par conséquent tourner à haute vitesse, tout en ayant une surface utile de séparation S importante.
La chambre de centrifugation circulaire 1 illustrée par les figures 2 à 4 présente la forme générale d'un cylindre allongé comprenant deux parties l' , 1", supérieure, respecti- veinent inférieure, en matière thermoplastique, soudées l'une à l'autre et est traversée à son extrémité supérieure par une partie fixe centrée sur l'axe de révolution de la chambre de centrifugation 1, traversée par un conduit d'alimentation 2 en sang complet WB et, dans cet exemple, par - deux conduits d'évacuation 10, 11 pour le plasma PL, respectivement pour les globules rouges RBC. Un système d'étanchéité et de conservation de la stérilité, comme un joint tournant (non représenté) , par exemple, bien connu dans ce type de chambre de centrifugation est disposé entre la partie fixe traversée par les conduits 2, 10, 11 et la partie tournante constituée par la chambre cylindrique 1. Les conduits 2, 10, 11 sont destinés à être reliés, de manière connue, à un patient et/ou à des poches collection et de stockage des composants, éven- tuellement par l'intermédiaire de pompes de circulation (éléments non représentés) .
L'espace intérieur de la chambre de centrifugation 1 est divisé par un déflecteur circulaire 3 pouvant être fixé à cette chambre de centrifugation 1 par des ailettes 3' prises en sandwich entre les bords des deux parties l' , 1" soudées l'une à l'autre de cette chambre de centrifugation 1. Ce déflecteur circulaire 3 est de préférence concentrique à l'axe de révolution de la chambre de centrifugation 1. Suivant le mode de réalisation préféré illustré en détail à la figure 3, ce déflecteur comporte une surface circulaire 4", de préférence légèrement conique, qui se termine à sa partie inférieure située à l'extrémité aval du déflecteur 3, par une seconde partie conique 4" dont l'angle de conicité est plus marqué que celui de la surface circulaire 4 ' . La surface de cette seconde partie conique 4" est interrompue par une alternance de parties concaves 5 qui se creusent progressivement en direction axiale aval, lui donnant en plan l'aspect d'une roue dentée à denture tronquée, comme illustré par la figure 4. L'intégration des parties concaves 5 à la surface de la seconde partie conique 4" définit des parties convexes 4 en alternance avec les parties concaves 5. Les parties concaves et convexes sont ainsi rapportées au périmètre aval de la surface circulaire 4 ' . Les portions médianes aval de ces parties concaves 5 progressivement rentrantes vers l'aval sont tangentes à une ligne commune de préférence circulaire et concentrique à l'axe de révolution de la chambre de centrifugation 1 et dont le diamètre est légèrement supérieur à celui de la jonction entre la surface circulaire 4' et la seconde partie conique 4" du déflecteur circulaire 3, de manière à assurer un écoulement du sang vers le bas de la chambre de centrifugation, sur l'ensemble des faces internes des parties concaves 5 lors de la rotation de la chambre de centrifugation 1 autour de son axe de révolution. L'extrémité supérieure amont du déflecteur 3 se termine par un rebord annulaire interne 3a, pour séparer le sang complet WB entrant, des composants séparés.
Les deux conduits d'évacuation 10, 11 présentent chacun une partie d'admission d'orientation radiale par rapport à l'axe de révolution de la chambre de centrifugation 1, pour venir plonger dans l'épaisseur des couches de plasma PL et de globules rouges RBC séparées afin de permettre leur extraction. Un déflecteur, de préférence en forme d'anneau plat 14, concentrique à l'axe de révolution de la chambre de centrifugation 1 est disposée entre les extrémités d'admission des conduits d'évacuation 10 et 11, pour empêcher le mélange de ces deux constituants. A cet effet, le diamètre externe du déflecteur annulaire 14 est supérieur au diamètre de l'inter- face entre la couche de globules rouges RBC qui est la plus éloignée de l'axe de révolution de