WO2007094358A1 - ディスプレイおよびそれに用いられる視野角制御装置 - Google Patents

ディスプレイおよびそれに用いられる視野角制御装置 Download PDF

Info

Publication number
WO2007094358A1
WO2007094358A1 PCT/JP2007/052609 JP2007052609W WO2007094358A1 WO 2007094358 A1 WO2007094358 A1 WO 2007094358A1 JP 2007052609 W JP2007052609 W JP 2007052609W WO 2007094358 A1 WO2007094358 A1 WO 2007094358A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
viewing angle
display
display device
angle control
Prior art date
Application number
PCT/JP2007/052609
Other languages
English (en)
French (fr)
Inventor
Chikanori Tsukamura
Katsuhiko Morishita
Takehiko Sakai
Tsuyoshi Okazaki
Yoshiharu Kataoka
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007094358A1 publication Critical patent/WO2007094358A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle

Definitions

  • the present invention relates to a viewing angle control device capable of switching a viewing angle of a display between a wide viewing angle and a narrow viewing angle, and a display using the viewing angle control device.
  • a display In general, a display is required to have a viewing angle as wide as possible so that a clear image can be seen from any viewing angle.
  • liquid crystal displays that have recently become widespread have been developed for various viewing angles because the liquid crystal itself has a viewing angle dependency.
  • notebook personal computers, personal digital assistants (PDAs), or mobile phones are highly likely to be used in places where an unspecified number of people can exist, such as in trains and airplanes.
  • PDAs personal digital assistants
  • This requirement is not limited to liquid crystal displays, but is a common issue for arbitrary displays.
  • a phase difference control device is provided in addition to a display device that displays an image, and the viewing angle characteristics are changed by controlling the voltage applied to the phase difference control device.
  • a technique has been proposed (for example, Japanese Patent No. 3322197).
  • Japanese Patent No. 33 22197 exemplifies chiral nematic liquid crystal, homogeneous liquid crystal, randomly aligned nematic liquid crystal and the like as the liquid crystal mode used in the liquid crystal display device for phase difference control.
  • a viewing angle control liquid crystal panel is provided above the display liquid crystal panel, and these panels are sandwiched between two polarizing plates to adjust the voltage applied to the viewing angle control liquid crystal panel.
  • a configuration for performing viewing angle control has also been disclosed (for example, Japanese Patent Laid-Open No. 10-268251).
  • the liquid crystal mode of the liquid crystal panel for viewing angle control is a twisted nematic system.
  • Japanese Patent No. 3322197 states that it is possible to switch between a wide viewing angle and a narrow viewing angle by using a liquid crystal element for phase difference control, but the effect is not sufficient. Absent. For example, FIG. 4 of Japanese Patent No. 3322197 shows an equal contrast curve with a contrast ratio of 10: 1, and the contrast in the wide viewing angle direction certainly decreases at a narrow viewing angle. However, with this level of change, the display will be fully recognized by the person next to you. In general, even if the contrast ratio is reduced to 2: 1, the display is sufficiently visible.
  • Japanese Patent Laid-Open No. 10-268251 also switches between a wide viewing angle and a narrow viewing angle by adjusting the contrast by changing the voltage applied to the viewing angle control liquid crystal panel. The effect is not sufficient.
  • the present invention has been made to solve the above problems, and a display that can be adapted to various usage environments and applications by switching between a wide viewing angle and a narrow viewing angle, and
  • An object of the present invention is to provide a viewing angle control device used in
  • a display according to the present invention is disposed on at least one of a display device driven according to an image to be displayed, and a back surface and a front surface of the display device, and the display device
  • a display angle control device for controlling a viewing angle of the liquid crystal molecules, wherein the viewing angle control device vertically aligns liquid crystal molecules between a pair of translucent substrates.
  • a liquid crystal cell having a liquid crystal layer and a driving circuit for applying a voltage to the liquid crystal layer, and the liquid crystal cell is disposed in the display so that polarization transmission axes are substantially orthogonal to each other.
  • the two polarizing plates whose polarization transmission axes are substantially orthogonal are arranged so as to sandwich the viewing angle control device.
  • the viewing angle control device and the two polarizing plates are not necessarily adjacent to each other, and some component may be interposed between them.
  • a predetermined voltage is applied to the liquid crystal layer to change the alignment state of the liquid crystal molecules, and the polarization state of the light emitted from the liquid crystal cell force of the viewing angle control device is changed by utilizing the birefringence of the liquid crystal.
  • the polarizing plate arranged on the viewer side of the viewing angle control device acts as an analyzer, and the light emitted from the viewing angle control device to the viewer side can be transmitted or shielded depending on the viewing angle. it can. That is, the display state is the first state (wide viewing angle) that provides the first viewing angle range, and the second viewing angle range that is within the first viewing angle range and is narrower than the first viewing angle range. Can be switched to one of the second states (narrow viewing angle). Note that “wide viewing angle” and “narrow viewing angle” mean a relatively wide viewing angle and a relatively narrow viewing angle, not a specific absolute angle range.
  • the two polarizing plates are arranged so that their polarization transmission axes intersect each other in a range of 80 ° to 100 °.
  • the display device is a display device that emits linearly polarized light, and one of the two polarizing plates is a polarizing plate provided in the display device. It is preferable.
  • the display device is a transmissive liquid crystal display device, and a battery. It can be set as the structure further provided with crite.
  • the viewing angle control device may be disposed between the backlight and the transmissive liquid crystal display device, or may be disposed in front of the transmissive liquid crystal display device.
  • the display device is preferably a reflective liquid crystal display device or a transflective liquid crystal display device.
  • the display device is a self-luminous display device, and the sentence of the two polarizing plates is provided between the self-luminous display device and the viewing angle control device. Also good.
  • the polarization transmission axis of the polarizing plate intersects with the alignment axis of the liquid crystal molecules viewed from the normal direction of the viewing angle control device in a range of 40 ° to 50 °. Les, which is preferably arranged so that.
  • a retardation film is provided in at least one place between the viewing angle control device and the two polarizing plates.
  • a positive nematic liquid crystal or a negative nematic liquid crystal is used for the liquid crystal layer of the viewing angle control device.
  • a first viewing angle control device is driven according to an image to be displayed and emits linearly polarized light.
  • a liquid crystal cell having a liquid crystal layer in which liquid crystal molecules are vertically aligned between a pair of translucent substrates, and the liquid crystal cell used for controlling the viewing angle of the display device.
  • the drive circuit changes the alignment state of the liquid crystal molecules in the liquid crystal layer, so that the light emission range is within the first viewing angle range and the first viewing angle range.
  • Second view narrower than the first viewing angle range It is characterized by being able to switch between the field angle range.
  • a second viewing angle control device is disposed in front of a self-luminous display device driven according to an image to be displayed, and
  • a viewing angle control device used for controlling a viewing angle of an optical display device comprising: a liquid crystal cell having a liquid crystal layer in which liquid crystal molecules are vertically aligned between a pair of translucent substrates; A drive circuit for applying a voltage and a polarized light transmission outside the pair of translucent substrates.
  • a pair of polarizing plates provided so that the axes are orthogonal to each other, and the drive circuit changes the alignment state of the liquid crystal molecules in the liquid crystal layer, thereby changing the light emission range between a wide viewing angle and a narrow viewing angle. It is characterized in that it is shifted.
  • the display state can be adapted to various usage environments and applications by switching the display state between the wide viewing angle and the narrow viewing angle, and the viewing angle control used therefor. Device.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a display according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a configuration of a viewing angle control liquid crystal panel according to one embodiment of the present invention.
  • FIG. 2 (a) shows an arrangement state of liquid crystal molecules at a narrow viewing angle.
  • b) shows the alignment of the liquid crystal molecules at a wide viewing angle.
  • FIG. 3 is a schematic view showing the definition of viewing angle with respect to a laminate of a viewing angle control liquid crystal panel and an upper polarizing plate arranged in the same direction as in FIGS. 2 (a) and 2 (b).
  • FIGS. 4 (a) to 4 (c) are diagrams showing the positional relationship between liquid crystal molecules and polarizing plate transmission axes according to viewing angles.
  • FIG. 5 is a chart showing a luminance distribution at a narrow viewing angle of a display according to an embodiment of the present invention.
  • FIG. 6 is a chart showing a luminance distribution at a wide viewing angle of a display according to an embodiment of the present invention.
  • Fig. 7 is a modification of the display that is effective in one embodiment of the present invention, and further comprises a retardation film between the light-transmitting substrate and the polarizing plate of the viewing angle control liquid crystal panel. It is a schematic diagram which shows.
  • FIG. 8 shows the refractive index ellipsoid of the liquid crystal molecules of the liquid crystal panel for viewing angle control
  • FIG. 8 (b) shows the refractive index ellipsoid of the retardation film
  • FIG. ) Is a schematic diagram showing a refractive index ellipsoid of a retardation film conventionally used for widening the viewing angle of a liquid crystal display as a comparative example.
