WO2007088118A1 - Verfahren zur herstellung von vicinalen dioxoverbindungen - Google Patents

Verfahren zur herstellung von vicinalen dioxoverbindungen Download PDF

Info

Publication number
WO2007088118A1
WO2007088118A1 PCT/EP2007/050600 EP2007050600W WO2007088118A1 WO 2007088118 A1 WO2007088118 A1 WO 2007088118A1 EP 2007050600 W EP2007050600 W EP 2007050600W WO 2007088118 A1 WO2007088118 A1 WO 2007088118A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
heat transfer
temperature
tube bundle
tubes
Prior art date
Application number
PCT/EP2007/050600
Other languages
English (en)
French (fr)
Inventor
Bernd Rumpf
Thomas Krug
Thorsten Johann
Gerhard KOPPENHÖFER
Gerhard Olbert
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO2007088118A1 publication Critical patent/WO2007088118A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/39Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a secondary hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • B01J2208/00221Plates; Jackets; Cylinders comprising baffles for guiding the flow of the heat exchange medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling

Definitions

  • the present invention relates to a process for the preparation of vicinal dioxo compounds by heterogeneously catalyzed gas phase oxidation of a vicinal dihydroxy compound in a packed bed reactor with a fixed catalyst bed.
  • the example of the preparation of glyoxal shows that despite a high to almost complete conversion of the educt of ethylene glycol, the yield of glyoxal, based on the ethylene glycol used, are low.
  • changes in the catalyst may be responsible for this, possibly due to thermal damage and accelerated aging processes.
  • the associated loss of selectivity and the reduced service life of the catalyst used lead to high costs of the process.
  • an uneven distribution of the temperature over the cross-section of the reactor leads to unequal reaction conditions and thus to increased formation of undesirable by-products.
  • the object of the present invention is therefore to provide a process which, in the preparation of vicinal dioxo compounds from corresponding diols, for example the preparation of glyoxal from the product ethylene glycol, improves Beuten and longer life of the catalyst can be achieved by a targeted temperature control within the tube bundle reactor.
  • the invention is based on a process for producing a vicinal dioxo compound by heterogeneously catalyzed gas phase oxidation of a vicinal dihydroxy compound in the presence of an oxygen-containing gas on a fixed catalyst bed in a tube bundle reactor, wherein the reactor tubes are tempered from outside with a heat transfer medium circulating in the reactor shell of the tube bundle reactor , It is characterized in that the shell-and-tube reactor has two or more temperature zones which are independent of each other, the average temperature of the heat transfer media in the temperature zones decreasing from the upstream side to the product side upstream side of the reactor.
  • the process for producing a vicinal dioxo compound comprises providing a starting material mixture comprising the corresponding vicinal diols.
  • the dioxo compound can be converted into the gas phase in an evaporator stage by contact with a hot circulating gas.
  • 1, 2-propanediol is used as starting material.
  • the recycle gas which is inert to the reactants and products under the prevailing reaction conditions, generally contains nitrogen and oxygen, carbon dioxide, carbon monoxide and water.
  • the recycle gas 0 to 5 vol .-% O 2 , 0 to 10 vol .-% CO 2 , 0 to 5 vol .-% CO and 0 to 15 vol .-% H 2 O included.
  • the recycle gas may contain other ingredients.
  • the oxygen required for the oxydehydrogenation of the vicinal diols may be provided by admixing fresh air to the recycle gas saturated with the vicinal diols.
  • the ratio is too high, a creeping overoxidation of the copper catalyst can occur, resulting in a significantly reduced service life.
  • the molar ratio of oxygen to ethylene glycol ⁇ 2.0, preferably ⁇ 1, 8, more preferably ⁇ 1, 6.
  • the educt mixture prepared in this way is introduced into a reactor hood in a tube bundle reactor and passes into a plurality of reactor tubes containing a fixed catalyst bed.
  • the tube bundle reactor used according to the invention comprises a tube bundle arranged in the reactor envelope and constructed from a multiplicity of parallel reactor tubes.
  • the reactor tubes are open-ended in an upper and a lower tubesheet. sealingly attached and open in each case an upper and a lower reactor hood.
  • the reactor tubes are filled with a catalyst which can be used as a carrier, shell or full catalyst, also in the form of an ordered packing. The reactant or the product mixture leaving the reactor tubes is supplied or removed via the reactor hoods.
  • a heat transfer medium which can be performed in cocurrent, countercurrent or cross-flow.
  • Corresponding inlets and outlets for the heat transfer medium are arranged in the reactor shell, through which the heat transfer medium is circulated by means of pumps, and a setpoint temperature is set by means of an external heat exchanger.
  • the reactor shell is divided into two or more independent tempering zones, each of which is operated with independently circulating heat transfer media.
  • the separation of the individual zones from one another takes place through tube sheets, which are arranged horizontally in the tube bundle reactor and through which the reactor tubes are guided.
  • two tempering zones are present.
  • the reaction temperature passes through a maximum in the gas phase oxidation, which is referred to as a hot spot.
  • the prevailing high temperature in this reaction zone is often responsible for an incoming local damage to the catalyst.
  • a targeted temperature control which is provided by the tube bundle reactor according to the invention, allows a lowering of the temperature in the region of the hot spot.
  • the conversion of starting material can be increased so that the desired product can be obtained in high yield.
  • the heat transfer medium is preferably in the cross-flow within the reactor tubes umge headed room.
  • baffles are arranged, which allow a meandering flow of the heat transfer medium. But it is also possible to guide the heat transfer medium in the longitudinal flow.
  • the tube-bundle reactors used on an industrial scale have a typical diameter of 2.5 to 5 m.
  • the highest possible number of reactor tubes is used for economic reasons, which is generally from 1,000 to 15,000 reactor tubes, preferably from 2,000 to 10,000, and which are arranged distributed substantially uniformly.
  • the inner diameter of the reactor tubes is 20 to 80 mm, preferably 40 to 60 mm.
  • the reactor tubes are preferably made of ferritic steel or stainless steel and have a wall thickness of a few mm, preferably 1 to 3 mm.
  • the typical length of the reactor tubes is in the range of 1 to 8 m, preferably 2 to 6 m, particularly preferably 2 to 4 m.
  • the heat transfer medium used is usually a salt melt which is supplied at a temperature such that the average temperatures in the individual tempering zones are in the range from 300 to 400 ° C., preferably in the range from 340 to 380 ° C. Suitable heat transfer media are also low-melting metals such as sodium.
  • the average temperature differs in successive tempering at around 5 to 20 ° C.
  • the temperature in the individual tempering zones is preferably set such that the temperature of the product mixture leaving the tube bundle reactor does not exceed 360.degree. C., preferably 340.degree.
  • the inlet temperature of the heat transfer medium in a first, educt-side tempering is selected so that the highest possible Eduktumsatz occurs.
  • the inlet temperature of the heat transfer medium in the first, eduktrede tempering in the range of 360 to 380 ° C.
  • the inlet temperature of the heat transfer medium in the second, product-side tempering zone is 5 to 20 ° C, for example 10 ° C below.
  • tube bundle reactor used for the process according to the invention, as used, for example, for the preparation of glyoxal by heterogeneously catalyzed gas phase oxidation.
  • FIG. 1 shows a schematic representation of a tube bundle reactor used in the invention in longitudinal section.
  • the tube bundle reactor 1 comprises a cylindrical reactor shell 2, in which the reactor tubes 3 are housed.
  • a starting material mixture enters the tube bundle reactor 1, where it is distributed evenly over the entire reactor cross section in the region of the upper hood 4.
  • the upper hood 4 is closed to the cylindrical reactor shell 2 through an upper tube plate 5.
  • the reactor tubes 3 of the tube bundle 6 open into the tubesheet 5.
  • the reactor tubes 3 are sealingly welded to the tubesheet 5 in their upper region.
  • In the reactor tubes 3 is the (not shown) catalyst material.
  • the reactor tubes 3 are sealingly welded to a lower tube plate 7 and open into a lower hood 8 of the tube bundle reactor 1.
  • the monoethylene glycol / air mixture flows through the reactor tubes 3 and is largely converted to glyoxal.
  • the tube bundle reactor 1 is divided into two tempering zones 9 and 10, which are separated from one another by a tube plate 11.
  • Each tempering zone 9, 10 comprises a heat carrier circuit 12, 13, in which the heat transfer medium conducted via feeds 14, 15 into the reactor interior, guided by baffles 16 in longitudinal /, counter or direct current to the reactor tubes and discharged through the discharge lines 17, 18.
  • pumps and tempering are associated with the respective heat carrier circuit and ensure the setting of a set temperature.
  • a tube bundle reactor filled with a copper / phosphorus catalyst with 6700 tubes of 55 mm outer diameter, 2 mm wall thickness and 2800 mm length becomes 4 t / h
  • the reactor is designed as a single-tone.
  • the molar ratio of oxygen to ethylene glycol is obtained by admixing air
  • the yield of glyoxal is 68% based on the ethylene glycol used.
  • the conversion of ethylene glycol is 98.5% based on the ethylene glycol used.
  • a tube bundle reactor filled with a copper / phosphorus catalyst with 6700 tubes of 55 mm outer diameter, 2 mm wall thickness and 2800 mm length, 4 t / h of ethylene glycol and 40,000 Nm 3 / h of circulating gas are supplied.
  • the reactor is carried out in a two-zone with an equidistant division of the zones.
  • the molar ratio of oxygen to ethylene Glycol is adjusted by admixing air to 1, 45 mol / mol.
  • the salt bath temperature at the entrance to the upper (entrance side) zone is 365 ° C.
  • the salt bath temperature at the entrance to the lower (outgoing) zone is 355 ° C.
  • an exit temperature of the product mixture immediately at the lower tube plate of the reactor of 361 ° C is.
  • the yield of glyoxal (measured directly at the bottom of the tube plate of the reactor) is 72%, based on the ethylene glycol used.
  • the conversion of ethylene glycol is 98.5% based on the ethylene glycol used.