la chambre de centrifugation 1 et qui est adjacente à la paroi latérale 7 de cette chambre de centrifugation et la couche de plasma PL située entre la couche de globules rouges et la face externe du déflecteur circulaire 3. Le diamètre interne de cette cloison 14 est inférieur au diamètre interne des deux couches des constituants séparés. Le processus de séparation à l'aide de la chambre de centrifugation décrite ci-dessus est le suivant : le sang complet WB à centrifuger est introduit dans la chambre de centrifugation 1 par le canal fixe 2. Sous l'effet de la force centrifuge, le sang complet WB est plaqué contre l'extré- mité supérieure amont du déflecteur circulaire 3. En s' écoulant vers le bas de la chambre de centrifugation 1, le sang complet WB subit une première séparation en plasma PL et en concentré de globules rouges RBC. Ces dernières se plaquent sur le plus grand rayon de centrifugation du fait de leur plus grande densité et forment une couche adjacente à la face interne du déflecteur circulaire 3. La forme avantageusement creusée des parties concaves 5 progressivement rentrantes situées entre deux parties convexes 4 a pour effet que les globules rouges, étant plus denses que le plasma, sont repoussés vers l'extérieur et que la forme des faces internes des parties concaves 5 les dirigent vers les faces internes des parties convexes 4 étant donné que ces dernières sont situées sur le plus grand diamètre de l'espace de centrifugation interne délimité par la face interne du déflecteur 3.
Comme on peut le constater sur les figures 2 et 4, les globules rouges RBC forment des couches confinées à l'intérieur des sortes de dents tronquées formées par les parties convexes 4 alternant avec les surfaces rentrantes des parties concaves 5, alors que le plasma reste sur un rayon de centrifugation plus petit, adjacent à la surface interne des couches de globules rouges RBC formées contre les faces internes des parties convexes 4. Les extrémités inférieures ou aval 6 des parties convexes 4 sont adjacentes à la jonction de la paroi latérale 7 de la chambre de centrifugation 1 et du fond 13 de cette chambre et se situent à une certaine distance de ce fond 13. De préférence cette distance est telle que les extrémités aval 6 sont immergées dans la couche de globules rouges RBC, à savoir dans la couche formée du constituant séparé du sang dont la masse volumique est la plus forte.
La figure 2 montre que l'extrémité inférieure aval 6 des parties convexes 4 dans lesquelles sont concentrées les globules rouges sont situées à l'extérieur des extrémités aval inférieures 8 des parties concaves 5. Grâce à cette disposition, lorsque les deux composants sont déjà partiellement séparés, celui qui comporte essentiellement des globules rouges RBC sort du bord aval 6 du déflecteur 3, à un diamètre qui se trouve à l'extérieur de celui 8 d'où sort le plasma PL, annulant les risque de re-mélange des deux composants, puisque les globules rouges, qui constituent les particules de plus grande densité, sortent du bas du déflecteur 3 à proximité de la paroi latérale 7 de la chambre de centrifugation 1, contre laquelle elles vont remonter vers le conduit d'évacuation 11 en continuant de se concentrer. Le plasma PL lui, sort le long des bords inférieurs 8 des parties concaves 5, en sorte qu'il se dépose à l'intérieur de la couche de globules rouges RBC en continuant de larguer les globules rouges plus lourdes qu'il contient encore et qui sont repoussées par la force centrifuge dans la couche de globules rouges RBC au fur et à mesure de l'écoulement du plasma en direction de l'ouverture d'admission du conduit d'évacuation 10.
La paroi latérale 7 de la chambre de centrifugation fait donc office de deuxième étage de centrifugation. Le plasma PL et les globules rouges RBC sont finalement extraits séparé- ment de la chambre de centrifugation 1 par aspiration à travers leurs conduits d'évacuation respectifs 10 et 11.
