WO2007091589A1 - 地盤情報を得る調査方法 - Google Patents

地盤情報を得る調査方法 Download PDF

Info

Publication number
WO2007091589A1
WO2007091589A1 PCT/JP2007/052098 JP2007052098W WO2007091589A1 WO 2007091589 A1 WO2007091589 A1 WO 2007091589A1 JP 2007052098 W JP2007052098 W JP 2007052098W WO 2007091589 A1 WO2007091589 A1 WO 2007091589A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
resistor
shear
force
penetration
Prior art date
Application number
PCT/JP2007/052098
Other languages
English (en)
French (fr)
Inventor
Yoshito Maeda
Yoshinori Toyooka
Michiaki Sakate
Katsuo Sakai
Original Assignee
Kiso-Jiban Consultants Co., Ltd.
Doyu Daichi Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiso-Jiban Consultants Co., Ltd., Doyu Daichi Co., Ltd. filed Critical Kiso-Jiban Consultants Co., Ltd.
Priority to US12/223,774 priority Critical patent/US20100024535A1/en
Priority to EP07708142A priority patent/EP1988217A1/en
Publication of WO2007091589A1 publication Critical patent/WO2007091589A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/022Investigation of foundation soil in situ before construction work by investigating mechanical properties of the soil
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/066Special adaptations of indicating or recording means with electrical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/24Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use

