WO2007088861A1 - Organic el display and image display device using same - Google Patents

Organic el display and image display device using same Download PDF

Info

Publication number
WO2007088861A1
WO2007088861A1 PCT/JP2007/051519 JP2007051519W WO2007088861A1 WO 2007088861 A1 WO2007088861 A1 WO 2007088861A1 JP 2007051519 W JP2007051519 W JP 2007051519W WO 2007088861 A1 WO2007088861 A1 WO 2007088861A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
maximum
luminance
light emission
display
Prior art date
Application number
PCT/JP2007/051519
Other languages
French (fr)
Japanese (ja)
Inventor
Chiaki Domoto
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006023247A external-priority patent/JP5196724B2/en
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Publication of WO2007088861A1 publication Critical patent/WO2007088861A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present invention relates to an organic EL (Electroluminescent) display and an image display device using the same.
  • an organic EL element for example, there is one in which a transparent electrode and a metal electrode are arranged to face each other with an organic layer including a light emitting layer interposed therebetween.
  • an organic EL device having such a configuration, when a voltage or current is applied between a transparent electrode and a metal electrode and current is passed through the light emitting layer, the light emitting layer emits light, and light emitted from the light emitting layer is transparent. It passes through the electrode and is emitted to the outside.
  • organic EL devices it is known that the emission intensity increases as the current flowing in the emission layer increases.
  • the voltage or current applied to the organic EL element is set to a voltage or current value at which the luminous efficiency of the organic EL element is 80% or more of the maximum value.
  • Devices have been proposed (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-59651
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-72629
  • the organic EL element proposed in Patent Document 1 only adopts the condition of the voltage or current applied to the organic EL element so as to increase the light emission efficiency. Therefore When such an organic EL device was applied to an organic EL display, it was not enough to reduce power consumption in accordance with the light emission conditions during video display.
  • the first aspect of the present invention is an organic EL display, comprising: an organic layer comprising one or more layers including a light emitting layer; and first and second electrodes facing each other across the organic layer.
  • a plurality of the organic EL elements, and the plurality of the organic EL elements display a moving image, and are within a preset luminance range of 1Z3 to 1Z2 of the organic EL element. The peak where the luminous efficiency is maximized is located.
  • the second aspect of the present invention is an organic EL display, comprising an organic layer comprising one or more layers including a light emitting layer, and first and second electrodes facing each other with the organic layer interposed therebetween.
  • the organic EL element has the maximum luminous efficiency within a preset range of 90% to 110% of the maximum emission luminance of the organic EL element. The peak is located.
  • the peak at which the luminous efficiency is maximized is located within the preset luminance range of 1Z3 to 1Z2 of the maximum emission luminance of the organic EL element.
  • the luminous efficiency of the luminance range that is frequently used in can be improved, and the power consumption when displaying moving images can be reduced.
  • the peak at which the luminous efficiency is maximized is located within the range of 90% to 110% of the preset maximum emission luminance, whereby the organic emission Since the voltage required for the EL element can be reduced, the voltage required for the organic EL display can be reduced. As a result, it is possible to reduce the size of the power supply circuit that supplies power to the organic EL element, thereby contributing to the downsizing of the image display device.
  • luminescence efficiency means the current density (for example, unit: ampere per square meter [AZm 2 ]) flowing through the organic EL element and the luminance of the light emitted from the organic EL element (for example, Unit: candela per square meter [cd / m 2 ]), measured by luminance divided by current density.
  • the light emission efficiency is shown by taking the maximum value of the light emission efficiency of the organic EL element as the reference value 1 as appropriate.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the organic EL display 21 according to the first and second embodiments.
  • This organic EL display 21 is a top emission type, and as shown in FIG. 1, a transparent glass substrate (hereinafter abbreviated as “substrate”) 23 and an element portion 25 formed on the substrate 23, The adjustment layer 26 formed on the element portion 25 and the sealing film 27 formed so that the upper force of the adjustment layer 26 also covers the entire element portion 25 are provided.
  • the element unit 25 includes a first electrode 31, an organic layer 33, and a second electrode 35 in order from the substrate 23 side. The first and second electrodes 31 and 35 are opposed to each other with the organic layer 33 interposed therebetween.
  • the organic EL display 21 emits color light, as shown in FIG. 2, the first to third colors corresponding to the colors red (R), green (G), and blue (B) are provided.
  • a plurality of organic EL elements 51r, 51g, 51b are provided.
  • the sealing film 27 is omitted for convenience of illustration.
  • the organic layer 33 of the first to third organic EL elements 51r, 51g, 51b is made of a material suitable for emitting light of each wavelength of red, green, and blue, as will be described later. .
  • the adjustment layer 26 is for adjusting the light transmission characteristics of the first to third organic EL elements 51r, 51g, 51b.
  • the sealing film 27 is for sealing the organic layer 33, the second electrode 35, etc., and is formed so as to completely cover the region where the element portion 25 of the organic EL display 21 is formed. Yes.
  • the sealing film 27 is formed of a light-transmitting insulating material such as SiNx.
  • the configuration of the element unit 25 will be described.
  • the first electrode 31 reflects at least part of the light emitted from the organic layer 33 to the organic layer 33 side.
  • the first electrode 31 is a reflective electrode such as A1. (Opaque electrode).
  • the second electrode 35 is made of a conductive material that transmits light.
  • the second electrode 35 can be a semi-transparent electrode or a transparent electrode.
  • the second electrode 35 when the second electrode 35 is composed of a semi-transparent electrode, it needs to have an optical characteristic that allows visible light to pass therethrough. Therefore, such optical characteristics are realized by reducing the thickness of the electrode.
  • suitable materials for the transparent electrode include ITO and IZO.
  • suitable materials for the semitransparent electrode include alkali metals such as Li, alkaline earth metals such as Mg, Ca, Sr, and Ba, Al, Si, and Ag.
  • the organic layer 33 includes a charge injection layer 41 for injecting holes or electrons and a charge transport layer for transporting holes or electrons in this order. 43, a light emitting layer 45 for emitting EL, a charge transport layer 47 for transporting electrons or holes, and a charge injection layer 49 for injecting electrons or holes.
  • various layer structures such as a two- to four-layer structure are adopted depending on various conditions.
  • the configuration and material of the organic layer 33 are, for example, the reflection characteristics (non-transparent, translucent or transparent) and polarity (which is the anode side, etc.) of the first and second electrodes 31, 35, and It is determined according to the type of luminescent color of the organic layer 33 (red, green, blue).
  • a material such as Alq (aluminum quinolyl complex) emits green light and has an electron transport property.
  • the light emitting layer and the electron transport layer may be made of a single material such as Alq.
  • the transparent electrode When using a transparent electrode,
  • a metal electron injection layer is used.
  • Fig. 3 illustrates the relationship between the luminance and luminous efficiency of a typical organic EL device.
  • the horizontal axis represents the luminance and the vertical axis represents the luminous efficiency.
  • the maximum value of the light emission efficiency and the maximum value of the light emission luminance to be used (hereinafter referred to as “maximum light emission luminance”) are set to 1 as the reference value, and a curve Cv indicating the relationship between the light emission luminance and the light emission efficiency is shown.
  • the light emission luminance is set in advance so as to be the maximum light emission luminance when displaying the brightest white color. As shown in FIG.
  • the light emission efficiency becomes maximum (peak value).
  • the maximum value of the light emission efficiency is referred to as “maximum light emission efficiency”
  • the light emission luminance at which the maximum light emission efficiency is realized is referred to as “maximum efficiency luminance”.
  • the “light emission efficiency” is obtained by dividing the light emission luminance by the current density, and thus indicates the efficiency with which light is emitted with respect to a constant current.
  • the inventors of the present application have determined that the first to third organic EL elements 51r, 51g, and 51b have a light emission effect within the light emission luminance range of 1Z2 to LZ3 from the low luminance side in the luminance range to be used. By adjusting to improve the rate, we have created a reduction in power consumption when displaying video on the OLED display 21.
  • FIG. 4 is a schematic diagram showing a simplified circuit configuration of a general organic EL element. Note that the detailed circuit configuration of the organic EL element is generally configured by combining multiple circuits such as transistors, but in FIG. 4, in order to prevent the complexity of the diagram, The outline of the circuit configuration of a simple organic EL device is shown.
  • the current density flowing in the light-emitting diode 51 corresponding to the organic EL element by the transistor 200 constituted by a TFT circuit or the like with a constant power supply voltage V applied by the power supply circuit 100 Can be adjusted.
  • the organic EL element requires the highest current density (hereinafter also referred to as “maximum current density”) at the maximum light emission luminance. Therefore, it is necessary to multiply the power supply voltage V so that the maximum current density can be obtained.
  • the inventors of the present application improve the light emission efficiency of the first to third organic EL elements 51r, 51g, and 51b at the maximum value (maximum light emission luminance) in the luminance range to be used.
  • the voltage required for the organic EL display 21 was reduced.
  • power supply circuits such as booster circuits It was also created to reduce the size and power consumption.
  • FIG. 5 shows the relationship between the light emission luminance and the light emission efficiency of the organic EL display 21 according to the first embodiment, that is, from the low luminance side of the used luminance range to the organic light emitting luminance range from 1Z3 to: LZ2.
  • the relationship between the light emission luminance and the light emission efficiency when the light emission efficiency of the EL elements 51r, 51g, and 5 lb is adjusted to the maximum is illustrated.
  • the horizontal axis shows the light emission luminance and the vertical axis shows the light emission efficiency
  • the maximum light emission efficiency and the maximum light emission luminance are the reference values of 1, respectively.
  • the curve Cvl showing the relationship with is shown.
  • the organic EL elements 51r, 51g, and 51b have a maximum efficiency as compared with the relationship between the light emission luminance and the light emission efficiency (curve Cv) shown in FIG.
  • Luminance Spk is shifted to the lower luminance side.
  • the power consumption when displaying a moving image can be reduced.
  • the emission efficiency is 80% (that is, 0.8) or more of the maximum emission efficiency.
  • each organic EL element 51r, 51g, 5 lb As a factor that shifts the maximum efficiency luminance of each organic EL element 51r, 51g, 5 lb to the lower luminance side, that is, a factor that adjusts the peak shape of the curve indicating the relationship between the emission luminance and the emission efficiency,
  • the thickness of each layer constituting the organic layer 33, the mobility of carriers, the concentration of impurities, and the like can be mentioned.
  • FIG. 6 is a diagram illustrating a potential diagram for the organic EL elements 51r, 51g, and 5 lb.
  • A1 is used as the first electrode 31
  • Ca is used as the second electrode 35
  • the charge injection layer 41 is a hole injection layer
  • the charge transport layer 43 is a hole transport layer
  • a charge transport The layer 47 is configured as an electron transport layer
  • the charge injection layer 49 is configured as an electron injection layer.
  • the external quantum efficiency 7? is a representative example of the luminous efficiency of the organic EL device.
  • the number of photons is shown as a percentage. The higher the external quantum efficiency 7 ?, the greater the number of photons. So
  • Equation 1 ⁇ 7? R 7? F 7? Ext ⁇ ' ⁇ , 1) [0037]
  • the carrier balance factor (charge balance)
  • the exciton generation efficiency
  • r? Is the emission quantum efficiency from the exciton
  • the external extraction efficiency (light extraction efficiency) .
  • the external quantum efficiency ⁇ is the carrier balance factor ⁇ , exciton generation efficiency ⁇ , light emission
  • the light emission efficiency with respect to the light emission luminance can be made desired by appropriately adjusting the carrier balance factor y.
  • the ease with which charges (holes or electrons) reach the light emitting surface depends on the height of the barrier.
  • the height of the charge injection barrier is adjusted by appropriately changing the material constituting the electron injection layer 49. If the electrons are easily injected, the maximum efficiency luminance can be shifted to the low luminance side. If it is difficult to inject electrons, the maximum efficiency luminance can be shifted to the high luminance side.
  • the carrier mobility in the organic layer 33 can be adjusted by doping the organic layer 33 with an impurity that inhibits the flow of charges.
  • each layer on the path through which holes move (hole injection layer 41, hole transport layer 43, etc.) is doped with impurities to reduce carrier mobility, thereby relatively moving electrons.
  • the maximum efficiency luminance can be shifted to the lower luminance side.
  • the impurities doped in each layer (hole injection layer 41, hole transport layer 43, etc.) on the path through which holes move the mobility of carriers is increased, thereby increasing the mobility of electrons.
  • the movement of holes can be promoted relatively, and as a result, the maximum efficiency luminance can be shifted to the high luminance side.
  • the carrier density in the organic layer 33 by doping is improved by doping. o
  • the mobility of each layer electron injection layer 49, electron transport layer 47, etc.
  • the movement of electrons relative to holes is promoted.
  • the maximum efficiency luminance can be shifted to the low luminance side.
  • the mobility of each layer hole injection layer 41, hole transport layer 43, etc.
  • the movement of holes relative to electrons is promoted.
  • the maximum efficiency luminance can be shifted to the high luminance side.
  • the space charge limited current is expressed by the following formula (2) when no trap exists in the organic layer (organic semiconductor).
  • Equation (2) is the carrier mobility, ⁇ is the dielectric constant of the vacuum, and ⁇ is the dielectric constant of the organic thin film
  • V is the applied voltage
  • L is the thickness of the organic layer.
  • Equation (2) the current town is inversely proportional to the cube of the film thickness. For this reason, for example, by appropriately adjusting the film thickness of each layer constituting the organic layer 33 while keeping the film thickness of the organic layer 33 constant, the hole flow is inhibited while the electron flow is promoted. be able to . As a result, the maximum efficiency luminance can be shifted to the low luminance side. Further, by appropriately adjusting the thickness of each layer constituting the organic layer 33 while keeping the thickness of the organic layer 33 constant, the flow of holes can be promoted while inhibiting the flow of electrons. . As a result, the maximum efficiency luminance can be shifted to the high luminance side.
  • the power efficiency in the organic EL display is the voltage efficiency of the external quantum efficiency 7?
  • the voltage efficiency is determined by factors such as the voltage efficiency in organic EL elements and the voltage drop in TFT circuits.
  • the peak at which the luminous efficiency is maximized is positioned in the luminance range of 1Z3 to 1Z2 where the organic EL element has the maximum luminous luminance. Is set.
  • the luminous efficiency is improved over the luminance range that is frequently used during video display. Power consumption can be reduced.
  • the light emission efficiency in the maximum light emission luminance range of 1Z3 to 1Z2 is set to be 80% or more (preferably 90% or more) of the maximum light emission efficiency. For this reason, the luminous efficiency is widely improved in the luminance range that is frequently used when displaying moving images. As a result, it is possible to more effectively reduce power consumption when performing moving image display.
  • the peak with the highest luminous efficiency is within the luminance range of 1Z3 to 1Z2 of the maximum luminous luminance. Is set to be located. For this reason, it is possible to significantly reduce the power consumption when displaying moving images.
  • the light emission efficiency in the luminance range of 1Z3 to 1Z2 with the maximum light emission luminance is set to be 80% or more (preferably 90% or more) of the maximum light emission efficiency. For this reason, the luminous efficiency for the luminance range frequently used during moving image display can be broadly increased, so that the power consumption during moving image display can be greatly reduced. As a result, it can contribute to the miniaturization of the power supply circuit and the battery.
  • the force described in the first embodiment is not limited to the content described above.
  • the maximum efficiency luminance appears within the light emission luminance range frequently used when displaying moving images.
  • the maximum efficiency luminance will appear within the emission luminance range that is frequently used during video display. You can adjust it.
  • the power described with reference to the organic EL display 21 capable of emitting three colors of RGB is not limited to this.
  • at least such as a monochrome organic EL display By applying the present invention to an organic EL display that can emit one or more colors of light, it is possible to reduce power consumption when displaying a moving image.
  • Example 1
  • an organic EL device in which an anode, a first hole injection layer, a second hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and a cathode are stacked in this order.
  • the film thicknesses of the second hole injection layer and the hole transport layer were changed while maintaining the total film thickness of the second hole injection layer and the hole transport layer at 350A.
  • the configuration of each layer is as follows.
  • FIG. 6 is a diagram plotting the relationship between the light emission luminance and the light emission efficiency by measuring the current density and the light emission luminance during light emission for the configuration of the transport layer thickness 210A).
  • the black square mark and the polygonal line L1 connecting the black square marks indicate the results of the configuration of Example 1
  • the white rhombus mark and the polygonal line L2 connecting the white rhombus marks are the configuration of Example 2. The result concerning is shown. Further, in FIG.
  • Example 7 a comparative example in which the film thicknesses of the second hole injection layer and the hole transport layer are changed from the configuration of Example 2 (Comparative Example 1: film thickness of the second hole injection layer). Also shown are the results for 100A—hole transport layer thickness 250A, comparative example 2: second hole injection layer thickness 20A—hole transport layer thickness 330A).
  • the black triangle mark and the broken line C1 connecting the black triangle marks indicate the results according to the configuration of Comparative Example 1
  • the white circle mark and the broken line C2 connecting the white circle marks indicate the results according to the configuration of Comparative Example 2.
  • 900 cdZm 2 is set as the maximum light emission luminance, and the range power of the light emission luminance that is frequently used during video display.
  • the maximum light emission luminance is 1Z3 to: LZ2, that is, the range of 300 to 450 cdZm 2 It will be explained as a thing.
  • the maximum efficiency luminance of Example 1 (emission luminance when the luminous efficiency is maximum) is 308 cdZm 2 , and the maximum efficiency luminance of Example 2 is 383 cd / m 2.
  • the maximum efficiency luminance was included in the emission luminance range (300 to 450 cdZm 2 ) frequently used during display.
  • the maximum efficiency brightness of Comparative Example 1 is 537 cd / m 2
  • the maximum efficiency brightness of Comparative Example 2 is 757 cdZm 2.
  • m 2 did not include maximum efficiency luminance.
  • the anode, the first hole injection layer, the second hole injection layer, the third hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, and the cathode were laminated in this order.
  • An organic EL device was fabricated. The configuration of each layer is as follows.
  • Fig. 8 is a graph plotting the relationship between light emission luminance and light emission efficiency by measuring the current density and light emission luminance at the time of light emission for the configuration of the above example (Example 3: with a third hole injection layer). It is.
  • the white rhombus mark and the broken line L3 connecting the white rhombus marks are the configurations of Example 3. The result concerning is shown.
  • the results of the comparative example Comparative Example 3: no third positive hole injection layer obtained by removing the third positive hole injection layer from the configuration of Example 3 are also shown. It shows.
  • 600 cdZm 2 is set as the maximum light emission luminance, and the range power of the light emission luminance that is frequently used when displaying moving images
  • the maximum efficiency luminance of Example 3 was included in the range of light emission luminance (200 to 300 cdZm 2 ) frequently used during moving image display.
  • the maximum efficiency luminance of Comparative Example 3 was higher than the emission luminance range (200 to 350 cdZm 2 ) frequently used during moving image display.
  • the maximum is within the range of the emission luminance frequently used when displaying moving images. Adjustments can be made to include efficient luminance.
  • FIG. 9 shows the relationship between the light emission luminance and the light emission efficiency of the organic EL display 21 according to the second embodiment, that is, the light emission efficiency of the first to third organic EL elements 51r, 51g, 51b in the vicinity of the maximum light emission luminance.
  • the relationship between the light emission luminance and the light emission efficiency in the case where adjustment is made so as to maximize is shown.
  • the horizontal axis indicates the light emission luminance
  • the vertical axis indicates the light emission efficiency.
  • the maximum light emission efficiency and the maximum light emission luminance are set to 1 as the reference values, respectively.
  • a curve Cvl showing the relationship between luminance and luminous efficiency is shown. Furthermore, for comparison, the curve Cv shown in FIG. 3 is indicated by a broken line.
  • the first to third organic EL elements 51r, 51g are compared with the relationship (curve Cv) between the light emission luminance and the light emission efficiency shown in FIG.
  • the maximum efficiency brightness Spk is shifted to the high brightness side.
  • the first to third organic EL elements 51r, 51g, 51b are set to have the maximum luminous efficiency. ing.
  • the voltage required for the organic EL display 21 can be reduced.
  • the peak that maximizes the luminous efficiency is positioned within the luminous luminance range of 90% to 110% of the maximum luminous luminance, the luminous efficiency at the maximum luminous luminance can be improved.
  • the voltage required for the organic EL display 21 can be reduced.
  • the luminous efficiency of the first to third organic EL elements 51r, 51g, and 51b is maximized at the maximum emission luminance.
  • the maximum light emission brightness and the maximum efficiency brightness Spk which are preferable to be set, completely match.
  • the difference ⁇ Spk between the maximum efficiency brightness Spk and the maximum light emission brightness of each color should be such that the relationship B ⁇ R ⁇ G holds.
  • the blue organic EL element 51b has a short wavelength in R GB, and has low luminous efficiency. This is because it is preferable to make the maximum light emission brightness and the maximum efficiency brightness Spk that have low viewing sensitivity closest to each other.
  • each of the organic EL elements 51r, 51g, 51b has an emission luminance within the range of 90% to 110% of the maximum emission luminance.
  • the peak where the luminous efficiency of the EL element is maximized is set!
  • the voltage required for each organic EL element 51r, 51g, 51b is further increased. It can be effectively reduced. That is, the voltage required for the organic EL display 21 can be reduced more effectively.
  • the number of holes is larger than the number of electrons (hole-rich state).
  • an organic layer that is vulnerable to holes (the electron transport layer 47 and the electron injection layer 49 in FIG. 6) is easily deteriorated by the penetration of holes, but the hole between the light-emitting layer 45 and the electron transport layer 47
  • a hole blocking layer that prevents the invasion of the electrons
  • the electron transport layer 47 and the electron injection layer 49 can be prevented from deteriorating.
  • organic layers that are vulnerable to electrons (the hole transport layer 43 and the hole injection layer 41 in FIG.
  • the organic EL display 21 in the organic EL display 21 according to the second embodiment, the peak of the luminous efficiency is set to a relatively high luminance side (in FIG. 9, near the maximum luminous luminance) as shown in FIG. Deterioration of the organic layer 33 is suppressed.
  • the luminous efficiency is within a range of 90% to 110% of the maximum luminance.
  • the maximum setting is set, it is not limited to this.
  • the first to third organic EL elements 5 Even if at least one of the organic EL elements of lr, 51g, and 51b is set so that the luminous efficiency is maximized within the range of 90% to 110% of the maximum luminance, the organic EL The voltage required on the display can be reduced.
  • the first to third organic EL elements 51r, 51g, and 5 lb when different power supply circuits are provided for the first to third organic EL elements 51r, 51g, and 5 lb, the first to third organic EL elements 51r, 51g, For all 51b, setting the maximum luminous efficiency within the range of 90% to 110% of the maximum emission luminance reduces the required voltage and power consumption for the OLED display 21 as a whole. In addition, it is preferable to further reduce the size of the power supply circuit.
  • the first to third organic EL elements 51r, 51g, and 5 lb when different power supply circuits are provided for the first to third organic EL elements 51r, 51g, and 5 lb, the first to third organic EL elements 51r, 51g, For all 51b, it is more effective to reduce the required voltage and power consumption and to reduce the size of the power circuit for the entire OLED display 21 by setting the luminous efficiency to be the maximum at the maximum luminance. Is preferable.
  • the first to third organic EL elements 51r, 51g, 51b are used to reduce the size of the power circuit.
  • a common power supply circuit may be used.
  • the voltage required for light emission in the third organic EL element 51b may be the highest.
  • the maximum brightness of B color light emitted from one pixel is 50 cdZm 2
  • the maximum brightness of R color light emitted from one pixel is 60 cdZm 2
  • Maximum brightness of the G color light emitted from the pixels is required only 90cdZm 2.
  • the third organic EL that actually emits light taking into account the proportion of time the element is emitting light (duty) and the aperture ratio of the pixel Element 51b needs to emit 1428 cdZm 2 of light.
  • the maximum emission luminance of the third organic EL element 5 lb needs to be about 1430 cd / m 2 .
  • each pixel has a characteristic of repeating light emission and non-light emission, and the element emits light!
  • the ratio of time is duty.
  • one pixel is divided into three RGB light-emitting areas, and the portions that emit light of each color are even smaller.
  • the aperture ratio is the proportion of one pixel that emits light of one color.
  • the maximum light emission luminance force S 1 714 cdZm 2 of the first organic EL element 51r is calculated, and the maximum light emission luminance of the second organic EL element 51g is calculated as 2570 cd / m 2.
  • the voltage efficiency when the third organic EL element 51b emits light at the maximum emission luminance (1430 C dZm 2 ) is about 170 cdZm 2 ZV, a driving voltage of about 8.4 V is required.
  • the voltage efficiency when the first organic EL element 51r emits light at the maximum light emission luminance (1714 cdZm 2 ) is about 230 cdZm 2 ZV, so a driving voltage of about 7.5 V is required.
  • the voltage efficiency when the second organic EL element 51g emits light with the maximum light emission luminance (2570 cdZm 2 ) is about 395 cdZm 2 ZV, a driving voltage of about 6.5 V is required.
  • the highest drive voltage (about 8.4 V) with respect to the third organic EL element 5 lb among the first to third organic EL elements 51r, 51g, 51b. Is required.
  • the first to third organic EL elements 51r, 51g, 5 lb the first to third organic EL elements 51r, 51g, 51b
  • the third organic EL element which requires the highest voltage for at least the maximum light emission luminance, is 5 lb, and emits light within the range of 90% to 110% of the maximum light emission luminance. If the efficiency is set to the maximum, the voltage of the common power supply circuit can be easily reduced. As a result, the common power supply circuit can be downsized. In this case, the battery is connected to the common power circuit. Can be connected.
  • the third organic EL element that requires the highest voltage at least for the maximum emission luminance even in the case. For 5 lbs, 90% of maximum emission brightness: L If the emission efficiency is set within the range of 10%, the required voltage and power consumption can be reduced, and the power supply circuit Can be miniaturized.
  • the first power supply circuit used for the first organic EL element 51r, the second power supply circuit used for the second organic EL element 51g, and the third organic EL element 51b A third power supply circuit used in common and a notch connected in common to the third power supply circuit
  • the third organic EL element 51b requires the highest voltage at the maximum light emission luminance.
  • the organic EL elements 51r and 51g are not limited and may require the highest voltage at the maximum light emission luminance. In such a case, the other organic EL elements 51r and 51g are first adjusted for the peak position of the luminous efficiency.
  • the power described with reference to the organic EL display 21 capable of emitting three colors of RGB is not limited to this.
  • a monochrome organic EL display By applying the present invention to an organic EL display capable of emitting one or more colors of light, the voltage required for the organic EL display can be reduced.
  • an organic EL device was fabricated in which an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode were laminated in this order.
  • the configuration of each layer is as follows.
  • FIG. 12 shows the emission luminance of the configuration of the above example by measuring the current density and emission luminance during light emission. It is the figure which showed the relationship between and luminous efficiency.
  • curve C1 shows the results for the configuration of the example.
  • the maximum efficiency luminance (emission luminance when the luminous efficiency is maximized) of the example is about 1430 cdZm 2 , and the maximum emission luminance and the maximum efficiency luminance are approximately the same.
  • the maximum efficiency luminance of Comparative Example 1 is 1119 cdZm 2
  • the maximum efficiency luminance of Comparative Example 2 is 886 cdZm 2
  • the maximum efficiency luminance of Comparative Example 3 is 640 cdZm 2
  • the maximum efficiency luminance is The light emission efficiency at the maximum light emission brightness near the maximum light emission brightness is slightly low.
  • each organic layer and the ratio of thickness (ie, basic element structure)
  • the materials constituting each organic layer and the ratio of thickness ie, basic element structure
  • FIG. 13 is a graph plotting the relationship between the maximum efficiency luminance and the drive voltage required at the maximum light emission luminance for the configuration of the above-described example.
  • Figure 13 shows the results for the configuration of the plot P1 force example.
  • FIG. 13 shows the results relating to the configurations of Comparative Examples 1 to 3 for comparison.
  • Plot P2 shows the result of the configuration of Comparative Example 1
  • Plot P3 shows the result of the configuration of Comparative Example 2
  • Plot P4 shows the result of the configuration of Comparative Example 3.
  • FIG. 13 also shows the results relating to the configuration having the total film thickness between the example and the comparative example 1.
  • Fig. 14 shows a table showing the relationship among film thickness, drive voltage at maximum light emission luminance, and maximum efficiency luminance for Comparative Examples 1 to 3 and other configurations where the total film thickness of the example is 1. Show.
  • FIG. 1 is a cross-sectional view showing a configuration of an organic EL display according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of the organic EL display according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the relationship between light emission luminance and light emission efficiency of a general organic EL element.
  • FIG. 4 is a schematic diagram showing a simplified circuit configuration of an organic EL display.
  • FIG. 5 is a diagram illustrating the relationship between the adjusted light emission luminance and light emission efficiency.
  • FIG. 6 is a diagram showing a potential diagram of an organic EL element.
  • FIG. 7 is a graph showing the relationship between light emission luminance and light emission efficiency in Examples and Comparative Examples of the present invention.
  • FIG. 8 is a diagram showing the relationship between light emission luminance and light emission efficiency in Examples and Comparative Examples of the present invention.
  • FIG. 9 is a diagram exemplifying a relationship between adjusted light emission luminance and light emission efficiency.
  • FIG. 10 is a graph showing the proportion of time during which an organic EL element emits light.
  • FIG. 11 is a diagram showing a ratio of light emitting areas in a pixel.
  • FIG. 12 is a graph showing the relationship between light emission luminance and light emission efficiency in Examples and Comparative Examples.
  • FIG. 13 is a diagram showing the relationship between the maximum efficiency luminance and the necessary voltage in Examples and Comparative Examples.
  • FIG. 14 is a diagram showing the relationship among film thickness, drive voltage at maximum light emission luminance, and maximum efficiency luminance for Examples and Comparative Examples.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

[PROBLEMS] To provide a technology for reducing power consumption or drive voltage in an organic EL display. [MEANS FOR SOLVING PROBLEMS] An organic EL display for displaying moving pictures is provided with an organic layer composed of one more layers including a light emitting layer; and a plurality of organic EL elements, each of which has first and second electrodes which face each other by having the organic layer in between. A peak where the emission efficiency of the organic EL element becomes maximum is set within a luminance range of 1/3 to 1/2 of a previously set maximum emission luminance of the organic EL element. Furthermore, in the organic EL display, within an emission luminance range of 90%-110% of the previously set maximum emission luminance of the organic EL element, a peak where the emission efficiency of the organic EL element becomes maximum is set.

Description

明 細 書  Specification
有機 ELディスプレイ及びそれを用いた画像表示装置  Organic EL display and image display device using the same
技術分野  Technical field
[0001] 本発明は、有機 EL(Electroluminescent)ディスプレイ及びそれを用いた画像表示装 置に関する。  The present invention relates to an organic EL (Electroluminescent) display and an image display device using the same.
背景技術  Background art
[0002] 従来より、電界発光を利用した有機 EL素子を利用した有機 ELディスプレイが知ら れている。  Conventionally, an organic EL display using an organic EL element using electroluminescence has been known.
[0003] 有機 EL素子としては、例えば、発光層を含む有機層を挟んで透明電極と金属電極 とを対向配置させたものがある。このような構成の有機 EL素子では、透明電極と金属 電極との間に電圧または電流を印加して発光層に電流を流すと発光層が発光し、こ の発光層から出射される光が透明電極を透過して外部に放出される。そして、一般 的な有機 EL素子では、発光層に流れる電流が大きくなるほど発光強度が高くなるこ とが知られている。  [0003] As an organic EL element, for example, there is one in which a transparent electrode and a metal electrode are arranged to face each other with an organic layer including a light emitting layer interposed therebetween. In an organic EL device having such a configuration, when a voltage or current is applied between a transparent electrode and a metal electrode and current is passed through the light emitting layer, the light emitting layer emits light, and light emitted from the light emitting layer is transparent. It passes through the electrode and is emitted to the outside. In general organic EL devices, it is known that the emission intensity increases as the current flowing in the emission layer increases.
[0004] ところで、通常の有機 ELディスプレイでは、高輝度の発光が要求されるため、有機 EL素子に高 、電圧を印加して、発光層に流れる電流密度を大きくすることによって 高輝度の発光を得ていたが、当該手法では、消費電力が大きいという欠点があった  [0004] By the way, since an ordinary organic EL display is required to emit light with high luminance, a high voltage is applied to the organic EL element to increase the current density flowing in the light emitting layer, thereby emitting light with high luminance. However, this method had the disadvantage of high power consumption.
[0005] このような問題に対して、有機 EL素子に印加する電圧又は電流の大きさを、有機 E L素子における発光効率が最大値の 80%以上となる電圧値又は電流値に設定する 有機 EL素子が提案されている (例えば、特許文献 1)。 [0005] To solve this problem, the voltage or current applied to the organic EL element is set to a voltage or current value at which the luminous efficiency of the organic EL element is 80% or more of the maximum value. Devices have been proposed (for example, Patent Document 1).
特許文献 1:特開 2003— 59651号公報  Patent Document 1: Japanese Patent Laid-Open No. 2003-59651
特許文献 2:特開 2002— 72629号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-72629
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しカゝしながら、特許文献 1で提案された有機 EL素子では、発光効率が高くなるよう に有機 EL素子に印加する電圧又は電流の条件を採用しているだけである。それ故 、このような有機 EL素子を有機 ELディスプレイに適用した場合、動画表示時におけ る発光条件に対応して、消費電力を低減するようなものではな力つた。 [0006] However, the organic EL element proposed in Patent Document 1 only adopts the condition of the voltage or current applied to the organic EL element so as to increase the light emission efficiency. Therefore When such an organic EL device was applied to an organic EL display, it was not enough to reduce power consumption in accordance with the light emission conditions during video display.
[0007] また、有機 ELディスプレイでは、最大階調で発光する場合に合わせて必要とされる 電圧が決定されるため、当該必要とされる電圧を低減するような工夫を施さなければ 、消費電力量や昇圧回路等の電源回路のサイズが増大してしまう。 [0007] In addition, in an organic EL display, a voltage required for light emission at the maximum gradation is determined. Therefore, if no measures are taken to reduce the required voltage, power consumption is reduced. This increases the amount and the size of the power supply circuit such as a booster circuit.
課題を解決するための手段  Means for solving the problem
[0008] 第 1の本発明は、有機 ELディスプレイであって、発光層を含む 1以上の層から成る 有機層と、当該有機層を挟んで互いに対向する第 1及び第 2の電極とをそれぞれ有 する複数の有機 EL素子を備え、複数の前記有機 EL素子は動画表示を行い、予め 設定された前記有機 EL素子の最大発光輝度の 1Z3から 1Z2の輝度範囲内に、前 記有機 EL素子の発光効率が最大となるピークが位置する。  [0008] The first aspect of the present invention is an organic EL display, comprising: an organic layer comprising one or more layers including a light emitting layer; and first and second electrodes facing each other across the organic layer. A plurality of the organic EL elements, and the plurality of the organic EL elements display a moving image, and are within a preset luminance range of 1Z3 to 1Z2 of the organic EL element. The peak where the luminous efficiency is maximized is located.
[0009] また、第 2の本発明は、有機 ELディスプレイであって、発光層を含む 1以上の層から 成る有機層と、当該有機層を挟んで互いに対向する第 1及び第 2の電極とをそれぞ れ有する複数の有機 EL素子を備え、予め設定された前記有機 EL素子の最大発光 輝度の 90%〜110%の発光輝度の範囲内において、前記有機 EL素子の発光効率 が最大となるピークが位置する。  [0009] The second aspect of the present invention is an organic EL display, comprising an organic layer comprising one or more layers including a light emitting layer, and first and second electrodes facing each other with the organic layer interposed therebetween. The organic EL element has the maximum luminous efficiency within a preset range of 90% to 110% of the maximum emission luminance of the organic EL element. The peak is located.
発明の効果  The invention's effect
[0010] 第 1の本発明によれば、予め設定された有機 EL素子の最大発光輝度の 1Z3〜1 Z2の輝度範囲内において、発光効率が最大となるピークが位置することから、動画 表示時において頻繁に使用される輝度範囲についての発光効率が向上し、動画表 示を行う際の消費電力を低減することができる。  [0010] According to the first aspect of the present invention, the peak at which the luminous efficiency is maximized is located within the preset luminance range of 1Z3 to 1Z2 of the maximum emission luminance of the organic EL element. The luminous efficiency of the luminance range that is frequently used in can be improved, and the power consumption when displaying moving images can be reduced.
[0011] また、第 2の本発明によれば、予め設定された最大発光輝度の 90%〜 110%の発 光輝度の範囲内において、発光効率が最大となるピークが位置することで、有機 EL 素子にお 、て必要とされる電圧を低減することができるため、有機 ELディスプレイで 必要とされる電圧を低減することが可能となる。その結果、有機 EL素子に電力を供 給する電源回路を小型化することができ、ひいては画像表示装置の小型化に寄与 することが可能となる。  [0011] Further, according to the second aspect of the present invention, the peak at which the luminous efficiency is maximized is located within the range of 90% to 110% of the preset maximum emission luminance, whereby the organic emission Since the voltage required for the EL element can be reduced, the voltage required for the organic EL display can be reduced. As a result, it is possible to reduce the size of the power supply circuit that supplies power to the organic EL element, thereby contributing to the downsizing of the image display device.
発明を実施するための最良の形態 [0012] 以下、本発明の実施形態を図面に基づいて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013] <用語に関する記載 >  [0013] <Terminology>
本明細書において、「発光効率」とは、有機 EL素子に流れる電流密度 (例えば、単 位:アンペア毎平方メートル [AZm2] )と、有機 EL素子カゝら発せられる光の輝度 (例 えば、単位:カンデラ毎平方メートル [cd/m2])とを測定し、輝度を電流密度で除し た値で表される。また、適宜、有機 EL素子の発光効率の最大値を基準値である 1とし て、発光効率を示している。 In this specification, “luminescence efficiency” means the current density (for example, unit: ampere per square meter [AZm 2 ]) flowing through the organic EL element and the luminance of the light emitted from the organic EL element (for example, Unit: candela per square meter [cd / m 2 ]), measured by luminance divided by current density. In addition, the light emission efficiency is shown by taking the maximum value of the light emission efficiency of the organic EL element as the reference value 1 as appropriate.
[0014] く有機 ELディスプレイの構成〉  [0014] Configuration of organic EL display>
図 1は、第 1および第 2実施形態に係る有機 ELディスプレイ 21の構成を概略的に 示す断面図である。この有機 ELディスプレイ 21は、トップェミッションタイプであり、図 1に示すように、透明基板であるガラス基板 (以下「基板」と略称) 23と、その基板 23 上に形成された素子部 25と、その素子部 25の上に形成された調整層 26と、その調 整層 26の上力も素子部 25全体を覆うように形成された封止膜 27とを備えている。素 子部 25は、基板 23側から順に、第 1の電極 31、有機層 33及び第 2の電極 35を備え ている。そして、第 1及び第 2の電極 31, 35は有機層 33を挟み込んで相互に対向し ている。  FIG. 1 is a cross-sectional view schematically showing the configuration of the organic EL display 21 according to the first and second embodiments. This organic EL display 21 is a top emission type, and as shown in FIG. 1, a transparent glass substrate (hereinafter abbreviated as “substrate”) 23 and an element portion 25 formed on the substrate 23, The adjustment layer 26 formed on the element portion 25 and the sealing film 27 formed so that the upper force of the adjustment layer 26 also covers the entire element portion 25 are provided. The element unit 25 includes a first electrode 31, an organic layer 33, and a second electrode 35 in order from the substrate 23 side. The first and second electrodes 31 and 35 are opposed to each other with the organic layer 33 interposed therebetween.
[0015] また、有機 ELディスプレイ 21では、カラー発光を行うため、図 2に示すように、赤 (R )、緑 (G)、青 (B)の各色に対応して第 1ないし第 3の有機 EL素子 51r, 51g, 51bが 複数配設されている。なお、図 2では、図示の便宜上、封止膜 27が省略されている。 第 1ないし第 3の有機 EL素子 51r, 51g, 51bの有機層 33には、後述のように、赤、 緑、青の各波長の光を発光するのに適した材料が用いられて 、る。  In addition, since the organic EL display 21 emits color light, as shown in FIG. 2, the first to third colors corresponding to the colors red (R), green (G), and blue (B) are provided. A plurality of organic EL elements 51r, 51g, 51b are provided. In FIG. 2, the sealing film 27 is omitted for convenience of illustration. The organic layer 33 of the first to third organic EL elements 51r, 51g, 51b is made of a material suitable for emitting light of each wavelength of red, green, and blue, as will be described later. .
[0016] 調整層 26は、第 1ないし第 3の有機 EL素子 51r, 51g, 51bの光透過特性を調整 するためのものである。封止膜 27は、有機層 33及び第 2の電極 35等を封止するた めのものであり、有機 ELディスプレイ 21の素子部 25が形成される領域を完全に覆う ようにして形成されている。封止膜 27は、光透過性を有する絶縁材料、例えば SiNx 等により形成される。  The adjustment layer 26 is for adjusting the light transmission characteristics of the first to third organic EL elements 51r, 51g, 51b. The sealing film 27 is for sealing the organic layer 33, the second electrode 35, etc., and is formed so as to completely cover the region where the element portion 25 of the organic EL display 21 is formed. Yes. The sealing film 27 is formed of a light-transmitting insulating material such as SiNx.
[0017] 素子部 25の構成について説明する。第 1の電極 31は、有機層 33が発光した光の 少なくとも一部を有機層 33側に反射するようになっており、例えば、 A1等の反射電極 (不透明電極)によって構成される。 The configuration of the element unit 25 will be described. The first electrode 31 reflects at least part of the light emitted from the organic layer 33 to the organic layer 33 side. For example, the first electrode 31 is a reflective electrode such as A1. (Opaque electrode).
[0018] 第 2の電極 35は、光を透過する導電材料によって構成される。なお、第 2の電極 35 は、半透明電極又は透明電極とすることができるが、半透明電極で構成される場合 には、可視光を透過させるような光学特性を有している必要があるため、電極の膜厚 を薄くすることでそのような光学特性を実現している。ここで、透明電極に好適な材料 としては、例えば ITOや IZO等がある。また、半透明電極に好適な材料としては、 Li などのアルカリ金属、 Mg, Ca, Sr, Baなどのアルカリ土類金属、あるいは Al, Si, A g等がある。  [0018] The second electrode 35 is made of a conductive material that transmits light. The second electrode 35 can be a semi-transparent electrode or a transparent electrode. However, when the second electrode 35 is composed of a semi-transparent electrode, it needs to have an optical characteristic that allows visible light to pass therethrough. Therefore, such optical characteristics are realized by reducing the thickness of the electrode. Here, examples of suitable materials for the transparent electrode include ITO and IZO. Suitable materials for the semitransparent electrode include alkali metals such as Li, alkaline earth metals such as Mg, Ca, Sr, and Ba, Al, Si, and Ag.
[0019] 有機層 33は、図 2に示すように、基板 23側力も順に、正孔又は電子の注入を行う ための電荷注入層 41と、正孔又は電子の輸送を行うための電荷輸送層 43と、 EL発 光を行う発光層 45と、電子又は正孔の輸送を行うための電荷輸送層 47と、電子又は 正孔の注入を行うための電荷注入層 49とを備えている。なお、本実施形態では、有 機層 33を 5層構造で形成した力 種々の条件に応じて 2ないし 4層構造等、種々の 層構造が採用される。  [0019] As shown in Fig. 2, the organic layer 33 includes a charge injection layer 41 for injecting holes or electrons and a charge transport layer for transporting holes or electrons in this order. 43, a light emitting layer 45 for emitting EL, a charge transport layer 47 for transporting electrons or holes, and a charge injection layer 49 for injecting electrons or holes. In the present embodiment, various layer structures such as a two- to four-layer structure are adopted depending on various conditions.
[0020] 有機層 33の構成及び材料は、例えば、第 1及び第 2の電極 31, 35の反射特性 (不 透明、半透明又は透明)及び極性 (いずれを陽極側にするか等)、及び有機層 33の 発光色の種類 (赤色、緑色、青色)等に応じて決定される。具体例としては、例えば、 Alq (アルミキノリール錯体)などの材料は、緑色の発光を行うとともに電子輸送性に [0020] The configuration and material of the organic layer 33 are, for example, the reflection characteristics (non-transparent, translucent or transparent) and polarity (which is the anode side, etc.) of the first and second electrodes 31, 35, and It is determined according to the type of luminescent color of the organic layer 33 (red, green, blue). As a specific example, for example, a material such as Alq (aluminum quinolyl complex) emits green light and has an electron transport property.
3 Three
も優れて 、るため、緑色の発光を行う素子部 25にお 、ては発光層と電子輸送層とが Alqなどの単一材料で構成される場合がある。また、透明電極を用いる場合には、 Therefore, in the element unit 25 that emits green light, the light emitting layer and the electron transport layer may be made of a single material such as Alq. When using a transparent electrode,
3 Three
金属の電子注入層を用いる場合が多 、。  In many cases, a metal electron injection layer is used.
[0021] <発光輝度と発光効率との関係 > [0021] <Relationship between luminous brightness and luminous efficiency>
図 3は、一般的な有機 EL素子の発光輝度と発光効率との関係を例示している。図 3では、横軸が発光輝度、縦軸が発光効率を示している。そして、発光効率の最大値 、及び使用する発光輝度の最大値 (以下「最大発光輝度」と称する)がそれぞれ基準 値である 1とされ、発光輝度と発光効率との関係を示す曲線 Cvが示されている。なお 、カラー表示可能な有機 EL素子では、最も明るい色である白色を表示する場合に発 光輝度が最大発光輝度となるように予め設定されて!ヽる。 [0022] 図 3に示すように、発光輝度が最大発光輝度よりも小さな値 Spkのときに、発光効率 が最大 (ピーク値)となる。以下では、発光効率の最大値を「最大発光効率」と称し、 最大発光効率が実現される発光輝度を「最大効率輝度」と称する。なお、「発光効率 」は、発光輝度を電流密度で除することで求められるため、一定の電流に対して光が 放出される効率を示して 、る。 Fig. 3 illustrates the relationship between the luminance and luminous efficiency of a typical organic EL device. In FIG. 3, the horizontal axis represents the luminance and the vertical axis represents the luminous efficiency. The maximum value of the light emission efficiency and the maximum value of the light emission luminance to be used (hereinafter referred to as “maximum light emission luminance”) are set to 1 as the reference value, and a curve Cv indicating the relationship between the light emission luminance and the light emission efficiency is shown. Has been. In the case of an organic EL element capable of color display, the light emission luminance is set in advance so as to be the maximum light emission luminance when displaying the brightest white color. As shown in FIG. 3, when the light emission luminance is a value Spk smaller than the maximum light emission luminance, the light emission efficiency becomes maximum (peak value). Hereinafter, the maximum value of the light emission efficiency is referred to as “maximum light emission efficiency”, and the light emission luminance at which the maximum light emission efficiency is realized is referred to as “maximum efficiency luminance”. The “light emission efficiency” is obtained by dividing the light emission luminance by the current density, and thus indicates the efficiency with which light is emitted with respect to a constant current.
[0023] ところで、有機 ELディスプレイは、テレビ電話やデジタルテレビ等の用途で使用さ れる場合、動画を表示する頻度が高くなるものと予測される。そして、一般に、動画表 示を行う場合、ディスプレイが表示可能な (すなわちディスプレイが使用される)階調 範囲 (すなわち輝度範囲)のうち、低輝度側から 1Z3〜: LZ2程度の輝度範囲(階調 範囲)が最も頻繁に使用される。  [0023] By the way, when an organic EL display is used in applications such as videophones and digital televisions, it is predicted that the frequency of displaying moving images will increase. In general, when displaying a moving image, the luminance range (gradation level) from 1Z3 to LZ2 from the low luminance side in the gradation range (that is, luminance range) that the display can display (that is, the display is used). Range) is most often used.
[0024] そこで、本願発明者らは、使用される輝度範囲のうち低輝度側から 1Z2〜: LZ3の 発光輝度の範囲において、第 1ないし第 3の有機 EL素子 51r、 51g、 51bの発光効 率を向上させるように調節することにより、有機 ELディスプレイ 21にお ヽて動画表示 を行う際の消費電力を低減することを創出した。  [0024] Therefore, the inventors of the present application have determined that the first to third organic EL elements 51r, 51g, and 51b have a light emission effect within the light emission luminance range of 1Z2 to LZ3 from the low luminance side in the luminance range to be used. By adjusting to improve the rate, we have created a reduction in power consumption when displaying video on the OLED display 21.
[0025] 図 4は、一般的な有機 EL素子の回路構成を簡略ィ匕して示した模式図である。なお 、有機 EL素子の詳細な回路構成は、トランジスタ等の各種回路が複数組み合わせら れて構成されているのが一般的であるが、図 4では、図の複雑ィ匕を防ぐために、一般 的な有機 EL素子の回路構成を簡略ィ匕した概要を示している。  [0025] FIG. 4 is a schematic diagram showing a simplified circuit configuration of a general organic EL element. Note that the detailed circuit configuration of the organic EL element is generally configured by combining multiple circuits such as transistors, but in FIG. 4, in order to prevent the complexity of the diagram, The outline of the circuit configuration of a simple organic EL device is shown.
[0026] 図 4に示すように、電源回路 100によって一定の電源電圧 Vを掛けた状態で、 TFT 回路等によって構成されるトランジスタ 200により、有機 EL素子に対応する発光ダイ オード 51に流れる電流密度を調整することができる。  [0026] As shown in FIG. 4, the current density flowing in the light-emitting diode 51 corresponding to the organic EL element by the transistor 200 constituted by a TFT circuit or the like with a constant power supply voltage V applied by the power supply circuit 100 Can be adjusted.
[0027] ところで、有機 EL素子では、最大発光輝度時に最も高!、電流密度(以下「最大電 流密度」とも称する)を要する。このため、最大電流密度が得られるように、電源電圧 Vを掛けておく必要性がある。  Incidentally, the organic EL element requires the highest current density (hereinafter also referred to as “maximum current density”) at the maximum light emission luminance. Therefore, it is necessary to multiply the power supply voltage V so that the maximum current density can be obtained.
[0028] そこで、本願発明者らは、使用される輝度範囲のうちの最大値 (最大発光輝度)に おいて、第 1から第 3の有機 EL素子 51r、 51g、 51bの発光効率を向上させるように 調節することにより、有機 ELディスプレイ 21において必要とされる電圧を低減するこ と^ ilj出した。そして、この必要とされる電圧の低減により、昇圧回路等の電源回路 の小型化や消費電力の低減を図ることも創出した。 [0028] Therefore, the inventors of the present application improve the light emission efficiency of the first to third organic EL elements 51r, 51g, and 51b at the maximum value (maximum light emission luminance) in the luminance range to be used. By adjusting in such a way, the voltage required for the organic EL display 21 was reduced. And by reducing this required voltage, power supply circuits such as booster circuits It was also created to reduce the size and power consumption.
[0029] (第 1実施形態)  [0029] (First embodiment)
<発光効率の調整 >  <Adjustment of luminous efficiency>
図 5は、第 1実施形態に係る有機 ELディスプレイ 21の発光輝度と発光効率との関 係、すなわち、使用される輝度範囲のうち低輝度側から 1Z3〜: LZ2の発光輝度の 範囲において、有機 EL素子 51r、 51g、 5 lbの発光効率が最大となるように調整した 場合における発光輝度と発光効率との関係を例示している。なお、図 5では、図 3と 同様に、横軸が発光輝度、縦軸が発光効率を示しており、最大発光効率及び最大 発光輝度がそれぞれ基準値である 1とされ、発光輝度と発光効率との関係を示す曲 線 Cvlが示されている。また、図 5では、動画表示時に頻繁に使用される発光輝度の 範囲 (発光輝度 = 1Z3〜: LZ2)にほぼ対応する所定の発光輝度の範囲 (発光輝度 =0. 3〜0. 5)にハッチングが付されている。更に、比較のために、図 3で示した曲線 Cvが破線で示されている。  FIG. 5 shows the relationship between the light emission luminance and the light emission efficiency of the organic EL display 21 according to the first embodiment, that is, from the low luminance side of the used luminance range to the organic light emitting luminance range from 1Z3 to: LZ2. The relationship between the light emission luminance and the light emission efficiency when the light emission efficiency of the EL elements 51r, 51g, and 5 lb is adjusted to the maximum is illustrated. In FIG. 5, as in FIG. 3, the horizontal axis shows the light emission luminance and the vertical axis shows the light emission efficiency, and the maximum light emission efficiency and the maximum light emission luminance are the reference values of 1, respectively. The curve Cvl showing the relationship with is shown. In addition, in Fig. 5, the range of light emission luminance (light emission luminance = 1Z3 to LZ2) that is frequently used when displaying moving images is almost the same as the range of light emission luminance (light emission luminance = 0.3 to 0.5). Hatched. Furthermore, for comparison, the curve Cv shown in FIG. 3 is indicated by a broken line.
[0030] 図 5に示すように、図 3で示された発光輝度と発光効率との関係(曲線 Cv)と比較し て、本実施形態に係る有機 EL素子 51r、 51g、 51bでは、最大効率輝度 Spkが低輝 度側へシフトしている。そして、動画表示時に頻繁に使用される所定の発光輝度の 範囲 (発光輝度 =0. 3〜0. 5)において発光効率がピーク値 (最大発光効率)を示し ている。つまり、動画表示時に頻繁に使用される所定の発光輝度の範囲 (発光輝度 =0. 3〜0. 5)に最大効率輝度 Spkが含まれている。このように、発光輝度 =0. 3〜 0. 5における発光効率が高くなるように調整すると、動画表示を行う際の消費電力を 低減することができる。 [0030] As shown in FIG. 5, the organic EL elements 51r, 51g, and 51b according to the present embodiment have a maximum efficiency as compared with the relationship between the light emission luminance and the light emission efficiency (curve Cv) shown in FIG. Luminance Spk is shifted to the lower luminance side. The light emission efficiency shows a peak value (maximum light emission efficiency) in a predetermined light emission luminance range (light emission luminance = 0.3 to 0.5) frequently used during moving image display. That is, the maximum efficiency luminance Spk is included in a predetermined emission luminance range (emission luminance = 0.3-0.5) that is frequently used when displaying moving images. As described above, by adjusting the light emission efficiency so that the light emission luminance is 0.3 to 0.5, the power consumption when displaying a moving image can be reduced.
[0031] また、例えば、発光輝度 = 1Z3〜: LZ2 (すなわち発光輝度 =0. 3〜0. 5)の全域 において、発光効率が最大発光効率の 80% (すなわち、 0. 8)以上となるように調整 すると、動画表示を行う際の消費電力をより効率的に低減することができる。更に消 費電力を低減する観点から言えば、発光輝度 = 1Z3〜: LZ2 (すなわち発光輝度 = 0. 3〜0. 5)全域において、発光効率が最大発光効率の 90% (すなわち、 0. 9)以 上となるように調整することがより好ましい。また、動画表示時に、 0. 3〜0. 5の輝度 範囲全域にわたって、発光輝度の使用頻度がほぼ等しいものとすれば、最大効率輝 度を、発光輝度 =0. 3〜0. 5の略中央の値である発光輝度 =0. 4付近の値に調整 することが好ましい。 [0031] Further, for example, in the entire region of emission luminance = 1Z3 to: LZ2 (that is, emission luminance = 0.3 to 0.5), the emission efficiency is 80% (that is, 0.8) or more of the maximum emission efficiency. By adjusting in this way, it is possible to more efficiently reduce power consumption when displaying a moving image. Furthermore, from the viewpoint of reducing power consumption, the luminous efficiency is 90% of the maximum luminous efficiency (ie, 0.9) over the entire range of luminous brightness = 1Z3 to: LZ2 (ie, luminous brightness = 0.3 to 0.5). It is more preferable to adjust so that it may become the above. In addition, when moving images are displayed, if the frequency of light emission luminance is approximately the same over the entire luminance range of 0.3 to 0.5, the maximum efficiency It is preferable to adjust the degree to a value in the vicinity of emission luminance = 0.4, which is a substantially central value of emission luminance = 0.3 to 0.5.
[0032] ところで、各有機 EL素子 51r、 51g、 5 lbの最大効率輝度を低輝度側へシフトさせ る因子、すなわち発光輝度と発光効率との関係を示す曲線のピーク形状を調整する 因子としては、有機層 33を構成する各層の膜厚、キャリアの移動度、及び不純物の 濃度などが挙げられる。  [0032] By the way, as a factor that shifts the maximum efficiency luminance of each organic EL element 51r, 51g, 5 lb to the lower luminance side, that is, a factor that adjusts the peak shape of the curve indicating the relationship between the emission luminance and the emission efficiency, The thickness of each layer constituting the organic layer 33, the mobility of carriers, the concentration of impurities, and the like can be mentioned.
[0033] ここで、各有機 EL素子 5 lr、 5 lg、 5 lbにつ ヽての最大効率輝度 (すなわち発光輝 度と発光効率との関係を示す曲線のピーク形状)の調整に関する因子ついて簡単に 説明する。  [0033] Here, the factors relating to the adjustment of the maximum efficiency luminance (that is, the peak shape of the curve indicating the relationship between the luminous intensity and the luminous efficiency) for each of the organic EL elements 5 lr, 5 lg, and 5 lb are briefly described. Explained.
[0034] 図 6は、有機 EL素子 51r、 51g、 5 lbについてのポテンシャルダイヤグラムを例示 する図である。ここでは、一例として、第 1の電極 31として A1が使用され、第 2の電極 35として Caが使用され、電荷注入層 41が正孔注入層、電荷輸送層 43が正孔輸送 層、電荷輸送層 47が電子輸送層、電荷注入層 49が電子注入層として構成されてい るものについて示している。  FIG. 6 is a diagram illustrating a potential diagram for the organic EL elements 51r, 51g, and 5 lb. Here, as an example, A1 is used as the first electrode 31, Ca is used as the second electrode 35, the charge injection layer 41 is a hole injection layer, the charge transport layer 43 is a hole transport layer, and a charge transport The layer 47 is configured as an electron transport layer, and the charge injection layer 49 is configured as an electron injection layer.
[0035] このような有機 EL素子 51r、 51g、 51bを発光させる場合、図 6中の矢印で示すよう に、正孔が、第 1の電極 31側から正孔注入層 41、正孔輸送層 43、発光層 45の順に 進む。一方、電子が、第 2の電極 35側から電子注入層 49、電子輸送層 47、発光層 4 5の順に進む。そして、発光層 45の発光面 EMにおいて正孔と電子とが結合すること で、光が発生する。  When such organic EL elements 51r, 51g, and 51b emit light, as indicated by arrows in FIG. 6, holes are introduced from the first electrode 31 side to the hole injection layer 41, the hole transport layer. The process proceeds in the order of 43 and the light emitting layer 45. On the other hand, electrons proceed in the order of the electron injection layer 49, the electron transport layer 47, and the light emitting layer 45 from the second electrode 35 side. Then, light is generated by combining holes and electrons in the light emitting surface EM of the light emitting layer 45.
[0036] ところで、有機 EL素子の発光効率を示す代表的ものとして外部量子効率 7? があ  [0036] By the way, the external quantum efficiency 7? Is a representative example of the luminous efficiency of the organic EL device.
Φ  Φ
る。この外部量子効率 7? は、注入電子数に対して、有機 EL素子外部に放射される  The This external quantum efficiency of 7? Is emitted outside the organic EL device with respect to the number of injected electrons.
Φ  Φ
光子数を割合で示したもので、外部量子効率 7? が高 、ほど、光子数は多くなる。そ  The number of photons is shown as a percentage. The higher the external quantum efficiency 7 ?, the greater the number of photons. So
Φ  Φ
して、外部量子効率 7? は、下式(1)によって示される。  The external quantum efficiency 7? Is expressed by the following equation (1).
Φ  Φ
[数 1] φ = γ 7? r 7? f 7? ext · ' · 、 1 ) [0037] 式(1)では、 γはキャリアバランス因子 (電荷バランス)、 ηが励起子生成効率、 r? が励起子からの発光量子効率、 η が外部取出し効率 (光取出し効率)を示している 。つまり、外部量子効率 η は、キャリアバランス因子 γ、励起子生成効率 η、発光 [Equation 1] φ = γ 7? R 7? F 7? Ext · '·, 1) [0037] In equation (1), γ is the carrier balance factor (charge balance), η is the exciton generation efficiency, r? Is the emission quantum efficiency from the exciton, and η is the external extraction efficiency (light extraction efficiency) . In other words, the external quantum efficiency η is the carrier balance factor γ, exciton generation efficiency η, light emission
r 量子効率 7)、及び外部取出し効率 7} の 4つの積からなる。そして、この 4つの値の  r It consists of four products: quantum efficiency 7) and external extraction efficiency 7}. And these four values
f ext  f ext
うち、励起子生成効率 7?、発光量子効率 7?、及び外部取出し効率 7? の 3つの値は  Of these, the three values of exciton generation efficiency 7 ?, emission quantum efficiency 7 ?, and external extraction efficiency 7?
r f ext  r f ext
有機 EL素子に流れる電流値の変化があっても基本的に値は変化しない。その一方 で、キャリアバランス因子 γの値は、有機 EL素子に流れる電流値の変化に伴って変 化する。よって、図 3及び図 5で示したように、このキャリアバランス因子 γの変化が、 発光輝度の変化に対して発光効率のピークを生じさせる。  Even if there is a change in the current flowing through the organic EL element, the value basically does not change. On the other hand, the value of the carrier balance factor γ changes with changes in the current value flowing through the organic EL element. Therefore, as shown in FIGS. 3 and 5, this change in the carrier balance factor γ causes a peak in luminous efficiency with respect to the change in emission luminance.
[0038] そこで、キャリアバランス因子 yを適宜調整することで、発光輝度に対する発光効 率を所望のものとすることができると考えられる。  [0038] Therefore, it is considered that the light emission efficiency with respect to the light emission luminance can be made desired by appropriately adjusting the carrier balance factor y.
[0039] ここで、キャリアバランス因子 γを変動させる因子として、 1)第 1及び第 2の電極 31 , 35から有機層 33への電荷の注入障壁の高さ、 2)有機層 33におけるキャリアの移 動度、 3)ドーピングによる有機層 33におけるキャリア密度、 4)空間電荷制限電流(S CLC)等が挙げられる。  [0039] Here, as factors for changing the carrier balance factor γ, 1) the height of the charge injection barrier from the first and second electrodes 31 and 35 to the organic layer 33, and 2) the carrier in the organic layer 33 Mobility, 3) carrier density in the organic layer 33 due to doping, and 4) space charge limited current (SCLC).
[0040] 1)電荷の注入障壁の高さについては、障壁の高さによって電荷 (正孔又は電子) が発光面 ΕΜに到達する容易さが左右される。一般に、有機 EL素子で使用される有 機層では、正孔の方が注入され易いため、例えば、電子注入層 49を構成する材料 を適宜変更することで電荷の注入障壁の高さを調整し、電子を注入し易くすれば、最 大効率輝度を低輝度側にシフトさせることができる。電子を注入し難くすれば、最大 効率輝度を高輝度側にシフトさせることができる。  [0040] 1) Regarding the height of the charge injection barrier, the ease with which charges (holes or electrons) reach the light emitting surface depends on the height of the barrier. In general, in an organic layer used in an organic EL element, holes are more easily injected. For example, the height of the charge injection barrier is adjusted by appropriately changing the material constituting the electron injection layer 49. If the electrons are easily injected, the maximum efficiency luminance can be shifted to the low luminance side. If it is difficult to inject electrons, the maximum efficiency luminance can be shifted to the high luminance side.
[0041] 2)有機層 33におけるキャリアの移動度については、電荷の流れを阻害する不純物 を有機層 33にドーピングすることで調整することができる。例えば、正孔が移動する 経路上の各層(正孔注入層 41、及び正孔輸送層 43等)に不純物をドーピングして、 キャリアの移動度を低下させることで、電子の移動を相対的に促進し、結果として最 大効率輝度を低輝度側にシフトさせることができる。例えば、正孔が移動する経路上 の各層(正孔注入層 41、及び正孔輸送層 43等)にドーピングされる不純物を減少さ せて、キャリアの移動度を上昇させることで、電子に対して正孔の移動を相対的に促 進させ、結果として最大効率輝度を高輝度側にシフトさせることができる。  [0041] 2) The carrier mobility in the organic layer 33 can be adjusted by doping the organic layer 33 with an impurity that inhibits the flow of charges. For example, each layer on the path through which holes move (hole injection layer 41, hole transport layer 43, etc.) is doped with impurities to reduce carrier mobility, thereby relatively moving electrons. As a result, the maximum efficiency luminance can be shifted to the lower luminance side. For example, by reducing the impurities doped in each layer (hole injection layer 41, hole transport layer 43, etc.) on the path through which holes move, the mobility of carriers is increased, thereby increasing the mobility of electrons. As a result, the movement of holes can be promoted relatively, and as a result, the maximum efficiency luminance can be shifted to the high luminance side.
[0042] 3)ドーピングによる有機層 33におけるキャリア密度は、ドーピングによって向上する o例えば、電子が移動する経路上の各層(電子注入層 49、及び電子輸送層 47等) の移動度を向上させることで、正孔に対して相対的に電子の移動が促進され、結果 として最大効率輝度を低輝度側にシフトさせることができる。例えば、正孔が移動す る経路上の各層(正孔注入層 41、及び正孔輸送層 43等)の移動度を向上させること で、電子に対して相対的に正孔の移動が促進され、結果として最大効率輝度を高輝 度側にシフトさせることができる。 [0042] 3) The carrier density in the organic layer 33 by doping is improved by doping. o For example, by improving the mobility of each layer (electron injection layer 49, electron transport layer 47, etc.) on the path along which electrons move, the movement of electrons relative to holes is promoted. The maximum efficiency luminance can be shifted to the low luminance side. For example, by improving the mobility of each layer (hole injection layer 41, hole transport layer 43, etc.) on the path through which holes move, the movement of holes relative to electrons is promoted. As a result, the maximum efficiency luminance can be shifted to the high luminance side.
[0043] 4)空間電荷制限電流は、有機層 (有機半導体)中にトラップが存在しない場合、下 式(2)で示される。  [0043] 4) The space charge limited current is expressed by the following formula (2) when no trap exists in the organic layer (organic semiconductor).
[数 2]
Figure imgf000011_0001
[Equation 2]
Figure imgf000011_0001
[0044] 式(2)では、 はキャリアの移動度、 ε は真空の誘電率、 εは有機薄膜の誘電率 [0044] In Equation (2), is the carrier mobility, ε is the dielectric constant of the vacuum, and ε is the dielectric constant of the organic thin film
0  0
、 Vは印加電圧、 Lは有機層の膜厚を示している。  , V is the applied voltage, and L is the thickness of the organic layer.
[0045] 式(2)から明らかなように、電流街は、膜厚の 3乗に逆比例する。このため、例えば 、有機層 33の膜厚を一定に保持したまま、有機層 33を構成する各層の膜厚を適宜 調整することで、正孔の流れを阻害する一方、電子の流れを促進させることができる 。その結果、最大効率輝度を低輝度側にシフトさせることができる。また、有機層 33 の膜厚を一定に保持したまま、有機層 33を構成する各層の膜厚を適宜調整すること で、電子の流れを阻害する一方、正孔の流れを促進させることができる。その結果、 最大効率輝度を高輝度側にシフトさせることができる。  [0045] As is clear from Equation (2), the current town is inversely proportional to the cube of the film thickness. For this reason, for example, by appropriately adjusting the film thickness of each layer constituting the organic layer 33 while keeping the film thickness of the organic layer 33 constant, the hole flow is inhibited while the electron flow is promoted. be able to . As a result, the maximum efficiency luminance can be shifted to the low luminance side. Further, by appropriately adjusting the thickness of each layer constituting the organic layer 33 while keeping the thickness of the organic layer 33 constant, the flow of holes can be promoted while inhibiting the flow of electrons. . As a result, the maximum efficiency luminance can be shifted to the high luminance side.
[0046] なお、有機 ELディスプレイにおける電力効率は、外部量子効率 7? に電圧効率を  [0046] It should be noted that the power efficiency in the organic EL display is the voltage efficiency of the external quantum efficiency 7?
Φ  Φ
乗じたものであるため、上記の如く外部量子効率 7? を調整することで、電力効率を  Therefore, adjusting the external quantum efficiency 7?
Φ  Φ
向上させることができる。電圧効率は、有機 EL素子における電圧効率や TFT回路に おける電圧降下等の要因によって決まる。  Can be improved. The voltage efficiency is determined by factors such as the voltage efficiency in organic EL elements and the voltage drop in TFT circuits.
[0047] 以上のように、第 1実施形態に係る有機 ELディスプレイ 21では、有機 EL素子が最 大発光輝度の 1Z3から 1Z2の輝度範囲内に、発光効率が最大となるピークが位置 するように設定されている。このような構成を採用することで、動画表示時において頻 繁に使用される輝度範囲にっ 、ての発光効率が向上するため、動画表示を行う際の 消費電力を低減することができる。 [0047] As described above, in the organic EL display 21 according to the first embodiment, the peak at which the luminous efficiency is maximized is positioned in the luminance range of 1Z3 to 1Z2 where the organic EL element has the maximum luminous luminance. Is set. By adopting such a configuration, the luminous efficiency is improved over the luminance range that is frequently used during video display. Power consumption can be reduced.
[0048] 特に、最大発光輝度の 1Z3から 1Z2の輝度範囲における発光効率が最大発光 効率の 80%以上 (好ましくは 90%以上)となるように設定されている。このため、動画 表示時にお 、て頻繁に使用される輝度範囲にっ 、ての発光効率が幅広く向上する 。その結果、動画表示を行う際の消費電力をより効果的に低減することができる。  [0048] In particular, the light emission efficiency in the maximum light emission luminance range of 1Z3 to 1Z2 is set to be 80% or more (preferably 90% or more) of the maximum light emission efficiency. For this reason, the luminous efficiency is widely improved in the luminance range that is frequently used when displaying moving images. As a result, it is possible to more effectively reduce power consumption when performing moving image display.
[0049] また、 RGBの 3種類の相互に異なる色の光を発する有機 EL素子 5 lr、 51g、 51b 全てについて、最大発光輝度の 1Z3から 1Z2の輝度範囲内に、発光効率が最大と なるピークが位置するように設定されている。このため、動画表示を行う際の消費電 力を大幅に低減することができる。更に、最大発光輝度の 1Z3から 1Z2の輝度範囲 における発光効率が最大発光効率の 80%以上 (好ましくは 90%以上)となるように 設定されている。このため、動画表示時において頻繁に使用される輝度範囲につい ての発光効率を幅広く増大させることができるため、動画表示を行う際の消費電力を より大幅に低減することができる。その結果、電源回路の小型化やバッテリーの小型 化に寄与できる。  [0049] In addition, for all of the organic EL elements 5lr, 51g, and 51b that emit light of three different colors of RGB, the peak with the highest luminous efficiency is within the luminance range of 1Z3 to 1Z2 of the maximum luminous luminance. Is set to be located. For this reason, it is possible to significantly reduce the power consumption when displaying moving images. Furthermore, the light emission efficiency in the luminance range of 1Z3 to 1Z2 with the maximum light emission luminance is set to be 80% or more (preferably 90% or more) of the maximum light emission efficiency. For this reason, the luminous efficiency for the luminance range frequently used during moving image display can be broadly increased, so that the power consumption during moving image display can be greatly reduced. As a result, it can contribute to the miniaturization of the power supply circuit and the battery.
[0050] <変形例>  [0050] <Modification>
以上、第 1実施形態について説明した力 この発明は上記説明した内容のものに 限定されるものではない。  As described above, the force described in the first embodiment. The present invention is not limited to the content described above.
[0051] 例えば、第 1実施形態では、 RGBの 3色全ての有機 EL素子 5 lr. 51g. 51bにつ いて、動画表示時に頻繁に使用される発光輝度の範囲内に、最大効率輝度が出現 するように調整した力 これに限られず、例えば、 RGBのうちの少なくとも 1色以上の 有機 EL素子について、動画表示時に頻繁に使用される発光輝度の範囲内に、最大 効率輝度が出現するように調整しても良 、。  [0051] For example, in the first embodiment, for all three colors of organic EL elements 5 lr. 51g. 51b, the maximum efficiency luminance appears within the light emission luminance range frequently used when displaying moving images. For example, for an organic EL element of at least one of RGB colors, the maximum efficiency luminance will appear within the emission luminance range that is frequently used during video display. You can adjust it.
[0052] また、第 1実施形態では、 RGBの 3色を発光することができる有機 ELディスプレイ 2 1を挙げて説明した力 これに限られず、例えば、モノクロの有機 ELディスプレイ等と いった、少なくとも 1色以上の光を発することができる有機 ELディスプレイに対しても 本発明を適用することで、動画表示を行う際の消費電力を低減することができる。 実施例 1  [0052] Further, in the first embodiment, the power described with reference to the organic EL display 21 capable of emitting three colors of RGB is not limited to this. For example, at least such as a monochrome organic EL display By applying the present invention to an organic EL display that can emit one or more colors of light, it is possible to reduce power consumption when displaying a moving image. Example 1
[0053] <膜厚を変化させて最大効率輝度を調整した実施例 > 本実施例では、陽極、第 1正孔注入層、第 2正孔注入層、正孔輸送層、発光層、正 孔ブロック層、電子輸送層、電子注入層、陰極の順に積層した有機 EL素子を作製し た。ここでは、第 2正孔注入層と正孔輸送層の膜厚の合計を 350Aに保持しつつ、 第 2正孔注入層と正孔輸送層の膜厚を変更した。各層の構成は下記の通りである。 <Example in which maximum luminance is adjusted by changing film thickness> In this example, an organic EL device in which an anode, a first hole injection layer, a second hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and a cathode are stacked in this order. Was made. Here, the film thicknesses of the second hole injection layer and the hole transport layer were changed while maintaining the total film thickness of the second hole injection layer and the hole transport layer at 350A. The configuration of each layer is as follows.
(a)陽極 (第 1の電極)  (a) Anode (first electrode)
材料:アルミ二クム  Material: Aluminum Kum
膜厚:500 A  Film thickness: 500 A
(b)第 1正孔注入層  (b) First hole injection layer
材料: NiO  Material: NiO
膜厚: 50 A  Film thickness: 50 A
(c)第 2正孔注入層  (c) Second hole injection layer
材料: CuPc  Material: CuPc
膜厚: 180A又は 140A  Film thickness: 180A or 140A
(d)正孔輸送層  (d) Hole transport layer
材料: a -NPD  Material: a-NPD
膜厚: 170A又は 210A  Film thickness: 170A or 210A
(e)発光層  (e) Light emitting layer
ホスト材料: CBP  Host material: CBP
ゲスト材料: Btp Ir(acac)  Guest material: Btp Ir (acac)
2  2
(英語標 3己: bis[2— (2f— benzothienyl)pyridinato— N,し 3f] cetylacetonato) lndium(III))  (English mark 3 self: bis [2— (2f—benzothienyl) pyridinato—N, 3f] cetylacetonato) lndium (III))
合計膜厚: 350 A ホスト材料に対するゲスト材料の濃度: 5wt%  Total film thickness: 350 A Concentration of guest material with respect to host material: 5 wt%
(1)正孔ブロック層  (1) Hole blocking layer
材料: BAlq 膜厚: 100 Λ  Material: BAlq Film thickness: 100 Λ
(g)電子輸送層  (g) Electron transport layer
材料: Alq 膜厚:150A  Material: Alq Film thickness: 150A
(h)電子注入層  (h) Electron injection layer
材料: LiF 膜厚: 5 A Material: LiF Film thickness: 5 A
(0陰極 (第 2の電極)  (0 cathode (second electrode)
材料: Mg :Ag (Mg— Ag合金)  Material: Mg: Ag (Mg—Ag alloy)
膜厚:200 A  Film thickness: 200 A
図 7は、上記の実施例(実施例 1 :第 2正孔注入層の膜厚 180A—正孔輸送層の膜 厚 170A、実施例 2:第 2正孔注入層の膜厚 140A—正孔輸送層の膜厚 210A)の 構成について、発光時における電流密度と発光輝度とを測定し、発光輝度と発光効 率との関係をプロットした図である。図 7では、黒四角印及び当該黒四角印を繋ぐ折 れ線 L1が実施例 1の構成に係る結果を示し、白菱形印及び当該白菱形印を繋ぐ折 れ線 L2が実施例 2の構成に係る結果を示している。更に、図 7では、比較のために、 実施例 2の構成から第 2正孔注入層及び正孔輸送層の膜厚を変更した比較例( 比較例 1 :第 2正孔注入層の膜厚 100A—正孔輸送層の膜厚 250A、比較例 2:第 2 正孔注入層の膜厚 20A—正孔輸送層の膜厚 330A)の構成に係る結果も併せて示 している。なお、黒三角印及び当該黒三角印を繋ぐ折れ線 C1が比較例 1の構成に 係る結果を示し、白丸印及び当該白丸印を繋ぐ折れ線 C2が比較例 2の構成に係る 結果を示している。  Figure 7 shows the above example (Example 1: Second hole injection layer thickness 180A—Hole transport layer thickness 170A, Example 2: Second hole injection layer thickness 140A—Hole FIG. 6 is a diagram plotting the relationship between the light emission luminance and the light emission efficiency by measuring the current density and the light emission luminance during light emission for the configuration of the transport layer thickness 210A). In FIG. 7, the black square mark and the polygonal line L1 connecting the black square marks indicate the results of the configuration of Example 1, and the white rhombus mark and the polygonal line L2 connecting the white rhombus marks are the configuration of Example 2. The result concerning is shown. Further, in FIG. 7, for comparison, a comparative example in which the film thicknesses of the second hole injection layer and the hole transport layer are changed from the configuration of Example 2 (Comparative Example 1: film thickness of the second hole injection layer). Also shown are the results for 100A—hole transport layer thickness 250A, comparative example 2: second hole injection layer thickness 20A—hole transport layer thickness 330A). The black triangle mark and the broken line C1 connecting the black triangle marks indicate the results according to the configuration of Comparative Example 1, and the white circle mark and the broken line C2 connecting the white circle marks indicate the results according to the configuration of Comparative Example 2.
[0055] なお、ここでは、 900cdZm2が最高発光輝度として設定され、動画表示時に頻繁 に使用される発光輝度の範囲力 最高発光輝度の 1Z3〜: LZ2、すなわち 300〜4 50cdZm2の範囲であるものとして説明する。 [0055] Here, 900 cdZm 2 is set as the maximum light emission luminance, and the range power of the light emission luminance that is frequently used during video display. The maximum light emission luminance is 1Z3 to: LZ2, that is, the range of 300 to 450 cdZm 2 It will be explained as a thing.
[0056] 図 7に示すように、実施例 1の最大効率輝度 (発光効率が最大となるときの発光輝 度)は 308cdZm2、実施例 2の最大効率輝度は 383cd/m2であり、動画表示時に 頻繁に使用される発光輝度の範囲(300〜450cdZm2)に最大効率輝度が含まれ た。これに対して、比較例 1の最大効率輝度は 537cd/m2、比較例 2の最大効率輝 度は 757cdZm2であり、動画表示時に頻繁に使用される発光輝度の範囲(300〜4 50cd/m2)には最大効率輝度が含まれな力つた。 [0056] As shown in FIG. 7, the maximum efficiency luminance of Example 1 (emission luminance when the luminous efficiency is maximum) is 308 cdZm 2 , and the maximum efficiency luminance of Example 2 is 383 cd / m 2. The maximum efficiency luminance was included in the emission luminance range (300 to 450 cdZm 2 ) frequently used during display. In contrast, the maximum efficiency brightness of Comparative Example 1 is 537 cd / m 2 , and the maximum efficiency brightness of Comparative Example 2 is 757 cdZm 2. m 2 ) did not include maximum efficiency luminance.
[0057] このように、第 2正孔注入層と正孔輸送層の合計膜厚を一定に保持したまま、第 2 正孔注入層と正孔輸送層の厚みを適宜変更することで、動画表示時に頻繁に使用 される発光輝度の範囲内に最大効率輝度が含まれるように調整することができる。 [0058] <正孔注入層の存在によって最大効率輝度を調整した実施例 > [0057] As described above, by appropriately changing the thicknesses of the second hole injection layer and the hole transport layer while keeping the total film thickness of the second hole injection layer and the hole transport layer constant, a moving image can be obtained. Adjustment can be made so that the maximum efficiency luminance is included in the range of the emission luminance frequently used during display. <Example in which the maximum efficiency brightness is adjusted by the presence of the hole injection layer>
本実施例では、陽極、第 1正孔注入層、第 2正孔注入層、第 3正孔注入層、正孔輸 送層、発光層、電子輸送層、電子注入層、陰極の順に積層した有機 EL素子を作製 した。各層の構成は下記の通りである。  In this example, the anode, the first hole injection layer, the second hole injection layer, the third hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, the electron injection layer, and the cathode were laminated in this order. An organic EL device was fabricated. The configuration of each layer is as follows.
[0059] (a)陽極(第 1の電極) [0059] (a) Anode (first electrode)
材料:アルミ-クム 膜厚: 500 A  Material: Aluminum-Kum Film thickness: 500 A
(b)第 1正孔注入層  (b) First hole injection layer
材料: TiO 膜厚: 10A  Material: TiO Film thickness: 10A
(c)第 2正孔注入層  (c) Second hole injection layer
材料: CF 膜厚:15A  Material: CF Film thickness: 15A
(d)第 3正孔注入層  (d) Third hole injection layer
材料: CuPc 膜厚: 225 A  Material: CuPc Film thickness: 225 A
(e)正孔輸送層  (e) Hole transport layer
材料: α—NPD 膜厚: 100Λ  Material: α-NPD Film thickness: 100Λ
(ί)発光層  (ί) Light emitting layer
ホスト材料: CBP ゲスト材料: FIrpic  Host material: CBP Guest material: FIrpic
合計膜厚: 270 A ホスト材料に対するゲスト材料の濃度: 5wt% Total film thickness: 270 A Concentration of guest material relative to host material: 5 wt%
(g)電子輸送層 (g) Electron transport layer
材料: Alq 膜厚: 240 Λ  Material: Alq Film thickness: 240 Λ
(h)電子注入層  (h) Electron injection layer
材料: LiF  Material: LiF
膜厚: 5 A  Film thickness: 5 A
(0陰極 (第 2の電極)  (0 cathode (second electrode)
材料: Mg :Ag (Mg— Ag合金)  Material: Mg: Ag (Mg—Ag alloy)
膜厚:200 A  Film thickness: 200 A
図 8は、上記の実施例(実施例 3 :第 3正孔注入層あり)の構成について、発光時に おける電流密度と発光輝度とを測定し、発光輝度と発光効率との関係をプロットした 図である。図 8では、白菱形印及び当該白菱形印を繋ぐ折れ線 L3が実施例 3の構成 に係る結果を示している。更に、図 8では、比較のために、実施例 3の構成から第 3正 孔注入層を除!ヽた比較例 (比較例 3:第 3正孔注入層なし)の構成に係る結果も併せ て示している。 Fig. 8 is a graph plotting the relationship between light emission luminance and light emission efficiency by measuring the current density and light emission luminance at the time of light emission for the configuration of the above example (Example 3: with a third hole injection layer). It is. In FIG. 8, the white rhombus mark and the broken line L3 connecting the white rhombus marks are the configurations of Example 3. The result concerning is shown. Further, in FIG. 8, for comparison, the results of the comparative example (Comparative Example 3: no third positive hole injection layer) obtained by removing the third positive hole injection layer from the configuration of Example 3 are also shown. It shows.
[0060] なお、ここでは、 600cdZm2が最高発光輝度として設定され、動画表示時に頻繁 に使用される発光輝度の範囲力 最高発光輝度の 1Z3〜: LZ2、すなわち 200〜3[0060] Here, 600 cdZm 2 is set as the maximum light emission luminance, and the range power of the light emission luminance that is frequently used when displaying moving images The maximum light emission luminance of 1Z3 to: LZ2, that is, 200 to 3
OOcdZm2の範囲であるものとして説明する。 The description will be made assuming that the range is OOcdZm 2 .
[0061] 図 8に示すように、実施例 3の最大効率輝度は、動画表示時に頻繁に使用される発 光輝度の範囲(200〜300cdZm2)に含まれた。これに対して、比較例 3の最大効率 輝度は、動画表示時に頻繁に使用される発光輝度の範囲(200〜350cdZm2)より も高輝度側に存在した。 As shown in FIG. 8, the maximum efficiency luminance of Example 3 was included in the range of light emission luminance (200 to 300 cdZm 2 ) frequently used during moving image display. In contrast, the maximum efficiency luminance of Comparative Example 3 was higher than the emission luminance range (200 to 350 cdZm 2 ) frequently used during moving image display.
[0062] このように、有機 EL素子に第 3正孔注入層を介在させて、最大効率輝度を低輝度 側へシフトさせることで、動画表示時に頻繁に使用される発光輝度の範囲内に最大 効率輝度が含まれるように調整することができる。 [0062] In this way, by interposing the third hole injection layer in the organic EL element and shifting the maximum efficiency luminance to the low luminance side, the maximum is within the range of the emission luminance frequently used when displaying moving images. Adjustments can be made to include efficient luminance.
[0063] (第 2実施形態) [0063] (Second Embodiment)
<発光効率の調整 >  <Adjustment of luminous efficiency>
図 9は、第 2実施形態に係る有機 ELディスプレイ 21の発光輝度と発光効率との関 係、すなわち、最大発光輝度近傍において、第 1から第 3の有機 EL素子 51r、 51g、 51bの発光効率が最大となるように調整した場合における発光輝度と発光効率との 関係を例示している。  FIG. 9 shows the relationship between the light emission luminance and the light emission efficiency of the organic EL display 21 according to the second embodiment, that is, the light emission efficiency of the first to third organic EL elements 51r, 51g, 51b in the vicinity of the maximum light emission luminance. The relationship between the light emission luminance and the light emission efficiency in the case where adjustment is made so as to maximize is shown.
[0064] なお、図 9では、図 3と同様に、横軸が発光輝度、縦軸が発光効率を示しており、最 大発光効率及び最大発光輝度がそれぞれ基準値である 1とされ、発光輝度と発光効 率との関係を示す曲線 Cvlが示されている。更に、比較のために、図 3で示した曲線 Cvが破線で示されている。  In FIG. 9, as in FIG. 3, the horizontal axis indicates the light emission luminance, and the vertical axis indicates the light emission efficiency. The maximum light emission efficiency and the maximum light emission luminance are set to 1 as the reference values, respectively. A curve Cvl showing the relationship between luminance and luminous efficiency is shown. Furthermore, for comparison, the curve Cv shown in FIG. 3 is indicated by a broken line.
[0065] 図 9に示すように、図 3で示された発光輝度と発光効率との関係(曲線 Cv)と比較し て、本実施形態に係る第 1から第 3の有機 EL素子 51r、 51g、 51bでは、最大効率輝 度 Spkが高輝度側へシフトしている。そして、最大発光輝度 (発光輝度 = 1)において 発光効率がピーク値 (最大発光効率)を示している。つまり、最大発光輝度において 、第 1から第 3の有機 EL素子 51r、 51g、 51bの発光効率が最大となるように設定され ている。 [0065] As shown in FIG. 9, the first to third organic EL elements 51r, 51g according to the present embodiment are compared with the relationship (curve Cv) between the light emission luminance and the light emission efficiency shown in FIG. In 51b, the maximum efficiency brightness Spk is shifted to the high brightness side. The light emission efficiency shows a peak value (maximum light emission efficiency) at the maximum light emission luminance (light emission luminance = 1). In other words, at the maximum emission brightness, the first to third organic EL elements 51r, 51g, 51b are set to have the maximum luminous efficiency. ing.
[0066] このように、最大発光輝度における発光効率を向上させることで、有機 ELディスプ レイ 21にお 、て必要とされる電圧を低減することができる。  As described above, by improving the light emission efficiency at the maximum light emission luminance, the voltage required for the organic EL display 21 can be reduced.
[0067] なお、ここでは、図 9に示すように、最大発光輝度 (発光輝度 = 1)において発光効 率が最大となるように設定した例を示したが、これに限られない。例えば、最大発光 輝度の 90%〜110%の発光輝度の範囲内において、発光効率が最大となるピーク が位置するように調整すれば、最大発光輝度における発光効率を向上させることが でき、ひいては、有機 ELディスプレイ 21において必要とされる電圧を低減することが できる。但し、有機 ELディスプレイ 21において必要とされる電圧を極力低減するとい つた観点力も言えば、最大発光輝度において第 1から第 3の有機 EL素子 51r、 51g、 51bの発光効率が最大となるように設定した方が好ましぐ最大発光輝度と最大効率 輝度 Spkとが完全に一致することが最も好ましい。ただし、このような調整は非常に煩 雑であることから、各色の最大効率輝度 Spkと最大発光輝度との差 Δ Spkの値は、 B < R< Gの関係が成立するようにすることが好ましい。青色の有機 EL素子 51bは、 R GBの中で短波長であり、発光効率が悪い上に、?見感度も低ぐ最大発光輝度と最大 効率輝度 Spkとを最も近づけた方が好ましいからである。一方、緑色の有機 EL素子 5 lgは、発光効率も良ぐ?見感度も良いため、 RGBの中では最大発光輝度と最大効率 輝度 Spkとを近づける要請が最も低い。したがって、最大効率輝度 Spkと最大発光輝 度との差 Δ Spkの値について、 B< R< Gの関係が成立するようにすれば、色毎の特 性が考慮された発光効率のピーク位置となる。その結果、有機 ELディスプレイの生 産性を高く維持しつつ、消費電力を小さく抑えることが可能となる。  Here, as shown in FIG. 9, an example is shown in which the light emission efficiency is set to be maximum at the maximum light emission luminance (light emission luminance = 1), but the present invention is not limited to this. For example, if the peak that maximizes the luminous efficiency is positioned within the luminous luminance range of 90% to 110% of the maximum luminous luminance, the luminous efficiency at the maximum luminous luminance can be improved. The voltage required for the organic EL display 21 can be reduced. However, in terms of the viewpoint of reducing the voltage required for the organic EL display 21 as much as possible, the luminous efficiency of the first to third organic EL elements 51r, 51g, and 51b is maximized at the maximum emission luminance. It is most preferable that the maximum light emission brightness and the maximum efficiency brightness Spk, which are preferable to be set, completely match. However, since such adjustment is very complicated, the difference Δ Spk between the maximum efficiency brightness Spk and the maximum light emission brightness of each color should be such that the relationship B <R <G holds. preferable. The blue organic EL element 51b has a short wavelength in R GB, and has low luminous efficiency. This is because it is preferable to make the maximum light emission brightness and the maximum efficiency brightness Spk that have low viewing sensitivity closest to each other. On the other hand, is the green organic EL element 5 lg good in luminous efficiency? Due to its good viewing sensitivity, the demand for bringing the maximum light emission brightness and the maximum efficiency brightness Spk close to each other is the lowest among RGB. Therefore, if the relationship of B <R <G is established for the difference Δ Spk between the maximum efficiency brightness Spk and the maximum light emission brightness, the peak position of the light emission efficiency considering the characteristics for each color and Become. As a result, it is possible to keep power consumption low while maintaining high productivity of organic EL displays.
[0068] 以上のように、第 2実施形態に係る有機 ELディスプレイ 21では、各有機 EL素子 51 r、 51g、 51bについて、最大発光輝度の 90%〜110%の発光輝度の範囲内に、有 機 EL素子の発光効率が最大となるピークが位置するように設定されて!、る。このよう な構成を採用することで、各有機 EL素子 51r、 51g、 5 lbにおいて必要とされる電圧 を低減することができるため、有機 ELディスプレイ 21で必要とされる電圧を低減する ことができる。  [0068] As described above, in the organic EL display 21 according to the second embodiment, each of the organic EL elements 51r, 51g, 51b has an emission luminance within the range of 90% to 110% of the maximum emission luminance. The peak where the luminous efficiency of the EL element is maximized is set! By adopting such a configuration, it is possible to reduce the voltage required for each organic EL element 51r, 51g, 5 lb. Therefore, the voltage required for the organic EL display 21 can be reduced. .
[0069] また、携帯電話に搭載されるディスプレイやパソコンの画面に適用することを考えれ ば、これらの画面では静止画を表示することが多ぐその際には高い階調 (高輝度) の使用頻度が高い。このような用途を考えると、上記のように、高輝度における発光 効率を高めておくことで、消費電力の低減を図ることができる。 [0069] In addition, it may be applied to a display mounted on a mobile phone or a screen of a personal computer. For example, still images are often displayed on these screens, and high gradation (high luminance) is frequently used at that time. Considering such applications, it is possible to reduce power consumption by increasing the light emission efficiency at high luminance as described above.
[0070] また、印加する電圧を低減することにより、昇圧回路等の電源回路やバッテリーの 小型化も図ることができ、携帯電話等といった小型の機器に有機 ELディスプレイを搭 載させる際に有効である。  [0070] Further, by reducing the applied voltage, it is possible to reduce the size of a power supply circuit such as a booster circuit and a battery, which is effective when an organic EL display is mounted on a small device such as a cellular phone. is there.
[0071] また、特に、最大発光輝度において、各有機 EL素子 51r、 51g、 51bの発光効率 が最大となるように設定すると、各有機 EL素子 51r、 51g、 51bにおいて必要とされる 電圧をより効果的に低減することができる。すなわち、有機 ELディスプレイ 21で必要 とされる電圧をより効果的に低減することができる。  [0071] Further, in particular, when the maximum luminous brightness is set so that the luminous efficiency of each organic EL element 51r, 51g, 51b is maximized, the voltage required for each organic EL element 51r, 51g, 51b is further increased. It can be effectively reduced. That is, the voltage required for the organic EL display 21 can be reduced more effectively.
[0072] また、有機層 33では、最大効率輝度よりも低い発光輝度時において、電子の数より も正孔の数の方が多い状態 (正孔リッチな状態)となる。そして、例えば、正孔に弱い 有機層(図 6の電子輸送層 47及び電子注入層 49)は正孔の侵入によって劣化し易 いが、発光層 45と電子輸送層 47との間に正孔の侵攻を防ぐ正孔ブロック層を設ける ことで、電子輸送層 47及び電子注入層 49の劣化を防ぐことができる。その一方で、 例えば、電子に弱い有機層(図 6の正孔輸送層 43及び正孔注入層 41)は、電子の 侵入によって劣化し易いが、電子ブロック層を形成する材料はほとんど存在しない。 このため、有機層 33全体を見た場合に、正孔の数よりも電子の数の方が多い状態( 電子リッチな状態)となると、電子が正孔輸送層 43及び正孔注入層 41に侵攻するた め、有機層 33の劣化が進み易い。この点について、第 2実施形態に係る有機 ELデ イスプレイ 21では、図 9に示すように発光効率のピークが比較的高輝度側(図 9では、 最大発光輝度近傍)に設定されているため、有機層 33の劣化が抑制される。  [0072] Further, in the organic layer 33, when the emission luminance is lower than the maximum efficiency luminance, the number of holes is larger than the number of electrons (hole-rich state). For example, an organic layer that is vulnerable to holes (the electron transport layer 47 and the electron injection layer 49 in FIG. 6) is easily deteriorated by the penetration of holes, but the hole between the light-emitting layer 45 and the electron transport layer 47 By providing a hole blocking layer that prevents the invasion of the electrons, the electron transport layer 47 and the electron injection layer 49 can be prevented from deteriorating. On the other hand, for example, organic layers that are vulnerable to electrons (the hole transport layer 43 and the hole injection layer 41 in FIG. 6) are easily deteriorated by the intrusion of electrons, but there is almost no material that forms the electron blocking layer. Therefore, when the entire organic layer 33 is viewed, if the number of electrons is larger than the number of holes (electron rich state), the electrons are transferred to the hole transport layer 43 and the hole injection layer 41. Due to the invasion, the organic layer 33 is likely to deteriorate. In this regard, in the organic EL display 21 according to the second embodiment, the peak of the luminous efficiency is set to a relatively high luminance side (in FIG. 9, near the maximum luminous luminance) as shown in FIG. Deterioration of the organic layer 33 is suppressed.
[0073] <変形例>  [0073] <Modification>
以上、この発明の一実施形態について説明したが、この発明は上記説明した内容 のものに限定されるものではない。  As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the thing of the content demonstrated above.
[0074] 例えば、第 2実施形態では、第 1から第 3の有機 EL素子 51r, 51g, 51b全てにつ いて、最大発光輝度の 90%〜110%の発光輝度の範囲内において、発光効率が最 大となるように設定したが、これに限られない。例えば、第 1から第 3の有機 EL素子 5 lr, 51g, 51bのうちの少なくとも 1以上の有機 EL素子について、最大発光輝度の 9 0%〜 110%の発光輝度の範囲内において、発光効率が最大となるように設定して も、有機 ELディスプレイで必要とされる電圧を低下させることができる。 [0074] For example, in the second embodiment, for all of the first to third organic EL elements 51r, 51g, 51b, the luminous efficiency is within a range of 90% to 110% of the maximum luminance. Although the maximum setting is set, it is not limited to this. For example, the first to third organic EL elements 5 Even if at least one of the organic EL elements of lr, 51g, and 51b is set so that the luminous efficiency is maximized within the range of 90% to 110% of the maximum luminance, the organic EL The voltage required on the display can be reduced.
[0075] 但し、例えば、第 1から第 3の有機 EL素子 51r, 51g, 5 lbに対してそれぞれ異なる 電源回路を備えるような場合には、第 1から第 3の有機 EL素子 51r, 51g, 51b全て について、最大発光輝度の 90%〜 110%の発光輝度の範囲内において、発光効率 を最大に設定する方が、有機 ELディスプレイ 21全体として、必要となる電圧及び電 力消費量の低減、ならびに電源回路の小型化をさらに効果的とする上で好ましい。  [0075] However, for example, when different power supply circuits are provided for the first to third organic EL elements 51r, 51g, and 5 lb, the first to third organic EL elements 51r, 51g, For all 51b, setting the maximum luminous efficiency within the range of 90% to 110% of the maximum emission luminance reduces the required voltage and power consumption for the OLED display 21 as a whole. In addition, it is preferable to further reduce the size of the power supply circuit.
[0076] また、例えば、第 1から第 3の有機 EL素子 51r, 51g, 51bのうちの少なくとも 1以上 の有機 EL素子について、発光効率が最大発光輝度において最大となるように設定 しても、有機 ELディスプレイで必要とされる電圧を更に低下させることができる。  [0076] Further, for example, even if at least one of the first to third organic EL elements 51r, 51g, 51b is set so that the light emission efficiency is maximized at the maximum light emission luminance, The voltage required for OLED displays can be further reduced.
[0077] 但し、例えば、第 1から第 3の有機 EL素子 51r, 51g, 5 lbに対してそれぞれ異なる 電源回路を備えるような場合には、第 1から第 3の有機 EL素子 51r, 51g, 51b全て について、発光効率が最大発光輝度において最大となるように設定する方が、有機 ELディスプレイ 21全体として、必要となる電圧及び電力消費量の低減、ならびに電 源回路の小型化をより効果的に行う上で好ましい。  [0077] However, for example, when different power supply circuits are provided for the first to third organic EL elements 51r, 51g, and 5 lb, the first to third organic EL elements 51r, 51g, For all 51b, it is more effective to reduce the required voltage and power consumption and to reduce the size of the power circuit for the entire OLED display 21 by setting the luminous efficiency to be the maximum at the maximum luminance. Is preferable.
[0078] また、携帯電話等の小型の機器に有機 ELディスプレイを搭載する際には、電源回 路の小型化を図るために、例えば、第 1から第 3の有機 EL素子 51r, 51g, 51bに対 して、 1つの共通の電源回路を用いる場合がある。そして、各有機 EL素子 51r, 51g , 51bでは、有機層 33の材料の種類や光の波長のエネルギー等に起因して、第 1か ら第 3の有機 EL素子 51r, 51g, 51bのうち、例えば、第 3の有機 EL素子 51bにおい て発光に要する電圧が最も高くなる場合がある。  [0078] When an organic EL display is mounted on a small device such as a mobile phone, the first to third organic EL elements 51r, 51g, 51b are used to reduce the size of the power circuit. On the other hand, a common power supply circuit may be used. In each of the organic EL elements 51r, 51g, 51b, of the first to third organic EL elements 51r, 51g, 51b, due to the material type of the organic layer 33, the energy of the wavelength of light, etc. For example, the voltage required for light emission in the third organic EL element 51b may be the highest.
[0079] このように、第 1から第 3の有機 EL素子 51r, 51g, 51bのうち、第 3の有機 EL素子 51bの発光に要する電圧が最も高くなる場合について説明する。なお、ここでは、有 機 ELディスプレイ 21の最高階調の光(すなわち白色光)の輝度が 200cdZm2であ るちのとする。 [0079] A case where the voltage required for light emission of the third organic EL element 51b among the first to third organic EL elements 51r, 51g, 51b is the highest will be described. Here, it is assumed that the brightness of the light of the highest gradation (that is, white light) of the organic EL display 21 is 200 cdZm 2 .
[0080] 200cdZm2の白色光を得るためには、 1つの画素から出射される B色光の最高輝 度が 50cdZm2、 1つの画素から出射される R色光の最高輝度が 60cdZm2、 1つの 画素から出射される G色光の最高輝度が 90cdZm2だけ必要となる。 [0080] To obtain 200 cdZm 2 of white light, the maximum brightness of B color light emitted from one pixel is 50 cdZm 2 , and the maximum brightness of R color light emitted from one pixel is 60 cdZm 2 , Maximum brightness of the G color light emitted from the pixels is required only 90cdZm 2.
[0081] そして、 50cdZm2の B色光を得るためには、素子が発光している時間の割合 (デュ 一ティ)と画素の開口率とを考慮すると、実際に光を発する第 3の有機 EL素子 51bで は 1428cdZm2の光を発する必要性がある。つまり、第 3の有機 EL素子 5 lbの最大 発光輝度を約 1430cd/m2とする必要性がある。 [0081] Then, in order to obtain B light of 50 cdZm 2 , the third organic EL that actually emits light, taking into account the proportion of time the element is emitting light (duty) and the aperture ratio of the pixel Element 51b needs to emit 1428 cdZm 2 of light. In other words, the maximum emission luminance of the third organic EL element 5 lb needs to be about 1430 cd / m 2 .
[0082] 図 10に示すように、各画素は発光と非発光とを繰り返す特性を有し、素子が発光し て!、る時間の割合がデューティである。図 11に示すように 1つの画素は RGBの発光 領域に 3分割されており、更に、各色光をそれぞれ発する部分は更に小さくなつてい る。そして、 1つの画素のうち一色の光を発する部分が占める割合が開口率である。 なお、ここで、デューティを約 44%、開口率を 8 ( = [1Z3] X 24) %とすると、第 3の有 機 EL素子 5 lbの最大発光輝度として、 1430 ( = 50 X [100/44] X [100/8]) cd/ m2が算出される。また、同様な計算により、第 1の有機 EL素子 51rの最大発光輝度 力 S l 714cdZm2と算出され、第 2の有機 EL素子 51gの最大発光輝度が 2570cd/m 2と算出される。 [0082] As shown in FIG. 10, each pixel has a characteristic of repeating light emission and non-light emission, and the element emits light! The ratio of time is duty. As shown in Fig. 11, one pixel is divided into three RGB light-emitting areas, and the portions that emit light of each color are even smaller. The aperture ratio is the proportion of one pixel that emits light of one color. Here, assuming that the duty is about 44% and the aperture ratio is 8 (= [1Z3] X 24)%, the maximum emission brightness of the third organic EL element 5 lb is 1430 (= 50 X [100 / 44] X [100/8]) cd / m 2 is calculated. Further, by the same calculation, the maximum light emission luminance force S 1 714 cdZm 2 of the first organic EL element 51r is calculated, and the maximum light emission luminance of the second organic EL element 51g is calculated as 2570 cd / m 2.
[0083] 更に、第3の有機EL素子51bが最大発光輝度(1430CdZm2)で発光する際の電 圧効率は約 170cdZm2ZVであるため、約 8. 4Vの駆動電圧が必要となる。また、 第 1の有機 EL素子 51rが最大発光輝度(1714cdZm2)で発光する際の電圧効率 は約 230cdZm2ZVであるため、約 7. 5Vの駆動電圧が必要となる。更に、第 2の有 機 EL素子 51gが最大発光輝度(2570cdZm2)で発光する場合の電圧効率は約 39 5cdZm2ZVであるため、約 6. 5Vの駆動電圧が必要となる。 [0083] Furthermore, since the voltage efficiency when the third organic EL element 51b emits light at the maximum emission luminance (1430 C dZm 2 ) is about 170 cdZm 2 ZV, a driving voltage of about 8.4 V is required. . In addition, the voltage efficiency when the first organic EL element 51r emits light at the maximum light emission luminance (1714 cdZm 2 ) is about 230 cdZm 2 ZV, so a driving voltage of about 7.5 V is required. Furthermore, since the voltage efficiency when the second organic EL element 51g emits light with the maximum light emission luminance (2570 cdZm 2 ) is about 395 cdZm 2 ZV, a driving voltage of about 6.5 V is required.
[0084] したがって、このような構成では、第 1から第 3の有機 EL素子 51r, 51g, 51bのうち 、第 3の有機 EL素子 5 lbに対して、最も高い駆動電圧 (約 8. 4V)が必要となる。  Therefore, in such a configuration, the highest drive voltage (about 8.4 V) with respect to the third organic EL element 5 lb among the first to third organic EL elements 51r, 51g, 51b. Is required.
[0085] そして、第 1から第 3の有機 EL素子 51r, 51g, 5 lbに対して共通の電源回路を用 いる場合には、第 1から第 3の有機 EL素子 51r, 51g, 51bのうち、少なくとも最大発 光輝度にぉ ヽて最も高 、電圧を要する第 3の有機 EL素子 5 lbにつ ヽて、最大発光 輝度の 90%〜110%の発光輝度の範囲内にぉ 、て、発光効率が最大となるように 設定すれば、共通の電源回路の電圧を容易に低減することができる。その結果、共 通の電源回路の小型化も図ることができる。この場合、共通の電源回路にバッテリー を接続すれば良い。なお、第 1から第 3の有機 EL素子 51r, 51g, 51bに対して共通 の電源回路を用いな 、場合でも、少なくとも最大発光輝度にぉ 、て最も高 、電圧を 要する第 3の有機 EL素子 5 lbについて、最大発光輝度の 90%〜: L 10%の発光輝 度の範囲内において、発光効率が最大となるように設定されれば、必要な電圧及び 電力消費の低減、ならびに、電源回路の小型化を図ることができる。この場合、第 1 の有機 EL素子 51rに対して用いられる第 1の電源回路と、第 2の有機 EL素子 51gに 対して用いられる第 2の電源回路と、第 3の有機 EL素子 51bに対して用いられる第 3 の電源回路と、に対して共通に接続されるノ ッテリーが設けられる態様が考えられる [0085] When a common power supply circuit is used for the first to third organic EL elements 51r, 51g, 5 lb, the first to third organic EL elements 51r, 51g, 51b The third organic EL element, which requires the highest voltage for at least the maximum light emission luminance, is 5 lb, and emits light within the range of 90% to 110% of the maximum light emission luminance. If the efficiency is set to the maximum, the voltage of the common power supply circuit can be easily reduced. As a result, the common power supply circuit can be downsized. In this case, the battery is connected to the common power circuit. Can be connected. Even if the common power supply circuit is not used for the first to third organic EL elements 51r, 51g, and 51b, the third organic EL element that requires the highest voltage at least for the maximum emission luminance even in the case. For 5 lbs, 90% of maximum emission brightness: L If the emission efficiency is set within the range of 10%, the required voltage and power consumption can be reduced, and the power supply circuit Can be miniaturized. In this case, the first power supply circuit used for the first organic EL element 51r, the second power supply circuit used for the second organic EL element 51g, and the third organic EL element 51b A third power supply circuit used in common and a notch connected in common to the third power supply circuit
[0086] なお、上記第 2実施形態では、第 1から第 3の有機 EL素子 51r, 51g, 51bのうち、 第 3の有機 EL素子 51bが最大発光輝度において最も高い電圧を要した力 これに 限られず、他の有機 EL素子 51r, 51gが最大発光輝度において最も高い電圧を要 する場合もある。このような場合には、他の有機 EL素子 51r, 51gが、まず発光効率 のピーク位置の調整対象となる。 In the second embodiment, among the first to third organic EL elements 51r, 51g, 51b, the third organic EL element 51b requires the highest voltage at the maximum light emission luminance. The organic EL elements 51r and 51g are not limited and may require the highest voltage at the maximum light emission luminance. In such a case, the other organic EL elements 51r and 51g are first adjusted for the peak position of the luminous efficiency.
[0087] また、上記第 2実施形態では、 RGBの 3色を発光することができる有機 ELディスプ レイ 21を挙げて説明した力 これに限られず、例えば、モノクロの有機 ELディスプレ ィ等といった、少なくとも 1色以上の光を発することができる有機 ELディスプレイに対 しても本発明を適用することで、有機 ELディスプレイにお ヽて必要とされる電圧を低 減することができる。  [0087] In the second embodiment, the power described with reference to the organic EL display 21 capable of emitting three colors of RGB is not limited to this. For example, at least, for example, a monochrome organic EL display By applying the present invention to an organic EL display capable of emitting one or more colors of light, the voltage required for the organic EL display can be reduced.
実施例 2  Example 2
[0088] 本実施例では、陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入 層、陰極の順に積層した有機 EL素子を作製した。各層の構成は下記の通りである。  In this example, an organic EL device was fabricated in which an anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode were laminated in this order. The configuration of each layer is as follows.
[0089] (a)陽極(第 1の電極) [0089] (a) Anode (first electrode)
材料: ITO  Material: ITO
(b)正孔注入層  (b) Hole injection layer
材料: CuPc 膜厚:50 A  Material: CuPc Film thickness: 50 A
(c)正孔輸送層  (c) Hole transport layer
材料: a -NPD 膜厚: 230 A (d)発光層 Material: a-NPD Film thickness: 230 A (d) Light emitting layer
材料: Alq (ホスト材料): Rubrene (ドーピング材料)  Material: Alq (Host material): Rubrene (Doping material)
3  Three
Alq: Rubrene = 99質量%: 1質量%  Alq: Rubrene = 99 mass%: 1 mass%
3  Three
膜厚:240 A  Film thickness: 240 A
(e)電子輸送層  (e) Electron transport layer
材料: Alq 膜厚: 200 Λ  Material: Alq Film thickness: 200 Λ
(ί)電子注入層  (ί) Electron injection layer
材料: LiF 膜厚 : 5A  Material: LiF Film thickness: 5A
(g)陰極 (第 2の電極)  (g) Cathode (second electrode)
材料: Mg :Ag (Mg— Ag合金)、 Mg: Ag = 90質量%: 10質量% 図 12は、上記の実施例の構成について、発光時における電流密度と発光輝度とを 測定し、発光輝度と発光効率との関係を示した図である。図 12では、曲線 C1が、実 施例の構成に係る結果を示して ヽる。  Materials: Mg: Ag (Mg—Ag alloy), Mg: Ag = 90% by mass: 10% by mass FIG. 12 shows the emission luminance of the configuration of the above example by measuring the current density and emission luminance during light emission. It is the figure which showed the relationship between and luminous efficiency. In FIG. 12, curve C1 shows the results for the configuration of the example.
[0090] また、図 12では、比較のために、実施例の構成を基準として、各有機層を構成する 材料並びに厚みの比率 (すなわち基本素子構造)を保持したまま、有機層の合計膜 厚を約 1. 31倍とした比較例 1、有機層の合計膜厚を約 1. 60倍とした比較例 2、及 び有機層の合計膜厚を約 2. 00倍とした比較例 3の構成に係る結果を示している。な お、曲線 C2が、比較例 1の構成に係る結果を示し、曲線 C3が、比較例 2の構成に係 る結果を示し、曲線 C4が、比較例 3の構成に係る結果を示している。 [0090] In FIG. 12, for comparison, the total film thickness of the organic layers is maintained while maintaining the ratio of the materials and thicknesses (that is, the basic element structure) constituting each organic layer based on the configuration of the example. Of Comparative Example 1 in which the total thickness of the organic layer was about 1.60 times, and Comparative Example 3 in which the total thickness of the organic layer was about 2.00 times. The result which concerns on a structure is shown. Curve C2 shows the result of the configuration of Comparative Example 1, curve C3 shows the result of the configuration of Comparative Example 2, and curve C4 shows the result of the configuration of Comparative Example 3. .
[0091] なお、ここでは、 1430cdZm2が最大発光輝度として設定されているものとして説明 する。 Here, it is assumed that 1430 cdZm 2 is set as the maximum light emission luminance.
[0092] 図 12に示すように、実施例の最大効率輝度 (発光効率が最大となるときの発光輝 度)は約 1430cdZm2であり、最大発光輝度と最大効率輝度とが略一致している。こ れに対して、比較例 1の最大効率輝度は 1119cdZm2であり、比較例 2の最大効率 輝度は 886cdZm2であり、比較例 3の最大効率輝度は 640cdZm2であり、最大効 率輝度が最大発光輝度付近にはなぐ最大発光輝度における発光効率は若干低い ものとなっている。 [0092] As shown in FIG. 12, the maximum efficiency luminance (emission luminance when the luminous efficiency is maximized) of the example is about 1430 cdZm 2 , and the maximum emission luminance and the maximum efficiency luminance are approximately the same. . In contrast, the maximum efficiency luminance of Comparative Example 1 is 1119 cdZm 2 , the maximum efficiency luminance of Comparative Example 2 is 886 cdZm 2 , the maximum efficiency luminance of Comparative Example 3 is 640 cdZm 2 , and the maximum efficiency luminance is The light emission efficiency at the maximum light emission brightness near the maximum light emission brightness is slightly low.
[0093] このように、各有機層を構成する材料並びに厚みの比率 (すなわち基本素子構造) を保持したまま、有機層の合計膜厚を減少させることで、最大効率輝度を変更して、 最大発光輝度と最大効率輝度とを略一致させることができる。 [0093] Thus, the materials constituting each organic layer and the ratio of thickness (ie, basic element structure) By reducing the total film thickness of the organic layer while maintaining the value, it is possible to change the maximum efficiency luminance so that the maximum light emission luminance and the maximum efficiency luminance can be substantially matched.
[0094] 図 13は、上記の実施例の構成について、効率最大輝度と最大発光輝度時に必要 な駆動電圧との関係をプロットした図である。図 13では、プロット P1力 実施例の構 成に係る結果を示している。また、図 13では、比較のために、上記比較例 1〜3の構 成に係る結果を示している。なお、プロット P2が、比較例 1の構成に係る結果を示し、 プロット P3が、比較例 2の構成に係る結果を示し、プロット P4が、比較例 3の構成に 係る結果を示している。更に、図 13では、実施例と比較例 1との間の合計膜厚を有す る構成に係る結果も示している。なお、実施例の合計膜厚を 1とした場合の比較例 1 〜3ならびにその他の構成について、膜厚、最大発光輝度時の駆動電圧、及び最大 効率輝度の関係を示したテーブルを図 14に示している。  FIG. 13 is a graph plotting the relationship between the maximum efficiency luminance and the drive voltage required at the maximum light emission luminance for the configuration of the above-described example. Figure 13 shows the results for the configuration of the plot P1 force example. In addition, FIG. 13 shows the results relating to the configurations of Comparative Examples 1 to 3 for comparison. Plot P2 shows the result of the configuration of Comparative Example 1, Plot P3 shows the result of the configuration of Comparative Example 2, and Plot P4 shows the result of the configuration of Comparative Example 3. Further, FIG. 13 also shows the results relating to the configuration having the total film thickness between the example and the comparative example 1. Fig. 14 shows a table showing the relationship among film thickness, drive voltage at maximum light emission luminance, and maximum efficiency luminance for Comparative Examples 1 to 3 and other configurations where the total film thickness of the example is 1. Show.
[0095] 図 13に示すように、最高効率輝度を最大発光輝度に近づければ近づける程、最大 発光輝度に必要な駆動電圧を低減することができる。  As shown in FIG. 13, the closer the maximum efficiency luminance is to the maximum light emission luminance, the lower the drive voltage required for the maximum light emission luminance.
図面の簡単な説明  Brief Description of Drawings
[0096] [図 1]本発明の第 1実施形態に係る有機 ELディスプレイの構成を示す断面図である  FIG. 1 is a cross-sectional view showing a configuration of an organic EL display according to a first embodiment of the present invention.
[図 2]本発明の第 1実施形態に係る有機 ELディスプレイの構成を示す断面図である FIG. 2 is a cross-sectional view showing the configuration of the organic EL display according to the first embodiment of the present invention.
[図 3]—般的な有機 EL素子の発光輝度と発光効率との関係を例示する図である。 FIG. 3 is a diagram illustrating the relationship between light emission luminance and light emission efficiency of a general organic EL element.
[図 4]有機 ELディスプレイの回路構成を簡略ィ匕して示した模式図である。  FIG. 4 is a schematic diagram showing a simplified circuit configuration of an organic EL display.
[図 5]調整後の発光輝度と発光効率との関係を例示する図である。  FIG. 5 is a diagram illustrating the relationship between the adjusted light emission luminance and light emission efficiency.
[図 6]有機 EL素子のポテンシャルダイヤグラムを示す図である。  FIG. 6 is a diagram showing a potential diagram of an organic EL element.
[図 7]本発明の実施例及び比較例の発光輝度と発光効率との関係を示す図である。  FIG. 7 is a graph showing the relationship between light emission luminance and light emission efficiency in Examples and Comparative Examples of the present invention.
[図 8]本発明の実施例及び比較例の発光輝度と発光効率との関係を示す図である。  FIG. 8 is a diagram showing the relationship between light emission luminance and light emission efficiency in Examples and Comparative Examples of the present invention.
[図 9]調整後の発光輝度と発光効率との関係を例示する図である。  FIG. 9 is a diagram exemplifying a relationship between adjusted light emission luminance and light emission efficiency.
[図 10]有機 EL素子が発光している時間の割合を示す図である。  FIG. 10 is a graph showing the proportion of time during which an organic EL element emits light.
[図 11]画素中を占める発光領域の割合を示す図である。  FIG. 11 is a diagram showing a ratio of light emitting areas in a pixel.
[図 12]実施例及び比較例の発光輝度と発光効率との関係を示す図である。 [図 13]実施例及び比較例の最大効率輝度と必要な電圧との関係を示す図である。 FIG. 12 is a graph showing the relationship between light emission luminance and light emission efficiency in Examples and Comparative Examples. FIG. 13 is a diagram showing the relationship between the maximum efficiency luminance and the necessary voltage in Examples and Comparative Examples.
[図 14]実施例及び比較例についての膜厚、最大発光輝度時の駆動電圧、及び最大 効率輝度の関係を示す図である。 FIG. 14 is a diagram showing the relationship among film thickness, drive voltage at maximum light emission luminance, and maximum efficiency luminance for Examples and Comparative Examples.
符号の説明 Explanation of symbols
21 有機 ELディスプレイ  21 OLED display
23 基板  23 Board
25 素子部  25 Element section
26 調整層  26 Adjustment layer
27 封止膜  27 Sealing film
31 第 1の電極  31 First electrode
33 有機層  33 Organic layer
35 第 2の電極  35 Second electrode
41 電荷注入層(正孔注入層)  41 Charge injection layer (hole injection layer)
43 電荷輸送層(正孔輸送層)  43 Charge transport layer (hole transport layer)
45 発光層  45 Light emitting layer
47 電荷輸送層(電子輸送層)  47 Charge transport layer (electron transport layer)
49 電荷注入層(電子注入層)  49 Charge injection layer (electron injection layer)
51h ) 第 3の有機 EL素子  51h) Third organic EL device
51g 第 2の有機 EL素子  51g Second organic EL device
51r 第 1の有機 EL素子  51r First organic EL device
51 発光ダイオード  51 Light emitting diode
100 電源  100 power supply
V 電源電圧 V Supply voltage
EM 発光面  EM light emitting surface
Spk 最大効率輝度  Spk maximum efficiency brightness

Claims

請求の範囲 The scope of the claims
[1] 有機 ELディスプレイであって、 [1] OLED display,
発光層を含む 1以上の層から成る有機層と、当該有機層を挟んで互いに対向する 第 1及び第 2の電極とをそれぞれ有する複数の有機 EL素子を備え、  A plurality of organic EL elements each having an organic layer including one or more layers including a light emitting layer and first and second electrodes facing each other across the organic layer;
複数の前記有機 EL素子は動画表示を行 ヽ、  The plurality of organic EL elements display a moving image,
予め設定された前記有機 EL素子の最大発光輝度の 1Z3から 1Z2の輝度範囲内 に、  Within the preset luminance range of 1Z3 to 1Z2 of the maximum emission luminance of the organic EL element,
前記有機 EL素子の発光効率が最大となるピークが位置する有機 ELディスプレイ。  An organic EL display having a peak where the luminous efficiency of the organic EL element is maximized.
[2] 請求項 1に記載の有機 ELディスプレイであって、 [2] The organic EL display according to claim 1,
予め設定された前記有機 EL素子の最大発光輝度の 1Z3から 1Z2の輝度範囲に おける前記有機 EL素子の発光効率が、当該有機 EL素子の最大発光効率の 80% 以上となるように設定された有機 ELディスプレイ。  The organic EL element is set so that the luminous efficiency of the organic EL element in the preset luminance range of 1Z3 to 1Z2 is 80% or more of the maximum luminous efficiency of the organic EL element. EL display.
[3] 請求項 1に記載の有機 ELディスプレイであって、 [3] The organic EL display according to claim 1,
前記複数の有機 EL素子が、第 1の色の光を発する第 1の有機 EL素子と、前記第 1 の色とは異なる第 2の色の光を発する第 2の有機 EL素子と、前記第 1及び第 2の色と は異なる第 3の色の光を発する第 3の有機 EL素子とを含み、  The plurality of organic EL elements emit a first organic EL element that emits light of a first color, a second organic EL element that emits light of a second color different from the first color, and the first organic EL element. A third organic EL element that emits light of a third color different from the first and second colors,
前記第 1から第 3の有機 EL素子のうちの 1以上の有機 EL素子について、予め設定 された最大発光輝度の 1Z3から 1Z2の輝度範囲内に、発光効率が最大となるピー クが位置する有機 ELディスプレイ。  For one or more of the first to third organic EL elements, the organic light emitting element having a peak at which the luminous efficiency is maximum is within a preset luminance range of 1Z3 to 1Z2. EL display.
[4] 請求項 3に記載の有機 ELディスプレイであって、 [4] The organic EL display according to claim 3,
前記第 1から第 3の有機 EL素子のうちの 1以上の有機 EL素子について、予め設定 された最大発光輝度の 1Z3から 1Z2の輝度範囲における発光効率が最大発光効 率の 80%以上となるように設定された有機 ELディスプレイ。  With respect to one or more of the first to third organic EL elements, the light emission efficiency in the luminance range from 1Z3 to 1Z2 of the preset maximum light emission brightness is 80% or more of the maximum light emission efficiency. OLED display set to.
[5] 請求項 3に記載の有機 ELディスプレイであって、 [5] The organic EL display according to claim 3,
前記第 1から第 3の有機 EL素子すべてについて、予め設定された最大発光輝度の 1Z3から 1Z2の輝度範囲内に、発光効率が最大となるピークが位置する有機 ELデ イスプレイ。  For all of the first to third organic EL elements, an organic EL display in which a peak with the highest luminous efficiency is located within a preset luminance range of 1Z3 to 1Z2.
[6] 請求項 5に記載の有機 ELディスプレイであって、 前記第 1から第 3の有機 EL素子すべてについて、予め設定された最大発光輝度の 1Z3から 1Z2の輝度範囲における発光効率が最大発光効率の 80%以上となるよう にそれぞれ設定された有機 ELディスプレイ。 [6] The organic EL display according to claim 5, An organic EL display that is set so that the light emission efficiency in the luminance range of 1Z3 to 1Z2 of the preset maximum light emission luminance is 80% or more of the maximum light emission efficiency for all of the first to third organic EL elements.
[7] 有機 ELディスプレイであって、 [7] OLED display,
発光層を含む 1以上の層から成る有機層と、当該有機層を挟んで互いに対向する 第 1及び第 2の電極とをそれぞれ有する複数の有機 EL素子を備え、  A plurality of organic EL elements each having an organic layer including one or more layers including a light emitting layer and first and second electrodes facing each other across the organic layer;
前記有機 EL素子は動画表示を行 ヽ、  The organic EL element displays a video,
予め設定された前記有機 EL素子の最大発光輝度の 0. 3から 0. 5の輝度範囲内に 前記有機 EL素子の発光効率が最大となるピークが位置する有機 ELディスプレイ。  An organic EL display in which a peak at which the emission efficiency of the organic EL element is maximum is located within a preset luminance range of 0.3 to 0.5 of the maximum emission luminance of the organic EL element.
[8] 有機 ELディスプレイであって、 [8] OLED display,
発光層を含む 1以上の層から成る有機層と、当該有機層を挟んで互いに対向する 第 1及び第 2の電極と、をそれぞれ有する複数の有機 EL素子を備え、  A plurality of organic EL elements each having an organic layer including one or more layers including a light emitting layer and first and second electrodes facing each other with the organic layer interposed therebetween,
予め設定された前記有機 EL素子の最大発光輝度の 90%〜 110%の発光輝度の 範囲内に、前記有機 EL素子の発光効率が最大となるピークが位置する有機 ELディ スプレイ。  An organic EL display in which a peak at which the luminous efficiency of the organic EL element is maximized is located within a preset range of 90% to 110% of the maximum luminous intensity of the organic EL element.
[9] 請求項 8に記載の有機 ELディスプレイであって、  [9] The organic EL display according to claim 8,
前記複数の有機 EL素子が、第 1の色の光を発する第 1の有機 EL素子と、前記第 1 の色とは異なる第 2の色の光を発する第 2の有機 EL素子と、前記第 1及び第 2の色と は異なる第 3の色の光を発する第 3の有機 EL素子と、を含み、  The plurality of organic EL elements emit a first organic EL element that emits light of a first color, a second organic EL element that emits light of a second color different from the first color, and the first organic EL element. A third organic EL element that emits light of a third color different from the first and second colors,
前記第 1から第 3の有機 EL素子のうちの 1以上の有機 EL素子について、予め設定 された最大発光輝度の 90%〜: L 10%の発光輝度の範囲内に、有機 EL素子の発光 効率が最大となるピークが位置する有機 ELディスプレイ。  For one or more of the first to third organic EL elements, the light emission efficiency of the organic EL element is within a range of 90% to: L 10% of the preset maximum light emission luminance. An organic EL display with a peak where is the largest.
[10] 請求項 9に記載の有機 ELディスプレイであって、 [10] The organic EL display according to claim 9,
前記第 1から第 3の有機 EL素子のうち、予め設定された最大発光輝度で最も高い 電圧を要する有機 EL素子について、当該予め設定された最大発光輝度の 90%〜1 10%の発光輝度の範囲内に、発光効率が最大となるピークが位置する有機 ELディ スプレイ。 Among the first to third organic EL elements, an organic EL element that requires the highest voltage with a preset maximum emission brightness has an emission brightness of 90% to 110% of the preset maximum emission brightness. An OLED display with a peak that maximizes luminous efficiency within the range.
[11] 請求項 9に記載の有機 ELディスプレイであって、 [11] The organic EL display according to claim 9,
前記第 1から第 3の有機 EL素子すべてについて、予め設定された最大発光輝度の 90%〜 110%の発光輝度の範囲内に、発光効率が最大となるピークが位置する有 機 ELディスプレイ。  An organic EL display in which a peak at which light emission efficiency is maximum is located within a predetermined range of 90% to 110% of the maximum light emission luminance for all of the first to third organic EL elements.
[12] 請求項 9に記載の画像表示装置において、 [12] The image display device according to claim 9,
前記第 1の色が赤色、前記第 2の色が緑色、前記第 3の色が青色であり、 前記第 1乃至第 3の前記有機 EL素子毎に予め定められた最大発光輝度と、前記 有機 EL素子の発光効率が最大となる発光輝度との差 Δ Spkの値は、前記第 1及び 第 2の有機 EL素子よりも前記第 3の有機 EL素子で小さぐかつ前記第 2の有機 EL 素子よりも前記第 1の有機 EL素子で小さくそれぞれ設定されている画像表示装置。  The first color is red, the second color is green, and the third color is blue. The maximum light emission luminance predetermined for each of the first to third organic EL elements, and the organic color The difference Δ Spk from the emission luminance at which the luminous efficiency of the EL element is maximized is smaller in the third organic EL element than in the first and second organic EL elements, and the second organic EL element An image display device set smaller than each of the first organic EL elements.
[13] 画像表示装置において、 [13] In the image display device,
請求項 9に記載の有機 ELディスプレイと、前記第 1の有機 EL素子に電力を供給す る第 1の電源回路と、前記第 2の有機 EL素子に電力を供給する第 2の電源回路と、 前記第 3の有機 EL素子に電力を供給する第 3の電源回路と、を備えた画像表示装 置。  The organic EL display according to claim 9, a first power supply circuit that supplies power to the first organic EL element, a second power supply circuit that supplies power to the second organic EL element, And a third power supply circuit for supplying electric power to the third organic EL element.
[14] 画像表示装置において、  [14] In the image display device,
請求項 9に記載の有機 ELディスプレイと、前記有機 EL素子に電力を共通に供給 する電源回路と、を備えた画像表示装置。  An image display device comprising: the organic EL display according to claim 9; and a power supply circuit that supplies power to the organic EL elements in common.
[15] 請求項 13に記載の画像表示装置において、 [15] In the image display device according to claim 13,
前記第 1乃至第 3の電源回路に共通に接続されるノ ッテリーを更に備えた画像表 示装置。  An image display device further comprising a knotter commonly connected to the first to third power supply circuits.
[16] 請求項 14に記載の画像表示装置において、  [16] The image display device according to claim 14,
前記電源回路に接続されるバッテリーを更に備えた画像表示装置。  An image display device further comprising a battery connected to the power supply circuit.
PCT/JP2007/051519 2006-01-31 2007-01-30 Organic el display and image display device using same WO2007088861A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006023247A JP5196724B2 (en) 2006-01-31 2006-01-31 Organic EL display
JP2006-023247 2006-01-31
JP2006-053257 2006-02-28
JP2006053257 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007088861A1 true WO2007088861A1 (en) 2007-08-09

Family

ID=38327432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051519 WO2007088861A1 (en) 2006-01-31 2007-01-30 Organic el display and image display device using same

Country Status (1)

Country Link
WO (1) WO2007088861A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280556A (en) * 2002-03-26 2003-10-02 Semiconductor Energy Lab Co Ltd Light emitting device
JP2004273163A (en) * 2003-03-05 2004-09-30 Sony Corp Organic el element, manufacturing method thereof, and organic el panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003280556A (en) * 2002-03-26 2003-10-02 Semiconductor Energy Lab Co Ltd Light emitting device
JP2004273163A (en) * 2003-03-05 2004-09-30 Sony Corp Organic el element, manufacturing method thereof, and organic el panel

Similar Documents

Publication Publication Date Title
JP6676131B2 (en) Electroluminescent display
TWI527211B (en) Organic light emitting display device and method of manufacturing the same
KR101634814B1 (en) Organic light emitting device, display unit including the same, and illuminating device including the same
TWI540938B (en) Organic light emitting device display and method of manufacturing the same
US8330152B2 (en) OLED display architecture with improved aperture ratio
TWI644594B (en) Novel oled display architecture
US9997739B2 (en) White organic light emitting device
US9312309B2 (en) Organic light emitting diode display and method for manufacturing the same
US10777103B2 (en) Display apparatus and method for manufacturing same
KR20160059563A (en) Organice light emitting diode display
KR20140084859A (en) Organic Light Emitting Display Device and fabricating of the same
US20150255741A1 (en) Organic light emitting diode device
KR102000292B1 (en) Organic light emitting display device and method for manufacturing thereof
JP2015156439A (en) organic EL display device
JP2007266160A (en) Organic light emitting element array
KR101878328B1 (en) Organic electroluminescent Device
KR20220163324A (en) White organic light emitting device
JP2014063829A (en) Organic el display device
CN108493210B (en) Organic light-emitting display panel and organic light-emitting display device thereof
KR101816425B1 (en) Organic light emitting display device
KR102490381B1 (en) Organic light emitting display device and organic light emitting stacked structure
KR101407579B1 (en) Organic light emitting device and method of driving the same
CN110797470A (en) Display device, display panel, light emitting device and method of manufacturing the same
KR20170111700A (en) Organic light emitting display device
KR101845309B1 (en) Organic electro-luminescent Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707737

Country of ref document: EP

Kind code of ref document: A1