En référence à la figure 4a celle-ci illustre, dans une vue semblable à celle de la figure 4, une première variante du déflecteur cylindrique 3. Les parties convexes 4 et les parties concaves 5 forment une succession de créneaux à la périphérie du déflecteur cylindrique 3, en particulier à la périphérie de la seconde partie conique 4" de ce déflecteur suivant un mode de réalisation préféré. Dans une autre réalisation possible, la figure 4b illustre des parties convexes 4 ainsi que des parties concaves 5 formant une pluralité de surfaces jointes par des arêtes qui sont alternativement rentrantes et saillantes. Le déflecteur cylindrique 3 obtenu suivant cette seconde variante possède donc un tronc de polyèdre ou d'une sorte de pyramide ayant pour base une surface en forme d'étoile. Comme on le voit sur cette figure, la forme de la base de ce tronc de polyèdre n'est ni nécessairement régulière, ni rigoureusement concentrique à l'axe de révolution de la chambre. De ce fait, on comprendra que l'adjectif cylindrique qui qualifie le déflecteur 3 ne signifie pas que ce dernier se limite à présenter une forme parfaitement circulaire. Au moins une partie des arêtes communes à ces surfaces sont de préférence concourantes dans leur prolongement en un point situé sur l'axe de révolution de la chambre. Ce point de concours correspondant au sommet virtuel de ce tronc de polyèdre qui est préférentiellement droit.
A l'instar des illustrations données par les figures 4, 4a et 4b, on remarque que les formes que peuvent prendre les parties convexes 4 et concaves 5 sont très variées. De façon générale, on mentionnera donc que le déflecteur circulaire 3 présente une alternance de parties concaves 5 et de parties convexes 4 jointives qui possèdent ou définissent entre-elles des lignes de crête ou de thalweg dont au moins une portion de ces lignes sont inclinées en direction de l'axe de révolution de la chambre, de préférence concourantes dans leur prolongement en un point situé sur l'axe de révolution de la chambre .
Les lignes de crêtes correspondent par exemple aux arêtes saillantes dont il a été fait référence à la figure 4b, alors que les lignes de thalweg correspondent à l'inverse aux arêtes rentrantes communes à deux surfaces adjacentes dans cette figure. Chacune des parties convexes 4 ou concaves 5 pouvant être formée par exemple par une surface courbe, par une surface anguleuse ou par une pluralité de surfaces planes et/ou gauches.
Selon le mode de réalisation préféré illustré notamment à la figure 3, le déflecteur est formé de deux portions distinctes, à savoir une portion supérieure constituée de la surface circulaire 4 ' légèrement conique et une portion inférieure constituée de la seconde partie conique 4". Cependant, on mentionnera que ce déflecteur pourrait également voir sa surface circulaire 4' comme étant une surface cylindrique, donc à rayon constant sur toute sa hauteur. Dans une autre variante, il serait également possible de réaliser un déflecteur cylindrique 3 pourvu d'une surface circulaire 4 ' présentant un angle de conicité identique à celui de la seconde partie conique 4". Dans ce cas, la surface circulaire 4' serait celle d'un cône, plus précisément celle d'une partie tronconique d'un cône dont le sommet serait, de préférence, confondu avec le point de concours des lignes de crête ou de thalweg des parties convexes 4 et concaves 5.
La surface utile de centrifugation de la chambre de cen- trifugation 1 est égale à :
S =2-π-RrH+2-π-R2-H =2-π-(Rι+R2)-H Avec :
H = hauteur utile de la chambre de centrifugation. Rl = rayon utile moyen du premier étage de centrifugation délimité par le déflecteur 3 R2 = rayon utile moyen du second étage de centrifugation On peut constater que cette surface utile de centrifugation est très sensiblement supérieure à celle d'une chambre de centrifugation classique d'encombrement identique, pour laquelle la surface utile de centrifugation est égale à : S = 2-π-R-H
Pour obtenir une efficacité maximale, il faudrait théoriquement que le rayon Rl tende vers R2 de sorte que la surface S obtenue puisse être doublée. Si en pratique cette valeur ne peut être atteinte, en revanche on peut s'en approcher en disposant le déflecteur 3 à une distance moyenne de la paroi latérale 7 de la chambre qui soit de préférence comprise entre 0.5 et 5 mm. De cette manière, l'épaisseur de la couche de globules rouges du deuxième étage de centrifugation serait également très fine. Avantageusement, une telle faible épaisseur permettra de minimiser le volume de globules rouges qui restera piégé dans la chambre et qui sera perdu en fin de cycle après l'utilisation de cette dernière.
Idéalement, la chambre de centrifugation a un diamètre de l'ordre de 80 mm, une dimension axiale (hauteur) de l'ordre de 100 mm, le débit se situant autour de 100 ml/min. Ces paramètres peuvent varier en fonction des applications entre 10 et 200 mm, de préférence entre 50 et 85 mm, pour le diamètre de la chambre et entre 20 et 400 mm, de préférence entre 60 et 150 mm, pour sa hauteur. Quant à son débit, il peut varier entre 10 et 1000 ml/min. Dans tous les cas, la présente invention permet d'améliorer les performances de la chambre de centrifugation présentant un volume donné. Cette amélioration se traduit par une amélioration du pouvoir séparateur de la chambre de centrifugation, permettant d' augmenter le débit de sang traité dans une chambre de centrifugation de même volume, et à vitesse de rotation inchangée.
Selon la variante illustrée par la figure 5, la chambre de centrifugation 1 comporte un filtre 15 tubulaire ou tronc conique qui est de préférence un filtre à leucocytes disposé concentriquement à l'axe de révolution de la chambre de centrifugation 1. Le diamètre de ce filtre 15 est tel que ce filtre est situé sous le rebord annulaire interne 3a du déflecteur 3 et forme un compartiment central 12 dans la chambre de centrifugation 1.
Le sang complet WB sort du conduit d'alimentation fixe 2 dans le compartiment central 12 à proximité du fond de la chambre de centrifugation 1. Grâce à la perte de charge due au filtre 15, le sang complet WB qui sort du conduit d'alimentation 2 se répartit en une couche sur la face interne du filtre 15. En raison de la pression hydraulique du sang engendrée par la force centrifuge qui s'exerce sur lui, la filtration du sang est beaucoup plus rapide que par simple gravité. Cette rapidité de filtration permet d'éviter un remplissage complet du compartiment 12 qui conduirait à une interruption du flux entrant de sang complet WB. Une fois le sang filtré, il est projeté par les forces centrifuges sur la paroi du déflecteur 3 et s'écoule en direction du fond 13 de la chambre de centrifugation 1. La suite du processus de séparation est alors identique à celle qui a été décrite en relation avec la forme d'exécution des figures 2 à 4. II est évident que ce concept de chambre de centrifugation à 2 étages tel que décrit ci-dessus peut être élargit à n'importe quel nombre d'étages de centrifugation, en utilisant entre chaque étage et l'étage situé en aval un déflec- teur présentant dans sa partie aval le même type de parties convexes 4 alternant avec des parties concaves 5 que le déflecteur 3.
Le même processus peut être utilisé pour la séparation du sang complet en plus de 2 composants (plasma acellulaire, concentré plaquettaire, concentré de globules rouges, globules blancs, ...) .
Le processus d' introduction de sang complet et de sous- tirage des composants séparés peut être envisagé aussi bien en continu (tous les composants séparés étant sous-tirés simultanément à l'introduction de sang à séparer) qu'en discontinu (une partie seulement des composants séparés étant sous- tirés simultanément à l'introduction de sang, le ou les autres composants étant sous-tirés après arrêt de la centri- fugeuse) .
Le processus décrit ci-dessus est applicable aussi bien à des fins d'aphérèse, de séparation des constituants sanguins à partir de poches de collection, ou encore de lavage du sang dans le cas d' autotransfusion par exemple.

Claims

REVENDICATIONS
1. Chambre de centrifugation circulaire pour la séparation du sang, cette chambre (1) étant allongée le long de son axe de révolution et dont une des extrémités présente des moyens d'étanchéité autour d'une partie fixe concentrique à son axe de révolution, cette chambre (1) étant traversée par un canal d'alimentation (2) pour le sang à centrifuger et au moins un canal d'évacuation (10, 11) pour le constituant sé- paré du sang dont la masse volumique est la plus faible, ces canaux d'alimentation et d'évacuation étant destinés à être reliés à des moyens de circulation du sang de l'un à l'autre de ces canaux à travers la chambre de centrifugation en formant un écoulement axial contre la paroi latérale (7) circu- laire de cette chambre (1), le canal d'évacuation (10, 11) présentant une ouverture d'admission se trouvant à une distance dudit axe de révolution correspondant à la zone de concentration dudit constituant séparé dont la masse volumique est la plus faible pour le retirer en continu, au moins un déflecteur circulaire (3) étant situé entre la sortie du canal d'alimentation (2) et l'ouverture d'admission du canal d'évacuation (10, 11) pour former un écoulement axial du sang à contre-courant de celui formé contre ladite paroi latérale (7), caractérisée en ce que le déflecteur cir- culaire (3) présente une alternance de parties concaves (5) et de parties convexes (4) jointives. qui possèdent ou définissent entre-elles des lignes de crête ou de thalweg dont au moins une portion de ces lignes sont inclinées en direction de l'axe de révolution de la chambre.
2. Chambre de centrifugation selon la revendication 1 caractérisée en ce que lesdites portions des lignes de crête ou de thalweg sont, dans leur prolongement, concourantes en un point situé sur l'axe de révolution de la chambre.
3. Chambre de centrifugation selon la revendication 1, caractérisée en ce que les parties concaves (5) et convexes (4) sont rapportées au périmètre aval d'une surface circulaire (41) du déflecteur circulaire (3).
4. Chambre de centrifugation selon la revendication 3, caractérisée en ce que la surface circulaire (41) est cylindrique, conique ou tronc conique.
5. Chambre de centrifugation selon la revendication 3 caractérisé en ce que la surface circulaire (4') est celle d'une partie tronconique d'un cône dont le sommet est confondu avec le point de concours des lignes de crête ou de thalweg des parties convexes (4) et concaves (5) .
6. Chambre de centrifugation selon la revendication 1, dans laquelle un filtre (15) tubulaire ou tronc conique est disposé à l'intérieur dudit déflecteur circulaire (3).
7. Chambre de centrifugation selon la revendication 6, caractérisée en ce que le filtre (15) est un filtre à leucocytes .
8. Chambre de centrifugation selon la revendication 1, caractérisée en ce que les parties convexes (4) ont des extrémités aval (6) immergées dans une couche formée du constituant séparé du sang dont la masse volumique est la plus forte.
9. Chambre de centrifugation selon l'une des revendica- tions précédentes, dont le diamètre est compris entre 10 et
200 mm et dont la hauteur est comprise entre 20 et 400 mm.
10. Chambre de centrifugation selon la revendication 9, dont le diamètre est compris entre 50 et 85 mm et dont la hauteur est comprise entre 60 et 150 mm.
11. Chambre de centrifugation selon l'une des revendications précédentes, dans laquelle l'extrémité amont dudit déflecteur (3) présente un rebord annulaire (3a) qui s'étend vers l'intérieur pour séparer le flux de sang entrant du flux des constituants séparés.
12. Chambre de centrifugation selon la revendication 1, caractérisée en ce que le déflecteur (3) est distant de la paroi latérale (7) d'une valeur moyenne comprise entre 0.5 et 5 mm.
PCT/CH2007/000086 2006-02-23 2007-02-19 Chambre de centrifugation circulaire pour la separation du sang WO2007095771A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07701886A EP1986784A1 (fr) 2006-02-23 2007-02-19 Chambre de centrifugation circulaire pour la separation du sang
US12/280,093 US20090065424A1 (en) 2006-02-23 2007-02-19 Circular centrifugation chamber for separation of blood

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06405078A EP1825918A1 (fr) 2006-02-23 2006-02-23 Chambre de centrifugation circulaire pour la séparation du sang
EP06405078.4 2006-02-23

Publications (1)

Publication Number Publication Date
WO2007095771A1 true WO2007095771A1 (fr) 2007-08-30

Family

ID=36609414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2007/000086 WO2007095771A1 (fr) 2006-02-23 2007-02-19 Chambre de centrifugation circulaire pour la separation du sang

Country Status (3)

Country Link
US (1) US20090065424A1 (fr)
EP (2) EP1825918A1 (fr)
WO (1) WO2007095771A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308314B2 (en) 2011-04-08 2016-04-12 Sorin Group Italia S.R.L. Disposable device for centrifugal blood separation
US10039876B2 (en) 2014-04-30 2018-08-07 Sorin Group Italia S.R.L. System for removing undesirable elements from blood using a first wash step and a second wash step

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1825874A1 (fr) * 2006-02-28 2007-08-29 Jean-Denis Rochat Procédé et chambre de centrifugation pour le lavage et la séparation en continu de constituants sanguins
EP1911520A1 (fr) * 2006-10-10 2008-04-16 Jean-Denis Rochat Ensemble jetable pour la séparation de sang ou le lavage de composant du sang
US10040077B1 (en) * 2015-05-19 2018-08-07 Pneumatic Scale Corporation Centrifuge system including a control circuit that controls positive back pressure within the centrifuge core
JP5631410B2 (ja) * 2009-12-11 2014-11-26 テルモ ビーシーティー、インコーポレーテッド シールド付きの抽出ポート及び光学的制御を有する血液分離システム
US11878312B2 (en) * 2011-11-21 2024-01-23 Pneumatic Scale Corporation Centrifuge system for separating cells in suspension
US11065629B2 (en) * 2011-11-21 2021-07-20 Pneumatic Scale Corporation Centrifuge system for separating cells in suspension
TWI548456B (zh) * 2015-01-27 2016-09-11 Sangtech Lab Inc A centrifugal consumable, system and its separation method
US11957998B2 (en) * 2019-06-06 2024-04-16 Pneumatic Scale Corporation Centrifuge system for separating cells in suspension

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE128721C (fr) *
US1479456A (en) * 1921-05-23 1924-01-01 Cleveland Henry Burdett Dewatering machine
US3145713A (en) * 1963-09-12 1964-08-25 Protein Foundation Inc Method and apparatus for processing blood
US20010027156A1 (en) * 1999-06-03 2001-10-04 Yair Egozy Core for blood processing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438571A (en) * 1965-03-08 1969-04-15 Alfa Laval Ab Centrifugal separator
JPS5969166A (ja) 1982-10-13 1984-04-19 Nikkiso Co Ltd 遠心分離ボウル
DE19746914C2 (de) 1996-10-25 1999-07-22 Peter Dr Geigle Zentrifugiereinheit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE128721C (fr) *
US1479456A (en) * 1921-05-23 1924-01-01 Cleveland Henry Burdett Dewatering machine
US3145713A (en) * 1963-09-12 1964-08-25 Protein Foundation Inc Method and apparatus for processing blood
US20010027156A1 (en) * 1999-06-03 2001-10-04 Yair Egozy Core for blood processing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308314B2 (en) 2011-04-08 2016-04-12 Sorin Group Italia S.R.L. Disposable device for centrifugal blood separation
US10039876B2 (en) 2014-04-30 2018-08-07 Sorin Group Italia S.R.L. System for removing undesirable elements from blood using a first wash step and a second wash step
US10293098B2 (en) 2014-04-30 2019-05-21 Sorin Group Italia S.R.L. System for removing undesirable elements from blood using a first wash step and a second wash step

Also Published As

Publication number Publication date
US20090065424A1 (en) 2009-03-12
EP1825918A1 (fr) 2007-08-29
EP1986784A1 (fr) 2008-11-05

Similar Documents

Publication Publication Date Title
WO2007095771A1 (fr) Chambre de centrifugation circulaire pour la separation du sang
EP1871530B1 (fr) Dispositif jetable pour la separation en continu par centrifugation d&#39;un liquide physiologique
FR2596294A1 (fr) Separateur centrifuge a boucle continue
EP1846167A1 (fr) Procede et dispositif jetable pour la separation par centrifugation de sang
EP0608519A2 (fr) Séparateur centrifuge
EP1988947B1 (fr) Procédé et chambre de centrifugation pour le lavage et la séparation en continu de constituants sanguins
EP0334774B1 (fr) Dispositif intégré pour l&#39;épuration biospécifique d&#39;un liquide contenant des éléments cellulaires
FR2480365A1 (fr) Pompe a canal lateral
FR2486824A1 (fr) Centrifugeuse a bol plein
FR2468374A1 (fr) Recipient, dispositif et procede pour separer les plaquettes du sang
EP0104966B1 (fr) Centrifugeuse à récupération d&#39;énergie
FR2989596A1 (fr) Appareil nettoyeur de surface immergee a filtration centripete
EP1491259A1 (fr) Organe de centrifugation et dispositif utilisant cet organe
EP2809416B1 (fr) Dispositif de séparation de deux fluides non miscibles de densités differentes par centrifugation
EP1315572A1 (fr) Enceinte rotative pour la separation de composants du sang ou du plasma
FR2613956A1 (fr) Procede et dispositif de separation centrifuge d&#39;un melange de plusieurs phases
EP3976937B1 (fr) Piece pour degazeur centrifuge de turbomachine avec parois longitudinales adaptees
FR2575677A1 (fr) Appareil separateur centrifuge pour le traitement d&#39;un melange comprenant au moins une phase gazeuse, avec collecte forcee de la phase lourde
EP3535060A1 (fr) Dispositif de separation de particules solides en suspension dans un liquide et/ou de liquides de densites differentes, comprenant chacun au moins un moyen de creation et de maintien de vortex
EP3601754B1 (fr) Dispositif tournant pour séparer l&#39;huile des gaz de carter d&#39;un moteur à combustion interne
BE454529A (fr)
CH422491A (fr) Séparateur pneumatique centrifuge
WO2015071593A1 (fr) Dispositif de filtration de fluide biologique
BE411529A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007701886

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12280093

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE