WO2007094113A1 - Spindle motor and information recording/reproducing device - Google Patents

Spindle motor and information recording/reproducing device Download PDF

Info

Publication number
WO2007094113A1
WO2007094113A1 PCT/JP2006/324150 JP2006324150W WO2007094113A1 WO 2007094113 A1 WO2007094113 A1 WO 2007094113A1 JP 2006324150 W JP2006324150 W JP 2006324150W WO 2007094113 A1 WO2007094113 A1 WO 2007094113A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
spindle motor
plate
recording
Prior art date
Application number
PCT/JP2006/324150
Other languages
French (fr)
Japanese (ja)
Inventor
Masakazu Hirata
Manabu Oumi
Norio Chiba
Kunio Nakajima
Ryuji Iijima
Toshifumi Ohkubo
Original Assignee
Seiko Instruments Inc.
Toyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc., Toyo University filed Critical Seiko Instruments Inc.
Priority to JP2008500405A priority Critical patent/JPWO2007094113A1/en
Publication of WO2007094113A1 publication Critical patent/WO2007094113A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/2009Turntables, hubs and motors for disk drives; Mounting of motors in the drive
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/004Electrostatic motors in which a body is moved along a path due to interaction with an electric field travelling along the path

Definitions

  • the present invention relates to a spindle motor that rotationally drives a recording medium such as a hard disk incorporated in various electronic devices, and an information recording / reproducing apparatus having the spindle motor.
  • a spindle motor having a hydrodynamic bearing device with a large load capacity is known (see, for example, Patent Document 1).
  • This spindle motor is composed of a shaft having a collar, a sleeve that slides along the outer peripheral surface of the shaft and the lower surface of the collar, and an upper thrust that slides along the upper surface of the collar.
  • a bearing device is provided.
  • a first dynamic pressure generating groove is provided on each of the outer peripheral surface of the shaft and the upper and lower surfaces of the collar portion.
  • second dynamic pressure generating grooves are provided on the lower surface of the upper thrust, the inner peripheral surface and the upper end surface of the sleeve, respectively.
  • this fluid dynamic pressure bearing device has both an outer peripheral surface of a shaft and an inner peripheral surface of a sleeve.
  • the first dynamic pressure generating groove and the second dynamic pressure generating groove are provided, the pressure generated in the bearing gap increases. Therefore, the load capacity can be increased, and the spindle motor can be rotated at a high speed and with high accuracy.
  • this fluid dynamic pressure bearing device has to have a shaft with a certain height in order to ensure the rigidity of the bearing. For this reason, it has been difficult to reduce the thickness of the fluid dynamic bearing device. Therefore, it has been difficult to reduce the thickness of the spindle motor itself.
  • This gas dynamic pressure bearing motor has a conical shaft, a sleeve formed of a magnetic material along the shape of the shaft, a drive mechanism such as a magnet and a coil that rotates the sleeve, and a sleeve that is magnetically arranged on the shaft side. It has a permanent magnet that pulls with attractive force.
  • the sleeve since the sleeve has a conical shape, the height can be kept low, and the thickness can be reduced as compared with the spindle motor.
  • Patent Document 1 JP 2002-372039 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-35311
  • the device described in Patent Document 2 described above has a force that can be reduced in thickness by a conical sleeve, and a drive mechanism such as a permanent magnet or a coil that rotates the sleeve. Since it is an essential component, it was not possible to make it thinner.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to enable a recording medium to be rotated stably and with low vibration, and to achieve a further reduction in thickness as compared with conventional ones. It is an object of the present invention to provide a spindle motor and an information recording / reproducing apparatus having the spindle motor.
  • the present invention provides the following means in order to solve the above problems.
  • the spindle motor of the present invention is a spindle motor that rotates a disk-shaped recording medium capable of recording various types of information about a rotation axis, and is a shaft arranged along the rotation axis. And a stator plate arranged along a plane perpendicular to the rotation axis and supporting a base end side of the shaft, and inserted with a certain clearance from the shaft, When the rotating body rotates, the rotating body has a rotating body that is rotatable around the rotation axis and has a holding portion for holding the recording medium on an outer peripheral surface, and a conductive fluid supplied to the gap.
  • a fluid dynamic pressure bearing portion that supports at least a radial force of the rotor, a rotor plate that has a facing surface facing the stator plate, is fixed to the base end side of the rotating body, and rotates together with the rotor plate,
  • a plurality of rotor electrode portions that are provided on opposite surfaces and are arranged at predetermined angles in the circumferential direction around the rotation axis, and a circumferential direction that is provided on the surface of the stator plate and that is centered on the rotation axis
  • a plurality of stator electrode portions arranged at an angle narrower than the predetermined angle, and a driving voltage applied to the selected stator electrode portion of the plurality of stator electrode portions for a predetermined time!] ,
  • the rotor plate in a certain direction by electrostatic force
  • a voltage applying means for rotating and a dynamic pressure groove provided on an opposing surface of the rotor plate and generating pressure in a direction in which the rotor plate is separated from the stator plate as the rotor
  • a rotating body is inserted and attached to a shaft whose base end side is supported by a stator plate with a certain gap therebetween. It can be rotated around its axis.
  • a conductive fluid such as oil is supplied to the gap between the shaft and the rotating body.
  • the face plate fixed to the base end side of the rotating body is in a state where the facing surface faces the surface of the stator plate.
  • the rotor electrode portion and the stator electrode portion are similarly opposed to each other.
  • the opposing surface of the rotor plate is provided at predetermined angles toward the circumferential direction around the rotation axis.
  • a plurality of rotor electrode portions are provided (for example, every 30 degrees), and dynamic pressure grooves are provided separately from the rotor electrode portions.
  • a plurality of stator electrode portions are provided on the surface of the stator plate at an angle narrower than the predetermined angle (for example, every 20 degrees) in a circumferential direction around the rotation axis. Due to the difference in the positional relationship between these two electrode portions, the stator electrode portion is always located between the adjacent rotor electrode portions.
  • the driving voltage is applied to the selected stator electrode portion among the plurality of stator electrode portions for a predetermined time by the voltage applying means.
  • the drive voltage is applied to the stator electrode portion located on the rotation direction (constant direction) side of the rotor electrode portion.
  • a positive voltage and a negative voltage were applied to the applied stator electrode portion and the rotor electrode portion, respectively. become.
  • electrostatic forces electrostatic attractive force
  • the voltage application means stops applying to the first stator electrode portion and at the same time starts moving the rotor electrode portion.
  • a drive voltage is applied for a predetermined time to the next stator electrode portion positioned on the rotation direction (constant direction) side.
  • the rotor plate and the rotating body can be rotated around the rotation axis while utilizing the electrostatic force. Further, since the recording medium is held on the rotating body via the holding unit, the recording medium can be rotated.
  • the rotating body and the rotor plate can smoothly rotate about the rotation axis.
  • the fluid dynamic bearing portion is a bearing that uses a fluid such as oil, unlike a mechanical bearing such as a ball bearing.
  • the dynamic pressure groove floats the rotor plate using gas. Therefore, both the rotating body and the rotor plate can be smoothly rotated in a state where vibration is suppressed, and generation of vibration and noise can be suppressed.
  • the spindle motor according to the present invention includes the dynamic pressure grooves, the rotor electrode portion, and the stator electrode portion, a thrust force can be applied over the entire area of the rotor plate, and a static force can be applied. A tensile force due to electric power can be applied. Therefore, the rotor plate can be stably floated and rotated around the rotation axis, and rotational shake can be suppressed as much as possible.
  • the thrust force and the tensile force can be applied even in the vicinity of the outer edge of the rotor plate at a distance from the rotary shaft, the above-described effects are remarkable.
  • the rotating body can be similarly rotated with rotational vibration suppressed as much as possible. Therefore, it is difficult to generate a radial force. Therefore, even if the length of the shaft is reduced as much as possible, stable rotation can be performed without affecting the rotation of the rotating body and the rotor plate. Therefore, the height of the shaft can be suppressed as much as possible, and the thickness can be reduced.
  • the recording medium can be rotated stably and with low vibration, and the thickness can be further reduced as compared with the conventional one.
  • the spindle motor of the present invention is the spindle motor of the present invention, wherein a protective film is provided on the opposing surface of the rotor plate so as to cover the rotor electrode portion, and the dynamic pressure groove It is provided on the protective film.
  • the protective film is formed so as to cover the rotor electrode portion, even if an external force is applied to the rotor plate for some reason during rotation, the protective film is interposed. Therefore, there is no direct contact between the rotor electrode portion and the stator electrode portion. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, the quality can be improved and the durability can be increased. Since the dynamic pressure groove is provided on the protective film, the floating of the rotor plate is not affected at all.
  • the spindle motor of the present invention is the spindle motor of the present invention described above, wherein the opposing surface of the rotor plate and the surface of the stator plate are covered with the rotor electrode portion and the stator electrode portion.
  • a protective film is provided, and the dynamic pressure groove is provided on the protective film.
  • the protective film is formed so as to cover the rotor electrode portion and the stator electrode portion, even if an external force is applied to the rotor plate for some reason during the rotation.
  • the rotor electrode portion and the stator electrode portion are not in direct contact with each other. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be enhanced. Since the dynamic pressure groove is provided on the protective film, there is no influence on the floating of the rotor plate.
  • the spindle motor of the present invention is characterized in that, in the spindle motor of the present invention, a protective film is provided on the surface of the stator plate so as to cover the stator electrode portion. Is.
  • the protective film is formed so as to cover the stator electrode portion, even if an external force is applied to the rotor plate for some reason during rotation, the protective film is interposed. Therefore, there is no direct contact between the rotor electrode portion and the stator electrode portion. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be enhanced.
  • the plurality of stator electrode portions are configured such that one of the rotor electrode portions and one of the stator electrode portions are completely.
  • another stator electrode portion is provided so as to be positioned at least in the vicinity of the fixed direction side of the adjacent rotor electrode portion.
  • the spindle motor when one of the rotor electrode portions and one of the stator electrode portions are in a completely opposed positional relationship, at least the adjacent rotor electrode portion is in the vicinity of the fixed direction side.
  • the stator electrode portion is always located. That is, the rotor When the electrode part is moved toward the other stator electrode part by electrostatic force, both electrode parts are already approaching and being in a state of being touched.
  • the magnitude of the electrostatic force is inversely proportional to the distance between the two electrode portions, a larger electrostatic force can be obtained. Therefore, the rotor electrode portion can be moved quickly toward the other stator electrode portion at a higher speed, and the rotor plate can be easily floated by concentrating the pressure in the dynamic pressure groove. Moreover, since a large electrostatic force can be obtained, the rotor plate can be easily pulled toward the stator plate. Therefore, the rotor plate can be rotated with a more stable balance. As a result, the rotation of the recording medium becomes more stable.
  • the spindle motor of the present invention is the spindle motor according to any one of the above-described present inventions, wherein the plurality of stator electrode portions each have a width that faces in the circumferential direction. Are arranged so as to be adjacent to each other in close proximity to each other, and the voltage applying means includes substantially the center of the plurality of rotor electrode portions of the plurality of stator electrodes. From the above, the drive voltage is applied to the stator electrode positioned within a range directed in the constant direction by at least 1Z2 of the width of the rotor electrode portion.
  • the width force in the circumferential direction of each stator electrode portion is formed narrower than the width in the circumferential direction of the rotor electrode portion.
  • it is formed with a width of about 1Z3 than the width of the rotor electrode portion.
  • the stator electrodes having a small width are arranged adjacent to each other in close proximity.
  • a plurality of status electrode portions are arranged in the circumferential direction around the rotation axis, for example, every 3 to 4 degrees.
  • the voltage applying means is within a range of the plurality of stator electrodes that is oriented in a fixed direction (rotational direction) at least by 1Z2 of the width of the rotor electrode portion from substantially the center of the rotor electrode portion.
  • a drive voltage is applied to the positioned stator electrode. That is, the drive voltage is applied only in the vicinity of the rotor electrode portion and concentrated only on the stator electrode portion that contributes to the movement of the rotor electrode portion.
  • the magnitude of the electrostatic force is inversely proportional to the distance between the two electrode portions, a larger electrostatic force can be obtained.
  • the rotor electrode portion can be quickly moved at a higher speed, and the rotor plate can be easily floated by concentrating the pressure in the dynamic pressure groove.
  • the rotor plate is easily pulled toward the stator plate. Therefore, the rotor plate can be rotated with a more stable balance. As a result, the rotation of the recording medium becomes more stable.
  • the voltage application means appropriately changes the application to the stator electrode portion as the rotor electrode portion moves so as to maintain the positional relationship described above.
  • the width of the stator electrode portion is made as small as possible and the number of stator electrode portions is increased as much as possible, the fluctuation range of the electrostatic force can be reduced. Therefore, the above-described effect can be further enhanced.
  • the shaft in any of the spindle motors of the present invention, is formed in a columnar shape and extends radially outward by a predetermined thickness to expand the diameter.
  • a thrust dynamic pressure groove is formed on the lower surface of the flange portion to support the thrust force in the thrust direction! / It is characterized by scolding.
  • fluid flows along the thrust dynamic pressure groove formed on the lower surface of the flange portion as the rotating body rotates, and the pressure increases. Then, the rotating body receives a pressure generated by the thrust dynamic pressure groove and receives a force in a direction toward the stator plate, that is, a direction opposite to the flying direction, and is pressed.
  • the fluid dynamic pressure bearing portion can support a thrust force in addition to a radial force. Therefore, the rotating body is pulled to the stator plate side by the electrostatic force acting between the rotor electrode portion and the stator electrode portion and this thrust force during rotation, and the force that rises by the dynamic pressure grooves provided on the rotor plate. Receive. As a result, the rotating body rotates more stably in the thrust direction due to the balance of the three forces. Therefore, it is possible to further reduce vibration and noise during rotation, and to operate the fluid dynamic pressure bearing portion more stably.
  • the information recording / reproducing apparatus of the present invention includes the above-mentioned spindle motor of the present invention, a deviation spindle motor, a recording / reproducing head for recording / reproducing information on the recording medium, and the recording / reproducing head.
  • a control unit that controls the operation of the recording / reproducing head to perform recording / reproducing.
  • the suspension is moved by the actuator, and the recording / reproducing head is placed on the recording medium. Place it in the desired position. At this time, the suspension supports the recording / reproducing head in a state of being levitated by the surface force flying head technology of the recording medium. Thereafter, an instruction is issued by the control unit to operate the recording / reproducing head. As a result, it is possible to record and reproduce various information on the recording medium using the recording and reproducing head.
  • the recording medium can be rotated stably and with low vibration, and the spindle motor that realizes further thinning compared to the conventional one is provided, so that information can be recorded and reproduced accurately.
  • the thickness can be reduced. Therefore, high quality can be achieved.
  • FIG. 1 is a configuration diagram showing a first embodiment of an information recording / reproducing apparatus having a spindle motor according to the present invention.
  • FIG. 2 is a cross-sectional view of the spindle motor shown in FIG.
  • FIG. 3 is a view of the rotor plate constituting the spindle motor shown in FIG. 2 as viewed from the stator plate side.
  • FIG. 4 is a developed sectional view along the circumferential direction of a rotor plate and a stator plate constituting the spindle motor shown in FIG.
  • FIG. 5 is a view of a dynamic pressure groove constituting the spindle motor shown in FIG. 2 as viewed from the stator plate side.
  • FIG. 6 is a view of the stator plate constituting the spindle motor shown in FIG. 2 as viewed from the rotor plate side.
  • FIG. 7 A diagram for explaining the movement of the spindle motor shown in FIG.
  • FIG. 7 is a diagram showing a state in which a driving voltage is applied to the data electrode portion and the rotor electrode portion is moved by electrostatic force.
  • B is a diagram showing a state in which the rotor electrode portion is moving after the state shown in (a).
  • (C) is a diagram showing a state in which, after the state shown in (b), a driving voltage is applied to a different stator electrode part and the rotor electrode part is started to move again.
  • FIG. 8 is a diagram showing a spindle motor according to a second embodiment of the present invention, and is a developed sectional view along the circumferential direction of a rotor plate and a stator plate constituting the spindle motor.
  • FIG. 9 is a view of a stator plate constituting the spindle motor shown in FIG. 8 as viewed from the rotor plate side.
  • FIG. 10 is a view of the rotor plate constituting the spindle motor shown in FIG. 8 as viewed from the stator plate side.
  • FIG. 11 is a diagram for explaining the movement of the spindle motor shown in FIG. 8, where (a) shows a state in which a driving voltage is applied to the selected stator electrode portion and the rotor electrode portion is started to move by electrostatic force.
  • FIG. (B) is a diagram showing a state in which, after the state shown in (a), a driving voltage is applied to different stator electrode portions in accordance with the movement of the rotor electrode portion.
  • FIG. 12 is a view showing a modification example of the spindle motor, and is a cross-sectional development view along the circumferential direction of the rotor plate and the stator plate when a thin protective film is provided on the rotor plate side.
  • FIG. 13 is a view showing a modified example of the spindle motor, in which the opposite surface of the rotor plate is cut to form a dynamic pressure groove, and the entire remaining protruding portion is used as the rotor electrode portion in the circumferential direction.
  • FIG. 14 is a view showing a modified example of the spindle motor, in which the opposite surface of the rotor plate is cut to form a dynamic pressure groove, and a part of the remaining protruding portion is used as the rotor electrode portion in the circumferential direction.
  • FIG. 15 is a view showing a modification of the spindle motor, and is a cross-sectional view of the spindle motor including a shaft having a flange portion in which a dynamic pressure groove is formed on the lower surface.
  • FIG. 16 is a bottom view of the flange portion shown in FIG.
  • FIG. 17 is a developed sectional view along the circumferential direction of the rotor plate and the stator plate constituting the spindle motor shown in FIG. 2.
  • FIG. 4 shows a developed state of a cross section along the circumferential direction.
  • the information recording / reproducing apparatus 1 of the present embodiment includes various information on a spindle motor 2 and a magnetic disk D (hereinafter simply referred to as disk D) (disc-shaped recording medium).
  • a magnetic head (recording / reproducing head) 3 a suspension 4 for supporting the magnetic head in a state where it floats from the surface of the disk D, a base end side of the suspension 4, and the suspension Actuator 5 that scans 4 in the XY direction parallel to the surface of disk D, control unit 6 that controls the operation of magnetic head 3 to perform recording and reproduction, and control unit 6 and magnetic head 3 includes a cord portion 7 that connects to the housing 3, and a housing 8 that accommodates these components.
  • the sawing 8 is made of a metal material such as aluminum in a square shape when viewed from above, and has a recess 8a for accommodating each component inside. Further, a lid (not shown) is detachably fixed to the housing 8 so as to close the opening of the recess 8a.
  • the spindle motor 2 is attached to substantially the center of the recess 8a, and the disc D is detachably fixed by fitting a center hole into a hub 20 (to be described later) of the spindle motor 2.
  • the actuator motor 5 is attached to the corner of the recess 8a.
  • a carriage 10 is attached to the actuator motor 5 via a bearing 9, and a suspension 4 is attached to the tip of the carriage 10.
  • the carriage 10 and the suspension 4 are both movable in the XY directions by driving the actuator motor 5.
  • the carriage 10 and the suspension 4 are also configured to retract the force on the disk D by driving the actuator motor 5 when the rotation of the disk D is stopped.
  • the optical signal controller 7 is mounted in the recess 8 a so as to be adjacent to the actuator motor 5.
  • the magnetic head 3 has a coil unit (not shown).
  • the information is output as a magnetic signal and recorded on the disk D. Further, when performing reproduction, the magnetic signal output from the disk D is read by the coil unit and sent to the control unit 14. As a result, various kinds of information can be recorded and reproduced on the disc D.
  • the spindle motor 2 is a motor that drives the disk D to rotate around the rotation axis L.
  • the spindle 15 is disposed along the rotation axis L, and the shaft 15 While supporting the base end side, with a certain clearance from the shaft 15 and the stator plate 16 disposed along the plane perpendicular to the rotation axis L (horizontal plane along the XY direction) and the shaft 15
  • the rotating body 17 which is inserted and can be rotated around the rotation axis L and has a step portion (holding portion) 20a for holding the disk D on the outer peripheral surface, and conductive oil (fluid) supplied to the gap.
  • W has a fluid dynamic pressure bearing portion 18 that supports at least the radial force when the rotating body 17 rotates, and a facing surface 19a that faces the stator plate 16, and is located on the base end side of the rotating body 17. And a rotor plate 19 which is fixed and rotates together.
  • stator plate 16 also serves as the bottom plate of the housing 8 as shown in FIG.
  • present invention is not limited to this, and a stator plate may be attached on the bottom plate of the housing 8.
  • the shaft 15 is formed in a cylindrical shape, and is erected on the stator plate 16 at a substantially central position of the housing 8. Further, as shown in FIG. 2, a V-shaped dynamic pressure groove 15a is formed on the outer peripheral surface of the shaft 15 by joining the linear grooves at the junction 15b. At this time, the dynamic pressure groove 15a is formed with the V-shaped sideways so that when the rotating body 17 rotates, the confluence 15b is added later and rotated in such a manner as to be applied, The As a result, when the rotating body 17 rotates, the oil W flows in the direction opposite to the rotation direction along the dynamic pressure groove 15a. That is, the dynamic pressure groove 15a functions as a radial bearing portion that supports a radial force.
  • the dynamic pressure groove 15a and the oil W constitute the fluid dynamic pressure bearing portion 18 described above.
  • the rotating body 17 is composed of a hub 20 formed in a cup shape and a cylindrical sleeve 21 fitted and fixed in the hub 20. That is, the rotating body 17 is attached to the shaft 15 with a gap between the sleeve 21 and the shaft 15. And Sha Oil W is supplied between the foot 15 and the sleeve 21 and is full. Further, the step portion 20 a is formed on the outer peripheral surface of the hub 20. Thus, when the disk D is fitted in the hub 20, the disk D is held in contact with the stepped portion 20a.
  • the rotor plate 19 is formed in a disk shape having substantially the same size as the disk D, and is fixed in contact with the lower portion of the hub 20 and the outer peripheral surface of the sleeve 21.
  • the size of the rotor plate 19 is not limited to the case described above, and may be larger or smaller than the disk D.
  • a seal (not shown) is provided between the rotor plate 19 and the sleeve 21 so that the oil W supplied between the shaft 15 and the sleeve 21 does not flow into the rotor plate 19 side. Become! /
  • the opposing surface 19a of the rotor plate 19 has a predetermined angle ⁇ 1 in the circumferential direction centered on the rotation axis L, that is, plural at every 30 degrees.
  • An arranged fan-shaped rotor electrode portion 25 is provided.
  • a plurality of rotor electrode portions 25 are formed on the opposing surface 19a of the rotor plate 19 by adhesion, vapor deposition, or the like.
  • the plurality of rotor electrode portions 25 are grounded in advance via the rotor plate 19, the sleeve 21, the oil W, and the stator plate 16.
  • a protective film 22 is provided on the opposing surface 19 a of the rotor plate 19 so as to cover the plurality of rotor electrode portions 25.
  • a plurality of dynamic pressure grooves 23 are provided on the protective film 22 to generate pressure in a direction in which the rotor plate 19 is separated from the stator plate 16 as the rotor plate 19 rotates.
  • the dynamic pressure groove 23 is carved so as to bend toward the center from the outer edge. That is, the plurality of dynamic pressure grooves 23 have a windmill shape as a whole. As a result, when the rotor plate 19 rotates, the gas existing between the rotor plate 19 and the stator plate 16 flows along the dynamic pressure groove 23, and flows toward the center.
  • the stator plate 16 has the predetermined angle 0 toward the circumferential direction centered on the rotation axis L in a circular region facing the rotor plate 19.
  • An angle ⁇ 2 narrower than 1 (30 degrees) for example, a plurality of fan-shaped stator electrode portions 26 are provided every 20 degrees.
  • the circumferential direction of the rotor electrode portion 25 The stator electrode portion 26 is formed so that the width Wl of the stator and the width W2 of the stator electrode portion 26 are the same size.
  • the stator electrode portion 26 is always positioned between the adjacent rotor electrode portions 25. Furthermore, when one of the rotor electrode portions 25 and one of the stator electrode portions 26 are in a completely opposite positional relationship, at least near the fixed direction (rotation direction) side of the adjacent rotor electrode portion 25, the other The stator electrode part 26 is always positioned. That is, in the present embodiment, the interval (pitch) between the rotor electrode portions 25 is 1.5 times the interval (pitch) between the stator electrode portions 26.
  • the voltage application unit (voltage application means) 27 is electrically connected via a wiring.
  • the voltage application unit 27 applies a drive voltage for a predetermined time only to the selected stator electrode unit 26 among the plurality of stator electrode units 26. By repeatedly applying this voltage, The rotor plate 19 is rotated in a certain direction using electrostatic force. This will be described in detail later.
  • the voltage application unit 27 applies a drive voltage to the selected stator electrode unit 26 among the plurality of stator electrode units 26 for a predetermined time. Specifically, as shown in FIG. 7 (a), the drive voltage is applied to the stator electrode portion 26 (Sl, S4 position) located on the fixed direction (rotational direction) side of the rotor electrode portion 25. In FIG. 7, illustration of both protective films 22 and 24 is omitted.
  • the rotor electrode portion 25 is shown in FIG. Thus, it gradually moves toward the applied stator electrode part 26 (SI, S4 position). Then, as shown in FIG. 7 (c), the rotor electrode portion 25 moves to a position completely opposite to the applied stator electrode portion 26, and at the same time, the voltage applying portion 27 is applied to the stator electrode portion 26. While stopping the application, the drive voltage is applied to the next stator electrode portion 26 (S3 position) located on the fixed direction (rotational direction) side of the rotor electrode portion 25 that has started to move. As a result, the above-described operation is repeated, and the rotor electrode portion 25 moves again.
  • the rotor plate 19 and the rotating body 17 can be rotated about the rotation axis L in a certain direction while using the electrostatic force F. Further, since the disk 20 is held by the step portion 20a in the hub 20, the disk D can be rotated via the rotating body 17.
  • the oil W supplied to the gap between the shaft 15 and the sleeve 21 starts flowing in the direction opposite to the rotation direction along the dynamic pressure groove 15a.
  • the oil W flowing along the dynamic pressure groove 15a has the highest pressure at the junction 15b.
  • the sleeve 21 is supported at the radial kaka point and is rotated away from the shaft 15.
  • the fluid dynamic pressure bearing portion 18 supports the radial force generated during rotation.
  • the rotating body 17 and the rotor plate can smoothly rotate about the rotation axis L.
  • the fluid dynamic pressure bearing portion 18 is a bearing using oil W unlike a mechanical bearing such as a ball bearing.
  • the dynamic pressure groove 23 floats the rotor plate 19 using gas. Therefore, the rotating body 17 and The rotor plate 19 can be smoothly rotated with both vibrations suppressed, and the occurrence of vibration and sound loss can be suppressed.
  • the actuator 5 is operated to scan the suspension 4 in the XY directions via the carriage 10 as shown in FIG.
  • the magnetic head 3 can be positioned at a desired position on the disk D.
  • the magnetic head 3 is operated by the control unit 6.
  • the magnetic head 3 outputs the information to be recorded as a magnetic signal and performs recording on the disk D or reads and reproduces the magnetic signal output from the disk.
  • the magnetic head 3 can be used to record and reproduce various types of information on the disk D.
  • the spindle motor 2 of the present embodiment includes the dynamic pressure groove 23, the rotor electrode portion 25, and the stator electrode portion 26, so that a thrust force is applied over the entire area of the rotor plate 19.
  • a tensile force vertical component of electrostatic force F
  • the rotor plate 19 can be stably floated and rotated around the rotation axis L, and rotational shake can be suppressed as much as possible.
  • the thrust force and the tensile force can be applied even in the vicinity of the outer edge of the rotor plate 19 that is separated from the rotation axis L, the above-described effects are remarkable.
  • the rotating body 17 can be rotated with the rotational vibration suppressed as much as possible. Therefore, it is difficult for radial force to be generated. Therefore, even if the length of the shaft 15 is made as low as possible, stable rotation can be performed without affecting the rotation of the rotating body 17 and the rotor plate 19. Therefore, as shown in FIG. 2, the height of the shaft 15 can be suppressed as much as possible, and the thickness can be reduced.
  • the disk D can be rotated stably and with low vibration, and the thickness can be further reduced as compared with the conventional one.
  • the spindle motor 2 since the spindle motor 2 is provided, information can be recorded / reproduced accurately and the thickness can be reduced. Therefore, high quality can be achieved. Moreover, since it is also a spindle motor 2 with low vibration and low noise, this point force can also achieve high quality and improve product reliability.
  • the spindle motor 2 of the present embodiment can continuously and smoothly rotate the rotor electrode part 25 grounded in advance by applying a voltage to the selected stator electrode part 26 one after another. it can. Therefore, the disk D can be continuously and stably rotated at a uniform speed.
  • the spacing (pitch) between the rotor electrode portions 25 is 1.5 times the spacing (pitch) between the stator electrode portions 26 in this embodiment. Therefore, when one of the rotor electrode parts 25 (R2 position) and one of the stator electrode parts 26 (S2 position) are in a completely opposed position, at least the adjacent rotor electrode part 25 (R3 position) The other stator electrode part 26 (S4 position) is always located near the fixed direction side of. That is, when the mouth electrode portion 25 is moved toward the other stator electrode portion 26 by the electrostatic force F, both the electrode portions 25 and 26 are already close to each other. In particular, since the magnitude of the electrostatic force F is inversely proportional to the distance between the electrode portions 25 and 26, a larger electrostatic force can be obtained.
  • the rotor electrode portion 25 can be moved quickly at a higher speed toward the other stator electrode portion 26, and the rotor plate 19 can be easily floated by concentrating the pressure in the dynamic pressure groove 23. Can be raised.
  • the rotor plate 19 can be easily pulled toward the stator plate 16 side. Therefore, the rotor plate 19 can be rotated with a more stable balance. As a result, the rotation of the disk D becomes more stable.
  • the protective films 22 and 24 are formed so as to cover the rotor electrode portion 25 and the stator electrode portion 26, respectively, even if an external force is applied to the rotor plate 19 for some reason during rotation, the rotor is directly The electrode part 25 and the stator electrode part 26 do not come into contact with each other. Therefore, mechanical damage to both electrode portions 25 and 26 can be prevented, and damage due to discharge can be prevented. Therefore, quality can be further improved and durability can be improved. Can be increased.
  • FIG. 8 illustrates a state in which a cross section along the circumferential direction is developed.
  • the width W1 that faces the circumferential direction of the rotor electrode part 25 and the circumferential direction of the stator electrode part 26 are directed.
  • the width W2 is the same size
  • the stator electrode portion 31 is formed such that the circumferential width W3 is smaller than the width W1 of the rotor electrode portion 32.
  • it is arranged in a narrow state in the circumferential direction and densely arranged at a pitch.
  • the dynamic pressure groove 23 is provided on the protective film 22, whereas in the second embodiment, the rotor electrode portion 32 is adjacent to the opposing surface 19a of the rotor plate 19.
  • the dynamic pressure groove 23 is formed. Therefore, unlike the first embodiment in which the rotor electrode portion 32 and the stator electrode portion 31 of the second embodiment are formed in a fan shape, the rotor electrode portion 32 and the stator electrode portion 31 are each directed toward the center from the outer edge according to the shape of the dynamic pressure groove 23. It is formed so as to be curved, and is formed as a windmill as a whole.
  • the width W3 of each stator electrode portion 31 is formed to be about 1Z3 wider than the width W1 of the rotor electrode portion 32. ing.
  • the stator electrode portions 31 having a small width are arranged so as to be adjacent to each other in close proximity. That is, the plurality of stator electrode portions 31 are arranged in the circumferential direction around the rotation axis L, for example, at every angle ⁇ 3 of 3 to 4 degrees. As a result, no matter where the plurality of rotor electrode portions 32 are located, about three stator electrode portions 31 are necessarily located in a state of being opposed to each rotor electrode portion 32.
  • the rotor electrode portion 32 of the present embodiment is configured integrally with the rotor plate 19 as shown in FIGS. That is, the rotor plate 19 is formed of a material having conductivity, and the dynamic pressure groove 23 is formed by cutting a predetermined position of the facing surface 19a. As a result, it is possible to use the entire portion (projected portion) that is cut and V ⁇ as the rotor electrode portion 32 as it is. it can.
  • a protective film 33 is provided on the surface of the stator plate 16 of the present embodiment so as to cover the plurality of stator electrode portions 31.
  • the voltage application unit 27 includes a plurality of stator electrode units 31.
  • the stator electrode part 31 is located within a range (Al, A2, A3 area) from the approximate center of the rotor electrode part 32 toward the constant direction (rotation direction) by 1Z2 of the width of the rotor electrode part 32. A drive voltage is applied to.
  • the drive voltage is applied in a concentrated manner only to the stator electrode portion 31 that is close to the rotor electrode portion 32 and contributes to the movement of the rotor electrode portion 32.
  • the magnitude of the electrostatic force F is inversely proportional to the distance between the electrode portions 31 and 32, a larger electrostatic force F can be obtained. Therefore, the rotor electrode portion 32 can be quickly moved at a higher speed, and the rotor plate 19 can be easily floated by concentrating the pressure in the dynamic pressure groove 23. Further, since a large electrostatic force F can be obtained, the rotor plate 19 is easily pulled toward the stator plate 16 side. Therefore, the rotor plate 19 can be rotated with a more stable balance.
  • stator electrode portion 31 having a narrow circumferential width W3 is arranged in a close proximity, all the rotor electrode portions 32 (Rl, R2, and R3 positions) must be continuously moved at the same time. Can do. Therefore, the disk D can be rotated in a more stable state.
  • the voltage application unit 27 sequentially changes the application to the stator electrode unit 31 as the rotor electrode unit 32 moves so as to maintain the above-described positional relationship. Further, since the width W3 of the stator electrode portion 31 is made as narrow as possible and the number of the stator electrode portions 31 is increased, the fluctuation range of the electrostatic force F can be reduced. Therefore, the above-described effect can be further enhanced.
  • the protective film 33 is provided so as to cover the stator electrode portion 31, the rotor plate 19 and the stator plate 16 do not come into direct contact as in the first embodiment. Therefore, mechanical damage to both electrode portions 31 and 32 can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be further enhanced. It should be noted that the technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
  • the protective film 22 is formed thicker so that the bottom of the dynamic pressure groove 23 is positioned closer to the stator plate 16 than the surface of the rotor electrode 25.
  • the protective film 22 is provided at substantially the same height as the rotor electrode 25, and the dynamic pressure groove 23 is positioned so that the bottom of the groove 23 is located near the surface of the facing surface 19b. May be provided between the aperture electrode portions 25. Even in this case, the same effect as the first embodiment can be obtained. However, it is more preferable because the thickness of the protective film 22 can be made as thin as possible.
  • the rotor electrode portion 25 may be formed in the same shape as the dynamic pressure groove 23 as in the second embodiment.
  • the protective film 24 on the rotor plate 19 side is eliminated, and the dynamic pressure groove 23 is formed on the opposing surface 19a of the rotor plate 19 as in the second embodiment as shown in FIG. You may provide.
  • all of the protruding portions other than the dynamic pressure groove 23 may be the rotor electrode portion 25, and as shown in FIG. 14, a part of the protruding portion is the rotor electrode portion 25. You can use it.
  • the dynamic pressure groove is provided around the shaft, and the fluid dynamic pressure bearing portion is configured to support only the radial force.
  • the shaft is not limited to this.
  • a dynamic pressure groove may be provided on the upper surface of the sleeve or the lower surface of the sleeve to support the thrust force in addition to the radial force.
  • the flange portion 40 is formed on the shaft 15, and the dynamic pressure groove (thrust dynamic pressure groove) 40 a shown in FIG. 16 is formed on the lower surface of the flange portion 40.
  • the flange portion 40 extends from the outer peripheral surface of the shaft 15 to the outside in the radial direction by a predetermined thickness and is formed in a bowl shape by expanding the diameter.
  • a case where the flange portion 40 is formed on the upper surface of the shaft 15 is taken as an example.
  • the present invention is not limited to this case.
  • the flange portion 40 may be formed near the middle of the shaft 15.
  • FIG. 15 shows an example in which the dynamic pressure grooves 15a formed on the outer peripheral surface of the shaft 15 are formed in two upper and lower stages.
  • the present invention is not limited to this, and may be one stage, or divided into three or more stages. It may be formed. Further, the two dynamic pressure grooves 15a may be formed in a separated state.
  • a plurality of the dynamic pressure grooves 40a curved from the outer edge toward the rotation axis L are formed on the lower surface of the flange portion 40. That is, the plurality of dynamic pressure grooves 40a have a windmill shape as a whole. As a result, when the rotating body 17 rotates, the oil W flows toward the center along the dynamic pressure groove 40a. That is, the dynamic pressure groove 40a functions as a thrust bearing portion that supports a thrust force.
  • the oil W begins to flow along the dynamic pressure grooves 15a and 40a when the rotating body 17 starts to rotate.
  • the gas begins to flow along the dynamic pressure groove 23 and the pressure increases.
  • the oil W flowing along the dynamic pressure groove 15a has the highest pressure at the junction 15b. Therefore, the sleeve 21 constituting the rotating body 17 is in a state where the radial force is supported at two points, and is rotated away from the shaft 15. As a result, the rotator 17 can be stably rotated without any lateral shaking.
  • the rotor plate 19 floats away from the stator plate 16 due to the gas flowing along the dynamic pressure groove 23.
  • the pressure of the oil W flowing along the dynamic pressure groove 40a formed on the lower surface of the flange portion 40 increases on the side close to the rotation axis L.
  • the pressure generated in the dynamic pressure groove 4 Oa is generated on the lower surface side of the flange portion 40 formed on the fixed shaft 15. Therefore, the rotating body 17 receives the pressure and receives a force in the direction of the stator plate 16, that is, in the direction opposite to the direction of rising, and is pressed. That is, the fluid dynamic pressure bearing portion 18 in this case can support the thrust force.
  • the rotating body 17 rotates while simultaneously receiving the rising force and the pressing force. Further, since the rotating body 17 is also simultaneously affected by the electrostatic force F acting between the rotor electrode portion 25 and the stator electrode portion 26, the rotating body 17 is pulled toward the stator plate 16 by the electrostatic force F.
  • the rotating body 17 and the rotor plate 19 rotate in a more stable state with respect to the thrust direction by the balance of these three forces.
  • the rotating body 17 and the rotor plate 19 can be pressed using the thrust force generated only by the electrostatic force F, the rotation is further stabilized. As a result, it is possible to further reduce vibration and sound loss during rotation and The body dynamic pressure bearing portion 18 can be operated more stably.
  • the head is not limited to the magnetic head described by taking the magnetic head as an example. Absent.
  • a near-field optical head that performs recording / reproduction using near-field light may be used as the recording / reproducing head.
  • each of the stator electrode portions 26 described above is of course disposed at every angle narrower than the predetermined angle ⁇ 1, and is not limited to this. As shown in FIG. 17, each of the state electrode portions 26 may be arranged at every predetermined angle ⁇ 4 wider than the predetermined angle ⁇ 1.
  • the number of stator electrode portions 26 can be reduced as compared with that in FIG. 7 by arranging each of the stator electrode portions 26 for each predetermined angle ⁇ 4. Cost can be reduced.
  • the recording medium can be rotated stably and with low vibration, and the thickness can be further reduced as compared with the conventional one.
  • the information recording / reproducing apparatus of the present invention since the spindle motor is provided, the information recording / reproducing can be performed accurately and the thickness can be reduced. Therefore, high quality can be achieved.

Abstract

A spindle motor is provided with a shaft arranged along a rotating axis; a stator plate (16) for supporting the shaft; a rotating body rotatably inserted into the shaft; a rotor plate (19) which has an opposing plane (19a) opposing the stator plate and rotates with the rotating body; a plurality of rotor electrode sections (25) arranged on the opposing plane of the rotor plate at every prescribed angle (θ1); a plurality of stator electrode sections (26) arranged on the surface of the stator plate at every angle (θ2) which is narrower than a prescribed angle; a voltage applying means for rotating the rotor plate in a constant direction by a static force by applying a driving voltage to the selected stator electrode section; and a dynamic pressure groove (23) which is arranged on the opposing plane of the rotor plate and generates a pressure in a direction of separating the rotor plate from the stator plate. The rotor electrode sections are previously grounded.

Description

明 細 書  Specification
スピンドルモータ及び情報記録再生装置  Spindle motor and information recording / reproducing apparatus
技術分野  Technical field
[0001] 本発明は、各種電子機器に内蔵されるハードディスク等の記録媒体を回転駆動す るスピンドルモータ及びこれを有する情報記録再生装置に関するものである。  The present invention relates to a spindle motor that rotationally drives a recording medium such as a hard disk incorporated in various electronic devices, and an information recording / reproducing apparatus having the spindle motor.
背景技術  Background art
[0002] 各種の電子機器、例えば、ノート型パソコンや携帯型ビデオプレーヤ等に内蔵され て 、るハーディスク (記録媒体)を回転駆動するモータとしては、従来力 様々なもの が提供されている。  [0002] Conventionally, various motors have been provided as various types of motors for rotating a hard disk (recording medium) incorporated in various electronic devices such as a notebook personal computer and a portable video player.
[0003] 例えば、負荷容量の大きな動圧流体軸受装置を有するスピンドルモータが知られ ている(例えば、特許文献 1参照)。このスピンドルモータは、つば部を有する軸と、軸 の外周面及びつば部の下面に沿って摺動するスリーブと、つば部の上面に沿って摺 動する上部スラストとから構成される流体動圧軸受装置を備えている。そして、軸の 外周面、つば部の上面及び下面に、それぞれ第 1動圧発生溝が設けられている。ま た、上部スラストの下面、スリーブの内周面及び上端面に、それぞれ第 2動圧発生溝 が設けられている。  [0003] For example, a spindle motor having a hydrodynamic bearing device with a large load capacity is known (see, for example, Patent Document 1). This spindle motor is composed of a shaft having a collar, a sleeve that slides along the outer peripheral surface of the shaft and the lower surface of the collar, and an upper thrust that slides along the upper surface of the collar. A bearing device is provided. A first dynamic pressure generating groove is provided on each of the outer peripheral surface of the shaft and the upper and lower surfaces of the collar portion. In addition, second dynamic pressure generating grooves are provided on the lower surface of the upper thrust, the inner peripheral surface and the upper end surface of the sleeve, respectively.
[0004] 特に、この流体動圧軸受装置は、軸の外周面及びスリーブの内周面の双方に、そ れぞれ  [0004] In particular, this fluid dynamic pressure bearing device has both an outer peripheral surface of a shaft and an inner peripheral surface of a sleeve.
第 1動圧発生溝及び第 2動圧発生溝が設けられているので、軸受隙間に発生する圧 力が増大する。よって、負荷容量を増大することができ、スピンドルモータの高速回転 化及び高精度化を図って 、る。  Since the first dynamic pressure generating groove and the second dynamic pressure generating groove are provided, the pressure generated in the bearing gap increases. Therefore, the load capacity can be increased, and the spindle motor can be rotated at a high speed and with high accuracy.
[0005] し力しながらこの流体動圧軸受装置は、軸受の剛性を確保するため、軸の高さがあ る程度の高くする必要があった。そのため、流体動圧軸受装置の薄型化を図ることが 困難なものであった。そのため、スピンドルモータ自体を薄型化することも困難であつ た。 [0005] However, this fluid dynamic pressure bearing device has to have a shaft with a certain height in order to ensure the rigidity of the bearing. For this reason, it has been difficult to reduce the thickness of the fluid dynamic bearing device. Therefore, it has been difficult to reduce the thickness of the spindle motor itself.
[0006] 特に近年の電子機器の小型化に伴って、ディスク自体のサイズも小さくなりつつあ る。例えば、直径が linや 0. 85inサイズのディスクが開発されており、高性能デジタ ルカメラや小型携帯型音楽プレーヤ等に使用され始めている。また、電子機器及び ディスクの小型化に伴って、ディスクを駆動するモータに関しても、今後さらなる小型 ィ匕、薄型化が求められている。 [0006] In particular, with recent miniaturization of electronic devices, the size of the disk itself is also becoming smaller. For example, discs with a diameter of lin or 0.85in have been developed, and high performance digital It has begun to be used in video cameras and small portable music players. As electronic devices and disks become smaller, motors that drive disks will be required to be smaller and thinner in the future.
[0007] ところが、上述したスピンドルモータでは、このようなニーズに応えることが難しかつ た。そこで、より薄型化を図ったモータとして、気体動圧軸受モータが知られている( 例えば、特許文献 2参照)。  [0007] However, the spindle motor described above has been difficult to meet such needs. Therefore, a gas dynamic pressure bearing motor is known as a motor that is thinner (see, for example, Patent Document 2).
[0008] この気体動圧軸受モータは、円錐形状の軸、磁性体材料により軸の形状に沿って 形成されたスリーブ、スリーブを回転させるマグネットやコイル等の駆動機構、スリー ブを軸側に磁気吸引力で引っ張る永久磁石等を備えている。特に、スリーブが円錐 状であるので、高さを低く抑えることでき、上記スピンドルモータに比べて薄型化を図 ることができるものである。  [0008] This gas dynamic pressure bearing motor has a conical shaft, a sleeve formed of a magnetic material along the shape of the shaft, a drive mechanism such as a magnet and a coil that rotates the sleeve, and a sleeve that is magnetically arranged on the shaft side. It has a permanent magnet that pulls with attractive force. In particular, since the sleeve has a conical shape, the height can be kept low, and the thickness can be reduced as compared with the spindle motor.
特許文献 1:特開 2002— 372039号公報  Patent Document 1: JP 2002-372039 A
特許文献 2:特開 2003 - 35311号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-35311
発明の開示  Disclosure of the invention
[0009] し力しながら、上述した従来の装置では、まだ以下の課題が残されていた。  However, the conventional apparatus described above still has the following problems.
[0010] 即ち、上記特許文献 2に記載されている装置は、円錐状に形成されたスリーブによ り薄型化を図ることができるものである力 永久磁石やスリーブを回転させるコイル等 の駆動機構が必須の構成品であるため、これ以上の薄型化を図ることができなかつ た。 [0010] That is, the device described in Patent Document 2 described above has a force that can be reduced in thickness by a conical sleeve, and a drive mechanism such as a permanent magnet or a coil that rotates the sleeve. Since it is an essential component, it was not possible to make it thinner.
[0011] 本発明は、このような事情に考慮してなされたもので、その目的は、記録媒体を安 定且つ低振動で回転させることができ、従来のものに比べてさらに薄型化を図ること ができるスピンドルモータ、及び、該スピンドルモータを有する情報記録再生装置を 提供することである。  The present invention has been made in view of such circumstances, and an object of the present invention is to enable a recording medium to be rotated stably and with low vibration, and to achieve a further reduction in thickness as compared with conventional ones. It is an object of the present invention to provide a spindle motor and an information recording / reproducing apparatus having the spindle motor.
[0012] 本発明は、上記課題を解決するために以下の手段を提供する。  The present invention provides the following means in order to solve the above problems.
[0013] 本発明のスピンドルモータは、各種の情報を記録可能な円板状の記録媒体を、回 転軸回りに回転駆動するスピンドルモータであって、前記回転軸に沿って配されたシ ャフトと、該シャフトの基端側を支持すると共に、前記回転軸に垂直な面内に沿って 配されたステータ板と、前記シャフトに対して一定の隙間を空けた状態で挿着され、 前記回転軸回りに回転可能であると共に、前記記録媒体を保持する保持部を外周 面に有する回転体と、前記隙間に供給された導電性の流体を有し、前記回転体が回 転する際のラジアル方向の力を少なくとも支持する流体動圧軸受部と、前記ステータ 板に対向する対向面を有し、前記回転体の基端側に固定されて共に回転するロータ 板と、該ロータ板の対向面に設けられ、前記回転軸を中心とする円周方向に所定角 度毎に複数配されたロータ電極部と、前記ステータ板の表面に設けられ、前記回転 軸を中心とする円周方向に前記所定角度よりも狭い角度毎に複数配されたステータ 電極部と、該複数のステータ電極部のうち、選択されたステータ電極部に対して所定 の時間だけ駆動電圧を印力!]して、静電力により前記ロータ板を一定方向に回転させ る電圧印加手段と、前記ロータ板の対向面に設けられ、前記ロータ板の回転に伴つ て該ロータ板を前記ステータ板力 離間する方向に圧力を発生させる動圧溝とを備 え、前記複数のロータ電極部が、少なくとも前記ロータ板及び前記流体を介して接地 されて ヽることを特徴とするちのである。 The spindle motor of the present invention is a spindle motor that rotates a disk-shaped recording medium capable of recording various types of information about a rotation axis, and is a shaft arranged along the rotation axis. And a stator plate arranged along a plane perpendicular to the rotation axis and supporting a base end side of the shaft, and inserted with a certain clearance from the shaft, When the rotating body rotates, the rotating body has a rotating body that is rotatable around the rotation axis and has a holding portion for holding the recording medium on an outer peripheral surface, and a conductive fluid supplied to the gap. A fluid dynamic pressure bearing portion that supports at least a radial force of the rotor, a rotor plate that has a facing surface facing the stator plate, is fixed to the base end side of the rotating body, and rotates together with the rotor plate, A plurality of rotor electrode portions that are provided on opposite surfaces and are arranged at predetermined angles in the circumferential direction around the rotation axis, and a circumferential direction that is provided on the surface of the stator plate and that is centered on the rotation axis A plurality of stator electrode portions arranged at an angle narrower than the predetermined angle, and a driving voltage applied to the selected stator electrode portion of the plurality of stator electrode portions for a predetermined time!] , The rotor plate in a certain direction by electrostatic force A voltage applying means for rotating; and a dynamic pressure groove provided on an opposing surface of the rotor plate and generating pressure in a direction in which the rotor plate is separated from the stator plate as the rotor plate rotates. The plurality of rotor electrode portions are grounded via at least the rotor plate and the fluid.
[0014] この発明に係るスピンドルモータにぉ 、ては、まず、ステータ板に基端側が支持さ れたシャフトに対して、回転体が一定の隙間を空けた状態で挿着されており、回転軸 回りに回転可能な状態となっている。この際、シャフトと回転体との隙間には、導電性 の流体、例えば、オイル等が供給されている。また、回転体の基端側に固定された口 ータ板は、対向面がステータ板の表面に対向した状態となっている。これにより、ロー タ電極部とステータ電極部とが、同様に互いに対向した状態となっている。  [0014] In the spindle motor according to the present invention, first, a rotating body is inserted and attached to a shaft whose base end side is supported by a stator plate with a certain gap therebetween. It can be rotated around its axis. At this time, a conductive fluid such as oil is supplied to the gap between the shaft and the rotating body. Further, the face plate fixed to the base end side of the rotating body is in a state where the facing surface faces the surface of the stator plate. As a result, the rotor electrode portion and the stator electrode portion are similarly opposed to each other.
[0015] また、ロータ板の対向面には、回転軸を中心とする円周方向に向けて、所定角度毎  [0015] Further, the opposing surface of the rotor plate is provided at predetermined angles toward the circumferential direction around the rotation axis.
(例えば、 30度毎)に複数のロータ電極部が設けられていると共に、ロータ電極部と は別に動圧溝が設けられている。また、ステータ板の表面には、回転軸を中心とする 円周方向に向けて、上記所定角度よりも狭い角度毎 (例えば、 20度毎)に複数のス テータ電極部が設けられている。これら両電極部の位置関係の違いにより、隣り合う ロータ電極部の間には、必ずステータ電極部が位置している状態となっている。  A plurality of rotor electrode portions are provided (for example, every 30 degrees), and dynamic pressure grooves are provided separately from the rotor electrode portions. In addition, a plurality of stator electrode portions are provided on the surface of the stator plate at an angle narrower than the predetermined angle (for example, every 20 degrees) in a circumferential direction around the rotation axis. Due to the difference in the positional relationship between these two electrode portions, the stator electrode portion is always located between the adjacent rotor electrode portions.
[0016] ここで、電圧印加手段により、複数のステータ電極部のうち、選択したステータ電極 部に所定の時間だけ駆動電圧を印加する。具体的には、ロータ電極部よりも回転方 向(一定方向)側に位置するステータ電極部に駆動電圧を印加する。この際、複数の ロータ電極部は、少なくともロータ電極部及び導電性の流体を介して予め接地されて いるので、印加されたステータ電極部とロータ電極部とに、それぞれプラスの電圧と マイナスの電圧とを印加したことになる。これにより、両電極部の表面には、それぞれ プラス及びマイナスの電荷が誘起されると共にこれらが互いに引き合う静電力(静電 吸引力)が発生する。 Here, the driving voltage is applied to the selected stator electrode portion among the plurality of stator electrode portions for a predetermined time by the voltage applying means. Specifically, the drive voltage is applied to the stator electrode portion located on the rotation direction (constant direction) side of the rotor electrode portion. In this case, multiple Since the rotor electrode portion is grounded in advance through at least the rotor electrode portion and the conductive fluid, a positive voltage and a negative voltage were applied to the applied stator electrode portion and the rotor electrode portion, respectively. become. As a result, positive and negative charges are induced on the surfaces of both electrode portions, and electrostatic forces (electrostatic attractive force) are generated that attract each other.
[0017] そして、この静電力の水平方向成分により、ロータ電極部は印加されたステータ電 極部に向力つて徐々に移動する。そして、ロータ電極部が印加されたステータ電極 部に完全に対向した位置まで移動したと同時に、電圧印加手段はこの最初のステー タ電極部への印加を停止すると共に、移動し始めたロータ電極部よりも回転方向(一 定方向)側に位置する次のステータ電極部に駆動電圧を所定の時間だけ印加する。 これにより、上述した動作が繰り返されロータ電極部がまた移動する。  [0017] Then, due to the horizontal component of the electrostatic force, the rotor electrode portion gradually moves toward the applied stator electrode portion. Then, at the same time that the rotor electrode portion has moved to a position completely opposed to the applied stator electrode portion, the voltage application means stops applying to the first stator electrode portion and at the same time starts moving the rotor electrode portion. A drive voltage is applied for a predetermined time to the next stator electrode portion positioned on the rotation direction (constant direction) side. Thereby, the operation | movement mentioned above is repeated and a rotor electrode part moves again.
[0018] その結果、ロータ板及び回転体を、回転軸回りに静電力を利用しながら回転させる ことができる。また、回転体には、保持部を介して記録媒体が保持されているので、 該記録媒体を回転させることができる。  As a result, the rotor plate and the rotating body can be rotated around the rotation axis while utilizing the electrostatic force. Further, since the recording medium is held on the rotating body via the holding unit, the recording medium can be rotated.
[0019] 一方、ロータ板及び回転体が回転し始めると、ロータ板とステータ板との間に存在 する気体が動圧溝に沿って流れ始め、圧力が上昇する。そして、この圧力は、ロータ 板をステータ板カも離間する方向に作用する。即ち、スラスト方向に働く力となる。口 ータ板は、この圧力を受けてステータ板カも離間して浮上する。  On the other hand, when the rotor plate and the rotating body start to rotate, the gas existing between the rotor plate and the stator plate starts to flow along the dynamic pressure grooves, and the pressure rises. This pressure acts in a direction in which the rotor plate is also separated from the stator plate. That is, the force acts in the thrust direction. When the pressure plate receives this pressure, the stator plate also floats away.
[0020] また、上述したようにロータ電極部は、印加されたステータ電極部によって静電力の 垂直方向成分によって引っ張られているので、ロータ板はステータ板に引き寄せられ ている。この両者のカバランスによって、ロータ板は、ステータ板カも所定距離離間し た状態 (浮上した状態)で回転する。  [0020] Further, as described above, since the rotor electrode portion is pulled by the vertical component of the electrostatic force by the applied stator electrode portion, the rotor plate is attracted to the stator plate. Due to the balance between the two, the rotor plate rotates in a state where the stator plate is also separated by a predetermined distance (floating state).
[0021] また、同時に回転体とシャフトとの間に供給されている流体の圧力も高まるので、流 体動圧軸受部がラジアル方向への力を支持する。これにより回転体は、シャフトから 離れた状態で回転する。  [0021] At the same time, the pressure of the fluid supplied between the rotating body and the shaft also increases, so the fluid dynamic pressure bearing portion supports the force in the radial direction. As a result, the rotating body rotates away from the shaft.
[0022] その結果、回転体及びロータ板は、回転軸回りに滑らかに回転することができる。  As a result, the rotating body and the rotor plate can smoothly rotate about the rotation axis.
特に、流体動圧軸受部は、玉軸受のように機械的な軸受とは異なりオイル等の流体 を利用した軸受である。また、動圧溝は、気体を利用してロータ板を浮上させている。 従って、回転体及びロータ板を、共に振動を抑えた状態で滑らかに回転させることが でき、振動や騒音の発生を抑えることができる。 In particular, the fluid dynamic bearing portion is a bearing that uses a fluid such as oil, unlike a mechanical bearing such as a ball bearing. Further, the dynamic pressure groove floats the rotor plate using gas. Therefore, both the rotating body and the rotor plate can be smoothly rotated in a state where vibration is suppressed, and generation of vibration and noise can be suppressed.
[0023] 特に、本発明に係るスピンドルモータは、動圧溝、ロータ電極部及びステータ電極 部を備えているので、ロータ板の全面領域に亘つてスラスト力を作用させることができ ると共に、静電力による引張力を作用させることができる。そのため、ロータ板を安定 に浮上させて回転軸回りに回転させることができ、回転ぶれを極力抑えることができ る。特に、回転軸カゝら距離が離れているロータ板の外縁付近においても、スラスト力 及び引張力を作用させることが可能であるので、上記作用効果が顕著なものとなる。  [0023] In particular, since the spindle motor according to the present invention includes the dynamic pressure grooves, the rotor electrode portion, and the stator electrode portion, a thrust force can be applied over the entire area of the rotor plate, and a static force can be applied. A tensile force due to electric power can be applied. Therefore, the rotor plate can be stably floated and rotated around the rotation axis, and rotational shake can be suppressed as much as possible. In particular, since the thrust force and the tensile force can be applied even in the vicinity of the outer edge of the rotor plate at a distance from the rotary shaft, the above-described effects are remarkable.