Definitions

  • the present invention relates to an investigation method for obtaining ground information for in-situ ground investigation for obtaining ground information such as shear strength and deformation coefficient of ground by inserting a resistor into the ground.
  • Electric static cone penetration test There is an experiment. The predecessor of this test method is the Dutch double-pipe cone penetration test, but by measuring the friction strength f and the pore water pressure Ud during penetration in addition to the cone penetration resistance value q,
  • Charts are used to categorize empirically.
  • a resistor having multiple ground information sensors (earth pressure, pore water pressure, etc.) to be sought in the penetration depth direction is penetrated into a pipe of the same diameter at a constant speed.
  • a multi-stage information sensor force that pressurizes a diametrically expandable pressure cell later, or in the case of displacement control, the displacement and time to be controlled
  • a multi-stage information sensor with a soil pressure gauge is inserted at a constant speed into a penetrating body with a taper equivalent to the relationship (the diameter is so large that the penetration is later! / Is a width!).
  • additional devices for reducing the penetration resistance of these multistage information sensors includes step blades that attach earth pressure sensors to intrusion plates and increase the thickness of the plate in order upwards, and taper blades that continuously increase the plate thickness and measure earth pressure. is there.
  • the in-situ vane shear test shown in Fig. 7 is an investigation method mainly for soft and viscous ground, and a cross-shaped vane (10) is connected to the outer tube of a double tube rod (11).
  • the strength constant C can be measured directly by pushing it into the ground and rotating it with an inner pipe to shear the ground into a cylindrical shape.
  • the aforementioned N vane is a combination of SPT and this vane test. As described above, none of the survey methods in Figs. 4 to 7 can measure C ⁇ E directly.
  • the investigation method shown in Fig. 8 is an in-hole horizontal loading test for loading the borehole wall.
  • a pressurized cell (12) that also serves as a rubber tube is installed in the borehole, and a ground device (13) is used.
  • a method for measuring the deformation coefficient E of the ground by expanding the cell pressure and expanding the pressure and pore diameter ing includes a pre-boring method in which a pressurized cell is inserted into the hole after boring and a self-boring method in which it is inserted while excavating in the pressurized cell.
  • FIG. 9 is a drawing showing a measurement tube (14) with a shear plate protruding so as not to slip on the outside of the pressurizing cell and having a strip-like shape with a variable hole diameter. Apply force (15) and measure the shear strength. There is an in-hole (wall) pressurized shear test method to obtain C ⁇ E by repeatedly increasing the pressure and repeating the shear test. From the above, the method that can measure C ⁇ E in a single test is the force that is only in the pressure shear test in the hole. This requires boring and is inefficient, such as taking a long time for measurement.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 63-297621 Combined penetration test and vane test equipment
  • Patent Document 2 JP-A-57-17978 Ground exploration method and apparatus
  • Patent Document 3 Japanese Patent Laid-Open No. 57-184116 Ground Test Method and Apparatus
  • Patent Document 4 JP-A-57-184117 Friction Reduction Device for Ground
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-20268 Resistor Intrusion 'Rotary Ground Exploration Device
  • Patent Document 6 Japanese Unexamined Patent Publication No. 47-44930
  • Patent Document 7 Japanese Patent Laid-Open No. 2001-32252 In-hole loading test method and functional hole-holding tube type in-hole loading test apparatus
  • Patent Document 8 JP-A-8-285747 In-hole shear test method and apparatus for soft rock
  • Non-patent document 1 JIS A 1219 standard penetration test method
  • Non-Patent Document 2 JIS A 1220 Dutch double-pipe cone penetration test method
  • Non-Patent Document 3 JIS A 1221 Swedish Sounding Test Method
  • Non-Patent Document 4 Geotechnical Society Standard JGS 1411 In-situ Vane Shear Test Method
  • Non-Patent Document 5 Geotechnical Society Standard JGS 1421 In-hole Horizontal Loading Test Method
  • Non-Patent Document 6 Geotechnical Society Standard JGS 1431 Portable Cone Penetration Test
  • Non-Patent Document 7 Geotechnical Society Standard JGS 1435 Electric Static Cone Penetration Test
  • Non-Patent Document 8 Former Japan Highway Public Corporation Standard In-situ shear friction test SGIFT Invention disclosure
  • the first problem is that “a test method capable of measuring the design ground constant in a single test” is desired.
  • SPT and cone penetration tests which are most often used today, only estimate the design constants using the N value and qt force indirect / relative methods.
  • the resistance value related to the strength of the ground such as its penetration resistance, was measured, and a large fracture area (16 in Fig. 10) was generated around the conical resistor depending on the ground characteristics.
  • the second problem is that “It is possible to investigate from soft ground force to medium-hard ground with the same basic principle, and with high accuracy, the detailed survey and the formation of the strata between them are confirmed quickly. It is hoped that it can be applied to surveys and outline surveys. At present, depending on the type and hardness of the target ground, the required survey accuracy, etc., it is possible to combine survey methods with different basic principles, such as N value for impact penetration or qt for static cone penetration! /, Therefore (see Fig. 4 to Fig. 9), it must be linked to the interpretation of the ground information obtained! /
  • the third problem is to be able to measure “almost continuously” and “speedy” in the depth direction, and to be “low cost”.
  • the test time per measurement point is long and it can be measured only every 1 to several meters in the depth direction.
  • the measurement specifications of the main in-situ tests shown in Figs. 4 to 9 are basic specifications based on the assumption that manual work and the operator should record them visually.
  • the rod is repeatedly raised and lowered, so if the speed is increased, There is a fundamental problem in specifications such as a sharp drop in measurement accuracy due to the collapse of the hole wall.
  • the fourth problem is that "the penetration resistance reaction force device is minor and the penetration ability is large” is required.
  • the problems with the conventional cone penetration test method are listed below.
  • the measuring instrument penetration resistor
  • meter pitch Intrusion type that can measure at intervals of several centimeters to several tens of centimeters.
  • the equipment is light and the penetration capability is large
  • the striking method is usually a force that uses the collision energy between metals, such as SPT.
  • Claim 1 of the present invention is an investigation method in which a resistor is attached to the tip of a rod and penetrated into the ground to obtain ground information.
  • the resistor has blades that rotate to shear the ground. Therefore, the blades are oriented in the same direction as the penetration direction so as not to disturb the ground when penetrating, and the number of blades may be one in special cases, but usually a plurality of blades are required to be axisymmetric.
  • Height (length) H depends on the total length of the resistor and the number of measurement units, and is about several centimeters to 10 centimeters.
  • the blade width (the width of the convex plate protruding outward from the resistor at right angles) B is 1 mm to several millimeters.
  • the ground is gradually deformed in the horizontal direction, thereby increasing the lateral ground reaction force P, and the combined force of this deformation ⁇ and reaction force P
  • the resistor In order to obtain the deformation coefficient E, the resistor must have an appropriate angle.
  • the angle In order to measure the shear constant C ⁇ of the ground, the angle must be such that shear failure occurs at the set Pv and fracture surface.
  • the inclination angle was set to 0 ⁇ 5 ° . Even if the resistor satisfies this condition, the amount of deformation of the ground in the lateral direction when the resistor is lengthened ⁇
  • the ratio between the initial radius ro and ⁇ is within 1 to 10%.
  • a frustum including a defect cross-sectional shape of 5 degrees or less or a resistor having an arcuate member force will be described. Since it is a very acute resistor, its tip is not realistic in the conical shape because it tends to break. And if the tip is sharp, the ground is not a homogeneous body, so it will bend and penetrate (also a problem with the prior art). Therefore, a frustum-shaped resistor with the top cut off is the basis. This can be applied by drilling the inside as a hollow shape (self-boring type SB type) or by penetrating into a slightly smaller diameter boring hole (pre-boring type trimming method PBT type). Based on our experience, it is not the best method for measuring speed and equipment.
  • FIG. 1 An example of the vane shearing method will be described with reference to Figs. This figure is “Hollow This shows the resistance part of the "conical-penetration pressurization type vane shear test device".
  • the resistor is a hollow frustoconical shape, and the unit (19) has an outer taper of ⁇ ⁇ 5 ° to reduce the disturbance of the outer ground and is connected to the load transmission tube.
  • a dummy blade (20) is attached to the top (to eliminate resistance at the lower end of the measurement blade).
  • the resistor body is in the shape of a trapezoid with ⁇ 3 °. This is divided into three equal parts, and the pressure shearing unit 1,2,3 (21,22,23) has circular blades (30) with a lateral width B each. The four pieces on the circumference and their respective queues are attached in the same line. The top is the upper dummy unit (24) with dummy feathers.
  • the pressure shear unit is divided into two parts, one is the main rotating unit (26) that is joined to the load transfer tube with the torque transmission key (25), and the other is the radial joint pin (28). It is a passive rotation unit (29) with a degree of freedom in the rotation direction.
  • the resistor When the load transfer pipe penetrates the resistor, the resistor receives a pulling force from the shear unit, and when the pressurized shear mute and dummy unit are dragged downward, a lateral ground reaction force P is generated concentrically in each unit. This is measured by two load cells (27) as the circumferential stress (the same value in theory). This measurement pressure also gives the normal stress Pv that acts on the shear surface around the blade.
  • the load transmission tube is rotated, the rotational force is transmitted from the main rotating unit to the passive rotating unit, and the resistance of the passive rotating unit is shown in the load cell, from which the shear resistance torque and shear strength can be calculated. In this way, the EC ⁇ force can be obtained in the depth direction by repeating the resistor penetration rotation.
  • Claim 2 of the present invention is specifically attached to "a resistor having a rough side surface in which a part or all of the side surface of the resistor is a shear surface and the ground in contact with the surface does not slip". Therefore, the average surface roughness and the average of the height from the valley of the uneven surface to the peak should be 1/2 or more of the average particle diameter of the ground to be measured.
  • the side of the resistor that is normally used is machined, and the force is finished to make it smoother.
  • the side of the resistor is made rough so as not to slip, and only the penetration increases the shear strength in addition to E. To try to measure.
  • the surface of the rough shear surface is an average roughness of 1Z2 or more of the average particle diameter of the measured ground with reference to the results of previous research (the uneven valley force also slips at the boundary surface by ensuring the level of the mountain height) In contrast to claim 1, it is continuous in the depth direction. Therefore, it is necessary to rotate, so the survey speed is increased by the amount, but the peak strength is not the peak strength, but the residual strength equivalent value ⁇ r C ⁇ . Power Useful research method.
  • An angle formed between the penetration direction and the side surface of the resistor is a trapezoidal shape including a defective cross-sectional shape of 5 ° or less from the tip of the resistor, and an H-shaped cross-sectional force having a flange angle of 5 ° or less.
  • the difference between claim 1 and ⁇ penetrate the resistor into the ground '' is not rotational shearing, so it is not necessary to make the side face circular (in the case of equal displacement on the circumference with respect to ⁇ and in part) In the case where only displacement occurs, the lateral ground reaction force is strictly different).
  • FIGS. This figure shows the resistor part of the “defect cross section resistor penetration pressurizing rough surface shear test device”.
  • Figures 14 to 26 correspond to Claim 2 in Figures 14, 15, 26 and 16, 16, and 18, respectively.
  • FIG. 14 is a longitudinal sectional view when the resistor is cut in the longitudinal direction at the center of the shear plane.
  • Figure 18 shows the cross section at the position indicated by the arrow.
  • an H-shaped cut is also shown in Figure 26.
  • the penetration rod is connected to the rod joint (31) of the resistor head, and this pipe force is also transmitted to the two arcuate members via the branch joint (32).
  • the shear surface of the arc-shaped member has the same width from top to bottom, but the radius of curvature of the outer surface decreases toward the bottom (assums an arc shape from the center of the member).
  • the outermost pressurized shear material (33) is composed of 4 units, and each has a built-in instrument for measuring the lateral ground reaction force P.
  • P is measured by receiving the P acting on the pressure shearing material on both sides in the hole that penetrates the connecting material with the fixing screw (46), and preventing it from being buckled and connected to the connecting rod (48) that has a centizer. Measure the generated compression force with the gauge for P (47).
  • Pressurized shear material is narrowed into a T shape as shown in the figure, and the stress is measured near the center of the plate, excluding the curvature.
  • the affixed material is placed on the height adjustment plate (49), and fixed to the load transmission plate directly above the shoe with the fixing pin (50).
  • the tension gauge is cured with a waterproof cushion, and the lid (54) is fixed with four screw holes (53) to smooth the outer periphery.
  • the pressure shearing material has a surface with a mean roughness of 0.5 mm, and both ends are pressurized shear materials on both sides of the load transmission plate as shown in FIG. A pressure shearing material is sandwiched between them so as to be the same height as the thickness, and a slide pin (56) is inserted from the side to slide up and down, but the load transmitting plate force is not separated. In addition, the upper part is made to sink into the lower surface of the branch joint so that the compressive force does not work when it is pulled up (not shown). In addition, a thin sliding sheet (35) is sandwiched between the pressure shear material and the load transmission plate, and the connecting surface of the member that protrudes to the surface is protected with an elastic seal (44) to prevent intrusion of mud etc. Has been.
  • FIG. 26 shows a conceptual diagram when an H-shaped member is used instead of an arc-shaped member.
  • Fig. 27 is a general view showing a rod (3) with a resistor (62) attached to the tip of the rod (3) and penetrating by hammering.
  • a hammer suspension rope (58) with a hammer (5) and a hammer sensor (57). )
  • Fig. If you drop the hammer, various measurements will be started for a few seconds, triggered by the drop start time.
  • the automatic detachable knocking head (61) is also lifted by the connecting rope (59).
  • the knocking head is automatically fixed to the rod. The hammer's striking force is transmitted to the rod.
  • the non-repulsive cushion material (60) is put on the upper surface of the knocking block to increase the transmission time of impact energy by about 10 times. (Time adjustment can be applied to various grounds by changing the thickness of the cushion material. ). As a result, it is possible to measure the information of various sensors several times, and it is also a noise countermeasure.
  • FIG. 28 shows an example of a mechanism for facilitating penetration by reducing friction on the surface of the resistor (other than its shear surface). It is housed inside the resistor or inside the rod case (64) (the device case is also used as a rod).
  • the cylinder (69) and the expansion bag (63) are filled with lubricating fluid (70) and
  • the conical piston (68) has a spring (65) with a pipe fixed to the top of the piston as a support and a perforated partition plate (67) integrated with the cylinder (67) In 66), the piston is in contact with the lower surface of the perforated partition plate at the top of the cylinder.
  • the striking force is transmitted to the perforated partition plate via the rod, and the piston becomes a downward force that is the product of its mass and acceleration, compressing the spring and discharging the lubricating fluid from the fluid injection flow path (71) (front end In order to prevent reverse flow of groundwater, etc., a check valve is attached).
  • the fluid injection flow path (71) front end In order to prevent reverse flow of groundwater, etc., a check valve is attached.
  • the fluid in the expansion / contraction bag enters the cylinder through the perforated partition plate.
  • the check valve (73) force also flows into the lower cylinder of the piston through the internal flow path (72) provided in the piston from the force S that the piston does not slowly rise by the spring force.
  • the expansion / contraction back is under atmospheric pressure (water pressure when water is injected), so the expansion / contraction back can be easily contracted.
  • the surface is tribo-coated or a hard self-sliding material is used.
  • the resistor of the present invention is a “penetrating shear type” that can be obtained only by penetration as described later, and that can provide an approximate value at the highest speed. Since the latter is measured at the representative depth of the same strata with a large layer thickness, most of the speed can be investigated with the former, so it is necessary where necessary. It is now possible to perform high quality information in one shot. There is a big difference in accuracy between the conventional and detailed surveys, which are completely different from the conventional methods.
  • FIG. 1 is a diagram schematically showing the principle of the present invention.
  • FIG. 2 is a diagram schematically showing the principle of the present invention.
  • FIG. 3 is a diagram schematically showing the principle of the present invention.
  • FIG. 4 A schematic diagram of the current ground survey method for clarifying the concept of the present invention.
  • FIG. 6 A schematic diagram of the current ground survey method for clarifying the concept of the present invention.
  • FIG. 7 A diagram schematically showing the current ground survey method for clarifying the concept of the present invention.
  • FIG. 8 A diagram schematically showing the current ground survey method for clarifying the concept of the present invention.
  • FIG. 9 A diagram schematically showing the current ground survey method for clarifying the concept of the present invention.
  • FIG. 10 A diagram schematically showing the proposed ground survey method for clarifying the concept of the present invention.
  • FIG. 16 is a detailed view of shear stress measurement according to the second embodiment of the present invention.
  • FIG. 21 is a side view of a third embodiment of the present invention.
  • FIG. 22 is a detailed view of shear stress measurement according to the third embodiment of the present invention.
  • FIG. 26 is a cross-sectional view of the fifth embodiment of the present invention.
  • FIG. 27 is an overall configuration diagram of a sixth embodiment of the present invention.
  • FIG. 28 is a sectional view of a circulating fluid leaching device according to a sixth embodiment of the present invention.
  • Double tube rod 12: Pressurized cell: Pressurized cell pressurization measuring device, 14: Measuring tube,
  • Pressure shear unit 22: Pressure shear unit,: Pressure shear unit, 24: Dummy unit,: Torque transmission key, 26: Primary rotation unit,: Load cell, 28: Radial joint pin,: Passive rotation unit, 30: Feather,
  • FIGS. This figure shows the resistor part of the "Pressure-type rotary shear test device for chipping of defective cross section resistor".
  • Fig. 14, Fig. 21, Fig. 15, Fig. 26 Fig. 19, Fig. 22, Fig. 23 corresponds to the force claim 1 consisting of Fig. 19, Fig. 26, Fig. 20, Fig. 22 and Fig. 23.
  • FIG. 19 is a longitudinal sectional view when the resistor is cut in the longitudinal direction at the center of the shear plane.
  • Figure 20 shows the cross section at the position indicated by the arrow.
  • the penetrating rod is connected to the rod joint (31) of the resistor head, and the penetrating input is transmitted to the two arcuate members via this pipe force branch joint (32).
  • the shear surface of the arc-shaped member is the same width from top to bottom.
  • the radius of curvature of the outer surface of the force is smaller toward the bottom (assuming an arc from the center of the member).
  • the outer pressure plate (34) consists of four units, each of which incorporates an instrument for measuring the lateral ground reaction force P.
  • the measurement of P occurs in the connecting rod (48) with buckling prevention and centrizer that receives P acting on the pressure shearing material on both sides in the hole that penetrates the connecting material with the fixing screw (46). Measure the compressive force with a gauge for P (47).
  • the penetration input of the resistor is transmitted from the aforementioned branch joint to the tip of the shear and the pressure shear material via two load transmission plates (36) integrated with the connecting material.
  • the pressure plate has a blade (41) joined to each of the 4 units.
  • the blade of the bottom unit has a stationary earth pressure blade (42) with a width B larger than the others. This is to measure the shear resistance under static earth pressure, and to counteract some disturbance due to penetration of the shear and the increase in lateral ground reaction force due to the average diameter of this unit being slightly larger than the shear diameter. is there.
  • the ground is sheared in an arc shape by the blades.
  • the upper dummy blade (40) and the lower dummy blade (43) are attached.
  • the rotational shear resistance torque is such that the pressure shear material is thin for each unit and is attached to the load transmission plate with the sliding sheet (35) interposed therebetween.
  • 22 is a side view with the lid (54) removed
  • FIG. 23 is a cross-sectional view at the center.
  • the surface of the pressed sand material is smooth and slippery, and the left end is narrowed into a T shape as shown in the figure, and the front and back sides are cut to measure the stress near the center of the plate.
  • a thin flat plate with tension gauges (52) attached on both sides is placed on the height adjustment plate (49), and fixed to the left end of the load transfer plate with the fixing pin (50). .
  • the tension gauge is cured with a waterproof cushion, the lead wire is pulled out through the cable lead-out hole (51) to the cable hole (37), and the lid is fixed with four screw holes (53) to smooth the outer periphery.
  • the edge of the load transmission plate is thickened to the height of the blade, and the blade is joined to the blade by the slide pin (56) via the cushion sheet. It is a flexible joint. Therefore, when the load transmission plate is rotated and the ground is sheared by the blades, tension is generated in the pressure shear material via the fixed pin.
  • the upper end of the pressure shear member of the uppermost unit is made to enter the lower surface of the branch joint (not shown) so that a compressive force does not work when the resistor is pulled up.
  • the lower end surface of the lowest pressure shear member is also embedded in the upper portion of the shoe (not shown).
  • the connecting surface of the members that come out on the surface is protected with an elastic seal (44) to prevent the intrusion of mud.
  • the cables of the various sensors are pulled up to the rod joint through the cable hole (37) opened near the boundary between the connecting material and the load transmission plate, and from there, the cable is pulled up to the ground through the penetration rod (not shown). Connect to the measuring device (not shown).
  • FIG. 24 is a vertical cross-sectional view
  • FIG. 25 is a cross-sectional view. It is a device that can selectively use the intrusion shear type and the rotary shear type according to the situation even in the ground of various geological structures without replacement. Furthermore, by combining the impact penetration and the lubricating fluid leaching method of claim 3 shown in FIGS. 27 and 28, the device can be applied to medium-hard ground.
  • Geotechnical information is indispensable for the design of all architectures and civil engineering structures.
  • the relationship with the ground is also important in these construction, construction and repair.
  • More advanced technologies are required for Sarasako, earth and sand disasters, earthquake disaster response, and disaster prevention.
  • This invention makes it possible to solve problems related to in-situ testing, which is an important division of industrial ground surveys, that is, to change the typical method in this field and to change generations.

Abstract

 本発明は、ロッドの先端に抵抗体を装着し、これを地中に貫入して地盤情報を得る調査方法で、貫入方向と同一方向に羽根を付けた抵抗体の側面と貫入方向となす角度が抵抗体先端部から上方外側に5度以下の欠損断面形状を含む円錐台或いは弧状部材からなる抵抗体を地中に貫入して複数の横方向地盤反力を計測し、かつその深度で羽根付の抵抗体を回転して複数の地盤せん断力を測定することで地盤の強度と変形に関する地盤情報を求める地盤情報を得る調査方法で、地盤調査で求めようとする主たる情報であるCφEなどを1種類の装置で、調査深度まで上げ下げ無しで貫入しながら、スピーディに、かつ多様な地盤に適用可能で軽量な原位置地盤調査を行うことができる。

Description

明 細 書
地盤情報を得る調査方法
技術分野
[0001] 本発明は、抵抗体を地中に貫入して、地盤のせん断強度と変形係数などの地盤情 報を求める原位置地盤調査用の地盤情報を得る調査方法に関する。
背景技術
[0002] 抵抗体を地中に貫入することで地盤を横方向に Δだけ変形させ、横方向地盤反力 P を発生させる (図 1)。その応力状態で地盤をせん断すると、せん断強度はて =C+Pv * tan φで示され (図 2,3)、横方向地盤反力 Pからせん断面に作用する垂直応力 Pv( 地下水がある場合は水圧を除く有効応力)を算定する。粘性土は Pvに関係しない粘 着力 Cが主体の地盤であり、砂質土は Pvに比例する強度で内部摩擦角 φの関数で 示され、中間土は Cと φを有する。地盤に関わる設計では地中応力が地盤調査時と は異なるので、じと φの両方が必要になる。また、この最大せん断強度の他に破壊後 の残留強度て rを必要とする場合もある。さら〖こ、地盤の変形係数 Eも重要な情報で あり、 Eは地盤の変形量 Δと変形によって発生した横方向地盤反力力 求まる定数 である。以上より、構造物などの設計に必要な主たる力学的地盤情報は、 Ο φ Εの 3 種類となる。
[0003] 原位置地盤調査の代表的な手法として、最も広く用いられている調査法には、図 4に 示す標準貫入試験(SPT)がある。この調査法は,ボーリングを行い、ボーリングロッド、( 3)に取り付けたノッキングヘッド (4)をノ、ンマ (5)で打撃し、孔底 (1)から鋼製のノイブ状 抵抗体 (2)を 30cm貫入するのに必要な打撃回数 (Ν値)を測定するものである。類似 のものには、パイプの外周に羽根をつけた抵抗体を打ち込んでから回転して N値の 他に現地盤の水平応力状態に近い Pv下でのせん断強度てを測定する Nベーン法 がある。また、簡易なものとして、ボーリングせずにパイプの代わりにコーン力もなる抵 抗体を打ち込むものがある(動的コーン貫入試験)。
[0004] 図 5は先端角度 2 0 =60° ( Θ:貫入方向に対する角度)のコーン抵抗体 (6)をロッド (7 )の先端につけて静的 (打撃や振動によらない)に貫入する電気式静的コーン貫入試 験がある。この試験法の前身はオランダ式二重管コーン貫入試験であるが、コーン貫 入抵抗値 qの他に摩擦強度 f及び貫入時の間隙水圧 Udを測定することで地盤の種
t
類分けを経験的に行うチャートが利用されている。また、非常に簡易な類似の調査法 として、測定者の体重で押し込むコーン先端角度 2 Θ = 30° のポータブルコーン貫 入試験がある。
[0005] コーン貫入試験関連特許には、同一直径のパイプに、求めようとする地盤情報セン サー (土圧、間隙水圧など)を貫入深度方向に複数個装着した抵抗体を定速で貫入 して情報の時間的変化を求めること、あるいは直径方向に伸縮自在の加圧セルを後 方ほど高圧にした多段式情報感知器力 なる貫入抵抗体、または変位制御の場合 は制御すべき変位と時間関係に相当するテーパーの付いた貫入体 (貫入が後になる ほど直径ある!/、は幅の大き!、もの)に、ある間隔で土圧計を付けた多段式情報感知 機を定速で貫入するもの、これらの多段情報感知器の貫入抵抗を低減するための付 加装置などに関するものである。このほかに非特許文献として貫入用の板に土圧セ ンサーを装着し平滑な板厚を上方ほど順次厚くするステップブレード、連続的に板厚 を厚くして土圧を測定するテーパーブレードなどがある。
[0006] 図 6に示すスウェーデン式サゥンデイングは、四角錐を捩った抵抗体 (8)に錘 (9)を載 せて沈下させる時の荷重と沈下の関係、及び lOOKgfの荷重で沈下しない地盤では 回転させて沈下量と回転数から地盤の硬軟を測定する方法で、戸建住宅の地盤調 查で良く用いられている。この試験法は、関連特許に見られるように、基本的試験仕 様は変えずに自動化が進められて!/、る。
[0007] 図 7に示す原位置べーンせん断試験は、主に軟弱な粘性土地盤を対象とする調査 法で、十字型のベーン(10)を二重管ロッド(11)の外管で地中に押し込み、内管でこ れを回転させて地盤を円筒状にせん断することで強度定数 Cを直接測定することが できる。前述の Nベーンは SPTとこのベーン試験を組み合わせたものである。以上、 図 4〜図 7のいずれの調査法も C φ Eを直接測定できるものはないのが現状である。
[0008] 図 8に示す調査法は、ボーリング孔壁を載荷する孔内水平載荷試験で、ゴムチュー ブカもなる加圧セル( 12)をボーリング孔内に設置し、地上の装置で( 13)でセルをカロ 圧膨張させ、圧力と孔径変化量力 地盤の変形係数 Eを測定する方法として定着し ている。この試験法にはボーリング後に孔内に加圧セルを挿入するプレボーリング法 と加圧セル内で掘削しながら挿入するセルフボーリング法とがある。
[0009] 図 9は、上記加圧セルの外側に短冊状にした孔径変化自在のスリップしな 、ように突 起をつけたせん断板を外装した測定管(14)を加圧した状態で引抜力(15)を作用さ せ、せん断強度てを測定する。加圧を順次大きくしてせん断試験を繰返し行うことで C φ Eを求める孔内 (壁)加圧せん断試験法がある。以上から、 C φ Eを一度の試験で 測定できる方法は孔内加圧せん断試験のみである力 これにはボーリングを必要とし 、測定に長時間を要することなど非効率的な面ある。
特許文献 1 :特開昭 63— 297621 貫入試験とベーン試験併用装置
特許文献 2 :特開昭 57— 17978 地盤探査法及びその装置
特許文献 3:特開昭 57— 184116 地盤試験方法及びその装置
特許文献 4:特開昭 57— 184117 地盤における摩擦低減装置
特許文献 5:特開 2001— 20268 抵抗体貫入'回転式地盤探査装置
特許文献 6 :特開昭 47— 44930 地盤のせん断試験装置
特許文献 7:特開 2001— 32252 孔内載荷試験方法と機能性保孔管式孔内載荷 試験装置
特許文献 8:特開平 8— 285747 軟質岩盤用の孔内せん断試験方法及び装置 非特許文献 1 :JIS A 1219 標準貫入試験方法
非特許文献 2 :JIS A 1220 オランダ式二重管コーン貫入試験方法
非特許文献 3 :JIS A 1221 スウェーデン式サゥンデイング試験方法
非特許文献 4:地盤工学会基準 JGS 1411 原位置べーンせん断試験方法 非特許文献 5 :地盤工学会基準 JGS 1421 孔内水平載荷試験方法
非特許文献 6 :地盤工学会基準 JGS 1431 ポータブルコーン貫入試験
非特許文献 7 :地盤工学会基準 JGS 1435 電気式静的コーン貫入試験
非特許文献 8:旧日本道路公団規格 原位置せん断摩擦試験 SGIFT 発明の開示
発明が解決しょうとする課題
[0010] 第 1の課題は、「設計地盤定数 を一回の試験で測定可能な試験法」が望まれ て!ヽることである。現在最もよく用いられて!/ヽる前述の SPTやコーン貫入試験は N値 や qt力 間接的 ·相対的手法で設計定数を推定しているに過ぎない。さらに、コーン 貫入試験で、図 10,図 11に示すように、地盤工学的な地盤定数を求めようとするもの ではなぐ直感的に貫入しやすい角度のコーンを選び(2 Θ = 60° など)、その貫入 抵抗力ゝら地盤の強度に関係する抵抗値を測定していたもので、円錐状抵抗体の周り には地盤特性によって異なる大きな破壊領域(図 10の 16)が生じるため、粘性土で あっても粘着力と貫入抵抗値とは比例しないことが立証されている。また、 Nベーン試 験からは τは測定できるが C φに分けて測定することは出来ない。原位置べーンせ ん断試験は軟弱な粘性土にっ 、ては粘着力 Cを測定できる力 その他の地盤では C φを分離して測定することは出来ない。変形係数 Εは、孔内水平載荷試験で測定す ることが出来、 C φ Εを 1回の試験で測定できるものは孔内加圧せん断試験のみであ る。その他の規格外の各種調査法も、 Ο φ Εを直接測定できる簡易な手法は存在し な!ヽ。これは規格化され普及して ヽる原位置試験法の基本仕様が 50年力も 70年前 の機械加工、計測技術などをベースに決められたもので、図 4〜図 7からも判るように 、これを如何に現在の技術で高度化、自動化しても設計に要求される種類の C <i) E などの地盤情報と必要な精度を得ることは極めて困難である。
[0011] 第 2の課題は、「基本原理が同じ調査手法で、軟弱地盤力ゝら中硬質地盤まで調査が でき、かつ精度の高 、詳細調査とその間の地層構成状態をスピーディに確認する補 間調査や概略調査まで適用出来ること」が望まれている。現状は、対象地盤の種類 や硬さ、要求される調査精度などにより、打撃貫入の N値であったり静的コーン貫入 の qtであったりで、基本原理の異なる調査手法を組み合わせて!/、るため (図 4〜図 9 参照)、得られた地盤情報の解釈と関連づけがぁ 、まいになって!/、る。
[0012] 第 3の課題は、深度方向に「ほぼ連続的」に、かつ「スピーディ」に測定でき、「低コス ト」でること。孔内載荷試験に類する試験法では、 1測点あたりの試験時間が長ぐか つ深度方向に 1〜数 m毎にしか測定できな 、仕組みになつている。図 4〜図 9に示し た主要原位置試験の測定仕様は、人力作業と測定者が目で見て記録することを前 提とした基本仕様であること、ボーリング孔を利用して 1深度ごと測定する方法では測 定器ゃロッドの昇降を繰り返すため、スピード化を図ると測定対象である孔底地盤や 孔壁の崩壊等で測定精度が急激に低下する等の根本的な仕様上の問題がある。
[0013] 第 4の課題は、「貫入抵抗反力装置などが軽微で,貫通能力が大きいこと」が要求さ れて 、る。従来のコーン貫入試験方法での課題を以下に列記する。
(1)反カアンカーの設置は、測定行為とは別に時間と労力が余分に必要で、かつ設 置が困難な所では調査が出来ないことになる。
(2)数トンから 10トンのウェイトを持ち運びするには費用がかかり、重量の車両に搭 載する方式はわが国のような狭隘,傾斜地,小規模調査が多い国には向いていない。
(3)貫入試験では、打撃貫入が軽微な装備で済み、かつ、効率的な場合が多いが、 打撃時の金属音が公害騒音問題になる。
[0014] 本発明の前記ならびにその他の目的と新規な特徴は次の説明を添付図面と照らし 合わせて読むと、より完全に明らかになるであろう。
ただし、図面はもっぱら解説のためのものであって、本発明の技術的範囲を限定す るものではない。
課題を解決するための手段
[0015] 第 1の課題「一度の調査で C φ Eを求めたい」に関しては、現在この課題を解決して いる唯一の「孔内加圧せん断試験」の基本概念をベースに、他の課題と組み合わせ て産業的に価値の高い新規性のある地盤情報を得る調査方法を提案する。
[0016] 第 2の課題「基本原理が同じ調査手法で、適用地盤が広ぐかつ詳細な高精度調査 からスピーディな補間調査や概略調査まで適用出来ること」に関しては、軟弱な地盤 では静的貫入により、貫入が困難になれば動的貫入により、更に硬くなれば削孔 (プ レボーリング式トリミング法など)により調査が可能な方法とすることで解決できる。
[0017] 第 3の課題「ほぼ連続的にスピーディな調査」に関しては、コーン貫入試験仕様に近 づけることを目標とする。そのため、調査地点ごとに測定器 (貫入抵抗体)の上げ降ろ しは原則 1回とすし (現状の孔内加圧せん断試験のように測定深度毎に上げ降ろしは しな 、方式)、メーターピッチの測定ではなく数 cm〜数 10cm間隔で測定できる貫入 型とする。
[0018] 第 4の課題「装置が軽微で貫通能力が大きいこと」に関しては、第 2の課題と同じよう に、静的貫入から動的 (打撃)貫入、そして削孔法との組合せで解決可能である。これ により不経済な重装備とアンカーの設置などの工程も省略することが出来る。また、 打撃法は通常、 SPTのように金属と金属の衝突エネルギーを利用したものである力 ノッキングヘッド (4)とハンマ(5)の間にクッション材を揷入することで消音効果と衝撃 力から急速載荷方式とすることができる。以上の基本路線に沿った具体的な貫入型 加圧せん断試験装置につ!、て以下に述べる。
[0019] 当該発明の請求項 1は、ロッドの先端に抵抗体を装着し、これを地中に貫入して地盤 情報を得る調査方法で、回転して地盤をせん断する羽根を有する抵抗体であるので 、羽根は貫入時に地盤を乱さないように貫入方向と同一方向に向けてあり、羽根の 枚数は特殊な場合は 1枚でも良いが、通常、軸対称に複数枚必要とする。高さ (長さ) Hは抵抗体全長と測定ユニット数により異なり数 cm〜10cm程度で、羽根の幅 (抵抗 体から直角に外側に出た凸状の板幅) Bは lmm〜数 mmとし、後述の方法により抵 抗体側面に生じる横方向地盤反力 Pから Bだけ離れたことによる応力の分散 (低減)を 計算して、地盤をせん断する羽根の外径面に働く垂直応力 Pvを求める。この Bは、 後述のように、 B=数 cmと大きくすることで Pvの小さいところでのせん断も可能となる 。これを積極的に利用すれば、上記のようなテーパーで径を大きくして力 円筒状( 或いは Θ =0の帯状)抵抗体とし羽根の Bを順次大きくすることで Pvが順次小さくなる ので C φを求めることができる。
[0020] 傾斜面力 なる抵抗体を貫入するだけで地盤を横方向に順次大きく変形させ、それ により横方向地盤反力 Pも増加し、この変形量 Δと反力 Pの複数の組合せ力 地盤の 変形係数 Eを求めようとするため適切な角度を有する抵抗体としなければならない。 同様に、地盤のせん断定数 C φを測定するためにも、設定した複数の Pvと破壊面で せん断破壊されるような角度にしなければならない。
[0021] 「抵抗体の側面と貫入方向 (の軸線)となす角度 Θが抵抗体先端部から上方外側に 5 度以下とする」。これは平滑な (滑り抵抗の小さい)傾斜面力 なる抵抗体を貫入する ことで「抵抗体力ゝら離れた位置に滑り面が発生することなぐ抵抗体側面に沿ってスリ ップしながら貫入する (図 11の
17)。或いは側面の粗度を大きくすることで側面に沿って地盤をせん断しながら貫入 する角度」を意味し、その限界傾斜角 6 rは地盤の特性や抵抗体の粗度によっても異 なる力 既往の乱さない試料採取用のサンプリングチューブの刃先角度などの研究 と、当該発明のための 3軸セル内での要素実験など力 総合的に判断して傾斜角度 は 0≤5° とした。なお、この条件を満たす抵抗体であっても、抵抗体を長くすると地 盤を横方向に変形させる量 Δ
が大きくなり、地盤が降伏し、やがては破壊に至るので降伏圧以内の歪レベル (例え ば、初期半径 roと Δとの比が 1〜10%以内)で数回測定する必要がある。
[0022] 「5度以下の欠損断面形状を含む円錐台或いは弧状部材力 なる抵抗体」につい て説明する。非常に鋭角な抵抗体であるので円錐状では先端部が破損し易く現実 的ではない。かつ、先端が尖っていると、地盤は均質体ではないので曲がって貫入 することになる (従来技術の問題点でもある)。従って、先頭部を切り取った円錐台状 の抵抗体が基本となる。これを中空状として中を掘削しながら (セルフボーリング式 S B式)貫入、或 、は少し小径のボーリング孔に貫入する (プレボーリング式トリミング法 PBT式)することで適用できるが、従来から利用されてきた経験上、測定速度や装置 などの面力 ベストの方法とは言えない。また、円錐台状抵抗体をただ地中に貫入す れば (特に中実の場合) Θを如何に小さくしてもその体積分の土は抵抗体によって押 出され、結果として乱された土が抵抗体の周りに (抵抗体の半径の約 40%強)厚く張り 付くことになるので E C φも自然地盤のものとは異なる撹乱後の地盤情報を得ること になる。そこで、後述 (図 14〜図 26)のように、測定しょうとする円錐台の帯状の側面 のみを残して大部分を切り取る「欠損断面」の円錐台、或いは、この帯状の側面を「 弧状部材」として構築した抵抗体とし、これを貫入すると測定部材とそれを支える部材 以外の欠損断面空間から余分の土が測定面を乱すことなく排除されながら容易に貫 人でさること〖こなる。
[0023] 以上述べた抵抗体を貫入するだけで、地盤が Δ分だけ変形するため横方向地盤 反力 Pが発生し、抵抗体の回転により羽根の先で地盤が円筒状 (弧状)にせん断され る。先端部から Θの傾斜分だけ径が大きくなる Δの異なる複数箇所で Pとせん断強 度てを測定し、複数組の Pと Δ力も変形係数 Eを求め、 Pからせん断面に働く垂直応 力 Pvを計算し、 てとの関係力も C φを求めることができることになる。
[0024] 以上のベーンせん断式の一例として図 12、図 13を例に説明する。この図は「中空 円錐台貫入加圧式べーンせん断試験装置」の抵抗体部分を示すもので、荷重伝達 管(18)をロッドの先端に接合し、地盤が軟弱な場合は静的に貫入し、この方法で貫 入が困難な場合は重錐などで打撃貫入する。抵抗体は中空円錐台状で、シユーュ ニット(19)は Θ≤ 5°の外テーパーで外側地盤の乱れを小さくするようになつていて 荷重伝達管と接続される。また、上部にはダミーの羽根 (20)を付けてある (計測用羽 根の下端の抵抗を無くすため)。抵抗体本体は Θ≤3°の台錐状で、これを 3等分し加 圧せん断ユニット 1,2,3 (21,22,23)は、それぞれ横方向幅 Bの羽根(30)を円周上 4 枚と夫々のュ-ッ分を同一線状に付けてある。最上部は上部ダミーユニット(24)でダ ミーの羽根を付けてある。加圧せん断ユニットは 2割りになつていて、一方は荷重伝 達管にトルク伝達キイ (25)で接合されて!ヽる主動回転ユニット(26)で、他方は径方 向接合ピン(28)で回転方向に自由度がある受動回転ユニット(29)である。荷重伝 達管で貫入すると抵抗体はシユーユニットから引っ張り力を受け、加圧せん断 3ュ- ットとダミーユニットを下方に引きずり込むと各ユニットに同心円状に横方向地盤反力 Pが生じて、これが周方向応力として 2個のロードセル(27)で測定される (理論上同じ 値になる)。この測定圧力も羽根外周のせん断面に働く垂直応力 Pvが求まる。次に荷 重伝達管を回転させると主動回転ユニットから受動回転ユニットに回転力が伝達され 、受動回転ユニットの抵抗分がロードセルに示され、これからせん断抵抗トルク、せん 断強度が計算できることになる。このように抵抗体貫入回転を繰り返すことで深度方 向に EC φ力求められること〖こなる。
当該発明の請求項 2は、「抵抗体の側面の一部あるいは全部をせん断面とし、「その 表面と接する地盤がスリップしな 、粗さの側面を有する抵抗体」に付 、て具体的には 、その平均的表面粗さ,凹凸面の谷から山の高さの平均が測定対象地盤の平均粒 径の 1/2以上を目安とする。通常用いられいてる抵抗体の側面は機械加工で、より 平滑になるように仕上げられている力 ここでは、抵抗体側面をスリップしないように ザラザラにして、貫入するだけで Eの他にせん断強度てを測定しょうとするものである 。このザラザラのせん断面の表面は、従来の研究成果を参考に測定地盤の平均粒 径の 1Z2以上の平均粗度 (凹凸の谷力も山の高さの平坳を確保することで境界面 ではスリップせずにせん断滑り破壊する。なお、請求項 1とは異なり深度方向に連続 的にせん断して 、るので、回転の必要がな 、分だけ調査スピードは速くなるがピーク 強度ではなく残留強度相当値 τ rの C φであるが、補間調査や概略調査用としては 経済性力 有用な調査法である。
[0026] 「貫入方向と抵抗体側面とのなす角度が抵抗体先端部から上方外側に 5度以下の 欠損断面形状を含む台錘状或いはフランジの角度が 5度以下の H型状断面力 なる 抵抗体を地中に貫入して」とは、請求項 1との違いは回転せん断ではないので側面 を円形にする必要はない( Δに対して円周上に等変位の場合と一部にのみ変位が 生じる場合では横方向地盤反力は厳密には異なるが)。従って、円錐台を含む台錘 状で断面は円である必要はなぐ上部ほど幅の広い H型状断面の抵抗体でフランジ の外側で地盤をせん断する形状のものでも良いことになる。中空、中実抵抗体などに ついては、請求項 1の記載事項と同様である。
[0027] 以上の粗面せん断式の一例として図 14〜26を例に説明する。この図は「欠損断面 抵抗体貫入加圧式粗面せん断試験装置」の抵抗体部分を示すものである。図 14〜 図 26は請求項 2に該当する分は図 14,図 15,図 26と図 16,図 17,図 18である。
[0028] 図 14は、抵抗体をせん断面の中心で縦方向に切断した時の縦断図である。矢印 で示す位置の横断面は図 18に示す。参考までに H型状断も図 26に示してある。貫 入ロッドを抵抗体頭部のロッドジョイント (31)に接続し、このパイプ力も分岐ジョイント( 32)を介して 2本の弧状部材に貫入力が伝達される。対を成す弧状部材は連結材 (3 8)により Θ = 1〜2度程度の勾配で先端が狭くなつている。弧状部材のせん断面は上 から下まで同じ幅であるが、外面の曲率半径は下方ほど小さくなつている (部材中心 からの弧状とする)。ただし、先端部のシユー (39)は同一曲率で 0 =0である。
[0029] 最外面の加圧せん断材 (33)は、 4ユ ットからなり、夫々に横方向地盤反力 Pを測定 するための計器を内蔵している。 Pの測定は、連結材を貫通する穴の中に両側の加 圧せん断材に作用する Pを固定ねじ (46)で受け、座屈防止兼セントライザ一を有す る連結棒 (48)に発生する圧縮力を P用ゲージ (47)で測定する。
[0030] 抵抗体の貫入力は、前述の分岐ジョイントから連結材と一体ィ匕している 2枚の荷重 伝達板 (36)を介してシユーと加圧せん断材の先端に伝達される。従って、加圧せん 断材はシユーに引きずられて貫入することになるので、地盤のせん断力は加圧せん 断材の各ユニット境界で引張り応力を測定すれば良いことになる。そのため、ユニット 境界部内側に溝加工して応力集中を図り、張力計 (ストレンゲージ貼付式)で張力を 測定し、区間ごと (ユニットごと)の張力からせん断力を求める。なお、加圧せん断材の 先端は図 16,図 17に示すようにシユーに接続される。加圧せん断材は図示のように T字型に幅を細くし、さらに曲率を除き板の中心付近で応力を測定するため、表裏を 肖 IJり平板にして、両面に張力ゲージ (52)を貼付したものを高さ調節板 (49)を挟んで その上に載せ、固定ピン(50)でシユー直上の荷重伝達板に固定される。張力ゲー ジは防水クッションで養生され、蓋 (54)を 4本のねじ穴 (53)にて固定して外周を平滑 にする。
[0031] 加圧ぜん断材は表面を平均粗度が 0. 5mmになるようにカ卩ェしたもので、両端部 は図 18に示すように、荷重伝達版の両サイドに加圧せん断材厚と同じ高さになるよう にして、その間に加圧せん断材を挟み込み、側面からスライドピン(56)を差込んで 上下にはスライドするが荷重伝達板力も離れないようにしてある。また、上部は引上 げ時に圧縮力が働かな 、ように分岐ジョイント下面に潜り込むようにする (図示して 、 ない)。なお、加圧せん断材と荷重伝達板の間には薄い滑りシート(35)をはさみ、か つ、表面に出て 、る部材の接続面は泥土などの侵入を防ぐため弾性剤シール (44) で保護されている。
[0032] 各種センサーのケーブルは、連結材と荷重伝達板の境界付近に空けたケーブル 孔(37)を通してロッドジョイントまで引上げ、そこからは貫入用ロッド (図示していない) の中を通して地上に引き上げて計測機器に (図示していない)接続する。なお、図 26 は弧状部材ではなく H型部材としたときの概念図を示したものである。
[0033] 当該発明の請求項 3は、抵抗体を打撃貫入する場合、打撃エネルギーの伝達時間 を長くすることで、衝撃貫入よりも測定精度を上げられる急速貫入試験へ変換でき、 かつ、衝突音の低減による騒音問題の解決、そして打撃エネルギーをピストンの質量 に作用させることで潤滑流体を抵抗体表面に射出して摩擦抵抗を低減させ貫入しや すくする地盤情報を得る調査方法である。以下に図 27、図 28の例で説明する。
[0034] 図 27は、全体図でロッド(3)の先端部に抵抗体 (62)を付けて打撃により貫入する もので、ハンマ(5)をノ、ンマセンサー(57)つきのハンマ吊ロープ(58)で吊り上げ(図 示して 、な 、)ハンマを急落させると落下開始時刻をトリガーとして各種の計測を数 秒間開始する。ハンマを吊上げると連結ロープ(59)で自動脱着ノッキングヘッド (61 )も一緒に上昇し、ハンマとの距離を一定に保持しノヽンマの吊上げを止めるとノッキン グヘッドが自動的にロッドに固定され、ハンマの打撃力をロッドに伝達するようになつ て 、る。ノッキングブロックの上面には無反発性のクッション材(60)を挟んで衝撃ェ ネルギ一の伝達時間を 10倍程度長くする (時間調整はクッション材の厚さを変える事 で多様な地盤に適用できるようにする)。その結果、各種センサーの情報を数回測定 することが可能となり、かつ、騒音対策にもなる。
[0035] 図 28には抵抗体 (のせん断面以外の)表面の摩擦を低減して、貫入を容易にするた めの機構の一例を示す。抵抗体内部あるいは (装置のケースをロッド兼用とした)ロッド ケース(64)内部に収納するもので、シリンダー (69)と伸縮バック(63)には潤滑流体 (70)を充填しておき、重錐兼用ピストン (68)はピストン上部に固定されたパイプを支 柱とするその頭部のばね止め具 (65)とシリンダーと一体になつた有孔仕切板 (67) の間に入れたスプリング (66)でピストンはシリンダーの最上部にある有孔仕切板下 面に接触している。打撃力がロッドを介して有孔仕切板に伝わり、ピストンはその質量 と加速度の積力 なる下向きの力となり、ばねを圧縮させて潤滑流体を流体射出流 路(71)から吐出させる (先端部には地下水などが逆流しな 、ように、図示して 、な 、 逆止弁を取り付ける)。このときピストン上部では伸縮バック内の流体が有孔仕切板を 通ってシリンダー内に入ることになる。次にピストンがスプリングカでゆっくり上昇しな 力 Sらピストン内に設けられた内部流路(72)を通って逆止バルブ(73)力もピストンの 下方シリンダーに流れ込むことになる。なお、ロッド内部は地上につながっているので 伸縮バックは大気圧 (注水した場合は水圧)下にあるので伸縮バックの収縮は容易に 可能な状態になっている。また、抵抗体の摩擦をさらに小さくするため、表面をトライ ボコーティングする、あるいは硬質の自己摺動性材料を使用する。 発明の効果
[0036] 以上の説明から明らかなように、本発明にあっては次に列挙する効果が得られる。
(1)抵抗体を地中に貫入 (と回転)するだけで、設計に必要な主要地盤情報である粘 着力 C、内部摩擦角 φ、変形係数 Eなどが 1回の試験で得られるようになった。従来 手法では、専用の試験装置を用いても複雑な手順で試験するか、 C φ Eを別々に測 定するか、そして最も代表的な調査法は代替情報 (インデックス情報)から相関関係を 用いて推定するしかな力つた。
[0037] (2) C φ Eを 1回の試験で求めることが出来、かつ、非常にスピーディに誰もが測定で きる装置である。抵抗体などの試験装置を調査個所当り 1回の貫入で済み、従来の 一般的な調査のように測定するたびに地上まで引上げ、また下ろす必要がなくなり、 調査速度は飛躍的に速くなつた。
[0038] (3)当該発明の抵抗体は、後述するように貫入するだけで、かつ最速で概略の値が 得られる「貫入せん断型」と貫入 ·回転による詳細測定むけの (加圧回転せん断型)を 組み合わせたものであるので、層厚の厚い同一地層ではその代表的な深度で後者 の測定をしながら大部分はスピードの速 、前者で調査を行うことができるので、必要 なところで必要な質の情報をワンショットで行うことが出来るようになった。従来のよう に概略調査と詳細調査を全く異なる手法で調査するのとでは、精度的にも大きな差 異がある。
[0039] (4)軟弱地盤では静的な貫入、中硬質地盤では打撃貫入を、そしてさらに硬質な地 盤ではプレボーリングトリミング法を採用する装置としたことで適用地盤が非常に広く なった。従来調査法では、地盤の種類や硬さによって異なる機構の調査が行われて いるのに対し、 1種類の調査法で良くなつた。
[0040] (5)上記の各種貫入方法が適用できる装置により、従来工法では必要であったアン カー設置ェゃ反力用の重装備資機材、重量大型車輛が不要になるので、工程の短 縮のみでなく運搬費その他工費の低減になる。
[0041] (6)小型化された装置が使用できるので、調査速度が飛躍的に速くなり、かつ打撃 音の低減などの環境対応が良くなるため、住宅地などの環境重視、狭隘調査地でも 十分適用可能となる。
図面の簡単な説明
[0042] [図 1]本発明の原理を模式的に示した図。
[図 2]本発明の原理を模式的に示した図。
[図 3]本発明の原理を模式的に示した図。 [図 4]本発明の概念を明確にするための現状地盤調査方法を模式ィ匕した図。
圆 5]本発明の概念を明確にするための現状地盤調査方法を模式ィ匕した図。
[図 6]本発明の概念を明確にするための現状地盤調査方法を模式ィ匕した図。
[図 7]本発明の概念を明確にするための現状地盤調査方法を模式ィ匕した図。
[図 8]本発明の概念を明確にするための現状地盤調査方法を模式ィ匕した図。
[図 9]本発明の概念を明確にするための現状地盤調査方法を模式ィ匕した図。
[図 10]本発明の概念を明確にするための現状地盤調査方法を提案法とを模式化し た図。
園 11]本発明の概念を明確にするための現状地盤調査方法を提案法とを模式ィ匕し た図。
圆 12]本発明の第 1の実施形態横断面図。
圆 13]本発明の第 1の実施形態縦断面図。
圆 14]本発明の第 2の実施形態の縦断面図。
圆 15]本発明の第 2の実施形態の横断面図。
[図 16]本発明の第 2の実施形態のせん断応力測定詳細図。
圆 17]本発明の第 2の実施形態のせん断応力測定詳細図。
圆 18]本発明の第 2の実施形態のせん断応力測定詳細図。
圆 19]本発明の第 3の実施形態の縦断面図。
圆 20]本発明の第 3の実施形態の横断面図。
[図 21]本発明の第 3の実施形態の側面図。
[図 22]本発明の第 3の実施形態のせん断応力測定詳細図。
圆 23]本発明の第 3の実施形態のせん断応力測定詳細図。
圆 24]本発明の第 4の実施形態の縦断面図。
圆 25]本発明の第 4の実施形態の横断面図。
[図 26]本発明の第 5の実施形態の横断面図。
[図 27]本発明の第 6の実施形態の全体構成図。
[図 28]本発明の第 6の実施形態の循環流体浸出装置断面図。
符号の説明 :孔底、 2:パイプ状抵抗体、 :ボーリングロッド 4 :ノッキングヘッド、、 :ノヽンマ、 6:コーン抵抗体、 :ロッド、、 8:四角錐を捩った抵抗体、 :錘、 10 :ベーン、
:二重管ロッド、 12:加圧セル :加圧セル加圧測定装置、 14:測定管、
:引抜力、 16:破壊領域、
:緩傾斜コーン抵抗力、 18:荷重伝達管、:シユーユニット、 20:ダミー羽根、
:加圧せん断ユニット、 22:加圧せん断ユニット、:加圧せん断ユニット、 24:ダミーユニット、:トルク伝達キイ、 26:主動回転ユニット、:ロードセル、 28:径方向接合ピン、:受動回転ユニット、 30:羽根、
:ロッドジョイント、 34:加圧版、
:滑りシート、 36:荷重伝達板、
:ケーブル孔、 38:連結材、
:シユー、 40:上部ダミー羽根、:1枚羽根、 42:静止土圧用羽根、:下部ダミー羽根、 44:弹性材シール、:ユニット別張力計、 46:固定ねじ、
:P用ゲージ、 48:連結棒、
:高さ調節板、 50:固定ピン、
:ケーブル引出し穴、 52:張力ゲージ、:ねじ穴、 54:蓋、
:荷重伝達板リブ、 56:スライドピン、 57:ハンマセンサー、 58:ハンマ吊ロープ、
59:連結ロープ、 60:クッション材、
61:自動脱着ノッキングヘッド、
62:抵抗体、 63:伸縮バック、
64:ロッド (ケース)、 65:ばね止め具、
66:スプリング、 67:有孔仕切板、
68:重錐兼用ピストン、 69:シリンダー、
70:潤滑流体、 71:流体射出流路、
72:内部流路、 73 :逆止バルブ。
発明を実施するための最良の形態
[0044] 以下、図面に実施するための最良の形態により、本発明を詳細に説明する。
[0045] 請求項 2の「貫入型加圧せん断試験装置のうち欠損断面形状式」につ!/、ては、 [00 27]から [0032]と図 14〜26で説明してある力 この方式の抵抗体は中空円錐台 (セ ルフボーリング式或いはトリミング型プレボーリング式との併用)のものより、通常ボーリ ング作業を必要としないので、調査スピードが速ぐ操作が簡単で、通常の場合は削 孔技術を必要としないため、測定精度の安定性も高いことになる。図 14,図 15に示す ものを左右に装備したものが請求項 2の実施するための最良の形態である。
[0046] 請求項 1の一例として図 14〜26により説明する。この図は「欠損断面抵抗体貫入 加圧式回転せん断試験装置」の抵抗体部分を示すものである。図 14,図 21,図 15,図 26図 16,図 22からなる力 請求項 1に該当する分は図 19,図 26,図 20,図 22,図 23 である。
[0047] 図 19は、抵抗体をせん断面の中心で縦方向に切断した時の縦断図である。矢印 で示す位置の横断面は図 20に示す。貫入ロッドを抵抗体頭部のロッドジョイント (31) に接続し、このパイプ力 分岐ジョイント (32)を介して 2本の弧状部材に貫入力が伝 達される。対を成す弧状部材は連結材 (38)により Θ = 1度程度の勾配で先端が狭く なっている。弧状部材のせん断面は上から下まで同じ幅である力 外面の曲率半径 は下方ほど小さくなつている (部材中心からの弧状とする)。ただし、先端部のシユー (3 9)は同一曲率で 0 =0である。 [0048] 外側の加圧板(34)は、 4ユニットからなり、夫々に横方向地盤反力 Pを測定するため の計器を内蔵している。 Pの測定は、連結材を貫通する穴の中に両側の加圧せん断 材に作用する Pを固定ねじ (46)で受け、座屈防止兼セントライザ一を有する連結棒( 48)に発生する圧縮力を P用ゲージ (47)で測定する。
[0049] 抵抗体の貫入力は、前述の分岐ジョイントから連結材と一体ィ匕している 2枚の荷重 伝達板 (36)を介してシユーと加圧せん断材の先端に伝達される。加圧板には羽根( 41)が 4ユニットに夫々接合されている力 最下部ユニットの羽根は他のものより幅 B を大きくした静止土圧用羽根 (42)を付けてある。これは静止土圧状態でのせん断抵 抗を測定するため、シユーの貫入による多少の乱れやこのユニットの平均径がシユー 径よりわずかに大きくなるための横方向地盤反力の増加を打ち消すためである。抵 抗体長分を貫入して力 回転させると羽根により弧状に地盤がせん断されることにな る。羽根の上下面のせん断抵抗をキャンセルするため、上部ダミー羽根 (40)と下部 ダミー羽根 (43)を付け
てある (ただし、静止土圧用羽根の上面は一部 2抵抗が働くので計算上キャンセルす る)。
[0050] 回転せん断抵抗トルクは、図 22,図 23に示すように、加圧せん断材はユニット毎に 薄 、滑りシート (35)を挟んで荷重伝達版に装着されて 、る。図 22は蓋 (54)を外した 状態の側面図、図 23はその中央部での断面図である。加圧せんだん材の表面は平 滑で滑りやすい材料を使用し、左側端部を図のように T字型に幅を細くし、さらに板 の中心付近で応力を測定するため、表裏を削り薄平板にして、両面に張力ゲージ (5 2)を貼付したものを高さ調節板 (49)を挟んでその上に載せ、固定ピン(50)で荷重伝 達板の左端部に固定される。張力ゲージは防水クッションで養生され、リード線はケ 一ブル引出し穴(51)を通ってケーブル孔(37)に引き出され、蓋を 4本のねじ穴 (53) にて固定して外周を平滑にする。他端右側は荷重伝達板の縁を羽根の高さまで厚く し、クッションシートを介して羽根とはスライドピン(56)で接合され、荷重伝達材に接 しながら加圧せん断板は回転方向には自由度のある接合となっている。従って、荷 重伝達板を回転して羽根で地盤をせん断すると加圧せん断材には固定ピンを介して 張力が発生することになる。 [0051] 最上部ユニットの加圧せん断材上端は、抵抗体の引上げ時に圧縮力が働かないよ うに分岐ジョイント下面に潜り込むようにする (図示していない)。同様に、最下部の加 圧せん断材の下端面もシユー上部に潜り込むようにする (図示していない)。かつ、表 面に出て!/、る部材の接続面は泥土などの侵入を防ぐため弾性剤シール (44)で保護 されている。
[0052] 各種センサーのケーブルは、連結材と荷重伝達板の境界付近に空けたケーブル 孔(37)を通してロッドジョイントまで引上げ、そこからは貫入用ロッド (図示していない) の中を通して地上に引き上げて計測機器に (図示していない)接続する。
[0053] 最良の形態は、図 24、図 25のうちの図 24は縦断図、図 25は横断図に示すように 請求項 1, 2をあわせた一体のものとすることで、抵抗体を取り替えることなぐ多様な 地層構成の地盤でも貫入せん断型と回転せん断型を状況に応じて使い分けることが できる装置となっている。さらに、図 27,28に示す請求項 3の打撃貫入と潤滑流体滲 出法を併用することにより、中硬質地盤にも用意に適用できる装置となっている。
[0054] 以上の装置を用いて、比較的軟弱な地盤では静的貫入で、貫入が困難になれば 打撃式急速載荷貫入で、さらに硬質で貫入が困難になれば変則的ではあるが、ボー リング孔の孔壁をシユーで削りながら貫入するトリミングプレボーリング法により抵抗体 を貫入させながら C φ Eなどを測定する。
産業上の利用可能性
[0055] 全ての建築や土木構築物の設計にとって、地盤情報は欠力せない重要なものである 。また、これらの工事、施工や補修などでも地盤との関係が重要である。さら〖こ、土砂 災害や地震災害対応、防災関連なども益々高度な技術が要求されている。当該発 明は、産業としての地盤調査のうち、重要な部門である原位置試験全般に関わる問 題解決、即ち、この分野の典型的手法の変革、世代交代を可能にするものである。

Claims

請求の範囲
[1] ロッドの先端に抵抗体を装着し、これを地中に貫入して地盤情報を得る調査方法で、 貫入方向と同一方向に羽根を付けた抵抗体の側面と貫入方向となす角度が抵抗体 先端部から上方外側に 5度以下の欠損断面形状を含む中実あるいは中空の円錐台 或いは弧状部材力 なる抵抗体を地中に貫入して複数の横方向地盤反力を計測し 、かつその深度で羽根付の抵抗体を回転して複数の地盤せん断力を測定することで 地盤の強度と変形に関する地盤情報を求めることを特徴とする地盤情報を得る調査 方法。
[2] ロッドの先端に抵抗体を装着し、これを地中に貫入して地盤情報を得る調査方法で、 抵抗体の側面の一部あるいは全部を地盤とのせん断する面とし、その表面と接する 地盤がスリップしな ヽ粗さの側面を有する抵抗体で、かつ貫入方向と抵抗体側面との なす角度が抵抗体先端部から上方外側に 5度以下の欠損断面形状を含む中実ある いは中空の円錐台ある!/、は弧状部材カもなる抵抗体、あるいはフランジの角度が 5 度以下の H型状断面力 なる抵抗体を地中に貫入して、横方向地盤反力を発生さ せながら粗な側面で地盤をせん断破壊し、複数組の変位、地盤反力及びせん断力 を測定することで地盤の強度と変形に関する地盤情報を求めることを特徴とする地盤 情報を得る調査方法。
[3] ロッドの先端に抵抗体を装着し、これを地中に打撃により貫入することで地盤情報 を得る調査方法で、ノッキングヘッドをノヽンマで打撃して抵抗体を貫入する場合、ハ ンマとノッキングヘッドの間にクッション材を装着して衝撃エネルギーの伝達を遅延さ せることで載荷時間を 10倍程度長くし、ハンマの落下開始時点を感知器で検知して 、載荷時間内に複数回の地盤反力やせん断力の測定を行い、かつ、クッション材に よる金属の衝突音を低減させると共に、その打撃エネルギーを利用して摩擦抵抗を 低減するため、抵抗体上部或いはその内部に装着した潤滑流体を入れたシリンダー 内に重錐兼用ピストンを弾性材で吊るし、打撃すると重錐が上下に振動し、その圧力 変動でシリンダーに連結した流路を通して潤滑流体を目的面に浸出させることで貫 入抵抗の低減と打撃貫入法によるエネルギー伝達時間を伸ばして急速載荷とし、さ らに打撃音を低減をさせる事を特徴とする地盤情報を得る調査方法。
PCT/JP2007/052098 2006-02-08 2007-02-07 地盤情報を得る調査方法 WO2007091589A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/223,774 US20100024535A1 (en) 2006-02-08 2007-02-07 Searching Method for Acquiring Ground Information
EP07708142A EP1988217A1 (en) 2006-02-08 2007-02-07 Searching method for acquiring ground information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-031360 2006-02-08
JP2006031360 2006-02-08

Publications (1)

Publication Number Publication Date
WO2007091589A1 true WO2007091589A1 (ja) 2007-08-16

Family

ID=38345185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052098 WO2007091589A1 (ja) 2006-02-08 2007-02-07 地盤情報を得る調査方法

Country Status (4)

Country Link
US (1) US20100024535A1 (ja)
EP (1) EP1988217A1 (ja)
JP (2) JP4874418B2 (ja)
WO (1) WO2007091589A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100568A (ja) * 2016-12-21 2018-06-28 株式会社熊谷組 杭孔検査方法及び杭孔検査装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10551238B2 (en) 2010-11-18 2020-02-04 Illinois Tool Works Inc. Ultrasonic level sensor for aerated fluids
EP2751542B1 (en) 2011-08-30 2017-10-11 Street Smart Sensors LLC Ultrasonic liquid level detector
KR101286063B1 (ko) * 2011-12-29 2013-07-19 한국수력원자력 주식회사 근계암반 내 탄성파 발생을 위한 충격재하 장치 및 이를 이용한 충격재하방법
CN103439038B (zh) * 2013-07-11 2015-07-22 重庆水利电力职业技术学院 一种林木根系对土壤固结力测定装置
CN104164860B (zh) * 2014-08-12 2015-12-02 东南大学 用于海底浅层土体的自落式孔压动力触探装置
FR3025887B1 (fr) * 2014-09-15 2016-09-09 Sol Solution Methode de caracterisation de l'assise d'une voie ferree, dispositif pour visualiser l'interieur d'un sol et ensemble de caracterisation de l'assise d'une voie ferree comprenant un tel dispositif
JP6153915B2 (ja) * 2014-10-08 2017-06-28 株式会社扶桑工業 標準貫入試験装置用ガイドロッド
US9952156B2 (en) * 2015-06-30 2018-04-24 The United States Of America As Represented By The Secretary Of The Navy Native fluorescence imaging direct push probe
CN108981654B (zh) * 2015-08-21 2020-07-28 中交天津港湾工程研究院有限公司 一种稳固嵌入型沉降环的使用方法
CN106226135B (zh) * 2016-08-03 2019-02-15 安徽理工大学 一种水力压裂试块导向槽制作装置及制作方法
CN107727483B (zh) * 2017-10-20 2023-12-22 南京大学(苏州)高新技术研究院 一种基于光纤光栅用于地基原位测试的贯入剪切装置及方法
JP7466425B2 (ja) 2020-10-14 2024-04-12 株式会社安藤・間 変形係数算出プログラム、及び変形係数算出方法
CN115324021A (zh) * 2022-07-16 2022-11-11 安徽驰远建设工程有限公司 一种水利工程施工用地基检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135407A (en) * 1978-04-11 1979-10-20 Meiji Consultant Pressurizing revolution direct shearing test method of ground in drilling hole
JPS63297621A (ja) * 1987-05-27 1988-12-05 Kiso Jiban Consultants Kk 貫入試験とベ−ン試験併用装置
JPH03286093A (ja) * 1990-04-02 1991-12-17 Kiso Jiban Consultants Kk スクリューパイプ式地盤凍結試料採取方法とその装置
JPH07127368A (ja) * 1993-10-29 1995-05-16 Kiso Jiban Consultants Kk 自己掘削式地盤凍結試料採取方法と装置
JPH08285747A (ja) * 1995-04-17 1996-11-01 Kyushu Electric Power Co Inc 軟質岩盤用の孔内せん断試験方法及び装置
JP2000055755A (ja) * 1998-08-07 2000-02-25 Kajima Corp コーン貫入試験用貫入センサ
JP2002303570A (ja) * 2001-04-05 2002-10-18 Toyo Asano Found Co Ltd 杭の急速載荷試験装置及び杭の急速載荷試験の方法
JP2003227786A (ja) * 2002-02-05 2003-08-15 Public Works Research Institute 土のせん断強度測定方法及び装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2603967A (en) * 1947-09-05 1952-07-22 Carlson Lyman Otto Theodore Apparatus for measuring the torsional shear strength of soil
US3148538A (en) * 1960-11-23 1964-09-15 Pieter S Heerema Soil penetration and friction resistance measuring apparatus
US4543820A (en) * 1984-05-17 1985-10-01 Iowa State University Research Foundation, Inc. Tapered blade in situ soil testing device
US4649741A (en) * 1985-08-22 1987-03-17 Geomatic Insitu soil shear measurement apparatus
US5313825A (en) * 1992-05-08 1994-05-24 The United States Of Americas As Represented By The Secretary Of The Army Dual mass dynamic cone penetrometer
NL1006228C1 (nl) * 1997-06-04 1998-12-07 Ver Bedrijven Van Den Berg Hee Penetrometer.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135407A (en) * 1978-04-11 1979-10-20 Meiji Consultant Pressurizing revolution direct shearing test method of ground in drilling hole
JPS63297621A (ja) * 1987-05-27 1988-12-05 Kiso Jiban Consultants Kk 貫入試験とベ−ン試験併用装置
JPH03286093A (ja) * 1990-04-02 1991-12-17 Kiso Jiban Consultants Kk スクリューパイプ式地盤凍結試料採取方法とその装置
JPH07127368A (ja) * 1993-10-29 1995-05-16 Kiso Jiban Consultants Kk 自己掘削式地盤凍結試料採取方法と装置
JPH08285747A (ja) * 1995-04-17 1996-11-01 Kyushu Electric Power Co Inc 軟質岩盤用の孔内せん断試験方法及び装置
JP2000055755A (ja) * 1998-08-07 2000-02-25 Kajima Corp コーン貫入試験用貫入センサ
JP2002303570A (ja) * 2001-04-05 2002-10-18 Toyo Asano Found Co Ltd 杭の急速載荷試験装置及び杭の急速載荷試験の方法
JP2003227786A (ja) * 2002-02-05 2003-08-15 Public Works Research Institute 土のせん断強度測定方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100568A (ja) * 2016-12-21 2018-06-28 株式会社熊谷組 杭孔検査方法及び杭孔検査装置

Also Published As

Publication number Publication date
EP1988217A1 (en) 2008-11-05
JP2011058357A (ja) 2011-03-24
JP2011043046A (ja) 2011-03-03
US20100024535A1 (en) 2010-02-04
JP4874418B2 (ja) 2012-02-15
JP4874417B2 (ja) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4874418B2 (ja) 地盤情報を得る調査方法
US9689136B2 (en) Method and apparatus for testing helical piles
O'Loughlin et al. Towards a simple design procedure for dynamically embedded plate anchors
Brown et al. Analysis of a rapid load test on an instrumented bored pile in clay
US7513167B1 (en) Single-fracture method and apparatus for automatic determination of underground stress state and material properties
Beim et al. Results of dynamic and static load tests on helical piles in the varved clay of Massachusetts
Rollins et al. Liquefaction induced negative skin friction from blast-induced liquefaction tests with auger-cast piles
Sun et al. Prediction of pile running during the driving process of large diameter pipe piles
JP4694513B2 (ja) 地盤情報を得る調査方法
Brown The rapid load testing of piles in fine grained soils.
Kevan et al. Full-scale blast liquefaction testing in Arkansas USA to evaluate pile downdrag and neutral plane concepts
Newson et al. An Experimental Study of Inflatible Offshore Anchors
Sack et al. Combined measurement of unknown foundation depths and soil properties with nondestructive evaluation methods
Reuter Pile capacity prediction in Minnesota soils using direct CPT and CPTu methods
Niroumand et al. Design and construction of helical anchors in soils
Newson et al. An experimental study of inflatable offshore anchors in soft clay
Kuei et al. An Instrumented Becker Penetration Test for the Estimation of Soil Penetration Resistance and Pile Capacity in Gravelly Soils
Halcomb et al. High Strain Dynamic Testing of SPIN FIN™ Piles
Kevan Full-scale testing of blast-induced liquefaction downdrag on driven piles in sand
Rausche et al. Dynamic loading tests: a state of the art of prevention and detection of deep foundation failures
Aldaeef et al. A quick approach for estimating load transfer of conventional and helical piles in ice-rich frozen soils
Sack et al. Combined parallel seismic and cone penetrometer testing of existing foundations for foundation length and evaluation
Rossiter Use of Reusable Test Pile for Pile Design as Informed by Full Scale Pile Load Tests
Spagnoli et al. A Novel Mixed-in-Place Pile System for Offshore Platforms
Hogan et al. Dynamic lateral load field testing of pile foundations to determine nonlinear stiffness and damping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007708142

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12223774

Country of ref document: US