WO2007094112A1 - Spindle motor and information recording/reproducing device - Google Patents

Spindle motor and information recording/reproducing device Download PDF

Info

Publication number
WO2007094112A1
WO2007094112A1 PCT/JP2006/324147 JP2006324147W WO2007094112A1 WO 2007094112 A1 WO2007094112 A1 WO 2007094112A1 JP 2006324147 W JP2006324147 W JP 2006324147W WO 2007094112 A1 WO2007094112 A1 WO 2007094112A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle motor
rotor
stator
recording
plate
Prior art date
Application number
PCT/JP2006/324147
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Hirata
Manabu Oumi
Norio Chiba
Kunio Nakajima
Ryuji Iijima
Toshifumi Ohkubo
Original Assignee
Seiko Instruments Inc.
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc., Toyo University filed Critical Seiko Instruments Inc.
Priority to JP2008500404A priority Critical patent/JPWO2007094112A1/en
Publication of WO2007094112A1 publication Critical patent/WO2007094112A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/2009Turntables, hubs and motors for disk drives; Mounting of motors in the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/004Electrostatic motors in which a body is moved along a path due to interaction with an electric field travelling along the path

Definitions

  • the present invention relates to a spindle motor that rotationally drives a recording medium such as a hard disk incorporated in various electronic devices, and an information recording / reproducing apparatus having the spindle motor.
  • a stator having a plurality of electrode patterns in the circumferential direction and the radial direction, and a dielectric tooth butter which is rotatably arranged with respect to the stator and is made of dielectric teeth.
  • electrostatic stepping motors having a rotor provided with a radial shape (see, for example, Japanese Patent No. 3354009).
  • the dielectric tooth pattern that has been attracted to the electrode pattern by electrostatic attraction force is separated from the electrode pattern cover by receiving electrostatic repulsion due to the exchange of electric charges. Then, the separated dielectric tooth pattern moves by receiving the electrostatic attraction force of the adjacent electrode pattern cover, and stops by adsorbing to the electrode pattern. In this state, by applying voltage to each electrode again, the charge of the dielectric tooth pattern can be exchanged, and the above operation is repeated to move the dielectric tooth pattern that has been attracted again. Is possible.
  • the rotor rotates while repeating a temporary stop at every predetermined angle.
  • the rotor can be rotated while performing a stepping operation at every predetermined angle.
  • the disk rotates as the rotor rotates.
  • a disk having one or both surfaces made of a high-resistance substrate, and a plurality of disks are driven on the surface facing the high-resistance substrate while rotating the disk.
  • a disk rotation driving device having a rotation driving electrode plate in which the dot electrodes are arranged concentrically (see, for example, Japanese Patent No. 3725986).
  • a voltage is applied to each of the plurality of dot electrodes to form a rotating electric field centered on the concentricity of the electrode pattern.
  • This rotating electric field then induces charges on the surface of the high resistance substrate of the disk.
  • a high-resistance substrate such as a glass substrate is a high-resistance body
  • a phase lag occurs between the induced charge and the voltage applied to the voltage, and rotational torque is applied to the high-resistance substrate. appear.
  • the disk can be rotated.
  • the disk itself serves as a rotor constituting a general motor.
  • any device (electrostatic drive type motor) does not require a permanent magnet, a coil, or the like unlike a PM motor, and thus can be easily reduced in size and thickness. Therefore, application to recent electronic devices aiming at miniaturization is beginning to be considered.
  • Patent Document 1 rotates the rotor by alternately switching the charge appearing on the surface of the dielectric tooth pattern provided on the rotor between plus and minus. ing. For this reason, it can only be rotated by a stepping operation that temporarily rotates the rotor. I could't turn it. For this reason, it was difficult to rotate the disk continuously and smoothly.
  • the device described in Patent Document 2 is such that the disk itself also serves as a rotor. For this reason, it was difficult to use the dedicated disk and power.
  • a normal disk is manufactured according to a predetermined standard and does not have high rigidity with a small thickness. For this reason, in this apparatus that uses the disk like a rotor, there is a risk of the disk becoming distorted and deformed. Therefore, the gap between the disk and the electrode plate for rotation drive cannot be kept uniform in the plane.
  • the present invention has been made in view of such circumstances, and its purpose is to continuously and smoothly rotate a recording medium through a rotor plate while preventing damage and wear due to contact. It is also possible to provide a spindle motor and an information recording / reproducing apparatus having the spindle motor that can improve reliability by reducing vibration, noise, and durability.
  • the spindle motor of the present invention is a spindle motor that rotates a disk-shaped recording medium capable of recording various kinds of information around a rotation axis, and is a shaft arranged along the rotation axis.
  • a stator plate that supports the base end side of the shaft and that is disposed along a plane perpendicular to the rotation axis, and is inserted with a certain clearance from the shaft, and the rotation
  • a rotating body that is rotatable about an axis and has a holding portion for holding the recording medium on an outer peripheral surface, and a conductive fluid supplied to the gap, and a thrust when the rotating body rotates
  • a hydrodynamic pressure bearing portion that supports a radial force and a radial force
  • a rotor plate that has a facing surface facing the stator plate, is fixed to the base end side of the rotating body, and rotates together with the rotor plate, and the rotor Provided on the opposite surface of the plate,
  • a plurality of rotor electrode portions arranged at a predetermined angle in the circumferential direction and a plurality of rotor electrode portions provided on the surface of the stator plate at a narrower angle than the predetermined angle in the circumferential direction around the rotation axis.
  • a driving voltage is applied to the selected stator electrode portion for a predetermined time among the arranged stator electrode portions and a plurality of stator electrode portions!], And the rotor plate is fixed in a certain direction by electrostatic force. And a plurality of rotor electrode portions that are grounded through at least the rotor plate and the fluid.
  • the rotating body is inserted and attached to the shaft supported at the base end side by the stator plate with a certain gap therebetween. It can be rotated around its axis.
  • a conductive fluid such as oil is supplied to the gap between the shaft and the rotating body.
  • the face plate fixed to the base end side of the rotating body is in a state where the facing surface faces the surface of the stator plate.
  • the rotor electrode portion and the stator electrode portion are similarly opposed to each other.
  • a plurality of rotor electrode portions are provided on the opposing surface of the rotor plate at predetermined angles (for example, every 30 degrees) in the circumferential direction around the rotation axis. Further, on the surface of the stator plate, a plurality of stator electrode portions are provided for each angle (for example, every 20 degrees) narrower than the predetermined angle in the circumferential direction around the rotation axis. Due to the difference in the positional relationship between these two electrode portions, the stator electrode portion is always located between the adjacent rotor electrode portions.
  • the stator electrode selected from the plurality of stator electrode portions by the voltage applying means A drive voltage is applied to the part for a predetermined time. Specifically, the drive voltage is applied to the stator electrode portion located on the rotation direction (constant direction) side of the rotor electrode portion. At this time, since the plurality of rotor electrode portions are grounded in advance via at least the rotor electrode portion and the conductive fluid, a positive voltage and a negative voltage are respectively applied to the applied stator electrode portion and the rotor electrode portion. Is applied. As a result, positive and negative charges are induced on the surfaces of both electrode portions, and electrostatic forces (electrostatic attractive force) are generated that attract each other.
  • electrostatic forces electrostatic attractive force
  • the voltage application means stops applying to the first stator electrode portion and at the same time starts moving the rotor electrode portion.
  • a drive voltage is applied for a predetermined time to the next stator electrode portion positioned on the rotation direction (constant direction) side.
  • the rotor plate and the rotating body can be rotated around the rotation axis while utilizing the electrostatic force. Further, since the recording medium is held on the rotating body via the holding unit, the recording medium can be rotated.
  • the spindle motor according to the present invention is different from a powerful device that can be rotated only by a stepping operation using a conventional dielectric tooth pattern.
  • the rotor electrode part grounded in advance can be rotated continuously and smoothly. That is, the two electrode portions are not brought into contact with each other and stopped. Therefore, the recording medium can be rotated continuously and stably at a uniform speed. it can.
  • both electrode portions are not brought into contact with each other, damage and wear of both electrode portions can be prevented. Accordingly, vibration and sound loss can be reduced, and durability can be improved. In addition, since dust and the like due to contact can be prevented, the cleanliness around the rotor plate can be maintained at a certain level, and the recording medium is not adversely affected.
  • the recording medium is rotated via the rotor plate, unlike the conventional one, there is no fear that the recording medium will crawl and be deformed. Therefore, it does not adversely affect other components. Therefore, reliability can be improved.
  • the recording medium can be continuously and smoothly rotated through the rotor plate while preventing damage and wear due to contact, and the vibration can be reduced.
  • noise reduction and durability can be improved, and reliability can be improved.
  • the spindle motor of the present invention is the above-described spindle motor of the present invention, wherein the plurality of stator electrode portion forces are in a positional relationship in which one of the rotor electrode portions and one of the stator electrode portions completely face each other.
  • the other stator electrode part is provided so as to be located at least in the vicinity of the fixed direction side of the adjacent rotor electrode part.
  • the spindle motor when one of the rotor electrode portions and one of the stator electrode portions are in a completely opposed positional relationship, at least the adjacent rotor electrode portion is in the vicinity of the fixed direction side.
  • the stator electrode portion is always located. That is, when the rotor electrode portion is moved toward the other stator electrode portion by electrostatic force, both electrode portions are already close to each other.
  • the magnitude of the electrostatic force is inversely proportional to the distance between the two electrode portions, the rotor electrode portion can be moved quickly toward the other stator electrode portion at a higher speed. Therefore, the recording medium can be rotated in a more stable state.
  • the spindle motor of the present invention is the spindle motor of the present invention described above, wherein the width of each of the plurality of stator electrode portion forces in the circumferential direction is narrower than the width of each of the plurality of rotor electrode portions.
  • the voltage application means includes at least the rotor electrode portion from the substantial center of the plurality of stator electrode portions of the plurality of stator electrodes. The drive voltage is applied to a stator electrode portion located within a range of 1Z2 of the width toward the fixed direction.
  • the width force in the circumferential direction of each stator electrode portion is formed narrower than the width in the circumferential direction of the rotor electrode portion.
  • it is formed with a width of about 1Z3 than the width of the rotor electrode portion.
  • the stator electrodes having a small width are arranged adjacent to each other in close proximity.
  • a plurality of status electrode portions are arranged in the circumferential direction around the rotation axis, for example, every 3 to 4 degrees.
  • the voltage applying means is within a range of the plurality of stator electrodes that is oriented in a fixed direction (rotational direction) at least by 1Z2 of the width of the rotor electrode portion from substantially the center of the rotor electrode portion.
  • a drive voltage is applied to the positioned stator electrode. That is, the drive voltage is applied in a concentrated manner only to the stator electrode part that is close to the rotor electrode part and contributes to the movement of the rotor electrode part.
  • the magnitude of the electrostatic force is inversely proportional to the distance between the two electrode portions, the rotor electrode portion can be pulled with a stronger electrostatic force, and can be moved quickly at a higher speed. Therefore, the recording medium can be rotated in a more stable state.
  • the voltage application means sequentially changes the application to the stator electrode portion as the rotor electrode portion moves so as to maintain the above-described positional relationship.
  • the width of the stator electrode portion is made as small as possible and the number of stator electrode portions is increased as much as possible, the fluctuation range of the electrostatic force can be reduced. Therefore, the above-described effect can be further enhanced.
  • the spindle motor of the present invention is the spindle motor of any one of the above-described present invention, wherein at least one of the opposing surface of the rotor plate and the surface of the stator plate is the rotor electrode portion.
  • a protective film is provided so as to cover the stator electrode portion.
  • the protective film is provided so as to cover at least one of the rotor electrode portion and the stator electrode portion, so that the rotor plate is caused by some cause during the rotation. Even if an external force is applied, since the protective film is interposed, the contact electrode portion and the stator electrode portion do not directly contact each other. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be further enhanced.
  • the spindle motor of the present invention is characterized in that, in the spindle motor of the present invention, a lubricating film is applied on the protective film.
  • the lubricating film is further applied on the protective film, an external force is applied to the rotor plate for some reason during rotation as described above, and the rotor plate or stator plate Even if the lubricant film is in contact with the lubricant film or the lubricant films are in contact with each other, the frictional force at the time of contact can be reduced. Therefore, a decrease in rotational speed can be suppressed as much as possible. Moreover, since the resistance at the time of contact can be suppressed as much as possible, power saving can be achieved.
  • the spindle motor of the present invention is the above-described spindle motor of the present invention, wherein at least one of the opposing surface of the rotor plate and the surface of the stator plate has the rotor electrode portion or the A solid lubricating film is provided so as to cover the stator electrode portion.
  • a solid lubricating film having both functions of a protective film and a lubricating film is provided so as to cover at least one of the rotor electrode portion and the stator electrode portion. . Therefore, even if an external force is applied to the rotor plate for some reason during rotation, the solid lubricating film is interposed, so the rotor electrode portion and the stay are directly The electrode part does not come into contact. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be further enhanced.
  • the frictional force at the time of contact can be reduced, and a decrease in rotational speed can be suppressed as much as possible.
  • the resistance at the time of contact can be suppressed as much as possible, power saving can be achieved.
  • the rotor plate is slippery during rotational driving, the starting characteristics can be improved. Also from this point, power saving can be achieved.
  • the spindle motor of the present invention has at least a gap between the rotor plate and the stator plate between the shaft and the rotating body. It is characterized in that a positioning portion that is separated by a value is provided.
  • the gap between the rotor plate and the stator plate can be reliably opened at least by a specified value. . Therefore, it is possible to obtain more stable rotation without contact between both electrode portions. Further, since the rotor plate and the stator plate do not come into contact with each other even during stoppage, the starting characteristics can be improved. As a result, the load at startup can be reduced and further power saving can be achieved.
  • the shaft is formed in a columnar shape, and the fluid dynamic pressure bearing portion is a shaft facing the rotating body.
  • a thrust dynamic pressure groove formed on at least one of the upper surface of the rotor and the lower surface of the rotating body facing the rotor plate to support the thrust force, and formed on the outer peripheral surface of the shaft in the radial direction.
  • a radial dynamic pressure groove for supporting the above-mentioned force.
  • the fluid supplied between the rotating body and the shaft flows along the thrust dynamic pressure groove and the radial dynamic pressure groove.
  • the pressure gradually increases for the first time.
  • the rotor first floats by the rotor plate force due to the pressure generated by the thrust dynamic pressure groove, and rotates while being separated from the shaft by the pressure generated by the radial dynamic pressure groove.
  • the fluid dynamic bearing Supports thrust and radial forces that are sometimes generated on rotating bodies.
  • the rotating body rotates smoothly around the shaft without any side shake.
  • the rotating body and the rotor plate fixed to the rotating body can be reliably and stably rotated while suppressing vibration.
  • the rotating body Since the rotating body simultaneously receives an electrostatic force that acts between the rotor electrode portion and the stator electrode portion during rotation, the rotating body is pulled in a direction opposite to the flying direction to maintain the rotation balance. ing. From this point, stable rotation can be maintained.
  • the spindle motor of the present invention includes a flange-shaped flange portion that extends radially outward by a predetermined thickness on the outer peripheral surface of the shaft.
  • the fluid dynamic pressure bearing portion formed is provided with a second thrust dynamic pressure groove formed on the lower surface of the flange portion and supporting the force in the thrust direction.
  • fluid flows along the second thrust dynamic pressure groove formed on the lower surface of the flange portion as the rotating body rotates, and the pressure increases. Then, the rotating body receives a pressure generated by the second thrust dynamic pressure groove and receives a force in the direction of the stator plate, that is, the direction opposite to the direction of rising, and is pressed. . That is, the fluid dynamic pressure bearing portion can support two thrust forces directed in opposite directions along the rotation axis. As a result, the rotating body receives the floating force and the pressing force by the two thrust forces, and also receives the electrostatic force acting between the rotor electrode portion and the stator electrode portion. As a result, the rotating body rotates more stably in the thrust direction due to the balance of the three forces. Accordingly, it is possible to further reduce vibration and noise during rotation, and to operate the fluid dynamic pressure bearing portion more stably.
  • the information recording / reproducing apparatus of the present invention includes the above-mentioned spindle motor of the present invention, a deviation spindle motor, a recording / reproducing head for recording / reproducing information on the recording medium, and the recording / reproducing head.
  • Force on the surface of the recording medium a suspension that supports the suspension in a floating state, an actuator that supports the base end side of the suspension, and moves the suspension in a direction parallel to the surface of the recording medium, and the recording Control the operation of the playhead, And a control unit for performing recording and reproduction.
  • the suspension In the information recording / reproducing apparatus according to the present invention, after rotating the recording medium in a fixed direction by the spindle motor, the suspension is moved by the actuator, and the recording / reproducing head is placed on the recording medium. Place it in the desired position. At this time, the suspension supports the recording / reproducing head in a state of being levitated by the surface force flying head technology of the recording medium. Thereafter, an instruction is issued by the control unit to operate the recording / reproducing head. As a result, it is possible to record and reproduce various information on the recording medium using the recording and reproducing head.
  • the spindle motor for continuously and smoothly rotating the recording medium since the spindle motor for continuously and smoothly rotating the recording medium is provided, information can be recorded and reproduced accurately, and high quality can be achieved. In addition, since it is a spindle motor with low vibration and low noise and improved durability, high quality can be achieved from this point, and the reliability of the product can be improved.
  • FIG. 1 is a configuration diagram showing a first embodiment of an information recording / reproducing apparatus having a spindle motor according to the present invention.
  • FIG. 2 is a cross-sectional view of the spindle motor shown in FIG.
  • FIG. 3 is a top view of a shaft constituting the spindle motor shown in FIG. 2.
  • FIG. 4 is a bottom view of a sleeve constituting the spindle motor shown in FIG.
  • FIG. 5 is a view of the rotor plate constituting the spindle motor shown in FIG. 2 as viewed from the stator plate side.
  • FIG. 6 is a developed sectional view along the circumferential direction of a rotor plate and a stator plate constituting the spindle motor shown in FIG.
  • FIG. 7 is a view of the stator plate constituting the spindle motor shown in FIG. 2 as viewed from the rotor plate side.
  • FIG. 8 is a diagram for explaining the movement of the spindle motor shown in FIG. 2, where (a) shows a state in which a drive voltage is applied to a selected stator electrode portion and the rotor electrode portion is moved by electrostatic force. (B) is a diagram showing a state in which the rotor electrode portion is moving after the state shown in (a), and (c) is a diagram showing a different stator after the state shown in (b). Mark drive voltage on electrode It is a figure which shows the state which has started to move the rotor electrode part again by calorie.
  • FIG. 9 is a cross-sectional development view along the circumferential direction of the rotor plate and the stator plate when protective films are provided on both the rotor plate and the stator plate shown in FIG.
  • FIG. 10 is a developed cross-sectional view along the circumferential direction when a lubricating film is applied on the protective film on the rotor plate side of the protective film shown in FIG.
  • FIG. 11 is a diagram showing a second embodiment of the spindle motor according to the present invention, and is a developed sectional view along the circumferential direction of the rotor plate and the stator plate constituting the spindle motor.
  • FIG. 12 is a diagram for explaining the movement of the spindle motor shown in FIG. 11, where (a) shows a state in which a drive voltage is applied to the selected stator electrode part and the rotor electrode part is started to move by electrostatic force. (B) is a diagram showing a state in which, after the state shown in (a), a driving voltage is applied to different stator electrode portions in accordance with the movement of the rotor electrode portion.
  • FIG. 13 is a view showing a modification of the spindle motor, and is a cross-sectional view of the spindle motor having a protrusion on the upper surface of the shaft.
  • FIG. 14 is a view showing a modification of the spindle motor, and is a cross-sectional view of the spindle motor including a shaft having a flange portion in which a dynamic pressure groove is formed on the lower surface.
  • FIG. 15 is a bottom view of the flange portion shown in FIG.
  • FIG. 16 is a developed sectional view of the rotor plate and the stator plate constituting the spindle motor shown in FIG. 2 along the circumferential direction.
  • FIGS. 6, 9 and 10 are shown in a state where the cross-section along the circumferential direction is developed.
  • the information recording / reproducing apparatus 1 of the present embodiment has various information on a spindle motor 2 and a magnetic disk D (hereinafter simply referred to as disk D) (disc-shaped recording medium).
  • a magnetic head (recording / reproducing head) 3 a suspension 4 for supporting the magnetic head in a state where it floats from the surface of the disk D, a base end side of the suspension 4, and the suspension 4 Move the scan toward the XY direction parallel to the surface of disk D.
  • the actuator 5 to be moved, the control unit 6 for controlling the operation of the magnetic head 3 to perform recording and reproduction, the cord unit 7 for connecting the control unit 6 and the magnetic head 3, and the respective components are accommodated.
  • a housing 8 is provided.
  • the sawing 8 is formed of a metal material such as aluminum in a square shape when viewed from above, and a recess 8a for accommodating each component is formed inside. Further, a lid (not shown) is detachably fixed to the housing 8 so as to close the opening of the recess 8a.
  • the spindle motor 2 is attached to substantially the center of the recess 8a, and the disc D is detachably fixed by fitting a center hole into a hub 20 (to be described later) of the spindle motor 2.
  • the actuator motor 5 is attached to the corner of the recess 8a.
  • a carriage 10 is attached to the actuator motor 5 via a bearing 9, and a suspension 4 is attached to the tip of the carriage 10.
  • the carriage 10 and the suspension 4 are both movable in the XY directions by driving the actuator motor 5.
  • the carriage 10 and the suspension 4 are configured to retract the force on the disk D by driving the actuator motor 5 when the rotation of the disk D is stopped.
  • the optical signal controller 7 is mounted in the recess 8 a so as to be adjacent to the actuator motor 5.
  • the magnetic head 3 has a coil section (not shown), and when recording is performed, information is output as a magnetic signal when receiving an instruction from the control section, and a disk is recorded. Record on D. Further, when performing reproduction, the magnetic signal output from the disk D is read by the coil unit and sent to the control unit 14. As a result, various kinds of information can be recorded and reproduced on the disc D.
  • the spindle motor 2 is a motor that drives the disk D to rotate about the rotation axis L.
  • the spindle 15 is disposed along the rotation axis L, and the shaft 15 While supporting the base end side, with a certain clearance from the shaft 15 and the stator plate 16 disposed along the plane perpendicular to the rotation axis L (horizontal plane along the XY direction) and the shaft 15
  • a step portion (holding portion) 20a that is inserted and can be rotated around the rotation axis L and holds the disk D is provided.
  • a fluid body that has a rotating body 17 on the outer peripheral surface and conductive oil (fluid) W supplied to the gap and supports thrust force and radial direction force when the rotating body 17 rotates.
  • a pressure bearing portion 18 and a rotor plate 19 having a facing surface 19a facing the stator plate 16 and fixed to the base end side of the rotating body 17 and rotating together.
  • stator plate 16 also serves as the bottom plate of the housing 8 as shown in FIG.
  • present invention is not limited to this, and a stator plate may be attached on the bottom plate of the housing 8.
  • the shaft 15 is formed in a cylindrical shape, and is erected on the stator plate 16 at a substantially central position of the housing 8. Further, as shown in FIG. 3, a plurality of dynamic pressure grooves (thrust dynamic pressure grooves) 15a that are curved from the outer edge toward the center are formed on the upper surface of the shaft 15. That is, the plurality of dynamic pressure grooves 15a have a windmill shape as a whole. As a result, when the rotating body 17 rotates, the oil W flows along the dynamic pressure groove 15a toward the center. That is, the dynamic pressure groove 15a functions as a thrust bearing portion that supports a thrust force.
  • V-shaped dynamic pressure grooves (radial dynamic pressure grooves) 15b formed by linear grooves joined at a junction 15c are vertically arranged. It is formed adjacent to two levels. At this time, the dynamic pressure groove 15b is formed in a state in which the V-shape is oriented sideways so that when the rotating body 17 rotates, the junction 15c rotates so as to follow the rear force. As a result, when the rotating body 17 rotates, the oil W flows in the direction opposite to the rotating direction along the dynamic pressure groove 15b. In other words, the dynamic pressure groove 15b functions as a radial bearing portion that supports a radial force.
  • the dynamic pressure grooves 15b are formed in two upper and lower stages, but the present invention is not limited to this, and may be formed in one stage or in three or more stages. Further, the two dynamic pressure grooves 15b may be formed in a state of being separated from each other.
  • the rotating body 17 includes a hub 20 formed in a cup shape and a cylindrical sleeve 21 fitted and fixed in the hub 20. That is, the rotating body 17 is attached to the shaft 15 with a gap between the sleeve 21 and the shaft 15.
  • the oil W is supplied between the shaft 15 and the sleeve 21 to be filled.
  • the step portion 20a is formed on the outer peripheral surface of the hub 20. Thus, when the disk D is fitted in the hub 20, the disk D is held in contact with the stepped portion 20a.
  • a dynamic pressure groove (thrust dynamic pressure groove) 21a that curves from the outer edge toward the rotation axis L is formed on the lower surface of the sleeve 21, as shown in FIG. A plurality are formed. That is, the plurality of dynamic pressure grooves 21a have a windmill shape as a whole. As a result, when the rotating body 17 rotates, the oil W flows along the dynamic pressure groove 21a while being directed toward the center. That is, the dynamic pressure groove 21a functions as a thrust bearing portion that supports a thrust force. That is, the dynamic pressure groove 21a, the dynamic pressure grooves 15a and 15b, and the oil W constitute the fluid dynamic pressure bearing portion 18 described above.
  • the rotor plate 19 is formed in a disk shape with substantially the same size as the disk D, and is fixed in contact with the lower portion of the hub 20 and the outer peripheral surface of the sleeve 21.
  • the size of the rotor plate 19 is not limited to the case described above, and may be larger or smaller than the disk D.
  • a seal (not shown) is provided between the rotor plate 19 and the sleeve 21, and the oil W supplied between the shaft 15 and the sleeve 21 does not flow into the rotor plate 19 side. It becomes like this.
  • the opposing surface 19a of the rotor plate 19 has a plurality of predetermined angles ⁇ 1 in the circumferential direction centered on the rotation axis L, that is, every 30 degrees.
  • An arranged fan-shaped rotor electrode portion 25 is provided.
  • a plurality of rotor electrode portions 25 are formed on the opposing surface 19a of the rotor plate 19 by adhesion, vapor deposition, or the like.
  • the plurality of rotor electrode portions 25 are grounded in advance via the rotor plate 19, the sleeve 21, the oil W, and the stator plate 16.
  • the stator plate 16 has the predetermined angle 0 toward the circumferential direction centering on the rotation axis L in a circular region facing the rotor plate 19.
  • An angle ⁇ 2 narrower than 1 (30 degrees) for example, a plurality of fan-shaped stator electrode portions 26 are provided every 20 degrees.
  • the stator electrode portion 26 is formed so that the circumferential width W1 of the rotor electrode portion 25 and the width W2 of the stator electrode portion 26 are the same size. Yes.
  • the stator electrode portion 26 is always positioned between the adjacent rotor electrode portions 25.
  • the interval (pitch) between the rotor electrode portions 25 is 1.5 times the interval (pitch) between the stator electrode portions 26.
  • each of the plurality of stator electrode portions 26 is electrically connected to a voltage applying portion (voltage applying means) 27 via a wiring (not shown).
  • the voltage application unit 27 applies a drive voltage only to the selected stator electrode unit 26 among the plurality of stator electrode units 26 for a predetermined time. By repeatedly applying this voltage, The rotor plate 19 is rotated in a certain direction using electrostatic force. This will be described in detail later.
  • the voltage application unit 27 applies a drive voltage to the selected stator electrode unit 26 among the plurality of stator electrode units 26 for a predetermined time. Specifically, as shown in FIG. 8 (a), the drive voltage is applied to the stator electrode portion 26 (Sl, S4 position) located on the fixed direction (rotation direction) side of the rotor electrode portion 25. At this time, since all of the plurality of rotor electrode portions 25 are grounded in advance, a positive voltage and a negative voltage are applied to the applied stator electrode portion 26 and rotor electrode portion 25, respectively. Become. As a result, positive and negative charges are induced on the surfaces of the electrode portions 25 and 26, respectively, and an electrostatic force (electrostatic attractive force) F that attracts them is generated.
  • electrostatic force electrostatic attractive force
  • the rotor electrode portion 25 gradually moves toward the applied stator electrode portion 26 (Sl, S4 position) as shown in FIG. 8 (b). To do. Then, as shown in FIG. 8 (c), at the same time as the rotor electrode portion 25 has moved to a position completely opposed to the applied stator electrode portion 26, the voltage applying portion 27 is applied to the stator electrode portion 26. While stopping the application, the drive voltage is applied to the next stator electrode portion 26 (S3 position) located on the fixed direction (rotational direction) side of the rotor electrode portion 25 that has started to move. As a result, the above-described operation is repeated, and the rotor electrode portion 25 moves again.
  • the rotor plate 19 and the rotating body 17 can be rotated around the rotation axis L in a certain direction while using the electrostatic force F. Further, since the disk 20 is held by the step portion 20a in the hub 20, the disk D can be rotated via the rotating body 17.
  • the oil W force near the lower surface of the sleeve 21 begins to flow toward the rotation axis L along the dynamic pressure groove 21a. Thereby, the pressure on the side close to the rotation axis L increases. Therefore, the sleeve 21 floats from the rotor plate 17. At the same time, the oil begins to flow toward the rotation axis L along the oil W force dynamic pressure groove 15a near the upper surface of the shaft 15. This increases the pressure on the side close to the rotation axis L. Therefore, the hub 20 is lifted from the shaft 15.
  • the oil W in the vicinity of the outer peripheral surface of the shaft 15 starts to flow in the direction opposite to the rotation direction along the dynamic pressure groove 15b divided into two stages.
  • the oil W flowing along the dynamic pressure groove 15b has the highest pressure at the junction 15c.
  • the sleeve 21 is in a state where the radial force is supported at two points and is rotated away from the shaft 15. Therefore, the rotator 17 can rotate stably in a state where there is no side shake.
  • the fluid dynamic pressure bearing portion 18 supports thrust force and radial force generated during rotation.
  • the rotating body 17 rotates smoothly around the shaft 15.
  • a mechanical bearing such as a ball bearing
  • it is a bearing that uses oil W, so it can be smoothly rotated with vibrations suppressed. As a result, the generation of noise can be minimized.
  • the actuator 5 is operated to scan the suspension 4 in the XY directions via the carriage 10 as shown in FIG.
  • the magnetic head 3 is positioned at a desired position on the disk D. Can be made.
  • the magnetic head 3 is operated by the control unit 6.
  • the magnetic head 3 outputs the information to be recorded as a magnetic signal and performs recording on the disk D or reads and reproduces the magnetic signal output from the disk.
  • the magnetic head 3 can be used to record and reproduce various types of information on the disk D.
  • the spindle motor 2 of the present embodiment is different from a device that can be rotated only by a staging operation using a conventional dielectric tooth pattern, and a voltage is applied to the selected stator electrode unit 26. Can be applied successively, so that the rotor electrode portion 25 grounded in advance can be rotated continuously and smoothly. That is, the electrode portions 25 and 26 are not brought into contact with each other and stopped. Therefore, the disk D can be continuously and stably rotated at a uniform speed.
  • the spacing (pitch) between the rotor electrode portions 25 is 1.5 times the spacing (pitch) between the stator electrode portions 26 in this embodiment. Therefore, when one of the rotor electrode parts 25 (R2 position) and one of the stator electrode parts 26 (S2 position) are in a completely opposed position, at least the adjacent rotor electrode part 25 (R3 position) The other stator electrode part 26 (S4 position) is always located near the fixed direction side of. That is, when the mouth electrode portion 25 is moved toward the other stator electrode portion 26 by the electrostatic force F, both the electrode portions 25 and 26 are already close to each other.
  • the rotor electrode portion 25 can be quickly moved toward the other stator electrode portion 26 at a higher speed. Therefore, the disk D can be rotated in a more stable state.
  • both electrode portions 25 and 26 are not brought into contact with each other, damage and wear of both electrode portions 25 and 26 can be prevented. Therefore, vibration and sound loss can be reduced, and durability can be improved. Further, since the generation of dust or the like due to contact can be prevented, the cleanliness around the rotor plate 19 can be kept constant, and the disk D is not adversely affected.
  • the rotor electrode portion 25 responds instantaneously to the applied stator electrode portion 26. Start moving. This also ensures high followability and realizes stable and smooth rotation.
  • the disk D is rotated via the rotor plate 19, unlike the conventional one, there is no fear that the disk D will crawl and deform. Therefore, it does not adversely affect other components, for example, the magnetic head 3. Therefore, reliability can be improved.
  • the disk D can be continuously and smoothly rotated through the rotor plate 19 while preventing damage and wear due to contact. Improves vibration, low noise and durability, and can improve reliability
  • the spindle motor 2 for continuously and smoothly rotating the disk D is provided, so that information can be recorded / reproduced accurately, and high performance can be achieved. Quality can be improved.
  • this point power can also achieve high quality and improve product reliability.
  • the protective film 30 covers the rotor electrode portion 25 and the stator electrode portion 26 on the opposing surface 19a of the rotor plate 19 and the surface of the stator plate 16, respectively. May be provided.
  • the protective films 30 are in contact with each other, so that the rotor plate 19 and the stator plate 16 are not in direct contact with each other. Therefore, mechanical damage to both electrode portions 25 and 26 can be prevented, and damage due to discharge can be prevented. Accordingly, the quality can be improved and the durability can be further enhanced.
  • the protective film 30 is provided on both the rotor plate 19 and the stator plate 16, the present invention is not limited to this, and the protective film 30 may be provided on only one of them.
  • a lubricating film 31 may be further applied on the protective film 30 as shown in FIG. At this time, as shown in FIG. 10, a lubricating film 31 may be applied to one protective film 30, or the lubricating film 31 may be applied to both protective films 30. [0096]
  • FIG. 11 shows a state in which the cross section along the circumferential direction is developed.
  • the width W1 that faces the circumferential direction of the rotor electrode portion 25 and the circumferential direction of the stator electrode portion 26 are directed.
  • the width W2 is the same size
  • the stator electrode portion 41 of the second embodiment is formed such that the circumferential force in the direction W3 is narrower than the width W1 of the rotor electrode portion 25. Narrow in the circumferential direction!
  • the width W3 of each stator electrode portion 41 is about 1Z3 wider than the width W1 of the rotor electrode portion 25. Is formed.
  • the stator electrode portions 41 having a small width are arranged adjacent to each other in close proximity. That is, a plurality of stator electrode portions 41 are arranged in the circumferential direction around the rotation axis L, for example, at every angle ⁇ 3 of 3 to 4 degrees. As a result, no matter where the plurality of rotor electrode portions 25 are located, about three stator electrode portions 41 are always located in a state of facing each rotor electrode portion 25.
  • the rotor electrode portion 25 of the present embodiment is configured integrally with the rotor plate 19.
  • the rotor plate 19 is formed of a conductive material, and the concave portion 19b is formed by cutting a predetermined position of the facing surface 19a.
  • an uncut portion protruded portion
  • the rotor electrode portion 25 can be used as the rotor electrode portion 25.
  • stator plate 16 is protected so as to cover the plurality of stator electrode portions 41.
  • a solid lubricating film 42 having both a film and a lubricating film is provided.
  • the voltage application unit 27 starts from the approximate center of the rotor electrode unit 25 among the plurality of stator electrode units 41.
  • a drive voltage is applied to the stator electrode portion 41 located in the range (Al, A2, A3 area) directed in a certain direction (rotation direction) by 1Z2 of the width of the rotor electrode portion 25.
  • the drive voltage is applied in a concentrated manner only to the stator electrode part 41 that is close to the rotor electrode part 25 and contributes to the movement of the rotor electrode part 25.
  • the magnitude of the electrostatic force F is inversely proportional to the distance between the electrode portions 25 and 41, so the rotor electrode portion 25 can be pulled with a stronger electrostatic force F and moved quickly at a faster speed. be able to.
  • stator electrode part 41 having a narrow circumferential width W3 is arranged close to the rotor electrode part 25, all rotor electrode parts 25 (Rl, R2, R3 positions) must always be moved simultaneously. Can do. Therefore, the disk D can be rotated in a more stable state.
  • the voltage application unit 27 sequentially changes the application to the stator electrode unit 41 as the rotor electrode unit 25 moves so as to maintain the above-described positional relationship. Further, since the width W3 of the stator electrode portion 41 is made as narrow as possible and the number of the stator electrode portions 41 is increased, the fluctuation range of the electrostatic force F can be reduced. Therefore, the above-described effect can be further enhanced.
  • the solid lubricating film 42 having both functions of a protective film and a lubricating film is provided so as to cover the stator electrode portion 41, an external force is applied to the rotor plate 19 for some reason during the rotation. Even if added, the rotor plate 19 and the stator plate 16 are not in direct contact. Therefore, mechanical damage to both electrode portions 25 and 41 can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be further enhanced.
  • the frictional force at the time of contact can be reduced, and a decrease in rotational speed can be suppressed as much as possible. Furthermore, since the resistance at the time of contact can be suppressed as much as possible, power saving can be achieved. Power! In addition, since the rotor plate 19 is slippery during rotational driving, the starting characteristics can be improved. This point power can also save power.
  • Part 50 may be provided.
  • the protrusion 50 may be provided on the upper surface of the shaft 15 or may be provided on the lower surface of the hub 20. Further, the height of the protrusion 50 is formed lower than the flying height of the rotor plate 19.
  • the gap G between the rotor plate 19 and the stator plate 16 can be surely opened at least by a specified value. Therefore, it is possible to obtain more stable rotation without contact between the electrode portions 25 and 26 (41). Further, since the rotor plate 19 and the stator plate 16 do not come into contact with each other even when stopped, the starting characteristics can be improved. Therefore, the load at the time of starting can be reduced and further power saving can be achieved.
  • the two dynamic pressure grooves that is, the dynamic pressure groove 15a formed on the upper surface of the shaft 15 and the dynamic pressure groove 21a formed on the lower surface of the sleeve 21 are used as the dynamic pressure groove for thrust.
  • the flange portion 60 is formed on the shaft 15, and the dynamic pressure groove (second thrust dynamic pressure groove) 60a shown in FIG. 15 is formed on the lower surface of the flange portion 60. It doesn't matter.
  • the flange portion 60 is formed in a bowl shape with the outer peripheral surface force of the shaft 15 extending radially outward by a predetermined thickness and expanding in diameter.
  • the flange portion 60 is formed on the upper surface of the shaft 15 is taken as an example.
  • the present invention is not limited to this case.
  • the flange portion 60 may be formed near the middle of the shaft 15.
  • the dynamic pressure that curves from the outer edge toward the rotation axis L is similar to the dynamic pressure groove 21a formed on the lower surface of the sleeve 21.
  • a plurality of grooves 60a are formed. That is, the plurality of dynamic pressure grooves 60a have a windmill shape as a whole.
  • the dynamic pressure groove 60a functions as a thrust bearing portion that supports a force in the thrust direction.
  • the flange portion 60 having the dynamic pressure groove 60a formed on the lower surface is provided as described above, when the rotating body 17 starts to rotate, the oil W is supplied to the dynamic pressure grooves 15a, 15b, 21a, 60a. It begins to flow along, and pressure begins to increase at each position. At this time, the oil W flowing along the dynamic pressure groove 15b becomes the highest pressure at the junction 15c. For this reason, the sleeve 21 constituting the rotating body 17 is in a state where the radial force is supported at two points and is rotated away from the shaft 15. As a result, the rotator 17 can rotate stably without any side shake.
  • the pressure of the oil W flowing along the dynamic pressure grooves 15a and 21a is highest on the side closer to the rotation axis L. Therefore, the rotating body 17 and the rotor plate 19 are lifted from the stator plate 16.
  • the oil W flowing along the dynamic pressure groove 60a formed on the lower surface of the flange portion 60 also increases in pressure on the side close to the rotation axis L.
  • the pressure generated in the dynamic pressure groove 60 a is generated on the lower surface side of the flange portion 60 formed in the fixed shaft 15. Therefore, the rotating body 17 receives the pressure and receives a force in the direction of the stator plate 16 in the direction of the force, that is, the direction opposite to the flying direction, and is pressed. That is, in this case, the fluid dynamic pressure bearing portion 18 can support two thrust forces directed in the opposite directions along the rotation axis L.
  • the rotating body 17 rotates while receiving both the rising force and the pressing force by the two thrust forces. Further, since the rotating body 17 is also simultaneously affected by the electrostatic force F acting between the rotor electrode portion 25 and the stator electrode portion 26, the rotating body 17 is pulled to the stator plate 16 side by the electrostatic force F.
  • the rotating body 17 and the rotor plate 19 rotate in a more stable state with respect to the thrust direction by the balance of these three forces.
  • the rotating body 17 and the rotor plate 19 can be pressed using the thrust force generated only by the electrostatic force F, the rotation is further stabilized. As a result, it is possible to further reduce vibration and sound loss during rotation, and to operate the fluid dynamic pressure bearing portion 18 more stably.
  • the magnetic head described as an example of a magnetic head is used.
  • the head is not limited to this method, as long as it is a head that performs recording and reproduction.
  • a near-field optical head that performs recording / reproduction using near-field light may be used as the recording / reproducing head.
  • each of the stator electrode portions 26 described above is of course arranged at an angle narrower than the predetermined angle ⁇ 1, and is not limited to this. As shown in FIG. 16, each of the state electrode portions 26 may be arranged at a predetermined angle ⁇ 4 wider than the predetermined angle ⁇ 1.
  • the number of stator electrode portions 26 can be reduced more than that in FIG. 7 by arranging each of the stator electrode portions 26 for each predetermined angle ⁇ 4. Cost can be reduced.
  • the spindle motor of the present invention it is possible to rotate the recording medium continuously and smoothly through the aperture plate while preventing damage and wear due to contact, thereby reducing vibration and noise. And the durability can be improved and the reliability can be improved.
  • the spindle motor for continuously and smoothly rotating the recording medium since the spindle motor for continuously and smoothly rotating the recording medium is provided, information can be recorded and reproduced accurately, and high quality ⁇ ⁇ can be planned.

Abstract

A spindle motor is provided with a shaft arranged along a rotating axis; a stator plate (16) for supporting the shaft; a rotating body rotatably inserted into the shaft; a rotor plate (19) which has an opposing plane (19a) opposing the stator plate and rotates with the rotating body; a plurality of rotor electrode sections (25) arranged on the opposing plane of the rotor plate at every prescribed angle (θ1); a plurality of stator electrode sections (26) arranged on the surface of the stator plate at every angle (θ2) which is narrower than the prescribed angle (θ1); and a voltage applying means for rotating the rotor plate in a constant direction by a static force by applying a driving voltage to the selected stator electrode section. The rotor electrode sections are previously grounded.

Description

明 細 書  Specification
スピンドルモータ及び情報記録再生装置  Spindle motor and information recording / reproducing apparatus
技術分野  Technical field
[0001] 本発明は、各種電子機器に内蔵されるハードディスク等の記録媒体を回転駆動す るスピンドルモータ及びこれを有する情報記録再生装置に関するものである。  The present invention relates to a spindle motor that rotationally drives a recording medium such as a hard disk incorporated in various electronic devices, and an information recording / reproducing apparatus having the spindle motor.
背景技術  Background art
[0002] 各種の電子機器、例えば、ノート型パソコンや携帯型ビデオプレーヤ等に内蔵され て 、るハーディスク (記録媒体)を回転駆動するモータとしては、従来力 様々なもの が提供されている。例えば、永久磁石を利用した PM (Permanent Magnet)モータ等 が知られている。  [0002] Conventionally, various motors have been provided as various types of motors for rotating a hard disk (recording medium) incorporated in various electronic devices such as a notebook personal computer and a portable video player. For example, a PM (Permanent Magnet) motor using a permanent magnet is known.
[0003] し力しながら、近年の電子機器の小型化に伴って、ディスク自体のサイズも小さくな りつつある。例えば、直径が linや 0. 85inサイズのディスクが開発されており、高性 能デジタルカメラや小型携帯型音楽プレーヤ等に使用され始めている。また、電子 機器及びディスクの小型化に伴って、ディスクを駆動するモータに関しても、今後さら なる小型化、薄型化が求められている。  [0003] However, with the recent miniaturization of electronic devices, the size of the disk itself is becoming smaller. For example, discs with diameters of lin and 0.85in have been developed and are beginning to be used in high-performance digital cameras and small portable music players. In addition, along with the downsizing of electronic devices and disks, motors that drive disks are required to be further reduced in size and thickness in the future.
[0004] そこで、上述した PMモータに比べて小型化、薄型化されたモータとして、静電力を 利用してディスクを回転させる静電駆動型のモータが知られている。  [0004] Therefore, as a motor that is smaller and thinner than the PM motor described above, an electrostatic drive motor that rotates a disk using electrostatic force is known.
[0005] 例えば、その 1つとして、周方向及び半径方向に複数の電極パターンを有するステ ータと、該ステータに対して回転可能に配され、誘電体製の歯からなる誘電体歯バタ ーンが放射状に設けられたロータとを有する静電ステッピングモータが知られて ヽる ( 例えば、特許第 3354009号公報参照)。  [0005] For example, as one of them, a stator having a plurality of electrode patterns in the circumferential direction and the radial direction, and a dielectric tooth butter which is rotatably arranged with respect to the stator and is made of dielectric teeth. There are known electrostatic stepping motors having a rotor provided with a radial shape (see, for example, Japanese Patent No. 3354009).
[0006] この静電ステップモータを作動させる際には、ステータに設けられた複数の電極パ ターンのうち、選択した 1つの電極パターンに次々と電圧が印加されるように制御を 行う。これを受けて、ロータに設けられた誘電体歯パターンには、電極パターン側に 対向する表面にプラスとマイナスとの電荷が交互に入れ替わった状態で現れることに なる。  [0006] When the electrostatic stepping motor is operated, control is performed so that a voltage is applied to one selected electrode pattern among a plurality of electrode patterns provided on the stator. In response to this, the dielectric tooth pattern provided on the rotor appears in a state where positive and negative charges are alternately switched on the surface facing the electrode pattern side.
[0007] これにより、例えば、静電吸引力によって電極パターンに吸着していた誘電体歯パ ターンは、電荷が入れ替わることで静電反撥力を受けて電極パターンカゝら離間する。 そして、離間した誘電体歯パターンは、隣の電極パターンカゝらの静電吸着力を受け て移動すると共に、該電極パターンに吸着して停止する。そして、この状態で再度各 電極に電圧を印カロさせることで、誘電体歯パターンの電荷を入れ換えることができ、 上述した動作を繰り返して、再度吸着して ヽた誘電体歯パターンを移動させることが できる。 [0007] Thereby, for example, the dielectric tooth pattern that has been attracted to the electrode pattern by electrostatic attraction force. The turn is separated from the electrode pattern cover by receiving electrostatic repulsion due to the exchange of electric charges. Then, the separated dielectric tooth pattern moves by receiving the electrostatic attraction force of the adjacent electrode pattern cover, and stops by adsorbing to the electrode pattern. In this state, by applying voltage to each electrode again, the charge of the dielectric tooth pattern can be exchanged, and the above operation is repeated to move the dielectric tooth pattern that has been attracted again. Is possible.
[0008] その結果、ロータは、所定角度毎に一時的な停止を繰り返しながら回転する。つま り、所定角度毎にステッピング動作させながらロータを回転させることができる。また、 このロータの回転に伴って、ディスクも回転する。  As a result, the rotor rotates while repeating a temporary stop at every predetermined angle. In other words, the rotor can be rotated while performing a stepping operation at every predetermined angle. In addition, the disk rotates as the rotor rotates.
[0009] また、別の静電駆動型のモータの 1つとして、片面又は両面が高抵抗体基板からな るディスクと、該ディスクを回転駆動すると共に、高抵抗体基板に対向する面に複数 のドット状電極が同心円上に配された回転駆動用電極板とを有するディスクの回転 駆動装置が知られている(例えば、特許第 3725986号公報参照)。  [0009] Further, as another electrostatic drive type motor, a disk having one or both surfaces made of a high-resistance substrate, and a plurality of disks are driven on the surface facing the high-resistance substrate while rotating the disk. There is known a disk rotation driving device having a rotation driving electrode plate in which the dot electrodes are arranged concentrically (see, for example, Japanese Patent No. 3725986).
[0010] この回転駆動装置を作動させる場合には、複数のドット状電極にそれぞれ電圧を 印加させて、電極パターンの同心を中心とした回転電場を形成する。すると、この回 転電場によって、ディスクの高抵抗体基板の表面に電荷が誘導される。ここで、ガラ ス基板等の高抵抗体基板は、高抵抗体であるため、誘導される電荷と電圧に印加さ れる電圧との間に位相遅れが生じて、高抵抗体基板に回転トルクが発生する。その 結果、ディスクを回転させることができる。なお、この装置においては、ディスク自身が 、一般的なモータを構成するロータの役割を果たして 、る。  [0010] When the rotary drive device is operated, a voltage is applied to each of the plurality of dot electrodes to form a rotating electric field centered on the concentricity of the electrode pattern. This rotating electric field then induces charges on the surface of the high resistance substrate of the disk. Here, since a high-resistance substrate such as a glass substrate is a high-resistance body, a phase lag occurs between the induced charge and the voltage applied to the voltage, and rotational torque is applied to the high-resistance substrate. appear. As a result, the disk can be rotated. In this apparatus, the disk itself serves as a rotor constituting a general motor.
[0011] 上述したように、いずれの装置(静電駆動型のモータ)にしても、 PMモータのように 永久磁石やコイル等が不要であるため、小型化及び薄型化を図り易い。そのため、 小型化を狙った近年の電子機器等への適用が検討され始めている。  [0011] As described above, any device (electrostatic drive type motor) does not require a permanent magnet, a coil, or the like unlike a PM motor, and thus can be easily reduced in size and thickness. Therefore, application to recent electronic devices aiming at miniaturization is beginning to be considered.
発明の開示  Disclosure of the invention
[0012] し力しながら、上述した従来の装置では、まだ以下の課題が残されていた。  [0012] However, the conventional apparatus described above still has the following problems.
[0013] 即ち、上記特許文献 1に記載されている装置は、ロータに設けられた誘電体歯バタ ーンの表面に現れる電荷を、プラスとマイナスとに交互に入れ換えることで、ロータを 回転させている。そのため、ロータを一時的に回転させるステッピング動作でしか回 転させることができな力つた。そのため、ディスクを連続的且つ滑らかに回転させるこ とが難し力つた。 That is, the apparatus described in Patent Document 1 rotates the rotor by alternately switching the charge appearing on the surface of the dielectric tooth pattern provided on the rotor between plus and minus. ing. For this reason, it can only be rotated by a stepping operation that temporarily rotates the rotor. I couldn't turn it. For this reason, it was difficult to rotate the disk continuously and smoothly.
[0014] また、ロータが一時的に停止する度に、誘電体歯パターンと電極パターンとが接触 するので、両者に損傷の可能性があると共に摩耗し易いものであった。そのため、振 動や騒音が発生し易ぐ耐久性を低下させてしまうものであった。更には、接触により 塵埃等が発生する可能性もあり、該ロータを搭載する機器、例えば、情報記録再生 装置内の清浄度を一定に保つことができない恐れがあった。  [0014] Further, every time the rotor is temporarily stopped, the dielectric tooth pattern and the electrode pattern come into contact with each other, so that there is a possibility that both of them are damaged and wear easily. As a result, vibration and noise are likely to occur and the durability is reduced. Furthermore, there is a possibility that dust or the like may be generated due to the contact, and there is a possibility that the cleanliness of the equipment in which the rotor is mounted, for example, the information recording / reproducing apparatus cannot be kept constant.
[0015] また、誘電体を利用しているので、電極パターンへの電圧印加の切替を速くした場 合には、電荷の切替が追いつかず、回転が不規則になってしまう可能性もあった。  [0015] Further, since the dielectric is used, when the switching of the voltage application to the electrode pattern is made faster, the switching of the electric charge cannot catch up and the rotation may be irregular. .
[0016] また、特許文献 2に記載の装置は、一般的なモータとは異なり、ディスク自体がロー タを兼ねているものである。そのため、専用のディスクし力使用できず、使い難いもの であった。  [0016] In addition, unlike the general motor, the device described in Patent Document 2 is such that the disk itself also serves as a rotor. For this reason, it was difficult to use the dedicated disk and power.
[0017] また、通常ディスクは、決められた規格にしたがって作られているものであり、厚み が薄ぐ高い剛性を有していない。そのため、ディスクをロータの如く使用する本装置 においては、ディスクが橈んで変形する恐れがあった。よって、ディスクと回転駆動用 電極板とのギャップを、面内で均一に保つことができなかった。  [0017] In addition, a normal disk is manufactured according to a predetermined standard and does not have high rigidity with a small thickness. For this reason, in this apparatus that uses the disk like a rotor, there is a risk of the disk becoming distorted and deformed. Therefore, the gap between the disk and the electrode plate for rotation drive cannot be kept uniform in the plane.
[0018] その結果、ディスクの回転中に、該ディスクと回転駆動用電極板とが接触する可能 性があった。また、ディスク上には、該ディスクに情報を記録再生するためのヘッド部 力 Sフライングヘッド技術によって浮上した状態で配置されて 、るが、このヘッド部に対 してもディスクが干渉する恐れがあった。そのため、ディスク内に記録されている各種 データに悪影響を与えたり、接触によって各構成品に悪影響を与えたりする恐れが あり、信頼性に劣るものであった。  [0018] As a result, there is a possibility that the disk and the electrode plate for rotation drive come into contact with each other during the rotation of the disk. Further, on the disk, the head force for recording / reproducing information on the disk is placed in a state of being floated by the flying head technology. However, there is a possibility that the disk may interfere with this head part. there were. As a result, various data recorded on the disc may be adversely affected, and each component may be adversely affected by contact, resulting in poor reliability.
[0019] 本発明は、このような事情に考慮してなされたもので、その目的は、接触による損傷 や摩耗を防止しながら、ロータ板を介して記録媒体を連続的且つ滑らかに回転させ ることができ、低振動化、低騒音化及び耐久性を向上して、信頼性を向上することが できるスピンドルモータ及び該スピンドルモータを有する情報記録再生装置を提供す ることである。  The present invention has been made in view of such circumstances, and its purpose is to continuously and smoothly rotate a recording medium through a rotor plate while preventing damage and wear due to contact. It is also possible to provide a spindle motor and an information recording / reproducing apparatus having the spindle motor that can improve reliability by reducing vibration, noise, and durability.
[0020] 本発明は、上記課題を解決するために以下の手段を提供する。 [0021] 本発明のスピンドルモータは、各種の情報を記録可能な円板状の記録媒体を、回 転軸回りに回転駆動するスピンドルモータであって、前記回転軸に沿って配されたシ ャフトと、該シャフトの基端側を支持すると共に、前記回転軸に垂直な面内に沿って 配されたステータ板と、前記シャフトに対して一定の隙間を空けた状態で挿着され、 前記回転軸回りに回転可能であると共に、前記記録媒体を保持する保持部を外周 面に有する回転体と、前記隙間に供給された導電性の流体を有し、前記回転体が回 転する際のスラスト方向の力及びラジアル方向の力を支持する流体動圧軸受部と、 前記ステータ板に対向する対向面を有し、前記回転体の基端側に固定されて共に 回転するロータ板と、該ロータ板の対向面に設けられ、前記回転軸を中心とする円周 方向に所定角度毎に複数配されたロータ電極部と、前記ステータ板の表面に設けら れ、前記回転軸を中心とする円周方向に前記所定角度よりも狭い角度毎に複数配さ れたステータ電極部と、該複数のステータ電極部のうち、選択されたステータ電極部 に対して所定の時間だけ駆動電圧を印力!]して、静電力により前記ロータ板を一定方 向に回転させる電圧印加手段とを備え、前記複数のロータ電極部が、少なくとも前記 ロータ板及び前記流体を介して接地されていることを特徴とするものである。 The present invention provides the following means in order to solve the above problems. The spindle motor of the present invention is a spindle motor that rotates a disk-shaped recording medium capable of recording various kinds of information around a rotation axis, and is a shaft arranged along the rotation axis. And a stator plate that supports the base end side of the shaft and that is disposed along a plane perpendicular to the rotation axis, and is inserted with a certain clearance from the shaft, and the rotation A rotating body that is rotatable about an axis and has a holding portion for holding the recording medium on an outer peripheral surface, and a conductive fluid supplied to the gap, and a thrust when the rotating body rotates A hydrodynamic pressure bearing portion that supports a radial force and a radial force, a rotor plate that has a facing surface facing the stator plate, is fixed to the base end side of the rotating body, and rotates together with the rotor plate, and the rotor Provided on the opposite surface of the plate, A plurality of rotor electrode portions arranged at a predetermined angle in the circumferential direction and a plurality of rotor electrode portions provided on the surface of the stator plate at a narrower angle than the predetermined angle in the circumferential direction around the rotation axis. A driving voltage is applied to the selected stator electrode portion for a predetermined time among the arranged stator electrode portions and a plurality of stator electrode portions!], And the rotor plate is fixed in a certain direction by electrostatic force. And a plurality of rotor electrode portions that are grounded through at least the rotor plate and the fluid.
[0022] この発明に係るスピンドルモータにぉ 、ては、まず、ステータ板に基端側が支持さ れたシャフトに対して、回転体が一定の隙間を空けた状態で挿着されており、回転軸 回りに回転可能な状態となっている。この際、シャフトと回転体との隙間には、導電性 の流体、例えば、オイル等が供給されている。また、回転体の基端側に固定された口 ータ板は、対向面がステータ板の表面に対向した状態となっている。これにより、ロー タ電極部とステータ電極部とが、同様に互いに対向した状態となっている。  [0022] In the spindle motor according to the present invention, first, the rotating body is inserted and attached to the shaft supported at the base end side by the stator plate with a certain gap therebetween. It can be rotated around its axis. At this time, a conductive fluid such as oil is supplied to the gap between the shaft and the rotating body. Further, the face plate fixed to the base end side of the rotating body is in a state where the facing surface faces the surface of the stator plate. As a result, the rotor electrode portion and the stator electrode portion are similarly opposed to each other.
[0023] また、ロータ板の対向面には、回転軸を中心とする円周方向に向けて所定角度毎( 例えば、 30度毎)に複数のロータ電極部が設けられている。また、ステータ板の表面 には、回転軸を中心とする円周方向に向けて上記所定角度よりも狭い角度毎 (例え ば、 20度毎)に複数のステータ電極部が設けられている。これら両電極部の位置関 係の違いにより、隣り合うロータ電極部の間には、必ずステータ電極部が位置してい る状態となっている。  [0023] In addition, a plurality of rotor electrode portions are provided on the opposing surface of the rotor plate at predetermined angles (for example, every 30 degrees) in the circumferential direction around the rotation axis. Further, on the surface of the stator plate, a plurality of stator electrode portions are provided for each angle (for example, every 20 degrees) narrower than the predetermined angle in the circumferential direction around the rotation axis. Due to the difference in the positional relationship between these two electrode portions, the stator electrode portion is always located between the adjacent rotor electrode portions.
[0024] ここで、電圧印加手段により、複数のステータ電極部のうち、選択したステータ電極 部に所定の時間だけ駆動電圧を印加する。具体的には、ロータ電極部よりも回転方 向(一定方向)側に位置するステータ電極部に駆動電圧を印加する。この際、複数の ロータ電極部は、少なくともロータ電極部及び導電性の流体を介して予め接地されて いるので、印加されたステータ電極部とロータ電極部とに、それぞれプラスの電圧と マイナスの電圧とを印加したことになる。これにより、両電極部の表面には、それぞれ プラス及びマイナスの電荷が誘起されると共にこれらが互いに引き合う静電力(静電 吸引力)が発生する。 [0024] Here, the stator electrode selected from the plurality of stator electrode portions by the voltage applying means. A drive voltage is applied to the part for a predetermined time. Specifically, the drive voltage is applied to the stator electrode portion located on the rotation direction (constant direction) side of the rotor electrode portion. At this time, since the plurality of rotor electrode portions are grounded in advance via at least the rotor electrode portion and the conductive fluid, a positive voltage and a negative voltage are respectively applied to the applied stator electrode portion and the rotor electrode portion. Is applied. As a result, positive and negative charges are induced on the surfaces of both electrode portions, and electrostatic forces (electrostatic attractive force) are generated that attract each other.
[0025] そして、この静電力の水平方向成分により、ロータ電極部は印加されたステータ電 極部に向力つて徐々に移動する。そして、ロータ電極部が印加されたステータ電極 部に完全に対向した位置まで移動したと同時に、電圧印加手段はこの最初のステー タ電極部への印加を停止すると共に、移動し始めたロータ電極部よりも回転方向(一 定方向)側に位置する次のステータ電極部に駆動電圧を所定の時間だけ印加する。 これにより、上述した動作が繰り返されロータ電極部がまた移動する。  [0025] Then, due to the horizontal component of the electrostatic force, the rotor electrode portion gradually moves toward the applied stator electrode portion. Then, at the same time that the rotor electrode portion has moved to a position completely opposed to the applied stator electrode portion, the voltage application means stops applying to the first stator electrode portion and at the same time starts moving the rotor electrode portion. A drive voltage is applied for a predetermined time to the next stator electrode portion positioned on the rotation direction (constant direction) side. Thereby, the operation | movement mentioned above is repeated and a rotor electrode part moves again.
[0026] その結果、ロータ板及び回転体を、回転軸回りに静電力を利用しながら回転させる ことができる。また、回転体には、保持部を介して記録媒体が保持されているので、 該記録媒体を回転させることができる。  As a result, the rotor plate and the rotating body can be rotated around the rotation axis while utilizing the electrostatic force. Further, since the recording medium is held on the rotating body via the holding unit, the recording medium can be rotated.
[0027] 一方、回転体及びロータ板が回転し始めると、該回転体とシャフトとの間に供給され ている流体の圧力が高まる。これにより回転体は、シャフトから離れると共にステータ 板力も浮上する。つまり、回転体は、回転に伴って発生するスラスト方向の力とラジア ル方向の力とが流体動圧軸受部によって支持される。よって、回転体及びロータ板 は、回転軸回りを滑らかに回転する。特に、玉軸受のように機械的な軸受とは異なり、 オイル等の流体を利用した軸受であるので、振動を抑えた状態で滑らかに回転させ ることができる。そのため、騒音の発生も抑えることができる。  [0027] On the other hand, when the rotating body and the rotor plate start to rotate, the pressure of the fluid supplied between the rotating body and the shaft increases. As a result, the rotating body moves away from the shaft and the stator plate force also rises. In other words, the rotating body is supported by the fluid dynamic pressure bearing portion in the thrust direction and in the radial direction generated along with the rotation. Therefore, the rotating body and the rotor plate rotate smoothly around the rotation axis. In particular, unlike a mechanical bearing such as a ball bearing, it is a bearing that uses a fluid such as oil, so that it can be smoothly rotated with vibrations suppressed. Therefore, the generation of noise can be suppressed.
[0028] 特に、本発明に係るスピンドルモータは、従来の誘電体歯パターンを利用してステ ッビング動作でしか回転させることができな力つた装置とは異なり、選択したステータ 電極部に電圧を次々と印加することで、予め接地されたロータ電極部を連続的且つ 滑らかに回転させることができる。即ち、両電極部同士をー且接触させて停止させる ことがない。よって、記録媒体を均一な速度で連続的且つ安定して回転させることが できる。 [0028] In particular, the spindle motor according to the present invention is different from a powerful device that can be rotated only by a stepping operation using a conventional dielectric tooth pattern. The rotor electrode part grounded in advance can be rotated continuously and smoothly. That is, the two electrode portions are not brought into contact with each other and stopped. Therefore, the recording medium can be rotated continuously and stably at a uniform speed. it can.
[0029] また、両電極部をー且接触させることがないので、両電極部の損傷や摩耗を防止 できる。従って、低振動化及び低損音化を図ることができると共に、耐久性を向上す ることができる。また、接触による塵埃等の発生を防止することもできるので、ロータ板 の周囲の清浄度を一定のレベルに保つことができ、記録媒体に悪影響を与えること がない。  [0029] Further, since both electrode portions are not brought into contact with each other, damage and wear of both electrode portions can be prevented. Accordingly, vibration and sound loss can be reduced, and durability can be improved. In addition, since dust and the like due to contact can be prevented, the cleanliness around the rotor plate can be maintained at a certain level, and the recording medium is not adversely affected.
[0030] また、従来の誘電体歯パターンのように、電圧を印加する毎に電荷が入れ変わるこ とがないので、ロータ電極部は、印加されたステータ電極部に瞬時に応答して移動を 始める。このことからも、高い追従性を確保でき、安定した滑らかな回転を実現できる  [0030] In addition, unlike the conventional dielectric tooth pattern, since the electric charge does not change every time a voltage is applied, the rotor electrode portion moves in response to the applied stator electrode portion instantaneously. start. Also from this, high followability can be secured and stable smooth rotation can be realized.
[0031] 更には、ロータ板を介して記録媒体を回転させるので、従来のものとは異なり、記録 媒体が橈んで変形する恐れがない。そのため、他の構成品に接触して悪影響を及ぼ すことがない。従って、信頼性を向上することができる。 [0031] Further, since the recording medium is rotated via the rotor plate, unlike the conventional one, there is no fear that the recording medium will crawl and be deformed. Therefore, it does not adversely affect other components. Therefore, reliability can be improved.
[0032] 上述したように、本発明のスピンドルモータによれば、接触による損傷や摩耗を防 止しながら、ロータ板を介して記録媒体を連続的且つ滑らかに回転させることができ 、低振動化、低騒音化及び耐久性を向上して、信頼性を向上することができる。  [0032] As described above, according to the spindle motor of the present invention, the recording medium can be continuously and smoothly rotated through the rotor plate while preventing damage and wear due to contact, and the vibration can be reduced. In addition, noise reduction and durability can be improved, and reliability can be improved.
[0033] また、本発明のスピンドルモータは、上記本発明のスピンドルモータにおいて、前記 複数のステータ電極部力 前記ロータ電極部の 1つと前記ステータ電極部の 1つとが 完全に対向した位置関係になった時に、少なくとも隣接するロータ電極部の前記一 定方向側近傍に、他のステータ電極部が位置するように設けられていることを特徴と するものである。  [0033] Further, the spindle motor of the present invention is the above-described spindle motor of the present invention, wherein the plurality of stator electrode portion forces are in a positional relationship in which one of the rotor electrode portions and one of the stator electrode portions completely face each other. The other stator electrode part is provided so as to be located at least in the vicinity of the fixed direction side of the adjacent rotor electrode part.
[0034] この発明に係るスピンドルモータにおいては、ロータ電極部の 1つとステータ電極部 の 1つとが完全に対向した位置関係になった時に、少なくとも隣接するロータ電極部 の前記一定方向側近傍に他のステータ電極部が常に位置している。つまり、ロータ 電極部を他のステータ電極部に向けて静電力により移動させる際に、両電極部が既 に近づいた状態となっている。特に静電力の大きさは、両電極部間の距離に反比例 するので、ロータ電極部を他のステータ電極部に向けて、より速い速度で速やかに移 動させることができる。従って、記録媒体をより安定した状態で回転させることができる [0035] また、本発明のスピンドルモータは、上記本発明のスピンドルモータにおいて、前記 複数のステータ電極部力 それぞれ周方向に向力う幅が前記複数のロータ電極部の それぞれの幅よりも狭く形成されていると共に、それぞれが近接した状態で隣り合うよ うに配置され、前記電圧印加手段が、前記複数のステータ電極のうち、前記複数の口 ータ電極部の略中心から、少なくとも該ロータ電極部の幅の 1Z2分だけ前記一定方 向に向かった範囲内に位置するステータ電極部に対して、前記駆動電圧を印加する ことを特徴とするものである。 [0034] In the spindle motor according to the present invention, when one of the rotor electrode portions and one of the stator electrode portions are in a completely opposed positional relationship, at least the adjacent rotor electrode portion is in the vicinity of the fixed direction side. The stator electrode portion is always located. That is, when the rotor electrode portion is moved toward the other stator electrode portion by electrostatic force, both electrode portions are already close to each other. In particular, since the magnitude of the electrostatic force is inversely proportional to the distance between the two electrode portions, the rotor electrode portion can be moved quickly toward the other stator electrode portion at a higher speed. Therefore, the recording medium can be rotated in a more stable state. [0035] Further, the spindle motor of the present invention is the spindle motor of the present invention described above, wherein the width of each of the plurality of stator electrode portion forces in the circumferential direction is narrower than the width of each of the plurality of rotor electrode portions. Are arranged adjacent to each other in close proximity to each other, and the voltage application means includes at least the rotor electrode portion from the substantial center of the plurality of stator electrode portions of the plurality of stator electrodes. The drive voltage is applied to a stator electrode portion located within a range of 1Z2 of the width toward the fixed direction.
[0036] この発明に係るスピンドルモータにおいては、各ステータ電極部の周方向に向かう 幅力 ロータ電極部の周方向に向力う幅よりも狭く形成されている。例えば、ロータ電 極部の幅よりも 1Z3程度の幅で形成されている。そして、この幅の小さいステータ電 極は、それぞれ近接した状態で隣り合うようにして配置されている。即ち、複数のステ ータ電極部は、回転軸を中心とする円周方向に、例えば、 3〜4度の角度毎に複数 配されている。これにより、複数のロータ電極部がどこに位置していても、各ロータ電 極部に対向した状態で必ず 3個程度のステータ電極部が位置している状態となって いる。  [0036] In the spindle motor according to the present invention, the width force in the circumferential direction of each stator electrode portion is formed narrower than the width in the circumferential direction of the rotor electrode portion. For example, it is formed with a width of about 1Z3 than the width of the rotor electrode portion. The stator electrodes having a small width are arranged adjacent to each other in close proximity. In other words, a plurality of status electrode portions are arranged in the circumferential direction around the rotation axis, for example, every 3 to 4 degrees. As a result, no matter where the plurality of rotor electrode portions are located, about three stator electrode portions are always located in a state of facing each rotor electrode portion.
[0037] そして、電圧印加手段は、これら複数のステータ電極のうち、ロータ電極部の略中 心から、少なくとも該ロータ電極部の幅の 1Z2分だけ一定方向(回転方向)に向かつ た範囲内に位置するステータ電極に対して駆動電圧を印加する。つまり、ロータ電極 部に近接し、且つ、該ロータ電極部の移動に寄与するステータ電極部のみに集中し て駆動電圧を印加する。特に静電力の大きさは、両電極部間の距離に反比例するの で、ロータ電極部をより強い静電力で引っ張ることができ、より速い速度で速やかに 移動させることができる。従って、記録媒体をより安定した状態で回転させることがで きる。  [0037] Then, the voltage applying means is within a range of the plurality of stator electrodes that is oriented in a fixed direction (rotational direction) at least by 1Z2 of the width of the rotor electrode portion from substantially the center of the rotor electrode portion. A drive voltage is applied to the positioned stator electrode. That is, the drive voltage is applied in a concentrated manner only to the stator electrode part that is close to the rotor electrode part and contributes to the movement of the rotor electrode part. In particular, since the magnitude of the electrostatic force is inversely proportional to the distance between the two electrode portions, the rotor electrode portion can be pulled with a stronger electrostatic force, and can be moved quickly at a higher speed. Therefore, the recording medium can be rotated in a more stable state.
[0038] なお、電圧印加手段は、上述した位置関係を維持するように、ロータ電極部の移動 に伴ってステータ電極部への印加を順次変化させている。また、ステータ電極部の幅 をできるだけ狭くし、且つ、ステータ電極部の数を極力増やしているので、静電力の 変動幅を小さくすることができる。よって、上述した効果をさらに高めることができる。 [0039] また、本発明のスピンドルモータは、上記本発明のいずれかのスピンドルモータに おいて、前記ロータ板の対向面又は前記ステータ板の表面の少なくともいずれか一 方には、前記ロータ電極部又は前記ステータ電極部を覆うように保護膜が設けられ て ヽることを特徴とするものである。 It should be noted that the voltage application means sequentially changes the application to the stator electrode portion as the rotor electrode portion moves so as to maintain the above-described positional relationship. In addition, since the width of the stator electrode portion is made as small as possible and the number of stator electrode portions is increased as much as possible, the fluctuation range of the electrostatic force can be reduced. Therefore, the above-described effect can be further enhanced. [0039] Further, the spindle motor of the present invention is the spindle motor of any one of the above-described present invention, wherein at least one of the opposing surface of the rotor plate and the surface of the stator plate is the rotor electrode portion. Alternatively, a protective film is provided so as to cover the stator electrode portion.
[0040] この発明に係るスピンドルモータにおいては、ロータ電極部又はステータ電極部の 少なくとも 、ずれか一方を覆うように保護膜が設けられて ヽるので、回転中に何らか の原因によりロータ板に外力が加わったとしても、保護膜が介在しているので直接口 ータ電極部とステータ電極部とが接触することがない。よって、両電極部の機械的な 損傷を防止することができると共に、放電による損傷を防止することができる。従って 、品質を向上することができると共に、耐久性をさらに高めることができる。  [0040] In the spindle motor according to the present invention, the protective film is provided so as to cover at least one of the rotor electrode portion and the stator electrode portion, so that the rotor plate is caused by some cause during the rotation. Even if an external force is applied, since the protective film is interposed, the contact electrode portion and the stator electrode portion do not directly contact each other. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be further enhanced.
[0041] また、本発明のスピンドルモータは、上記本発明のスピンドルモータにおいて、前記 保護膜上には、潤滑膜が塗布されていることを特徴とするものである。  [0041] Further, the spindle motor of the present invention is characterized in that, in the spindle motor of the present invention, a lubricating film is applied on the protective film.
[0042] この発明に係るスピンドルモータにおいては、保護膜上にさらに潤滑膜が塗布され ているので、上述したように回転中に何らかの原因によりロータ板に外力が加わり、口 ータ板若しくはステータ板と潤滑膜とが接触、或いは、潤滑膜同士が接触したとして も、接触時の摩擦力を低減することができる。そのため、回転速度の低下を極力抑え ることができる。また、接触時の抵抗を極力抑えることができるので、省電力化を図る ことができる。  [0042] In the spindle motor according to the present invention, since the lubricating film is further applied on the protective film, an external force is applied to the rotor plate for some reason during rotation as described above, and the rotor plate or stator plate Even if the lubricant film is in contact with the lubricant film or the lubricant films are in contact with each other, the frictional force at the time of contact can be reduced. Therefore, a decrease in rotational speed can be suppressed as much as possible. Moreover, since the resistance at the time of contact can be suppressed as much as possible, power saving can be achieved.
[0043] また、回転駆動時においてロータ板が滑り易いので、起動特性を向上することがで きる。この点力もも、省電力化を図ることができる。  [0043] Further, since the rotor plate is slippery during rotational driving, the starting characteristics can be improved. This point power can also save power.
[0044] また、本発明のスピンドルモータは、上記本発明のいずれ力スピンドルモータにお いて、前記ロータ板の対向面又は前記ステータ板の表面の少なくともいずれか一方 には、前記ロータ電極部又は前記ステータ電極部を覆うように、固体潤滑膜が設けら れて 、ることを特徴とするものである。  [0044] Further, the spindle motor of the present invention is the above-described spindle motor of the present invention, wherein at least one of the opposing surface of the rotor plate and the surface of the stator plate has the rotor electrode portion or the A solid lubricating film is provided so as to cover the stator electrode portion.
[0045] この発明に係るスピンドルモータにおいては、ロータ電極部又はステータ電極部の 少なくともいずれか一方を覆うように、保護膜と潤滑膜との両方の機能を兼ね備えた 固体潤滑膜が設けられている。よって、回転中に何らかの原因によりロータ板に外力 が加わったとしても、固体潤滑膜が介在されているので、直接ロータ電極部とステー タ電極部とが接触することがない。そのため、両電極部の機械的な損傷を防止するこ とができると共に、放電による損傷を防止することができる。従って、品質を向上する ことができると共に、耐久性をさらに高めることができる。 In the spindle motor according to the present invention, a solid lubricating film having both functions of a protective film and a lubricating film is provided so as to cover at least one of the rotor electrode portion and the stator electrode portion. . Therefore, even if an external force is applied to the rotor plate for some reason during rotation, the solid lubricating film is interposed, so the rotor electrode portion and the stay are directly The electrode part does not come into contact. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be further enhanced.
[0046] 更には、接触時の摩擦力を低減することができ、回転速度の低下を極力抑えること ができる。また、接触時の抵抗を極力抑えることができるので、省電力化を図ることが できる。力 tlえて、回転駆動時においてロータ板が滑り易いので、起動特性を向上する ことができる。この点からも、省電力化を図ることができる。  [0046] Furthermore, the frictional force at the time of contact can be reduced, and a decrease in rotational speed can be suppressed as much as possible. Moreover, since the resistance at the time of contact can be suppressed as much as possible, power saving can be achieved. In addition, since the rotor plate is slippery during rotational driving, the starting characteristics can be improved. Also from this point, power saving can be achieved.
[0047] また、本発明のスピンドルモータは、上記本発明のいずれかのスピンドルモータに おいて、前記シャフトと前記回転体との間には、前記ロータ板と前記ステータ板との 間を少なくとも規定値だけ離間させる位置決め部が設けられていることを特徴とする ものである。  [0047] Further, in the spindle motor of the present invention, the spindle motor of the present invention has at least a gap between the rotor plate and the stator plate between the shaft and the rotating body. It is characterized in that a positioning portion that is separated by a value is provided.
[0048] この発明に係るスピンドルモータにおいては、シャフトと回転体との間に位置決め部 が設けられので、ロータ板とステータ板との間の隙間を、少なくとも規定値分だけ確実 に空けることができる。そのため、両電極部が接触することがなぐより安定した回転 性を得ることができる。また、停止中であってもロータ板とステータ板とが接触しない ので、起動特性を高めることができる。そのため、起動時の負荷を少なくでき、さらな る省電力化を図ることができる。  [0048] In the spindle motor according to the present invention, since the positioning portion is provided between the shaft and the rotating body, the gap between the rotor plate and the stator plate can be reliably opened at least by a specified value. . Therefore, it is possible to obtain more stable rotation without contact between both electrode portions. Further, since the rotor plate and the stator plate do not come into contact with each other even during stoppage, the starting characteristics can be improved. As a result, the load at startup can be reduced and further power saving can be achieved.
[0049] また、本発明のスピンドルモータは、上記本発明のいずれかのスピンドルモータに おいて、前記シャフトが、円柱状に形成され、前記流体動圧軸受部が、前記回転体 に対向するシャフトの上面又は前記ロータ板に対向する回転体の下面の少なくともい ずれか一方に形成されて前記スラスト方向の力を支持するスラスト用動圧溝と、シャ フトの外周面に形成されて前記ラジアル方向の力を支持するラジアル用動圧溝とを 備えて 、ることを特徴とするものである。  [0049] Further, in the spindle motor of the present invention, in any of the spindle motors of the present invention, the shaft is formed in a columnar shape, and the fluid dynamic pressure bearing portion is a shaft facing the rotating body. A thrust dynamic pressure groove formed on at least one of the upper surface of the rotor and the lower surface of the rotating body facing the rotor plate to support the thrust force, and formed on the outer peripheral surface of the shaft in the radial direction. And a radial dynamic pressure groove for supporting the above-mentioned force.
[0050] この発明に係るスピンドルモータにおいては、回転体が回転し始めると、回転体とシ ャフトとの間に供給された流体が、スラスト用動圧溝及びラジアル用動圧溝に沿って 流れ始めて徐々に圧力が高まる。すると、回転体は、まずスラスト用動圧溝によって 発生した圧力によりロータ板力 浮上すると共に、ラジアル用動圧溝によって発生し た圧力によりシャフトから離間した状態で回転する。つまり、流体動圧軸受部は、回転 時に回転体に発生するスラスト方向の力及びラジアル方向の力を支持して 、る。その 結果、回転体はシャフトの周囲を横ぶれ等がない状態で滑らかに回転する。このよう に、両動圧溝を設けることで、回転体及び該回転体に固定されたロータ板を、振動を 抑えた状態で確実且つ安定に回転させることができる。 In the spindle motor according to the present invention, when the rotating body starts to rotate, the fluid supplied between the rotating body and the shaft flows along the thrust dynamic pressure groove and the radial dynamic pressure groove. The pressure gradually increases for the first time. Then, the rotor first floats by the rotor plate force due to the pressure generated by the thrust dynamic pressure groove, and rotates while being separated from the shaft by the pressure generated by the radial dynamic pressure groove. In other words, the fluid dynamic bearing Supports thrust and radial forces that are sometimes generated on rotating bodies. As a result, the rotating body rotates smoothly around the shaft without any side shake. Thus, by providing both dynamic pressure grooves, the rotating body and the rotor plate fixed to the rotating body can be reliably and stably rotated while suppressing vibration.
[0051] なお、回転体は、回転時にロータ電極部とステータ電極部との間に働く静電力も同 時に受けているので、浮上する方向とは逆方向に引っ張られて回転バランスが保た れている。この点からも安定した回転を維持できる。  [0051] Since the rotating body simultaneously receives an electrostatic force that acts between the rotor electrode portion and the stator electrode portion during rotation, the rotating body is pulled in a direction opposite to the flying direction to maintain the rotation balance. ing. From this point, stable rotation can be maintained.
[0052] また、本発明のスピンドルモータは、上記本発明のスピンドルモータにおいて、前記 シャフトの外周面には、所定の厚さだけ半径方向外方に延びて拡径した鍔状のフラ ンジ部が形成され、前記流体動圧軸受部が、前記フランジ部の下面に形成されて前 記スラスト方向の力を支持する第 2のスラスト用動圧溝を備えていることを特徴とする ものである。  [0052] Further, in the spindle motor of the present invention described above, the spindle motor of the present invention includes a flange-shaped flange portion that extends radially outward by a predetermined thickness on the outer peripheral surface of the shaft. The fluid dynamic pressure bearing portion formed is provided with a second thrust dynamic pressure groove formed on the lower surface of the flange portion and supporting the force in the thrust direction.
[0053] この発明に係るスピンドルモータにおいては、回転体の回転に伴ってフランジ部の 下面に形成された第 2のスラスト用動圧溝に沿って流体が流れて圧力が高まる。する と、回転体は、第 2のスラスト用動圧溝によって発生した圧力を受けてステータ板に向 力 方向、即ち、浮上する方向とは逆方向に力を受けて、押し付けられた状態となる。 つまり、流体動圧軸受部は、回転軸に沿って互いに逆方向に向かう 2つのスラスト力 を支持することができる。これにより、回転体は、この 2つのスラスト力によって、浮上 する力と押し付けられる力とを受けると共に、ロータ電極部とステータ電極部との間に 働く静電力を受けることになる。その結果、回転体は 3つの力のバランスによって、ス ラスト方向に対してより安定した状態で回転する。従って、回転時のさらなる低振動化 及び低騒音化を図ることができると共に、流体動圧軸受部をより安定して作動させる ことができる。  In the spindle motor according to the present invention, fluid flows along the second thrust dynamic pressure groove formed on the lower surface of the flange portion as the rotating body rotates, and the pressure increases. Then, the rotating body receives a pressure generated by the second thrust dynamic pressure groove and receives a force in the direction of the stator plate, that is, the direction opposite to the direction of rising, and is pressed. . That is, the fluid dynamic pressure bearing portion can support two thrust forces directed in opposite directions along the rotation axis. As a result, the rotating body receives the floating force and the pressing force by the two thrust forces, and also receives the electrostatic force acting between the rotor electrode portion and the stator electrode portion. As a result, the rotating body rotates more stably in the thrust direction due to the balance of the three forces. Accordingly, it is possible to further reduce vibration and noise during rotation, and to operate the fluid dynamic pressure bearing portion more stably.
[0054] また、本発明の情報記録再生装置は、上記本発明の!/、ずれかのスピンドルモータ と、前記記録媒体に情報を記録再生する記録再生ヘッドと、該記録再生ヘッドを、前 記記録媒体の表面上力 浮上させた状態で支持するサスペンションと、該サスペンシ ヨンの基端側を支持すると共に、該サスペンションを前記記録媒体の表面に平行な 方向に向けて移動させるァクチユエータと、前記記録再生ヘッドの作動を制御して、 記録再生を行わせる制御部とを備えていることを特徴とするものである。 [0054] Also, the information recording / reproducing apparatus of the present invention includes the above-mentioned spindle motor of the present invention, a deviation spindle motor, a recording / reproducing head for recording / reproducing information on the recording medium, and the recording / reproducing head. Force on the surface of the recording medium, a suspension that supports the suspension in a floating state, an actuator that supports the base end side of the suspension, and moves the suspension in a direction parallel to the surface of the recording medium, and the recording Control the operation of the playhead, And a control unit for performing recording and reproduction.
[0055] この発明に係る情報記録再生装置にお!/、ては、スピンドルモータで記録媒体を一 定方向に回転させた後、ァクチユエータによりサスペンションを移動させて、記録再生 ヘッドを記録媒体上の所望する位置に配置させる。この際、サスペンションは、記録 再生ヘッドを、記録媒体の表面力 フライングヘッド技術により浮上させた状態で支 持している。その後、制御部により指示を出して、記録再生ヘッドを作動させる。これ により、記録再生ヘッドを利用して、記録媒体に対して各種情報の記録再生を行うこ とがでさる。 In the information recording / reproducing apparatus according to the present invention, after rotating the recording medium in a fixed direction by the spindle motor, the suspension is moved by the actuator, and the recording / reproducing head is placed on the recording medium. Place it in the desired position. At this time, the suspension supports the recording / reproducing head in a state of being levitated by the surface force flying head technology of the recording medium. Thereafter, an instruction is issued by the control unit to operate the recording / reproducing head. As a result, it is possible to record and reproduce various information on the recording medium using the recording and reproducing head.
[0056] 特に、記録媒体を連続的且つ滑らかに回転させるスピンドルモータを備えているの で、情報の記録再生を正確に行うことができ、高品質ィ匕を図ることができる。また、低 振動、低騒音で耐久性が向上したスピンドルモータでもあるので、この点からも高品 質ィ匕を図ることができ、製品の信頼性を向上することができる。  [0056] In particular, since the spindle motor for continuously and smoothly rotating the recording medium is provided, information can be recorded and reproduced accurately, and high quality can be achieved. In addition, since it is a spindle motor with low vibration and low noise and improved durability, high quality can be achieved from this point, and the reliability of the product can be improved.
図面の簡単な説明  Brief Description of Drawings
[0057] [図 1]本発明に係るスピンドルモータを有する情報記録再生装置の第 1実施形態を示 す構成図である。  FIG. 1 is a configuration diagram showing a first embodiment of an information recording / reproducing apparatus having a spindle motor according to the present invention.
[図 2]図 1に示すスピンドルモータの断面図である。  2 is a cross-sectional view of the spindle motor shown in FIG.
[図 3]図 2に示すスピンドルモータを構成するシャフトの上面図である。  FIG. 3 is a top view of a shaft constituting the spindle motor shown in FIG. 2.
[図 4]図 2に示すスピンドルモータを構成するスリーブの下面図である。  FIG. 4 is a bottom view of a sleeve constituting the spindle motor shown in FIG.
[図 5]図 2に示すスピンドルモータを構成するロータ板を、ステータ板側から見た図で ある。  FIG. 5 is a view of the rotor plate constituting the spindle motor shown in FIG. 2 as viewed from the stator plate side.
[図 6]図 2に示すスピンドルモータを構成するロータ板及びステータ板の、周方向に沿 つた断面展開図である。  6 is a developed sectional view along the circumferential direction of a rotor plate and a stator plate constituting the spindle motor shown in FIG.
[図 7]図 2に示すスピンドルモータを構成するステータ板を、ロータ板側から見た図で ある。  FIG. 7 is a view of the stator plate constituting the spindle motor shown in FIG. 2 as viewed from the rotor plate side.
[図 8]図 2に示すスピンドルモータの動きを説明する図であって、 (a)は選択したステ ータ電極部に駆動電圧を印加して静電力によりロータ電極部を移動させ始めている 状態を示す図であり、(b)は(a)に示す状態の後、ロータ電極部が移動している最中 を示す図であり、(c)は (b)に示す状態の後、異なるステータ電極部に駆動電圧を印 カロして再度ロータ電極部を移動させ始めている状態を示す図である。 FIG. 8 is a diagram for explaining the movement of the spindle motor shown in FIG. 2, where (a) shows a state in which a drive voltage is applied to a selected stator electrode portion and the rotor electrode portion is moved by electrostatic force. (B) is a diagram showing a state in which the rotor electrode portion is moving after the state shown in (a), and (c) is a diagram showing a different stator after the state shown in (b). Mark drive voltage on electrode It is a figure which shows the state which has started to move the rotor electrode part again by calorie.
[図 9]図 2に示すロータ板及びステータ板の両方に保護膜を設けた場合のロータ板及 びステータ板の、周方向に沿った断面展開図である。  FIG. 9 is a cross-sectional development view along the circumferential direction of the rotor plate and the stator plate when protective films are provided on both the rotor plate and the stator plate shown in FIG.
[図 10]図 9に示す保護膜のうち、ロータ板側の保護膜上に潤滑膜を塗布した場合の 、周方向に沿った断面展開図である。  FIG. 10 is a developed cross-sectional view along the circumferential direction when a lubricating film is applied on the protective film on the rotor plate side of the protective film shown in FIG.
[図 11]本発明に係るスピンドルモータの第 2実施形態を示す図であって、スピンドル モータを構成するロータ板及びステータ板の、周方向に沿った断面展開図である。  FIG. 11 is a diagram showing a second embodiment of the spindle motor according to the present invention, and is a developed sectional view along the circumferential direction of the rotor plate and the stator plate constituting the spindle motor.
[図 12]図 11に示すスピンドルモータの動きを説明する図であって、 (a)は選択したス テータ電極部に駆動電圧を印加して静電力によりロータ電極部を移動させ始めてい る状態を示す図であり、(b)は (a)に示す状態の後、ロータ電極部の移動に合わせて 異なるステータ電極部に駆動電圧を印加して 、る状態を示す図である。  FIG. 12 is a diagram for explaining the movement of the spindle motor shown in FIG. 11, where (a) shows a state in which a drive voltage is applied to the selected stator electrode part and the rotor electrode part is started to move by electrostatic force. (B) is a diagram showing a state in which, after the state shown in (a), a driving voltage is applied to different stator electrode portions in accordance with the movement of the rotor electrode portion.
[図 13]スピンドルモータの変形例を示す図であって、シャフトの上面に突起部を有す るスピンドルモータの断面図である。  FIG. 13 is a view showing a modification of the spindle motor, and is a cross-sectional view of the spindle motor having a protrusion on the upper surface of the shaft.
[図 14]スピンドルモータの変形例を示す図であって、下面に動圧溝が形成されたフラ ンジ部を有するシャフトを備えたスピンドルモータの断面図である。  FIG. 14 is a view showing a modification of the spindle motor, and is a cross-sectional view of the spindle motor including a shaft having a flange portion in which a dynamic pressure groove is formed on the lower surface.
[図 15]図 14に示すフランジ部の下面図である。  FIG. 15 is a bottom view of the flange portion shown in FIG.
[図 16]図 2に示すスピンドルモータを構成するロータ板及びステータ板の、周方向に 沿った断面展開図である。  FIG. 16 is a developed sectional view of the rotor plate and the stator plate constituting the spindle motor shown in FIG. 2 along the circumferential direction.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0058] (第 1実施形態)  [0058] (First embodiment)
以下、本発明に係るスピンドルモータ及び情報記録再生装置の第 1実施形態を、 図 1から図 10を参照して説明する。なお、図 6、図 9及び図 10は、周方向に沿った断 面を展開した状態で図示して 、る。  A first embodiment of a spindle motor and an information recording / reproducing apparatus according to the present invention will be described below with reference to FIGS. FIGS. 6, 9 and 10 are shown in a state where the cross-section along the circumferential direction is developed.
[0059] 本実施形態の情報記録再生装置 1は、図 1に示すように、スピンドルモータ 2と、磁 気ディスク D (以下、単にディスク Dという)(円板状の記録媒体)に各種の情報を記録 再生する磁気ヘッド (記録再生ヘッド) 3と、該磁気ヘッドをディスク Dの表面上から浮 上させた状態で支持するサスペンション 4と、該サスペンション 4の基端側を支持する と共に、該サスペンション 4をディスク Dの表面に平行な XY方向に向けてスキャン移 動させるァクチユエータ 5と、磁気ヘッド 3の作動を制御して、記録再生を行わせる制 御部 6と、該制御部 6と磁気ヘッド 3とを接続するコード部 7と、これら各構成品を収容 するハウジング 8とを備えて 、る。 As shown in FIG. 1, the information recording / reproducing apparatus 1 of the present embodiment has various information on a spindle motor 2 and a magnetic disk D (hereinafter simply referred to as disk D) (disc-shaped recording medium). A magnetic head (recording / reproducing head) 3, a suspension 4 for supporting the magnetic head in a state where it floats from the surface of the disk D, a base end side of the suspension 4, and the suspension 4 Move the scan toward the XY direction parallel to the surface of disk D. The actuator 5 to be moved, the control unit 6 for controlling the operation of the magnetic head 3 to perform recording and reproduction, the cord unit 7 for connecting the control unit 6 and the magnetic head 3, and the respective components are accommodated. A housing 8 is provided.
[0060] ノ、ウジング 8は、アルミニウム等の金属材料により、上面視四角形状に形成されてい ると共に、内側に各構成品を収容する凹部 8aが形成されている。また、このハウジン グ 8には、凹部 8aの開口を塞ぐように図示しない蓋が着脱可能に固定されるようにな つている。凹部 8aの略中心には、上記スピンドルモータ 2が取り付けられており、該ス ピンドルモータ 2の後述するハブ 20に中心孔を嵌め込むことでディスク Dが着脱自在 に固定される。 [0060] The sawing 8 is formed of a metal material such as aluminum in a square shape when viewed from above, and a recess 8a for accommodating each component is formed inside. Further, a lid (not shown) is detachably fixed to the housing 8 so as to close the opening of the recess 8a. The spindle motor 2 is attached to substantially the center of the recess 8a, and the disc D is detachably fixed by fitting a center hole into a hub 20 (to be described later) of the spindle motor 2.
[0061] また、凹部 8aの隅角部には、上記ァクチユエータモータ 5が取り付けられている。こ のァクチユエータモータ 5には、軸受 9を介してキャリッジ 10が取り付けられており、該 キャリッジ 10の先端にサスペンション 4が取り付けられている。そして、キャリッジ 10及 びサスペンション 4は、ァクチユエータモータ 5の駆動によって共に上記 XY方向に移 動可能とされている。  [0061] The actuator motor 5 is attached to the corner of the recess 8a. A carriage 10 is attached to the actuator motor 5 via a bearing 9, and a suspension 4 is attached to the tip of the carriage 10. The carriage 10 and the suspension 4 are both movable in the XY directions by driving the actuator motor 5.
[0062] なお、キャリッジ 10及びサスペンション 4は、ディスク Dの回転停止時にァクチユエ一 タモータ 5の駆動によって、ディスク D上力も退避するようになっている。上記光信号 コントローラ 7は、このァクチユエータモータ 5に隣接するように、凹部 8a内に取り付け られている。  It should be noted that the carriage 10 and the suspension 4 are configured to retract the force on the disk D by driving the actuator motor 5 when the rotation of the disk D is stopped. The optical signal controller 7 is mounted in the recess 8 a so as to be adjacent to the actuator motor 5.
[0063] 磁気ヘッド 3は、図示しな 、コイル部を有しており、記録を行う場合には、制御部か らの指示を受けて記録させた 、情報を磁気信号として出力して、ディスク D上に記録 を行うようになっている。また、再生を行う場合には、ディスク Dから出力されている磁 気信号をコイル部で読み取って、制御部 14に送っている。これにより、ディスク Dに各 種の情報を記録再生することができるようになって 、る。  [0063] The magnetic head 3 has a coil section (not shown), and when recording is performed, information is output as a magnetic signal when receiving an instruction from the control section, and a disk is recorded. Record on D. Further, when performing reproduction, the magnetic signal output from the disk D is read by the coil unit and sent to the control unit 14. As a result, various kinds of information can be recorded and reproduced on the disc D.
[0064] 上記スピンドルモータ 2は、上記ディスク Dを回転軸 L回りに回転駆動するモータで あって、図 2に示すように、回転軸 Lに沿って配されたシャフト 15と、該シャフト 15の基 端側を支持すると共に、回転軸 Lに垂直な面内 (XY方向に沿った水平面内)に沿つ て配されたステータ板 16と、シャフト 15に対して一定の隙間を空けた状態で挿着され 、回転軸 L回りに回転可能であると共に、ディスク Dを保持する段部 (保持部) 20aを 外周面に有する回転体 17と、上記隙間に供給された導電性のオイル (流体) Wを有 し、回転体 17が回転する際のスラスト方向の力及びラジアル方向の力を支持する流 体動圧軸受部 18と、ステータ板 16に対向する対向面 19aを有し、回転体 17の基端 側に固定されて共に回転するロータ板 19とを備えている。 The spindle motor 2 is a motor that drives the disk D to rotate about the rotation axis L. As shown in FIG. 2, the spindle 15 is disposed along the rotation axis L, and the shaft 15 While supporting the base end side, with a certain clearance from the shaft 15 and the stator plate 16 disposed along the plane perpendicular to the rotation axis L (horizontal plane along the XY direction) and the shaft 15 A step portion (holding portion) 20a that is inserted and can be rotated around the rotation axis L and holds the disk D is provided. A fluid body that has a rotating body 17 on the outer peripheral surface and conductive oil (fluid) W supplied to the gap and supports thrust force and radial direction force when the rotating body 17 rotates. A pressure bearing portion 18 and a rotor plate 19 having a facing surface 19a facing the stator plate 16 and fixed to the base end side of the rotating body 17 and rotating together.
[0065] なお、本実施形態においては、ステータ板 16が、図 1に示すようにハウジング 8の底 板を兼ねているものとする。但し、この場合に限られず、ハウジング 8の底板上にステ 一タ板を取り付けても構わな 、。  In the present embodiment, it is assumed that the stator plate 16 also serves as the bottom plate of the housing 8 as shown in FIG. However, the present invention is not limited to this, and a stator plate may be attached on the bottom plate of the housing 8.
[0066] 上記シャフト 15は、図 2に示すように、円柱状に形成されており、ハウジング 8の略 中心位置でステータ板 16上に立設されている。また、シャフト 15の上面には、図 3に 示すように、外縁から中心に向力つて湾曲する動圧溝 (スラスト用動圧溝) 15aが複数 形成されている。つまり、複数の動圧溝 15aは、全体で風車形状となっている。これに より、回転体 17が回転したときにオイル Wは、動圧溝 15aに沿いながら中心に向かつ て流れるようになつている。即ち、この動圧溝 15aは、スラスト方向の力を支持するスラ スト軸受部として機能するものである。  As shown in FIG. 2, the shaft 15 is formed in a cylindrical shape, and is erected on the stator plate 16 at a substantially central position of the housing 8. Further, as shown in FIG. 3, a plurality of dynamic pressure grooves (thrust dynamic pressure grooves) 15a that are curved from the outer edge toward the center are formed on the upper surface of the shaft 15. That is, the plurality of dynamic pressure grooves 15a have a windmill shape as a whole. As a result, when the rotating body 17 rotates, the oil W flows along the dynamic pressure groove 15a toward the center. That is, the dynamic pressure groove 15a functions as a thrust bearing portion that supports a thrust force.
[0067] また、シャフト 15の外周面には、図 2に示すように、直線状の溝が合流点 15cで合 わさった V字状の動圧溝 (ラジアル用動圧溝) 15bが、上下 2段に隣接した状態で形 成されている。この際、動圧溝 15bは、回転体 17が回転したときに、合流点 15cが後 力も追いかけるような形で回転するように、 V字が横向きになった状態で形成されて いる。これにより、回転体 17が回転したときに、オイル Wが動圧溝 15bに沿って回転 方向とは逆方向に流れるようになつている。即ち、この動圧溝 15bは、ラジアル方向 の力を支持するラジアル軸受部として機能するものである。なお、本実施形態では、 この動圧溝 15bを上下 2段に形成したが、この場合に限られず、 1段でも構わないし、 3段以上に分けて形成しても構わない。また、 2つの動圧溝 15bをそれぞれ離間した 状態で形成しても構わな 、。  [0067] On the outer peripheral surface of the shaft 15, as shown in FIG. 2, V-shaped dynamic pressure grooves (radial dynamic pressure grooves) 15b formed by linear grooves joined at a junction 15c are vertically arranged. It is formed adjacent to two levels. At this time, the dynamic pressure groove 15b is formed in a state in which the V-shape is oriented sideways so that when the rotating body 17 rotates, the junction 15c rotates so as to follow the rear force. As a result, when the rotating body 17 rotates, the oil W flows in the direction opposite to the rotating direction along the dynamic pressure groove 15b. In other words, the dynamic pressure groove 15b functions as a radial bearing portion that supports a radial force. In the present embodiment, the dynamic pressure grooves 15b are formed in two upper and lower stages, but the present invention is not limited to this, and may be formed in one stage or in three or more stages. Further, the two dynamic pressure grooves 15b may be formed in a state of being separated from each other.
[0068] 上記回転体 17は、カップ状に形成されたハブ 20と、該ハブ 20内に嵌合固定され た円筒状のスリーブ 21とから構成されている。つまり、回転体 17は、スリーブ 21とシャ フト 15との間に隙間を空けた状態でシャフト 15に対して挿着されている。そして、シャ フト 15とスリーブ 21との間に、オイル Wが供給されて充満した状態になっている。また 、ハブ 20の外周面に、上記段部 20aが形成されている。これにより、ディスク Dをハブ 20内に嵌めこんだときに、該ディスク Dが段部 20aに接触して保持されるようになって いる。 The rotating body 17 includes a hub 20 formed in a cup shape and a cylindrical sleeve 21 fitted and fixed in the hub 20. That is, the rotating body 17 is attached to the shaft 15 with a gap between the sleeve 21 and the shaft 15. The oil W is supplied between the shaft 15 and the sleeve 21 to be filled. Also The step portion 20a is formed on the outer peripheral surface of the hub 20. Thus, when the disk D is fitted in the hub 20, the disk D is held in contact with the stepped portion 20a.
[0069] また、スリーブ 21の下面には、図 4に示すように、上記シャフト 15の上面と同様に、 外縁から回転軸 Lに向かって湾曲する動圧溝 (スラスト用動圧溝) 21aが複数形成さ れている。つまり、複数の動圧溝 21aは、全体で風車形状となっている。これにより、 回転体 17が回転したときにオイル Wは、動圧溝 21aに沿いながら中心に向力つて流 れるようになっている。即ち、この動圧溝 21aは、スラスト方向の力を支持するスラスト 軸受部として機能するものである。即ち、この動圧溝 21a、上記動圧溝 15a、 15b及 びオイル Wは、上述した流体動圧軸受部 18を構成して 、る。  Further, as shown in FIG. 4, a dynamic pressure groove (thrust dynamic pressure groove) 21a that curves from the outer edge toward the rotation axis L is formed on the lower surface of the sleeve 21, as shown in FIG. A plurality are formed. That is, the plurality of dynamic pressure grooves 21a have a windmill shape as a whole. As a result, when the rotating body 17 rotates, the oil W flows along the dynamic pressure groove 21a while being directed toward the center. That is, the dynamic pressure groove 21a functions as a thrust bearing portion that supports a thrust force. That is, the dynamic pressure groove 21a, the dynamic pressure grooves 15a and 15b, and the oil W constitute the fluid dynamic pressure bearing portion 18 described above.
[0070] 上記ロータ板 19は、図 2に示すように、ディスク Dと略同じサイズで円板状に形成さ れており、ハブ 20の下部とスリーブ 21の外周面とに接触した状態で固定されている。 なお、ロータ板 19のサイズは、上述した場合に限られず、ディスク Dより大きくても構 わないし、小さくても構わない。また、ロータ板 19とスリーブ 21との間には、図示しな いシールが設けられており、シャフト 15とスリーブ 21との間に供給されているオイル Wがロータ板 19側に流入しな 、ようになって 、る。  [0070] As shown in FIG. 2, the rotor plate 19 is formed in a disk shape with substantially the same size as the disk D, and is fixed in contact with the lower portion of the hub 20 and the outer peripheral surface of the sleeve 21. Has been. The size of the rotor plate 19 is not limited to the case described above, and may be larger or smaller than the disk D. In addition, a seal (not shown) is provided between the rotor plate 19 and the sleeve 21, and the oil W supplied between the shaft 15 and the sleeve 21 does not flow into the rotor plate 19 side. It becomes like this.
[0071] また、このロータ板 19の対向面 19aには、図 5及び図 6に示すように、回転軸 Lを中 心とする円周方向に所定角度 Θ 1、即ち、 30度毎に複数配された扇状のロータ電極 部 25が設けられている。なお、本実施形態では、ロータ板 19の対向面 19aに複数の ロータ電極部 25を接着や蒸着等により形成している。また、この複数のロータ電極部 25は、ロータ板 19、スリーブ 21、オイル W、ステータ板 16を介して予め接地された状 態となつている。  [0071] Further, as shown in FIGS. 5 and 6, the opposing surface 19a of the rotor plate 19 has a plurality of predetermined angles Θ 1 in the circumferential direction centered on the rotation axis L, that is, every 30 degrees. An arranged fan-shaped rotor electrode portion 25 is provided. In the present embodiment, a plurality of rotor electrode portions 25 are formed on the opposing surface 19a of the rotor plate 19 by adhesion, vapor deposition, or the like. The plurality of rotor electrode portions 25 are grounded in advance via the rotor plate 19, the sleeve 21, the oil W, and the stator plate 16.
[0072] また、ステータ板 16には、図 6及び図 7に示すように、ロータ板 19に対向する円領 域内において、回転軸 Lを中心とする円周方向に向けて、上記所定角度 0 1 (30度) よりも狭い角度 Θ 2、例えば、 20度毎に複数配された扇状のステータ電極部 26が設 けられている。なお、本実施形態では、図 6に示すように、ロータ電極部 25の周方向 の幅 W1と、ステータ電極部 26の幅 W2が同じサイズになるように、該ステータ電極部 26を形成している。 [0073] また、上述した両電極部 25、 26の配置関係により、隣り合うロータ電極部 25の間に は、必ずステータ電極部 26が位置している状態となっている。更には、ロータ電極部 25の 1つと、ステータ電極部 26の 1つとが完全に対向した位置関係になったときに、 少なくとも隣接するロータ電極部 25の一定方向(回転方向)側近傍に、他のステータ 電極部 26が常に位置するようになっている。つまり、本実施形態では、ロータ電極部 25の間隔(ピッチ)は、ステータ電極部 26の間隔(ピッチ)の 1. 5倍となっている。 Further, as shown in FIGS. 6 and 7, the stator plate 16 has the predetermined angle 0 toward the circumferential direction centering on the rotation axis L in a circular region facing the rotor plate 19. An angle Θ2 narrower than 1 (30 degrees), for example, a plurality of fan-shaped stator electrode portions 26 are provided every 20 degrees. In the present embodiment, as shown in FIG. 6, the stator electrode portion 26 is formed so that the circumferential width W1 of the rotor electrode portion 25 and the width W2 of the stator electrode portion 26 are the same size. Yes. [0073] Further, due to the arrangement relationship between the two electrode portions 25 and 26 described above, the stator electrode portion 26 is always positioned between the adjacent rotor electrode portions 25. Furthermore, when one of the rotor electrode portions 25 and one of the stator electrode portions 26 are in a completely opposite positional relationship, at least near the fixed direction (rotation direction) side of the adjacent rotor electrode portion 25, the other The stator electrode part 26 is always positioned. That is, in the present embodiment, the interval (pitch) between the rotor electrode portions 25 is 1.5 times the interval (pitch) between the stator electrode portions 26.
[0074] また、複数のステータ電極部 26は、図 2に示すように、それぞれ図示しない配線を 介して電圧印加部(電圧印加手段) 27に電気的に接続されている。この電圧印加部 27は、複数のステータ電極部 26のうち、選択したステータ電極部 26に対してのみ所 定の時間だけ駆動電圧を印加するようになっており、この電圧印加を繰り返し行うこと で、静電力を利用してロータ板 19を一定方向に回転させている。これについては、 後に詳細に説明する。  Further, as shown in FIG. 2, each of the plurality of stator electrode portions 26 is electrically connected to a voltage applying portion (voltage applying means) 27 via a wiring (not shown). The voltage application unit 27 applies a drive voltage only to the selected stator electrode unit 26 among the plurality of stator electrode units 26 for a predetermined time. By repeatedly applying this voltage, The rotor plate 19 is rotated in a certain direction using electrostatic force. This will be described in detail later.
[0075] 次に、このように構成された情報記録再生装置 1により、ディスク Dに各種の情報を 記録再生する場合について以下に説明する。  Next, a case where various kinds of information is recorded on and reproduced from the disc D by the information recording and reproducing apparatus 1 configured as described above will be described below.
[0076] まず、電圧印加部 27により、複数のステータ電極部 26のうち、選択したステータ電 極部 26に所定の時間だけ駆動電圧を印加する。具体的には、図 8 (a)に示すように 、ロータ電極部 25よりも一定方向(回転方向)側に位置するステータ電極部 26 (Sl、 S4ポジション)に駆動電圧を印加する。この際、複数のロータ電極部 25は、予め全て 接地されているので、印加されたステータ電極部 26とロータ電極部 25とに、それぞ れプラスの電圧とマイナスの電圧とを印加したことになる。これにより、両電極部 25、 2 6の表面には、それぞれプラス及びマイナスの電荷が誘起されると共に、これらが互 いに引き合う静電力(静電吸引力) Fが発生する。  First, the voltage application unit 27 applies a drive voltage to the selected stator electrode unit 26 among the plurality of stator electrode units 26 for a predetermined time. Specifically, as shown in FIG. 8 (a), the drive voltage is applied to the stator electrode portion 26 (Sl, S4 position) located on the fixed direction (rotation direction) side of the rotor electrode portion 25. At this time, since all of the plurality of rotor electrode portions 25 are grounded in advance, a positive voltage and a negative voltage are applied to the applied stator electrode portion 26 and rotor electrode portion 25, respectively. Become. As a result, positive and negative charges are induced on the surfaces of the electrode portions 25 and 26, respectively, and an electrostatic force (electrostatic attractive force) F that attracts them is generated.
[0077] そして、この静電力 Fの水平方向成分により、ロータ電極部 25は、図 8 (b)に示すよ うに、印加されたステータ電極部 26 (Sl、 S4ポジション)に向かって徐々に移動する 。そして、図 8 (c)に示すように、ロータ電極部 25が、印加されたステータ電極部 26に 完全に対向する位置まで移動したと同時に、電圧印加部 27は、このステータ電極部 26への印加を停止すると共に、移動し始めたロータ電極部 25よりも一定方向(回転 方向)側に位置する次のステータ電極部 26 (S3ポジション)に駆動電圧を印加する。 これにより、上述した動作が繰り返され、ロータ電極部 25がまた移動する。 [0077] Then, due to the horizontal component of the electrostatic force F, the rotor electrode portion 25 gradually moves toward the applied stator electrode portion 26 (Sl, S4 position) as shown in FIG. 8 (b). To do. Then, as shown in FIG. 8 (c), at the same time as the rotor electrode portion 25 has moved to a position completely opposed to the applied stator electrode portion 26, the voltage applying portion 27 is applied to the stator electrode portion 26. While stopping the application, the drive voltage is applied to the next stator electrode portion 26 (S3 position) located on the fixed direction (rotational direction) side of the rotor electrode portion 25 that has started to move. As a result, the above-described operation is repeated, and the rotor electrode portion 25 moves again.
[0078] その結果、ロータ板 19及び回転体 17を、静電力 Fを利用しながら一定方向に向け て回転軸 L回りに回転させることができる。また、ハブ 20には、段部 20aによってディ スク Dが保持されているので、回転体 17を介してディスク Dを回転させることができる As a result, the rotor plate 19 and the rotating body 17 can be rotated around the rotation axis L in a certain direction while using the electrostatic force F. Further, since the disk 20 is held by the step portion 20a in the hub 20, the disk D can be rotated via the rotating body 17.
[0079] 一方、回転体 17が回転し始めると、シャフト 15とスリーブ 21との間の隙間に供給さ れているオイル Wが各動圧溝 15a、 15b、 21aに沿って流れ始める。 [0079] On the other hand, when the rotating body 17 starts to rotate, the oil W supplied to the gap between the shaft 15 and the sleeve 21 starts to flow along the dynamic pressure grooves 15a, 15b, and 21a.
[0080] まず、スリーブ 21の下面付近のオイル W力 動圧溝 21aに沿いながら回転軸 Lに向 かって流れ始める。これにより、回転軸 Lに近い側の圧力が高まる。よって、スリーブ 2 1がロータ板 17から浮上する。また、これと同時にシャフト 15の上面付近のオイル W 力 動圧溝 15aに沿いながら回転軸 Lに向力つて流れ始める。これにより、回転軸 L に近い側の圧力が高まる。よって、ハブ 20がシャフト 15から浮上する。  [0080] First, the oil W force near the lower surface of the sleeve 21 begins to flow toward the rotation axis L along the dynamic pressure groove 21a. Thereby, the pressure on the side close to the rotation axis L increases. Therefore, the sleeve 21 floats from the rotor plate 17. At the same time, the oil begins to flow toward the rotation axis L along the oil W force dynamic pressure groove 15a near the upper surface of the shaft 15. This increases the pressure on the side close to the rotation axis L. Therefore, the hub 20 is lifted from the shaft 15.
[0081] これらの結果、図 6に示すように、ロータ電極部 25とステータ電極部 26との間力 所 定距離 Gだけ確実に離間した状態となる。よって、ロータ板 19及び回転体 17が共に 安定に浮き上がった状態で回転する。  As a result, as shown in FIG. 6, the rotor electrode portion 25 and the stator electrode portion 26 are reliably separated by a force-constant distance G. Therefore, both the rotor plate 19 and the rotating body 17 rotate in a state where they are lifted stably.
[0082] また、シャフト 15の外周面付近のオイル Wは、上下 2段に分かれた動圧溝 15bに沿 いながら回転方向とは逆方向に流れ始める。そして、動圧溝 15bに沿って流れたォ ィル Wは、合流点 15cで最も高い圧力となる。これにより、スリーブ 21は、ラジアル方 向の力が 2点で支持された状態となり、シャフト 15から離れた状態で回転する。よって 、回転体 17は、横ぶれがない状態で安定に回転することができる。  [0082] In addition, the oil W in the vicinity of the outer peripheral surface of the shaft 15 starts to flow in the direction opposite to the rotation direction along the dynamic pressure groove 15b divided into two stages. The oil W flowing along the dynamic pressure groove 15b has the highest pressure at the junction 15c. As a result, the sleeve 21 is in a state where the radial force is supported at two points and is rotated away from the shaft 15. Therefore, the rotator 17 can rotate stably in a state where there is no side shake.
[0083] このように、流体動圧軸受部 18は、回転時に発生するスラスト方向の力及びラジア ル方向の力を支持する。その結果、回転体 17は、シャフト 15の周囲を滑らかに回転 する。特に、玉軸受けのように機械的な軸受とは異なり、オイル Wを利用した軸受で あるので、振動を抑えた状態で滑らかに回転させることができる。そのため、騒音の 発生を極力抑えることができる。  [0083] Thus, the fluid dynamic pressure bearing portion 18 supports thrust force and radial force generated during rotation. As a result, the rotating body 17 rotates smoothly around the shaft 15. In particular, unlike a mechanical bearing such as a ball bearing, it is a bearing that uses oil W, so it can be smoothly rotated with vibrations suppressed. As a result, the generation of noise can be minimized.
[0084] 上述したように、スピンドルモータ 2によってディスク Dを回転させた後、図 1に示す ように、ァクチユエータ 5を作動させて、キャリッジ 10を介してサスペンション 4を XY方 向にスキャンさせる。これにより、ディスク D上の所望する位置に磁気ヘッド 3を位置さ せることができる。次いで、制御部 6によって磁気ヘッド 3を作動させる。これを受けて 、磁気ヘッド 3は、記録させたい情報を磁気信号として出力して、ディスク D上に記録 を行ったり、ディスクから出力されている磁気信号を読み取って再生を行ったりする。 その結果、磁気ヘッド 3を利用して、ディスク Dに各種の情報を記録再生することがで きる。 As described above, after the disk D is rotated by the spindle motor 2, the actuator 5 is operated to scan the suspension 4 in the XY directions via the carriage 10 as shown in FIG. As a result, the magnetic head 3 is positioned at a desired position on the disk D. Can be made. Next, the magnetic head 3 is operated by the control unit 6. In response to this, the magnetic head 3 outputs the information to be recorded as a magnetic signal and performs recording on the disk D or reads and reproduces the magnetic signal output from the disk. As a result, the magnetic head 3 can be used to record and reproduce various types of information on the disk D.
[0085] 特に、本実施形態のスピンドルモータ 2は、従来の誘電体歯パターンを利用してス テツビング動作でしか回転させることができなかった装置とは異なり、選択したステー タ電極部 26に電圧を次々と印加することで、予め接地されたロータ電極部 25を連続 的且つ滑らかに回転させることができる。即ち、両電極部 25、 26同士をー且接触さ せて停止させることがない。よって、ディスク Dを均一な速度で連続的且つ安定して 回転させることができる。  [0085] In particular, the spindle motor 2 of the present embodiment is different from a device that can be rotated only by a staging operation using a conventional dielectric tooth pattern, and a voltage is applied to the selected stator electrode unit 26. Can be applied successively, so that the rotor electrode portion 25 grounded in advance can be rotated continuously and smoothly. That is, the electrode portions 25 and 26 are not brought into contact with each other and stopped. Therefore, the disk D can be continuously and stably rotated at a uniform speed.
[0086] し力も、本実施形態では、図 8 (a)に示すように、ロータ電極部 25の間隔 (ピッチ)が 、ステータ電極部 26の間隔(ピッチ)の 1. 5倍となっているため、ロータ電極部 25の 1 つ(R2ポジション)とステータ電極部 26の 1つ(S2ポジション)とが完全に対向した位 置関係になった時に、少なくとも隣接するロータ電極部 25 (R3ポジション)の一定方 向側近傍に他のステータ電極部 26 (S4ポジション)が常に位置している。つまり、口 ータ電極部 25を他のステータ電極部 26に向けて静電力 Fにより移動させる際に、両 電極部 25、 26が既に近づいた状態となっている。特に静電力 Fの大きさは、両電極 部 25、 26間の距離に反比例するので、ロータ電極部 25を他のステータ電極部 26に 向けて、より速い速度で速やかに移動させることができる。従って、ディスク Dをより安 定した状態で回転させることができる。  In this embodiment, as shown in FIG. 8 (a), the spacing (pitch) between the rotor electrode portions 25 is 1.5 times the spacing (pitch) between the stator electrode portions 26 in this embodiment. Therefore, when one of the rotor electrode parts 25 (R2 position) and one of the stator electrode parts 26 (S2 position) are in a completely opposed position, at least the adjacent rotor electrode part 25 (R3 position) The other stator electrode part 26 (S4 position) is always located near the fixed direction side of. That is, when the mouth electrode portion 25 is moved toward the other stator electrode portion 26 by the electrostatic force F, both the electrode portions 25 and 26 are already close to each other. In particular, since the magnitude of the electrostatic force F is inversely proportional to the distance between the electrode portions 25 and 26, the rotor electrode portion 25 can be quickly moved toward the other stator electrode portion 26 at a higher speed. Therefore, the disk D can be rotated in a more stable state.
[0087] また、両電極部 25、 26をー且接触させることがないので、両電極部 25、 26の損傷 や摩耗を防止できる。従って、低振動化及び低損音化を図ることができると共に、耐 久性を向上することができる。また、接触による塵埃等の発生を防止することもできる ので、ロータ板 19の周囲の清浄度を一定に保つことができ、ディスク Dに悪影響を与 えることがない。  [0087] Further, since both electrode portions 25 and 26 are not brought into contact with each other, damage and wear of both electrode portions 25 and 26 can be prevented. Therefore, vibration and sound loss can be reduced, and durability can be improved. Further, since the generation of dust or the like due to contact can be prevented, the cleanliness around the rotor plate 19 can be kept constant, and the disk D is not adversely affected.
[0088] また、従来の誘電体歯パターンのように、電圧を印加する毎に電荷が入れ変わるこ とがないので、ロータ電極部 25は、印加されたステータ電極部 26に瞬時に応答して 移動を始める。このことからも、高い追従性を確保でき、安定した滑らかな回転を実現 できる。 [0088] Further, unlike the conventional dielectric tooth pattern, since the electric charge does not change every time the voltage is applied, the rotor electrode portion 25 responds instantaneously to the applied stator electrode portion 26. Start moving. This also ensures high followability and realizes stable and smooth rotation.
[0089] 更には、ロータ板 19を介してディスク Dを回転させるので、従来のものとは異なり、 ディスク Dが橈んで変形する恐れがない。そのため、他の構成品、例えば、磁気へッ ド 3に接触して悪影響を及ぼすことがない。従って、信頼性を向上することができる。  Furthermore, since the disk D is rotated via the rotor plate 19, unlike the conventional one, there is no fear that the disk D will crawl and deform. Therefore, it does not adversely affect other components, for example, the magnetic head 3. Therefore, reliability can be improved.
[0090] 上述したように、本実施形態のスピンドルモータ 2によれば、接触による損傷や摩耗 を防止しながら、ロータ板 19を介してディスク Dを連続的且つ滑らかに回転させること ができ、低振動化、低騒音化及び耐久性を向上して、信頼性を向上することができる  [0090] As described above, according to the spindle motor 2 of the present embodiment, the disk D can be continuously and smoothly rotated through the rotor plate 19 while preventing damage and wear due to contact. Improves vibration, low noise and durability, and can improve reliability
[0091] また、本実施形態の情報記録再生装置 1によれば、ディスク Dを連続的且つ滑らか に回転させるスピンドルモータ 2を備えているので、情報の記録再生を正確に行うこと ができ、高品質ィ匕を図ることができる。また、低振動、低騒音で耐久性が向上したスピ ンドルモータ 2でもあるので、この点力もも高品質ィ匕を図ることができ、製品の信頼性 を向上することができる。 [0091] Further, according to the information recording / reproducing apparatus 1 of the present embodiment, the spindle motor 2 for continuously and smoothly rotating the disk D is provided, so that information can be recorded / reproduced accurately, and high performance can be achieved. Quality can be improved. In addition, since it is a spindle motor 2 with low vibration and low noise and improved durability, this point power can also achieve high quality and improve product reliability.
[0092] なお、上記第 1実施形態において、図 9に示すように、ロータ板 19の対向面 19a及 びステータ板 16の表面に、それぞれロータ電極部 25及びステータ電極部 26を覆う 保護膜 30を設けても構わな 、。  In the first embodiment, as shown in FIG. 9, the protective film 30 covers the rotor electrode portion 25 and the stator electrode portion 26 on the opposing surface 19a of the rotor plate 19 and the surface of the stator plate 16, respectively. May be provided.
[0093] こうすることで、回転中に何らかの原因によりロータ板 19に外力が加わったとしても 、保護膜 30同士が接触するので、直接ロータ板 19とステータ板 16とが接触すること がない。よって、両電極部 25、 26の機械的な損傷を防止することができると共に、放 電による損傷を防止することができる。従って、品質を向上することができると共に、 耐久性をさらに高めることができる。  By doing so, even if an external force is applied to the rotor plate 19 for some reason during rotation, the protective films 30 are in contact with each other, so that the rotor plate 19 and the stator plate 16 are not in direct contact with each other. Therefore, mechanical damage to both electrode portions 25 and 26 can be prevented, and damage due to discharge can be prevented. Accordingly, the quality can be improved and the durability can be further enhanced.
[0094] なお、ロータ板 19及びステータ板 16の両方に保護膜 30を設けた構成にしたが、こ の場合に限られず、いずれか一方にのみ保護膜 30を設けても良い。  [0094] Although the protective film 30 is provided on both the rotor plate 19 and the stator plate 16, the present invention is not limited to this, and the protective film 30 may be provided on only one of them.
[0095] また、上述した保護膜 30を設けた場合において、図 10に示すように、さらに保護膜 30上に潤滑膜 31を塗布しても構わない。この際、図 10に示すように、一方の保護膜 30に潤滑膜 31を塗布しても構わな 、し、両方の保護膜 30上に潤滑膜 31を塗布して も構わない。 [0096] このように潤滑膜 31を塗布することで、回転中に何らかの原因によりロータ板 19に 外力が加わり、保護膜 30と潤滑膜 31とが接触したとしても、接触時の摩擦力を低減 することができる。そのため、回転速度の低下を極力抑えることができる。また、接触 時の抵抗を極力抑えることができるので、省電力化を図ることができる。また、回転駆 動時においてロータ板 19が滑り易いので、起動特性を向上することができる。この点 からも、省電力化を図ることができる。 In addition, when the protective film 30 described above is provided, a lubricating film 31 may be further applied on the protective film 30 as shown in FIG. At this time, as shown in FIG. 10, a lubricating film 31 may be applied to one protective film 30, or the lubricating film 31 may be applied to both protective films 30. [0096] By applying the lubricating film 31 in this way, even if an external force is applied to the rotor plate 19 for some reason during rotation and the protective film 30 and the lubricating film 31 come into contact with each other, the frictional force at the time of contact is reduced. can do. Therefore, it is possible to suppress a decrease in the rotational speed as much as possible. In addition, since the resistance at the time of contact can be suppressed as much as possible, power saving can be achieved. Further, since the rotor plate 19 is slippery during the rotational driving, the starting characteristics can be improved. From this point, it is possible to save power.
(第 2実施形態)  (Second embodiment)
次に、本発明に係るスピンドルモータの第 2実施形態について、図 11及び図 12を 参照して説明する。なお、第 2実施形態において第 1実施形態と同一の構成につい ては、同一の符号を付しその説明を省略する。また、図 11は、円周方向に沿った断 面を展開した状態を図示して 、る。  Next, a second embodiment of the spindle motor according to the present invention will be described with reference to FIG. 11 and FIG. Note that the same reference numerals in the second embodiment denote the same parts as those in the first embodiment, and a description thereof will be omitted. FIG. 11 shows a state in which the cross section along the circumferential direction is developed.
[0097] 第 2実施形態と第 1実施形態との異なる点は、第 1実施形態では、ロータ電極部 25 の周方向に向力う幅 W1と、ステータ電極部 26の周方向に向力う幅 W2とが同じ大き さであったのに対し、第 2実施形態のステータ電極部 41は、周方向に向力 幅 W3が ロータ電極部 25の幅 W1よりも狭く形成されて ヽると共に、周方向に狭!ヽピッチで密 集した状態で配置されて 、る点である。  The difference between the second embodiment and the first embodiment is that in the first embodiment, the width W1 that faces the circumferential direction of the rotor electrode portion 25 and the circumferential direction of the stator electrode portion 26 are directed. Whereas the width W2 is the same size, the stator electrode portion 41 of the second embodiment is formed such that the circumferential force in the direction W3 is narrower than the width W1 of the rotor electrode portion 25. Narrow in the circumferential direction!
[0098] 即ち、本実施形態のスピンドルモータ 40は、図 11及び図 12に示すように、各ステ ータ電極部 41の幅 W3がロータ電極部 25の幅 W1よりも約 1Z3程度の幅で形成され ている。そして、この幅の小さいステータ電極部 41は、それぞれ近接した状態で隣り 合うようにして配置されている。即ち、複数のステータ電極部 41は、回転軸 Lを中心と する円周方向に、例えば、 3〜4度の角度 Θ 3毎に複数配置されている。これにより、 複数のロータ電極部 25がどこに位置していても、各ロータ電極部 25に対向した状態 で必ず 3個程度のステータ電極部 41が位置している状態となっている。  That is, in the spindle motor 40 of this embodiment, as shown in FIGS. 11 and 12, the width W3 of each stator electrode portion 41 is about 1Z3 wider than the width W1 of the rotor electrode portion 25. Is formed. The stator electrode portions 41 having a small width are arranged adjacent to each other in close proximity. That is, a plurality of stator electrode portions 41 are arranged in the circumferential direction around the rotation axis L, for example, at every angle Θ3 of 3 to 4 degrees. As a result, no matter where the plurality of rotor electrode portions 25 are located, about three stator electrode portions 41 are always located in a state of facing each rotor electrode portion 25.
[0099] また、本実施形態のロータ電極部 25は、ロータ板 19と一体的に構成されている。  In addition, the rotor electrode portion 25 of the present embodiment is configured integrally with the rotor plate 19.
即ち、導電性を有する材料でロータ板 19を形成すると共に、対向面 19aの所定位置 を削って凹部 19bを形成している。これにより、削られていない部分 (突出した部分) を、ロータ電極部 25として利用することができる。  That is, the rotor plate 19 is formed of a conductive material, and the concave portion 19b is formed by cutting a predetermined position of the facing surface 19a. As a result, an uncut portion (protruded portion) can be used as the rotor electrode portion 25.
[0100] また、ステータ板 16の表面には、上記複数のステータ電極部 41を覆うように、保護 膜と潤滑膜とを兼ね備えた固体潤滑膜 42が設けられている。 [0100] Further, the surface of the stator plate 16 is protected so as to cover the plurality of stator electrode portions 41. A solid lubricating film 42 having both a film and a lubricating film is provided.
[0101] このように構成されたスピンドルモータ 40を作動させる場合には、図 12に示すよう に、電圧印加部 27が複数のステータ電極部 41のうち、ロータ電極部 25の略中心か ら、該ロータ電極部 25の幅の 1Z2分だけ一定方向(回転方向)に向力つた範囲内( Al、 A2、 A3エリア)に位置するステータ電極部 41に対して駆動電圧を印加する。  [0101] When the spindle motor 40 configured as described above is operated, as shown in FIG. 12, the voltage application unit 27 starts from the approximate center of the rotor electrode unit 25 among the plurality of stator electrode units 41. A drive voltage is applied to the stator electrode portion 41 located in the range (Al, A2, A3 area) directed in a certain direction (rotation direction) by 1Z2 of the width of the rotor electrode portion 25.
[0102] つまり、ロータ電極部 25に近接し、且つ、ロータ電極部 25の移動に寄与するステー タ電極部 41のみに集中して駆動電圧を印加する。特に静電力 Fの大きさは、両電極 部 25、 41間の距離に反比例するので、ロータ電極部 25を、より強い静電力 Fで引つ 張ることができ、より速い速度で速やかに移動させることができる。  In other words, the drive voltage is applied in a concentrated manner only to the stator electrode part 41 that is close to the rotor electrode part 25 and contributes to the movement of the rotor electrode part 25. In particular, the magnitude of the electrostatic force F is inversely proportional to the distance between the electrode portions 25 and 41, so the rotor electrode portion 25 can be pulled with a stronger electrostatic force F and moved quickly at a faster speed. be able to.
[0103] 更に、周方向の幅 W3が狭いステータ電極部 41を近接した状態で配置しているの で、全てのロータ電極部 25 (Rl、 R2、 R3ポジション)を常に同時に移動させ続けるこ とができる。従って、ディスク Dをより安定した状態で回転させることができる。  [0103] Furthermore, since the stator electrode part 41 having a narrow circumferential width W3 is arranged close to the rotor electrode part 25, all rotor electrode parts 25 (Rl, R2, R3 positions) must always be moved simultaneously. Can do. Therefore, the disk D can be rotated in a more stable state.
[0104] なお、電圧印加部 27は、上述した位置関係を維持するように、ロータ電極部 25の 移動に伴ってステータ電極部 41への印加を順次変化させている。また、ステータ電 極部 41の幅 W3をできるだけ狭くし、且つ、ステータ電極部 41の数を増やしているの で、静電力 Fの変動幅を小さくすることができる。よって、上述した効果をさらに高める ことができる。  It should be noted that the voltage application unit 27 sequentially changes the application to the stator electrode unit 41 as the rotor electrode unit 25 moves so as to maintain the above-described positional relationship. Further, since the width W3 of the stator electrode portion 41 is made as narrow as possible and the number of the stator electrode portions 41 is increased, the fluctuation range of the electrostatic force F can be reduced. Therefore, the above-described effect can be further enhanced.
[0105] また、ステータ電極部 41を覆うように保護膜と潤滑膜との両方の機能を兼ね備えた 固体潤滑膜 42が設けられているので、回転中に何らかの原因によりロータ板 19に外 力が加わったとしても、ロータ板 19とステータ板 16とが直接接触することがない。そ のため、両電極部 25、 41の機械的な損傷を防止することができると共に、放電による 損傷を防止することができる。従って、品質を向上することができると共に、耐久性を さらに高めることができる。  [0105] Further, since the solid lubricating film 42 having both functions of a protective film and a lubricating film is provided so as to cover the stator electrode portion 41, an external force is applied to the rotor plate 19 for some reason during the rotation. Even if added, the rotor plate 19 and the stator plate 16 are not in direct contact. Therefore, mechanical damage to both electrode portions 25 and 41 can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be further enhanced.
[0106] また、接触時の摩擦力を低減することができ、回転速度の低下を極力抑えることが できる。更に、接触時の抵抗を極力抑えることができるので、省電力化を図ることがで きる。力!]えて、回転駆動時においてロータ板 19が滑り易いので、起動特性を向上す ることができる。この点力もも、省電力化を図ることができる。  [0106] Further, the frictional force at the time of contact can be reduced, and a decrease in rotational speed can be suppressed as much as possible. Furthermore, since the resistance at the time of contact can be suppressed as much as possible, power saving can be achieved. Power! In addition, since the rotor plate 19 is slippery during rotational driving, the starting characteristics can be improved. This point power can also save power.
[0107] なお、本発明の技術範囲は上記実施の形態に限定されるものではなぐ本発明の 趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 [0107] The technical scope of the present invention is not limited to the above-described embodiments. Various changes can be made without departing from the spirit of the invention.
[0108] 例えば、上記各実施形態において、図 13に示すように、シャフト 15と回転体 17との 間に、ロータ板 19とステータ板 16との間を少なくとも規定値だけ離間させる突起部( 位置決め部) 50を設けても構わない。この突起部 50は、図 13に示すように、シャフト 15の上面に設けても構わないし、ハブ 20の下面に設けても構わない。また、突起部 50の高さとしては、ロータ板 19の浮上量よりも低く形成する。  For example, in each of the above embodiments, as shown in FIG. 13, a protrusion (positioning) that separates between the rotor plate 19 and the stator plate 16 by at least a specified value between the shaft 15 and the rotating body 17. Part) 50 may be provided. As shown in FIG. 13, the protrusion 50 may be provided on the upper surface of the shaft 15 or may be provided on the lower surface of the hub 20. Further, the height of the protrusion 50 is formed lower than the flying height of the rotor plate 19.
[0109] このように突起部 50を設けることで、ロータ板 19とステータ板 16との間の隙間 Gを 少なくとも規定値分だけは確実に空けることができる。そのため、両電極部 25、 26 (4 1)が接触することがなぐより安定した回転性を得ることができる。また、停止中であつ てもロータ板 19とステータ板 16とが接触しないので、起動特性を高めることができる。 そのため、起動時の負荷を少なくでき、さらなる省電力化を図ることができる。  By providing the protrusions 50 in this way, the gap G between the rotor plate 19 and the stator plate 16 can be surely opened at least by a specified value. Therefore, it is possible to obtain more stable rotation without contact between the electrode portions 25 and 26 (41). Further, since the rotor plate 19 and the stator plate 16 do not come into contact with each other even when stopped, the starting characteristics can be improved. Therefore, the load at the time of starting can be reduced and further power saving can be achieved.
[0110] また、上記各実施形態では、 2つの動圧溝、即ち、シャフト 15の上面に形成した動 圧溝 15a及びスリーブ 21の下面に形成した動圧溝 21aをスラスト用動圧溝としたが、 動圧溝を 2つ設ける必要はなぐ少なくともいずれか一方の動圧溝 15a (若しくは 21a )を形成すれば構わない。但し、本実施形態のように両動圧溝 15a、 21aを同時に形 成することが好ましい。  In each of the above embodiments, the two dynamic pressure grooves, that is, the dynamic pressure groove 15a formed on the upper surface of the shaft 15 and the dynamic pressure groove 21a formed on the lower surface of the sleeve 21 are used as the dynamic pressure groove for thrust. However, it is only necessary to form at least one of the dynamic pressure grooves 15a (or 21a) which does not require two dynamic pressure grooves. However, it is preferable to form both dynamic pressure grooves 15a and 21a at the same time as in this embodiment.
[0111] また、図 14に示すように、シャフト 15にフランジ部 60を形成すると共に、該フランジ 部 60の下面に図 15に示す動圧溝 (第 2のスラスト用動圧溝) 60aを形成しても構わな い。  Further, as shown in FIG. 14, the flange portion 60 is formed on the shaft 15, and the dynamic pressure groove (second thrust dynamic pressure groove) 60a shown in FIG. 15 is formed on the lower surface of the flange portion 60. It doesn't matter.
[0112] このフランジ部 60は、図 14に示すように、シャフト 15の外周面力も所定の厚さだけ 半径方向外方に延びて拡径して鍔状に形成されたものである。なお、図 14において は、シャフト 15の上面にフランジ部 60が形成された場合を例に挙げている。但し、こ の場合に限られず、例えば、シャフト 15の中間付近にフランジ部 60を形成しても構 わない。  [0112] As shown in Fig. 14, the flange portion 60 is formed in a bowl shape with the outer peripheral surface force of the shaft 15 extending radially outward by a predetermined thickness and expanding in diameter. In FIG. 14, the case where the flange portion 60 is formed on the upper surface of the shaft 15 is taken as an example. However, the present invention is not limited to this case. For example, the flange portion 60 may be formed near the middle of the shaft 15.
[0113] そして、フランジ部 60の下面には、図 15に示すように、スリーブ 21の下面に形成さ れた動圧溝 21aと同様に、外縁から回転軸 Lに向かって湾曲する上記動圧溝 60aが 複数形成されている。つまり、複数の動圧溝 60aは、全体で風車形状となっている。 これにより、回転体 17が回転したときに、オイル Wが動圧溝 60aに沿いながら中心に 向かって流れるようになつている。即ち、この動圧溝 60aは、スラスト方向の力を支持 するスラスト軸受部として機能するようになって 、る。 Then, on the lower surface of the flange portion 60, as shown in FIG. 15, the dynamic pressure that curves from the outer edge toward the rotation axis L is similar to the dynamic pressure groove 21a formed on the lower surface of the sleeve 21. A plurality of grooves 60a are formed. That is, the plurality of dynamic pressure grooves 60a have a windmill shape as a whole. As a result, when the rotating body 17 rotates, the oil W is centered along the dynamic pressure groove 60a. It is flowing toward you. That is, the dynamic pressure groove 60a functions as a thrust bearing portion that supports a force in the thrust direction.
[0114] 上述したように下面に動圧溝 60aが形成されたフランジ部 60を有する場合には、回 転体 17が回転し始めると、オイル Wが各動圧溝 15a、 15b、 21a、 60aに沿って流れ 始め、それぞれの位置で圧力が高まりだす。この際、動圧溝 15bに沿って流れたオイ ル Wは、合流点 15cで最も高い圧力となる。そのため、回転体 17を構成するスリーブ 21は、ラジアル方向の力が 2点で支持された状態となり、シャフト 15から離れた状態 で回転する。これにより、回転体 17は横ぶれがない状態で安定に回転することがで きる。 [0114] In the case where the flange portion 60 having the dynamic pressure groove 60a formed on the lower surface is provided as described above, when the rotating body 17 starts to rotate, the oil W is supplied to the dynamic pressure grooves 15a, 15b, 21a, 60a. It begins to flow along, and pressure begins to increase at each position. At this time, the oil W flowing along the dynamic pressure groove 15b becomes the highest pressure at the junction 15c. For this reason, the sleeve 21 constituting the rotating body 17 is in a state where the radial force is supported at two points and is rotated away from the shaft 15. As a result, the rotator 17 can rotate stably without any side shake.
[0115] 一方、動圧溝 15a、 21aに沿って流れたオイル Wは、回転軸 Lに近い側で圧力が最 も高まる。そのため、回転体 17及びロータ板 19は、ステータ板 16から浮き上がる。こ れと同時に、フランジ部 60の下面に形成された動圧溝 60aに沿って流れたオイル W は、やはり同様に回転軸 Lに近い側で圧力が高まる。ところが、この動圧溝 60aで発 生する圧力は、固定されたシャフト 15に形成されたフランジ部 60の下面側に発生し ている。そのため、回転体 17はこの圧力を受けてステータ板 16に向力 方向、即ち、 浮上する方向とは逆方向に力を受けて、押し付けられた状態となる。つまり、この場 合の流体動圧軸受部 18は、回転軸 Lに沿って互いに逆方向に向かう 2つのスラスト 力を支持することができる。  [0115] On the other hand, the pressure of the oil W flowing along the dynamic pressure grooves 15a and 21a is highest on the side closer to the rotation axis L. Therefore, the rotating body 17 and the rotor plate 19 are lifted from the stator plate 16. At the same time, the oil W flowing along the dynamic pressure groove 60a formed on the lower surface of the flange portion 60 also increases in pressure on the side close to the rotation axis L. However, the pressure generated in the dynamic pressure groove 60 a is generated on the lower surface side of the flange portion 60 formed in the fixed shaft 15. Therefore, the rotating body 17 receives the pressure and receives a force in the direction of the stator plate 16 in the direction of the force, that is, the direction opposite to the flying direction, and is pressed. That is, in this case, the fluid dynamic pressure bearing portion 18 can support two thrust forces directed in the opposite directions along the rotation axis L.
[0116] そして、回転体 17は、この 2つのスラスト力によって、浮上する力と押し付けられる力 とを同時に受けながら回転する。また、回転体 17は、ロータ電極部 25とステータ電極 部 26との間に働く静電力 Fの影響も同時に受けるので、該静電力 Fによってステータ 板 16側に引っ張られる。  [0116] Then, the rotating body 17 rotates while receiving both the rising force and the pressing force by the two thrust forces. Further, since the rotating body 17 is also simultaneously affected by the electrostatic force F acting between the rotor electrode portion 25 and the stator electrode portion 26, the rotating body 17 is pulled to the stator plate 16 side by the electrostatic force F.
[0117] つまり、回転体 17及びロータ板 19は、この 3つの力のバランスによってスラスト方向 に対してより安定した状態で回転する。特に、静電力 Fだけでなぐスラスト力をも利 用して回転体 17及びロータ板 19を押し付けることができるので、より回転が安定する 。その結果、回転時のさらなる低振動化及び低損音化を図ることができると共に、流 体動圧軸受部 18をより安定して作動させることができる。  That is, the rotating body 17 and the rotor plate 19 rotate in a more stable state with respect to the thrust direction by the balance of these three forces. In particular, since the rotating body 17 and the rotor plate 19 can be pressed using the thrust force generated only by the electrostatic force F, the rotation is further stabilized. As a result, it is possible to further reduce vibration and sound loss during rotation, and to operate the fluid dynamic pressure bearing portion 18 more stably.
[0118] また、記録再生ヘッドの一例として、磁気ヘッドを例に挙げて説明した力 磁気へッ ドに限られるものではなぐ記録再生を行うヘッドであれば、その方法に限定されるも のではない。例えば、近接場光を利用して記録再生を行う近接場光ヘッドを、記録再 生ヘッドとしても構わない。 [0118] As an example of the recording / reproducing head, the magnetic head described as an example of a magnetic head is used. The head is not limited to this method, as long as it is a head that performs recording and reproduction. For example, a near-field optical head that performs recording / reproduction using near-field light may be used as the recording / reproducing head.
[0119] なお、上述したステータ電極部 26のそれぞれは、所定角度 θ 1よりも狭い角度毎に 配置されている力 これに限定されないのは勿論のことである。図 16に示すように、ス テータ電極部 26のそれぞれは、所定角度 θ 1よりも広い所定角度 Θ 4毎に配置され ていてもよい。  [0119] It should be noted that each of the stator electrode portions 26 described above is of course arranged at an angle narrower than the predetermined angle θ1, and is not limited to this. As shown in FIG. 16, each of the state electrode portions 26 may be arranged at a predetermined angle Θ4 wider than the predetermined angle θ1.
[0120] このように、ステータ電極部 26の間隔力 ロータ電極部 25の間隔よりも広い場合で あっても、ロータ電極部 25がステータ電極部 26の静電力 Fによって引っ張られて回 転する。ステータ電極部 26への電圧の印可を切り替えることにより、回転体 17の回 転が持続されることとなる。  Thus, even when the spacing force of the stator electrode portion 26 is wider than the spacing of the rotor electrode portion 25, the rotor electrode portion 25 is pulled and rotated by the electrostatic force F of the stator electrode portion 26. By switching the voltage application to the stator electrode portion 26, the rotation of the rotating body 17 is maintained.
[0121] 力かる特徴によれば、ステータ電極部 26のそれぞれが所定角度 Θ 4毎に配置され ることにより、図 7よりもステータ電極部 26の数を減らすことができ、スピンドルモータ 4 0のコストを低減させることができる。  [0121] According to the powerful feature, the number of stator electrode portions 26 can be reduced more than that in FIG. 7 by arranging each of the stator electrode portions 26 for each predetermined angle Θ4. Cost can be reduced.
産業上の利用の可能性  Industrial applicability
[0122] 本発明に係るスピンドルモータによれば、接触による損傷や摩耗を防止しながら、口 一タ板を介して記録媒体を連続的且つ滑らかに回転させることができ、低振動化、低 騒音化及び耐久性を向上して、信頼性を向上することができる。 [0122] According to the spindle motor of the present invention, it is possible to rotate the recording medium continuously and smoothly through the aperture plate while preventing damage and wear due to contact, thereby reducing vibration and noise. And the durability can be improved and the reliability can be improved.
[0123] また、本発明に係る情報記録再生装置によれば、記録媒体を連続的且つ滑らかに 回転させるスピンドルモータを備えて 、るので、情報の記録再生を正確に行うことが でき、高品質ィ匕を図ることができる。 [0123] Also, according to the information recording / reproducing apparatus of the present invention, since the spindle motor for continuously and smoothly rotating the recording medium is provided, information can be recorded and reproduced accurately, and high quality匕 匕 can be planned.

Claims

請求の範囲 The scope of the claims
[1] 各種の情報を記録可能な円板状の記録媒体を、回転軸回りに回転駆動するスピン ドルモータであって、  [1] A spindle motor that rotates a disk-shaped recording medium capable of recording various kinds of information around a rotation axis,
前記回転軸に沿って配されたシャフトと、  A shaft disposed along the rotation axis;
該シャフトの基端側を支持すると共に、前記回転軸に垂直な面内に沿って配された ステータ板と、  A stator plate that supports a base end side of the shaft and is disposed along a plane perpendicular to the rotation axis;
前記シャフトに対して一定の隙間を空けた状態で挿着され、前記回転軸回りに回 転可能であると共に、前記記録媒体を保持する保持部を外周面に有する回転体と、 前記隙間に供給された導電性の流体を有し、前記回転体が回転する際のスラスト 方向の力及びラジアル方向の力を支持する流体動圧軸受部と、  A rotating body that is inserted with a certain clearance from the shaft and can be rotated about the rotation axis, and has a holding portion for holding the recording medium on an outer peripheral surface, and is supplied to the clearance A fluid dynamic pressure bearing portion that has a conductive fluid and supports a thrust force and a radial force when the rotating body rotates;
前記ステータ板に対向する対向面を有し、前記回転体の基端側に固定されて共に 回転するロータ板と、  A rotor plate having a facing surface facing the stator plate, fixed to the base end side of the rotating body, and rotating together;
該ロータ板の対向面に設けられ、前記回転軸を中心とする円周方向に所定角度毎 に複数配されたロータ電極部と、  A plurality of rotor electrode portions that are provided on opposite surfaces of the rotor plate and arranged at predetermined angles in a circumferential direction around the rotation axis;
前記ステータ板の表面に設けられ、前記回転軸を中心とする円周方向に複数配さ れたステータ電極部と、  A plurality of stator electrode portions provided on a surface of the stator plate and arranged in a circumferential direction around the rotation axis;
該複数のステータ電極部のうち、選択されたステータ電極部に対して所定の時間だ け駆動電圧を印カ卩して、静電力により前記ロータ板を一定方向に回転させる電圧印 加手段とを備え、  Voltage applying means for applying a driving voltage to a selected stator electrode portion of the plurality of stator electrode portions for a predetermined time and rotating the rotor plate in a certain direction by electrostatic force; Prepared,
前記複数のロータ電極部は、少なくとも前記ロータ板及び前記流体を介して接地さ れて 、ることを特徴とするスピンドルモータ。  The spindle motor, wherein the plurality of rotor electrode portions are grounded via at least the rotor plate and the fluid.
[2] 請求項 1に記載のスピンドルモータにぉ ヽて、  [2] In the spindle motor according to claim 1,
前記ステータ電極部のそれぞれは、前記所定角度よりも狭い角度毎に配されたこと を特徴とするスピンドルモータ。  Each of the stator electrode portions is arranged at an angle narrower than the predetermined angle.
[3] 請求項 1及び 2のいずれ力 1項に記載のスピンドルモータにおいて、 [3] The spindle motor as set forth in any one of claims 1 and 2, wherein
前記複数のステータ電極部は、前記ロータ電極部の 1つと前記ステータ電極部の 1 つとが完全に対向した位置関係になった時に、少なくとも隣接するロータ電極部の前 記一定方向側近傍に、他のステータ電極部が位置するように設けられていることを特 徴とするスピンドルモータ。 When the plurality of stator electrode portions are in a positional relationship in which one of the rotor electrode portions and one of the stator electrode portions are completely opposed to each other, at least the adjacent rotor electrode portions are located in the vicinity of the fixed direction side. The stator electrode part of the Spindle motor.
[4] 請求項 1に記載のスピンドルモータにぉ ヽて、  [4] In the spindle motor according to claim 1,
前記複数のステータ電極部は、それぞれ周方向に向力う幅が前記複数のロータ電 極部のそれぞれの幅よりも狭く形成されていると共に、それぞれが近接した状態で隣 り合うように配置され、  Each of the plurality of stator electrode portions is formed so that a width directed in the circumferential direction is narrower than a width of each of the plurality of rotor electrode portions, and is arranged adjacent to each other in a close state. ,
前記電圧印加手段は、前記複数のステータ電極のうち、前記複数のロータ電極部 の略中心から、少なくとも該ロータ電極部の幅の 1Z2分だけ前記一定方向に向かつ た範囲内に位置するステータ電極部に対して、前記駆動電圧を印加することを特徴 とするスピンドルモータ。  The voltage applying means is a stator electrode located within a range of the plurality of stator electrodes that is oriented in the constant direction by at least 1Z2 of the width of the rotor electrode portion from substantially the center of the plurality of rotor electrode portions. A spindle motor, wherein the drive voltage is applied to the unit.
[5] 請求項 1に記載のスピンドルモータにぉ ヽて、 [5] In the spindle motor according to claim 1,
前記ロータ板の対向面又は前記ステータ板の表面の少なくともいずれか一方には 、前記ロータ電極部又は前記ステータ電極部を覆うように保護膜が設けられて ヽるこ とを特徴とするスピンドルモータ。  A spindle motor characterized in that a protective film is provided on at least one of the opposing surface of the rotor plate and the surface of the stator plate so as to cover the rotor electrode portion or the stator electrode portion.
[6] 請求項 5に記載のスピンドルモータにお ヽて、 [6] In the spindle motor according to claim 5,
前記保護膜上には、潤滑膜が塗布されて ヽることを特徴とするスピンドルモータ。  A spindle motor, wherein a lubricating film is applied on the protective film.
[7] 請求項 1に記載のスピンドルモータにぉ ヽて、 [7] In the spindle motor according to claim 1,
前記ロータ板の対向面又は前記ステータ板の表面の少なくともいずれか一方には 、前記ロータ電極部又は前記ステータ電極部を覆うように、固体潤滑膜が設けられて V、ることを特徴とするスピンドルモータ。  At least one of the opposing surface of the rotor plate and the surface of the stator plate is provided with a solid lubricating film so as to cover the rotor electrode portion or the stator electrode portion. motor.
[8] 請求項 1に記載のスピンドルモータにぉ ヽて、 [8] In the spindle motor according to claim 1,
前記シャフトと前記回転体との間には、前記ロータ板と前記ステータ板との間を少な くとも規定値だけ離間させる位置決め部が設けられていることを特徴とするスピンドル モータ。  A spindle motor characterized in that a positioning portion for separating the rotor plate and the stator plate by at least a specified value is provided between the shaft and the rotating body.
[9] 請求項 1に記載のスピンドルモータにぉ ヽて、  [9] In the spindle motor according to claim 1,
前記シャフトは、円柱状に形成され、  The shaft is formed in a columnar shape,
前記流体動圧軸受部は、前記回転体に対向するシャフトの上面又は前記ロータ板 に対向する回転体の下面の少なくともいずれか一方に形成されて前記スラスト方向 の力を支持するスラスト用動圧溝と、シャフトの外周面に形成されて前記ラジアル方 向の力を支持するラジアル用動圧溝とを備えていることを特徴とするスピンドルモー タ。 The fluid dynamic pressure bearing portion is formed on at least one of an upper surface of the shaft facing the rotating body or a lower surface of the rotating body facing the rotor plate, and supports a thrust dynamic pressure groove. And the radial direction formed on the outer peripheral surface of the shaft. A spindle motor comprising a radial dynamic pressure groove for supporting a direction force.
[10] 請求項 9に記載のスピンドルモータにおいて、  [10] The spindle motor according to claim 9,
前記シャフトの外周面には、所定の厚さだけ半径方向外方に延びて拡径した鍔状 のフランジ部が形成され、  On the outer peripheral surface of the shaft, a flange-like flange portion extending radially outward by a predetermined thickness is formed,
前記流体動圧軸受部は、前記フランジ部の下面に形成されて前記スラスト方向の 力を支持する第 2のスラスト用動圧溝を備えていることを特徴とするスピンドルモータ  The fluid dynamic pressure bearing portion includes a second thrust dynamic pressure groove formed on a lower surface of the flange portion and supporting the thrust force.
[11] 請求項 1、 2、 5〜 10のいずれ力 1項に記載のスピンドルモータと、 [11] The spindle motor according to any one of claims 1, 2, and 5 to 10, and
前記記録媒体に情報を記録再生する記録再生ヘッドと、  A recording / reproducing head for recording / reproducing information on the recording medium;
該記録再生ヘッドを、前記記録媒体の表面上から浮上させた状態で支持するサス ペンションと、  A suspension for supporting the recording / reproducing head in a state of floating from the surface of the recording medium;
該サスペンションの基端側を支持すると共に、該サスペンションを前記記録媒体の 表面に平行な方向に向けて移動させるァクチユエータと、  An actuator for supporting the base end side of the suspension and moving the suspension in a direction parallel to the surface of the recording medium;
前記記録再生ヘッドの作動を制御して、記録再生を行わせる制御部とを備えて 、る ことを特徴とする情報記録再生装置。  An information recording / reproducing apparatus comprising: a control unit that controls the operation of the recording / reproducing head to perform recording / reproducing.
[12] 請求項 3に記載のスピンドルモータと、 [12] The spindle motor according to claim 3,
前記記録媒体に情報を記録再生する記録再生ヘッドと、  A recording / reproducing head for recording / reproducing information on the recording medium;
該記録再生ヘッドを、前記記録媒体の表面上から浮上させた状態で支持するサス ペンションと、  A suspension for supporting the recording / reproducing head in a state of floating from the surface of the recording medium;
該サスペンションの基端側を支持すると共に、該サスペンションを前記記録媒体の 表面に平行な方向に向けて移動させるァクチユエータと、  An actuator for supporting the base end side of the suspension and moving the suspension in a direction parallel to the surface of the recording medium;
前記記録再生ヘッドの作動を制御して、記録再生を行わせる制御部とを備えて 、る ことを特徴とする情報記録再生装置。  An information recording / reproducing apparatus comprising: a control unit that controls the operation of the recording / reproducing head to perform recording / reproducing.
PCT/JP2006/324147 2006-02-13 2006-12-04 Spindle motor and information recording/reproducing device WO2007094112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008500404A JPWO2007094112A1 (en) 2006-02-13 2006-12-04 Spindle motor and information recording / reproducing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006035056 2006-02-13
JP2006-035056 2006-02-13
JP2006-208278 2006-07-31
JP2006208278 2006-07-31

Publications (1)

Publication Number Publication Date
WO2007094112A1 true WO2007094112A1 (en) 2007-08-23

Family

ID=38371300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324147 WO2007094112A1 (en) 2006-02-13 2006-12-04 Spindle motor and information recording/reproducing device

Country Status (2)

Country Link
JP (1) JPWO2007094112A1 (en)
WO (1) WO2007094112A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244790A (en) * 1991-01-30 1992-09-01 Sanyo Electric Co Ltd Electrostatic micromotor
US20020163281A1 (en) * 2001-05-04 2002-11-07 Menachem Rafaelof Thin film motors
JP2002372039A (en) * 2001-06-12 2002-12-26 Daido Steel Co Ltd Hydrodynamic bearing device and spindle motor
JP2005287094A (en) * 2004-03-26 2005-10-13 Olympus Corp Electrostatic actuator and camera

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824122A (en) * 1987-03-02 1989-04-25 Ferrofluidics Corporation Compact magnetic fluid low pressure seal
JPH04105570A (en) * 1990-08-23 1992-04-07 Omron Corp Harmonic drive type electrostatic motor
JP3471380B2 (en) * 1992-12-28 2003-12-02 松下電器産業株式会社 Electrostatic motor
JP3631988B2 (en) * 2001-07-24 2005-03-23 義和 市山 Motor with a single conical hydrodynamic bearing balanced with shaft end magnetic attraction
JPWO2004027761A1 (en) * 2002-09-20 2006-01-19 アジレント・テクノロジー株式会社 Spin stand and head / disk tester with hydrodynamic bearing motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244790A (en) * 1991-01-30 1992-09-01 Sanyo Electric Co Ltd Electrostatic micromotor
US20020163281A1 (en) * 2001-05-04 2002-11-07 Menachem Rafaelof Thin film motors
JP2002372039A (en) * 2001-06-12 2002-12-26 Daido Steel Co Ltd Hydrodynamic bearing device and spindle motor
JP2005287094A (en) * 2004-03-26 2005-10-13 Olympus Corp Electrostatic actuator and camera

Also Published As

Publication number Publication date
JPWO2007094112A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
US9366289B2 (en) Folded fluid channel for a fluid dynamic bearing motor
US7133250B2 (en) Inboard thrust surface fluid recirculation pump
JP2005192313A (en) Data storage device
KR101975229B1 (en) Fluid bearing motor
US8467146B2 (en) Apparatus for clamping disk and motor assembly having the same
US5543984A (en) Disk drive with fluid bearing, bearing plate and disk-moving mechanism
US6921993B2 (en) Geometrically aligning a stator and a base plate for a spindle motor
JP2005531276A (en) Rotor limiter for hydrodynamic bearing motor
US6931652B2 (en) Spindle mortor for optical disk drive having a stator with upper tracks at different heights
JP2005188644A (en) Spindle motor, and disk unit provided therewith
WO2007094112A1 (en) Spindle motor and information recording/reproducing device
WO2007094113A1 (en) Spindle motor and information recording/reproducing device
JP3862144B2 (en) Disk drive motor
KR100474139B1 (en) Spindle motor for optical disk driver
JPH10208374A (en) Disk device
JP3028441B2 (en) Disk drive for recording
US9368141B2 (en) Plastic critical tolerance fit component
JP2004248344A (en) Motor and disk drive
JP2016217477A (en) Rotary apparatus
JP3880876B2 (en) Information writing device
JPH11110896A (en) Magnetic disk device
JP3469601B2 (en) motor
JP2004139689A (en) Motor, and information recording and reproducing device having motor
JPH11203776A (en) Turntable device for disk player
JP2002367316A (en) Disk type information recording medium, and information recording/reproducing device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833917

Country of ref document: EP

Kind code of ref document: A1