  • Fig. 9 Fig. 9 is a schematic diagram showing the relationship between the polarization transmission axis, the refractive index ellipsoid of the liquid crystal molecules, and the refractive index ellipsoid of the retardation film.
  • (A) is from around 90 ° azimuth.
  • (B) is the viewing angle from around 0 ° orientation angle.
  • FIG. 10 is a cross-sectional view showing a configuration of another modification of the display that is useful for the embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a configuration of still another modified example of the display that is useful for the embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing a configuration of still another modified example of the display that is useful for the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display 100 according to an embodiment of the present invention.
  • the liquid crystal display 100 includes two liquid crystal panels: a display liquid crystal panel 1 (display device) for displaying images and a viewing angle control liquid crystal panel 2 (viewing angle control device). ing.
  • the display liquid crystal panel 1 in this embodiment is a transmissive type, and a backlight 3 is used as a light source.
  • the viewing angle control liquid crystal panel 2 is provided between the backlight 3 and the display liquid crystal panel 1.
  • the liquid crystal display 100 switches the liquid crystal in the viewing angle control liquid crystal panel 2 to perform a switching operation so that the image on the display liquid crystal panel 1 can be viewed in a wide viewing angle (wide viewing angle).
  • the display state can be switched between a state in which the image is visible and a narrow viewing angle (narrow viewing angle).
  • the narrow viewing angle is particularly suitable when it is not desirable for others to view the image on the LCD panel 1 for display, and the wide viewing angle is used for other normal use or for displaying images on the LCD panel 1 for display. It is suitable for use when seen by multiple people at the same time.
  • the display liquid crystal panel 1 includes a liquid crystal cell 11 in which a liquid crystal is sandwiched between a pair of translucent substrates, and polarizing plates 12 and 13 provided on the front and back of the liquid crystal cell 11.
  • the liquid crystal mode and cell structure of the liquid crystal cell 11 are arbitrary. Further, the drive mode of the display liquid crystal panel 1 is also arbitrary.
  • the liquid crystal panel 1 for display any liquid crystal panel that can display characters, images, or moving images can be used. Accordingly, the detailed structure of the display liquid crystal panel 1 is not shown in FIG. 1, and the description thereof is also omitted.
  • the display liquid crystal panel 1 may be a panel capable of color display or a panel dedicated to monochrome display.
  • any known backlight having no limitation on the configuration of the backlight 3 can be used, and therefore the detailed structure and illustration of the backlight 3 are omitted.
  • the viewing angle control liquid crystal panel 2 includes a liquid crystal cell 21 having a liquid crystal layer sandwiched between a pair of translucent substrates, and a polarizing plate 22 provided on the backlight 3 side of the liquid crystal cell 21. Yes.
  • the liquid crystal layer of the liquid crystal cell 21 is composed of nematic liquid crystal that is vertically aligned (homeotope picked alignment).
  • FIG. 2 is a schematic diagram mainly showing the configuration of the viewing angle control liquid crystal panel 2.
  • (a) shows the arrangement of liquid crystal molecules at a narrow viewing angle
  • (b) shows the liquid crystal molecules at a wide viewing angle. The arrangement state of is shown.
  • the liquid crystal cell 21 of the viewing angle control liquid crystal panel 2 includes a pair of translucent substrates 21a and 21b.
  • Transparent electrodes are formed on the surfaces of the translucent substrates 21a and 21b using, for example, ITO (Indium Tin Oxide). Since the liquid crystal panel 1 for display needs to drive the liquid crystal in display units (pixel units or segment units), it has an electrode structure corresponding to the display unit, but the liquid crystal panel 2 for viewing angle control. There is no restriction on the electrode structure. For example, a uniform transparent electrode may be formed on the entire surface of the translucent substrates 21a and 21b in order to perform uniform switching over the entire display surface, or any other electrode structure may be employed.
  • An alignment film (not shown) for aligning liquid crystal molecules is formed on the transparent electrode.
  • the alignment film is rubbed by a known method.
  • FIGS. 2 (a) and 2 (b) the rubbing directions of the translucent substrates 21a and 21b are indicated by arrows R and R, respectively.
  • the rubbing direction R with respect to the alignment film of the translucent substrate 21a is parallel and opposite to the rubbing direction R with respect to the alignment film of the translucent substrate 21b.
  • the liquid crystal cell 21 is a so-called parallel cell having a twist angle of 0 ° (no twist).
  • the liquid crystal injected into the liquid crystal cell 21 is a (negative) nematic liquid crystal having negative dielectric anisotropy.
  • the liquid crystal molecules 21c of the liquid crystal cell 21 are arranged so that the molecular major axis is perpendicular to the substrate surfaces of the translucent substrates 21a and 21b when no voltage is applied.
  • the retardation d ′ ⁇ of the liquid crystal layer of the liquid crystal cell 21 is, for example, 200 nm to 350 nm.
  • the upper voltage shows that the molecular long axis of the liquid crystal molecules 21c is almost parallel to the substrate surfaces of the translucent substrates 21a and 21b.
  • the polarizing plate 22 provided below the liquid crystal cell 21 in the viewing angle control liquid crystal panel 2 and the polarizing plate 13 of the display liquid crystal panel 1 are each polarized light.
  • the transmission axes X and X are arranged so as to be substantially orthogonal. The angle between the polarization transmission axes X and X is
  • the polarization transmission axis X of the polarizing plate 13 of the display liquid crystal panel 1 is a rabbi to the alignment film of the translucent substrate 21a.
  • the bending direction R With respect to the bending direction R, it has an inclination of 40 ° to 50 ° (preferably 45 °).
  • the viewing angle control liquid crystal panel 2 according to the above-described configuration is used to change the viewing angle into a wide viewing angle and a narrow viewing angle.
  • the principle of switching between the two will be explained.
  • the viewing angle control liquid crystal panel 2 operates in cooperation with the polarizing plate 13 of the display liquid crystal panel 1 by switching the voltage applied to the liquid crystal cell 21 to widen the viewing angle. Switch between viewing angle and narrow viewing angle.
  • the viewing angle from a certain viewpoint with respect to the laminate of the viewing angle control liquid crystal panel 2 and the polarizing plate 13 is defined as the azimuth angle ⁇ and polar angle with respect to the center of the polarizing plate 13. Represented by ⁇ .
  • Fig. 3 shows the viewing angles from three viewpoints P to P for the laminate of viewing angle control liquid crystal panel 2 and polarizing plate 13 arranged in the same direction as Figs. 2 (a) and (b).
  • the azimuth angle ⁇ is a rotation angle of a line connecting the leg of the perpendicular line dropped from the viewpoint to the plane including the surface of the polarizing plate 13 and the center 13c of the polarizing plate 13.
  • the azimuth angle ⁇ is on the normal direction of the polarizing plate 13 with the azimuth angle in the direction of the viewpoint P being 0 °.
  • Polar angle ⁇ is center 13c of polarizing plate 13 and viewpoint
  • the molecular long axis of the liquid crystal molecule 21c is translucent as shown in FIG. 2 (a) by the applied voltage V to the liquid crystal cell 21. Viewing angle power of each of the viewpoints P to P shown in Fig. 3 when tilted by a slight angle with respect to the normal of the substrates 21a and 21b
  • the short axis side of the liquid crystal molecules 21c is in a state facing the viewing angle direction.
  • the liquid crystal cell 2 is emitted from the knocklight 3 and passes through the polarizing plate 22.
  • the applied voltage V to the liquid crystal cell 21 is about 2.5V to 3.5V as described above.
  • L ⁇ L f, luminance power 50cd / ml 100cd / m 2 , 150cd / m 2 , 20
  • the molecular long axis of the liquid crystal molecule 21c is the polarization transmission axis X of the polarizing plate 13 and the polarizing plate 22 It is slightly inclined with respect to each of the polarization transmission axes X. This allows viewpoint P
  • the display is black.
  • the molecular long axis of the liquid crystal molecule 21c is the polarization transmission axis X of the polarizing plate 13 and the polarizing plate 22
  • the linearly polarized light emitted from the light beam 3 and transmitted through the polarizing plate 22 and enters the liquid crystal cell 21 is given birefringence by the liquid crystal molecules 21c, and the polarization direction is rotated so as to coincide with the polarizing transmission axis of the polarizing plate 13. Then, the light passes through the polarizing plate 13. Therefore, it is good for the viewing angle of the viewpoint P force.
  • the azimuth angle is around 180 °.
  • Good display can be obtained only in a narrow viewing angle range, and for other azimuth angles, the polarized light in the liquid crystal cell 21 is shielded by the polarizing plate 13 and black display is obtained. Therefore, by applying the voltage V to the liquid crystal cell 21 of the viewing angle control liquid crystal panel 2, the light emitted from the backlight 3 can be shielded in the wide viewing angle direction. That is, the display image of the display liquid crystal panel 1 cannot be viewed from the wide viewing angle direction, and the liquid crystal display 100 can be set to a narrow viewing angle.
  • the liquid crystal cell 21 of the viewing angle control liquid crystal panel 2 has a liquid crystal component as shown in FIG. 2 (b).
  • Figure 3 shows the voltage V applied to tilt the molecular long axis of the element 21c almost parallel to the substrate.
  • LL has a luminance of 130 cdZm 2 240 cd /
  • the voltage applied to the liquid crystal cell 21 of the viewing angle control liquid crystal panel 2 is switched in at least two stages of V and V.
  • the display state of the liquid crystal display 100 can be switched between a wide viewing angle and a narrow viewing angle.
  • the phase difference film 4 is further provided between the light-transmitting substrate 21 a of the liquid crystal cell 21 and the polarizing plate 22.
  • the viewing angle is narrowed by applying a voltage V to the liquid crystal cell 21, it is viewed from a viewing angle other than the azimuth angle of 180 ° shown in Fig. 3 (eg, azimuth angle of 0 °, 90 °, 270 °).
  • the linearly polarized light emitted from the backlight 3 and transmitted through the polarizing plate 22 becomes elliptically polarized light due to birefringence in the liquid crystal layer of the liquid crystal cell 21 due to the refractive index ( ⁇ , n) of the liquid crystal molecules 21c. .
  • the retardation film 4 is provided for optically compensating the elliptically polarized light. That is, a retardation film that generates elliptically polarized light that cancels elliptically polarized light generated in the liquid crystal layer of the liquid crystal cell 21 at a narrow viewing angle is used as the retardation film 4.
  • the three-dimensional refractive index axes N 1, N 2 and N of the retardation film 4 are defined. That is, N is the polarization transmission axis of the polarizing plate 13
  • a component perpendicular to X, N is a component parallel to the polarization transmission axis X of polarizing plate 13, N is a polarizing plate 1
  • the component is parallel to the normal of 3.
  • FIG. 8 (a) is a refractive index ellipsoid of the liquid crystal molecules 21c of the liquid crystal cell 21, where n> n.
  • FIG. 6 is a schematic diagram showing a relationship with a refractive index ellipsoid F.
  • Figure 9 (a) shows the refraction of liquid crystal molecule 21c.
  • N and N of the ellipsoid F are combined with the component N parallel to the polarization transmission axis X of the polarizing plate 13 and the polarizing plate 2
  • FIG. 6 is a schematic diagram showing a relationship between a refractive index ellipsoid F of Rum 4 and FIG. As shown in Fig. 9 (b)
  • MLC-6609 (trade name) manufactured by Merck Co., Ltd. is used as the liquid crystal material of the viewing angle control liquid crystal panel 2 that is useful in this embodiment, and the applied voltage V at a narrow viewing angle is set to 2.5 V to 3 V. 5V
  • the retardation film 4 is an example.
  • the force phase difference film 4 exemplifying a configuration in which the phase difference film 4 is provided between the light transmissive substrate 21 a of the liquid crystal cell 21 and the polarizing plate 13 is shown in FIG. Even if it is disposed between the optical substrate 21b and the polarizing plate 22, the same effect can be obtained.
  • FIG. 10 shows a configuration of a liquid crystal display 200 as a modified example of the liquid crystal display 100 that works on the present embodiment. As can be seen from the comparison between Fig. 1 and Fig. 10, the stacking order of the liquid crystal display panel 1 and the liquid crystal panel 2 for viewing angle control is reversed between the liquid crystal display 100 and the liquid crystal display 200. .
  • the liquid crystal display 200 has a configuration in which the display liquid crystal panel 1 is laminated on the backlight 3, and the viewing angle control liquid crystal panel 2 is further laminated thereon.
  • the liquid crystal display 1 may be a transflective liquid crystal panel.
  • liquid crystal display 200 a laminate of the upper polarizing plate 12 of the display liquid crystal panel 1 and the viewing angle control liquid crystal panel 2 (the liquid crystal cell 21 and the polarizing plate 22) is illustrated with respect to the liquid crystal display 100. 2 Functions in the same manner as the laminate shown in (a) and (b). Accordingly, in the liquid crystal display 200 shown in FIG. 10, as in the liquid crystal display 100, the voltage applied to the liquid crystal cell 21 of the viewing angle control liquid crystal panel 2 is at least in two steps of V and V
  • the display state of the liquid crystal display 100 can be switched between a wide viewing angle and a narrow viewing angle.
  • the liquid crystal displays 100 and 200 according to the present embodiment, if the voltage V is applied to the liquid crystal cell 21 of the viewing angle control liquid crystal panel 2, as shown in FIG. It is possible to realize a display with a narrow viewing angle in which the display can be visually recognized only from the determined viewing angle. If a voltage V is applied to the liquid crystal cell 21 of the liquid crystal panel 2 for controlling the viewing angle, display can be performed from a wide viewing angle.
  • this embodiment merely shows specific examples of the present invention, and there is no intention to limit the technical scope of the present invention to these specific examples.
  • a negative nematic liquid crystal is used
  • a positive nematic liquid crystal may be used.
  • the behavior of the liquid crystal molecules is different from that when using a negative nematic liquid crystal.
  • the liquid crystal molecules are parallel to the substrate (homogeneous orientation). Liquid crystal molecules stand up against the substrate. Therefore, when a wide viewing angle is used, no voltage is applied to the liquid crystal cell 21 of the viewing angle control liquid crystal panel 2, and a predetermined voltage is applied when the viewing angle is narrow.
  • the entire liquid crystal layer of the viewing angle control liquid crystal panel 2 is uniformly controlled.
  • the structure to be illustrated was illustrated.
  • the electrode structure of the liquid crystal cell 21 is made different for each local region, the operation of the liquid crystal can be controlled for each local region. This makes it possible to vary the viewing angle of the display screen for each local area.
  • the viewing angle control device is disposed on the back surface or the front surface of the display device has been described, but the configuration in which the viewing angle control device is disposed on both the back surface and the front surface of the display device is also possible. It is included in the technical scope of the present invention.
  • a transmissive liquid crystal panel has been described as a specific example of the display device, but the display device is not limited to this.
  • a reflective or transflective liquid crystal display panel can be used as the display device.
  • non-light emitting display devices such as liquid crystal display panels, for example, CRT (Cathode Ray Tube), plasma display, organic EL (Electro Luminescence) element, inorganic EL element, LED (Light Emitting Diode) display,
  • a self-luminous display device such as a fluorescent display tube, a field emission display, or a surface-conduction electron display can also be used.
  • FIG. 11 shows a configuration example when a reflective liquid crystal display panel is used as the display device.
  • the liquid crystal display 300 shown in FIG. 11 has a configuration in which the viewing angle control liquid crystal panel 2 is disposed on the front surface (observer side) of the reflective liquid crystal display panel 30.
  • the reflective liquid crystal display panel 30 includes a reflective liquid crystal cell 31 having a reflector (not shown) on the substrate opposite to the observer, and a polarizing plate 32 disposed on the upper surface of the reflective liquid crystal cell 31. I have. Since the structure and operation of the reflective liquid crystal cell are well known, detailed description thereof is omitted here.
  • liquid crystal display 300 a laminated body of the polarizing plate 32 of the reflective liquid crystal display panel 30 and the viewing angle control liquid crystal panel 2 (the liquid crystal cell 21 and the polarizing plate 22) is shown in FIG. It functions in the same manner as the laminate shown in (b). Accordingly, even in the liquid crystal display 300 shown in FIG. 11, as in the liquid crystal display 100, the voltage applied to the liquid crystal cell 21 of the viewing angle control liquid crystal panel 2 is switched to at least two steps of V and V. LCD
  • the display state of Isplay 300 can be switched between a wide viewing angle and a narrow viewing angle.
  • FIG. 12 shows a configuration example when a self-luminous display device such as an EL element is used as the display device.
  • the display 400 shown in FIG. 12 is a front surface of the self-luminous display device 40 (
  • the viewing angle control liquid crystal panel 2 is arranged on the observer side.
  • the viewing angle control liquid crystal panel 2 includes a pair of polarizing plates 22 and 23 on the front and back of the liquid crystal cell 21.
  • the polarization transmission axes of the polarizing plates 22 and 23 are arranged so as to be substantially orthogonal to each other.
  • the viewing angle control liquid crystal panel 2 (the liquid crystal cell 21 and the polarizing plates 22 and 23) functions in the same manner as the laminated body shown in FIGS.
  • the voltage applied to the liquid crystal cell 21 of the viewing angle control liquid crystal panel 2 is set to at least two of V and V.
  • the display state of the display 400 can be switched between a wide viewing angle and a narrow viewing angle.
  • the display state of the display is a narrow viewing angle
  • a message, an image, an icon, or the like for informing the user of the fact is displayed on the screen of the display device. You may make it do.
  • the driving circuit of the viewing angle control device operates according to the content of the image displayed on the display device, and automatically switches between the narrow viewing angle and the wide viewing angle. You may make it change. For example, when the display is used to view web pages on the Internet, the software flag associated with each page is referred to according to the content of the web page, and it is preferable that the content is not seen by others.
  • the display state may be automatically switched to a narrow viewing angle. Further, when the browser is activated in the encryption mode, the display state may be switched to a narrow viewing angle.
  • the display state of the display can be adjusted to switch to a narrow viewing angle.
  • the display may be automatically switched to the narrow viewing angle.
  • the viewing angle control device may be formed as a module or a cover that can be removed from the display device. When such a removable module is attached to the display device, it can be electrically connected to the display device to obtain appropriate power and control signals.
  • an optical sensor ambient sensor
  • the display on the display It is also preferable to make the state a narrow viewing angle.
  • displays such as notebook personal computers, personal digital assistants (PDAs), portable game consoles, mobile phones, etc.
  • PDAs personal digital assistants
  • ATMs automated cash dispensers
  • information installed in public places Applies to displays for various devices such as terminals, ticket vending machines, and in-vehicle displays.
  • the viewing angle control device according to the present invention can be manufactured and distributed as a component of the display S as a component of the display, and the viewing angle control device alone can be implemented in the state of being incorporated in the display. There is also sex.
  • the present invention is industrially applicable as a display that can be adapted to various usage environments and applications by switching between a wide viewing angle and a narrow viewing angle, and a viewing angle control device used therefor.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)