Abstract

Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung einer vicinalen Dioxoverbindung durch heterogenkatalysierte Gasphasenoxidation einer vicinalen Dihydroxyverbindung in Gegenwart eines sauerstoffhaltigen Gases an einer Katalysator-Festbettschüttung in einem Rohrbündelreaktor, wobei die Reaktorrohre mit einem in der Reaktorhülle des Rohrbündelreaktors zirkulierenden Wärmeträgermedium von außen temperiert werden, dadurch gekennzeichnet, dass der Rohrbündelreaktor zwei oder mehr voneinander unabhängige Temperierzonen mit zwei oder mehr unabhängig voneinander zirkulierenden Wärmeträgermedien aufweist, wobei die mittlere Temperatur der Wärmeträgermedien in den Temperierzonen von der Eingangsseite zur Ausgangsseite des Reaktors hin abnimmt.

Description

Verfahren zur Herstellung von vicinalen Dioxoverbindungen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von vicinalen Dioxoverbindungen durch heterogenkatalysierte Gasphasenoxidation einer vicinalen Dihydroxyverbin- düng in einem mit einem Katalysatorfestbett befüllten Rohrbündelreaktor.
Es ist bekannt, einen Rohrbündelreaktor längs in unterschiedliche Zonen zu unterteilen, welche von getrennt voneinander geführten Wärmetauschmitteln durchströmt werden, wodurch mehrere individuelle Reaktionszonen entstehen.
Aus EP 1 169 1 19 ist bekannt, exotherme oder endotherme, katalysierte Gasphasenreaktionen, beispielsweise zur Herstellung von Glyoxal, in einem Rohrbündelreaktor durchzuführen, wobei in den Reaktionsrohren des Rohrbündelreaktors ein Festbett aus katalytisch aktivem Multimetalloxid angeordnet ist. Hierbei wird das Gasgemisch in eine Vielzahl von mit Katalysator bestückten Reaktionsrohren geleitet. In dem die Reaktionsrohre umgebenden Raum, der durch Umlenkbleche unterteilt sein kann, zirkuliert ein Wärmetauschmittel, um Reaktionswärme zu- beziehungsweise abzuführen. Erwähnt wird ebenfalls, den Reaktorinnenraum in Längsrichtung gesehen in mindestens zwei Temperierzonen zu unterteilen, die von verschieden temperierten Wärmetauschmitteln durchströmt werden.
Aus DE 19 23 048 ist die Herstellung von Glyoxal durch Oxidation von Ethylenglykol an Katalysatoren, insbesondere an solchen, die durch Oxidation einer Kupfer-Zinn-, einer Kupfer-Zinn-Phosphor- oder einer Kupfer-Phosphor-Legierung erhalten werden, bei Reaktionstemperaturen im Bereich von 300 bis 450 °C bekannt. Die dabei erzielten Ausbeuten an Glyoxal sind mit 65 bis 70 %, bezogen auf die eingesetzte Menge an Ethylenglykol, vergleichsweise gering.
Am Beispiel der Herstellung von Glyoxal zeigt sich, dass trotz eines hohen bis nahezu vollständigen Umsatzes des Eduktes Ethylenglykol die Ausbeute an Glyoxal, bezogen auf den eingesetzten Ethylenglykol, gering sind. Hierfür können unter anderem Veränderungen des Katalysators verantwortlich sein, die möglicherweise auf eine thermische Schädigung und beschleunigte Alterungsvorgänge zurückgeführt werden können. Die damit einhergehenden Selektivitätseinbußen und die reduzierte Standzeit des eingesetzten Katalysators führen zu hohen Kosten des Verfahrens. Ebenso führt eine ungleichmäßige Verteilung der Temperatur über den Querschnitt des Reaktors zu ungleichen Reaktionsbedingungen und somit zu vermehrter Bildung von unerwünschten Nebenprodukten.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren bereitzustellen, wodurch bei der Herstellung von vicinalen Dioxoverbindungen aus entsprechenden Diolen, bei- spielsweise der Herstellung von Glyoxal aus dem Produkt Ethylenglykol, verbesserte Aus- beuten und längere Standzeiten des Katalysators durch eine gezielte Temperaturführung innerhalb des Rohrbündelreaktors erreicht werden.
Die Erfindung geht aus von einem Verfahren zur Herstellung einer vicinalen Dioxoverbin- düng durch heterogenkatalysierte Gasphasenoxidation einer vicinalen Dihydroxyverbin- dung in Gegenwart eines sauerstoffhaltigen Gases an einer Katalysatorfestbettschüttung in einem Rohrbündelreaktor, wobei die Reaktorrohre mit einem in der Reaktorhülle des Rohrbündelreaktors zirkulierenden Wärmeträgermedium von außen temperiert werden. Es ist gekennzeichnet dadurch, dass der Rohrbündelreaktor zwei oder mehr voneinander unab- hängige Temperierzonen aufweist, wobei die mittlere Temperatur der Wärmeträgermedien in den Temperierzonen von der eduktseitigen Eingangsseite zur produktseitigen Ausgangsseite des Reaktors hin abnimmt.
Das Verfahren zur Herstellung einer vicinalen Dioxoverbindung umfasst das Bereitstellen eines Eduktgemisches, das die entsprechenden vicinalen Diole umfasst. Beispielsweise kann die Dioxoverbindung - wie bei der Herstellung von Glyoxal durch heterogenkatalysierte Oxidehydrierung von Ethylenglykol bevorzugt - in einer Verdampferstufe durch Kontakt mit einem heißen Kreisgas in die Gasphase überführt werden. In einer weiteren bevorzugten Ausführungsform wird 1 ,2-Propandiol als Edukt eingesetzt. Das Kreisgas, welches sich gegenüber den Reaktionsteilnehmern und Produkten bei den herrschenden Reaktionsbedingungen inert verhält, enthält im Allgemeinen Stickstoff und Anteile von Sauerstoff, Kohlendioxid, Kohlenmonoxid und Wasser. Beispielsweise kann das Kreisgas 0 bis 5 Vol.-% O2, 0 bis 10 Vol.-% CO2, 0 bis 5 Vol.-% CO und 0 bis 15 Vol.-% H2O enthalten. Das Kreisgas kann weitere Bestandteile enthalten.
Der für die Oxidehydrierung der vicinalen Diole benötigte Sauerstoff kann durch Zumischen von Frischluft zu dem mit den vicinalen Diolen gesättigten Kreisgas bereitgestellt werden.
Bei einem zu hohen Verhältnis kann es zu einer schleichenden Überoxidation des Kupfer- Katalysators kommen, woraus eine deutlich verkürzte Standzeit resultiert. Im Allgemeinen beträgt bei der Herstellung von Glyoxal aus Ethylenglykol das molare Verhältnis von Sauerstoff zu Ethylenglykol < 2,0, bevorzugt < 1 ,8, besonders bevorzugt < 1 ,6.
Das derart hergestellte Eduktgemisch wird in einem Rohrbündelreaktor in eine Reaktor- haube eingeleitet und gelangt in eine Vielzahl von einem Katalysatorfestbett enthaltende Reaktorrohre.
Der erfindungsgemäß verwendete Rohrbündelreaktor umfasst ein in der Reaktorhülle angeordnetes, aus einer Vielzahl paralleler Reaktorrohre aufgebautes Rohrbündel. Die Reak- torrohre sind mit ihren offenen Enden in einem oberen und einem unteren Rohrboden ab- dichtend befestigt und münden in jeweils eine obere und eine untere Reaktorhaube. Die Reaktorrohre sind mit einem Katalysator befüllt, der als Träger-, Schalen- oder Vollkatalysator, auch in Form einer geordneten Packung, eingesetzt werden kann. Über die Reaktorhauben wird das Edukt beziehungsweise das die Reaktorrohre verlassende Produktge- misch zu- beziehungsweise abgeführt.
In dem Raum zwischen dem oberen und dem unteren Rohrboden, der durch Umlenkbleche unterteilt sein kann, zirkuliert ein Wärmeträger, welcher im Gleich-, Gegenstrom oder Querstrom geführt werden kann. In der Reaktorhülle sind entsprechende Zu- und Abfüh- rungen für das Wärmeträgermedium angeordnet, durch die das Wärmeträgermedium mittels Pumpen im Kreislauf geführt wird, und wobei mittels außenliegender Wärmetauscher eine Solltemperatur eingestellt wird.
Die Reaktorhülle ist in zwei oder mehr unabhängige Temperierzonen unterteilt, die jeweils mit voneinander unabhängig zirkulierenden Wärmeträgermedien betrieben werden. Die Trennung der einzelnen Zonen voneinander erfolgt durch Rohrböden, welche horizontal im Rohrbündelreaktor angeordnet sind und durch welche die Reaktorrohre geführt werden. Es können mehr als zwei, beispielsweise 3 Temperierzonen vorhanden sein. Vorzugsweise sind zwei Temperierzonen vorhanden.
Bei der heterogenkatalysierten Oxidehydrierungsreaktion ist eine sorgfältige Temperierung des Reaktors notwendig. Einerseits ist eine über den Querschnitt einheitliche Temperatur für alle Reaktorrohre erforderlich, damit die katalysierte Reaktion möglichst gleichförmig verläuft und es nicht in einzelnen Reaktorrohren zu einer durch Überhitzung hervorgerufe- ne Schädigung oder Inaktivierung des Katalysators kommt. Durch eine inhomogene Temperaturverteilung liegen in den Reaktorrohren unterschiedliche Reaktionsbedingungen vor, die zur verstärkten Bildung von Nebenprodukten und somit zu Ausbeuteverlusten und aufwendigen, sich anschließenden Aufreinigungsschritten führen können.
Die Reaktionstemperatur durchläuft bei der Gasphasenoxidation ein Maximum, welches als Hot Spot bezeichnet wird. Die dabei herrschende hohe Temperatur in dieser Reaktionszone ist häufig für eine eintretende lokale Schädigung des Katalysators verantwortlich. Eine gezielte Temperaturführung, welche durch den erfindungsgemäßen Rohrbündelreaktor bereitgestellt wird, erlaubt eine Absenkung der Temperatur im Bereich des Hot Spots. Gleichzeitig kann durch eine leichte Anhebung der Temperatur in nachfolgenden Zonen der Umsatz an Edukt gesteigert werden, so dass das gewünschte Produkt mit hoher Ausbeute erzielt werden kann.
Für den Ausgleich von Temperaturungleichheiten über den Querschnitt des Reaktors wird das Wärmeträgermedium bevorzugt im Querstrom innerhalb des die Reaktorrohre umge- benden Raums geleitet. Hierfür sind Umlenkbleche angeordnet, die eine mäanderförmige Strömung des Wärmeträgermediums erlauben. Möglich ist aber auch, das Wärmeträgermedium im Längsstrom zu führen.
Die im industriellen Maßstab verwendeten Rohrbündelreaktoren weisen einen typischen Durchmesser von 2,5 bis 5 m auf. In Rohrbündelreaktoren mit einem derartigen Durchmesser werden aus wirtschaftlichen Gründen eine möglichst hohe Anzahl von Reaktorrohren eingesetzt, die im Allgemeinen 1.000 bis 15.000 Reaktorrohre, bevorzugt 2.000 bis 10.000 beträgt und die im Wesentlichen gleichmäßig verteilt angeordnet sind. Der Innen- durchmesser der Reaktorrohre beträgt 20 bis 80 mm, bevorzugt 40 bis 60 mm. Die Reaktorrohre sind vorzugsweise aus ferritischem Stahl oder Edelstahl gefertigt und weisen eine Wanddicke von einigen mm, bevorzugt 1 bis 3 mm auf. Die typische Länge der Reaktorrohre liegt im Bereich von 1 bis 8 m, bevorzugt 2 bis 6 m, besonders bevorzugt 2 bis 4 m.
Üblicherweise herrschen in den Reaktorrohren Reaktionstemperaturen von 300 bis 400 °C. Das eingesetzte Wärmeträgermedium ist üblicherweise eine Salzschmelze, welche mit einer Temperatur zugeführt wird, so dass die mittleren Temperaturen in den einzelnen Temperierzonen im Bereich von 300 bis 400 °C, bevorzugt im Bereich von 340 bis 380 °C liegen. Geeignete Wärmeträgermedien sind darüber hinaus niedrig schmelzende Metalle wie Natrium. Bevorzugt unterscheidet sich die mittlere Temperatur in aufeinanderfolgenden Temperierzonen um bei 5 bis 20 °C. Die Temperatur in den einzelnen Temperierzonen wird bevorzugt derart eingestellt, dass die Temperatur des den Rohrbündelreaktor verlassenden Produktgemisches 360 °C, bevorzugt 340 °C nicht überschreitet.
Bevorzugt wird die Eintrittstemperatur des Wärmeträgermediums in einer ersten, edukt- seitigen Temperierzone so gewählt, dass ein möglichst hoher Eduktumsatz erfolgt. In einer Ausführungsform, bei der Ethylenglykol zu Glyoxal mit einem Umsatz von > 90 %, bevorzugt > 95 % und besonders bevorzugt > 98 % umgesetzt wird, liegt die Eintrittstemperatur des Wärmeträgermediums in die erste, eduktseitige Temperierzone im Bereich von 360 bis 380 °C. Die Eintrittstemperatur des Wärmeträgermediums in die zweite, produktseitige Temperierzone liegt 5 bis 20 °C, beispielsweise 10 °C darunter.
Im Folgenden wird der für das erfindungsgemäße Verfahren eingesetzte Rohrbündelreaktor beschrieben, wie er beispielsweise für die Herstellung von Glyoxal durch heterogenka- talysierte Gasphasenoxidation verwendet wird.
Figur 1 zeigt eine schematische Darstellung eines erfindungsgemäß eingesetzten Rohrbündelreaktors im Längsschnitt. Der Rohrbündelreaktor 1 umfasst eine zylindrische Reaktorhülle 2, in dem die Reaktorrohre 3 untergebracht sind. Ein Eduktgemisch gelangt in den Rohrbündelreaktor 1 , wo es im Bereich der oberen Haube 4 gleichmäßig über den gesamten Reaktorquerschnitt verteilt wird. Die obere Haube 4 wird zur zylindrischen Reaktorhülle 2 hin durch einen oberen Rohrboden 5 abgeschlossen. In den Rohrboden 5 münden die Reaktorrohre 3 des Rohrbündels 6. Die Reaktorrohre 3 sind in ihrem oberen Bereich abdichtend mit dem Rohrboden 5 verschweißt. In den Reaktorrohren 3 befindet sich das (nicht dargestellte) Katalysatormaterial. In ihrem unteren Bereich sind die Reaktorrohre 3 mit einem unteren Rohrboden 7 abdichtend verschweißt und münden in eine untere Haube 8 des Rohrbündelreaktors 1. Das Monoethylenglykol/Luft-Gemisch durchströmt die Reaktorrohre 3 und wird größtenteils zu Glyoxal umgesetzt.
Der Rohrbündelreaktor 1 ist in zwei Temperierzonen 9 und 10 unterteilt, welche durch einen Rohrboden 11 voneinander getrennt sind. Jede Temperierzone 9, 10 umfasst einen Wärmeträgerkreislauf 12, 13, in dem das über Zuführungen 14, 15 in den Reaktorinnenraum geleitete Wärmeträgermedium eingeleitet, durch Umlenkbleche 16 in Längs/, Gegenoder Gleichstrom an den Reaktorrohren vorbeigeführt und durch die Ableitungen 17, 18 abgeführt werden. Nicht dargestellt sind Pumpen und Temperierelemente, die dem jeweiligen Wärmeträgerkreislauf zugeordnet sind und die Einstellung einer Solltemperatur ge- währleisten.
Beispiel 1
Einem mit einem Kupfer/Phosphor-Katalysator befüllten Rohrbündelreaktor mit 6700 Roh- ren von 55 mm Außendurchmesser, 2 mm Wandstärke und 2800 mm Länge werden 4 t/h
Ethylenglykol und 40.000 Nm3 /h Kreisgas zugeführt. Der Reaktor ist einzonig ausgeführt.
Das molare Verhältnis von Sauerstoff zu Ethylenglykol wird durch Zumischen von Luft auf
1 ,55 Mol/Mol eingestellt. Die Salzbadtemperatur am Eintritt in die untere Salzbadzuführung beträgt 360 °C. Damit stellt sich eine Austrittstemperatur des Produktgemisches unmittel- bar am unteren Rohrboden des Reaktors von 367 °C ein.
Die Ausbeute an Glyoxal beträgt 68 % bezogen auf das eingesetzte Ethylenglykol. Der Umsatz des Ethylenglykols beträgt 98,5 % bezogen auf das eingesetzte Ethylenglykol.
Beispiel 2
Einem mit einem Kupfer/Phosphor-Katalysator befüllten Rohrbündelreaktor mit 6700 Rohren von 55 mm Außendurchmesser, 2 mm Wandstärke und 2800 mm Länge werden 4 t/h Ethylenglykol und 40.000 Nm3/h Kreisgas zugeführt. Der Reaktor ist zweizonig mit einer äquidistanten Teilung der Zonen ausgeführt. Das molare Verhältnis von Sauerstoff zu Ethy- lenglykol wird durch Zumischen von Luft auf 1 ,45 Mol/Mol eingestellt. Die Salzbadtemperatur am Eintritt in die obere (eingangsseitige) Zone beträgt 365 °C. Die Salzbadtemperatur am Eintritt in die untere (ausgangsseitige) Zone beträgt 355 °C. Damit stellt sich eine Austrittstemperatur des Produktgemisches unmittelbar am unteren Rohrboden des Reaktors von 361 °C ein.
Die Ausbeute an Glyoxal (gemessen unmittelbar am unteren Rohrboden des Reaktors) beträgt 72 % bezogen auf das eingesetzte Ethylenglykol. Der Umsatz des Ethylenglykols beträgt 98,5 % bezogen auf das eingesetzte Ethylenglykol.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer vicinalen Dioxoverbindung durch heterogenkatalysierte Gasphasenoxidation einer vicinalen Dihydroxyverbindung in Gegenwart eines sauerstoffhaltigen Gases an einer Katalysator-Festbettschüttung in einem Rohrbündelreaktor, wobei die Reaktorrohre mit einem in der Reaktorhülle des Rohrbündelreaktors zirkulierenden Wärmeträgermedium von außen temperiert werden, dadurch gekennzeichnet, dass der Rohrbündelreaktor zwei oder mehr voneinander unabhängige Temperierzonen mit zwei oder mehr unabhängig voneinander zirkulierenden Wärmeträgermedien aufweist, wobei die mittlere Temperatur der Wärmeträgermedien in den Temperierzonen von der eduktseitigen Eingangsseite zur produktseitigen Ausgangsseite des Reaktors hin abnimmt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die mittlere Temperatur der Wärmeträgermedien im Bereich von 300 bis 400 °C liegt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die mittlere Temperatur der Wärmeträgermedien im Bereich von 340 bis 380 °C liegt.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass sich die mittlere Temperatur der Wärmeträgermedien in aufeinanderfolgenden Temperaturzonen um 5 bis 20 °C unterscheidet.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass genau zwei voneinander unabhängige Temperierzonen vorhanden sind.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Temperatur des Produktgasgemischs beim Austritt aus den Reaktorrohren höchstens 380 °C beträgt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Temperatur des Einsatzgasgemischs beim Eintritt in die Reaktorrohre mindestens 160 °C beträgt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Innendurchmesser der Reaktorrohre von 20 bis 80 mm beträgt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die
Länge der Reaktorrohre 2 bis 4 m beträgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Wärmeträgermedien Salzschmelzen sind.
1 1. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Festbettschüttung aus Katalysatorteilchen aus metallischem Kupfer, die mit Phosphor dotiert sein können, besteht.
12. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die vicinale Dihydroxyverbindung Ethylenglykol oder 1 ,2-Propandiol ist.
PCT/EP2007/050600 2006-02-01 2007-01-22 Verfahren zur herstellung von vicinalen dioxoverbindungen WO2007088118A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06101155 2006-02-01
EP06101155.7 2006-02-01

Publications (1)

Publication Number Publication Date
WO2007088118A1 true WO2007088118A1 (de) 2007-08-09

Family

ID=37995291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/050600 WO2007088118A1 (de) 2006-02-01 2007-01-22 Verfahren zur herstellung von vicinalen dioxoverbindungen

Country Status (1)

Country Link
WO (1) WO2007088118A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132011A1 (de) * 2006-05-17 2007-11-22 Basf Aktiengesellschaft Verfahren zur herstellung vicinaler dioxoverbindungen durch oxidation vicinaler dihydroxyverbindungen an einer strukturierten katalysatorschüttung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518284A (en) * 1967-02-20 1970-06-30 Shell Oil Co Partial oxidation of organic compounds
GB2001257A (en) * 1977-07-13 1979-01-31 Nippon Catalytic Chem Ind Process for catalytic vapour phase oxidation and reactor used therefor
EP0911313A1 (de) * 1997-10-27 1999-04-28 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung von Acrylsäure
WO2000009253A1 (de) * 1998-08-13 2000-02-24 Basf Aktiengesellschaft Reaktor mit einem kontaktrohrbündel
EP1586370A2 (de) * 2004-04-15 2005-10-19 MAN DWE GmbH Reaktoranordnung zur Durchführung katalytischer Gasphasenreaktionen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518284A (en) * 1967-02-20 1970-06-30 Shell Oil Co Partial oxidation of organic compounds
GB2001257A (en) * 1977-07-13 1979-01-31 Nippon Catalytic Chem Ind Process for catalytic vapour phase oxidation and reactor used therefor
EP0911313A1 (de) * 1997-10-27 1999-04-28 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung von Acrylsäure
WO2000009253A1 (de) * 1998-08-13 2000-02-24 Basf Aktiengesellschaft Reaktor mit einem kontaktrohrbündel
EP1586370A2 (de) * 2004-04-15 2005-10-19 MAN DWE GmbH Reaktoranordnung zur Durchführung katalytischer Gasphasenreaktionen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132011A1 (de) * 2006-05-17 2007-11-22 Basf Aktiengesellschaft Verfahren zur herstellung vicinaler dioxoverbindungen durch oxidation vicinaler dihydroxyverbindungen an einer strukturierten katalysatorschüttung

Similar Documents

Publication Publication Date Title
EP0700714B1 (de) Verfahren zu katalytischen Gasphasenoxidation von Propen zu Acrolein
EP0700893B1 (de) Verfahren zur katalytischen Gasphasenoxidation von Acrolein zu Acrylsäure
DE2513405C2 (de) Verfahren zur Herstellung von Acrylsäure durch Oxidation von Propylen mit Sauerstoff enthaltenden Gasen in zwei getrennten Katalysatorstufen, die in einem Röhrenreaktor hintereinander angeordnet sind
EP2315738B1 (de) Einsatz von schaumkörpern in oxidations-reaktoren zur herstellung ungesättigter aldehyde oder carbonsäuren
US7365228B2 (en) Method for producing unsaturated fatty acids
EP2150518A2 (de) Verfahren der inbetriebnahme einer heterogen katalysierten partiellen gasphasenoxidation von acrolein zu acrylsäure oder von methacrolein zu methacrylsäure
EP1611078A2 (de) Verfahren der heterogen katalysierten partiellen gasphasenoxidation von propen zu acrylsäure
EP1311467B1 (de) Verfahren zur herstellung von phthalsäureanhydrid
EP1581457B1 (de) Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff
DE10258153A1 (de) Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff
US7238836B2 (en) Method of producing unsaturated aldehyde and unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
EP1697278B1 (de) Verfahren zur herstellung ungesättigter säure in einem festbettreaktor zur katalytischen partiellen oxidation mit verbessertem wärmeregelungssystem
EP1478614B1 (de) Verfahren zur herstellung von phthalsäureanhydrid
US6462232B1 (en) Production process for acrylic acid under controlled temperature conditions
WO2007088118A1 (de) Verfahren zur herstellung von vicinalen dioxoverbindungen
EP1417194B1 (de) Verfahren zur herstellung von maleinsäureanhydrid
EP3401300A1 (de) Verfahren zum durchführen exothermer gleichgewichtsreaktionen
EP2019816B1 (de) Temperierung bei der durchführung von oxidationsreaktionen von kohlenwasserstoffen
EP3415492B1 (de) Verfahren zur herstellung eines ungesättigten aldehyds und einer ungesättigten carbonsäure
WO2009039947A1 (de) Verfahren zur herstellung von aromatischen aminen
DE102006054214A1 (de) Verfahren zum Betreiben einer exothermen heterogen katalysierten partiellen Gasphasenoxidation einer organischen Ausgangsverbindung zu einer organischen Zielverbindung
EP1311466A1 (de) Verfahren zur gasphasenpartialoxidation von aromatischen kohlenwasserstoffen
WO2007132011A1 (de) Verfahren zur herstellung vicinaler dioxoverbindungen durch oxidation vicinaler dihydroxyverbindungen an einer strukturierten katalysatorschüttung
EP2059334A1 (de) Verfahren zum betreiben einer exothermen heterogen katalysierten partiellen gasphasenoxidation einer organischen ausgangsverbindung zu einer organischen zielverbindung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07726211

Country of ref document: EP

Kind code of ref document: A1