WO2007094258A1 - Method for producing isobutylene block copolymer - Google Patents

Method for producing isobutylene block copolymer Download PDF

Info

Publication number
WO2007094258A1
WO2007094258A1 PCT/JP2007/052374 JP2007052374W WO2007094258A1 WO 2007094258 A1 WO2007094258 A1 WO 2007094258A1 JP 2007052374 W JP2007052374 W JP 2007052374W WO 2007094258 A1 WO2007094258 A1 WO 2007094258A1
Authority
WO
WIPO (PCT)
Prior art keywords
isobutylene
polymer block
monomer
monomer component
carbon atoms
Prior art date
Application number
PCT/JP2007/052374
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuji Fukuda
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2008500478A priority Critical patent/JPWO2007094258A1/en
Publication of WO2007094258A1 publication Critical patent/WO2007094258A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • C08F297/08Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type polymerising mono-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a method for producing an isobutylene block copolymer. More specifically, the present invention relates to a process for producing an isobutylene block copolymer comprising a polymer block having isobutylene as a main component of monomer and excellent polymer characteristics and a polymer block having no isoprene as a main component of monomer.
  • An isobutylene-based block copolymer that also has a polymer block that has an isobutylene power and a polymer block that has an aromatic vinyl-based monomer power can be obtained by cationic polymerization of an aromatic butyl-based monomer such as isobutylene and styrene. It is known that it can be manufactured.
  • Patent Document 1 discloses a method for producing an isobutylene block copolymer in a mixed solvent in which methyl chloride and methylcyclohexane are combined.
  • Patent Document 2 also discloses a method for producing a block copolymer from isoprene and styrene in a mixed solvent having methylene chloride and hexane power.
  • Patent Document 3 discloses that isoptiyl in a mixed solvent in which primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms and aliphatic and Z or aromatic hydrocarbons are combined.
  • a method for producing a lenic block copolymer is disclosed. Further, as an effect of using such a solvent, it is disclosed that workability in the water washing step after polymerization is improved and that the solubility in water is low, so that waste water treatment after water washing can be performed relatively easily.
  • Patent Document 1 US Patent No. 4946899 Specification
  • Patent Document 2 Japanese Patent Publication No. 7-59601
  • Patent Document 3 Japanese Patent Laid-Open No. 11-349648
  • an object of the present invention is to provide a polymer having isobutylene as a main component of a monomer, which stably exhibits excellent mechanical properties and has a stable fluidity at the time of melting. It is an object of the present invention to provide a method for stably producing an isobutylene block copolymer composed of a polymer block containing no block and isobutylene as a main monomer component. Means for solving the problem
  • the present inventor has used at least one kind selected from primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms as a reaction solvent.
  • the present inventors have found that the above-mentioned problems can be solved by conducting a polymerization reaction under the condition that the amount of primary and Z or secondary alcohol having 3 to 8 carbon atoms present as impurities is 150 ppm or less. .
  • the present invention uses at least one kind selected from primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms as a reaction solvent, and has 3 to 3 carbon atoms present as impurities in the reaction solvent.
  • a polymerization initiator represented by the following general formula (1) in a state where the amount of primary and Z or secondary alcohol of 8 is 150 ppm or less, a monomer component (a) containing isobutylene as a main component in the presence of a polymerization initiator represented by the following general formula (1):
  • a polymer block comprising isobutylene as the main monomer component and isobutylene as the main monomer component, characterized by reacting with the monomer component (b) without isobutylene as the main component!
  • the present invention relates to a method for producing an isobutylene block copolymer having a polymer blocking power.
  • R 1 s represent the same or different hydrogen atoms or monovalent hydrocarbon groups having 1 to 6 carbon atoms.
  • R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or Represents a monovalent or polyvalent aliphatic hydrocarbon group,
  • X represents a halogen atom, an alkoxyl group having 1 to 6 carbon atoms, or a alkoxyl group having 1 to 6 carbon atoms, n is 1 to 6 (When multiple Xs are present, they may be the same or different.)
  • the present invention provides the above production method under the same conditions as the polymerization initiator, the monomer component (a) containing isobutylene as a main component, and the monomer component (b) containing no isobutylene as a main component.
  • the production lot of a polymer block having isobutylene as a main monomer component and an isobutylene block copolymer having a polymer block power not containing isobutylene as a main monomer component It relates to a method of stabilizing the quality of each.
  • the present invention is the same as the above-described production method, in which the charging ratio of the monomer component (a) containing the polymerization initiator and isobutylene as the main component and the monomer component (b) containing no isobutylene as the main component is the same.
  • An isobutylene block copolymer comprising a polymer block containing isobutylene as a monomer main component and a polymer block not containing isobutylene as a monomer main component, characterized in that it is carried out twice or more under conditions.
  • the present invention relates to a method for stabilizing the weight average molecular weight of each production lot.
  • the present invention is the same as the above-described production method in that the polymerization initiator, the monomer component (a) containing isobutylene as the main component, and the charge ratio of the monomer component (b) containing no isobutylene as the main component are the same.
  • An isobutylene block copolymer comprising a polymer block containing isobutylene as a monomer main component and a polymer block not containing isobutylene as a monomer main component, characterized in that it is carried out twice or more under conditions.
  • the present invention relates to a method for stabilizing mechanical characteristics for each production lot.
  • the present invention relates to the production method or the stabilization method, wherein the polymerization reaction is carried out in the presence of a Lewis acid.
  • the polymerization initiator represented by the general formula (1) is bis (1 chloro 1-methylethyl) benzene [C H (C (CH) C1)] or (1 chloro 1-methyl).
  • the above-described production method or stabilizing wherein the monomer component (b) containing no isobutylene as a main component is a monomer component containing an aromatic vinyl monomer as a main component.
  • the manufacturing method or the stabilization described above, wherein the aromatic bur monomer is at least one selected from the group consisting of styrene, p-methyl styrene, ⁇ -methyl styrene, and indene force.
  • the aromatic bur monomer is at least one selected from the group consisting of styrene, p-methyl styrene, ⁇ -methyl styrene, and indene force.
  • an isobutylene-based block copolymer is a polymer block mainly composed of an aromatic vinyl-based monomer.
  • a polymer block mainly composed of isobutylene is a main component composed of an aromatic butyl-based monomer.
  • Polymer block force to be formed Triblock copolymer formed, polymer block mainly composed of isobutylene, polymer block mainly composed of aromatic butyl monomer From polymer block composed mainly of isobutylene
  • the triblock copolymer to be formed, and the polymer block force mainly composed of an aromatic vinyl monomer, the polymer block force mainly composed of sobutylene, and the diblock copolymer force formed are selected from the group There are at least one of the above production methods or stabilization methods.
  • Preferred embodiments include primary monohalogen hydrocarbons having 3 to 8 carbon atoms and monohalogen hydrocarbons having secondary monohalogen hydrocarbon power having 3 to 8 carbon atoms.
  • the production method or the stabilization method described above which is at least one selected from the group consisting of monohalogenated hydrocarbon solvent power 1-chloropropane and 1 chlorobutane power.
  • the non-halogenated hydrocarbon solvent is at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane force.
  • hexane cyclohexane
  • methylcyclohexane methylcyclohexane
  • ethylcyclohexane force ethylcyclohexane force
  • the present invention uses at least one kind selected from primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms as a reaction solvent, and the number of carbons present as impurities in the reaction solvent.
  • the monomer component (a) having isobutylene as the main component and the monomer component (b) not having isobutylene as the main component can be obtained by a method of reacting.
  • the present invention relates to a polymer block having isobutylene as a main component of monomer and an isobutylene block copolymer having a polymer blocking force not having isobutylene as a main component of monomer.
  • a polymer block comprising isobutylene as a main monomer component, which stably exhibits excellent mechanical properties and has stable fluidity upon melting.
  • An isobutylene block copolymer composed of a polymer block containing no isobutylene as a main monomer component can be stably obtained. For this reason, it is possible to obtain a molded product with less variation in properties such as processability and mechanical strength without greatly changing the properties of the polymer every polymerization.
  • At least one selected from primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms is used as a reaction solvent, and carbon existing as an impurity in the reaction solvent.
  • (a) is reacted with a monomer component (b) which does not contain isobutylene as a main component.
  • R 1 are the same or different and each represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 2 represents a monovalent or polyvalent aromatic hydrocarbon.
  • X represents a halogen atom, an alkoxyl group having 1 to 6 carbon atoms, or a monovalent or polyvalent aliphatic hydrocarbon group, or Represents a 1 to 6 carbon atom xyl group.
  • n represents an integer of 1 to 6. When there are a plurality of X, they may be the same or different.
  • the monomer component (b) containing no isobutylene as a main component is preferably a monomer component having an isobutylene content of 30% by weight or less, more preferably 10% by weight or less. More preferably, it is 3% by weight or less. This is because when the isobutylene content is 30% or more, excellent mechanical strength is not exhibited.
  • the monomer other than isobutylene in the monomer component (b) that is not mainly composed of isobutylene of the present invention is not particularly limited as long as it is a cationically polymerizable monomer, but aliphatic olefins And monomers such as aromatic burs, gens, bur ethers, silanes, burcarbazole, 13-vinene, and acenaphthylene. These can be used alone or in combination of two or more.
  • the aliphatic olefin-based monomer is not particularly limited.
  • the aromatic bur monomer is not particularly limited, and examples thereof include styrene, o-, m- or p-methylstyrene, ⁇ -methylstyrene, 13-methylolstyrene, 2,6 dimethylstyrene, 2, 4 Dimethylstyrene, ⁇ -methyl- ⁇ -methylstyrene, ⁇ -methyl-m-methylstyrene, ⁇ -methyl- ⁇ -methylstyrene, j8-methyl- ⁇ -methylstyrene, ⁇ -methyl-m-methylstyrene, 13-methyl-p-methyl Styrene, 2, 4, 6 Trimethylstyrene, ⁇ -Methyl-2,6 Dimethylstyrene, ⁇ -Methyl-2,4 Dimethylstyrene, 13-Methyl-2,6 Dimethylstyrene, 13-Methyl-2,4 Dimethylstyrene, o-, m-
  • the gen-based monomer is not particularly limited, and examples thereof include butadiene, isoprene, cyclopentagen, cyclohexagen, dicyclopentagen, divininolebenzene, and ethylidene norbornene.
  • the butyl ether monomer is not particularly limited.
  • the silane compound is not particularly limited. Examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, trivinylmethylsilane, ⁇ -methacryloyloxypropyltrimethoxysilane, and ⁇ -methacryloyloxypropylmethyldimethoxysilane.
  • the monomer component (b) that does not contain isobutylene of the present invention as a main component is a monomer component that contains an aromatic vinyl monomer as a main component from the viewpoint of physical properties and polymerization characteristics. I like it.
  • the monomer component mainly composed of the aromatic bur monomer of the present invention preferably has an aromatic vinyl monomer content of 60% by weight or more, preferably 80% by weight or more. Is more preferable.
  • the monomer component (a) containing isobutylene as a main component may or may not contain a monomer other than isobutylene as a monomer component. % Or more, preferably 80% by weight or more.
  • the monomer other than isobutylene is not particularly limited as long as it is a monomer capable of cationic polymerization.
  • Monomers such as aliphatic olefins, aromatic burs, gens, bur ethers, silanes, bur carbazole, ⁇ -vinene, and acenaphthylene. These may be used alone or in combination of two or more.
  • the ratio of the polymer block mainly composed of isobutylene and the polymer block composed mainly of aromatic butyl but also having a component power is not particularly limited, but isobutylene is mainly used from the viewpoint of various physical properties. It is preferable that the polymer block as a component is 40 to 95% by weight, and the polymer block having a monomer component power mainly composed of aromatic vinyl is 5 to 60% by weight. It is particularly preferable that the polymer block is 50 to 85% by weight, and the polymer block having a monomer component power mainly composed of aromatic bur is 15 to 50% by weight.
  • the weight average molecular weight of the isobutylene-based block copolymer is not particularly limited, but the surface strength such as fluidity, property, property, etc. is 10,000 to 500,000. , Preference for power, which is between 30000 and 400000.
  • the weight average molecular weight of the isobutylene-based block copolymer is lower than the above range, the mechanical properties are not sufficiently expressed! On the other hand, when it exceeds the above range, the fluidity, It is disadvantageous in terms of workability.
  • the above weight average molecular weight is determined by gel permeation chromatography (GPC) system manufactured by Waters (column: Shodex K-804, K 802.5 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black mouth form). It is the value measured using.
  • GPC gel permeation chromatography
  • an isobutylene block copolymer As the block copolymer, from the viewpoint of physical properties, a polymer block-isobutylene containing an aromatic vinyl monomer as a main component is the main component.
  • the compound represented by the general formula (1) serves as an initiator and serves as a starting point for cationic polymerization.
  • a plurality of R 1 may be the same or different and represents a monovalent hydrocarbon group having a hydrogen atom or 1 to 6 carbon atoms.
  • R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic hydrocarbon group.
  • X represents a halogen atom, an alkoxyl group having 1 to 6 carbon atoms, or a alkoxyl group having 1 to 6 carbon atoms.
  • n represents an integer of 1 to 6. When there are a plurality of X, they may be the same or different.
  • Examples of the compound of the general formula (1) used in the present invention include the following compounds.
  • Benzene is ( a -Black mouth isopropyl) benzene, (2-Chlo mouth one 2-Propyl) benzene, also called Tamil chloride, bis (1-Chlorone 1-Methyleno Ethino) ) Benzene is bis ( ⁇ -chloro-isopropinole) benzene, bis (2-chloro 1-propyl) benzene!
  • Is also called dicmilk mouth-ride, and tris (1-chloro 1-methinore ethinore) benzene is It is also called tris ( ⁇ -chloropropyl) benzene, tris (2-chloro-2-propyl) benzene or tritamilk chloride.
  • a Lewis acid catalyst may be allowed to coexist.
  • Such Lewis acid may be any one that can be used for cationic polymerization. TiCl, TiBr, BC1, BF, BF-OEt, SnCl, SbCl, SbF, WC1, TaCl, V
  • Metal halides such as CI, FeCl, ZnBr, AlCl, AlBr; Et A1C1, EtAlCl, etc.
  • Organometallic halides can be suitably used (Et represents an ethyl group).
  • TiCl, BC1, and SnCl are used when considering the ability as a catalyst and industrial availability.
  • the amount of Lewis acid used is not particularly limited, but can be set in view of the polymerization characteristics or polymerization concentration of the monomer used. Usually, 0.1 to L00 molar equivalent can be used with respect to the compound represented by the general formula (1), preferably in the range of 1 to 50 molar equivalent.
  • an electron donor component can be further present if necessary.
  • This electron donor component is believed to have the effect of stabilizing the growing carbon cation during cationic polymerization, and the addition of an electron donor produces a polymer with a narrow molecular weight distribution and a controlled structure. be able to.
  • the electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom. it can.
  • Examples of the electron donor component include 15 to 60 donors defined as one parameter representing the strength of various compounds as electron donors (electron donors). Specifically, 2,6 di-t-butylpyridine, 2 t-butylpyridine, 2,4,6 trimethylpyridine, 2,6 dimethylpyridine, 2-methylpyridine, pyridine, jetylamine, trimethylamine, triethylamine, tributylamine, N , N-dimethylaniline, N, N dimethylformamide, N, N dimethylacetamide, N, N dimethylacetamide, dimethyl sulfoxide, jetyl ether, methyl acetate, ethyl acetate, trimethyl phosphate, Xamethylphosphoric triamide, titanium ( ⁇ ) methoxide, titanium
  • Titanium alkoxides such as methoxide, titanium (IV) isopropoxide, titanium (IV) butoxide; aluminum alkoxides such as aluminum triethoxide and aluminum tributoxide, etc.
  • the electron donor component is used in a molar amount of 0.01 to LO times with respect to the polymerization initiator. Of these, 0.2
  • At the time of polymerization at least one selected from primary and secondary monohalogenated hydrocarbon powers having 38 carbon atoms is used as a reaction solvent.
  • the primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and the secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms are not particularly limited, and examples thereof include 1-chloropropane, 1-chloro-2-methinolevene.
  • a monohalogenated solvent having 3 carbon atoms a monohalogen solvent having 4 carbon atoms, a combination of a monohalogen solvent having 3 carbon atoms and a monohalogen solvent having 4 carbon atoms, or a monohalogen having 48 carbon atoms. It may be a combination of at least one of the solvents.
  • a monohalogenated solvent having 3 carbon atoms a monohalogen solvent having 4 carbon atoms
  • a combination of a monohalogen solvent having 3 carbon atoms and a monohalogen solvent having 4 carbon atoms a monohalogen having 48 carbon atoms. It may be a combination of at least one of the solvents.
  • 1-chloropropane and Z or 1-chlorobutane it is particularly preferable to use 1-chloropropane and Z or 1-chlorobutane. Chlorobutane is preferred!
  • reaction solvent in consideration of the balance of the polymerization characteristics of the monomers constituting the block copolymer and the solubility of the polymer to be produced, primary grades with 3 to 8 carbon atoms and Z or secondary grades
  • alkylbenzenes such as benzene, toluene, xylene, ethylbenzene, propylbenzene, butylbenzene; ethane, propane, butane, Linear aliphatic hydrocarbons such as pentane, neopentane, hexane, heptane, octane, nonane, decane; 2-methylpropane, 2-methylbutane, 2, 3, 3-trimethylpentane, 2, 2, 5 —Branched aliphatic hydrocarbons such as trimethylhexane; Cycloaliphatic hydrocarbons such as cyclohexane, methylcyclohexane, and
  • Two or more of these may be used.
  • Z or aromatic hydrocarbons in a mixed solvent with a non-halogen hydrocarbon solvent improving the workability in the washing process after polymerization and facilitating wastewater treatment after washing Sexual power is preferable. From the balance of solubility, cost, dielectric constant, etc.
  • At least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, ethyl cyclohexane, toluene and xylene power is preferred.
  • Particularly preferred is at least one selected from the group consisting of xane, methylcyclohexane and ethylcyclohexane.
  • a monohalogenated hydrocarbon solvent composed of a primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and Z or a secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms, and an aliphatic hydrocarbon Primary monohalogenated hydrocarbons having 3 to 8 carbon atoms and Z or carbon numbers 3 to 3 in a mixed solvent in combination with elemental and Z or non-halogenated hydrocarbon solvents that are aromatic hydrocarbon power
  • the content of the secondary monohalogenated hydrocarbon solvent of No. 8 has a desired dielectric constant! /, May be set so that the solubility of the block copolymer can be obtained.
  • % By weight preferably 20 to 95% by weight.
  • the amount of the solvent used is a force determined in consideration of the viscosity of the resulting polymer solution and the ease of heat removal.
  • the concentration of the polymer is 1 to 50% by weight, preferably 5 It should be ⁇ 35% by weight.
  • a polymerization initiator is used to adjust the amount of primary and Z or secondary alcohols having 3 to 8 carbon atoms present as impurities in the reaction solvent.
  • the compound represented by the general formula (1) and a monomer component mainly composed of an aromatic vinyl monomer may be used.
  • a Lewis acid is added as necessary to initiate polymerization, and the polymerization of the added monomer component is substantially At the end of the process, the other monomer component is added to the reaction solution and polymerized. If necessary, after the polymerization is substantially completed, another monomer component may be added to continue the polymerization.
  • a primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and a secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms, which are used as a reaction solvent in the polymerization, are prepared and stored. Depending on the state, it may contain primary and Z or secondary alcohols with the same carbon number as impurities. This alcoholic impurity force affects the polymerization reaction.
  • the amounts of primary and secondary alcohols having 3 to 8 carbon atoms (hereinafter referred to as “impurity amount”) present as impurities in the reaction solvent measured by a calibration curve method using gas chromatography.
  • the reaction is conducted at 150 ppm or less, preferably 10 ppm or less, more preferably 50 ppm or less.
  • the calibration curve method is to obtain a peak area corresponding to the alcohol in the gas chromatogram of a reaction solvent having several known alcohol concentrations, draw a calibration curve from the alcohol concentration and the peak area, and obtain the calibration curve.
  • the concentration is quantified from the peak area corresponding to the alcohol in the chromatogram of the reaction solvent with an unknown alcohol concentration.
  • the amount of impurities When the amount of impurities is higher than 150 ppm, the polymer obtained tends to be significantly lower than the tensile strength of the polymer obtained under the same reaction conditions except that the amount of impurities is 150 ppm or less, and the amount of molecules tends to be lower. is there.
  • a primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and a monohalogenated hydrocarbon having 3 to 8 secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms examples include 1 propanol, 2 methylpropanol, 1-butanol, 2-methylbutanol, 3-methylbutanol, 2,2 dimethylbutanol, 3,3 dimethyl Butanol, 2, 3 Dimethylbutanol , Pentanol, 2-methylpentanol, 3-methylpentanol, 4-methylpentanol mono-ole, hexanol, 2-methino hexanol, 3-methino hexanol, 1-chloro-4-methyl hexanol, 5-methyl hexanol, heptanol, There are octanol, 2-propanol, 2-butanol, 2-pentanol, 2-hex
  • the temperature range is from 80 ° C to 1-30 ° C.
  • the isobutylene block copolymer of the present invention has a reinforcing agent, a filler, an antioxidant, an ultraviolet absorber, a light stabilizer, and the like within a range that does not impair the physical properties according to the required characteristics according to each application.
  • Pigments, surfactants, reaction retarders, flame retardants, fillers, reinforcing agents, and the like can be appropriately blended.
  • the antioxidant is not particularly limited, and examples thereof include hindered phenols and hindered amines.
  • the isobutylene-based block copolymer and the composition containing the same can be molded using a molding method and a molding apparatus generally employed for thermoplastic resin, such as extrusion molding, injection molding, press It can be melt molded by molding, blow molding or the like.
  • the isobutylene block copolymer and the composition containing the same produced by the method according to the present invention can be used for various applications similar to those of the conventional isobutylene block copolymer.
  • elastomer materials modifiers such as resin, rubber, asphalt, adhesive base polymer, grease modifier, knocking materials, sealing materials, sealing materials such as gaskets, plugs, tubes, pipes, etc.
  • Tubular molded products dampers for weak electrical equipment such as CD dampers, dampers for construction, damping materials for automobiles, vehicles, home appliances, etc., cushioning materials, daily necessities, electrical parts, electronic parts, It can be suitably used as a sports member, grip or cushioning material, electric wire covering material, packaging material, various containers, and stationery parts.
  • a 2 mm thick press sheet was punched into a No. 3 type with a dumbbell to prepare a test piece, which was used to measure the tensile strength at break.
  • the tensile speed was 500 mmZ.
  • the isoprene monomer was fed into the polymerization vessel by nitrogen pressure.
  • p Dicumyl chloride 0.495 g (2.14 mmol) and N, N, -dimethylacetamide 0.932 g (10.7 mmol) were added.
  • 6.6 mL (59.9 mmol) of titanium tetrachloride was further added to initiate polymerization.
  • about 1 mL of the polymerization solution was sampled to confirm the reaction rate.
  • 59.5 g (571.4 mmol) of styrene monomer was added into the polymerization vessel. 60 minutes after adding the mixed solution, the reaction was terminated by adding a large amount of water.
  • the reaction solution was washed twice with water, the solvent was evaporated, and the resulting polymer was vacuum-dried at 60 ° C for 24 hours.
  • the desired block copolymer was obtained by drying.
  • the weight average molecular weight of the obtained block copolymer was measured by the above method.
  • the obtained block copolymer was melt kneaded at 180 ° C with a Laboplast mill (manufactured by Toyo Seiki Seisakusho), and the resulting kneaded product was 170 at a compression molding machine (manufactured by Shinto Metal Industry).
  • a 2 mm thick sheet was obtained by press molding at ° C. Using the obtained sheet, a test piece was prepared according to the above method, and the tensile strength was measured.
  • Table 1 shows the measurement results of the amount of alcohol, which is an impurity in the reaction solvent, the weight average molecular weight, and the tensile strength, measured by the above method.
  • Example 1 Polymerization was carried out in the same manner as in Example 1 except that a polymerization solvent having a different amount of butanol was used. Table 1 shows the measurement results of the alcohol amount, weight average molecular weight, and tensile strength in the reaction solvent measured by the above method.
  • Example 1 Polymerization was carried out in the same manner as in Example 1 except that a polymerization solvent having a different amount of butanol was used. Table 1 shows the measurement results of the alcohol amount, weight average molecular weight, and tensile strength in the reaction solvent measured by the above method.
  • a press sheet was produced from the obtained block copolymer in the same manner as in Example 1, and the tensile strength was measured.
  • Table 2 shows the measurement results of the alcohol content, weight average molecular weight, and tensile strength in the reaction solvent measured by the above method.
  • Weight average molecular weight 1 22000 1 0 5000
  • the isoprene-based block copolymer obtained by the production method of the present invention is composed of primary and Z or secondary carbon atoms of 38 and present as impurities in the reaction solvent.
  • the amount of alcohol is 150 ppm or more
  • the tensile strength is stably high.
  • the flowability at the time of melting shows a stable value with a high weight average molecular weight and a low low molecular weight component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerization Catalysts (AREA)

Abstract

Disclosed is a method for producing an isobutylene block copolymer which is composed of a polymer block wherein the main monomer component is isobutylene and another polymer block wherein the main monomer component is not isobutylene. The isobutylene block copolymer stably exhibits excellent mechanical characteristics, while having stable fluidity when melted. In this method, a monomer component (a) mainly containing isobutylene and a monomer component (b) not mainly containing isobutylene are reacted by using, as a reaction solvent, at least one substance selected from primary and secondary monohalogenated hydrocarbons having 3-8 carbon atoms in the presence of a polymerization initiator having a specific structure, while maintaining the amount of primary and/or secondary alcohols having 3-8 carbon atoms present in the reaction solvent as impurities to 150 ppm or less.

Description

明 細 書  Specification
イソブチレン系ブロック共重合体の製造方法  Method for producing isobutylene block copolymer
技術分野  Technical field
[0001] 本発明はイソブチレン系ブロック共重合体の製造方法に関する。更に詳細には、機 械的特性に優れたイソブチレンを単量体主成分とする重合体ブロックとイソプチレン を単量体主成分としない重合体ブロックからなるイソブチレン系ブロック共重合体の 製造方法に関する。  The present invention relates to a method for producing an isobutylene block copolymer. More specifically, the present invention relates to a process for producing an isobutylene block copolymer comprising a polymer block having isobutylene as a main component of monomer and excellent polymer characteristics and a polymer block having no isoprene as a main component of monomer.
背景技術  Background art
[0002] イソブチレンとスチレン等の芳香族ビュル系単量体をカチオン重合することにより、 イソブチレン力 なる重合体ブロック及び芳香族ビニル系単量体力 なる重合体ブロ ックカもなるイソブチレン系ブロック共重合体を製造できることが知られて 、る。例え ば、特許文献 1には、塩化メチルとメチルシクロへキサンを組み合わせた混合溶媒中 でのイソブチレン系ブロック共重合体の製造方法が開示されている。また、特許文献 2にも、塩化メチレンとへキサン力もなる混合溶媒中におけるイソプチレンとスチレン からのブロック共重合体の製造方法が示されて 、る。  [0002] An isobutylene-based block copolymer that also has a polymer block that has an isobutylene power and a polymer block that has an aromatic vinyl-based monomer power can be obtained by cationic polymerization of an aromatic butyl-based monomer such as isobutylene and styrene. It is known that it can be manufactured. For example, Patent Document 1 discloses a method for producing an isobutylene block copolymer in a mixed solvent in which methyl chloride and methylcyclohexane are combined. Patent Document 2 also discloses a method for producing a block copolymer from isoprene and styrene in a mixed solvent having methylene chloride and hexane power.
[0003] さらに、特許文献 3には、炭素数 3〜8の 1級及び Z又は 2級のモノハロゲンィ匕炭化 水素と脂肪族及び Z又は芳香族系炭化水素を組み合わせた混合溶媒中でイソプチ レン系ブロック共重合体の製造方法が開示されている。また、このような溶媒を用いる 効果として、重合した後の水洗工程における作業性が向上し、さらに水への溶解度 が低 、ことから、水洗後の排水処理が比較的容易に行えることが開示されて 、る。  [0003] Further, Patent Document 3 discloses that isoptiyl in a mixed solvent in which primary and Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms and aliphatic and Z or aromatic hydrocarbons are combined. A method for producing a lenic block copolymer is disclosed. Further, as an effect of using such a solvent, it is disclosed that workability in the water washing step after polymerization is improved and that the solubility in water is low, so that waste water treatment after water washing can be performed relatively easily. And
[0004] しかし、これら特許文献に記載の方法でイソプチレン力 なる重合体ブロック及び芳 香族ビュル系単量体力 なる重合体ブロック力 なる芳香族ビュル系単量体を主成 分とする重合体ブロック イソブチレンを主成分とする重合体ブロック一芳香族ビ- ル系単量体を主成分とする重合体ブロックから形成されるトリブロック共重合体を製 造した場合に、得られたトリブロック共重合体の、引張強度に代表される機械的特性 が一定せず、著しく低下する場合もあった。 [0004] However, a polymer block mainly composed of a polymer block having isoprene power and a polymer block power having aromatic bull monomer power by the methods described in these patent documents. When a triblock copolymer formed from a polymer block composed mainly of an isobutylene-based polymer block and an aromatic building block monomer is produced, the resulting triblock copolymer In some cases, the mechanical properties represented by the tensile strength of the coalescence were not constant and could deteriorate significantly.
特許文献 1:米国特許第 4946899号明細書 特許文献 2:特公平 7 - 59601号公報 Patent Document 1: US Patent No. 4946899 Specification Patent Document 2: Japanese Patent Publication No. 7-59601
特許文献 3:特開平 11― 349648号公報  Patent Document 3: Japanese Patent Laid-Open No. 11-349648
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 本発明の目的は、上記従来技術の問題点に鑑みて、優れた機械的特性を安定的 に示し、溶融時の流動性が安定した、イソブチレンを単量体主成分とする重合体プロ ックとイソブチレンを単量体主成分としない重合体ブロックからなるイソブチレン系ブ ロック共重合体を安定的に製造する方法を提供することを目的とするものである。 課題を解決するための手段 [0005] In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a polymer having isobutylene as a main component of a monomer, which stably exhibits excellent mechanical properties and has a stable fluidity at the time of melting. It is an object of the present invention to provide a method for stably producing an isobutylene block copolymer composed of a polymer block containing no block and isobutylene as a main monomer component. Means for solving the problem
[0006] 本発明者は、鋭意研究を重ねた結果、反応溶媒として炭素数 3〜8の 1級及び 2級 のモノハロゲンィ匕炭化水素力も選ばれる 1種を少なくとも用いて、この反応溶媒中に 不純物として存在する炭素数 3〜8の 1級及び Z又は 2級アルコール量が 150ppm 以下である条件で重合反応を行うことにより、前記課題を解決できることを見出し、本 発明に至ったものである。 [0006] As a result of extensive research, the present inventor has used at least one kind selected from primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms as a reaction solvent. The present inventors have found that the above-mentioned problems can be solved by conducting a polymerization reaction under the condition that the amount of primary and Z or secondary alcohol having 3 to 8 carbon atoms present as impurities is 150 ppm or less. .
[0007] すなわち、本発明は、反応溶媒として炭素数 3〜8の 1級及び 2級のモノハロゲン化 炭化水素から選ばれる 1種を少なくとも用い、反応溶媒中に不純物として存在する炭 素数 3〜8の 1級及び Z又は 2級アルコール量が 150ppm以下の状態で、下記一般 式(1)で表わされる重合開始剤の存在下に、イソブチレンを主成分とする単量体成 分 (a)と、イソブチレンを主成分としな!/ヽ単量体成分 (b)とを反応させることを特徴とす る、イソブチレンを単量体主成分とする重合体ブロックとイソブチレンを単量体主成分 としない重合体ブロック力 なるイソブチレン系ブロック共重合体の製造方法に関す る。 [0007] That is, the present invention uses at least one kind selected from primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms as a reaction solvent, and has 3 to 3 carbon atoms present as impurities in the reaction solvent. In the presence of a polymerization initiator represented by the following general formula (1) in a state where the amount of primary and Z or secondary alcohol of 8 is 150 ppm or less, a monomer component (a) containing isobutylene as a main component in the presence of a polymerization initiator represented by the following general formula (1): A polymer block comprising isobutylene as the main monomer component and isobutylene as the main monomer component, characterized by reacting with the monomer component (b) without isobutylene as the main component! The present invention relates to a method for producing an isobutylene block copolymer having a polymer blocking power.
[0008] [化 2]  [0008] [Chemical 2]
Figure imgf000003_0001
[0009] (式中、複数の R1は、同一又は異なる、水素原子又は炭素数 1〜6の 1価の炭化水素 基を表す。 R2は、 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価脂肪族 炭化水素基を表す。 Xは、ハロゲン原子、炭素数 1〜6のアルコキシル基、又は、炭 素数 1〜6のァシ口キシル基を表す。 nは、 1〜6の整数を表す。 Xが複数存在すると き、それらは、同一であっても異なっていてもよい。 )
Figure imgf000003_0001
(Wherein a plurality of R 1 s represent the same or different hydrogen atoms or monovalent hydrocarbon groups having 1 to 6 carbon atoms. R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or Represents a monovalent or polyvalent aliphatic hydrocarbon group, X represents a halogen atom, an alkoxyl group having 1 to 6 carbon atoms, or a alkoxyl group having 1 to 6 carbon atoms, n is 1 to 6 (When multiple Xs are present, they may be the same or different.)
また本発明は、上記製造方法を、重合開始剤、イソブチレンを主成分とする単量体 成分 (a)及びイソブチレンを主成分としな 、単量体成分 (b)の仕込み比率が同じ条 件下で、 2回以上実施することを特徴とする、イソブチレンを単量体主成分とする重 合体ブロックとイソブチレンを単量体主成分としない重合体ブロック力 なるイソブチ レン系ブロック共重合体の製造ロット毎の品質を安定させる方法に関する。  Further, the present invention provides the above production method under the same conditions as the polymerization initiator, the monomer component (a) containing isobutylene as a main component, and the monomer component (b) containing no isobutylene as a main component. The production lot of a polymer block having isobutylene as a main monomer component and an isobutylene block copolymer having a polymer block power not containing isobutylene as a main monomer component It relates to a method of stabilizing the quality of each.
[0010] また本発明は、上記製造方法を、重合開始剤、イソブチレンを主成分とする単量体 成分 (a)及びイソブチレンを主成分としな 、単量体成分 (b)の仕込み比率が同じ条 件下で 2回以上実施することを特徴とする、イソブチレンを単量体主成分とする重合 体ブロックとイソブチレンを単量体主成分としない重合体ブロックからなるイソブチレ ン系ブロック共重合体の製造ロット毎の重量平均分子量を安定させる方法に関する。  [0010] Further, the present invention is the same as the above-described production method, in which the charging ratio of the monomer component (a) containing the polymerization initiator and isobutylene as the main component and the monomer component (b) containing no isobutylene as the main component is the same. An isobutylene block copolymer comprising a polymer block containing isobutylene as a monomer main component and a polymer block not containing isobutylene as a monomer main component, characterized in that it is carried out twice or more under conditions. The present invention relates to a method for stabilizing the weight average molecular weight of each production lot.
[0011] また本発明は、上記製造方法を、重合開始剤、イソブチレンを主成分とする単量体 成分 (a)及びイソブチレンを主成分としな 、単量体成分 (b)の仕込み比率が同じ条 件下で 2回以上実施することを特徴とする、イソブチレンを単量体主成分とする重合 体ブロックとイソブチレンを単量体主成分としない重合体ブロックからなるイソブチレ ン系ブロック共重合体の製造ロット毎の機械的特性を安定させる方法に関する。  [0011] Further, the present invention is the same as the above-described production method in that the polymerization initiator, the monomer component (a) containing isobutylene as the main component, and the charge ratio of the monomer component (b) containing no isobutylene as the main component are the same. An isobutylene block copolymer comprising a polymer block containing isobutylene as a monomer main component and a polymer block not containing isobutylene as a monomer main component, characterized in that it is carried out twice or more under conditions. The present invention relates to a method for stabilizing mechanical characteristics for each production lot.
[0012] 好ましい実施様態としては、重合反応を、ルイス酸を更に共存させて行うものである 前記の製造方法又は安定させる方法に関する。  [0012] As a preferred embodiment, the present invention relates to the production method or the stabilization method, wherein the polymerization reaction is carried out in the presence of a Lewis acid.
[0013] さらに好ましい実施様態としては、ルイス酸として、四塩ィ匕チタンを用いる前記の製 造方法又は安定させる方法がある。  [0013] As a more preferred embodiment, there is the above-described production method or stabilization method using tetrasalt / titanium as the Lewis acid.
[0014] 好ましい実施様態としては、一般式(1)で表わされる重合開始剤が、ビス(1 クロ ルー 1ーメチルェチル)ベンゼン [C H (C (CH ) C1) ]または(1 クロルー1ーメチ  In a preferred embodiment, the polymerization initiator represented by the general formula (1) is bis (1 chloro 1-methylethyl) benzene [C H (C (CH) C1)] or (1 chloro 1-methyl).
6 4 3 2 2  6 4 3 2 2
ルェチル)ベンゼン [C H C (CH ) C1]から選択される少なくとも 1種である前記の  Ruthel) benzene [C H C (CH) C1] is at least one selected from the above
6 5 3 2  6 5 3 2
製造方法又は安定させる方法がある。 [0015] 好ましい実施様態としては、イソブチレンを主成分としない単量体成分 (b)が、芳香 族ビニル系単量体を主成分とする単量体成分である前記の製造方法又は安定させ る方法がある。 There are manufacturing methods or stabilizing methods. [0015] As a preferred embodiment, the above-described production method or stabilizing, wherein the monomer component (b) containing no isobutylene as a main component is a monomer component containing an aromatic vinyl monomer as a main component. There is a way.
[0016] さらに好ましい実施様態としては、芳香族ビュル系単量体が、スチレン、 p メチル スチレン、 α—メチルスチレン及びインデン力 なる群より選択される少なくとも 1種で ある前記の製造方法又は安定させる方法がある。  [0016] In a more preferred embodiment, the manufacturing method or the stabilization described above, wherein the aromatic bur monomer is at least one selected from the group consisting of styrene, p-methyl styrene, α-methyl styrene, and indene force. There is a way.
[0017] 好ま 、実施様態としては、イソブチレン系ブロック共重合体力 芳香族ビニル系単 量体を主成分とする重合体ブロック イソブチレンを主成分とする重合体ブロック 芳香族ビュル系単量体を主成分とする重合体ブロック力 形成されるトリブロック共重 合体、イソブチレンを主成分とする重合体ブロック一芳香族ビュル系単量体を主成分 とする重合体ブロック イソブチレンを主成分とする重合体ブロックから形成されるトリ ブロック共重合体、及び、芳香族ビニル系単量体を主成分とする重合体ブロックーィ ソブチレンを主成分とする重合体ブロック力 形成されるジブロック共重合体力 なる 群より選択される少なくとも 1種である前記の製造方法又は安定させる方法がある。  [0017] Preferably, as an embodiment, an isobutylene-based block copolymer is a polymer block mainly composed of an aromatic vinyl-based monomer. A polymer block mainly composed of isobutylene is a main component composed of an aromatic butyl-based monomer. Polymer block force to be formed Triblock copolymer formed, polymer block mainly composed of isobutylene, polymer block mainly composed of aromatic butyl monomer From polymer block composed mainly of isobutylene The triblock copolymer to be formed, and the polymer block force mainly composed of an aromatic vinyl monomer, the polymer block force mainly composed of sobutylene, and the diblock copolymer force formed are selected from the group There are at least one of the above production methods or stabilization methods.
[0018] 好ましい実施様態としては、炭素数 3〜8の 1級のモノハロゲンィ匕炭化水素及び Ζ 又は炭素数 3〜8の 2級のモノハロゲンィ匕炭化水素力 なるモノハロゲンィ匕炭化水素 系溶媒と、脂肪族系炭化水素及び Ζ又は芳香族系炭化水素からなる非ハロゲンィ匕 炭化水素系溶媒との混合溶媒中で重合を行うことを特徴とする前記の製造方法又は 安定させる方法がある。 [0018] Preferred embodiments include primary monohalogen hydrocarbons having 3 to 8 carbon atoms and monohalogen hydrocarbons having secondary monohalogen hydrocarbon power having 3 to 8 carbon atoms. There is a production method or a stabilization method as described above, wherein polymerization is carried out in a mixed solvent of a system solvent and a non-halogen hydrocarbon solvent composed of an aliphatic hydrocarbon and a soot or aromatic hydrocarbon .
[0019] 好ましい実施様態としては、モノハロゲンィ匕炭化水素系溶媒力 1—クロ口プロパン 及び 1 クロロブタン力 なる群より選択される少なくとも 1種である前記の製造方法 又は安定させる方法がある。  [0019] As a preferred embodiment, there is the production method or the stabilization method described above, which is at least one selected from the group consisting of monohalogenated hydrocarbon solvent power 1-chloropropane and 1 chlorobutane power.
[0020] 好ま ヽ実施様態としては、非ハロゲン化炭化水素系溶媒が、へキサン、シクロへ キサン、メチルシクロへキサン及びェチルシクロへキサン力 なる群より選択される少 なくとも 1種である前記の製造方法又は安定させる方法がある。  [0020] Preferably, in an embodiment, the non-halogenated hydrocarbon solvent is at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane force. There is a method or a stabilization method.
[0021] さらに本発明は、反応溶媒として炭素数 3〜8の 1級及び 2級のモノハロゲンィ匕炭化 水素から選ばれる 1種を少なくとも用いて、該反応溶媒中に不純物として存在する炭 素数 3〜8の 1級及び Ζ又は 2級アルコール量が 150ppm以下である、前記一般式( 1)で表わされる重合開始剤の存在下に、イソブチレンを主成分とする単量体成分 (a )と、イソブチレンを主成分としない単量体成分 (b)とを反応させる方法で得られること を特徴とするイソブチレンを単量体主成分とする重合体ブロックとイソブチレンを単量 体主成分としない重合体ブロック力もなるイソブチレン系ブロック共重合体に関する。 発明の効果 Furthermore, the present invention uses at least one kind selected from primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms as a reaction solvent, and the number of carbons present as impurities in the reaction solvent. The above general formula (3-8) wherein the primary and cocoon or secondary alcohol amount is 150 ppm or less. In the presence of the polymerization initiator represented by 1), the monomer component (a) having isobutylene as the main component and the monomer component (b) not having isobutylene as the main component can be obtained by a method of reacting. The present invention relates to a polymer block having isobutylene as a main component of monomer and an isobutylene block copolymer having a polymer blocking force not having isobutylene as a main component of monomer. The invention's effect
[0022] 本発明の製造方法又は安定させる方法によれば、優れた機械的特性を安定的に 示し、溶融時の流動性が安定した、イソブチレンを単量体主成分とする重合体ブロッ クとイソブチレンを単量体主成分としない重合体ブロックからなるイソブチレン系ブロ ック共重合体が安定的に得られる。このため、重合のたびに重合体の特性が大きく変 化することなぐ加工性、機械強度等の特性にばらつきが少ない成形品を得ることが できる。  [0022] According to the production method or the stabilization method of the present invention, a polymer block comprising isobutylene as a main monomer component, which stably exhibits excellent mechanical properties and has stable fluidity upon melting. An isobutylene block copolymer composed of a polymer block containing no isobutylene as a main monomer component can be stably obtained. For this reason, it is possible to obtain a molded product with less variation in properties such as processability and mechanical strength without greatly changing the properties of the polymer every polymerization.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明について詳細に説明する。 [0023] Hereinafter, the present invention will be described in detail.
[0024] 本発明にかかる方法では、反応溶媒として炭素数 3〜8の 1級及び 2級のモノハロ ゲンィ匕炭化水素から選ばれる 1種を少なくとも用いて、反応溶媒中に不純物として存 在する炭素数 3〜8の 1級及び Z又は 2級アルコール量が 150ppm以下である条件 で、下記一般式(1)で表わされる重合開始剤の存在下に、イソブチレンを主成分とす る単量体成分 (a)と、イソブチレンを主成分としな 、単量体成分 (b)とを反応させる。  In the method according to the present invention, at least one selected from primary and secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms is used as a reaction solvent, and carbon existing as an impurity in the reaction solvent. A monomer component mainly composed of isobutylene in the presence of a polymerization initiator represented by the following general formula (1) under the condition that the amount of primary and Z or secondary alcohols of formula 3 to 8 is 150 ppm or less. (a) is reacted with a monomer component (b) which does not contain isobutylene as a main component.
[0025] [化 3]  [0025] [Chemical 3]
Figure imgf000006_0001
Figure imgf000006_0001
[0026] (式中、複数の R1は、同一又は異なって、水素原子又は炭素数 1〜6の 1価の炭化水 素基を表す。 R2は、 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価脂肪 族炭化水素基を表す。 Xは、ハロゲン原子、炭素数 1〜6のアルコキシル基、又は、 炭素数 1〜6のァシ口キシル基を表す。 nは、 1〜6の整数を表す。 Xが複数存在する とき、それらは、同一であっても異なっていてもよい。 ) (In the formula, a plurality of R 1 are the same or different and each represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 6 carbon atoms. R 2 represents a monovalent or polyvalent aromatic hydrocarbon. X represents a halogen atom, an alkoxyl group having 1 to 6 carbon atoms, or a monovalent or polyvalent aliphatic hydrocarbon group, or Represents a 1 to 6 carbon atom xyl group. n represents an integer of 1 to 6. When there are a plurality of X, they may be the same or different. )
イソブチレンを主成分としない単量体成分 (b)は、イソブチレンの含有量が 30重量 %以下である単量体成分であるのが好ましぐ 10重量%以下であることがより好まし く、 3重量%以下であることがさらに好ましい。これは、イソブチレンの含有量が 30% 以上になると、優れた機械強度が発現されなくなるためである。  The monomer component (b) containing no isobutylene as a main component is preferably a monomer component having an isobutylene content of 30% by weight or less, more preferably 10% by weight or less. More preferably, it is 3% by weight or less. This is because when the isobutylene content is 30% or more, excellent mechanical strength is not exhibited.
[0027] 本発明のイソブチレンを主成分としな 、単量体成分 (b)中のイソブチレン以外の単 量体は、カチオン重合可能な単量体であれば特に限定されないが、脂肪族ォレフィ ン類、芳香族ビュル類、ジェン類、ビュルエーテル類、シラン類、ビュルカルバゾー ル、 13—ビネン、ァセナフチレン等の単量体が例示できる。これらは単独で又は 2種 以上組み合わせて使用することができる。  [0027] The monomer other than isobutylene in the monomer component (b) that is not mainly composed of isobutylene of the present invention is not particularly limited as long as it is a cationically polymerizable monomer, but aliphatic olefins And monomers such as aromatic burs, gens, bur ethers, silanes, burcarbazole, 13-vinene, and acenaphthylene. These can be used alone or in combination of two or more.
[0028] 脂肪族ォレフイン系単量体としては特に限定されず、例えば、エチレン、プロピレン 、 1—ブテン、 2—メチル 1—ブテン、 3—メチル 1—ブテン、ペンテン、へキセン、 シクロへキセン、 4ーメチルー 1 ペンテン、ビニルシクロへキセン、オタテン、ノルボ ルネン等が挙げられる。  [0028] The aliphatic olefin-based monomer is not particularly limited. For example, ethylene, propylene, 1-butene, 2-methyl 1-butene, 3-methyl 1-butene, pentene, hexene, cyclohexene, 4-methyl-1-pentene, vinylcyclohexene, otaten, norbornene and the like.
[0029] 芳香族ビュル系単量体としては特に限定されず、例えば、スチレン、 o—、 m—又は p—メチルスチレン、 α—メチルスチレン、 13ーメチノレスチレン、 2, 6 ジメチルスチレ ン、 2, 4 ジメチルスチレン、 α—メチルー ο—メチルスチレン、 α—メチルー m—メ チルスチレン、 α—メチルー ρ—メチルスチレン、 j8—メチルー ο—メチルスチレン、 βーメチルー m—メチルスチレン、 13ーメチルー p—メチルスチレン、 2, 4, 6 トリメ チルスチレン、 α—メチルー 2, 6 ジメチルスチレン、 α—メチルー 2, 4 ジメチル スチレン、 13ーメチルー 2, 6 ジメチルスチレン、 13ーメチルー 2, 4 ジメチルスチ レン、 o—、 m—又は ρ クロロスチレン、 2, 6 ジクロロスチレン、 2, 4 ジクロロスチ レン、 α クロロー o クロロスチレン、 α クロロー m クロロスチレン、 α クロロー ρ クロロスチレン、 —クロ口 。一クロロスチレン、 —クロ口一 m—クロロスチレン 、 β クロロー ρ—クロロスチレン、 2, 4, 6 トリクロロスチレン、 α クロロー 2, 6— ジクロロスチレン、 α クロロー 2, 4 ジクロロスチレン、 j8—クロロー 2, 6 ジクロ口 スチレン、 j8—クロ口一 2, 4 ジクロロスチレン、 o—、 m—又は p— t—ブチノレスチレ ン、 o—、 m—又は p—メトキシスチレン、 o—、 m—又は p—クロロメチノレスチレン、 o—[0029] The aromatic bur monomer is not particularly limited, and examples thereof include styrene, o-, m- or p-methylstyrene, α-methylstyrene, 13-methylolstyrene, 2,6 dimethylstyrene, 2, 4 Dimethylstyrene, α-methyl-ο-methylstyrene, α-methyl-m-methylstyrene, α-methyl-ρ-methylstyrene, j8-methyl-ο-methylstyrene, β-methyl-m-methylstyrene, 13-methyl-p-methyl Styrene, 2, 4, 6 Trimethylstyrene, α-Methyl-2,6 Dimethylstyrene, α-Methyl-2,4 Dimethylstyrene, 13-Methyl-2,6 Dimethylstyrene, 13-Methyl-2,4 Dimethylstyrene, o-, m- or ρ chlorostyrene, 2, 6 dichlorostyrene, 2, 4 dichlorostyrene, α chloro-o chlorostyrene, α chloro-m chloros Ren, alpha-chloro ρ chlorostyrene, - black hole. 1-chlorostyrene, 1-methylene chloride, β-chloro-ρ-chlorostyrene, 2, 4, 6 trichlorostyrene, α-chloro-2,6-dichlorostyrene, α-chloro-2,4-dichlorostyrene, j8-chloro-2 6 Dichloromethane Styrene, j8—Black Distiller 1,4 Dichlorostyrene, o—, m—or p—t—Butinorestire O-, m- or p-methoxystyrene, o-, m- or p-chloromethylenostyrene, o-
、 m—又は p—ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデ ン、ビュルナフタレン等が挙げられる。 M- or p-bromomethylstyrene, styrene derivatives substituted with a silyl group, indene, urnaphthalene and the like.
[0030] ジェン系単量体としては特に限定されず、例えば、ブタジエン、イソプレン、シクロ ペンタジェン、シクロへキサジェン、ジシクロペンタジェン、ジビニノレベンゼン、ェチリ デンノルボルネン等が挙げられる。 [0030] The gen-based monomer is not particularly limited, and examples thereof include butadiene, isoprene, cyclopentagen, cyclohexagen, dicyclopentagen, divininolebenzene, and ethylidene norbornene.
[0031] ビュルエーテル系単量体としては特に限定されず、例えば、メチルビ-ルエーテル[0031] The butyl ether monomer is not particularly limited. For example, methyl beryl ether
、ェチルビ-ルエーテル、 (n—、イソ)プロピルビュルエーテル、 (n—、 sec—、 tert, Ethyl vinyl ether, ( n —, iso) propyl butyl ether, ( n —, sec—, tert
―、イソ)ブチノレビニノレエーテノレ、メチノレプロぺニノレエーテノレ、ェチノレプロぺニノレエ 一テル等が挙げられる。 -, Iso) butinorevinino reetenore, methinorepropenole ethenore, ethinolepropenole eleter and the like.
[0032] シラン化合物としては特に限定されず、例えば、ビュルトリクロロシラン、ビニルメチ ルジクロロシラン、ビニルジメチルクロロシラン、ビニルジメチルメトキシシラン、ビニル トリメチノレシラン、ジビニノレジクロロシラン、ジビニノレジメトキシシラン、ジビニノレジメチ ルシラン、 1, 3—ジビニルー 1, 1, 3, 3—テトラメチルジシロキサン、トリビニルメチル シラン、 γ—メタクリロイルォキシプロピルトリメトキシシラン、 γ—メタクリロイルォキシ プロピルメチルジメトキシシラン等が挙げられる。  [0032] The silane compound is not particularly limited. Examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, trivinylmethylsilane, γ-methacryloyloxypropyltrimethoxysilane, and γ-methacryloyloxypropylmethyldimethoxysilane.
[0033] 本発明のイソブチレンを主成分としな 、単量体成分 (b)は、物性及び重合特性等 のノ ランスから、芳香族ビニル系単量体を主成分とする単量体成分であることが好ま しい。本発明の芳香族ビュル系単量体を主成分とする単量体成分は、芳香族ビニル 系単量体の含有量が 60重量%以上であるのが好ましぐ 80重量%以上であるのが より好ましい。ここで芳香族ビュル系単量体としては、スチレン、 aーメチルスチレン、 P—メチルスチレン及びインデンカゝらなる群より選択された 1種以上の単量体を使用 することが好ましぐコストの面からスチレン、 a—メチルスチレン、 p—メチルスチレン あるいはこれらの混合物を用いることが特に好ま 、。  [0033] The monomer component (b) that does not contain isobutylene of the present invention as a main component is a monomer component that contains an aromatic vinyl monomer as a main component from the viewpoint of physical properties and polymerization characteristics. I like it. The monomer component mainly composed of the aromatic bur monomer of the present invention preferably has an aromatic vinyl monomer content of 60% by weight or more, preferably 80% by weight or more. Is more preferable. Here, it is preferable to use at least one monomer selected from the group consisting of styrene, a-methylstyrene, P-methylstyrene, and indenka as the aromatic bur monomer. Particular preference is given to using styrene, a-methylstyrene, p-methylstyrene or mixtures thereof.
[0034] イソブチレンを主成分とする単量体成分 (a)は、単量体成分としてイソブチレン以外 の単量体を含んでいても、含んでいなくてもよいが、通常、イソブチレンを 60重量% 以上、好ましくは 80重量%以上含有する単量体成分である。上記イソブチレン以外 の単量体としてはカチオン重合可能な単量体であれば特に限定されず、例えば、脂 肪族ォレフイン類、芳香族ビュル類、ジェン類、ビュルエーテル類、シラン類、ビュル カルバゾール、 β—ビネン、ァセナフチレン等の単量体が挙げられる。これらは単独 で用いてもよぐ 2種以上を併用してもよい。 [0034] The monomer component (a) containing isobutylene as a main component may or may not contain a monomer other than isobutylene as a monomer component. % Or more, preferably 80% by weight or more. The monomer other than isobutylene is not particularly limited as long as it is a monomer capable of cationic polymerization. Monomers such as aliphatic olefins, aromatic burs, gens, bur ethers, silanes, bur carbazole, β-vinene, and acenaphthylene. These may be used alone or in combination of two or more.
[0035] イソブチレンを主成分とする重合体ブロックと芳香族ビュルを主成分とする単量体 成分力もなる重合体ブロックの割合に関しては、特に制限はないが、各種物性の面 から、イソブチレンを主成分とする重合体ブロックが 40〜95重量%、芳香族ビニルを 主成分とする単量体成分力もなる重合体ブロックが 5〜60重量%であることが好まし ぐイソブチレンを主成分とする重合体ブロックが 50〜85重量%、芳香族ビュルを主 成分とする単量体成分力もなる重合体ブロックが 15〜50重量%であることが特に好 ましい。 [0035] The ratio of the polymer block mainly composed of isobutylene and the polymer block composed mainly of aromatic butyl but also having a component power is not particularly limited, but isobutylene is mainly used from the viewpoint of various physical properties. It is preferable that the polymer block as a component is 40 to 95% by weight, and the polymer block having a monomer component power mainly composed of aromatic vinyl is 5 to 60% by weight. It is particularly preferable that the polymer block is 50 to 85% by weight, and the polymer block having a monomer component power mainly composed of aromatic bur is 15 to 50% by weight.
[0036] またイソブチレン系ブロック共重合体の重量平均分子量にも特に制限はないが、流 動'性、カロ工'性、物'性等の面力ら、 10000〜500000であること力 S好ましく、 30000〜 400000であること力特〖こ好まし 、。イソブチレン系ブロック共重合体の重量平均分 子量が上記範囲より低 、場合には、機械的な物性が十分に発現されな!、傾向にあり 、一方、上記範囲を超える場合には流動性、加工性の面で不利である。上記重量平 均分子量は、 Waters社製ゲルパーミエーシヨンクロマトグラフィー(GPC)システム( カラム:昭和電工株式会社製 Shodex K— 804、 K 802. 5 (ポリスチレンゲル)、 移動相:クロ口ホルム)を用いて測定した値である。  [0036] The weight average molecular weight of the isobutylene-based block copolymer is not particularly limited, but the surface strength such as fluidity, property, property, etc. is 10,000 to 500,000. , Preference for power, which is between 30000 and 400000. When the weight average molecular weight of the isobutylene-based block copolymer is lower than the above range, the mechanical properties are not sufficiently expressed! On the other hand, when it exceeds the above range, the fluidity, It is disadvantageous in terms of workability. The above weight average molecular weight is determined by gel permeation chromatography (GPC) system manufactured by Waters (column: Shodex K-804, K 802.5 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black mouth form). It is the value measured using.
[0037] また、イソブチレン系ブロック共重合体の好まし 、ブロック共重合体としては、物性 ノ ランスの点から、芳香族ビニル系単量体を主成分とする重合体ブロック—イソプチ レンを主成分とする重合体ブロック一芳香族ビニル系単量体を主成分とする重合体 ブロック力 なるトリブロック共重合体、芳香族ビニル系単量体を主成分とする重合体 ブロック イソブチレンを主成分とする重合体ブロック力 なるジブロック共重合体及 び芳香族ビュル系単量体を主成分とする重合体ブロックとイソブチレンを主成分とす る重合体ブロック力 なるアームを 3つ以上有する星型ブロック共重合体等が挙げら れる。これらは所望の物性 ·成形力卩ェ性を得る為に、 1種又は 2種以上を組み合わせ て使用可能である。これらの中で、加工性、コストの観点から特に、トリブロック構造を 有する、スチレン イソブチレン スチレンブロック共重合体、ジブロック構造を有す るスチレン イソブチレンブロック共重合体が好ましい。 [0037] Also preferred is an isobutylene block copolymer. As the block copolymer, from the viewpoint of physical properties, a polymer block-isobutylene containing an aromatic vinyl monomer as a main component is the main component. A polymer block consisting of an aromatic vinyl-based monomer as a main component and a block-blocking triblock copolymer, a polymer based on an aromatic vinyl-based monomer, and a block consisting mainly of isobutylene. Polymer block power diblock copolymer, polymer block mainly composed of aromatic bur monomer, and star block copolymer having 3 or more arms composed of polymer block power mainly composed of isobutylene. Examples thereof include polymers. These can be used alone or in combination of two or more in order to obtain the desired physical properties and molding power. Among these, from the viewpoint of processability and cost, in particular, it has a triblock structure, styrene, isobutylene, a styrene block copolymer, and a diblock structure. Styrene isobutylene block copolymers are preferred.
[0038] 一般式(1)で表わされる化合物は開始剤となるもので、カチオン重合の開始点にな る。式中、複数の R1は、同一又は異なって、水素原子又は炭素数 1〜6の 1価の炭化 水素基を表す。 R2は、 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価脂 肪族炭化水素基を表す。 Xは、ハロゲン原子、炭素数 1〜6のアルコキシル基、又は 、炭素数 1〜6のァシ口キシル基を表す。 nは、 1〜6の整数を表す。 Xが複数存在す るとき、それらは、同一であっても異なっていてもよい。 [0038] The compound represented by the general formula (1) serves as an initiator and serves as a starting point for cationic polymerization. Wherein a plurality of R 1 may be the same or different and represents a monovalent hydrocarbon group having a hydrogen atom or 1 to 6 carbon atoms. R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic hydrocarbon group. X represents a halogen atom, an alkoxyl group having 1 to 6 carbon atoms, or a alkoxyl group having 1 to 6 carbon atoms. n represents an integer of 1 to 6. When there are a plurality of X, they may be the same or different.
[0039] 本発明で用いられる一般式(1)の化合物の例としては、次のような化合物等が挙げ られる。  [0039] Examples of the compound of the general formula (1) used in the present invention include the following compounds.
(1—クロル— 1—メチルェチル)ベンゼン [C H C (CH ) Cl]、 1, 4 ビス(1—クロ  (1-Chloro- 1-methylethyl) benzene [C H C (CH) Cl], 1, 4 Bis (1-chloro
6 5 3 2  6 5 3 2
ル— 1—メチルェチル)ベンゼン [1, 4-Cl (CH ) CC H C (CH ) Cl]、 1, 3 ビ  Ru- 1-methylethyl) benzene [1, 4-Cl (CH) CC H C (CH) Cl], 1, 3 Bi
3 2 6 4 3 2  3 2 6 4 3 2
ス(1—クロル— 1—メチルェチル)ベンゼン [1, 3-Cl(CH ) CC H C (CH ) CI]  (1-Chloro-1-methylethyl) benzene [1, 3-Cl (CH) CC H C (CH) CI]
3 2 6 4 3 2 3 2 6 4 3 2
、 1, 3, 5 トリス(1—クロル— 1—メチルェチル)ベンゼン [1, 3, 5— (C1C (CH ) ) 1, 3, 5 Tris (1-chloro-1-methylethyl) benzene [1, 3, 5— (C1C (CH))
3 2 3 2
C H ]、 1, 3 ビス(1—クロル— 1—メチルェチル)—5— (tert—ブチル)ベンゼンC H], 1, 3 Bis (1-chloro-1-methylethyl) -5- (tert-butyl) benzene
3 6 3 3 6 3
[1, 3— (C (CH ) C1) 5— (C (CH ) ) C H ]  [1, 3— (C (CH) C1) 5— (C (CH)) C H]
3 2 2 3 3 6 3  3 2 2 3 3 6 3
これらの中でも特に好ましいのは(1 クロル 1ーメチルェチル)ベンゼン [C H C  Of these, (1 chloro 1-methylethyl) benzene [C H C
6 5 6 5
(CH ) C1]、ビス(1 クロル 1ーメチルェチル)ベンゼン [C H (C (CH ) C1) ]、(CH) C1], bis (1 chloro 1-methylethyl) benzene [C H (C (CH) C1)],
3 2 6 4 3 2 2 トリス(1—クロル— 1—メチルェチル)ベンゼン [ (C1C (CH ) ) C H ]である。なお( 3 2 6 4 3 2 2 Tris (1-chloro-1-methylethyl) benzene [(C1C (CH)) C H]. (
3 2 3 6 3  3 2 3 6 3
1—クロノレ一 1—メチノレエチノレ)ベンゼンは( a—クロ口イソプロピル)ベンゼン、 (2— クロ口一 2—プロピル)ベンゼンある 、はタミルクロライドとも呼ばれ、ビス(1—クロル一 1ーメチノレエチノレ)ベンゼンは、ビス(α クロ口イソプロピノレ)ベンゼン、ビス(2—クロ 口一 2—プロピル)ベンゼンある!/、はジクミルク口ライドとも呼ばれ、トリス( 1―クロル 1—メチノレエチノレ)ベンゼンは、トリス(α クロ口イソプロピル)ベンゼン、トリス(2—ク ロロ一 2—プロピル)ベンゼンあるいはトリタミルクロライドとも呼ばれる。 1-Chronole 1-Methylenoethinole) Benzene is ( a -Black mouth isopropyl) benzene, (2-Chlo mouth one 2-Propyl) benzene, also called Tamil chloride, bis (1-Chlorone 1-Methyleno Ethino) ) Benzene is bis (α-chloro-isopropinole) benzene, bis (2-chloro 1-propyl) benzene! / Is also called dicmilk mouth-ride, and tris (1-chloro 1-methinore ethinore) benzene is It is also called tris (α-chloropropyl) benzene, tris (2-chloro-2-propyl) benzene or tritamilk chloride.
[0040] イソブチレン系ブロック共重合体を製造する際は、さらにルイス酸触媒を共存させる こともできる。このようなルイス酸としてはカチオン重合に使用できるものであれば良く 、 TiCl 、 TiBr 、 BC1 , BF , BF -OEt 、 SnCl 、 SbCl 、 SbF 、 WC1 、 TaCl 、 V[0040] When an isobutylene block copolymer is produced, a Lewis acid catalyst may be allowed to coexist. Such Lewis acid may be any one that can be used for cationic polymerization. TiCl, TiBr, BC1, BF, BF-OEt, SnCl, SbCl, SbF, WC1, TaCl, V
4 4 3 3 3 2 4 5 5 6 54 4 3 3 3 2 4 5 5 6 5
CI 、 FeCl 、 ZnBr 、 AlCl 、 AlBr等の金属ハロゲン化物; Et A1C1、 EtAlCl等の 有機金属ハロゲンィ匕物を好適に使用することができる(Etはェチル基を表す)。中で も触媒としての能力、工業的な入手の容易さを考えた場合、 TiCl、 BC1、 SnClが Metal halides such as CI, FeCl, ZnBr, AlCl, AlBr; Et A1C1, EtAlCl, etc. Organometallic halides can be suitably used (Et represents an ethyl group). Among them, TiCl, BC1, and SnCl are used when considering the ability as a catalyst and industrial availability.
4 3 4 好ましい。ルイス酸の使用量は、特に限定されないが、使用する単量体の重合特性 あるいは重合濃度等を鑑みて設定することができる。通常は一般式(1)で表される化 合物に対して 0. 1〜: L00モル当量使用することができ、好ましくは 1〜50モル当量の 範囲である。  4 3 4 Preferred. The amount of Lewis acid used is not particularly limited, but can be set in view of the polymerization characteristics or polymerization concentration of the monomer used. Usually, 0.1 to L00 molar equivalent can be used with respect to the compound represented by the general formula (1), preferably in the range of 1 to 50 molar equivalent.
[0041] イソブチレン系ブロック共重合体を製造する際は、さらに必要に応じて電子供与体 成分を共存させることもできる。この電子供与体成分は、カチオン重合に際して、成 長炭素カチオンを安定化させる効果があるものと考えられており、電子供与体の添加 によって分子量分布の狭 、構造が制御された重合体を生成することができる。使用 可能な電子供与体成分としては特に限定されないが、例えば、ピリジン類、アミン類、 アミド類、スルホキシド類、エステル類、または金属原子に結合した酸素原子を有す る金属化合物等を挙げることができる。  [0041] When the isobutylene block copolymer is produced, an electron donor component can be further present if necessary. This electron donor component is believed to have the effect of stabilizing the growing carbon cation during cationic polymerization, and the addition of an electron donor produces a polymer with a narrow molecular weight distribution and a controlled structure. be able to. The electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom. it can.
[0042] 上記電子供与体成分としては、種々の化合物の電子供与体 (エレクトロンドナー)と しての強さを表すパラメータ一として定義されるドナー数が 15〜60が挙げられ、具体 的には、 2, 6 ジー t ブチルピリジン、 2 t—ブチルピリジン、 2, 4, 6 トリメチル ピリジン、 2, 6 ジメチルビリジン、 2—メチルピリジン、ピリジン、ジェチルァミン、トリメ チルァミン、トリエチルァミン、トリブチルァミン、 N, N—ジメチルァニリン、 N, N ジメ チルホルムアミド、 N, N ジメチルァセトアミド、 N, N ジェチルァセトアミド、ジメチ ルスルホキシド、ジェチルエーテル、酢酸メチル、酢酸ェチル、リン酸トリメチル、へキ サメチルリン酸トリアミド、チタン (ΠΙ)メトキシド、チタン  [0042] Examples of the electron donor component include 15 to 60 donors defined as one parameter representing the strength of various compounds as electron donors (electron donors). Specifically, 2,6 di-t-butylpyridine, 2 t-butylpyridine, 2,4,6 trimethylpyridine, 2,6 dimethylpyridine, 2-methylpyridine, pyridine, jetylamine, trimethylamine, triethylamine, tributylamine, N , N-dimethylaniline, N, N dimethylformamide, N, N dimethylacetamide, N, N dimethylacetamide, dimethyl sulfoxide, jetyl ether, methyl acetate, ethyl acetate, trimethyl phosphate, Xamethylphosphoric triamide, titanium (ΠΙ) methoxide, titanium
(IV)メトキシド、チタン (IV)イソプロポキシド、チタン (IV)ブトキシド等のチタンアルコ キシド;アルミニウムトリエトキシド、アルミニウムトリブトキシド等のアルミニウムアルコキ シド等が使用できる力 好ましいものとして、 2, 6 ジー t ブチルピリジン、 2, 6 ジ メチルピリジン、 2—メチルピリジン、ピリジン、ジェチルァミン、トリメチルァミン、トリエ チルァミン、 N, N ジメチルホルムアミド、 N, N ジメチルァセトアミド、ジメチルスル ホキシド、チタン (IV)イソプロポキシド、チタン (IV)ブトキシド等が挙げられる。上記 種々の物質のドナー数については、「ドナーとァクセプター」、ダードマン著、大瀧、 岡田訳、学会出版センター(1983)に示されている。これらの中でも、添加効果が顕 著である 2—メチルピリジン、 N, N—ジメチルァセトアミド、反応系が均一となるチタン (IV)イソプロボキシドが特に好まし 、。 (IV) Titanium alkoxides such as methoxide, titanium (IV) isopropoxide, titanium (IV) butoxide; aluminum alkoxides such as aluminum triethoxide and aluminum tributoxide, etc. Di-Butylpyridine, 2,6 Dimethylpyridine, 2-Methylpyridine, Pyridine, Jetylamine, Trimethylamine, Triethylamine, N, N Dimethylformamide, N, N Dimethylacetamide, Dimethylsulfoxide, Titanium (IV) Iso Examples include propoxide and titanium (IV) butoxide. Regarding the number of donors for the various substances mentioned above, “Doners and Acceptors”, by Dardman, Daegu, It is shown in the translation by Okada, Academic Publishing Center (1983). Of these, 2-methylpyridine, N, N-dimethylacetamide, and titanium (IV) isopropoxide, which have a uniform reaction system, are particularly preferred.
[0043] 電子供与体成分は、重合開始剤に対して 0. 01〜: LO倍モル用いる。このうち、 0. 2 [0043] The electron donor component is used in a molar amount of 0.01 to LO times with respect to the polymerization initiator. Of these, 0.2
6倍モルの範囲で用いられるのが好まし!/、。  It is preferable to use in the range of 6 times mole! /.
[0044] 本発明では、重合の際は、反応溶媒として炭素数 3 8の 1級及び 2級のモノハロゲ ン化炭化水素力 選ばれる 1種を少なくとも用いる。  In the present invention, at the time of polymerization, at least one selected from primary and secondary monohalogenated hydrocarbon powers having 38 carbon atoms is used as a reaction solvent.
[0045] 炭素数 3 8の 1級のモノハロゲン化炭化水素及び炭素数 3 8の 2級のモノハロゲ ン化炭化水素としては特に限定されず、例えば、 1 クロ口プロパン、 1 クロ 2— メチノレブ ン、 1 クロロブタン、 1 クロ 2—メチノレブタン、 1 クロ 3—メチ ルブタン、 1—クロ 2, 2 ジメチルブタン、 1—クロ 3, 3 ジメチルブタン、 1 —クロ口一 2, 3 ジメチルブタン、 1—クロ口ペンタン、 1—クロ口一 2—メチルペンタン 1—クロ 3—メチノレペンタン、 1—クロ 4—メチノレペンタン、 1—クロ口へキサ ン、 1 クロロー 2—メチノレへキサン、 1 クロロー 3—メチノレへキサン、 1 クロロー 4 ーメチノレへキサン、 1 クロ 5—メチノレへキサン、 1 クロ口ヘプタン、 1 クロロォ クタン、 2—クロ口プロ ン、 2—クロロブタン、 2—クロ口ペンタン、 2—クロ口へキサン、 2—クロ口ヘプタン、 2—クロ口オクタン、クロ口ベンゼン等を挙げることができる。これら はそれぞれ単独で又は 2種以上を組み合わせて使用できる。例えば、炭素数 3のモ ノハロゲン化溶媒、炭素数 4のモノハロゲンィ匕溶媒、炭素数 3のモノハロゲンィ匕溶媒と 炭素数 4のモノハロゲンィ匕溶媒の組み合わせ、炭素数 4 8のモノハロゲンィ匕溶媒の うちの少なくとも 1種の組み合わせ等であってよい。このうち、イソブチレン系ブロック 共重合体の溶解度、分解による無害化の容易さ、コスト等のバランス等の観点を重視 するなら、 1 クロ口プロパン及び Z又は 1 クロロブタンを用いるのが好ましぐ特に 1 クロロブタンが好まし!/、。  [0045] The primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and the secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms are not particularly limited, and examples thereof include 1-chloropropane, 1-chloro-2-methinolevene. , 1 Chlorobutane, 1 Chromium 2-Methylolebutane, 1 Chromium 3-Methylbutane, 1-Cro-2, 2 Dimethylbutane, 1-Cro-3, 3 Dimethylbutane, 1 — Chromium 1, 2, 3 Dimethylbutane, 1 — Chrono Pentane, 1-black 1-methylpentane 1-black 3-methinorepentane, 1-black 4-methinorepentane, 1-black hexane, 1 chloro-2-methino hexane, 1 chloro 3-methino hexane, 1 Chloro-4-methino hexane, 1 chloro 5-methino hexane, 1 chlorooctane, 1 chlorooctane, 2 chloroprone, 2 chlorobutane, 2 chloropentane, 2 chlorohexane , It may be mentioned 2-black port heptane, 2-black port octane, a black hole benzene. These can be used alone or in combination of two or more. For example, a monohalogenated solvent having 3 carbon atoms, a monohalogen solvent having 4 carbon atoms, a combination of a monohalogen solvent having 3 carbon atoms and a monohalogen solvent having 4 carbon atoms, or a monohalogen having 48 carbon atoms. It may be a combination of at least one of the solvents. Of these, if importance is attached to the solubility of isobutylene block copolymer, ease of detoxification by decomposition, balance of cost, etc., it is particularly preferable to use 1-chloropropane and Z or 1-chlorobutane. Chlorobutane is preferred!
[0046] 反応溶媒としては、ブロック共重合体を構成する単量体の重合特性及び生成する 重合体の溶解性等のバランスを考慮して、炭素数 3 8の 1級及び Z又は 2級のモノ ハロゲン化炭化水素に加えて、ベンゼン、トルエン、キシレン、ェチルベンゼン、プロ ピルベンゼン、ブチルベンゼン等のアルキルベンゼン類;ェタン、プロパン、ブタン、 ペンタン、ネオペンタン、へキサン、ヘプタン、オクタン、ノナン、デカン等の直鎖式脂 肪族炭化水素類; 2—メチルプロパン、 2—メチルブタン、 2, 3, 3—トリメチルペンタ ン、 2, 2, 5—トリメチルへキサン等の分岐式脂肪族炭化水素類;シクロへキサン、メ チルシクロへキサン、ェチルシクロへキサン等の環式脂肪族炭化水素類;石油留分 を水添精製したパラフィン油等を用いてもよい。これらは、 2種以上を使用してもよい 。中でも炭素数 3〜8の 1級のモノハロゲン化炭化水素及び Z又は炭素数 3〜8の 2 級のモノハロゲンィ匕炭化水素力もなるモノハロゲンィ匕炭化水素系溶媒と、脂肪族系 炭化水素及び Z又は芳香族系炭化水素力 なる非ハロゲンィ匕炭化水素系溶媒との 混合溶媒中で重合を行うことが、重合した後の水洗工程における作業性の向上およ び水洗後の排水処理の容易性の点力 好ましい。ブロック共重合体の溶解度、コスト 、誘電率等のバランスから、へキサン、シクロへキサン、メチルシクロへキサン、ェチル シクロへキサン、トルエン及びキシレン力 なる群より選択される少なくとも 1種が好ま しぐへキサン、メチルシクロへキサン及びェチルシクロへキサン力 なる群より選択さ れる少なくとも 1種が特に好ま 、。 [0046] As the reaction solvent, in consideration of the balance of the polymerization characteristics of the monomers constituting the block copolymer and the solubility of the polymer to be produced, primary grades with 3 to 8 carbon atoms and Z or secondary grades In addition to monohalogenated hydrocarbons, alkylbenzenes such as benzene, toluene, xylene, ethylbenzene, propylbenzene, butylbenzene; ethane, propane, butane, Linear aliphatic hydrocarbons such as pentane, neopentane, hexane, heptane, octane, nonane, decane; 2-methylpropane, 2-methylbutane, 2, 3, 3-trimethylpentane, 2, 2, 5 —Branched aliphatic hydrocarbons such as trimethylhexane; Cycloaliphatic hydrocarbons such as cyclohexane, methylcyclohexane, and ethylcyclohexane; Paraffin oil obtained by hydrorefining petroleum fractions, etc. Also good. Two or more of these may be used. Among them, primary monohalogenated hydrocarbons having 3 to 8 carbon atoms and monohalogenated hydrocarbon solvents having Z or secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms and aliphatic hydrocarbons, and aliphatic hydrocarbons. And Z or aromatic hydrocarbons in a mixed solvent with a non-halogen hydrocarbon solvent, improving the workability in the washing process after polymerization and facilitating wastewater treatment after washing Sexual power is preferable. From the balance of solubility, cost, dielectric constant, etc. of the block copolymer, at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, ethyl cyclohexane, toluene and xylene power is preferred. Particularly preferred is at least one selected from the group consisting of xane, methylcyclohexane and ethylcyclohexane.
[0047] 炭素数 3〜8の 1級のモノハロゲン化炭化水素及び Z又は炭素数 3〜8の 2級のモ ノハロゲンィ匕炭化水素からなるモノハロゲン化炭化水素系溶媒と、脂肪族系炭化水 素及び Z又は芳香族系炭化水素力 なる非ハロゲンィ匕炭化水素系溶媒とを組み合 わせた混合溶媒中の炭素数 3〜8の 1級のモノハロゲンィ匕炭化水素及び Z又は炭素 数 3〜8の 2級のモノハロゲン化炭化水素系溶媒の含有量は、所望の誘電率ある!/、 はブロック共重合体の溶解度が得られるように設定すれば良いが、一般的には 10〜 98重量%であり、 20〜95重量%が好ましい。 [0047] A monohalogenated hydrocarbon solvent composed of a primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and Z or a secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms, and an aliphatic hydrocarbon Primary monohalogenated hydrocarbons having 3 to 8 carbon atoms and Z or carbon numbers 3 to 3 in a mixed solvent in combination with elemental and Z or non-halogenated hydrocarbon solvents that are aromatic hydrocarbon power The content of the secondary monohalogenated hydrocarbon solvent of No. 8 has a desired dielectric constant! /, May be set so that the solubility of the block copolymer can be obtained. % By weight, preferably 20 to 95% by weight.
[0048] 溶剤の使用量は、得られる重合体溶液の粘度や除熱の容易さを考慮して決定され る力 通常、重合体の濃度が 1〜50重量%となるようにし、好ましくは 5〜35重量%と なるようにする。 [0048] The amount of the solvent used is a force determined in consideration of the viscosity of the resulting polymer solution and the ease of heat removal. Usually, the concentration of the polymer is 1 to 50% by weight, preferably 5 It should be ~ 35% by weight.
[0049] 本発明のイソブチレン系ブロック共重合体の製造方法としては、重合開始剤を用い 、反応溶媒中に不純物として存在する炭素数 3〜8の 1級及び Z又は 2級アルコール 量を調整する以外においては特に制限はなぐ例えば、上記溶媒中に、上記一般式 (1)で表わされる化合物と、芳香族ビニル系単量体を主成分とする単量体成分か又 はイソブチレンを主成分とする単量体成分と、必要に応じて電子供与体成分を加え、 必要に応じてさらにルイス酸を添加して重合を開始し、加えた単量体成分の重合が 実質的に終了した段階で、もう 1成分の単量体成分を反応溶液に添加して重合させ る。必要に応じて、重合が実質的に終了した後に、他の単量体成分を添加し、重合 を継続しても良い。 [0049] As a method for producing the isobutylene block copolymer of the present invention, a polymerization initiator is used to adjust the amount of primary and Z or secondary alcohols having 3 to 8 carbon atoms present as impurities in the reaction solvent. Other than the above, there is no particular limitation.For example, in the above solvent, the compound represented by the general formula (1) and a monomer component mainly composed of an aromatic vinyl monomer may be used. Adds a monomer component containing isobutylene as a main component and an electron donor component as necessary. Further, a Lewis acid is added as necessary to initiate polymerization, and the polymerization of the added monomer component is substantially At the end of the process, the other monomer component is added to the reaction solution and polymerized. If necessary, after the polymerization is substantially completed, another monomer component may be added to continue the polymerization.
[0050] 重合の際に反応溶媒として用いられる炭素数 3〜8の 1級のモノハロゲン化炭化水 素及び炭素数 3〜8の 2級のモノハロゲンィ匕炭化水素は、その製造方法や保管状態 によって、不純物として同じ炭素数を有する 1級及び Z又は 2級アルコールを含む場 合がある。このアルコール性の不純物力 重合反応に影響する。  [0050] A primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and a secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms, which are used as a reaction solvent in the polymerization, are prepared and stored. Depending on the state, it may contain primary and Z or secondary alcohols with the same carbon number as impurities. This alcoholic impurity force affects the polymerization reaction.
[0051] 本発明では、ガスクロマトグラフィーを用いた検量線法で測定した反応溶媒中に不 純物として存在する炭素数 3〜8の 1級及び 2級アルコール量(以下、「不純物量」と する)が 150ppm以下、好ましくは lOOppm以下、更に好ましくは 50ppm以下の状態 で反応を行う。ここで、検量線法とは、数点の既知のアルコール濃度の反応溶媒のガ スクロマトグラムのアルコールに相当するピーク面積を求め、アルコール濃度とピーク 面積から、検量線を引き、この検量線を元に、未知のアルコール濃度の反応溶媒の クロマトグラムのアルコールに相当するピーク面積から、濃度を定量する方法である。 不純物量が 150ppmより高くなると、得られる重合体は、不純物量が 150ppm以下で ある以外は同じ反応条件で得られる重合体の引張強度と比較して著しく低くなり、分 子量も低くなる傾向にある。不純物量が 150ppmより高くなれば高くなるほど、引張 強度は低くなり、重量平均分子量は低くなる。このため、 150ppmより高い不純物量 で重合反応を行った場合、機械特性や分子量が異なるイソブチレン系ブロック共重 合体が得られることになり、成形加工品として使用する場合、極めて使いにくいものと なる。  In the present invention, the amounts of primary and secondary alcohols having 3 to 8 carbon atoms (hereinafter referred to as “impurity amount”) present as impurities in the reaction solvent measured by a calibration curve method using gas chromatography. The reaction is conducted at 150 ppm or less, preferably 10 ppm or less, more preferably 50 ppm or less. Here, the calibration curve method is to obtain a peak area corresponding to the alcohol in the gas chromatogram of a reaction solvent having several known alcohol concentrations, draw a calibration curve from the alcohol concentration and the peak area, and obtain the calibration curve. Originally, the concentration is quantified from the peak area corresponding to the alcohol in the chromatogram of the reaction solvent with an unknown alcohol concentration. When the amount of impurities is higher than 150 ppm, the polymer obtained tends to be significantly lower than the tensile strength of the polymer obtained under the same reaction conditions except that the amount of impurities is 150 ppm or less, and the amount of molecules tends to be lower. is there. The higher the impurity content is higher than 150 ppm, the lower the tensile strength and the lower the weight average molecular weight. For this reason, when a polymerization reaction is carried out with an impurity amount higher than 150 ppm, isobutylene block copolymers having different mechanical properties and molecular weights can be obtained, which makes it extremely difficult to use as a molded product.
[0052] 炭素数 3〜8の 1級のモノハロゲン化炭化水素及び炭素数 3〜8の 2級のモノハロゲ ン化炭化水素力もなるモノハロゲンィ匕炭化水素に含まれる炭素数 3〜8の 1級のアル コール及び炭素数 3〜8の 2級のアルコールとしては、例えば、 1 プロパノール、 2 メチルプロパノール、 1ーブタノール、 2—メチルブタノール、 3—メチルブタノール 、 2, 2 ジメチルブタノール、 3, 3 ジメチルブタノール、 2, 3 ジメチルブタノール 、ペンタノール、 2—メチルペンタノール、 3—メチルペンタノール、 4ーメチルペンタノ 一ノレ、へキサノーノレ、 2—メチノレへキサノーノレ、 3—メチノレへキサノーノレ、 1 クロロー 4 メチルへキサノール、 5 メチルへキサノール、ヘプタノール、ォクタノール、 2— プロパノール、 2—ブタノール、 2—ペンタノール、 2—へキサノール、 2—ヘプタノ一 ル、 2—ォクタノール、フエノール等がある。 [0052] A primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and a monohalogenated hydrocarbon having 3 to 8 secondary monohalogenated hydrocarbons having 3 to 8 carbon atoms. Examples of the primary alcohol and the secondary alcohol having 3 to 8 carbon atoms include 1 propanol, 2 methylpropanol, 1-butanol, 2-methylbutanol, 3-methylbutanol, 2,2 dimethylbutanol, 3,3 dimethyl Butanol, 2, 3 Dimethylbutanol , Pentanol, 2-methylpentanol, 3-methylpentanol, 4-methylpentanol mono-ole, hexanol, 2-methino hexanol, 3-methino hexanol, 1-chloro-4-methyl hexanol, 5-methyl hexanol, heptanol, There are octanol, 2-propanol, 2-butanol, 2-pentanol, 2-hexanol, 2-heptanol, 2-octanol and phenol.
[0053] 上記重合を行うにあたっては、上述した各成分を冷却下、例えば 100°C以上 0°C 未満の温度で混合することが好ま 、。エネルギーコストと重合の安定性を釣り合わ せるために特に好まし 、温度範囲は、 80°C〜一 30°Cである。  [0053] In carrying out the above polymerization, it is preferable to mix the above-described components under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C. Particularly preferred to balance the energy cost and the stability of the polymerization, the temperature range is from 80 ° C to 1-30 ° C.
[0054] また、本発明のイソブチレン系ブロック共重合体は各用途に合わせた要求特性に 応じて、物性を損なわない範囲で、補強剤、充填剤、酸化防止剤や紫外線吸収剤、 光安定剤、顔料、界面活性剤、反応遅延剤、難燃剤、充填剤、補強剤等を適宜配合 することができる。  [0054] Further, the isobutylene block copolymer of the present invention has a reinforcing agent, a filler, an antioxidant, an ultraviolet absorber, a light stabilizer, and the like within a range that does not impair the physical properties according to the required characteristics according to each application. , Pigments, surfactants, reaction retarders, flame retardants, fillers, reinforcing agents, and the like can be appropriately blended.
[0055] 酸化防止剤としては特に限定はないが、ヒンダードフエノール系ゃヒンダードァミン 系等が例示できる。  [0055] The antioxidant is not particularly limited, and examples thereof include hindered phenols and hindered amines.
[0056] イソブチレン系ブロック共重合体およびこれを含有する組成物は、熱可塑性榭脂に 対して一般に採用される成型方法及び成形装置を用いて成形でき、例えば、押出成 形、射出成形、プレス成形、ブロー成形などによって溶融成形できる。  [0056] The isobutylene-based block copolymer and the composition containing the same can be molded using a molding method and a molding apparatus generally employed for thermoplastic resin, such as extrusion molding, injection molding, press It can be melt molded by molding, blow molding or the like.
[0057] 本発明に力かる方法で製造されるイソブチレン系ブロック共重合体およびこれを含 有する組成物は、従来のイソブチレン系ブロック共重合体と同様の各種用途に使用 され得る。例えば、エラストマ一材料、榭脂、ゴム、アスファルト等の改質剤、粘着剤の ベースポリマー、榭脂改質剤、ノ ッキング材、シール材、ガスケット、栓体などの密封 用材、チューブ、パイプなどの管状成形体、 CDダンパー等の弱電機器用ダンパー、 建築用ダンパー、自動車、車両、家電製品向け等の制振材、防振材、自動車内装材 、クッション材、 日用品、電気部品、電子部品、スポーツ部材、グリップまたは緩衝材、 電線被覆材、包装材、各種容器、文具部品として好適に使用することができる。 実施例  [0057] The isobutylene block copolymer and the composition containing the same produced by the method according to the present invention can be used for various applications similar to those of the conventional isobutylene block copolymer. For example, elastomer materials, modifiers such as resin, rubber, asphalt, adhesive base polymer, grease modifier, knocking materials, sealing materials, sealing materials such as gaskets, plugs, tubes, pipes, etc. Tubular molded products, dampers for weak electrical equipment such as CD dampers, dampers for construction, damping materials for automobiles, vehicles, home appliances, etc., cushioning materials, daily necessities, electrical parts, electronic parts, It can be suitably used as a sports member, grip or cushioning material, electric wire covering material, packaging material, various containers, and stationery parts. Example
[0058] 以下に実施例を掲げて本発明を更に具体的に説明する。尚、本発明はこれらの実 施例によって何ら限定されるものではなぐその要旨を変更しない範囲において適宜 変更実施可能である。 [0058] The present invention will be described more specifically with reference to the following examples. It should be noted that the present invention is not limited in any way by these examples, and as long as the gist of the present invention is not changed. Changes can be made.
[0059] 尚、実施例に先立ち各種測定法、評価法、実施例について説明する。  Prior to the examples, various measurement methods, evaluation methods, and examples will be described.
[0060] (不純物定量)不純物のアルコール量の定量は、ガスクロマトグラフィーによる検量 線法で行った。測定は、カラムとして Supelco waxTM10 (Supelco社製)を用い、 初期カラム温度 60°Cで 60°C、 3分、その後 15°C/分で 200°Cまで昇温、 200°Cで 3 分保持する昇温法で行 ヽ、ピーク面積カゝら不純物の定量を行った。  [0060] (Quantitative determination of impurities) The quantitative determination of the alcohol content of impurities was carried out by a calibration curve method using gas chromatography. For measurement, Supelco waxTM10 (manufactured by Supelco) is used as the column. The initial column temperature is 60 ° C for 3 minutes, then the temperature is raised to 200 ° C at 15 ° C / min and held at 200 ° C for 3 minutes. The temperature rising method was used to determine impurities from the peak area.
[0061] (重量平均分子量測定) Waters社製ゲルパーミエーシヨンクロマトグラフィー(GPC )システム(カラム:昭和電工株式会社製 Shodex K— 804、 K 802. 5 (ポリスチレ ンゲル)、移動相:クロ口ホルム、検出器:示差屈折検出器)を用いて測定した。  [0061] (Weight average molecular weight measurement) Water permeation gel permeation chromatography (GPC) system (column: Showa Denko Co., Ltd. Shodex K-804, K 802.5 (polystyrene gel), mobile phase: black mouth form , Detector: differential refraction detector).
[0062] (引張破断強度)  [0062] (Tensile breaking strength)
JIS K 6251に準拠し、 2mm厚プレスシートを、ダンベルで 3号型に打抜いて試 験片を作製し、これを使用して引張破断強度を測定した。引張速度は 500mmZ分 とした。  In accordance with JIS K 6251, a 2 mm thick press sheet was punched into a No. 3 type with a dumbbell to prepare a test piece, which was used to measure the tensile strength at break. The tensile speed was 500 mmZ.
[0063] (実施例 1)  [0063] (Example 1)
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 365mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 525mLをカ卩え、混合溶媒中の不純物であるブタノール濃 度をガスクロマトグラフィーにて測定した。重合容器を一 70°Cのドライアイス Zメタノー ルバス中につけて冷却した後、イソブチレンモノマー 207mL (2195mmol)が入って V、る三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブ を接続し、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p ジクミル クロライド 0. 495g (2. 14mmol)及び N、N,—ジメチルァセトアミド 0. 932g (10. 7 mmol)を加えた。次にさらに四塩化チタン 6. 6mL (59. 9mmol)をカ卩えて重合を開 始した。重合開始から 90分撹拌を行った後、重合溶液約 lmLをサンプリングして反 応率を確認した。続いて、スチレンモノマー 59. 5g (571. 4mmol)を重合容器内に 添加した。混合溶液を添加して力も 60分後に、大量の水に加えて反応を終了させた  After replacing the inside of the polymerization vessel of the 2 L separable flask with nitrogen, using a syringe, add n-hexane (dried with molecular sieves) 365 mL and butyl chloride (dried with molecular sieves) 525 mL, The concentration of butanol, which is an impurity in the mixed solvent, was measured by gas chromatography. Place the polymerization vessel in a dry ice Z methanol bath at 70 ° C and cool it. Then, 207 mL (2195 mmol) of isobutylene monomer is contained, and V is a Teflon (registered trademark) made in a pressure-resistant glass liquid tube with a three-way cock. The isoprene monomer was fed into the polymerization vessel by nitrogen pressure. p Dicumyl chloride 0.495 g (2.14 mmol) and N, N, -dimethylacetamide 0.932 g (10.7 mmol) were added. Next, 6.6 mL (59.9 mmol) of titanium tetrachloride was further added to initiate polymerization. After stirring for 90 minutes from the start of polymerization, about 1 mL of the polymerization solution was sampled to confirm the reaction rate. Subsequently, 59.5 g (571.4 mmol) of styrene monomer was added into the polymerization vessel. 60 minutes after adding the mixed solution, the reaction was terminated by adding a large amount of water.
[0064] 反応溶液を 2回水洗し、溶媒を蒸発させ、得られた重合体を 60°Cで 24時間真空乾 燥することにより目的のブロック共重合体を得た。得られたブロック共重合体の重量 平均分子量を上記方法で測定した。 [0064] The reaction solution was washed twice with water, the solvent was evaporated, and the resulting polymer was vacuum-dried at 60 ° C for 24 hours. The desired block copolymer was obtained by drying. The weight average molecular weight of the obtained block copolymer was measured by the above method.
[0065] 得られたブロック共重合体は、ラボプラストミル (東洋精機製作所製)にて 180°Cで 溶融混練し、得られた混練物を圧縮成型機 (神藤金属工業所製)にて 170°Cでプレ ス成形し、 2mm厚のシートを得た。得られたシートを用い、上記方法に従って試験片 を作製し、引張強度を測定した。  [0065] The obtained block copolymer was melt kneaded at 180 ° C with a Laboplast mill (manufactured by Toyo Seiki Seisakusho), and the resulting kneaded product was 170 at a compression molding machine (manufactured by Shinto Metal Industry). A 2 mm thick sheet was obtained by press molding at ° C. Using the obtained sheet, a test piece was prepared according to the above method, and the tensile strength was measured.
[0066] 上記方法により測定した反応溶媒中の不純物であるアルコール量と、重量平均分 子量、引張強度の測定結果を表 1に示す。 [0066] Table 1 shows the measurement results of the amount of alcohol, which is an impurity in the reaction solvent, the weight average molecular weight, and the tensile strength, measured by the above method.
[0067] (実施例 2) [0067] (Example 2)
ブタノール量が異なる重合溶媒を用いた以外は実施例 1と同様にして重合を実施 した。上記方法により測定した反応溶媒中のアルコール量と、重量平均分子量、引 張強度の測定結果を表 1に示す。  Polymerization was carried out in the same manner as in Example 1 except that a polymerization solvent having a different amount of butanol was used. Table 1 shows the measurement results of the alcohol amount, weight average molecular weight, and tensile strength in the reaction solvent measured by the above method.
[0068] (実施例 3) [Example 3]
表 1に記載のブタノール量となるよう、反応溶媒にブタノールを加えて、重合を実施 例 1と同様にして実施した。上記方法により測定した反応溶媒中のアルコール量と、 重量平均分子量、引張強度の測定結果を表 1に示す。  Polymerization was carried out in the same manner as in Example 1 by adding butanol to the reaction solvent so that the amount of butanol described in Table 1 was obtained. Table 1 shows the results of measuring the alcohol content, weight average molecular weight, and tensile strength in the reaction solvent measured by the above method.
[0069] (比較例 1) [0069] (Comparative Example 1)
ブタノール量が異なる重合溶媒を用いた以外は実施例 1と同様にして重合を実施 した。上記方法により測定した反応溶媒中のアルコール量と、重量平均分子量、引 張強度の測定結果を表 1に示す。  Polymerization was carried out in the same manner as in Example 1 except that a polymerization solvent having a different amount of butanol was used. Table 1 shows the measurement results of the alcohol amount, weight average molecular weight, and tensile strength in the reaction solvent measured by the above method.
[0070] (比較例 2) [0070] (Comparative Example 2)
表 1に記載のブタノール量となるよう、反応溶媒にブタノールを加えて、重合を実施 例 1と同様にして実施した。上記方法により測定した反応溶媒中のアルコール量と、 重量平均分子量、引張強度の測定結果を表 1に示す。  Polymerization was carried out in the same manner as in Example 1 by adding butanol to the reaction solvent so that the amount of butanol described in Table 1 was obtained. Table 1 shows the results of measuring the alcohol content, weight average molecular weight, and tensile strength in the reaction solvent measured by the above method.
[0071] [表 1] 実施例 1 実施例 2 実施例 3 比較例 1 比較例 2 不純物 8 4 7 1 4 0 2 1 5 3 2 9 [0071] [Table 1] Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Impurity 8 4 7 1 4 0 2 1 5 3 2 9
 Amount
( p p m)  (p p m)
重量平均 1 0 2 0 0 9 6 0 0 0 9 3 0 0 0 7 8 0 0 0 7 6 0 0 0  Weight average 1 0 2 0 0 9 6 0 0 0 9 3 0 0 0 7 8 0 0 0 7 6 0 0 0
分子量 0  Molecular weight 0
引張強度 1 9 1 8 1 7 1 5 1 3  Tensile strength 1 9 1 8 1 7 1 5 1 3
(MP a )  (MP a)
[0072] (実施例 4) [Example 4]
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 77mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 694mLをカ卩え、混合溶媒中のブタノール量を測定した。重 合容器を一 70°Cのドライアイス Zメタノールバス中につけて冷却した後、イソブチレ ンモノマー1671111^ ( 176911111101)が入っている三方コック付耐圧ガラス製液化採取 管にテフロン (登録商標)製の送液チューブを接続し、重合容器内にイソブチレンモ ノマーを窒素圧により送液した。 P ジクミルク口ライド 0. 340g (l. 47mmol)及び α ピコリン 0. 36g (3. 9mmol)をカロ免た。次にさらに四塩ィ匕チタン 2. 26mL (20. 6 mmol)を加えて重合を開始した。重合開始から 80分撹拌を行った後、重合溶液約 1 mLをサンプリングして反応率を確認した。続いて、スチレンモノマー 47. 95g (406. 2mmol)を重合容器内に添加した。混合溶液を添加してから 105分後に、大量の水 に加えて反応を終了させた。  After replacing the inside of the polymerization vessel of the 2 L separable flask with nitrogen, using a syringe, add 77 mL of n-hexane (dried with molecular sieves) and 694 mL of butyl chloride (dried with molecular sieves), The amount of butanol in the mixed solvent was measured. After the polymerization vessel is placed in a dry ice Z methanol bath at 70 ° C and cooled, a Teflon (registered trademark) feed is made into a pressure-resistant glass liquefaction sampling tube with a three-way cock containing isobutylene monomer 1671111 ^ (176911111101). A liquid tube was connected, and isobutylene monomer was fed into the polymerization vessel by nitrogen pressure. P. Dicmilk mouthride 0.340 g (l. 47 mmol) and α picoline 0.36 g (3.9 mmol) were calorie free. Next, 2.26 mL (20.6 mmol) of tetrasalt-titanium was further added to initiate polymerization. After stirring for 80 minutes from the start of polymerization, about 1 mL of the polymerization solution was sampled to confirm the reaction rate. Subsequently, 47.95 g (406.2 mmol) of styrene monomer was added into the polymerization vessel. 105 minutes after adding the mixed solution, the reaction was terminated by adding a large amount of water.
[0073] 反応溶液を 2回水洗した後、溶媒を蒸発させ、得られた重合体を 60°Cで 24時間真 空乾燥することにより目的のブロック共重合体を得た。得られたブロック共重合体の 重量平均分子量を上記方法で測定した。  [0073] After the reaction solution was washed twice with water, the solvent was evaporated, and the resulting polymer was vacuum-dried at 60 ° C for 24 hours to obtain the desired block copolymer. The weight average molecular weight of the obtained block copolymer was measured by the above method.
[0074] 得られたブロック共重合体から実施例 1と同様にしてプレスシートを作製し、引張強 度の測定を行った。上記方法により測定した反応溶媒中のアルコール量と、重量平 均分子量、引張強度の測定結果を表 2に示す。  [0074] A press sheet was produced from the obtained block copolymer in the same manner as in Example 1, and the tensile strength was measured. Table 2 shows the measurement results of the alcohol content, weight average molecular weight, and tensile strength in the reaction solvent measured by the above method.
[0075] (比較例 3)  [0075] (Comparative Example 3)
表 2に記載のアルコール量となるよう、反応溶媒にブタノールを加えて、重合を実施 例 4と同様にして実施した。上記方法により測定した反応溶媒中のアルコール量と、 重量平均分子量、引張強度の測定結果を表 2に示す。  Polymerization was carried out in the same manner as in Example 4 by adding butanol to the reaction solvent so that the amount of alcohol described in Table 2 was obtained. Table 2 shows the measurement results of the alcohol content, weight average molecular weight, and tensile strength in the reaction solvent measured by the above method.
[0076] [表 2] 実施例 4 比較例 3 [0076] [Table 2] Example 4 Comparative Example 3
不純物 暈 6 7 1 80  Impurities 暈 6 7 1 80
(p pm)  (p pm)
重量平均分子量 1 22000 1 0 5000  Weight average molecular weight 1 22000 1 0 5000
引張強度 1 8 1 5  Tensile strength 1 8 1 5
(MP a) これらの実施例から示されるように、本発明の製造方法により得られるイソプチレン 系ブロック共重合体は、反応溶媒中に不純物として存在する炭素数 3 8の 1級及び Z又は 2級アルコール量が 150ppm以上である以外は同一の条件で製造したブロッ ク共重合体と比較して、引張強度が安定的に高い値を示す。また、重量平均分子量 が高ぐ低分子量成分が少なぐ溶融時の流動性も安定した値を示すことがわ力る。  (MPa) As shown from these examples, the isoprene-based block copolymer obtained by the production method of the present invention is composed of primary and Z or secondary carbon atoms of 38 and present as impurities in the reaction solvent. Compared to a block copolymer produced under the same conditions except that the amount of alcohol is 150 ppm or more, the tensile strength is stably high. In addition, the flowability at the time of melting shows a stable value with a high weight average molecular weight and a low low molecular weight component.

Claims

請求の範囲 The scope of the claims
[1] 反応溶媒として炭素数 3〜8の 1級及び 2級のモノハロゲンィ匕炭化水素力も選ばれ る 1種を少なくとも用いて、該反応溶媒中に不純物として存在する炭素数 3〜8の 1級 及び Z又は 2級 Xアルコール量が 150ppm以下の状態で、下記一般式(1)で表わされ る重合開始剤の存在下に、イソブチレンを主成分とする単量体成分 (a)と、イソプチ レンを主成分としない単 RCR量II体成分 (b)とを反応させることを特徴とする、イソプチレン を単量体主成分とする重合体ブロックとイソブチレンを単量体主成分としない重合体 ブロック力 なるイソブチレン系ブロック共重合体の製造方法。  [1] A primary and secondary monohalogenated hydrocarbon power having 3 to 8 carbon atoms is also selected as the reaction solvent, and at least one kind of carbon atoms having 3 to 8 carbon atoms present as impurities in the reaction solvent is used. In the presence of a polymerization initiator represented by the following general formula (1) with a primary and Z or secondary X alcohol content of 150 ppm or less, a monomer component (a) comprising isobutylene as a main component and A polymer block containing isoprene as a main component of monomer and a polymer block containing isobutylene as a main component of monomer. A method for producing an isobutylene block copolymer.
Figure imgf000020_0001
Figure imgf000020_0001
(式中、複数の R1は、同一又は異なる、水素原子又は炭素数 1〜6の 1価の炭化水素 基を表す。 R2は、 1価若しくは多価芳香族炭化水素基又は 1価若しくは多価脂肪族 炭化水素基を表す。 Xは、ハロゲン原子、炭素数 1〜6のアルコキシル基、又は、炭 素数 1〜6のァシ口キシル基を表す。 nは、 1〜6の整数を表す。 Xが複数存在すると き、それらは、同一であっても異なっていてもよい。 ) (In the formula, a plurality of R 1 represent the same or different hydrogen atoms or monovalent hydrocarbon groups having 1 to 6 carbon atoms. R 2 represents a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or X represents a halogen atom, an alkoxyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms, n is an integer of 1 to 6 When multiple Xs are present, they may be the same or different.)
[2] 反応は、ルイス酸を更に共存させて行うものである請求項 1記載の製造方法。 [2] The process according to claim 1, wherein the reaction is carried out in the presence of a Lewis acid.
[3] ルイス酸として、四塩ィ匕チタンを用いる請求項 2記載の製造方法。 [3] The production method according to claim 2, wherein a tetrasalt-titanium salt is used as the Lewis acid.
[4] 一般式(1)で表わされる重合開始剤は、ビス(1 クロル 1ーメチルェチル)ベン ゼン [C H (C (CH ) C1) ]または(1 クロル 1ーメチルェチル)ベンゼン [C H C[4] The polymerization initiator represented by the general formula (1) is bis (1 chloro 1-methylethyl) benzene [C H (C (CH) C1)] or (1 chloro 1-methylethyl) benzene [C H C
6 4 3 2 2 6 56 4 3 2 2 6 5
(CH ) C1]力 選ばれる少なくとも 1種である請求項 1〜3のいずれかに記載の製造(CH) C1] force The production according to any one of claims 1 to 3, which is at least one selected.
3 2 3 2
方法。  Method.
[5] イソブチレンを主成分としな ヽ単量体成分 (b)は、芳香族ビニル系単量体を主成分 とする単量体成分である請求項 1〜4のいずれかに記載の製造方法。 [5] The production method according to any one of claims 1 to 4, wherein the monomer component (b) containing isobutylene as a main component is a monomer component containing an aromatic vinyl monomer as a main component. .
[6] 芳香族ビュル系単量体は、スチレン、 p—メチルスチレン、 α—メチルスチレン及び インデン力 なる群より選択される少なくとも 1種である請求項 5記載の製造方法。 6. The production method according to claim 5, wherein the aromatic bur monomer is at least one selected from the group consisting of styrene, p-methylstyrene, α-methylstyrene, and indene power.
[7] イソブチレン系ブロック共重合体が、芳香族ビニル系単量体を主成分とする重合体 ブロック イソブチレンを主成分とする重合体ブロック 芳香族ビニル系単量体を主 成分とする重合体ブロックから形成されるトリブロック共重合体、イソブチレンを主成 分とする重合体ブロック一芳香族ビニル系単量体を主成分とする重合体ブロックーィ ソブチレンを主成分とする重合体ブロック力 形成されるトリブロック共重合体、及び、 芳香族ビュル系単量体を主成分とする重合体ブロック イソブチレンを主成分とする 重合体ブロック力 形成されるジブロック共重合体力 なる群より選択される少なくとも [7] A polymer block in which the isobutylene-based block copolymer is composed mainly of an aromatic vinyl monomer. A polymer block composed mainly of an isobutylene. A polymer block composed mainly of an aromatic vinyl-based monomer. Triblock copolymer formed from polymer block, polymer block mainly composed of isobutylene, polymer block composed mainly of aromatic vinyl monomer, polymer block force composed mainly of sobutylene A block copolymer, and a polymer block mainly composed of an aromatic butyl monomer, a polymer block force mainly composed of isobutylene, and a diblock copolymer force formed, at least selected from the group consisting of
1種である請求項 5又は 6記載の製造方法。 The production method according to claim 5 or 6, which is one kind.
[8] 炭素数 3〜8の 1級のモノハロゲンィ匕炭化水素及び Ζ又は炭素数 3〜8の 2級のモ ノハロゲンィ匕炭化水素からなるモノハロゲン化炭化水素系溶媒と、脂肪族系炭化水 素及び Ζ又は芳香族系炭化水素力 なる非ハロゲンィ匕炭化水素系溶媒との混合溶 媒中で重合を行うことを特徴とする請求項 1〜7のいずれかに記載の製造方法。 [8] A monohalogenated hydrocarbon solvent composed of a primary monohalogenated hydrocarbon having 3 to 8 carbon atoms and Ζ or a secondary monohalogenated hydrocarbon having 3 to 8 carbon atoms, and aliphatic carbonized The production method according to any one of claims 1 to 7, wherein the polymerization is carried out in a mixed solvent of hydrogen and a non-halogen soot hydrocarbon solvent having a soot or aromatic hydrocarbon power.
[9] モノハロゲン化炭化水素系溶媒は、 1—クロ口プロパン及び 1—クロロブタン力もなる 群より選択される少なくとも 1種である請求項 8記載の製造方法。 [9] The production method according to claim 8, wherein the monohalogenated hydrocarbon solvent is at least one selected from the group consisting of 1-chloropropane and 1-chlorobutane power.
[10] 非ハロゲン化炭化水素系溶媒は、へキサン、シクロへキサン、メチルシクロへキサン 及びェチルシクロへキサン力 なる群より選択される少なくとも 1種である請求項 8又 は 9記載の製造方法。 [10] The process according to claim 8 or 9, wherein the non-halogenated hydrocarbon solvent is at least one selected from the group consisting of hexane, cyclohexane, methylcyclohexane, and ethylcyclohexane.
[11] 反応溶媒として炭素数 3〜8の 1級及び 2級のモノハロゲンィ匕炭化水素力も選ばれる 1種を少なくとも用いて、該反応溶媒中に不純物として存在する炭素数 3〜8の 1級及 び Ζ又は 2級アルコール量が 150ppm以下の状態で、前記一般式(1)で表わされる 重合開始剤の存在下に、イソブチレンを主成分とする単量体成分 (a)と、イソブチレ ンを主成分としな ヽ単量体成分 (b)とを反応させる方法で得られたことを特徴とするィ ソブチレンを単量体主成分とする重合体ブロックとイソブチレンを単量体主成分とし ない重合体ブロックからなるイソブチレン系ブロック共重合体。  [11] A primary and secondary monohalogenated hydrocarbon power having 3 to 8 carbon atoms is also selected as the reaction solvent, and at least one kind of 1 to 3 carbon atoms present as impurities in the reaction solvent is used. A monomer component (a) containing isobutylene as a main component in the presence of a polymerization initiator represented by the above general formula (1) in a state where the amount of grade and soot or secondary alcohol is 150 ppm or less, and isobutylene A polymer block containing isobutylene as the main monomer component and isobutylene as the main monomer component, obtained by reacting with the monomer component (b). An isobutylene block copolymer comprising a polymer block.
[12] 重合開始剤、イソブチレンを主成分とする単量体成分 (a)及びイソブチレンを主成 分としな!/、単量体成分 (b)の仕込み比率が同じ条件下で、請求項 1記載の製造方法 を 2回以上実施することを特徴とする、イソブチレンを単量体主成分とする重合体プロ ックとイソブチレンを単量体主成分としない重合体ブロックからなるイソブチレン系ブ ロック共重合体の製造ロット毎の品質を安定させる方法。 [12] The polymerization initiator, the monomer component (a) containing isobutylene as the main component and the main component of isobutylene! /, And the monomer component (b) are charged under the same charging ratio as defined in claim 1. Manufacturing method described The production of an isobutylene block copolymer comprising a polymer block containing isobutylene as the main monomer component and a polymer block not containing isobutylene as the main monomer component A method to stabilize the quality of each lot.
[13] 重合開始剤、イソブチレンを主成分とする単量体成分 (a)及びイソブチレンを主成 分としな!/、単量体成分 (b)の仕込み比率が同じ条件下で、請求項 1記載の製造方法 を 2回以上実施することを特徴とする、イソブチレンを単量体主成分とする重合体プロ ックとイソブチレンを単量体主成分としない重合体ブロックからなるイソブチレン系ブ ロック共重合体の製造ロット毎の重量平均分子量を安定させる方法。  [13] The polymerization initiator, the monomer component (a) containing isobutylene as a main component and the main component of isobutylene! /, And the monomer component (b) are charged under the same charging ratio as defined in claim 1. An isobutylene block comprising a polymer block containing isobutylene as a main monomer component and a polymer block not containing isobutylene as a main monomer component, characterized in that the production method described above is carried out twice or more. A method of stabilizing the weight average molecular weight of each polymer production lot.
[14] 重合開始剤、イソブチレンを主成分とする単量体成分 (a)及びイソブチレンを主成 分としな!/、単量体成分 (b)の仕込み比率が同じ条件下で、請求項 1記載の製造方法 を 2回以上実施することを特徴とする、イソブチレンを単量体主成分とする重合体プロ ックとイソブチレンを単量体主成分としない重合体ブロックからなるイソブチレン系ブ ロック共重合体の製造ロット毎の機械的特性を安定させる方法。  [14] The polymerization initiator, the monomer component (a) containing isobutylene as a main component and the main component of isobutylene! /, And the monomer component (b) are charged under the same charging ratio as claimed in claim 1. An isobutylene block comprising a polymer block containing isobutylene as a main monomer component and a polymer block not containing isobutylene as a main monomer component, characterized in that the production method described above is carried out twice or more. A method of stabilizing the mechanical properties of each production lot of polymer.
PCT/JP2007/052374 2006-02-13 2007-02-09 Method for producing isobutylene block copolymer WO2007094258A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008500478A JPWO2007094258A1 (en) 2006-02-13 2007-02-09 Method for producing isobutylene block copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-034952 2006-02-13
JP2006034952 2006-02-13

Publications (1)

Publication Number Publication Date
WO2007094258A1 true WO2007094258A1 (en) 2007-08-23

Family

ID=38371444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052374 WO2007094258A1 (en) 2006-02-13 2007-02-09 Method for producing isobutylene block copolymer

Country Status (2)

Country Link
JP (1) JPWO2007094258A1 (en)
WO (1) WO2007094258A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270021A (en) * 2008-05-08 2009-11-19 Kaneka Corp Thermoplastic resin composition, optical film, and polarizing plate
JP2011522908A (en) * 2008-05-07 2011-08-04 ビーエーエスエフ ソシエタス・ヨーロピア α-olefin / isobutene-diblock copolymer
CN107163202A (en) * 2017-06-09 2017-09-15 北京石油化工学院 Triblock copolymer of poly- N vinyl carbazoles and polyisobutene and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301955A (en) * 1995-03-08 1996-11-19 Kuraray Co Ltd Block copolymer and its production
JPH11100420A (en) * 1997-09-25 1999-04-13 Kuraray Co Ltd Block copolymer, its production, and resin composition
JPH11166025A (en) * 1997-12-04 1999-06-22 Kanegafuchi Chem Ind Co Ltd Alkenyl group-containing block copolymer and its production
JPH11286525A (en) * 1998-02-06 1999-10-19 Kanegafuchi Chem Ind Co Ltd Production of isobutylene-based block copolymer
JPH11349648A (en) * 1998-04-07 1999-12-21 Kanegafuchi Chem Ind Co Ltd Production of isobutylene block copolymer
JP2000038494A (en) * 1998-05-20 2000-02-08 Kanegafuchi Chem Ind Co Ltd Tube material
JP2000080339A (en) * 1998-05-20 2000-03-21 Kanegafuchi Chem Ind Co Ltd Self-adhesive composition
JP2001323013A (en) * 2000-05-17 2001-11-20 Kanegafuchi Chem Ind Co Ltd Method for producing isobutylene-based block copolymer
JP2002020522A (en) * 2000-07-07 2002-01-23 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin foam
JP2002179877A (en) * 2000-12-13 2002-06-26 Kanegafuchi Chem Ind Co Ltd Film material and method for producing the same
JP2004123886A (en) * 2002-10-02 2004-04-22 Kanegafuchi Chem Ind Co Ltd Method for manufacturing isobutylene polymer
JP2004175953A (en) * 2002-11-28 2004-06-24 Kanegafuchi Chem Ind Co Ltd Polyisobutylene-polyolefin copolymer and manufacturing method therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301955A (en) * 1995-03-08 1996-11-19 Kuraray Co Ltd Block copolymer and its production
JPH11100420A (en) * 1997-09-25 1999-04-13 Kuraray Co Ltd Block copolymer, its production, and resin composition
JPH11166025A (en) * 1997-12-04 1999-06-22 Kanegafuchi Chem Ind Co Ltd Alkenyl group-containing block copolymer and its production
JPH11286525A (en) * 1998-02-06 1999-10-19 Kanegafuchi Chem Ind Co Ltd Production of isobutylene-based block copolymer
JPH11349648A (en) * 1998-04-07 1999-12-21 Kanegafuchi Chem Ind Co Ltd Production of isobutylene block copolymer
JP2000038494A (en) * 1998-05-20 2000-02-08 Kanegafuchi Chem Ind Co Ltd Tube material
JP2000080339A (en) * 1998-05-20 2000-03-21 Kanegafuchi Chem Ind Co Ltd Self-adhesive composition
JP2001323013A (en) * 2000-05-17 2001-11-20 Kanegafuchi Chem Ind Co Ltd Method for producing isobutylene-based block copolymer
JP2002020522A (en) * 2000-07-07 2002-01-23 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin foam
JP2002179877A (en) * 2000-12-13 2002-06-26 Kanegafuchi Chem Ind Co Ltd Film material and method for producing the same
JP2004123886A (en) * 2002-10-02 2004-04-22 Kanegafuchi Chem Ind Co Ltd Method for manufacturing isobutylene polymer
JP2004175953A (en) * 2002-11-28 2004-06-24 Kanegafuchi Chem Ind Co Ltd Polyisobutylene-polyolefin copolymer and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011522908A (en) * 2008-05-07 2011-08-04 ビーエーエスエフ ソシエタス・ヨーロピア α-olefin / isobutene-diblock copolymer
JP2009270021A (en) * 2008-05-08 2009-11-19 Kaneka Corp Thermoplastic resin composition, optical film, and polarizing plate
CN107163202A (en) * 2017-06-09 2017-09-15 北京石油化工学院 Triblock copolymer of poly- N vinyl carbazoles and polyisobutene and preparation method thereof

Also Published As

Publication number Publication date
JPWO2007094258A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
Lu et al. Star Block Copolymers Through Nitroxide‐Mediated Radical Polymerization From Polyhedral Oligomeric Silsesquioxane (POSS) Core
BRPI0821018B1 (en) HYPERPHASIC POLYPROPYLENE RESIN, ITS PRODUCTION PROCESS, USE OF THE SAME, COMPOSITION AND ARTICLE
NO301023B1 (en) Elastoplastic polyolefin material and method for making it
WO2000008079A1 (en) Linear block copolymer and resin composition containing the same
JP6815996B2 (en) Method for Producing Halogenated Isoolefin Polymer
Puskas et al. Controlled/living carbocationic copolymerization of isobutylene with alloocimene
Bianchi et al. Kinetics of thermo-oxidative degradation of PS-POSS hybrid nanocomposite
WO2007094258A1 (en) Method for producing isobutylene block copolymer
Yilmaz Compatibilization of polyvinyl chloride‐polymethyl methacrylate polymer blends with maleic anhydride‐styrene‐methyl methacrylate terpolymer
JP5809276B2 (en) Cycloolefin copolymer resin composition
JP5350922B2 (en) Thermoplastic elastomer resin composition
Nikopoulou et al. Synthesis of exact comb polybutadienes with two and three branches
JP4589541B2 (en) Thermoplastic elastomer composition
JPWO2007046344A1 (en) Method for producing isobutylene block copolymer
JP2000119478A (en) Rubber composition
JP2000119479A (en) Thermoplastic resin composition
Gospodinova et al. Relationship between microstructure and phaseand relaxation transitions in ethylene-(vinyl acetate) copolymers prepared by emulsion copolymerization
Lin et al. Synthesis of well‐defined comb‐like graft (co) polymers by nucleophilic substitution reaction between living polymers and polyhalohydrocarbon
JP5068998B2 (en) Method for producing isobutylene block copolymer
JP2000038460A (en) Sheet material
JP4382401B2 (en) Thermoplastic resin composition
JP6339790B2 (en) Method for producing isobutylene block copolymer
JP3878327B2 (en) Aromatic vinyl-isobutylene block copolymer composition
JP2009007383A (en) Isobutylenic block copolymer
Mehringer et al. Influence of side chain lengths in mechanophore‐containing polyisobutylene‐graft‐polystyrene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008500478

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07708310

Country of ref document: EP

Kind code of ref document: A1