Abstract

 表示状態を広視野角と狭視野角との間で切替えることにより様々な使用環境や用途に適応可能なディスプレイを提供する。表示装置の背面および前面の少なくとも一方に視野角制御用液晶パネル(2)を備えたディスプレイである。視野角制御用液晶パネル(2)は、一対の透光性基板(21a,21b)の間に液晶分子(21c)を垂直配向させた液晶セル(21)と、液晶セル(21)の液晶層へ電圧を印加する駆動回路とを備えている。液晶セル(21)は、偏光透過軸(X13,X22)が略直交するよう配置された2枚の偏光板(13,22)の間に配置されている。前記駆動回路は、視野角制御用液晶パネル(2)の液晶層の液晶分子(21c)の配列状態を変化させることにより、表示状態を広視野角と狭視野角との間で切替える。

Description

明 細 書
ディスプレイおよびそれに用いられる視野角制御装置
技術分野
[0001] 本発明は、ディスプレイの視野角を広視野角と狭視野角との間で切替えられる視野 角制御装置と、それを用いたディスプレイに関するものである。
背景技術
[0002] ディスプレイは、一般的には、どの視角から見ても鮮明な画像を見ることができるよう に、可能な限り広い視野角を有することが求められている。特に、最近広く普及して レ、る液晶ディスプレイは、液晶そのものが視角依存性を有することから、広視野角化 に関して様々な技術開発がなされてきた。し力 ながら、使用環境によっては、使用 者本人にしか表示内容が視認できないよう、視野角が狭い方が好都合であることもあ る。特に、ノート型パーソナルコンピュータ、携帯型情報端末 (PDA)、または携帯電 話等は、電車や飛行機内など、不特定多数の人間が存在し得る場所で使用される 可能性も高い。そのような使用環境においては、機密保持やプライバシー保護等の 観点から、近傍の他人から表示内容を視かれたくないので、ディスプレイの視野角が 狭いことが望ましい。このように、近年、 1台のディスプレイの視野角を、使用状況に 応じて広視野角と狭視野角との間で切替えたいという要求が高まっている。なお、こ の要求は、液晶ディスプレイに限らず、任意のディスプレイに対して共通の課題であ る。
[0003] このような要求に対して、画像を表示する表示装置に加えて位相差制御用装置を 備え、位相差制御用装置に印加する電圧を制御することによって視野角特性を変化 させようとする技術が提案されている (例えば、特許第 3322197号公報)。特許第 33 22197号公報では、位相差制御用液晶表示装置で用いる液晶モードとして、カイラ ルネマティック液晶、ホモジニァス液晶、ランダム配向のネマティック液晶などが例示 されている。
[0004] また、表示用液晶パネル上部に、視野角制御用液晶パネルを設け、これらのパネ ルを 2枚の偏光板で挟持し、視野角制御用液晶パネルへの印加電圧を調整すること によって、視野角制御を行う構成も従来開示されている(例えば、特開平 10— 2682 51号公報)。特開平 10— 268251号公報では、視野角制御用液晶パネルの液晶モ 一ドはッイストネマティック方式である。
発明の開示
発明が解決しょうとする課題
[0005] 特許第 3322197号公報では、位相差制御用液晶素子を用いることによって広視 野角と狭視野角との切替えが可能であると述べられてレ、るが、その効果は十分とは 言えない。例えば特許第 3322197号公報の図 4には、コントラスト比が 10: 1の等コ ントラスト曲線が示されており、狭視野角では、確かに広視野角方向のコントラストが 低下している。し力、しながら、この程度の変化では、隣にいる人から表示が十分に視 認されてしまう。一般に、コントラスト比が 2 : 1まで低下しても、十分に表示を視認でき るからである。
[0006] また、特開平 10— 268251号公報の技術も、視野角制御用液晶パネルへの印加 電圧を変化させてコントラストを調整することによって、広視野角と狭視野角との切替 えを行うものであり、その効果は十分とは言えない。
[0007] すなわち、特許第 3322197号公報、特開平 10— 268251号公報のいずれの技術 も、広視野角方向のコントラストを低下させることによって、広視野角と狭視野角との 切替えを行う手法を採用しているが、このような手法では、狭視野角時に広視野角方 向の遮蔽が十分ではなぐ他人から画像が見られてしまう可能性があるという問題が ある。
[0008] そこで、本発明は、上記の課題を解決するためになされたものであって、広視野角 と狭視野角とを切替えることにより様々な使用環境や用途に適応可能なディスプレイ と、これに用いられる視野角制御装置とを提供することを目的としている。
課題を解決するための手段
[0009] 上記の目的を達成するために、本発明にかかるディスプレイは、表示すべき画像に 応じて駆動される表示装置と、前記表示装置の背面および前面の少なくとも一方に 配置され、前記表示装置の視野角を制御する視野角制御装置とを備えたディスプレ ィであって、前記視野角制御装置は、一対の透光性基板間に液晶分子を垂直配向 させた液晶層を有する液晶セルと、前記液晶層へ電圧を印加する駆動回路とを備え 、前記液晶セルは、当該ディスプレイ内で、偏光透過軸が略直交するよう配置された
2枚の偏光板の間に配置され、前記駆動回路が、前記視野角制御装置の液晶層の 液晶分子の配列状態を変化させることにより、表示状態を、第 1の視野角範囲を提供 する第 1の状態と、第 1の視野角範囲内にあり第 1の視野角範囲よりも狭い第 2の視 野角範囲を提供する第 2の状態との間で切替え可能とすることを特徴とする。
[0010] 上記の構成によれば、視野角制御装置を挟むように、偏光透過軸が略直交する 2 枚の偏光板が配置されている。なお、視野角制御装置と上記 2枚の偏光板とは、必 ずしも隣接している必要はなぐそれらの間に何らかの構成要素が介在しても良い。 上記の構成では、液晶層に所定の電圧を印加して液晶分子の配列状態を変化させ 、液晶の複屈折を利用することにより、視野角制御装置の液晶セル力 出射する光 の偏光状態を変化させれば、視野角制御装置の観察者側に配置されている偏光板 が検光子として作用し、視野角制御装置から観察者側へ出射する光を、視角に応じ て透過または遮蔽することができる。すなわち、表示状態を、第 1の視野角範囲を提 供する第 1の状態(広視野角)と、第 1の視野角範囲内にあり第 1の視野角範囲よりも 狭い第 2の視野角範囲を提供する第 2の状態 (狭視野角)とのいずれかに切替え可 能である。なお、「広視野角」と「狭視野角」とは、特定の絶対的な角度範囲を意味す るのではなぐ相対的に広い視野角と、相対的に狭い視野角とを意味する。また、上 記の構成では、液晶分子を垂直配向させた液晶セルを用いることにより、限られた視 野角のみ表示を視認できる狭視野角状態が実現可能である。これにより、上記従来 の視野角制御技術のように広視野角側の表示のコントラストを低下させるのではなく 、光の透過および遮蔽の切替えによって視野角制御を行うことができる。この結果、 様々な使用環境や用途に適応可能なディスプレイを提供することができる。
[0011] 本発明にかかるディスプレイにおいて、前記 2枚の偏光板が、それぞれの偏光透過 軸が 80° 〜: 100° の範囲で交差するように配置されたことが好ましい。
[0012] 本発明にかかるディスプレイにおいて、前記表示装置が、直線偏光を出射する表 示装置であって、前記 2枚の偏光板のうち 1枚が、前記表示装置に設けられた偏光 板であることが好ましい。例えば、前記表示装置が透過型液晶表示装置であり、バッ クライトをさらに備えた構成とすることができる。この場合、視野角制御装置は、前記 バックライトと前記透過型液晶表示装置との間に配置されても良いし、前記透過型液 晶表示装置の前面に配置されても良い。あるいは、前記表示装置が、反射型液晶表 示装置または半透過型液晶表示装置であることも好ましい。または、前記表示装置 が自発光型表示装置であって、前記 2枚の偏光板のうち 文は、前記自発光型表示 装置と前記視野角制御装置との間に設けられている構成であっても良い。
[0013] 本発明にかかるディスプレイにおいて、前記偏光板の偏光透過軸が、前記視野角 制御装置の法線方向から見た前記液晶分子の配向軸と、 40° 〜50° の範囲で交 差するように配置されたことが好ましレ、。
[0014] 本発明にかかるディスプレイにおいて、前記視野角制御装置と前記 2枚の偏光板と の間の少なくとも 1箇所に位相差フィルムを備えたことが好ましい。
[0015] 本発明にかかるディスプレイにおいて、前記視野角制御装置の液晶層に、ポジ型 ネマティック液晶またはネガ型ネマティック液晶を用いたことが好ましレ、。
[0016] また、上記の目的を達成するために、本発明にかかる第 1の視野角制御装置は、表 示すべき画像に応じて駆動され直線偏光を出射する表示装置の背面および前面の 少なくとも一方に配置され、前記表示装置の視野角を制御するために用いられる視 野角制御装置であって、一対の透光性基板間に液晶分子を垂直配向させた液晶層 を有する液晶セルと、前記液晶層へ電圧を印加する駆動回路と、前記液晶セルにお レ、て前記表示装置からの直線偏光を入射する面の反対側に設けられ、当該直線偏 光の偏波面に略直交する偏光透過軸を有する偏光板とを備え、前記駆動回路が、 前記液晶層の液晶分子の配列状態を変化させることにより、光の出射範囲を、第 1の 視野角範囲と、第 1の視野角範囲内にあり第 1の視野角範囲よりも狭い第 2の視野角 範囲との間で切替え可能とすることを特徴とする。
