JPH05236768A - Optical driving linear actuator - Google Patents

Optical driving linear actuator

Info

Publication number
JPH05236768A
JPH05236768A JP4069581A JP6958192A JPH05236768A JP H05236768 A JPH05236768 A JP H05236768A JP 4069581 A JP4069581 A JP 4069581A JP 6958192 A JP6958192 A JP 6958192A JP H05236768 A JPH05236768 A JP H05236768A
Authority
JP
Japan
Prior art keywords
stator
slider
force generating
pitch
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4069581A
Other languages
Japanese (ja)
Inventor
Kazunari Matsuzaki
一成 松崎
Toshihiro Matsuo
智弘 松尾
Masanori Suematsu
正典 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP4069581A priority Critical patent/JPH05236768A/en
Publication of JPH05236768A publication Critical patent/JPH05236768A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To obtain a miniature optical driving microactuator requiring no feeder wire nor battery for supplying energy in which the reduction of thrust due to miniaturization is low by employing Coulomb's force, functioning directly from a photoelectric conversion element, in a driving section and a floating force generating section. CONSTITUTION:A stator 1 comprises a floating force generating section 2 and a driving section 3 having a surface arranged with stripe protrusions 4 at a pitch lambda. A slider 6 comprises a floating force generating section 7 and a driving section 8 comprising unit drive sections 8a, 8b, 8c and having a surface arranged with stripe protrusions 11 at a pitch of lambda, wherein the last pitch of each unit drive section 8a, 8b, 8c is set at nlambda+lambda/3. The floating force generating sections 2 and 7 of the stator 1 and the slider 6 are then irradiated, on the back thereof, with light through light supply means 12 and 13 to float the slider 6 and then the unit drive section 8a (8b, 8C) is irradiated, on the back thereof, with light through a light supply means 14 to move the unit drive section 8a (8b, 8c). The operations are sequentially carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,光駆動による微細なア
クチュエータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine actuator driven by light.

【0002】[0002]

【従来の技術】マイクロアクチュエータの適用対象とし
て微小な空間での自律的な作業が要求されている。しか
しながら現在考えられている駆動源としては,電磁,静
電,圧電,形状記憶合金などがあるが,いずれの場合も
電圧もしくは電流を供給する必要があり,そのための供
給線を接続するかバッテリを搭載しなければならない。
このような問題を解決するためには,外部から遠隔でエ
ネルギ源を供給する方法が考えられる。その1例とし
て,光駆動によるモータが開示されている(特開平1-19
0273)。この光駆動モータは図4に示すように、界磁用
永久磁石と光供給手段とを有する固定子と、磁極と磁極
表面に設けた光電変換素子と磁極に巻回された巻線とを
有する光電変換素子の電極の両端に接続された回転子と
から構成されている。いま、光供給手段を介して光電変
換素子に光が入射すると,光電変換素子44A に発生した
電気は、巻線に流れ,例えば磁極42A の先端がN 極にな
って他の磁極の先端はS 極になる。その結果、磁極42A
と界磁用永久磁石51A が,磁極42C と界磁用永久磁石51
B が引き合って,光駆動モータの回転子4 は回転軸41を
中心にして反時計回りに回転する。次に回転してきた磁
極も光が供給されると、同じ動作を繰り返すというもの
である。
2. Description of the Related Art As an application target of a microactuator, autonomous work in a minute space is required. However, currently considered driving sources are electromagnetic, electrostatic, piezoelectric, shape memory alloy, etc., but in any case, it is necessary to supply voltage or current, so connect a supply line for that or connect a battery. Must be installed.
In order to solve such a problem, a method of remotely supplying an energy source from the outside can be considered. As one example, an optically driven motor is disclosed (Japanese Patent Laid-Open No. 1-19).
0273). As shown in FIG. 4, this optical drive motor has a stator having a field permanent magnet and a light supply means, a magnetic pole, a photoelectric conversion element provided on the magnetic pole surface, and a winding wound around the magnetic pole. The rotor is connected to both ends of the electrodes of the photoelectric conversion element. Now, when light is incident on the photoelectric conversion element through the light supply means, the electricity generated in the photoelectric conversion element 44A flows into the winding, for example, the tip of the magnetic pole 42A becomes the N pole and the tips of the other magnetic poles become S poles. Become a pole. As a result, the magnetic pole 42A
And the field permanent magnet 51A, and the magnetic pole 42C and the field permanent magnet 51A.
When B is attracted, the rotor 4 of the optical drive motor rotates counterclockwise around the rotation shaft 41. When the next rotating magnetic pole is supplied with light, the same operation is repeated.

【0003】[0003]

【発明が解決しようとする課題】しかしながら,従来の
ように電磁力を用いた回転子を駆動させる方法では,磁
極を発生させるための巻線が必要になるため,コンパク
トにすることができない。また,電磁力は体積に比例す
るので,小型にした場合、たとえば、静電力を利用した
方法に比べて、力の減少が非常に大きくなる。本発明の
目的は小型であり,かつ小型化による推力の減少の小さ
い光駆動アクチュエータを提供するものである。
However, the conventional method of driving a rotor using electromagnetic force cannot be made compact because windings for generating magnetic poles are required. Further, since the electromagnetic force is proportional to the volume, when the size is reduced, the force is greatly reduced as compared with, for example, the method using the electrostatic force. An object of the present invention is to provide an optical drive actuator that is small in size and has a small reduction in thrust due to size reduction.

【0004】[0004]

【課題を解決するための手段】そこで,本発明は,矩形
板状の光電変換素子の一側面に幅bの短冊状の突起をピ
ッチλで少なくとも6個配列した駆動部と前記短冊状の
突起の長手方向の両端に絶縁体を介して結合した光電変
換素子からなる浮上力発生部とを有するステータと、
前記ステータの駆動部に対向して矩形板状の光電変換素
子の一側面に前記ステータの突起と同じ幅の短冊状の突
起をピッチλで設け、最後のピッチのみをnλ+λ/3
(nは正の整数)とし、少なくとも2個配列した単位駆
動部を絶縁体を介して3個結合し、前記短冊状の突起の
長手方向の両端に前記ステータの浮上力発生部と対向し
て光電変換素子からなる浮上力発生部とを絶縁体を介し
て結合したスライダと、前記ステータと前記スライダの
駆動部および浮上力発生部に光を供給する手段とを備え
た構造としている。
SUMMARY OF THE INVENTION Therefore, according to the present invention, there is provided a drive unit in which at least six strip-shaped projections having a width b are arranged on one side surface of a rectangular plate-shaped photoelectric conversion element at a pitch λ, and the strip-shaped projections. A stator having a levitation force generating portion made of a photoelectric conversion element that is coupled to both ends in the longitudinal direction via an insulator,
Opposite the drive part of the stator, strip-shaped projections having the same width as the projections of the stator are provided on one side surface of the rectangular plate-shaped photoelectric conversion element at a pitch λ, and only the last pitch is nλ + λ / 3.
(N is a positive integer), and at least two unit driving units arranged in series are coupled through an insulator, and both ends of the strip-shaped protrusion in the longitudinal direction are opposed to the levitation force generating unit of the stator. The structure is provided with a slider in which a levitation force generating portion formed of a photoelectric conversion element is coupled via an insulator, and means for supplying light to the stator, the drive portion of the slider, and the levitation force generating portion.

【0005】[0005]

【作用】浮上力発生部の受光部に光を照射すると,駆動
部の突起または浮上力発生部の表面に電荷が励起され,
電荷間にクーロン力が働く。浮上部では,互いに同符号
の電荷が励起されているので,浮上部ではスライダとス
テータは反発し,浮上する。つぎに,スライダ駆動部に
光を照射すると突起には,異符号の電荷が励起されるの
で,引きつけ合い,スライダとステータ突起部のずれ量
だけ移動する。このように,電荷間に働くクーロン力を
利用しているので,巻線や鉄心を必要としないコンパク
トで推力の減少の小さいマイクロアクチュエータが可能
になる。
[Function] When the light receiving portion of the levitation force generating portion is irradiated with light, electric charge is excited on the protrusion of the driving portion or the surface of the levitation force generating portion,
Coulomb force works between charges. Since charges having the same sign are excited in the levitation part, the slider and the stator repel each other in the levitation part and float. Next, when the slider drive unit is irradiated with light, electric charges of different signs are excited in the protrusions, and the protrusions attract each other and move by the amount of deviation between the slider and the stator protrusion. Since the Coulomb force acting between charges is used in this way, a compact microactuator that does not require windings or iron cores and has a small reduction in thrust becomes possible.

【0006】[0006]

【実施例】本発明の実施例を図を用いて詳述する。図1
は本発明に用いた光電効果の説明のモデル図である。ま
ず、(a) において、光電変換素子(半導体)の表面に強
い光が照射されると,その表面に正孔と電子が励起され
る。この時,照射面と結晶内部との間にキャリアの密度
差が発生するため,(b) のように正孔および電子は反対
面へと移動する。一般に電子移動度は正孔移動度より大
きいため電子の方が先に反対面へ到着する。その結果,
(c)のように光の当たる面が正に帯電し,その反対面が
負に帯電するので,起電力が発生する。図2は,本発明
による光駆動リニアアクチュエータのモデル図で,対向
面を見開いた形にしている。図においてステータ1は,
浮上部2と駆動部3から構成され,2と3は絶縁体5に
より電気的に絶縁されている。駆動部3の表面は微細加
工などにより微小幅の短冊状の突起4がピッチλで配置
されている。ステータ1と対向したスライダ6は,浮上
力発生部7と駆動部8からなり、絶縁体9により電気的
に絶縁されている。駆動部8は絶縁体10を介して単位
駆動部8a,8b,8cから構成されている。単位駆動
部8a,8b,8cの表面には,微細加工などによりス
テータ駆動部の突起4と同様の短冊状の突起11がピッ
チλで各々、3個づつ配置されている。ただし、8a,
8b,8cの突起の最後のピッチは1+1/3λとして
いる。単位駆動部の最後のピッチは一般的にはnλ+λ
/3としてよい(nは1以上の正の整数)。次に、駆動
原理を図3により説明する。図3は図2のA−A断面図
である。いま,ステータ1の浮上力発生部2の背面とス
ライダ6の浮上力発生部7の背面に光供給手段12およ
び13により光を照射すると,ステータの浮上力発生部
2とスライダの浮上力発生部7の対向面に負の電荷が励
起される。その結果,反発力が発生してスライダ6は浮
上する。次にスライダの単位駆動部8aの背面に光供給
手段14により光を照射すると、8aの突起の表面に負
の電荷が集中する。その時,対向するステータの突起の
表面には負の電荷に引きつけられて,正の電荷が集中す
る。このため、クーロン力によりスライダの単位駆動部
8aの突起11とステータの突起4の表面は引きつけ合
い整列する(図3(a))。つぎに、浮上力発生部への
光照射を停止してスライダを着地させた後、再び浮上力
発生部への光照射を行いスライダを浮上させ,今度は単
位駆動部8bに光を照射すると,8bの突起とステータ
の突起が整列するので,スライダは1/3ピッチ左側に
移動する(図3(b))。順次このサイクルを繰り返す
ことによりスライダは,浮上,移動,着地という動作を
繰り返す。移動方向に関しては,8a→8b→8c→8
a→8b→8c5の順に光を照射した時はスライダは右
側に,また8c→8b→8a→8c→8b→8aの順に
照射した時は左側に移動する。なお、スライダの移動距
離を増すには、スライダ駆動部への光供給手段を増せば
よい。本実施例では、ステータ材料に半導体を用いた
が、たとえば、エレクトレットなど残留分極を有する誘
電体であれば、スライダ駆動部の表面を負,ステータ駆
動部の突起表面を正に帯電させうるので、同様の効果が
得られる。
Embodiments of the present invention will be described in detail with reference to the drawings. Figure 1
FIG. 3 is a model diagram for explaining a photoelectric effect used in the present invention. First, in (a), when the surface of the photoelectric conversion element (semiconductor) is irradiated with intense light, holes and electrons are excited on the surface. At this time, since a carrier density difference occurs between the irradiated surface and the inside of the crystal, holes and electrons move to the opposite surface as shown in (b). Generally, electron mobility is higher than hole mobility, so that electrons arrive at the opposite surface first. as a result,
As shown in (c), the surface exposed to light is positively charged and the opposite surface is negatively charged, so electromotive force is generated. FIG. 2 is a model diagram of the light-driven linear actuator according to the present invention, in which the facing surface is open. In the figure, the stator 1 is
It is composed of a floating part 2 and a driving part 3, and 2 and 3 are electrically insulated by an insulator 5. On the surface of the drive unit 3, strip-shaped projections 4 having a minute width are arranged at a pitch λ by fine processing or the like. The slider 6 facing the stator 1 is composed of a levitation force generator 7 and a drive unit 8 and is electrically insulated by an insulator 9. The drive unit 8 is composed of unit drive units 8a, 8b, and 8c with an insulator 10 interposed therebetween. On the surfaces of the unit drive parts 8a, 8b, 8c, three strip-shaped projections 11 similar to the projections 4 of the stator drive part are arranged at a pitch λ by three, respectively, by fine processing or the like. However, 8a,
The final pitch of the protrusions 8b and 8c is 1 + 1 / 3λ. The last pitch of the unit driving part is generally nλ + λ
/ 3 (n is a positive integer of 1 or more). Next, the driving principle will be described with reference to FIG. FIG. 3 is a sectional view taken along line AA of FIG. Now, when light is applied to the back surface of the levitation force generation portion 2 of the stator 1 and the back surface of the levitation force generation portion 7 of the slider 6 by the light supply means 12 and 13, the levitation force generation portion 2 of the stator and the levitation force generation portion of the slider are irradiated. Negative charges are excited on the facing surface of 7. As a result, a repulsive force is generated and the slider 6 floats. Next, when light is applied to the back surface of the unit driving portion 8a of the slider by the light supply means 14, negative charges are concentrated on the surface of the protrusion of 8a. At that time, negative charges are attracted to the surfaces of the opposing stator projections, and positive charges concentrate. Therefore, the surface of the protrusion 11 of the unit driving portion 8a of the slider and the surface of the protrusion 4 of the stator are attracted and aligned by the Coulomb force (FIG. 3A). Next, after stopping the light irradiation to the levitation force generating portion and landing the slider, the light irradiation to the levitation force generating portion is performed again to levitate the slider, and this time when the unit driving portion 8b is irradiated with light, Since the protrusion of 8b and the protrusion of the stator are aligned, the slider moves to the left by 1/3 pitch (FIG. 3 (b)). By repeating this cycle in sequence, the slider repeats the operations of floating, moving and landing. Regarding the moving direction, 8a → 8b → 8c → 8
The slider moves to the right when light is irradiated in the order of a → 8b → 8c5, and to the left when light is irradiated in the order of 8c → 8b → 8a → 8c → 8b → 8a. In addition, in order to increase the moving distance of the slider, it is sufficient to increase the light supply means to the slider driving section. In this embodiment, a semiconductor is used as the stator material. However, for example, a dielectric having a remanent polarization such as an electret can charge the surface of the slider drive unit negatively and the surface of the protrusion of the stator drive unit positively. The same effect can be obtained.

【0007】[0007]

【発明の効果】以上述べたように,本発明によれば,光
電変換素子により直接的に作用するクーロン力を駆動部
や浮上力発生部に用いたので、電圧を供給する接続線や
エネルギを供給するバッテリを必要とせず、小型化によ
る推力減少の小さいマイクロアクチュエータを提供でき
る効果がある。
As described above, according to the present invention, since the Coulomb force directly acting on the photoelectric conversion element is used for the driving section and the levitation force generating section, the connection line for supplying the voltage and the energy can be reduced. There is an effect that it is possible to provide a microactuator that does not require a battery to be supplied and has a small thrust reduction due to miniaturization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いた光電効果の説明モデル図であ
る。
FIG. 1 is an explanatory model diagram of a photoelectric effect used in the present invention.

【図2】本発明の光駆動リニアアクチュエータのモデル
を示す斜視図である。
FIG. 2 is a perspective view showing a model of an optically driven linear actuator of the present invention.

【図3】本発明の光駆動リニアアクチュエータの駆動原
理を示す断面図である。
FIG. 3 is a cross-sectional view showing the driving principle of the light-driven linear actuator of the present invention.

【図4】従来の光駆動モータの断面図である。FIG. 4 is a sectional view of a conventional optical drive motor.

【符号の説明】[Explanation of symbols]

1 ステータ 2 ステータ浮上力発生部 3 ステータの駆動部 4 ステータの突起 5 ステータの絶縁体 6 スライダ 7 スライダの浮上力発生部 8 スライダの駆動部 9 スライダの駆動部と光供給手段との絶縁体 10 スライダの絶縁体 11 スライダの突起 12 ステータの光供給手段 13 スライダの浮上力発生部への光供給手段 14〜16 スライダの駆動部への光供給手段 DESCRIPTION OF SYMBOLS 1 Stator 2 Stator levitation force generation part 3 Stator drive part 4 Stator protrusion 5 Stator insulator 6 Slider 7 Slider levitation force generation part 8 Slider drive part 9 Slider drive part and light supply means insulator 10 Insulator of slider 11 Protrusion of slider 12 Light supply means of stator 13 Light supply means to levitation force generating part of slider 14-16 Light supply means to drive part of slider

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】矩形板状の光電変換素子の一側面に幅bの
短冊状の突起をピッチλで少なくとも6個配列した駆動
部と前記短冊状の突起の長手方向の両端に絶縁体を介し
て結合した光電変換素子からなる浮上力発生部とを有す
るステータと、 前記ステータの駆動部に対向して矩形
板状の光電変換素子の一側面に前記ステータの突起と同
じ幅の短冊状の突起をピッチλで設け、最後のピッチの
みをnλ+λ/3(nは正の整数)とし、少なくとも2
個配列した単位駆動部を絶縁体を介して3個結合し、前
記短冊状の突起の長手方向の両端に前記ステータの浮上
力発生部と対向して光電変換素子からなる浮上力発生部
とを絶縁体を介して結合したスライダと、 前記ステータと前記スライダの駆動部および浮上力発生
部に光を供給する手段とを備えたことを特徴とする光駆
動リニアアクチュエータ。
1. A drive unit in which at least six strip-shaped projections having a width b are arranged on one side surface of a rectangular plate-shaped photoelectric conversion element at a pitch λ, and an insulator is interposed at both ends in the longitudinal direction of the strip-shaped projections. Having a levitation force generating portion formed of photoelectric conversion elements coupled together, and a strip-shaped protrusion having the same width as the protrusion of the stator on one side of the rectangular plate-shaped photoelectric conversion element facing the drive portion of the stator. With a pitch λ, and only the last pitch is nλ + λ / 3 (n is a positive integer), and at least 2
Three unit driving sections arranged in series are coupled through an insulator, and a levitation force generating section composed of a photoelectric conversion element is provided at both ends of the strip-shaped projection in the longitudinal direction so as to face the levitation force generating section of the stator. An optically driven linear actuator comprising: a slider coupled via an insulator; and a means for supplying light to the stator, a drive unit and a levitation force generation unit of the slider.
JP4069581A 1992-02-18 1992-02-18 Optical driving linear actuator Pending JPH05236768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4069581A JPH05236768A (en) 1992-02-18 1992-02-18 Optical driving linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4069581A JPH05236768A (en) 1992-02-18 1992-02-18 Optical driving linear actuator

Publications (1)

Publication Number Publication Date
JPH05236768A true JPH05236768A (en) 1993-09-10

Family

ID=13406925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4069581A Pending JPH05236768A (en) 1992-02-18 1992-02-18 Optical driving linear actuator

Country Status (1)

Country Link
JP (1) JPH05236768A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744821A2 (en) * 1995-05-26 1996-11-27 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
US6342671B1 (en) * 1999-11-15 2002-01-29 Agency Of Industrial Science And Technology Optical actuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744821A2 (en) * 1995-05-26 1996-11-27 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
EP0744821A3 (en) * 1995-05-26 1996-12-04 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
US5869916A (en) * 1995-05-26 1999-02-09 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
US6342671B1 (en) * 1999-11-15 2002-01-29 Agency Of Industrial Science And Technology Optical actuator

Similar Documents

Publication Publication Date Title
US3670189A (en) Gated permanent magnet motor
US7148596B2 (en) Magnetic rotating motor generator
KR100674286B1 (en) Rotary electric motor having at least two axially air gaps separating stator and rotor segments
US20100164660A1 (en) Method and apparatus for coil-less magnetoelectric magnetic flux switching for permanent magnets
JPH0678566A (en) Electrostatic actuator
JPH0349554A (en) Linear motor
JP2006523081A (en) Linear generator having improved magnet and coil structure and manufacturing method
US20150054373A1 (en) Commutatorless and brushless dc machine with stationary armature and method of operating the same
US4303845A (en) Thermionic electric converter
US20040150289A1 (en) Universal motor/generator/alternator apparatus
RU2219641C2 (en) Multipurpose electric motor
JP4276268B2 (en) Single magnetic field rotor motor
JPH05236768A (en) Optical driving linear actuator
Favrat et al. A 1.5-V-supplied CMOS ASIC for the actuation of an electrostatic micromotor
JPS62126856A (en) Linear motor
JPS586062A (en) Driving device
JPH06113563A (en) Electrostatic actuator
CN110994928B (en) Torque-lifting and magnetic-regulating piano type composite rotor structure
JPH0947042A (en) Electrostatic actuator
KR20110116371A (en) Disc type electric power module which serves as generator
JPS58170355A (en) Magnetic power engine generator
JPH10164822A (en) Permanent motor and motor to which it is applied
RU2112310C1 (en) Translational-displacement drive
SU1483559A1 (en) Dc multipole machine
JP4258122B2 (en) Generator