[0024] また、ロータ板が、回転ブレ等がなく安定的に回転するので、回転体についても同 様に回転ブレを極力抑えた状態で回転させることができる。そのため、ラジアル方向 への力が発生し難い。よって、シャフトの長さをできるだけ低くしたとしても、回転体及 びロータ板の回転に影響を与えることはなぐ安定した回転を行わせることができる。 従って、シャフトの高さを極力抑えることができ、薄型化を図ることができる。  [0024] Further, since the rotor plate rotates stably without rotational vibration or the like, the rotating body can be similarly rotated with rotational vibration suppressed as much as possible. Therefore, it is difficult to generate a radial force. Therefore, even if the length of the shaft is reduced as much as possible, stable rotation can be performed without affecting the rotation of the rotating body and the rotor plate. Therefore, the height of the shaft can be suppressed as much as possible, and the thickness can be reduced.
[0025] また、両電極部で発生する静電力を利用してロータ板及び回転体を回転させるの で、従来のコイルやマグネット等力 構成される駆動機構とは異なり、設置スペースを ほとんど必要としない。この点からも、薄型化を図ることができる。  [0025] In addition, since the rotor plate and the rotating body are rotated using the electrostatic force generated in both electrode portions, unlike the conventional drive mechanism configured with coils and magnets, almost no installation space is required. do not do. From this point as well, the thickness can be reduced.
[0026] 上述したように、本発明のスピンドルモータによれば、記録媒体を安定且つ低振動 で回転させることができ、従来のものに比べてさらなる薄型化を図ることができる。  As described above, according to the spindle motor of the present invention, the recording medium can be rotated stably and with low vibration, and the thickness can be further reduced as compared with the conventional one.
[0027] また、本発明のスピンドルモータは、上記本発明のスピンドルモータにおいて、前記 ロータ板の対向面には、前記ロータ電極部を覆うように保護膜が設けられ、前記動圧 溝が、前記保護膜上に設けられていることを特徴とするものである。  [0027] Further, the spindle motor of the present invention is the spindle motor of the present invention, wherein a protective film is provided on the opposing surface of the rotor plate so as to cover the rotor electrode portion, and the dynamic pressure groove It is provided on the protective film.
[0028] この発明に係るスピンドルモータにおいては、ロータ電極部を覆うように保護膜が形 成されているので、回転中に何らかの原因によりロータ板に外力が加わったとしても、 保護膜が介在しているので直接ロータ電極部とステータ電極部とが接触することはな い。よって、両電極部の機械的な損傷を防止することができると共に、放電による損 傷を防止することができる。従って、品質を向上することができると共に、耐久性を高 めることができる。なお、この保護膜上に動圧溝が設けられているので、ロータ板の浮 上に何ら影響を与えることはない。 [0029] また、本発明のスピンドルモータは、上記本発明のスピンドルモータにおいて、前記 ロータ板の対向面及び前記ステータ板の表面には、前記ロータ電極部及び前記ステ ータ電極部を覆うように保護膜が設けられ、前記動圧溝が、前記保護膜上に設けら れて 、ることを特徴とするものである。 [0028] In the spindle motor according to the present invention, since the protective film is formed so as to cover the rotor electrode portion, even if an external force is applied to the rotor plate for some reason during rotation, the protective film is interposed. Therefore, there is no direct contact between the rotor electrode portion and the stator electrode portion. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, the quality can be improved and the durability can be increased. Since the dynamic pressure groove is provided on the protective film, the floating of the rotor plate is not affected at all. [0029] Further, the spindle motor of the present invention is the spindle motor of the present invention described above, wherein the opposing surface of the rotor plate and the surface of the stator plate are covered with the rotor electrode portion and the stator electrode portion. A protective film is provided, and the dynamic pressure groove is provided on the protective film.
[0030] この発明に係るスピンドルモータにおいては、ロータ電極部及びステータ電極部を それぞれ覆うように保護膜が形成されて ヽるので、回転中に何らかの原因によりロー タ板に外力が加わったとしても、直接ロータ電極部とステータ電極部とが接触すること はない。よって、両電極部の機械的な損傷を防止することができると共に、放電によ る損傷を防止することができる。従って、品質を向上することができると共に、耐久性 を高めることができる。なお、保護膜上に動圧溝が設けられているので、ロータ板の 浮上に何ら影響を与えることはない。  [0030] In the spindle motor according to the present invention, since the protective film is formed so as to cover the rotor electrode portion and the stator electrode portion, even if an external force is applied to the rotor plate for some reason during the rotation. The rotor electrode portion and the stator electrode portion are not in direct contact with each other. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be enhanced. Since the dynamic pressure groove is provided on the protective film, there is no influence on the floating of the rotor plate.
[0031] また、本発明のスピンドルモータは、上記本発明のスピンドルモータにおいて、前記 ステータ板の表面には、前記ステータ電極部を覆うように保護膜が設けられて 、るこ とを特徴とするものである。  [0031] Further, the spindle motor of the present invention is characterized in that, in the spindle motor of the present invention, a protective film is provided on the surface of the stator plate so as to cover the stator electrode portion. Is.
[0032] この発明に係るスピンドルモータにおいては、ステータ電極部を覆うように保護膜が 形成されているので、回転中に何らかの原因によりロータ板に外力が加わったとして も、保護膜が介在して ヽるので直接ロータ電極部とステータ電極部とが接触すること はない。よって、両電極部の機械的な損傷を防止することができると共に、放電によ る損傷を防止することができる。従って、品質を向上することができると共に、耐久性 を高めることができる。  [0032] In the spindle motor according to the present invention, since the protective film is formed so as to cover the stator electrode portion, even if an external force is applied to the rotor plate for some reason during rotation, the protective film is interposed. Therefore, there is no direct contact between the rotor electrode portion and the stator electrode portion. Therefore, mechanical damage of both electrode portions can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be enhanced.
[0033] また、本発明のスピンドルモータは、上記本発明のいずれかのスピンドルモータに おいて、前記複数のステータ電極部が、前記ロータ電極部の 1つと前記ステータ電極 部の 1つとが完全に対向した位置関係になった時に、少なくとも隣接するロータ電極 部の前記一定方向側近傍に、他のステータ電極部が位置するように設けられている ことを特徴とするものである。  [0033] Further, in the spindle motor of the present invention, in any of the spindle motors of the present invention, the plurality of stator electrode portions are configured such that one of the rotor electrode portions and one of the stator electrode portions are completely. When the opposing positional relationship is established, another stator electrode portion is provided so as to be positioned at least in the vicinity of the fixed direction side of the adjacent rotor electrode portion.
[0034] この発明に係るスピンドルモータにおいては、ロータ電極部の 1つとステータ電極部 の 1つとが完全に対向した位置関係になった時に、少なくとも隣接するロータ電極部 の前記一定方向側近傍に他のステータ電極部が常に位置している。つまり、ロータ 電極部を他のステータ電極部に向けて静電力により移動させる際に、両電極部が既 に近づ!/、た状態となって 、る。 [0034] In the spindle motor according to the present invention, when one of the rotor electrode portions and one of the stator electrode portions are in a completely opposed positional relationship, at least the adjacent rotor electrode portion is in the vicinity of the fixed direction side. The stator electrode portion is always located. That is, the rotor When the electrode part is moved toward the other stator electrode part by electrostatic force, both electrode parts are already approaching and being in a state of being touched.
[0035] 特に静電力の大きさは、両電極部間の距離に反比例するのでより大きな静電力を 得ることができる。よって、ロータ電極部を他のステータ電極部に向けて、より速い速 度で速やかに移動させることができ、動圧溝に圧力をより集中させてロータ板を容易 に浮上させることができる。また、大きな静電力を得ることができるので、ロータ板をス テータ板側に引っ張り易い。従って、ロータ板をより安定したバランスで回転させるこ とができる。その結果、記録媒体の回転がより安定する。  [0035] In particular, since the magnitude of the electrostatic force is inversely proportional to the distance between the two electrode portions, a larger electrostatic force can be obtained. Therefore, the rotor electrode portion can be moved quickly toward the other stator electrode portion at a higher speed, and the rotor plate can be easily floated by concentrating the pressure in the dynamic pressure groove. Moreover, since a large electrostatic force can be obtained, the rotor plate can be easily pulled toward the stator plate. Therefore, the rotor plate can be rotated with a more stable balance. As a result, the rotation of the recording medium becomes more stable.
[0036] また、本発明のスピンドルモータは、上記本発明のいずれかのスピンドルモータに おいて、前記複数のステータ電極部が、それぞれ周方向に向力う幅が前記複数の口 ータ電極部のそれぞれの幅よりも狭く形成されていると共に、それぞれが近接した状 態で隣り合うように配置され、前記電圧印加手段が、前記複数のステータ電極のうち 、前記複数のロータ電極部の略中心から、少なくとも該ロータ電極部の幅の 1Z2分 だけ前記一定方向に向力つた範囲内に位置するステータ電極に対して、前記駆動 電圧を印加することを特徴とするものである。  [0036] Further, the spindle motor of the present invention is the spindle motor according to any one of the above-described present inventions, wherein the plurality of stator electrode portions each have a width that faces in the circumferential direction. Are arranged so as to be adjacent to each other in close proximity to each other, and the voltage applying means includes substantially the center of the plurality of rotor electrode portions of the plurality of stator electrodes. From the above, the drive voltage is applied to the stator electrode positioned within a range directed in the constant direction by at least 1Z2 of the width of the rotor electrode portion.
[0037] この発明に係るスピンドルモータにおいては、各ステータ電極部の周方向に向かう 幅力 ロータ電極部の周方向に向力う幅よりも狭く形成されている。例えば、ロータ電 極部の幅よりも 1Z3程度の幅で形成されている。そして、この幅の小さいステータ電 極は、それぞれ近接した状態で隣り合うようにして配置されている。即ち、複数のステ ータ電極部は、回転軸を中心とする円周方向に、例えば、 3〜4度の角度毎に複数 配されている。これにより、複数のロータ電極部がどこに位置していても、各ロータ電 極部に対向した状態で必ず 3個程度のステータ電極部が位置している状態となって いる。  [0037] In the spindle motor according to the present invention, the width force in the circumferential direction of each stator electrode portion is formed narrower than the width in the circumferential direction of the rotor electrode portion. For example, it is formed with a width of about 1Z3 than the width of the rotor electrode portion. The stator electrodes having a small width are arranged adjacent to each other in close proximity. In other words, a plurality of status electrode portions are arranged in the circumferential direction around the rotation axis, for example, every 3 to 4 degrees. As a result, no matter where the plurality of rotor electrode portions are located, about three stator electrode portions are always located in a state of facing each rotor electrode portion.
[0038] そして、電圧印加手段は、これら複数のステータ電極のうち、ロータ電極部の略中 心から、少なくとも該ロータ電極部の幅の 1Z2分だけ一定方向(回転方向)に向かつ た範囲内に位置するステータ電極に対して駆動電圧を印加する。つまり、ロータ電極 部に近接し、且つ、該ロータ電極部の移動に寄与するステータ電極部にのみ集中し て駆動電圧を印加する。 [0039] 特に静電力の大きさは、両電極部間の距離に反比例するのでより大きな静電力を 得ることができる。よって、ロータ電極部をより速い速度で速やかに移動させることが でき、動圧溝に圧力をより集中させてロータ板を容易に浮上させることができる。また 、大きな静電力を得ることができるので、ロータ板をステータ板側に引っ張り易い。従 つて、ロータ板をより安定したバランスで回転させることができる。その結果、記録媒 体の回転がより安定する。 [0038] Then, the voltage applying means is within a range of the plurality of stator electrodes that is oriented in a fixed direction (rotational direction) at least by 1Z2 of the width of the rotor electrode portion from substantially the center of the rotor electrode portion. A drive voltage is applied to the positioned stator electrode. That is, the drive voltage is applied only in the vicinity of the rotor electrode portion and concentrated only on the stator electrode portion that contributes to the movement of the rotor electrode portion. In particular, since the magnitude of the electrostatic force is inversely proportional to the distance between the two electrode portions, a larger electrostatic force can be obtained. Therefore, the rotor electrode portion can be quickly moved at a higher speed, and the rotor plate can be easily floated by concentrating the pressure in the dynamic pressure groove. In addition, since a large electrostatic force can be obtained, the rotor plate is easily pulled toward the stator plate. Therefore, the rotor plate can be rotated with a more stable balance. As a result, the rotation of the recording medium becomes more stable.
[0040] なお、電圧印加手段は、上述した位置関係を維持するように、ロータ電極部の移動 に伴ってステータ電極部への印加を適宜変化させている。また、ステータ電極部の幅 をできるだけ狭くし、且つ、ステータ電極部の数を極力増やしているので、静電力の 変動幅を小さくすることができる。よって、上述した効果をさらに高めることができる。  [0040] Note that the voltage application means appropriately changes the application to the stator electrode portion as the rotor electrode portion moves so as to maintain the positional relationship described above. In addition, since the width of the stator electrode portion is made as small as possible and the number of stator electrode portions is increased as much as possible, the fluctuation range of the electrostatic force can be reduced. Therefore, the above-described effect can be further enhanced.
[0041] また、本発明のスピンドルモータは、上記本発明のいずれかのスピンドルモータに おいて、前記シャフトが、円柱状に形成されると共に所定の厚さだけ半径方向外方に 延びて拡径した鍔状のフランジ部を外周面に有し、前記流体動圧軸受部が、前記フ ランジ部の下面に形成されて前記スラスト方向の力を支持するスラスト用動圧溝を備 えて!/ヽることを特徴とするものである。  [0041] Further, in the spindle motor of the present invention, in any of the spindle motors of the present invention, the shaft is formed in a columnar shape and extends radially outward by a predetermined thickness to expand the diameter. A thrust dynamic pressure groove is formed on the lower surface of the flange portion to support the thrust force in the thrust direction! / It is characterized by scolding.
[0042] この発明に係るスピンドルモータにおいては、回転体の回転に伴ってフランジ部の 下面に形成されたスラスト用動圧溝に沿って流体が流れて圧力が高まる。すると、回 転体は、スラスト用動圧溝によって発生した圧力を受けてステータ板に向力う方向、 即ち、浮上する方向とは逆方向に力を受けて、押し付けられた状態となる。つまり、流 体動圧軸受部は、ラジアル方向の力に加ぇスラスト方向の力も支持することができる 。そのため回転体は、回転時に、ロータ電極部とステータ電極部との間に働く静電力 とこのスラスト力とによって、ステータ板側に引っ張られると共に、ロータ板に設けられ た動圧溝によって浮上する力を受ける。その結果、回転体は 3つの力のバランスによ つて、スラスト方向に対してより安定した状態で回転する。従って、回転時のさらなる 低振動化及び低騒音化を図ることができると共に、流体動圧軸受部をより安定して作 動させることができる。  In the spindle motor according to the present invention, fluid flows along the thrust dynamic pressure groove formed on the lower surface of the flange portion as the rotating body rotates, and the pressure increases. Then, the rotating body receives a pressure generated by the thrust dynamic pressure groove and receives a force in a direction toward the stator plate, that is, a direction opposite to the flying direction, and is pressed. In other words, the fluid dynamic pressure bearing portion can support a thrust force in addition to a radial force. Therefore, the rotating body is pulled to the stator plate side by the electrostatic force acting between the rotor electrode portion and the stator electrode portion and this thrust force during rotation, and the force that rises by the dynamic pressure grooves provided on the rotor plate. Receive. As a result, the rotating body rotates more stably in the thrust direction due to the balance of the three forces. Therefore, it is possible to further reduce vibration and noise during rotation, and to operate the fluid dynamic pressure bearing portion more stably.
[0043] また、本発明の情報記録再生装置は、上記本発明の!/、ずれかのスピンドルモータ と、前記記録媒体に情報を記録再生する記録再生ヘッドと、該記録再生ヘッドを、前 記記録媒体の表面上力 浮上させた状態で支持するサスペンションと、該サスペンシ ヨンの基端側を支持すると共に、該サスペンションを前記記録媒体の表面に平行な 方向に向けて移動させるァクチユエータと、前記記録再生ヘッドの作動を制御して、 記録再生を行わせる制御部とを備えていることを特徴とするものである。 [0043] Also, the information recording / reproducing apparatus of the present invention includes the above-mentioned spindle motor of the present invention, a deviation spindle motor, a recording / reproducing head for recording / reproducing information on the recording medium, and the recording / reproducing head. A suspension that supports the recording medium in a floating state, an actuator that supports the base end side of the suspension, and moves the suspension in a direction parallel to the surface of the recording medium; and And a control unit that controls the operation of the recording / reproducing head to perform recording / reproducing.
[0044] この発明に係る情報記録再生装置にお!/、ては、スピンドルモータで記録媒体を一 定方向に回転させた後、ァクチユエータによりサスペンションを移動させて、記録再生 ヘッドを記録媒体上の所望する位置に配置させる。この際、サスペンションは、記録 再生ヘッドを、記録媒体の表面力 フライングヘッド技術により浮上させた状態で支 持している。その後、制御部により指示を出して、記録再生ヘッドを作動させる。これ により、記録再生ヘッドを利用して、記録媒体に対して各種情報の記録再生を行うこ とがでさる。  [0044] In the information recording / reproducing apparatus according to the present invention, after rotating the recording medium in a fixed direction by the spindle motor, the suspension is moved by the actuator, and the recording / reproducing head is placed on the recording medium. Place it in the desired position. At this time, the suspension supports the recording / reproducing head in a state of being levitated by the surface force flying head technology of the recording medium. Thereafter, an instruction is issued by the control unit to operate the recording / reproducing head. As a result, it is possible to record and reproduce various information on the recording medium using the recording and reproducing head.
[0045] 特に、記録媒体を安定且つ低振動で回転させることができ、従来のもの比べてさら なる薄型化を実現したスピンドルモータを備えて 、るので、情報の記録再生を正確に 行うことができると共に薄型化を図ることができる。よって、高品質ィ匕を図ることができ る。  [0045] In particular, the recording medium can be rotated stably and with low vibration, and the spindle motor that realizes further thinning compared to the conventional one is provided, so that information can be recorded and reproduced accurately. In addition, the thickness can be reduced. Therefore, high quality can be achieved.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 1]本発明に係るスピンドルモータを有する情報記録再生装置の第 1実施形態を示 す構成図である。  FIG. 1 is a configuration diagram showing a first embodiment of an information recording / reproducing apparatus having a spindle motor according to the present invention.
[図 2]図 1に示すスピンドルモータの断面図である。  2 is a cross-sectional view of the spindle motor shown in FIG.
[図 3]図 2に示すスピンドルモータを構成するロータ板を、ステータ板側から見た図で ある。  FIG. 3 is a view of the rotor plate constituting the spindle motor shown in FIG. 2 as viewed from the stator plate side.
[図 4]図 2に示すスピンドルモータを構成するロータ板及びステータ板の、周方向に沿 つた断面展開図である。  4 is a developed sectional view along the circumferential direction of a rotor plate and a stator plate constituting the spindle motor shown in FIG.
[図 5]図 2に示すスピンドルモータを構成する動圧溝を、ステータ板側から見た図であ る。  FIG. 5 is a view of a dynamic pressure groove constituting the spindle motor shown in FIG. 2 as viewed from the stator plate side.
[図 6]図 2に示すスピンドルモータを構成するステータ板を、ロータ板側から見た図で ある。  6 is a view of the stator plate constituting the spindle motor shown in FIG. 2 as viewed from the rotor plate side.
[図 7]図 2に示すスピンドルモータの動きを説明する図であって、 (a)は選択したステ ータ電極部に駆動電圧を印加して静電力によりロータ電極部を移動させ始めている 状態を示す図である。(b)は (a)に示す状態の後、ロータ電極部が移動している最中 を示す図である。(c)は (b)に示す状態の後、異なるステータ電極部に駆動電圧を印 加して再度ロータ電極部を移動させ始めている状態を示す図である。 [FIG. 7] A diagram for explaining the movement of the spindle motor shown in FIG. FIG. 7 is a diagram showing a state in which a driving voltage is applied to the data electrode portion and the rotor electrode portion is moved by electrostatic force. (B) is a diagram showing a state in which the rotor electrode portion is moving after the state shown in (a). (C) is a diagram showing a state in which, after the state shown in (b), a driving voltage is applied to a different stator electrode part and the rotor electrode part is started to move again.
[図 8]本発明に係るスピンドルモータの第 2実施形態を示す図であって、スピンドルモ ータを構成するロータ板及びステータ板の、周方向に沿った断面展開図である。  FIG. 8 is a diagram showing a spindle motor according to a second embodiment of the present invention, and is a developed sectional view along the circumferential direction of a rotor plate and a stator plate constituting the spindle motor.
[図 9]図 8に示すスピンドルモータを構成するステータ板を、ロータ板側から見た図で ある。  FIG. 9 is a view of a stator plate constituting the spindle motor shown in FIG. 8 as viewed from the rotor plate side.
[図 10]図 8に示すスピンドルモータを構成するロータ板を、ステータ板側から見た図 である。  FIG. 10 is a view of the rotor plate constituting the spindle motor shown in FIG. 8 as viewed from the stator plate side.
[図 11]図 8に示すスピンドルモータの動きを説明する図であって、 (a)は選択したステ ータ電極部に駆動電圧を印加して静電力によりロータ電極部を移動させ始めている 状態を示す図である。(b)は (a)に示す状態の後、ロータ電極部の移動に合わせて 異なるステータ電極部に駆動電圧を印加して 、る状態を示す図である。  FIG. 11 is a diagram for explaining the movement of the spindle motor shown in FIG. 8, where (a) shows a state in which a driving voltage is applied to the selected stator electrode portion and the rotor electrode portion is started to move by electrostatic force. FIG. (B) is a diagram showing a state in which, after the state shown in (a), a driving voltage is applied to different stator electrode portions in accordance with the movement of the rotor electrode portion.
圆 12]スピンドルモータの変形例を示す図であって、厚みが薄い保護膜をロータ板 側に設けた場合のロータ板及びステータ板の、周方向に沿った断面展開図である。 FIG. 12 is a view showing a modification example of the spindle motor, and is a cross-sectional development view along the circumferential direction of the rotor plate and the stator plate when a thin protective film is provided on the rotor plate side.
[図 13]スピンドルモータの変形例を示す図であって、ロータ板の対向面を削って動圧 溝を形成すると共に、残りの突出部分の全体をロータ電極部として利用した場合の、 周方向に沿った断面展開図である。 FIG. 13 is a view showing a modified example of the spindle motor, in which the opposite surface of the rotor plate is cut to form a dynamic pressure groove, and the entire remaining protruding portion is used as the rotor electrode portion in the circumferential direction. FIG.
[図 14]スピンドルモータの変形例を示す図であって、ロータ板の対向面を削って動圧 溝を形成すると共に、残りの突出部分の一部分をロータ電極部として利用した場合の 、周方向に沿った断面展開図である。  FIG. 14 is a view showing a modified example of the spindle motor, in which the opposite surface of the rotor plate is cut to form a dynamic pressure groove, and a part of the remaining protruding portion is used as the rotor electrode portion in the circumferential direction. FIG.
圆 15]スピンドルモータの変形例を示す図であって、下面に動圧溝が形成されたフラ ンジ部を有するシャフトを備えたスピンドルモータの断面図である。 FIG. 15 is a view showing a modification of the spindle motor, and is a cross-sectional view of the spindle motor including a shaft having a flange portion in which a dynamic pressure groove is formed on the lower surface.
[図 16]図 15に示すフランジ部の下面図である。 FIG. 16 is a bottom view of the flange portion shown in FIG.
[図 17]図 2に示すスピンドルモータを構成するロータ板及びステータ板の、周方向に 沿った断面展開図である。  FIG. 17 is a developed sectional view along the circumferential direction of the rotor plate and the stator plate constituting the spindle motor shown in FIG. 2.
発明を実施するための最良の形態 [0047] (第 1実施形態) BEST MODE FOR CARRYING OUT THE INVENTION [0047] (First embodiment)
以下、本発明に係るスピンドルモータ及び情報記録再生装置の第 1実施形態を、 図 1から図 7を参照して説明する。なお、図 4は、周方向に沿った断面を展開した状 態で図示している。  A first embodiment of a spindle motor and an information recording / reproducing apparatus according to the present invention will be described below with reference to FIGS. Note that FIG. 4 shows a developed state of a cross section along the circumferential direction.
[0048] 本実施形態の情報記録再生装置 1は、図 1に示すように、スピンドルモータ 2と、磁 気ディスク D (以下、単にディスク Dという)(円板状の記録媒体)に各種の情報を記録 再生する磁気ヘッド (記録再生ヘッド) 3と、該磁気ヘッドをディスク Dの表面上から浮 上させた状態で支持するサスペンション 4と、該サスペンション 4の基端側を支持する と共に、該サスペンション 4をディスク Dの表面に平行な XY方向に向けてスキャン移 動させるァクチユエータ 5と、磁気ヘッド 3の作動を制御して、記録再生を行わせる制 御部 6と、該制御部 6と磁気ヘッド 3とを接続するコード部 7と、これら各構成品を収容 するハウジング 8とを備えて 、る。  As shown in FIG. 1, the information recording / reproducing apparatus 1 of the present embodiment includes various information on a spindle motor 2 and a magnetic disk D (hereinafter simply referred to as disk D) (disc-shaped recording medium). A magnetic head (recording / reproducing head) 3, a suspension 4 for supporting the magnetic head in a state where it floats from the surface of the disk D, a base end side of the suspension 4, and the suspension Actuator 5 that scans 4 in the XY direction parallel to the surface of disk D, control unit 6 that controls the operation of magnetic head 3 to perform recording and reproduction, and control unit 6 and magnetic head 3 includes a cord portion 7 that connects to the housing 3, and a housing 8 that accommodates these components.
[0049] ノ、ウジング 8は、アルミニウム等の金属材料により、上面視四角形状に形成されてい ると共に、内側に各構成品を収容する凹部 8aが形成されている。また、このハウジン グ 8には、凹部 8aの開口を塞ぐように図示しない蓋が着脱可能に固定されるようにな つている。凹部 8aの略中心には、上記スピンドルモータ 2が取り付けられており、該ス ピンドルモータ 2の後述するハブ 20に中心孔を嵌め込むことでディスク Dが着脱自在 に固定される。  [0049] The sawing 8 is made of a metal material such as aluminum in a square shape when viewed from above, and has a recess 8a for accommodating each component inside. Further, a lid (not shown) is detachably fixed to the housing 8 so as to close the opening of the recess 8a. The spindle motor 2 is attached to substantially the center of the recess 8a, and the disc D is detachably fixed by fitting a center hole into a hub 20 (to be described later) of the spindle motor 2.
[0050] また、凹部 8aの隅角部には、上記ァクチユエータモータ 5が取り付けられている。こ のァクチユエータモータ 5には、軸受 9を介してキャリッジ 10が取り付けられており、該 キャリッジ 10の先端にサスペンション 4が取り付けられている。そして、キャリッジ 10及 びサスペンション 4は、ァクチユエータモータ 5の駆動によって共に上記 XY方向に移 動可能とされている。  In addition, the actuator motor 5 is attached to the corner of the recess 8a. A carriage 10 is attached to the actuator motor 5 via a bearing 9, and a suspension 4 is attached to the tip of the carriage 10. The carriage 10 and the suspension 4 are both movable in the XY directions by driving the actuator motor 5.
[0051] なお、キャリッジ 10及びサスペンション 4は、ディスク Dの回転停止時にァクチユエ一 タモータ 5の駆動によって、ディスク D上力も退避するようになっている。上記光信号 コントローラ 7は、このァクチユエータモータ 5に隣接するように、凹部 8a内に取り付け られている。  It should be noted that the carriage 10 and the suspension 4 are also configured to retract the force on the disk D by driving the actuator motor 5 when the rotation of the disk D is stopped. The optical signal controller 7 is mounted in the recess 8 a so as to be adjacent to the actuator motor 5.
[0052] 磁気ヘッド 3は、図示しないコイル部を有しており、記録を行う場合には、制御部か らの指示を受けて記録させた 、情報を磁気信号として出力して、ディスク D上に記録 を行うようになっている。また、再生を行う場合には、ディスク Dから出力されている磁 気信号をコイル部で読み取って、制御部 14に送っている。これにより、ディスク Dに各 種の情報を記録再生することができるようになって 、る。 [0052] The magnetic head 3 has a coil unit (not shown). When the information is recorded in response to these instructions, the information is output as a magnetic signal and recorded on the disk D. Further, when performing reproduction, the magnetic signal output from the disk D is read by the coil unit and sent to the control unit 14. As a result, various kinds of information can be recorded and reproduced on the disc D.
[0053] 上記スピンドルモータ 2は、上記ディスク Dを回転軸 L回りに回転駆動するモータで あって、図 2に示すように、回転軸 Lに沿って配されたシャフト 15と、該シャフト 15の基 端側を支持すると共に、回転軸 Lに垂直な面内 (XY方向に沿った水平面内)に沿つ て配されたステータ板 16と、シャフト 15に対して一定の隙間を空けた状態で挿着され 、回転軸 L回りに回転可能であると共に、ディスク Dを保持する段部 (保持部) 20aを 外周面に有する回転体 17と、上記隙間に供給された導電性のオイル (流体) Wを有 し、回転体 17が回転する際のラジアル方向の力を少なくとも支持する流体動圧軸受 部 18と、ステータ板 16に対向する対向面 19aを有し、回転体 17の基端側に固定さ れて共に回転するロータ板 19とを備えている。  The spindle motor 2 is a motor that drives the disk D to rotate around the rotation axis L. As shown in FIG. 2, the spindle 15 is disposed along the rotation axis L, and the shaft 15 While supporting the base end side, with a certain clearance from the shaft 15 and the stator plate 16 disposed along the plane perpendicular to the rotation axis L (horizontal plane along the XY direction) and the shaft 15 The rotating body 17 which is inserted and can be rotated around the rotation axis L and has a step portion (holding portion) 20a for holding the disk D on the outer peripheral surface, and conductive oil (fluid) supplied to the gap. W has a fluid dynamic pressure bearing portion 18 that supports at least the radial force when the rotating body 17 rotates, and a facing surface 19a that faces the stator plate 16, and is located on the base end side of the rotating body 17. And a rotor plate 19 which is fixed and rotates together.
[0054] なお、本実施形態においては、ステータ板 16が、図 1に示すようにハウジング 8の底 板を兼ねているものとする。但し、この場合に限られず、ハウジング 8の底板上にステ 一タ板を取り付けても構わな 、。  In the present embodiment, it is assumed that the stator plate 16 also serves as the bottom plate of the housing 8 as shown in FIG. However, the present invention is not limited to this, and a stator plate may be attached on the bottom plate of the housing 8.
[0055] 上記シャフト 15は、図 2に示すように、円柱状に形成されており、ハウジング 8の略 中心位置でステータ板 16上に立設されている。また、シャフト 15の外周面には、図 2 に示すように、直線状の溝が合流点 15bで合わさった V字状の動圧溝 15aが形成さ れている。この際、動圧溝 15aは、回転体 17が回転したときに、合流点 15bが後から 追!、かけるような形で回転するように、 V字が横向きになった状態で形成されて 、る。 これにより、回転体 17が回転したときに、オイル Wが動圧溝 15aに沿って回転方向と は逆方向に流れるようになつている。即ち、この動圧溝 15aは、ラジアル方向の力を 支持するラジアル軸受部として機能するものである。この動圧溝 15a及びオイル Wは 、上述した流体動圧軸受部 18を構成している。  As shown in FIG. 2, the shaft 15 is formed in a cylindrical shape, and is erected on the stator plate 16 at a substantially central position of the housing 8. Further, as shown in FIG. 2, a V-shaped dynamic pressure groove 15a is formed on the outer peripheral surface of the shaft 15 by joining the linear grooves at the junction 15b. At this time, the dynamic pressure groove 15a is formed with the V-shaped sideways so that when the rotating body 17 rotates, the confluence 15b is added later and rotated in such a manner as to be applied, The As a result, when the rotating body 17 rotates, the oil W flows in the direction opposite to the rotation direction along the dynamic pressure groove 15a. That is, the dynamic pressure groove 15a functions as a radial bearing portion that supports a radial force. The dynamic pressure groove 15a and the oil W constitute the fluid dynamic pressure bearing portion 18 described above.
[0056] 上記回転体 17は、カップ状に形成されたハブ 20と、該ハブ 20内に嵌合固定され た円筒状のスリーブ 21とから構成されている。つまり、回転体 17は、スリーブ 21とシャ フト 15との間に隙間を空けた状態でシャフト 15に対して挿着されている。そして、シャ フト 15とスリーブ 21との間に、オイル Wが供給されて充満した状態になっている。また 、ハブ 20の外周面に、上記段部 20aが形成されている。これにより、ディスク Dをハブ 20内に嵌めこんだときに、該ディスク Dが段部 20aに接触して保持されるようになって いる。 The rotating body 17 is composed of a hub 20 formed in a cup shape and a cylindrical sleeve 21 fitted and fixed in the hub 20. That is, the rotating body 17 is attached to the shaft 15 with a gap between the sleeve 21 and the shaft 15. And Sha Oil W is supplied between the foot 15 and the sleeve 21 and is full. Further, the step portion 20 a is formed on the outer peripheral surface of the hub 20. Thus, when the disk D is fitted in the hub 20, the disk D is held in contact with the stepped portion 20a.
[0057] 上記ロータ板 19は、ディスク Dと略同じサイズで円板状に形成されており、ハブ 20 の下部とスリーブ 21の外周面とに接触した状態で固定されている。なお、ロータ板 19 のサイズは、上述した場合に限られず、ディスク Dより大きくても構わないし、小さくて も構わない。また、ロータ板 19とスリーブ 21との間には、図示しないシールが設けら れており、シャフト 15とスリーブ 21との間に供給されているオイル Wがロータ板 19側 に流入しな 、ようになって!/、る。  The rotor plate 19 is formed in a disk shape having substantially the same size as the disk D, and is fixed in contact with the lower portion of the hub 20 and the outer peripheral surface of the sleeve 21. The size of the rotor plate 19 is not limited to the case described above, and may be larger or smaller than the disk D. In addition, a seal (not shown) is provided between the rotor plate 19 and the sleeve 21 so that the oil W supplied between the shaft 15 and the sleeve 21 does not flow into the rotor plate 19 side. Become! /
[0058] また、このロータ板 19の対向面 19aには、図 3及び図 4に示すように、回転軸 Lを中 心とする円周方向に所定角度 Θ 1、即ち、 30度毎に複数配された扇状のロータ電極 部 25が設けられている。なお、本実施形態では、ロータ板 19の対向面 19aに複数の ロータ電極部 25を接着や蒸着等により形成している。また、この複数のロータ電極部 25は、ロータ板 19、スリーブ 21、オイル W、ステータ板 16を介して予め接地された状 態となつている。  Further, as shown in FIGS. 3 and 4, the opposing surface 19a of the rotor plate 19 has a predetermined angle Θ 1 in the circumferential direction centered on the rotation axis L, that is, plural at every 30 degrees. An arranged fan-shaped rotor electrode portion 25 is provided. In the present embodiment, a plurality of rotor electrode portions 25 are formed on the opposing surface 19a of the rotor plate 19 by adhesion, vapor deposition, or the like. The plurality of rotor electrode portions 25 are grounded in advance via the rotor plate 19, the sleeve 21, the oil W, and the stator plate 16.
[0059] また、ロータ板の 19の対向面 19aには、複数のロータ電極部 25を覆うように保護膜 22が設けられている。そして、この保護膜 22上に、ロータ板 19の回転に伴って該ロ ータ板 19をステータ板 16から離間する方向に圧力を発生させる複数の動圧溝 23が 設けられている。  Further, a protective film 22 is provided on the opposing surface 19 a of the rotor plate 19 so as to cover the plurality of rotor electrode portions 25. A plurality of dynamic pressure grooves 23 are provided on the protective film 22 to generate pressure in a direction in which the rotor plate 19 is separated from the stator plate 16 as the rotor plate 19 rotates.
[0060] この動圧溝 23は、図 4及び図 5に示すように、外縁から中心に向力つて湾曲するよ うに彫られている。つまり、複数の動圧溝 23は、全体で風車形状となっている。これ により、ロータ板 19が回転したときに、該ロータ板 19とステータ板 16との間に存在す る気体は、動圧溝 23に沿いながら中心に向力つて流れるようになつている。  [0060] As shown in FIGS. 4 and 5, the dynamic pressure groove 23 is carved so as to bend toward the center from the outer edge. That is, the plurality of dynamic pressure grooves 23 have a windmill shape as a whole. As a result, when the rotor plate 19 rotates, the gas existing between the rotor plate 19 and the stator plate 16 flows along the dynamic pressure groove 23, and flows toward the center.
[0061] また、ステータ板 16には、図 4及び図 6に示すように、ロータ板 19に対向する円領 域内において、回転軸 Lを中心とする円周方向に向けて、上記所定角度 0 1 (30度) よりも狭い角度 Θ 2、例えば、 20度毎に複数配された扇状のステータ電極部 26が設 けられている。なお、本実施形態では、図 4に示すように、ロータ電極部 25の周方向 の幅 Wlと、ステータ電極部 26の幅 W2が同じサイズになるように、該ステータ電極部 26を形成している。 Further, as shown in FIGS. 4 and 6, the stator plate 16 has the predetermined angle 0 toward the circumferential direction centered on the rotation axis L in a circular region facing the rotor plate 19. An angle Θ2 narrower than 1 (30 degrees), for example, a plurality of fan-shaped stator electrode portions 26 are provided every 20 degrees. In the present embodiment, as shown in FIG. 4, the circumferential direction of the rotor electrode portion 25 The stator electrode portion 26 is formed so that the width Wl of the stator and the width W2 of the stator electrode portion 26 are the same size.
[0062] また、上述した両電極部 25、 26の配置関係により、隣り合うロータ電極部 25の間に は、必ずステータ電極部 26が位置している状態となっている。更には、ロータ電極部 25の 1つと、ステータ電極部 26の 1つとが完全に対向した位置関係になったときに、 少なくとも隣接するロータ電極部 25の一定方向(回転方向)側近傍に、他のステータ 電極部 26が常に位置するようになっている。つまり、本実施形態では、ロータ電極部 25の間隔(ピッチ)は、ステータ電極部 26の間隔(ピッチ)の 1. 5倍となっている。  [0062] Further, due to the arrangement relationship between the two electrode portions 25 and 26 described above, the stator electrode portion 26 is always positioned between the adjacent rotor electrode portions 25. Furthermore, when one of the rotor electrode portions 25 and one of the stator electrode portions 26 are in a completely opposite positional relationship, at least near the fixed direction (rotation direction) side of the adjacent rotor electrode portion 25, the other The stator electrode part 26 is always positioned. That is, in the present embodiment, the interval (pitch) between the rotor electrode portions 25 is 1.5 times the interval (pitch) between the stator electrode portions 26.
[0063] また、ステータ板 16の表面にも、ロータ板 19と同様に、複数のステータ電極部 26を 覆うように保護膜 24が設けられている。また、複数のステータ電極部 26は、図 2に示 すように、それぞれ図示しな!、配線を介して電圧印加部 (電圧印加手段) 27に電気 的に接続されている。この電圧印加部 27は、複数のステータ電極部 26のうち、選択 したステータ電極部 26に対してのみ所定の時間だけ駆動電圧を印加するようになつ ており、この電圧印加を繰り返し行うことで、静電力を利用してロータ板 19を一定方 向に回転させている。これについては、後に詳細に説明する。  Further, similarly to the rotor plate 19, a protective film 24 is provided on the surface of the stator plate 16 so as to cover the plurality of stator electrode portions 26. In addition, the plurality of stator electrode portions 26 are not shown as shown in FIG. The voltage application unit (voltage application means) 27 is electrically connected via a wiring. The voltage application unit 27 applies a drive voltage for a predetermined time only to the selected stator electrode unit 26 among the plurality of stator electrode units 26. By repeatedly applying this voltage, The rotor plate 19 is rotated in a certain direction using electrostatic force. This will be described in detail later.
[0064] 次に、このように構成された情報記録再生装置 1により、ディスク Dに各種の情報を 記録再生する場合について以下に説明する。  [0064] Next, a case where various types of information is recorded on and reproduced from the disc D by the information recording and reproducing apparatus 1 configured as described above will be described below.
[0065] まず、電圧印加部 27により、複数のステータ電極部 26のうち、選択したステータ電 極部 26に所定の時間だけ駆動電圧を印加する。具体的には、図 7 (a)に示すように 、ロータ電極部 25よりも一定方向(回転方向)側に位置するステータ電極部 26 (Sl、 S4ポジション)に駆動電圧を印加する。なお、図 7では、両保護膜 22、 24の図示を 省略している。  First, the voltage application unit 27 applies a drive voltage to the selected stator electrode unit 26 among the plurality of stator electrode units 26 for a predetermined time. Specifically, as shown in FIG. 7 (a), the drive voltage is applied to the stator electrode portion 26 (Sl, S4 position) located on the fixed direction (rotational direction) side of the rotor electrode portion 25. In FIG. 7, illustration of both protective films 22 and 24 is omitted.
[0066] この際、複数のロータ電極部 25は、予め全て接地されているので、印加されたステ ータ電極部 26とロータ電極部 25とに、それぞれプラスの電圧とマイナスの電圧とを印 加したことになる。これにより、両電極部 25、 26の表面には、それぞれプラス及びマ ィナスの電荷が誘起されると共に、これらが互いに引き合う静電力(静電吸引力) Fが 発生する。  [0066] At this time, since the plurality of rotor electrode portions 25 are all grounded in advance, a positive voltage and a negative voltage are applied to the applied status electrode portion 26 and rotor electrode portion 25, respectively. It will be added. As a result, positive and negative charges are induced on the surfaces of the electrode portions 25 and 26, respectively, and an electrostatic force (electrostatic attractive force) F that attracts them is generated.
[0067] そして、この静電力 Fの水平方向成分により、ロータ電極部 25は、図 7 (b)に示すよ うに、印加されたステータ電極部 26 (SI、 S4ポジション)に向かって徐々に移動する 。そして、図 7 (c)に示すように、ロータ電極部 25が、印加されたステータ電極部 26に 完全に対向する位置まで移動したと同時に、電圧印加部 27は、このステータ電極部 26への印加を停止すると共に、移動し始めたロータ電極部 25よりも一定方向(回転 方向)側に位置する次のステータ電極部 26 (S3ポジション)に駆動電圧を印加する。 これにより、上述した動作が繰り返され、ロータ電極部 25がまた移動する。 [0067] Then, due to the horizontal component of the electrostatic force F, the rotor electrode portion 25 is shown in FIG. Thus, it gradually moves toward the applied stator electrode part 26 (SI, S4 position). Then, as shown in FIG. 7 (c), the rotor electrode portion 25 moves to a position completely opposite to the applied stator electrode portion 26, and at the same time, the voltage applying portion 27 is applied to the stator electrode portion 26. While stopping the application, the drive voltage is applied to the next stator electrode portion 26 (S3 position) located on the fixed direction (rotational direction) side of the rotor electrode portion 25 that has started to move. As a result, the above-described operation is repeated, and the rotor electrode portion 25 moves again.
[0068] その結果、ロータ板 19及び回転体 17を、静電力 Fを利用しながら一定方向に向け て回転軸 L回りに回転させることができる。また、ハブ 20には、段部 20aによってディ スク Dが保持されているので、回転体 17を介してディスク Dを回転させることができる As a result, the rotor plate 19 and the rotating body 17 can be rotated about the rotation axis L in a certain direction while using the electrostatic force F. Further, since the disk 20 is held by the step portion 20a in the hub 20, the disk D can be rotated via the rotating body 17.
[0069] 一方、ロータ板 19及び回転体 17が回転し始めると、ロータ板 19とステータ板 16と の間に存在する気体が動圧溝 23に沿って流れ始め圧力が上昇する。そして、この圧 力は、ロータ板 19をステータ板 16から離間する方向に作用する。即ち、スラスト方向 に働く力となる。ロータ板 19は、この圧力を受けてステータ板 16から離間して浮上す る。また、上述したように、ロータ電極部 25は、印加されたステータ電極部 26によって 静電力の垂直方向成分によって引っ張られるので、ロータ板 19はステータ板 16に引 き寄せられている。この両者のカバランスによって、ロータ板 19は、図 4に示すように 、ステータ板力 所定距離 Gだけ離間した状態 (浮上した状態)で回転する。 On the other hand, when the rotor plate 19 and the rotating body 17 start to rotate, the gas existing between the rotor plate 19 and the stator plate 16 starts to flow along the dynamic pressure groove 23 and the pressure increases. This pressure acts in a direction in which the rotor plate 19 is separated from the stator plate 16. In other words, the force acts in the thrust direction. Under this pressure, the rotor plate 19 floats away from the stator plate 16. Further, as described above, the rotor electrode portion 25 is pulled by the vertical component of the electrostatic force by the applied stator electrode portion 26, so that the rotor plate 19 is attracted to the stator plate 16. Due to the balance between the two, the rotor plate 19 rotates with the stator plate force separated by a predetermined distance G (floating state) as shown in FIG.
[0070] また、同時にシャフト 15とスリーブ 21との間の隙間に供給されているオイル Wが動 圧溝 15aに沿いながら回転方向とは逆方向に流れ始める。この動圧溝 15aに沿って 流れたオイル Wは、合流点 15bで最も高い圧力となる。これにより、スリーブ 21は、ラ ジアル方向のカカ^点で支持された状態となり、シャフト 15から離れた状態で回転す る。つまり、流体動圧軸受部 18は、回転時に発生するラジアル方向の力を支持する  [0070] At the same time, the oil W supplied to the gap between the shaft 15 and the sleeve 21 starts flowing in the direction opposite to the rotation direction along the dynamic pressure groove 15a. The oil W flowing along the dynamic pressure groove 15a has the highest pressure at the junction 15b. As a result, the sleeve 21 is supported at the radial kaka point and is rotated away from the shaft 15. In other words, the fluid dynamic pressure bearing portion 18 supports the radial force generated during rotation.
[0071] 上述した動圧溝 23及び流体動圧軸受部 18の相互作用により、回転体 17及びロー タ板は、回転軸 L回りに滑らかに回転することができる。特に、流体動圧軸受部 18は 、玉軸受けのように機械的な軸受とは異なり、オイル Wを利用した軸受である。また、 動圧溝 23は、気体を利用してロータ板 19を浮上させている。従って、回転体 17及び ロータ板 19を、共に振動を抑えた状態で滑らかに回転させることができ、振動や損音 の発生を抑えることができる。 Due to the interaction between the dynamic pressure groove 23 and the fluid dynamic pressure bearing portion 18 described above, the rotating body 17 and the rotor plate can smoothly rotate about the rotation axis L. In particular, the fluid dynamic pressure bearing portion 18 is a bearing using oil W unlike a mechanical bearing such as a ball bearing. Further, the dynamic pressure groove 23 floats the rotor plate 19 using gas. Therefore, the rotating body 17 and The rotor plate 19 can be smoothly rotated with both vibrations suppressed, and the occurrence of vibration and sound loss can be suppressed.
[0072] 上述したように、スピンドルモータ 2によってディスク Dを回転させた後、図 1に示す ように、ァクチユエータ 5を作動させて、キャリッジ 10を介してサスペンション 4を XY方 向にスキャンさせる。これにより、ディスク D上の所望する位置に磁気ヘッド 3を位置さ せることができる。次いで、制御部 6によって磁気ヘッド 3を作動させる。これを受けて 、磁気ヘッド 3は、記録させたい情報を磁気信号として出力して、ディスク D上に記録 を行ったり、ディスクから出力されている磁気信号を読み取って再生を行ったりする。 その結果、磁気ヘッド 3を利用して、ディスク Dに各種の情報を記録再生することがで きる。 As described above, after the disk D is rotated by the spindle motor 2, the actuator 5 is operated to scan the suspension 4 in the XY directions via the carriage 10 as shown in FIG. As a result, the magnetic head 3 can be positioned at a desired position on the disk D. Next, the magnetic head 3 is operated by the control unit 6. In response to this, the magnetic head 3 outputs the information to be recorded as a magnetic signal and performs recording on the disk D or reads and reproduces the magnetic signal output from the disk. As a result, the magnetic head 3 can be used to record and reproduce various types of information on the disk D.
[0073] 特に、本実施形態のスピンドルモータ 2は、動圧溝 23、ロータ電極部 25及びステー タ電極部 26を備えているので、ロータ板 19の全面領域に亘つてスラスト力を作用さ せることができると共に、引張力(静電力 Fの垂直方向成分)を作用させることができ る。そのため、ロータ板 19を安定に浮上させて回転軸 L回りに回転させることができ、 回転ぶれを極力抑えることができる。特に、回転軸 Lから距離が離れているロータ板 1 9の外縁付近においても、スラスト力及び引張力を作用させることが可能であるので、 上記作用効果が顕著なものとなる。  [0073] In particular, the spindle motor 2 of the present embodiment includes the dynamic pressure groove 23, the rotor electrode portion 25, and the stator electrode portion 26, so that a thrust force is applied over the entire area of the rotor plate 19. In addition, a tensile force (vertical component of electrostatic force F) can be applied. Therefore, the rotor plate 19 can be stably floated and rotated around the rotation axis L, and rotational shake can be suppressed as much as possible. In particular, since the thrust force and the tensile force can be applied even in the vicinity of the outer edge of the rotor plate 19 that is separated from the rotation axis L, the above-described effects are remarkable.
[0074] また、ロータ板 19が、回転ブレ等がなく安定的に回転するので、回転体 17につい ても同様に回転ブレを極力抑えた状態で回転させることができる。そのため、ラジア ル方向への力が発生し難い。よって、シャフト 15の長さをできるだけ低くしたとしても、 回転体 17及びロータ板 19の回転に影響を与えることはなぐ安定した回転を行わせ ることができる。従って、図 2に示すように、シャフト 15の高さを極力抑えることができ、 薄型化を図ることができる。  [0074] Further, since the rotor plate 19 rotates stably with no rotational vibration or the like, the rotating body 17 can be rotated with the rotational vibration suppressed as much as possible. Therefore, it is difficult for radial force to be generated. Therefore, even if the length of the shaft 15 is made as low as possible, stable rotation can be performed without affecting the rotation of the rotating body 17 and the rotor plate 19. Therefore, as shown in FIG. 2, the height of the shaft 15 can be suppressed as much as possible, and the thickness can be reduced.
[0075] また、両電極部 26、 26で発生する静電力 Fを利用してロータ板 19及び回転体 17 を回転させるので、従来のコイルやマグネット等力 構成される駆動機構とは異なり、 設置スペースをほとんど必要としない。この点からも、薄型化を図ることができる。  [0075] In addition, since the rotor plate 19 and the rotating body 17 are rotated using the electrostatic force F generated in both electrode portions 26, 26, unlike the conventional drive mechanism configured with coils and magnets, etc. Requires little space. From this point as well, the thickness can be reduced.
[0076] 上述したように、本実施形態のスピンドルモータ 2によれば、ディスク Dを安定且つ 低振動で回転させることができ、従来のものに比べてさらなる薄型化を図ることができ る。 [0076] As described above, according to the spindle motor 2 of the present embodiment, the disk D can be rotated stably and with low vibration, and the thickness can be further reduced as compared with the conventional one. The
[0077] また、本実施形態の情報記録再生装置 1によれば、上記スピンドルモータ 2を備え ているので、情報の記録再生を正確に行うことができると共に薄型化を図ることができ る。よって、高品質ィ匕を図ることができる。また、低振動、低騒音のスピンドルモータ 2 でもあるので、この点力もも高品質ィ匕を図ることができ、製品の信頼性を向上すること ができる。  [0077] Further, according to the information recording / reproducing apparatus 1 of the present embodiment, since the spindle motor 2 is provided, information can be recorded / reproduced accurately and the thickness can be reduced. Therefore, high quality can be achieved. Moreover, since it is also a spindle motor 2 with low vibration and low noise, this point force can also achieve high quality and improve product reliability.
[0078] 更に、本実施形態のスピンドルモータ 2は、選択したステータ電極部 26に電圧を次 々と印加することで、予め接地されたロータ電極部 25を連続的且つ滑らかに回転さ せることができる。よって、ディスク Dを均一な速度で連続的且つ安定して回転させる ことができる。  Furthermore, the spindle motor 2 of the present embodiment can continuously and smoothly rotate the rotor electrode part 25 grounded in advance by applying a voltage to the selected stator electrode part 26 one after another. it can. Therefore, the disk D can be continuously and stably rotated at a uniform speed.
[0079] し力も、本実施形態では、図 7 (a)に示すように、ロータ電極部 25の間隔 (ピッチ)が 、ステータ電極部 26の間隔(ピッチ)の 1. 5倍となっているため、ロータ電極部 25の 1 つ(R2ポジション)とステータ電極部 26の 1つ(S2ポジション)とが完全に対向した位 置関係になった時に、少なくとも隣接するロータ電極部 25 (R3ポジション)の一定方 向側近傍に他のステータ電極部 26 (S4ポジション)が常に位置している。つまり、口 ータ電極部 25を他のステータ電極部 26に向けて静電力 Fにより移動させる際に、両 電極部 25、 26が既に近づいた状態となっている。特に静電力 Fの大きさは、両電極 部 25、 26間の距離に反比例するのでより大きな静電力をえることができる。  In this embodiment, as shown in FIG. 7A, the spacing (pitch) between the rotor electrode portions 25 is 1.5 times the spacing (pitch) between the stator electrode portions 26 in this embodiment. Therefore, when one of the rotor electrode parts 25 (R2 position) and one of the stator electrode parts 26 (S2 position) are in a completely opposed position, at least the adjacent rotor electrode part 25 (R3 position) The other stator electrode part 26 (S4 position) is always located near the fixed direction side of. That is, when the mouth electrode portion 25 is moved toward the other stator electrode portion 26 by the electrostatic force F, both the electrode portions 25 and 26 are already close to each other. In particular, since the magnitude of the electrostatic force F is inversely proportional to the distance between the electrode portions 25 and 26, a larger electrostatic force can be obtained.
[0080] よって、ロータ電極部 25を他のステータ電極部 26に向けて、より速い速度で速やか に移動させることができ、動圧溝 23に圧力をより集中させてロータ板 19を容易に浮 上させることができる。また、大きな静電力 Fを得ることができるので、ロータ板 19をス テータ板 16側に引っ張り易い。従って、ロータ板 19をより安定したバランスで回転さ せることができる。その結果、ディスク Dの回転がより安定する。  Accordingly, the rotor electrode portion 25 can be moved quickly at a higher speed toward the other stator electrode portion 26, and the rotor plate 19 can be easily floated by concentrating the pressure in the dynamic pressure groove 23. Can be raised. In addition, since a large electrostatic force F can be obtained, the rotor plate 19 can be easily pulled toward the stator plate 16 side. Therefore, the rotor plate 19 can be rotated with a more stable balance. As a result, the rotation of the disk D becomes more stable.
[0081] 更に、ロータ電極部 25及びステータ電極部 26をそれぞれ覆うように保護膜 22、 24 が形成されているので、回転中に何らかの原因によりロータ板 19に外力が加わった としても、直接ロータ電極部 25とステータ電極部 26とが接触することはない。よって、 両電極部 25、 26の機械的な損傷を防止することができると共に、放電による損傷を 防止することができる。従って、さらに品質を向上することができると共に、耐久性を 高めることができる。 Further, since the protective films 22 and 24 are formed so as to cover the rotor electrode portion 25 and the stator electrode portion 26, respectively, even if an external force is applied to the rotor plate 19 for some reason during rotation, the rotor is directly The electrode part 25 and the stator electrode part 26 do not come into contact with each other. Therefore, mechanical damage to both electrode portions 25 and 26 can be prevented, and damage due to discharge can be prevented. Therefore, quality can be further improved and durability can be improved. Can be increased.
(第 2実施形態)  (Second embodiment)
次に、本発明に係るスピンドルモータの第 2実施形態について、図 8から図 11を参 照して説明する。なお、第 2実施形態において第 1実施形態と同一の構成について は、同一の符号を付しその説明を省略する。また、図 8は、円周方向に沿った断面を 展開した状態を図示して 、る。  Next, a second embodiment of the spindle motor according to the present invention will be described with reference to FIGS. Note that the same reference numerals in the second embodiment denote the same parts as in the first embodiment, and a description thereof will be omitted. Further, FIG. 8 illustrates a state in which a cross section along the circumferential direction is developed.
[0082] 第 2実施形態と第 1実施形態との異なる点は、第 1実施形態では、ロータ電極部 25 の周方向に向力う幅 W1と、ステータ電極部 26の周方向に向力う幅 W2とが同じ大き さであったのに対し、第 2実施形態のスピンドルモータ 30は、ステータ電極部 31が、 周方向に向力う幅 W3がロータ電極部 32の幅 W1よりも狭く形成されていると共に、周 方向に狭 、ピッチで密集した状態で配置されて 、る点である。  The difference between the second embodiment and the first embodiment is that, in the first embodiment, the width W1 that faces the circumferential direction of the rotor electrode part 25 and the circumferential direction of the stator electrode part 26 are directed. Whereas the width W2 is the same size, in the spindle motor 30 of the second embodiment, the stator electrode portion 31 is formed such that the circumferential width W3 is smaller than the width W1 of the rotor electrode portion 32. In addition, it is arranged in a narrow state in the circumferential direction and densely arranged at a pitch.
[0083] また、第 1実施形態では、保護膜 22上に動圧溝 23が設けられていたのに対し、第 2実施形態では、ロータ板 19の対向面 19aにロータ電極部 32に隣接して動圧溝 23 が形成されている点である。そのため、第 2実施形態のロータ電極部 32及びステータ 電極部 31は、扇状に形成された第 1実施形態とは異なり、それぞれ動圧溝 23の形 状に合わせて、外縁から中心に向力つて湾曲するように形成されており、全体として 風車状に形成されて ヽる点である。  Further, in the first embodiment, the dynamic pressure groove 23 is provided on the protective film 22, whereas in the second embodiment, the rotor electrode portion 32 is adjacent to the opposing surface 19a of the rotor plate 19. Thus, the dynamic pressure groove 23 is formed. Therefore, unlike the first embodiment in which the rotor electrode portion 32 and the stator electrode portion 31 of the second embodiment are formed in a fan shape, the rotor electrode portion 32 and the stator electrode portion 31 are each directed toward the center from the outer edge according to the shape of the dynamic pressure groove 23. It is formed so as to be curved, and is formed as a windmill as a whole.
[0084] 即ち、本実施形態のスピンドルモータ 30は、図 8及び図 9に示すように、各ステータ 電極部 31の幅 W3がロータ電極部 32の幅 W1よりも約 1Z3程度の幅で形成されて いる。そして、この幅の小さいステータ電極部 31は、それぞれ近接した状態で隣り合 うようにして配置されている。即ち、複数のステータ電極部 31は、回転軸 Lを中心とす る円周方向に、例えば、 3〜4度の角度 Θ 3毎に複数配置されている。これにより、複 数のロータ電極部 32がどこに位置していても、各ロータ電極部 32に対向した状態で 必ず 3個程度のステータ電極部 31が位置している状態となっている。  That is, in the spindle motor 30 of the present embodiment, as shown in FIGS. 8 and 9, the width W3 of each stator electrode portion 31 is formed to be about 1Z3 wider than the width W1 of the rotor electrode portion 32. ing. The stator electrode portions 31 having a small width are arranged so as to be adjacent to each other in close proximity. That is, the plurality of stator electrode portions 31 are arranged in the circumferential direction around the rotation axis L, for example, at every angle Θ3 of 3 to 4 degrees. As a result, no matter where the plurality of rotor electrode portions 32 are located, about three stator electrode portions 31 are necessarily located in a state of being opposed to each rotor electrode portion 32.
[0085] また、本実施形態のロータ電極部 32は、図 8及び図 10に示すように、ロータ板 19と 一体的に構成されている。即ち、導電性を有する材料でロータ板 19を形成すると共 に、対向面 19aの所定位置を削って動圧溝 23を形成している。これにより、削られて Vヽな 、部分 (突出した部分)の全体を、ロータ電極部 32としてそのまま利用することが できる。 Further, the rotor electrode portion 32 of the present embodiment is configured integrally with the rotor plate 19 as shown in FIGS. That is, the rotor plate 19 is formed of a material having conductivity, and the dynamic pressure groove 23 is formed by cutting a predetermined position of the facing surface 19a. As a result, it is possible to use the entire portion (projected portion) that is cut and V ヽ as the rotor electrode portion 32 as it is. it can.
[0086] また、本実施形態のステータ板 16の表面には、上記複数のステータ電極部 31を覆 うように、保護膜 33が設けられている。  Further, a protective film 33 is provided on the surface of the stator plate 16 of the present embodiment so as to cover the plurality of stator electrode portions 31.
[0087] このように構成されたスピンドルモータ 40を作動させる場合には、図 11 (保護膜 23 3の図示は省略している)に示すように、電圧印加部 27が複数のステータ電極部 31 のうち、ロータ電極部 32の略中心から、該ロータ電極部 32の幅の 1Z2分だけ一定 方向(回転方向)に向かった範囲内 (Al、 A2、 A3エリア)〖こ位置するステータ電極部 31に対して駆動電圧を印加する。  When the spindle motor 40 configured in this way is operated, as shown in FIG. 11 (illustration of the protective film 233 is omitted), the voltage application unit 27 includes a plurality of stator electrode units 31. Among them, the stator electrode part 31 is located within a range (Al, A2, A3 area) from the approximate center of the rotor electrode part 32 toward the constant direction (rotation direction) by 1Z2 of the width of the rotor electrode part 32. A drive voltage is applied to.
[0088] つまり、ロータ電極部 32に近接し、且つ、ロータ電極部 32の移動に寄与するステー タ電極部 31のみに集中して駆動電圧を印加する。特に静電力 Fの大きさは、両電極 部 31、 32間の距離に反比例するので、より大きな静電力 Fを得ることができる。よつ て、ロータ電極部 32をより速い速度で速やかに移動させることができ、動圧溝 23に 圧力をより集中させてロータ板 19を容易に浮上させることができる。また、大きな静電 力 Fを得ることができるので、ロータ板 19をステータ板 16側に引っ張り易い。従って、 ロータ板 19をより安定したバランスで回転させることができる。  That is, the drive voltage is applied in a concentrated manner only to the stator electrode portion 31 that is close to the rotor electrode portion 32 and contributes to the movement of the rotor electrode portion 32. In particular, since the magnitude of the electrostatic force F is inversely proportional to the distance between the electrode portions 31 and 32, a larger electrostatic force F can be obtained. Therefore, the rotor electrode portion 32 can be quickly moved at a higher speed, and the rotor plate 19 can be easily floated by concentrating the pressure in the dynamic pressure groove 23. Further, since a large electrostatic force F can be obtained, the rotor plate 19 is easily pulled toward the stator plate 16 side. Therefore, the rotor plate 19 can be rotated with a more stable balance.
[0089] 更に、周方向の幅 W3が狭いステータ電極部 31を近接した状態で配置しているの で、全てのロータ電極部 32 (Rl、 R2、 R3ポジション)を常に同時に移動させ続けるこ とができる。従って、ディスク Dをより安定した状態で回転させることができる。  [0089] Further, since the stator electrode portion 31 having a narrow circumferential width W3 is arranged in a close proximity, all the rotor electrode portions 32 (Rl, R2, and R3 positions) must be continuously moved at the same time. Can do. Therefore, the disk D can be rotated in a more stable state.
[0090] なお、電圧印加部 27は、上述した位置関係を維持するように、ロータ電極部 32の 移動に伴ってステータ電極部 31への印加を順次変化させている。また、ステータ電 極部 31の幅 W3をできるだけ狭くし、且つ、ステータ電極部 31の数を増やしているの で、静電力 Fの変動幅を小さくすることができる。よって、上述した効果をさらに高める ことができる。  Note that the voltage application unit 27 sequentially changes the application to the stator electrode unit 31 as the rotor electrode unit 32 moves so as to maintain the above-described positional relationship. Further, since the width W3 of the stator electrode portion 31 is made as narrow as possible and the number of the stator electrode portions 31 is increased, the fluctuation range of the electrostatic force F can be reduced. Therefore, the above-described effect can be further enhanced.
[0091] また、ステータ電極部 31を覆うように保護膜 33が設けられているので、第 1実施形 態と同様に、ロータ板 19とステータ板 16とが直接接触することがない。そのため、両 電極部 31、 32の機械的な損傷を防止することができると共に、放電による損傷を防 止することができる。従って、品質を向上することができると共に、耐久性をさらに高 めることができる。 [0092] なお、本発明の技術範囲は上記実施の形態に限定されるものではなぐ本発明の 趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Further, since the protective film 33 is provided so as to cover the stator electrode portion 31, the rotor plate 19 and the stator plate 16 do not come into direct contact as in the first embodiment. Therefore, mechanical damage to both electrode portions 31 and 32 can be prevented, and damage due to discharge can be prevented. Therefore, quality can be improved and durability can be further enhanced. It should be noted that the technical scope of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
[0093] 例えば、上記第 1実施形態では、動圧溝 23の底部がロータ電極部 25の表面よりも ステータ板 16側に位置するように、保護膜 22を厚めに形成したが、この場合に限ら れず、例えば、図 12に示すように、ロータ電極部 25の高さと略同じ高さで保護膜 22 を設け、溝部 23の底部が対向面 19bの表面付近に位置するように動圧溝 23を各口 ータ電極部 25間に設けても構わない。この場合においても、第 1実施形態と同様の 作用効果を奏することができる。但し、保護膜 22の厚みを極力薄くできるのでより好 ましい。  For example, in the first embodiment, the protective film 22 is formed thicker so that the bottom of the dynamic pressure groove 23 is positioned closer to the stator plate 16 than the surface of the rotor electrode 25. For example, as shown in FIG. 12, the protective film 22 is provided at substantially the same height as the rotor electrode 25, and the dynamic pressure groove 23 is positioned so that the bottom of the groove 23 is located near the surface of the facing surface 19b. May be provided between the aperture electrode portions 25. Even in this case, the same effect as the first embodiment can be obtained. However, it is more preferable because the thickness of the protective film 22 can be made as thin as possible.
[0094] なお、この場合には、第 2実施形態のように、ロータ電極部 25を動圧溝 23と同じ形 状に形成すれば良い。  In this case, the rotor electrode portion 25 may be formed in the same shape as the dynamic pressure groove 23 as in the second embodiment.
[0095] また、上記第 1実施形態において、ロータ板 19側の保護膜 24をなくし、図 13に示 すように、上記第 2実施形態の如くロータ板 19の対向面 19aに動圧溝 23を設けても 構わない。この際、図 13に示すように、動圧溝 23以外の突出した部分の全てをロー タ電極部 25としても構わないし、図 14に示すように、突出部分の一部分をロータ電 極部 25として利用しても構わない。  In the first embodiment, the protective film 24 on the rotor plate 19 side is eliminated, and the dynamic pressure groove 23 is formed on the opposing surface 19a of the rotor plate 19 as in the second embodiment as shown in FIG. You may provide. At this time, as shown in FIG. 13, all of the protruding portions other than the dynamic pressure groove 23 may be the rotor electrode portion 25, and as shown in FIG. 14, a part of the protruding portion is the rotor electrode portion 25. You can use it.
[0096] また、上記各実施形態では、シャフトの周囲に動圧溝を設け、流体動圧軸受部がラ ジアル方向の力のみを支持する構成とした力 この場合に限られず、例えば、シャフ トの上面やスリーブの下面に動圧溝を設け、ラジアル方向の力に加え、スラスト方向 の力を支持する構成にしても構わな 、。  [0096] Further, in each of the above embodiments, the dynamic pressure groove is provided around the shaft, and the fluid dynamic pressure bearing portion is configured to support only the radial force. For example, the shaft is not limited to this. A dynamic pressure groove may be provided on the upper surface of the sleeve or the lower surface of the sleeve to support the thrust force in addition to the radial force.
[0097] また、図 15に示すように、シャフト 15にフランジ部 40を形成すると共に、該フランジ 部 40の下面に図 16に示す動圧溝 (スラスト用動圧溝) 40aを形成しても構わな 、。  Further, as shown in FIG. 15, the flange portion 40 is formed on the shaft 15, and the dynamic pressure groove (thrust dynamic pressure groove) 40 a shown in FIG. 16 is formed on the lower surface of the flange portion 40. Ok.
[0098] このフランジ部 40は、図 15に示すように、シャフト 15の外周面から所定の厚さだけ 半径方向外方に延びて拡径して鍔状に形成されたものである。なお、図 15において は、シャフト 15の上面にフランジ部 40が形成された場合を例に挙げている。但し、こ の場合に限られず、例えば、シャフト 15の中間付近にフランジ部 40を形成しても構 わない。また、図 15では、シャフト 15の外周面に形成された動圧溝 15aを上下 2段に 形成した例を示したが、この場合に限られず、 1段でも構わないし、 3段以上に分けて 形成しても構わない。また、 2つの動圧溝 15aをそれぞれ離間した状態で形成しても 構わない。 As shown in FIG. 15, the flange portion 40 extends from the outer peripheral surface of the shaft 15 to the outside in the radial direction by a predetermined thickness and is formed in a bowl shape by expanding the diameter. In FIG. 15, a case where the flange portion 40 is formed on the upper surface of the shaft 15 is taken as an example. However, the present invention is not limited to this case. For example, the flange portion 40 may be formed near the middle of the shaft 15. FIG. 15 shows an example in which the dynamic pressure grooves 15a formed on the outer peripheral surface of the shaft 15 are formed in two upper and lower stages. However, the present invention is not limited to this, and may be one stage, or divided into three or more stages. It may be formed. Further, the two dynamic pressure grooves 15a may be formed in a separated state.
[0099] そして、フランジ部 40の下面には、図 16に示すように、外縁から回転軸 Lに向かつ て湾曲する上記動圧溝 40aが複数形成されている。つまり、複数の動圧溝 40aは、全 体で風車形状となっている。これにより、回転体 17が回転したときに、オイル Wが動 圧溝 40aに沿いながら中心に向力つて流れるようになつている。即ち、この動圧溝 40 aは、スラスト方向の力を支持するスラスト軸受部として機能するようになって!/、る。  [0099] As shown in FIG. 16, a plurality of the dynamic pressure grooves 40a curved from the outer edge toward the rotation axis L are formed on the lower surface of the flange portion 40. That is, the plurality of dynamic pressure grooves 40a have a windmill shape as a whole. As a result, when the rotating body 17 rotates, the oil W flows toward the center along the dynamic pressure groove 40a. That is, the dynamic pressure groove 40a functions as a thrust bearing portion that supports a thrust force.
[0100] 上述したように下面に動圧溝 40aが形成されたフランジ部 40を有する場合には、回 転体 17が回転し始めると、オイル Wが動圧溝 15a、 40aに沿って流れ始めて圧力が 高まりだすと共に、気体が動圧溝 23に沿って流れ始めて圧力が上昇する。この際、 動圧溝 15aに沿って流れたオイル Wは、合流点 15bで最も高い圧力となる。そのため 、回転体 17を構成するスリーブ 21は、ラジアル方向の力が 2点で支持された状態と なり、シャフト 15から離れた状態で回転する。これにより、回転体 17は横ぶれがない 状態で安定に回転することができる。  [0100] When the flange portion 40 having the dynamic pressure groove 40a formed on the lower surface is provided as described above, the oil W begins to flow along the dynamic pressure grooves 15a and 40a when the rotating body 17 starts to rotate. As the pressure increases, the gas begins to flow along the dynamic pressure groove 23 and the pressure increases. At this time, the oil W flowing along the dynamic pressure groove 15a has the highest pressure at the junction 15b. Therefore, the sleeve 21 constituting the rotating body 17 is in a state where the radial force is supported at two points, and is rotated away from the shaft 15. As a result, the rotator 17 can be stably rotated without any lateral shaking.
[0101] 一方、動圧溝 23に沿って流れた気体によって、ロータ板 19はステータ板 16から離 間して浮上する。またこれと同時に、フランジ部 40の下面に形成された動圧溝 40aに 沿って流れたオイル Wは、回転軸 Lに近い側で圧力が高まる。ところが、この動圧溝 4 Oaで発生する圧力は、固定されたシャフト 15に形成されたフランジ部 40の下面側に 発生している。そのため、回転体 17はこの圧力を受けてステータ板 16に向力 方向 、即ち、浮上する方向とは逆方向に力を受けて、押し付けられた状態となる。つまり、 この場合の流体動圧軸受部 18は、スラスト力を支持することができる。  On the other hand, the rotor plate 19 floats away from the stator plate 16 due to the gas flowing along the dynamic pressure groove 23. At the same time, the pressure of the oil W flowing along the dynamic pressure groove 40a formed on the lower surface of the flange portion 40 increases on the side close to the rotation axis L. However, the pressure generated in the dynamic pressure groove 4 Oa is generated on the lower surface side of the flange portion 40 formed on the fixed shaft 15. Therefore, the rotating body 17 receives the pressure and receives a force in the direction of the stator plate 16, that is, in the direction opposite to the direction of rising, and is pressed. That is, the fluid dynamic pressure bearing portion 18 in this case can support the thrust force.
[0102] このように回転体 17は、浮上する力と押し付けられる力とを同時に受けながら回転 する。また、回転体 17は、ロータ電極部 25とステータ電極部 26との間に働く静電力 F の影響も同時に受けるので、該静電力 Fによってステータ板 16側に引っ張られる。  [0102] In this way, the rotating body 17 rotates while simultaneously receiving the rising force and the pressing force. Further, since the rotating body 17 is also simultaneously affected by the electrostatic force F acting between the rotor electrode portion 25 and the stator electrode portion 26, the rotating body 17 is pulled toward the stator plate 16 by the electrostatic force F.
[0103] つまり、回転体 17及びロータ板 19は、この 3つの力のバランスによってスラスト方向 に対してより安定した状態で回転する。特に、静電力 Fだけでなぐスラスト力をも利 用して回転体 17及びロータ板 19を押し付けることができるので、より回転が安定する 。その結果、回転時のさらなる低振動化及び低損音化を図ることができると共に、流 体動圧軸受部 18をより安定して作動させることができる。 That is, the rotating body 17 and the rotor plate 19 rotate in a more stable state with respect to the thrust direction by the balance of these three forces. In particular, since the rotating body 17 and the rotor plate 19 can be pressed using the thrust force generated only by the electrostatic force F, the rotation is further stabilized. As a result, it is possible to further reduce vibration and sound loss during rotation and The body dynamic pressure bearing portion 18 can be operated more stably.
[0104] また、記録再生ヘッドの一例として、磁気ヘッドを例に挙げて説明した力 磁気へッ ドに限られるものではなぐ記録再生を行うヘッドであれば、その方法に限定されるも のではない。例えば、近接場光を利用して記録再生を行う近接場光ヘッドを、記録再 生ヘッドとしても構わない。 [0104] Further, as an example of the recording / reproducing head, the head is not limited to the magnetic head described by taking the magnetic head as an example. Absent. For example, a near-field optical head that performs recording / reproduction using near-field light may be used as the recording / reproducing head.
[0105] なお、上述したステータ電極部 26のそれぞれは、所定角度 θ 1よりも狭い角度毎に 配置されている力 これに限定されないのは勿論のことである。図 17に示すように、ス テータ電極部 26のそれぞれは、所定角度 θ 1よりも広い所定角度 Θ 4毎に配置され ていてもよい。 [0105] It should be noted that each of the stator electrode portions 26 described above is of course disposed at every angle narrower than the predetermined angle θ1, and is not limited to this. As shown in FIG. 17, each of the state electrode portions 26 may be arranged at every predetermined angle Θ4 wider than the predetermined angle θ1.
[0106] このように、ステータ電極 26の間隔力 ロータ電極部 25の間隔よりも広い場合であ つても、ロータ電極部 25がステータ電極部 26の静電力 Fによって引っ張られて回転 する。ステータ電極部 26への電圧の印可を切り替えることにより、回転体 17の回転が 持続されることとなる。  Thus, even when the spacing force of the stator electrode 26 is wider than the spacing of the rotor electrode portion 25, the rotor electrode portion 25 is pulled and rotated by the electrostatic force F of the stator electrode portion 26. By switching the voltage application to the stator electrode part 26, the rotation of the rotating body 17 is maintained.
[0107] 力かる特徴によれば、ステータ電極部 26のそれぞれが所定角度 Θ 4毎に配置され ることにより、図 7よりもステータ電極部 26の数を減らすことができ、スピンドルモータ 3 0のコストを低減させることができる。  According to the powerful feature, the number of stator electrode portions 26 can be reduced as compared with that in FIG. 7 by arranging each of the stator electrode portions 26 for each predetermined angle Θ 4. Cost can be reduced.
産業上の利用の可能性  Industrial applicability
[0108] 本発明に係るスピンドルモータによれば、記録媒体を安定且つ低振動で回転させ ることができ、従来のものに比べてさらなる薄型化を図ることができる。 [0108] According to the spindle motor of the present invention, the recording medium can be rotated stably and with low vibration, and the thickness can be further reduced as compared with the conventional one.
[0109] また、本発明に係る情報記録再生装置によれば、上記スピンドルモータを備えて!/ヽ るので、情報の記録再生を正確に行うことができると共に薄型化を図ることができる。 よって、高品質ィ匕を図ることができる。 [0109] Further, according to the information recording / reproducing apparatus of the present invention, since the spindle motor is provided, the information recording / reproducing can be performed accurately and the thickness can be reduced. Therefore, high quality can be achieved.

Claims

請求の範囲 The scope of the claims
[1] 各種の情報を記録可能な円板状の記録媒体を、回転軸回りに回転駆動するスピン ドルモータであって、  [1] A spindle motor that rotates a disk-shaped recording medium capable of recording various kinds of information around a rotation axis,
前記回転軸に沿って配されたシャフトと、  A shaft disposed along the rotation axis;
該シャフトの基端側を支持すると共に、前記回転軸に垂直な面内に沿って配された ステータ板と、  A stator plate that supports a base end side of the shaft and is disposed along a plane perpendicular to the rotation axis;
前記シャフトに対して一定の隙間を空けた状態で挿着され、前記回転軸回りに回 転可能であると共に、前記記録媒体を保持する保持部を外周面に有する回転体と、 前記隙間に供給された導電性の流体を有し、前記回転体が回転する際のラジアル 方向の力を少なくとも支持する流体動圧軸受部と、  A rotating body that is inserted into the shaft with a certain gap therebetween and can be rotated around the rotation axis, and has a holding portion for holding the recording medium on an outer peripheral surface, and is supplied to the gap A fluid dynamic bearing having at least a radial force when the rotating body rotates;
前記ステータ板に対向する対向面を有し、前記回転体の基端側に固定されて共に 回転するロータ板と、  A rotor plate having a facing surface facing the stator plate, fixed to the base end side of the rotating body, and rotating together;
該ロータ板の対向面に設けられ、前記回転軸を中心とする円周方向に所定角度毎 に複数配されたロータ電極部と、  A plurality of rotor electrode portions that are provided on opposite surfaces of the rotor plate and arranged at predetermined angles in a circumferential direction around the rotation axis;
前記ステータ板の表面に設けられ、前記回転軸を中心とする円周方向に複数配さ れたステータ電極部と、  A plurality of stator electrode portions provided on a surface of the stator plate and arranged in a circumferential direction around the rotation axis;
該複数のステータ電極部のうち、選択されたステータ電極部に対して所定の時間だ け駆動電圧を印カ卩して、静電力により前記ロータ板を一定方向に回転させる電圧印 加手段と、  Voltage applying means for applying a driving voltage to a selected stator electrode portion of the plurality of stator electrode portions for a predetermined time and rotating the rotor plate in a certain direction by electrostatic force;
前記ロータ板の対向面に設けられ、前記ロータ板の回転に伴って該ロータ板を前 記ステータ板力 離間する方向に圧力を発生させる動圧溝とを備え、  A dynamic pressure groove provided on an opposing surface of the rotor plate and generating pressure in a direction of separating the stator plate force with the rotation of the rotor plate;
前記複数のロータ電極部は、少なくとも前記ロータ板及び前記流体を介して接地さ れて 、ることを特徴とするスピンドルモータ。  The spindle motor, wherein the plurality of rotor electrode portions are grounded via at least the rotor plate and the fluid.
[2] 請求項 1に記載のスピンドルモータにぉ ヽて、  [2] In the spindle motor according to claim 1,
前記ステータ電極部のそれぞれは、前記所定角度よりも狭い角度毎に配されたこと を特徴とするスピンドルモータ。  Each of the stator electrode portions is arranged at an angle narrower than the predetermined angle.
[3] 請求項 1に記載のスピンドルモータにぉ ヽて、 [3] In the spindle motor according to claim 1,
前記ロータ板の対向面には、前記ロータ電極部を覆うように保護膜が設けられ、 前記動圧溝は、前記保護膜上に設けられて 、ることを特徴とするスピンドルモータ On the facing surface of the rotor plate, a protective film is provided so as to cover the rotor electrode portion, The spindle motor, wherein the dynamic pressure groove is provided on the protective film.
[4] 請求項 1に記載のスピンドルモータにぉ ヽて、 [4] In the spindle motor according to claim 1,
前記ロータ板の対向面及び前記ステータ板の表面には、前記ロータ電極部及び前 記ステータ電極部を覆うように保護膜が設けられ、  A protective film is provided on the opposite surface of the rotor plate and the surface of the stator plate so as to cover the rotor electrode portion and the stator electrode portion,
前記動圧溝は、前記保護膜上に設けられて 、ることを特徴とするスピンドルモータ  The spindle motor, wherein the dynamic pressure groove is provided on the protective film.
[5] 請求項 1に記載のスピンドルモータにぉ ヽて、 [5] In the spindle motor according to claim 1,
前記ステータ板の表面には、前記ステータ電極部を覆うように保護膜が設けられて V、ることを特徴とするスピンドルモータ。  A spindle motor, wherein a surface of the stator plate is provided with a protective film V so as to cover the stator electrode portion.
[6] 請求項 1及び 2のいずれ力 1項に記載のスピンドルモータにおいて、 [6] The spindle motor as set forth in any one of claims 1 and 2, wherein
前記複数のステータ電極部は、前記ロータ電極部の 1つと前記ステータ電極部の 1 つとが完全に対向した位置関係になった時に、少なくとも隣接するロータ電極部の前 記一定方向側近傍に、他のステータ電極部が位置するように設けられていることを特 徴とするスピンドルモータ。  When the plurality of stator electrode portions are in a positional relationship in which one of the rotor electrode portions and one of the stator electrode portions are completely opposed to each other, at least the adjacent rotor electrode portions are located in the vicinity of the fixed direction side. The spindle motor is characterized in that it is provided so that the stator electrode portion of the motor is located.
[7] 請求項 1から 5のいずれ力 1項に記載のスピンドルモータにおいて、 [7] The spindle motor as set forth in any one of claims 1 to 5,
前記複数のステータ電極部は、それぞれ周方向に向力う幅が前記複数のロータ電 極部のそれぞれの幅よりも狭く形成されていると共に、それぞれが近接した状態で隣 り合うように配置され、  Each of the plurality of stator electrode portions is formed so that a width directed in the circumferential direction is narrower than a width of each of the plurality of rotor electrode portions, and is arranged adjacent to each other in a close state. ,
前記電圧印加手段は、前記複数のステータ電極のうち、前記複数のロータ電極部 の略中心から、少なくとも該ロータ電極部の幅の 1Z2分だけ前記一定方向に向かつ た範囲内に位置するステータ電極部に対して、前記駆動電圧を印加することを特徴 とするスピンドルモータ。  The voltage applying means is a stator electrode located within a range of the plurality of stator electrodes that is oriented in the constant direction by at least 1Z2 of the width of the rotor electrode portion from substantially the center of the plurality of rotor electrode portions. A spindle motor, wherein the drive voltage is applied to the unit.
[8] 請求項 1に記載のスピンドルモータにぉ ヽて、 [8] In the spindle motor according to claim 1,
前記シャフトは、円柱状に形成されると共に所定の厚さだけ半径方向外方に延び て拡径した鍔状のフランジ部を外周面に有し、  The shaft is formed in a columnar shape, and has a flange-like flange portion on the outer peripheral surface that extends radially outward by a predetermined thickness and expands in diameter.
前記流体動圧軸受部は、前記フランジ部の下面に形成されて前記スラスト方向の 力を支持するスラスト用動圧溝を備えていることを特徴とするスピンドルモータ。 The spindle motor according to claim 1, wherein the fluid dynamic pressure bearing portion includes a thrust dynamic pressure groove formed on a lower surface of the flange portion and supporting a thrust force in the thrust direction.
[9] 請求項 1から 5、 7及び 8のいずれ力 1項に記載のスピンドルモータと、 前記記録媒体に情報を記録再生する記録再生ヘッドと、 [9] The spindle motor according to any one of claims 1 to 5, 7, and 8, the recording / reproducing head for recording / reproducing information on the recording medium,
該記録再生ヘッドを、前記記録媒体の表面上から浮上させた状態で支持するサス ペンションと、  A suspension for supporting the recording / reproducing head in a state of floating from the surface of the recording medium;
該サスペンションの基端側を支持すると共に、該サスペンションを前記記録媒体の 表面に平行な方向に向けて移動させるァクチユエータと、  An actuator for supporting the base end side of the suspension and moving the suspension in a direction parallel to the surface of the recording medium;
前記記録再生ヘッドの作動を制御して、記録再生を行わせる制御部とを備えて 、る ことを特徴とする情報記録再生装置。  An information recording / reproducing apparatus comprising: a control unit that controls the operation of the recording / reproducing head to perform recording / reproducing.
[10] 請求項 6に記載のスピンドルモータと、 [10] The spindle motor according to claim 6,
前記記録媒体に情報を記録再生する記録再生ヘッドと、  A recording / reproducing head for recording / reproducing information on the recording medium;
該記録再生ヘッドを、前記記録媒体の表面上から浮上させた状態で支持するサス ペンションと、  A suspension for supporting the recording / reproducing head in a state of floating from the surface of the recording medium;
該サスペンションの基端側を支持すると共に、該サスペンションを前記記録媒体の 表面に平行な方向に向けて移動させるァクチユエータと、  An actuator for supporting the base end side of the suspension and moving the suspension in a direction parallel to the surface of the recording medium;
前記記録再生ヘッドの作動を制御して、記録再生を行わせる制御部とを備えて 、る ことを特徴とする情報記録再生装置。  An information recording / reproducing apparatus comprising: a control unit that controls the operation of the recording / reproducing head to perform recording / reproducing.
PCT/JP2006/324150 2006-02-13 2006-12-04 Spindle motor and information recording/reproducing device WO2007094113A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008500405A JPWO2007094113A1 (en) 2006-02-13 2006-12-04 Spindle motor and information recording / reproducing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006035057 2006-02-13
JP2006-035057 2006-02-13
JP2006208279 2006-07-31
JP2006-208279 2006-07-31

Publications (1)

Publication Number Publication Date
WO2007094113A1 true WO2007094113A1 (en) 2007-08-23

Family

ID=38371301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324150 WO2007094113A1 (en) 2006-02-13 2006-12-04 Spindle motor and information recording/reproducing device

Country Status (2)

Country Link
JP (1) JPWO2007094113A1 (en)
WO (1) WO2007094113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873274B2 (en) * 2015-03-31 2020-12-22 Koninklijke Philips N.V. Energy generation system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244790A (en) * 1991-01-30 1992-09-01 Sanyo Electric Co Ltd Electrostatic micromotor
US20020163281A1 (en) * 2001-05-04 2002-11-07 Menachem Rafaelof Thin film motors
JP2002372039A (en) * 2001-06-12 2002-12-26 Daido Steel Co Ltd Hydrodynamic bearing device and spindle motor
JP2005287094A (en) * 2004-03-26 2005-10-13 Olympus Corp Electrostatic actuator and camera

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824122A (en) * 1987-03-02 1989-04-25 Ferrofluidics Corporation Compact magnetic fluid low pressure seal
JPH04105570A (en) * 1990-08-23 1992-04-07 Omron Corp Harmonic drive type electrostatic motor
JP3471380B2 (en) * 1992-12-28 2003-12-02 松下電器産業株式会社 Electrostatic motor
JP3631988B2 (en) * 2001-07-24 2005-03-23 義和 市山 Motor with a single conical hydrodynamic bearing balanced with shaft end magnetic attraction
US20060103382A1 (en) * 2002-09-20 2006-05-18 Takahisa Mihara Spin stand having hydrodynamic bearing motor and head/disc test device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244790A (en) * 1991-01-30 1992-09-01 Sanyo Electric Co Ltd Electrostatic micromotor
US20020163281A1 (en) * 2001-05-04 2002-11-07 Menachem Rafaelof Thin film motors
JP2002372039A (en) * 2001-06-12 2002-12-26 Daido Steel Co Ltd Hydrodynamic bearing device and spindle motor
JP2005287094A (en) * 2004-03-26 2005-10-13 Olympus Corp Electrostatic actuator and camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873274B2 (en) * 2015-03-31 2020-12-22 Koninklijke Philips N.V. Energy generation system and method
US11264920B2 (en) 2015-03-31 2022-03-01 Koninklijke Philips N.V. Energy generation system and method

Also Published As

Publication number Publication date
JPWO2007094113A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
US9366289B2 (en) Folded fluid channel for a fluid dynamic bearing motor
JP2005192313A (en) Data storage device
US20090154008A1 (en) Spindle motor and recording disk drive having spindle motor
US8467146B2 (en) Apparatus for clamping disk and motor assembly having the same
US8757883B2 (en) Disk drive device
US7122922B2 (en) Base plate for spindle motor
WO2007094113A1 (en) Spindle motor and information recording/reproducing device
US20050141136A1 (en) Spindle motor and disk apparatus provided with the same
JP2006112505A (en) Bearing mechanism, carriage assembly and magnetic disk device
JP2005045876A (en) Spindle motor and information recorder/reproducer employing it
JPH11297037A (en) Fixed magnetic disk apparatus
JP3862144B2 (en) Disk drive motor
JPH10208374A (en) Disk device
WO2007094112A1 (en) Spindle motor and information recording/reproducing device
JP2004139689A (en) Motor, and information recording and reproducing device having motor
JP2004248344A (en) Motor and disk drive
JP2004194493A (en) Spindle motor for disk drive
JP3642293B2 (en) Head actuator and disk recording / reproducing apparatus
JP2003153491A (en) Motor, method for manufacturing motor and method for manufacturing dynamic pressure bearing motor
JP2012119016A (en) Disk drive motor and disk device
JP2000082254A (en) Rotary driving device
JPH04289577A (en) Disk file device
JP4056134B2 (en) Recording disk drive
JP2003032984A (en) Information recording-reproducing device
JP2003045114A (en) Disk drive and magnetic disk recording and reproducing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833920

Country of ref document: EP

Kind code of ref document: A1