[0017] また、上記の目的を達成するために、本発明にかかる第 2の視野角制御装置は、表 示すべき画像に応じて駆動される自発光型表示装置の前面に配置され、前記自発 光型表示装置の視野角を制御するために用いられる視野角制御装置であって、一 対の透光性基板間に液晶分子を垂直配向させた液晶層を有する液晶セルと、前記 液晶層へ電圧を印加する駆動回路と、前記一対の透光性基板の外側に、偏光透過 軸が直交するよう設けられた一対の偏光板とを備え、前記駆動回路が、前記液晶層 の液晶分子の配列状態を変化させることにより、光の出射範囲を広視野角と狭視野 角とのレ、ずれかとすることを特徴とする。
発明の効果
[0018] 以上のとおり、本発明によれば、表示状態を広視野角と狭視野角との間で切替える ことにより様々な使用環境や用途に適応可能なディスプレイと、これに用いられる視 野角制御装置とを提供できる。
図面の簡単な説明
[0019] [図 1]図 1は、本発明の一実施形態に力かるディスプレイの概略構成を示す断面図で ある。
[図 2]図 2は、本発明の一実施形態に力かる視野角制御用液晶パネルの構成を示す 模式図であり、(a)は狭視野角時における液晶分子の配列状態を示し、(b)は広視 野角時における液晶分子の配列状態を示す。
[図 3]図 3は、図 2 (a)および (b)と同じ向きに配置された視野角制御用液晶パネルお よび上側偏光板の積層体に対する、視角の定義を表す模式図である。
[図 4]図 4 (a)〜(c)は、視角に応じた液晶分子と偏光板透過軸との位置関係を示す 図である。
[図 5]図 5は、本発明の一実施形態に力かるディスプレイの、狭視野角時の輝度分布 を示すチャートである。
[図 6]図 6は、本発明の一実施形態に力かるディスプレイの、広視野角時の輝度分布 を示すチャートである。
[図 7]図 7は、本発明の一実施形態に力かるディスプレイの変形例であり、視野角制 御用液晶パネルの透光性基板と偏光板との間に位相差フィルムをさらに備えた構成 を示す模式図である。
[図 8]図 8 (a)は、視野角制御用液晶パネルの液晶分子の屈折率楕円体を示し、図 8 (b)は、位相差フィルムの屈折率楕円体を示し、図 8 (c)は、比較例として、液晶ディ スプレイの広視野角化のために従来用いられている位相差フィルムの屈折率楕円体 を示す模式図である。 [図 9]図 9は、偏光透過軸と、液晶分子の屈折率楕円体と、位相差フィルムの屈折率 楕円体との関係を示す模式図であり、(a)は方位角 90° 付近からの視角、(b)は方 位角 0° 付近からの視角である。
[図 10]図 10は、本発明の実施形態に力かるディスプレイの他の変形例の構成を示す 断面図である。
[図 11]図 11は、本発明の実施形態に力かるディスプレイのさらに他の変形例の構成 を示す断面図である。
[図 12]図 12は、本発明の実施形態に力かるディスプレイのさらに他の変形例の構成 を示す断面図である。
発明を実施するための最良の形態
[0020] 以下、本発明の実施形態について、図面を参照しながら説明する。ただし、以下で 参照する各図は、説明の便宜上、本発明の一実施形態の構成部材のうち、本発明を 説明するために必要な主要部材のみを簡略化して示したものである。従って、本発 明に力かるディスプレイは、本明細書が参照する各図に示されていない任意の構成 部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部 材の寸法比率等を忠実に表したものではない。
[0021] 図 1は、本発明の一実施形態に力かる液晶ディスプレイ 100の概略構成を示す断 面図である。図 1に示すように、液晶ディスプレイ 100は、画像を表示する表示用液 晶パネル 1 (表示装置)と視野角制御用液晶パネル 2 (視野角制御装置)との 2枚の液 晶パネルを備えている。本実施形態における表示用液晶パネル 1は透過型であり、 光源としてバックライト 3が用いられる。視野角制御用液晶パネル 2は、バックライト 3と 表示用液晶パネル 1との間に設けられてレ、る。液晶ディスプレイ 100は、視野角制御 用液晶パネル 2における液晶をスイッチング動作させることにより、表示用液晶パネ ノレ 1の画像が視認できる視野角が広い状態(広視野角)と、表示用液晶パネル 1の画 像が視認できる視野角が狭い状態 (狭視野角)との間で、表示状態を切替えることが できる。狭視野角は、他人に表示用液晶パネル 1の画像を見られたくない場合に特 に好適に用いられ、広視野角は、それ以外の通常の使用時や、表示用液晶パネル 1 の画像を複数人で同時に見たレ、場合等に好適に用レ、られる。 [0022] 表示用液晶パネル 1は、一対の透光性基板間に液晶を挟持した液晶セル 11と、液 晶セル 11の表裏に設けられた偏光板 12, 13とを有する。液晶セル 11の液晶モード やセル構造は任意である。また、表示用液晶パネル 1の駆動モードも任意である。す なわち、表示用液晶パネル 1としては、文字や画像あるいは動画を表示できる任意の 液晶パネルを用いることができる。従って、図 1においては表示用液晶パネル 1の詳 細な構造を図示せず、その説明も省略する。また、表示用液晶パネル 1は、カラー表 示可能なパネルであっても良いし、モノクロ表示専用のパネルであっても良レ、。さらに 、バックライト 3の構成にも何ら限定がなぐ公知の任意のバックライトを用いることがで きるので、バックライト 3の詳細な構造の図示および説明も省略する。
[0023] 視野角制御用液晶パネル 2は、一対の透光性基板間に液晶層を挟持した液晶セ ル 21と、液晶セル 21のバックライト 3側に設けられた偏光板 22とを備えている。液晶 セル 21の液晶層は、垂直配向(ホメオト口ピック配向)させたネマティック液晶からなる
[0024] ここで、図 2 (a)および (b)を参照しながら、視野角制御用液晶パネル 2の詳細な構 成および動作について説明する。図 2は、主として視野角制御用液晶パネル 2の構 成を示す模式図であり、(a)は狭視野角時における液晶分子の配列状態を示し、 (b) は広視野角時における液晶分子の配列状態を示す。
[0025] 図 2 (a)および (b)に示すように、視野角制御用液晶パネル 2の液晶セル 21は、一 対の透光性基板 21a, 21bを備えている。透光性基板 21a, 21bのそれぞれの表面 には、例えば IT〇(Indium Tin Oxide)を用いて透明電極(図示省略)が形成されてい る。なお、表示用液晶パネル 1は、表示単位(画素単位またはセグメント単位)で液晶 を駆動することが必要であるので、表示単位に応じた電極構造を有しているが、視角 制御用液晶パネル 2は、電極構造に関しては制限がない。例えば、表示面全体で一 様なスイッチングを行うために透光性基板 21a, 21bの全面に一様な透明電極が形 成された構成としても良いし、他の任意の電極構造を取り得る。
[0026] 透明電極の上層には、液晶分子を配向させる配向膜(図示省略)が形成されている 。配向膜には、公知の手法により、ラビング処理がなされている。図 2 (a)および (b)に おいて、透光性基板 21a, 21bのそれぞれにおけるラビング方向を、矢印 R, Rによ
a b り示した。図 2 (a)および (b)に示すとおり、透光性基板 21aの配向膜に対するラビン グ方向 Rは、透光性基板 21bの配向膜に対するラビング方向 Rに平行かつ逆向き a b
である。すなわち、液晶セル 21は、ツイスト角 0° (ねじれなし)のいわゆるパラレル型 セルである。本実施形態では、液晶セル 21に注入される液晶は、負の誘電異方性を 持つ(ネガ型)ネマティック液晶である。従って、液晶セル 21の液晶分子 21cは、電圧 の無印加時には、透光性基板 21a, 21bの基板面に対して分子長軸が垂直となるよ うに配列する。液晶セル 21の液晶層のリタデーシヨン d' Δ ηは、例えば、 200nm〜3 50nmである。
[0027] また、透光性基板 21a, 21bのそれぞれに設けられた電極(図示せず)間に電圧を 印加すると、液晶分子 21cは、基板面に対して垂直な状態から、透光性基板 21 a, 2 lbの法線に平行かつ透光性基板 21aの配向膜に対するラビング方向 R, Rに平行 a b な面内で、印加電圧の大きさに応じて徐々に向きを変える(図 2 (a)参照)。印加電圧 が所定値となると、液晶分子 21cは、透光性基板 21a, 21bの基板面に対して分子長 軸が平行な状態で配列する(図 2 (b)参照)。図 2 (a)は、印加電圧 V (例えば 2. 5V し
〜3. 5V程度の電圧)によって、液晶分子 21cの分子長軸が、透光性基板 21a, 21b の法線に対して傾いた状態を示す。また、図 2 (b)は、印加電圧 V (例えば 5· 0V以
H
上の電圧)によって、液晶分子 21cの分子長軸が、透光性基板 21a, 21bの基板面 にほぼ平行になった状態を示す。
[0028] 図 2 (a)に示すように、視角制御用液晶パネル 2において液晶セル 21の下方に設 けられた偏光板 22と、表示用液晶パネル 1の偏光板 13とは、それぞれの偏光透過 軸 X と X とが略直交するように配置されている。偏光透過軸 X と X とのなす角は、
22 13 22 13
80° 〜: 100° の範囲であれば、視野角切替えの十分な効果が得られる。表示用液 晶パネル 1の偏光板 13の偏光透過軸 X は、透光性基板 21aの配向膜に対するラビ
13
ング方向 Rに対して、 40° 〜50° (好ましくは 45° )の傾きを持つ。
[0029] ここで、上述の図 2に加えて、図 3および図 4を参照し、上述の構成にかかる視野角 制御用液晶パネル 2を用いて、視野角を広視野角と狭視野角との間で切替える原理 につレ、て説明する。視野角制御用液晶パネル 2は、液晶セル 21に対する印加電圧 を切替えることにより、表示用液晶パネル 1の偏光板 13と協働作用して、視野角を広 視野角と狭視野角との間で切替える。
[0030] なお、以下の説明において、視野角制御用液晶パネル 2と偏光板 13との積層体に 対する、ある視点からの視角を、偏光板 13の中央を基準とした方位角 Θおよび極角 φによって表す。図 3は、図 2 (a)および (b)と同じ向きに配置された視野角制御用液 晶パネル 2および偏光板 13の積層体に対する、 3つの視点 P〜Pからの視角を表し
1 3
たものである。図 3に示すように、方位角 Θとは、視点から偏光板 13の表面を含む平 面へ下ろした垂線の足と、偏光板 13の中央 13cとを結ぶ線の回転角である。図 3の 例では、方位角 Θは、視点 Pの方向の方位角を 0° として、偏光板 13の法線方向上
1
側から見た場合に時計回りに増加するものとする。図 3の例では、視点 Pの方位角 Θ
2 は 90° 、視点 Pの方位角は 180° である。極角 φは、偏光板 13の中央 13cと視点
2 3
とを結ぶ直線力 偏光板 13の法線となす角度である。
[0031] ここで、図 4 (a)〜(c)を参照しながら、液晶セル 21に対する印加電圧 Vによって、 し 図 2 (a)に示すように液晶分子 21cの分子長軸が透光性基板 21a, 21bの法線に対 して微少角だけ傾いている場合の、図 3に示す視点 P〜Pのそれぞれの視角力 観
1 3
察される表示状態について説明する。
[0032] まず、図 3に示す視点 Pからの視角(方位角 Θ = 0° )に対しては、図 4 (a)に示す
1 1
ように、液晶分子 21cの短軸側が視角方向に対向する状態となる。これにより、視点 P 力もの視角に対しては、ノくックライト 3から出射され、偏光板 22を透過して液晶セル 2
1
1内に入射した直線偏光は、液晶分子 21cによって複屈折が与えられず、偏光板 13 で遮蔽される。従って、視点 P力 の視角(方位角 Θ = 0° )に対しては、黒表示と
1 1
なる。なお、液晶セル 21に対する印加電圧 Vが上述のとおり 2· 5V〜3. 5V程度で し
ある場合、方位角 Θ = 0° については、極角 φについてはおよそ 30° ≤ φく 90°
1
の範囲で、他人からの司見き見を防止するに十分な遮光状態が得られる(図 5参照)。 なお、図 5におレヽて、 L〜: L fま、輝度力 50cd/ml 100cd/m2、 150cd/m2、 20
1 8
0cd/m2、 250cd/m2、 300cd/m2、 350cd/m2、 400cd/m2の視角の分布を示 す等位線である。
[0033] また、図 3に示す視点 P力 の視角(方位角 Θ = 90° )に対しては、図 4 (b)に示
2 2
すように、液晶分子 21cの分子長軸が、偏光板 13の偏光透過軸 X および偏光板 22 の偏光透過軸 X のそれぞれに対して若干傾いた状態となる。これにより、視点 P
22 2 らの視角に対しては、バックライト 3から出射され、偏光板 22を透過して液晶セル 21 内に入射した直線偏光は、液晶分子 21cによってごくわずかな複屈折が生じるが、 偏光板 13で遮蔽される。従って、視点 P力 の視角(方位角 Θ =0° )に対しても、
2 2
黒表示となる。また、視点 Pと対向する位置、すなわち方位角 Θ力 ¾70° の場合も、
2
視点 P力もの観察時と同様の原理により、黒表示となる。なお、液晶セル 21に対する
2
印加電圧 Vが上述のとおり 2. 5V 3. 5V程度である場合、方位角 Θ = 90° およ
L
び 270° については、極角 φについて約 30° ≤ φ < 90° の範囲で、他人からの視 き見を防止するに十分な遮光状態が得られる(図 5参照)。
[0034] また、図 3に示す視点 P力、らの視角(方位角 Θ = 180° )に対しては、図 4 (c)に示
3 3
すように、液晶分子 21cの分子長軸が、偏光板 13の偏光透過軸 X および偏光板 22
13
の偏光透過軸 X のそれぞれに対して約 45° 傾き、かつ、液晶分子 21cの長軸側が
22
視角方向に対向する状態となる。これにより、視点!3力 の視角に対しては、バックラ
3
イト 3から出射され、偏光板 22を透過して液晶セル 21内に入射した直線偏光は、液 晶分子 21cによって複屈折が与えられ、偏光板 13の偏光透過軸に一致するよう偏光 方向が回転され、偏光板 13を透過する。従って、視点 P力 の視角に対しては、良
3
好な表示が得られる。なお、印加電圧 Vが上述のとおり 2. 5V 3. 5V程度である場 合は、方位角 Θ = 180。 については、極角 φについておよそ 0° ≤ < 90° の範
3
囲で、良好な表示が得られる(図 5参照)。
[0035] 以上のとおり、視野角制御用液晶パネル 2の液晶セル 21に、液晶分子 21cの分子 長軸を基板法線に対して微少角だけ傾ける電圧 Vを印加した場合、方位角 180° 前後の狭い視角範囲についてのみ良好な表示が得られ、その他の方位角について は、液晶セル 21内の偏光光が偏光板 13で遮光され、黒表示となる。従って、視野角 制御用液晶パネル 2の液晶セル 21に電圧 Vを印加することによって、広視野角方向 に対しては、バックライト 3からの出射光を遮蔽できる。すなわち、広視野角方向から は表示用液晶パネル 1の表示画像を視認できなくなり、液晶ディスプレイ 100を狭視 野角とすることができる。
[0036] 一方、視野角制御用液晶パネル 2の液晶セル 21に、図 2 (b)に示すように、液晶分 子 21cの分子長軸を基板にほぼ平行に傾ける電圧 Vを印加した場合は、図 3に示
H
す視点 P Pのいずれの視角に対しても、全方位に対して良好な表示が得られるよ
1 3
うな十分な複屈折が生じることにより、液晶ディスプレイ 100を広視野角とすることが できる(図 6参照)。なお、図 6において、 L Lは、輝度が、 130cdZm2 240cd/
Figure imgf000013_0001
m2の視角の分布を示す等位線である。
[0037] 以上のとおり、本実施形態に力かる液晶ディスプレイ 100では、視野角制御用液晶 パネル 2の液晶セル 21に印加する電圧を、 V , Vの少なくとも二段階で切替えること
H
により、液晶ディスプレイ 100の表示状態を広視野角と狭視野角との間で切替えるこ とが可能となる。
[0038] なお、図 7に示すように、液晶セル 21の透光性基板 21aと偏光板 22との間に位相 差フィルム 4をさらに備えた構成とすることが好ましい。液晶セル 21に電圧 Vを印加 することによって狭視野角とした場合、図 3に示す方位角 180° 付近以外の視角(例 えば方位角 0° 付近、 90° 付近、 270° 付近)から見た場合、バックライト 3から出射 し偏光板 22を透過した後の直線偏光は、液晶分子 21cの屈折率 (η , n )により、液 晶セル 21の液晶層において複屈折が生じて楕円偏光となる。これにより、偏光板 13 を透過する成分が生じ、光漏れの原因となる。位相差フィルム 4は、その楕円偏光を 光学補償するために設けられるものである。つまり、狭視野角時において、液晶セル 21の液晶層において生じる楕円偏光を相殺するような楕円偏光を生じる位相差フィ ノレムを、位相差フィルム 4として使用する。なお、図 7に示すように、位相差フィルム 4 の 3次元屈折率軸 N , N , Nを定義する。すなわち、 Nは、偏光板 13の偏光透過軸
X に垂直な成分、 Nは、偏光板 13の偏光透過軸 X に平行な成分、 Nは、偏光板 1
13 13
3の法線に平行な成分である。
[0039] 図 8 (a)は、液晶セル 21の液晶分子 21cの屈折率楕円体であり、 n >nである。図
8 (b)は、位相差フィルム 4の屈折率楕円体であり、 N >N >Nである。また、図 8 (c
)は、比較例として示すものであり、液晶ディスプレイの広視野角化のために従来用 レ、られている位相差フィルム (ネガティブ Aプレートフィルム)の屈折率楕円体であり、 N =N >Nである。 [0040] 図 9 (a)は、図 3に示す視点 P (方位角 Θ = 90° )付近から見た場合の、偏光板 13
2
, 22の偏光透過軸 X , Χ と、液晶分子 21cの屈折率楕円体 F と、位相差フィルム 4
13 22 21
の屈折率楕円体 Fとの関係を示す模式図である。図 9 (a)に、液晶分子 21cの屈折
4
率楕円体 F の n, nを、偏光板 13の偏光透過軸 X に平行な成分 n と、偏光板 22
21 e 13 xl3
の偏光透過軸 X に平行な成分 n とに分解して示す。また、位相差フィルム 4の屈折
22 x22
率楕円体 Fの N, Nを、偏光板 13の偏光透過軸 X に平行な成分 N と、偏光板 2
4 13 xl3
2の偏光透過軸 X に平行な成分 N とに分解して示す。図 9 (a)から分かるように、 n
22 x22 x と N とは大きさがほぼ等しぐ n と N も大きさがほぼ等しい。従って、図 3に示す
13 xl3 x22 x22
視点 P (方位角 θ = 90° )付近の視角に対して、液晶セル 21の液晶層で生じる位
2
相差が位相差フィルム 4によって相殺され、光漏れを防止することができる。なお、方 位角 Θ = 270° 付近の視角から見た場合も、上記と同じ原理により、光漏れが防止 される。
[0041] また、図 9 (b)は、図 3に示す視点 P (方位角 Θ =0° )付近から見た場合の、偏光
1
板 13, 22の偏光透過軸 X ,X と、液晶分子 21cの屈折率楕円体 F と、位相差フィ
13 22 21
ルム 4の屈折率楕円体 Fとの関係を示す模式図である。図 9 (b)に示すように、方位
4
角 Θ =0° 付近の視角から見た場合は、位相差がほとんど発生しないので、光漏れ は生じない。
[0042] 本実施形態に力かる視野角制御用液晶パネル 2の液晶材料としてメルク株式会社 製の MLC— 6609 (商品名)を使用し、狭視野角時の印加電圧 Vを 2· 5V〜3. 5V し
、広視野角時の印加電圧 Vを 5. 0V以上とする場合、位相差フィルム 4としては、例
H
えば、 A nd= 140nm, N =0. 1のフィルムを使用することができる。
[0043] なお、図 7では、液晶セル 21の透光性基板 21aと偏光板 13との間に位相差フィル ム 4を備えた構成を例示した力 位相差フィルム 4を、液晶セル 21の透光性基板 21b と偏光板 22との間に配置しても、同等の効果が得られる。
[0044] また、液晶セル 21の透光性基板 21aと偏光板 13との間と、液晶セル 21の透光性 基板 21bと偏光板 22との間との両方に、 2枚合わせて位相差フィルム 4と同等の光学 補償効果を有する位相差フィルムを、 2枚配置した構成としても良い。この構成によつ ても、図 7に示した構成と同等の効果が得られる。 [0045] 図 10は、本実施形態に力かる液晶ディスプレイ 100の変形例としての液晶ディスプ レイ 200の構成を示す。図 1と図 10とを比較することから分かるように、液晶ディスプ レイ 100と液晶ディスプレイ 200とは、表示用液晶パネル 1と視野角制御用液晶パネ ル 2との積層順序が逆になつている。すなわち、図 10に示すように、液晶ディスプレイ 200は、バックライト 3の上に表示用液晶パネル 1が積層され、さらにその上に視野角 制御用液晶パネル 2が積層された構成である。なお、液晶ディスプレイ 200におレ、て 、表示用液晶パネル 1は、半透過型液晶パネルであっても良い。
[0046] 液晶ディスプレイ 200においては、表示用液晶パネル 1の上側の偏光板 12と、視 野角制御用液晶パネル 2 (液晶セル 21および偏光板 22)との積層体が、液晶ディス プレイ 100に関して図 2 (a)および (b)に示した積層体と同等に機能する。従って、図 10に示す液晶ディスプレイ 200においても、液晶ディスプレイ 100と同様に、視野角 制御用液晶パネル 2の液晶セル 21に印加する電圧を、 V , Vの少なくとも二段階に
H
切替えることにより、液晶ディスプレイ 100の表示状態を広視野角と狭視野角との間 で切替えることができる。
[0047] 以上のように、本実施形態に力かる液晶ディスプレイ 100, 200によれば、視野角 制御用液晶パネル 2の液晶セル 21に電圧 Vを印加すれば、図 5に示すように、限ら れた視野角からのみ表示を視認できる狭視野角の表示を実現できる。また、視野角 制御用液晶パネル 2の液晶セル 21に電圧 Vを印加すれば、広い視野角から表示が
H
視認できる。
[0048] なお、本実施形態は、あくまでも本発明の具体例を示すものであって、本発明の技 術的範囲をこれらの具体例に限定する意図はない。例えば、上記の説明では、ネガ 型ネマティック液晶を用いる例を示したが、ポジ型ネマティック液晶を用いても良い。 ポジ型ネマティック液晶を用いた場合、ネガ型ネマティック液晶を用いた場合と液晶 分子の挙動が異なり、電圧無印加時は液晶分子が基板に対して平行 (ホモジニァス 配向)となり、印加電圧に応じて、液晶分子が基板に対して立ち上がる。従って、広 視野角時は視野角制御用液晶パネル 2の液晶セル 21に電圧を印加せず、狭視野 角時は所定の電圧を印加すれば良レ、。
[0049] さらに、上記の説明では、視野角制御用液晶パネル 2の液晶層全体が一様に制御 される構成を例示した。しかし、液晶セル 21の電極構造を局所領域毎に異ならせれ ば、液晶の動作を局所領域毎に制御することができる。これにより、表示画面の視野 角の広さを局所領域毎に異ならせることも可能である。
[0050] また、上記の説明では、表示装置の背面または前面に視野角制御装置を配置した 例を説明したが、表示装置の背面と前面との両方に視野角制御装置を配置した構成 も、本発明の技術的範囲に含まれる。
[0051] また、上記の説明では、表示装置の具体例として、透過型液晶パネルを挙げたが、 表示装置はこれに限定されない。例えば、反射型または半透過型の液晶表示パネ ルを表示装置として用いることもできる。また、液晶表示パネルのような非発光型表示 装置に限らず、例えば、 CRT (Cathode Ray Tube)、プラズマディスプレイ、有機 EL ( Electronic Luminescence)素子、無機 EL素子、 LED (Light Emitting Diode)ディスプ レイ、蛍光表示管(Vacuum Fluorescent Display)、電界放出ディスプレイ(Field Emis sion Display)、表 界アイスプレイ (Surface-conduction Electron-emitter Display) 等の自発光型表示装置を用いることもできる。
[0052] 図 11は、表示装置として、反射型の液晶表示パネルを用いた場合の構成例である 。図 11に示す液晶ディスプレイ 300は、反射型液晶表示パネル 30の前面 (観察者側 )に、視野角制御用液晶パネル 2を配置した構成である。反射型液晶表示パネル 30 は、観察者と反対側の基板に反射板(図示せず)を備えた反射型液晶セル 31と、反 射型液晶セル 31の上面に配置された偏光板 32とを備えている。反射型液晶セルの 構造および動作は周知であるため、ここでは詳細な説明を省略する。液晶ディスプレ ィ 300では、反射型液晶表示パネル 30の偏光板 32と、視野角制御用液晶パネル 2 ( 液晶セル 21および偏光板 22)との積層体が、液晶ディスプレイ 100に関して図 2 (a) および (b)に示した積層体と同等に機能する。従って、図 11に示す液晶ディスプレイ 300におレ、ても、液晶ディスプレイ 100と同様に、視野角制御用液晶パネル 2の液晶 セル 21に印加する電圧を、 V , Vの少なくとも二段階に切替えることにより、液晶デ
H L
イスプレイ 300の表示状態を広視野角と狭視野角との間で切替えることができる。
[0053] また、図 12は、表示装置として、例えば EL素子等の自発光型表示装置を用いた場 合の構成例である。図 12に示すディスプレイ 400は、 自発光型表示装置 40の前面( 観察者側)に、視野角制御用液晶パネル 2を配置した構成である。この場合は、視野 角制御用液晶パネル 2は、液晶セル 21の表裏に、一対の偏光板 22, 23を備えてい る。偏光板 22, 23の偏光透過軸は、互いに略直交するよう配置されている。ディスプ レイ 400では、視野角制御用液晶パネル 2 (液晶セル 21および偏光板 22, 23)が、 液晶ディスプレイ 100に関して図 2 (a)および (b)に示した積層体と同等に機能する。 従って、図 12に示すディスプレイ 400においても、液晶ディスプレイ 100と同様に、 視野角制御用液晶パネル 2の液晶セル 21に印加する電圧を、 V , Vの少なくとも二
H
段階に切替えることにより、ディスプレイ 400の表示状態を広視野角と狭視野角との 間で切替えることができる。
[0054] なお、上記の実施形態のいずれにおいても、ディスプレイの表示状態が狭視野角 であるときに、ユーザにその旨を知らせるためのメッセージ、画像、またはアイコン等 を、表示装置の画面に表示するようにしても良い。
[0055] また、上記の実施形態のいずれにおいても、表示装置で表示される画像の内容に 応じて視野角制御装置の駆動回路が動作し、狭視野角と広視野角とを自動的に切 替えるようにしても良い。例えば、ディスプレイがインターネットのウェブページを見る ために用いられる場合、ウェブページの内容に応じて各ページに関連付けられたソ フトウェアフラッグを参照し、他人から見られないことが好ましい内容である場合等に、 狭視野角の表示状態に自動的に切替えるようにしても良い。また、ブラウザが暗号化 モードで起動された場合に、狭視野角の表示状態へ切替えるようにしても良い。
[0056] また、ディスプレイ力 S、データ入力装置の一部である場合、またはデータ入力装置と 関連し、入力されているデータタイプまたは入力されようとするデータタイプが機密性 を有するものである場合等に、ディスプレイの表示状態を狭視野角に切替えるよう調 整することも可能である。例えば、ユーザが何らかの個人識別番号を入力したとき等 に、ディスプレイが自動的に狭視野角に切替わるようにすれば良い。
[0057] なお、上記の実施形態のいずれにおいても、視野角制御装置は、表示装置から取 り外しが可能なモジュールまたはカバーとして形成されても良レ、。そのような取り外し 可能なモジュールは、表示装置に取り付けられたときに、表示装置に電気的に接続 されることによって、適切な電力と制御信号を得ることができる。 [0058] また、上記の実施形態のいずれにおいても、ディスプレイの周囲光を測定する光学 センサ(アンビエントセンサ)をさらに備え、光学センサの測定値が所定の閾値を下回 るときに、ディスプレイの表示状態を狭視野角とすることも好ましレ、。
[0059] なお、本発明に力、かるディスプレイおよび視野角制御装置の用途は多岐に亘る。
例えば、ノート型パーソナルコンピュータ、携帯型情報端末 (PDA)、携帯型ゲーム 機、または携帯電話等のディスプレイに適用されるだけでなぐ ATM (現金自動受け 払い機)、公共の場に設置される情報端末、券売機、および車載用ディスプレイ等、 様々な機器のディスプレイに適用される。
[0060] また、本発明にかかる視野角制御装置は、ディスプレイに組み込まれた状態で実 施されることもある力 S、ディスプレイの部品として、視野角制御装置単体で製造され、 流通する可能'性もある。
産業上の利用分野
[0061] 本発明は、広視野角と狭視野角とを切替えることにより様々な使用環境や用途に適 応可能なディスプレイと、これに用いられる視野角制御装置として、産業上利用可能 である。

Claims

請求の範囲
[1] 表示すべき画像に応じて駆動される表示装置と、
前記表示装置の背面および前面の少なくとも一方に配置され、前記表示装置の視 野角を制御する視野角制御装置とを備えたディスプレイであって、
前記視野角制御装置は、一対の透光性基板間に液晶分子を垂直配向させた液晶 層を有する液晶セルと、前記液晶層へ電圧を印加する駆動回路とを備え、
前記液晶セルは、当該ディスプレイ内で、偏光透過軸が略直交するよう配置された
2枚の偏光板の間に配置され、
前記駆動回路が、前記視野角制御装置の液晶層の液晶分子の配列状態を変化さ せることにより、表示状態を、第 1の視野角範囲を提供する第 1の状態と、第 1の視野 角範囲内にあり第 1の視野角範囲よりも狭い第 2の視野角範囲を提供する第 2の状 態との間で切替え可能とすることを特徴とするディスプレイ。
[2] 前記 2枚の偏光板が、それぞれの偏光透過軸が 80° 〜: 100° の範囲で交差する ように配置された、請求項 1に記載のディスプレイ。
[3] 前記表示装置が、直線偏光を出射する表示装置であって、
前記 2枚の偏光板のうち 1枚が、前記表示装置に設けられた偏光板である、請求項
1または 2に記載のディスプレイ。
[4] 前記表示装置が透過型液晶表示装置であり、バックライトをさらに備えた、請求項 3 に記載のディスプレイ。
[5] 前記視野角制御装置が、前記バックライトと前記透過型液晶表示装置との間に配 置された、請求項 4に記載のディスプレイ。
[6] 前記視野角制御装置が、前記透過型液晶表示装置の前面に配置された、請求項
4に記載のディスプレイ。
[7] 前記表示装置が、反射型液晶表示装置または半透過型液晶表示装置である、請 求項 3に記載のディスプレイ。
[8] 前記表示装置が、 自発光型表示装置であって、
前記 2枚の偏光板のうち 1枚は、前記自発光型表示装置と前記視野角制御装置と の間に設けられている、請求項 1または 2に記載のディスプレイ。
[9] 前記偏光板の偏光透過軸が、前記視野角制御装置の法線方向から見た前記液晶 分子の配向軸と、 40° 〜50° の範囲で交差するように配置された、請求項 1〜8の いずれか一項に記載のディスプレイ。
[10] 前記視野角制御装置と前記 2枚の偏光板との間の少なくとも 1箇所に位相差フィル ムを備えた、請求項 1〜9のいずれか一項に記載のディスプレイ。
[11] 前記視野角制御装置の液晶層に、ポジ型ネマティック液晶またはネガ型ネマテイツ ク液晶を用いた、請求項 1〜: 10のいずれか一項に記載のディスプレイ。
[12] 表示すべき画像に応じて駆動され直線偏光を出射する表示装置の背面および前 面の少なくとも一方に配置され、前記表示装置の視野角を制御するために用いられ る視野角制御装置であって、
一対の透光性基板間に液晶分子を垂直配向させた液晶層を有する液晶セルと、 前記液晶層へ電圧を印加する駆動回路と、
前記液晶セルにおいて前記表示装置からの直線偏光を入射する面の反対側に設 けられ、当該直線偏光の偏波面に略直交する偏光透過軸を有する偏光板とを備え、 前記駆動回路が、前記液晶層の液晶分子の配列状態を変化させることにより、光 の出射範囲を、第 1の視野角範囲と、第 1の視野角範囲内にあり第 1の視野角範囲よ りも狭い第 2の視野角範囲との間で切替え可能とすることを特徴とする視野角制御装 置。
[13] 表示すべき画像に応じて駆動される自発光型表示装置の前面に配置され、前記自 発光型表示装置の視野角を制御するために用いられる視野角制御装置であって、 一対の透光性基板間に液晶分子を垂直配向させた液晶層を有する液晶セルと、 前記液晶層へ電圧を印加する駆動回路と、
前記一対の透光性基板の外側に、偏光透過軸が略直交するよう設けられた一対の 偏光板とを備え、
前記駆動回路が、前記液晶層の液晶分子の配列状態を変化させることにより、光 の出射範囲を、第 1の視野角範囲と、第 1の視野角範囲内にあり第 1の視野角範囲よ りも狭い第 2の視野角範囲との間で切替え可能とすることを特徴とする視野角制御装 置。
PCT/JP2007/052609 2006-02-17 2007-02-14 ディスプレイおよびそれに用いられる視野角制御装置 WO2007094358A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-041430 2006-02-17
JP2006041430 2006-02-17

Publications (1)

Publication Number Publication Date
WO2007094358A1 true WO2007094358A1 (ja) 2007-08-23

Family

ID=38371537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052609 WO2007094358A1 (ja) 2006-02-17 2007-02-14 ディスプレイおよびそれに用いられる視野角制御装置

Country Status (1)

Country Link
WO (1) WO2007094358A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054433B2 (en) 2007-03-16 2011-11-08 Sharp Kabushiki Kaisha Viewing angle control device and display provided with the same
US8199139B2 (en) 2007-03-16 2012-06-12 Sharp Kabushiki Kaisha Viewing angle control device and display provided with the same
WO2018221413A1 (ja) * 2017-05-29 2018-12-06 富士フイルム株式会社 表示装置
CN112327542A (zh) * 2019-10-25 2021-02-05 广东聚华印刷显示技术有限公司 显示装置及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105958A (ja) * 1995-10-13 1997-04-22 Sharp Corp 視野角可変素子およびそれを用いた視野角可変液晶表示装置
US20050286000A1 (en) * 2004-06-24 2005-12-29 Au Optronics Corp. Adjustable-viewing-angle liquid crystal display
JP2006201326A (ja) * 2005-01-19 2006-08-03 Seiko Epson Corp 液晶表示装置及び電子機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105958A (ja) * 1995-10-13 1997-04-22 Sharp Corp 視野角可変素子およびそれを用いた視野角可変液晶表示装置
US20050286000A1 (en) * 2004-06-24 2005-12-29 Au Optronics Corp. Adjustable-viewing-angle liquid crystal display
JP2006201326A (ja) * 2005-01-19 2006-08-03 Seiko Epson Corp 液晶表示装置及び電子機器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054433B2 (en) 2007-03-16 2011-11-08 Sharp Kabushiki Kaisha Viewing angle control device and display provided with the same
US8199139B2 (en) 2007-03-16 2012-06-12 Sharp Kabushiki Kaisha Viewing angle control device and display provided with the same
WO2018221413A1 (ja) * 2017-05-29 2018-12-06 富士フイルム株式会社 表示装置
CN110662996A (zh) * 2017-05-29 2020-01-07 富士胶片株式会社 显示装置
JPWO2018221413A1 (ja) * 2017-05-29 2020-02-27 富士フイルム株式会社 表示装置
US10747057B2 (en) 2017-05-29 2020-08-18 Fujifilm Corporation Display device
CN110662996B (zh) * 2017-05-29 2022-04-19 富士胶片株式会社 显示装置
CN112327542A (zh) * 2019-10-25 2021-02-05 广东聚华印刷显示技术有限公司 显示装置及其制备方法

Similar Documents

Publication Publication Date Title
WO2008001896A1 (fr) Dispositif d&#39;affichage et dispositif de contrôle de l&#39;angle du champ de vision utilisé pour ce dernier
JP6820417B2 (ja) 表示装置
US10782545B2 (en) Liquid crystal private device
JP4995195B2 (ja) 表示装置システム
US8045097B2 (en) Liquid crystal display device and viewing angle control module
JP4819122B2 (ja) 液晶表示装置及び視野角制御パネル
JP2008096458A (ja) ディスプレイおよびそれに用いられる視野角制御装置
US7948580B2 (en) Liquid crystal display
JP2009020293A (ja) ディスプレイおよびそれに用いられる視野角制御装置
JP2005266215A (ja) 液晶表示装置および抵抗検出式タッチパネル
JP6887525B2 (ja) 表示装置
JP2008064790A (ja) ディスプレイおよびそれに用いられる視野角制御装置
JP2008090173A (ja) 表示装置
WO2007094358A1 (ja) ディスプレイおよびそれに用いられる視野角制御装置
WO2008047754A1 (fr) Dispositif d&#39;affichage et dispositif de commande d&#39;angle de vision associé
WO2007094390A1 (ja) ディスプレイおよびそれに用いられる視野角制御装置
JP2008299280A (ja) ディスプレイおよびそれに用いられる視野角制御装置
US8203671B2 (en) View angle controllable display device and terminal having the same
US7616278B2 (en) Liquid crystal displays
US20070132928A1 (en) Liquid crystal display having biaxial compensating film
WO2007094386A1 (ja) ディスプレイおよびそれに用いられる視野角制御装置
WO2007139193A1 (ja) ディスプレイおよびそれに用いられる視野角制御装置
JP2007114394A (ja) 表示装置
JP2006119291A (ja) 液晶表示装置
JP2008139583A (ja) ディスプレイおよびそれに用いられる視野角制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07714162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP