JPH04244790A - Electrostatic micromotor - Google Patents

Electrostatic micromotor

Info

Publication number
JPH04244790A
JPH04244790A JP1018291A JP1018291A JPH04244790A JP H04244790 A JPH04244790 A JP H04244790A JP 1018291 A JP1018291 A JP 1018291A JP 1018291 A JP1018291 A JP 1018291A JP H04244790 A JPH04244790 A JP H04244790A
Authority
JP
Japan
Prior art keywords
rotor
stator
electrostatic
blades
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1018291A
Other languages
Japanese (ja)
Other versions
JP2889712B2 (en
Inventor
Yukinori Kuwano
幸徳 桑野
Masato Nishikuni
昌人 西国
Akira Terakawa
朗 寺川
Yukio Nakajima
行雄 中嶋
Shinya Tsuda
信哉 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1018291A priority Critical patent/JP2889712B2/en
Priority to US07/823,459 priority patent/US5262695A/en
Publication of JPH04244790A publication Critical patent/JPH04244790A/en
Application granted granted Critical
Publication of JP2889712B2 publication Critical patent/JP2889712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the drive system for an electrostatic micromotor. CONSTITUTION:A rotor 1 comprising a plurality of blade pieces and a stator 2 comprising a multiplicity of blade pieces 4 extending oppositely to the blade pieces 3 are formed on a semiconductor substrate. Each of the blade pieces 3, 4 is provided with an electromagnetic wave/electric signal converting element which is irradiated with electromagnetic wave to produce charges for electrostatically driving the rotor.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は数mm、或るいはそれ以
下の大きさのマイクロマシンに用いられる静電マイクロ
モータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic micromotor used in micromachines having a size of several mm or less.

【0002】0002

【従来の技術】近年、マイクロマシンと称して数mm、
或るいはそれ以下の大きさの微小機械が提案され、様々
な研究開発が為されている。そのマイクロマシンを機械
的に駆動する駆動源として、シリコンなどの半導体に対
してフォトリソグラフィ技術を駆使して半導体製の回転
子と固定子とを形成し、その回転子と固定子との間に働
く静電力によって回転子を回転させる静電マイクロモー
タが試作されている(例えば「日本ロボット学会誌」8
巻4号1990年8月号63頁以降参照)。
[Prior Art] In recent years, micromachines with a size of several mm,
Micromachines of a smaller size or smaller have been proposed, and various research and development efforts have been carried out. As a drive source that mechanically drives the micromachine, a semiconductor rotor and stator are formed using photolithography technology on semiconductors such as silicon, and act between the rotor and stator. An electrostatic micromotor that rotates a rotor using electrostatic force has been prototyped (for example, "Journal of the Robotics Society of Japan" 8).
(See Vol. 4, August 1990, p. 63 et seq.).

【0003】0003

【発明が解決しようとする課題】然し乍らこの試作され
た静電マイクロモータにおける静電力は回転子の翼片の
先端と固定子片の先端との間の電荷によって発生するポ
イント間のクーロン力に依存する構成であるので、大き
な駆動力を得るには100V以上の高電圧を用いる必要
がある。ところが試作されたマイクロモータはその回転
子の直径が200μm程度で回転子、固定子間の距離が
2〜3μmと極めて小サイズであり、モータの大きさに
対して用いる電圧が高いので回転子、固定子間や隣接す
る固定子間の耐圧とかに格別の配慮を払う必要がある。
[Problem to be solved by the invention] However, the electrostatic force in this prototype electrostatic micromotor depends on the Coulomb force between the points generated by electric charges between the tips of the rotor blades and the tips of the stator pieces. Therefore, in order to obtain a large driving force, it is necessary to use a high voltage of 100 V or more. However, the prototype micromotor is extremely small, with a rotor diameter of about 200 μm and a distance between the rotor and stator of 2 to 3 μm, and the voltage used is high relative to the size of the motor. Special consideration must be given to voltage resistance between stators and between adjacent stators.

【0004】また回転駆動するために固定子に印加する
100V以上の高電圧源を必要とする上に、その高電圧
を制御するための周辺回路も大型化する問題点があった
[0004] Furthermore, in order to drive the stator, a high voltage source of 100 V or more is required to be applied to the stator, and the peripheral circuitry for controlling the high voltage is also large.

【0005】[0005]

【課題を解決するための手段】本発明はこのような課題
に鑑みて為されたものであって、回転子の複数の翼片と
、その翼片に面対向すべく延在せしめられた多数の固定
子片とを有し、これらの翼片の各表面側から同一極性の
PN接合を形成してこれらの翼片に電磁波−電気変換素
子を設け、該各素子に電磁波を照射することによって各
翼片の表面と裏面に異なった電荷を生ぜしめ、その電荷
による静電力によって回転子を回転させるものである。
[Means for Solving the Problems] The present invention has been made in view of the above problems, and includes a plurality of blades of a rotor and a plurality of blades extending to face the blades. By forming a PN junction of the same polarity from the surface side of each of these blades, providing electromagnetic wave-to-electrical conversion elements on these blades, and irradiating each element with electromagnetic waves. Different charges are generated on the front and back surfaces of each blade, and the rotor is rotated by the electrostatic force generated by the charges.

【0006】[0006]

【作用】本発明によれば、回転子と固定子とに太陽電池
などの電磁波−電気変換素子を設けると共に、その回転
子と固定子とを面対向せしめ、その対向面間に生じるク
ーロン力による駆動力を用いているので、外部から駆動
用高電圧を印加することなく、回転子、固定子に太陽光
などの電磁波を照射するだけで回転子を回転させること
ができる。
[Operation] According to the present invention, an electromagnetic wave-to-electrical conversion element such as a solar cell is provided in the rotor and stator, and the rotor and stator are made to face each other face to face, and the Coulomb force generated between the facing faces is used. Since driving force is used, the rotor can be rotated simply by irradiating the rotor and stator with electromagnetic waves such as sunlight, without applying a high driving voltage from the outside.

【0007】[0007]

【実施例】図1、図2は本発明静電マイクロモータの要
部の拡大断面図、並びに上面図であって、1は静電モー
タの回転子であり、2は固定子である。これらの回転子
1や固定子2は半導体シリコン基板をベースとし、該基
板に対してフォトリソグラフィ法、CVD法、エッチン
グ法などを駆使する既提案の手法を用いて回転子の直径
約200μm、回転子1と固定子2との間隔1〜2μm
、回転子1並びに固定子2の厚み約1μm、のサイズで
形成される。ここで既提案の構造と大きく相違するとこ
ろは、回転子1の複数の翼片3、3・・・が固定子2の
翼片4、4・・・の下面まで延長されていて、回転子1
の複数の翼片3、3・・・と、固定子2の多数の翼片4
、4・・・とが面対向しているところであり、また回転
子1の各翼片3、3・・・の表面近傍に不純物の注入な
どの方法によってpn接合5が形成されており、また固
定子2の各翼片4、4・・・の一側部の表面近傍にpn
接合6が形成されている。そしてこれらのpn接合5、
6は太陽光などの電磁波の照射を受けると電力を発生す
る太陽電池で代表される電磁波−電気変換素子7を構成
している。そして回転子1の翼片3、3・・・に太陽光
8が照射されると、図1に示すようにその表面側に+の
電荷が、裏面側に−の電荷が発生し、その異電荷によっ
て面対向した回転子1と固定子2との間に静電力が発生
する。尚、この時固定子1に設ける電磁波−電気変換素
子7はその翼片4の全面に設けるのではなく、図2の斜
線で示す如く、翼片4の片側にのみ設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 are an enlarged sectional view and a top view of essential parts of an electrostatic micromotor according to the present invention, where 1 is a rotor and 2 is a stator of the electrostatic motor. These rotor 1 and stator 2 are based on a semiconductor silicon substrate, and the rotor diameter is approximately 200 μm, and the rotation is Spacing between child 1 and stator 2: 1 to 2 μm
, the thickness of the rotor 1 and stator 2 is approximately 1 μm. Here, the major difference from the previously proposed structure is that the plurality of blades 3, 3... of the rotor 1 extend to the lower surface of the blades 4, 4... of the stator 2, and the rotor 1
a plurality of blades 3, 3... and a large number of blades 4 of the stator 2.
, 4... are facing each other, and a pn junction 5 is formed near the surface of each blade 3, 3... of the rotor 1 by a method such as implanting impurities, and pn near the surface of one side of each blade 4, 4... of the stator 2.
A junction 6 is formed. And these pn junctions 5,
Reference numeral 6 constitutes an electromagnetic wave-to-electrical conversion element 7 typified by a solar cell that generates electric power when irradiated with electromagnetic waves such as sunlight. When sunlight 8 is irradiated onto the blades 3, 3, etc. of the rotor 1, a positive charge is generated on the front side and a negative charge is generated on the back side, as shown in Fig. 1. An electrostatic force is generated between the rotor 1 and the stator 2, which face each other face to face, due to the electric charges. At this time, the electromagnetic wave-to-electric conversion element 7 provided on the stator 1 is not provided on the entire surface of the blade 4, but is provided only on one side of the blade 4, as shown by diagonal lines in FIG.

【0008】一方、一般にモータの回転子1は回転軸(
図示せず)に軸枢されているので、回転子1と固定子2
との間に発生する静電力は回転子1を固定子2側に近づ
ける力としては働かない。
On the other hand, the rotor 1 of the motor generally has a rotating shaft (
rotor 1 and stator 2.
The electrostatic force generated between the two does not act as a force to bring the rotor 1 closer to the stator 2.

【0009】この時固定子1に設ける電磁波−電気変換
素子7は図2の斜線で示す如く、翼片4の片側にのみ設
けられているので、回転子1と固定子2との間に働く静
電力は、回転子1を回転させる力として作用する。
At this time, the electromagnetic wave-to-electric conversion element 7 provided on the stator 1 is provided only on one side of the blade 4, as shown by diagonal lines in FIG. The electrostatic force acts as a force that rotates the rotor 1.

【0010】即ち、回転子11の固定子26によって被
われていない個所には+の電荷が発生し、また固定子2
1の電磁波−電気変換素子71の裏面には−の電荷が生
起されるので、回転子11には左方向の回転力が働く。 また回転子12の電磁波照射個所表面の+電荷は固定子
22の電磁波−電気変換素子72の裏面の−電荷に吸引
される。更に回転子13と電磁波−電気変換素子74、
並びに回転子14と電磁波−電気変換素子75との間に
同様に回転子1を左方向へ回転させる力が発生する。そ
の結果、回転子1は左側回転をする。
That is, positive charges are generated in the parts of the rotor 11 that are not covered by the stator 26, and the parts of the rotor 11 that are not covered by the stator 26 are
Since a negative charge is generated on the back surface of the electromagnetic wave-to-electric conversion element 71, a leftward rotational force acts on the rotor 11. Further, the positive charges on the surface of the electromagnetic wave irradiated portion of the rotor 12 are attracted to the negative charges on the back surface of the electromagnetic wave-to-electric conversion element 72 of the stator 22. Furthermore, the rotor 13 and the electromagnetic wave-electric conversion element 74,
Similarly, a force that rotates the rotor 1 to the left is generated between the rotor 14 and the electromagnetic wave-to-electric conversion element 75. As a result, the rotor 1 rotates to the left.

【0011】ここでこの回転子1と固定子2との間に働
く静電力について説明する。図3に示すように、厚さ1
μmの単結晶シリコン基板から構成された電磁波−電気
変換素子7に太陽光8を照射すると、正負の電荷が発生
し、その電荷はシリコン基板を誘電体とみなし、基板の
表裏に電磁波−電気変換素子の開放電圧を発生するため
にその電荷量Qは、
The electrostatic force acting between the rotor 1 and stator 2 will now be explained. As shown in Figure 3, thickness 1
When sunlight 8 is irradiated on the electromagnetic wave-to-electrical conversion element 7 made of a μm single-crystal silicon substrate, positive and negative charges are generated.The silicon substrate is regarded as a dielectric material, and the electric charge is transferred to the front and back of the substrate for electromagnetic wave-to-electrical conversion. In order to generate the open circuit voltage of the element, the amount of charge Q is

【0012】0012

【数1】[Math 1]

【0013】ここで図4に示す如く、回転子1と固定子
2の各々の電荷量を、面積1μm2 の点電荷とみなし
て静電吸引力Fを計算すると、
Here, as shown in FIG. 4, when the electrostatic attraction force F is calculated by considering the charge amount of each of the rotor 1 and stator 2 as point charges with an area of 1 μm2,

【0014】[0014]

【数2】[Math 2]

【0015】となり、回転子1に働くトルクTとしては
、回転子1の半径rを100μmとすると、
Assuming that the radius r of the rotor 1 is 100 μm, the torque T acting on the rotor 1 is as follows.

【0016
0016
]

【数3】[Math 3]

【0017】が得られ、回転子1は電磁波、例えば太陽
光を照射することによって回転を始める。
##EQU1## is obtained, and the rotor 1 starts rotating by irradiating it with electromagnetic waves, for example sunlight.

【0018】尚、図1、図2においては、説明の簡単の
ために回転子1が4極で固定子2が6極の構成を示した
が、これらの極数は任意に変更し得ることは当然である
In addition, in FIGS. 1 and 2, the rotor 1 has four poles and the stator 2 has six poles for ease of explanation, but these numbers of poles can be changed arbitrarily. Of course.

【0019】また電磁波−電気変換素子に照射される電
磁波としては太陽光に限ることなく、太陽光以外に、波
長の短い紫外線域の光から波長の長い赤外線域の光も同
様に用いることができ、また単位面積当りのエネルギー
密度が高い収束レーザ光を用いれば静電モータとして大
きなトルクを得ることができるであろう。
Furthermore, the electromagnetic waves irradiated to the electromagnetic wave-to-electrical conversion element are not limited to sunlight, and in addition to sunlight, light from short wavelengths in the ultraviolet range to long wavelengths in the infrared range can also be used. Furthermore, if a focused laser beam with a high energy density per unit area is used, it will be possible to obtain a large torque as an electrostatic motor.

【0020】[0020]

【発明の効果】本発明は以上の説明から明らかな如く、
回転子の複数の翼片と、その各翼片に面対向すべく延在
せしめられた多数の固定子片とを有し、これらの翼片の
各表面側から同一極性のPN接合を形成してこれらの翼
片に電磁波−電気変換素子を設け、該各素子に電磁波を
照射することによって各翼片の表面と裏面に異なった電
荷を生ぜしてその電荷による静電力によって回転子を回
転させているので、マイクロマシン外部から駆動用電源
を供給することなくモータを回転させることができる。 またモータ駆動用エネルギー供給がワイヤレス化される
ので、マイクロマシンの行動に自由度が増すと共に、そ
の応用範囲を拡大することができる。
[Effects of the Invention] As is clear from the above description, the present invention has the following advantages:
It has a plurality of rotor blades and a number of stator pieces extending to face each blade, and a PN junction of the same polarity is formed from the surface side of each blade. These blades are provided with electromagnetic wave-to-electric conversion elements, and by irradiating each element with electromagnetic waves, different charges are generated on the front and back surfaces of each blade, and the rotor is rotated by the electrostatic force caused by the charges. Therefore, the motor can be rotated without supplying driving power from outside the micromachine. Furthermore, since the energy supply for driving the motor is made wireless, the degree of freedom in the behavior of the micromachine increases and its range of applications can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明静電モータの要部の拡大断面図である。FIG. 1 is an enlarged sectional view of essential parts of an electrostatic motor of the present invention.

【図2】本発明静電モータの要部の拡大上面図である。FIG. 2 is an enlarged top view of essential parts of the electrostatic motor of the present invention.

【図3】本発明静電モータにおける電荷量算出のための
説明図である。
FIG. 3 is an explanatory diagram for calculating the amount of charge in the electrostatic motor of the present invention.

【図4】本発明静電モータにおける静電吸引力算出のた
めの説明図である。
FIG. 4 is an explanatory diagram for calculating electrostatic attraction force in the electrostatic motor of the present invention.

【符号の説明】[Explanation of symbols]

1      回転子 2      固定子 3      回転子の翼片 4      固定子の翼片 7      電磁波−電気変換素子 1 Rotor 2 Stator 3 Rotor blades 4 Stator blades 7 Electromagnetic wave-electric conversion element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板に対してリソグラフィ技術
を駆使して半導体製の回転子と固定子とを形成し、その
回転子と固定子との間に働く静電力によって回転子を回
転させる静電マイクロモータにおいて、回転子の複数の
翼片と、その翼片に面対向すべく延在せしめられた多数
の固定子片とから成り、これらの翼片の各表面側から同
一極性のPN接合を形成してこれらの翼片に電磁波−電
気変換素子を構成し、該各素子に電磁波を照射すること
によって各翼片の表面と裏面に異なった電荷を生ぜしめ
、その電荷による静電力によって回転子を回転させるこ
とを特徴とした静電マイクロモータ。
1. An electrostatic method in which a semiconductor rotor and stator are formed on a semiconductor substrate by making full use of lithography technology, and the rotor is rotated by an electrostatic force acting between the rotor and the stator. A micromotor consists of a plurality of rotor blades and a number of stator pieces extending to face the blades, and a PN junction of the same polarity is connected from the surface side of each blade. By irradiating each element with electromagnetic waves, different charges are generated on the front and back surfaces of each wing, and the electrostatic force caused by the charges causes the rotor to move. An electrostatic micromotor that rotates.
JP1018291A 1991-01-24 1991-01-30 Electrostatic micromotor Expired - Fee Related JP2889712B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1018291A JP2889712B2 (en) 1991-01-30 1991-01-30 Electrostatic micromotor
US07/823,459 US5262695A (en) 1991-01-24 1992-01-22 Micromachine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1018291A JP2889712B2 (en) 1991-01-30 1991-01-30 Electrostatic micromotor

Publications (2)

Publication Number Publication Date
JPH04244790A true JPH04244790A (en) 1992-09-01
JP2889712B2 JP2889712B2 (en) 1999-05-10

Family

ID=11743150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1018291A Expired - Fee Related JP2889712B2 (en) 1991-01-24 1991-01-30 Electrostatic micromotor

Country Status (1)

Country Link
JP (1) JP2889712B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342671B1 (en) 1999-11-15 2002-01-29 Agency Of Industrial Science And Technology Optical actuator
WO2007094112A1 (en) * 2006-02-13 2007-08-23 Seiko Instruments Inc. Spindle motor and information recording/reproducing device
WO2007094113A1 (en) * 2006-02-13 2007-08-23 Seiko Instruments Inc. Spindle motor and information recording/reproducing device
JP2016149899A (en) * 2015-02-13 2016-08-18 学校法人 関西大学 Rotation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2703256C1 (en) * 2018-12-29 2019-10-16 Николай Иванович Кузин Electrostatic motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342671B1 (en) 1999-11-15 2002-01-29 Agency Of Industrial Science And Technology Optical actuator
WO2007094112A1 (en) * 2006-02-13 2007-08-23 Seiko Instruments Inc. Spindle motor and information recording/reproducing device
WO2007094113A1 (en) * 2006-02-13 2007-08-23 Seiko Instruments Inc. Spindle motor and information recording/reproducing device
JPWO2007094113A1 (en) * 2006-02-13 2009-07-02 セイコーインスツル株式会社 Spindle motor and information recording / reproducing apparatus
JPWO2007094112A1 (en) * 2006-02-13 2009-07-02 セイコーインスツル株式会社 Spindle motor and information recording / reproducing apparatus
JP2016149899A (en) * 2015-02-13 2016-08-18 学校法人 関西大学 Rotation device

Also Published As

Publication number Publication date
JP2889712B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US5262695A (en) Micromachine
US5994638A (en) Method and apparatus for thermionic generator
Livermore et al. A high-power MEMS electric induction motor
JP3437520B2 (en) Electrostatic actuator driving mechanism, electrostatic actuator driving method, and electrostatic actuator, rotation stage, and polygon mirror using the same
BR9509323A (en) Device for producing a trap or stream of electrically charged particles of high voltage and solid state voltage generator and process for producing a high voltage generator
JPH04244790A (en) Electrostatic micromotor
JP3265479B2 (en) Optical actuator
US20040031516A1 (en) Solar electric alternating current generator
US11557949B1 (en) Propulsion system using shape-shifting member
JP2657121B2 (en) Electrostatic motor
US5610459A (en) Photovoltaic drive motor
JPS62152381A (en) Rotating power device
JP3413495B2 (en) Drives for micromachines
JP3132165B2 (en) Micro actuator
JP2001217450A (en) Solar generating device
SAKAKIBARA et al. Development of high voltage photovoltaic micro-devices for driving micro actuators
CN111232913B (en) Preparation method of rotating structure and rotating structure
JP3219469B2 (en) Optically manipulator and method of driving the same
JP6656055B2 (en) Electromechanical transducer
US11909333B1 (en) Propulsion system using shape-shifting member
JP2652086B2 (en) Micro actuator
JPH05236768A (en) Optical driving linear actuator
JPH089662A (en) Electrostatic motor
US20120242155A1 (en) Device, System and Method For Directly Generating Alternating Current Electricity From Photovoltaic Cells
CN111217321A (en) Preparation method of rotating structure and rotating structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees