WO2007086266A1 - Polyester resin aqueous dispersion and method for producing same - Google Patents

Polyester resin aqueous dispersion and method for producing same Download PDF

Info

Publication number
WO2007086266A1
WO2007086266A1 PCT/JP2007/050405 JP2007050405W WO2007086266A1 WO 2007086266 A1 WO2007086266 A1 WO 2007086266A1 JP 2007050405 W JP2007050405 W JP 2007050405W WO 2007086266 A1 WO2007086266 A1 WO 2007086266A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
aqueous dispersion
acid
resin aqueous
organic solvent
Prior art date
Application number
PCT/JP2007/050405
Other languages
French (fr)
Japanese (ja)
Inventor
Mamiko Takesue
Original Assignee
Unitika Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd. filed Critical Unitika Ltd.
Priority to JP2007555884A priority Critical patent/JP5241240B2/en
Publication of WO2007086266A1 publication Critical patent/WO2007086266A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • Polyester resin aqueous dispersion and method for producing the same
  • the present invention relates to a polyester resin aqueous dispersion capable of forming a resin coating excellent in adhesion.
  • a polyester resin is a coating resin, and is excellent in processability of a film, resistance to organic solvents (solvent resistance), weather resistance, adhesion to various substrates, etc. It is used in large quantities as a binder component in the fields such as inks, adhesives and coatings.
  • polyester resin aqueous dispersions of polyester resin finely dispersed in an aqueous medium have been actively developed.
  • Patent Documents 1 to 4 propose a polyester resin aqueous dispersion in which a high molecular weight polyester resin having a low acid value is dispersed in an aqueous medium, and when a strong aqueous dispersion is used, It is described that a film excellent in performance such as processability, water resistance, solvent resistance, etc. can be formed.
  • the aqueous dispersions of polyester resin described in these documents were dispersed in an aqueous medium by neutralizing the carboxyl groups of the polyester resin with a basic mixture.
  • polyester resin aqueous dispersion It is a so-called self emulsification type polyester resin aqueous dispersion, and in order to stably disperse the polyester resin in an aqueous medium, the polyester resin used has a carboxyl group corresponding to an acid value of 8 mg KOHZg or more. It was necessary. As a result, if the upper limit of the molecular weight of polyester resin is limited and adhesion may become insufficient, problems will remain! /.
  • Patent Document 5 disperses a high molecular weight polyester resin having an acid value of 2 mg KO HZg or more and less than 8 mg KOHZg and a high molecular weight polyester resin in an aqueous medium.
  • Aqueous polyester resin dispersions have been proposed. From this proposal, Although it is possible to form a film excellent in a certain level of adhesion, processability and water resistance, it is possible to achieve polyester resin aqueous dispersions that exhibit adhesion comparable to organic solvent-soluble adhesives! / I did not hesitate.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 9-296100
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-26709
  • Patent Document 3 JP-A 2000-313793
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2002-173582
  • Patent Document 5 International Publication 2004Z037924 Pamphlet
  • the present invention has been made in view of the above circumstances, and provides a polyester resin aqueous dispersion capable of forming a film excellent in adhesion while having excellent storage stability, and a method for producing the same.
  • the purpose is to
  • the present inventors can easily obtain an aqueous dispersion by using a polyester resin having specific thermal properties.
  • the coating formed from the aqueous dispersion was found to be excellent in adhesion and completed the present invention.
  • the present invention is characterized by containing a polyester resin having a melting point of 100 ° C. or less, a heat of crystal fusion of 2 to 12 jZg, an acid value of 2 to 30 mg KOHZg, and a number average molecular weight of 5000 or more. It relates to a polyester resin aqueous dispersion.
  • the present invention is also a method of producing an aqueous polyester resin oil dispersion by phase inversion emulsification, by dispersing an organic solvent solution of polyester resin together with a basic compound in water, wherein 10 to 40 °
  • the polyester resin aqueous dispersion of the present invention has adhesiveness, in particular, a place to be bonded by heat press.
  • a resin coating with excellent low temperature adhesion properties can be formed, it is possible to form an anchor coating agent for metal plates and films, and an adhesive for laminating substrates such as fiber, paper, metal and resin.
  • the polyester resin aqueous dispersion of the present invention achieves sufficient adhesion at a low temperature of 120 ° C. or less.
  • the polyester resin aqueous dispersion of the present invention is excellent in storage stability.
  • polyester resin aqueous dispersion (hereinafter simply referred to as "aqueous dispersion") of the present invention contains a specific polyester resin.
  • the polyester resin contained in the aqueous dispersion of the present invention must have a melting point of 100 ° C. or less, and preferably 40 to 95 ° C., preferably 42 to 90 ° C. Is the best.
  • the aqueous dispersion generally has a fine particle resin melted and formed into a film by heating at a temperature sufficiently higher than the melting point. When the melting point exceeds 100 ° C., it is on a PET T film which is a versatile substrate. Film formation does not occur sufficiently at a drying temperature of 120 ° C., and adhesion between the film and the film is poor. Therefore, when the adhesion is evaluated, interfacial peeling occurs and the adhesion deteriorates.
  • the resin is not sufficiently melted at a temperature of 80 to 120 ° C. also for the heat press temperature for bonding, the adhesiveness is not exhibited.
  • the resin is not sufficiently melted at a temperature of 80 to 120 ° C. also for the heat press temperature for bonding, the adhesiveness is not exhibited.
  • the resin is not sufficiently melted at a temperature of 80 to 120 ° C. also for the heat press temperature for bonding, the adhesiveness is not exhibited.
  • the resin is not sufficiently melted at a temperature of 80 to 120 ° C. also for the heat press temperature for bonding, the adhesiveness is not exhibited.
  • the PET film of the base material shrinks and deforms.
  • the heat of crystal fusion of the polyester resin needs to be 2 to 12 jZg, and 3 to 10 jZg, which is preferred: L1 JZ g, is optimum.
  • the cohesion is improved by the crystallization of the polyester, and the adhesiveness is improved by sufficient curing. If the heat of crystal fusion is less than 2jZg, the cohesion of the polyester resin can not be improved and sufficient curing can not be obtained, and a film having excellent adhesion can not be obtained. If the heat of crystal fusion exceeds 12 jZg, the solubility in organic solvents is poor, so production by phase inversion emulsification is difficult, or the storage stability of the aqueous dispersion is deteriorated.
  • the acid value of the polyester resin needs to be 2 to 30 mg KOHZg, 3 to 25 mg KOH From the viewpoint of adhesion at low temperatures where Zg is preferred, 4 to 20 mg KOHZg is optimum.
  • the acid value is less than 2 mg KOHZg, it is difficult to obtain a uniform aqueous dispersion.
  • the acid value exceeds 30 mg KOHZg the number average molecular weight of the polyester resin becomes small, and a film excellent in adhesiveness can not be obtained.
  • the number average molecular weight of the polyester resin needs to be 5,000 or more, and the force S is preferably 7, 000-40, 000, 9,000-30, 000, particularly 10,000-25, It is the power that is 000 ⁇ optimum. If the number average molecular weight is less than 5,000, a film having excellent adhesion can not be obtained.
  • the polyester resin contained in the aqueous dispersion of the present invention is (1) a method of polycondensation of a predetermined acid component and an alcohol component, (2) a polybasic acid component after such polycondensation. And (2) addition of an acid anhydride after polycondensation, and the like.
  • the method (2) is preferable.
  • aromatic dicarboxylic acids aliphatic dicarboxylic acids, etc. are used as the acid component, but when the proportion of aliphatic dicarboxylic acid in the acid component is increased, the crystal melting point is increased.
  • aliphatic glycol and the like are used as the alcohol component, but when the proportion of aliphatic glycol, in particular 1,4 butanediol is increased, the heat of crystal melting of sugar is used. Increases while decreasing the proportion of aliphatic glycols, especially 1,4 butanediol, decreases the heat of crystal fusion of sugars.
  • the amount of the polybasic acid component used for depolymerization when the amount of the polybasic acid component used for depolymerization is increased, the number average molecular weight of the salt decreases and the acid value increases. On the other hand, when the amount of the polybasic acid component used is decreased, the number average molecular weight of the fat increases and the acid value decreases. At this time, when the tribasic or higher functional polybasic acid component is used, the increase in acid value is more remarkable than when the bifunctional type is used.
  • the acid component constituting polyester resin at least a polybasic acid component is used, and it is necessary to If necessary, monocarboxylic acids are used.
  • polybasic acid component examples include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid and the like.
  • aliphatic dicarboxylic acids include, for example, oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, hydrogenated dimer acid And unsaturated aliphatic dicarboxylic acids such as fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic acid, citraconic acid, citraconic acid, dimer acid and the like.
  • alicyclic dicarboxylic acid examples include, for example, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and 2,5-norbornene dicarboxylic acid.
  • examples thereof include acids, 2,5-norbornene dicarboxylic acid anhydride, tetrahydrophthalic acid and tetrahydrophthalic anhydride.
  • polybasic acid component a small amount of 5-sodiumsulfoisophthalic acid and 5-hydroxyisophthalic acid can be used, if necessary.
  • a tribasic or higher functional polybasic acid can also be used, and examples thereof include trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimellitic anhydride, pyromellitic anhydride, benzozo phenone anhydride tetracarboxylic acid, trimesin. It may contain an acid, ethylene glycol bis (anhydrotrimellitate), dalycerol tris (anhydrotrimellitate), 1,2,3,4-butanetetracarboxylic acid and the like.
  • the trifunctional or higher polybasic acid is preferably used as a depolymerization agent, in which case the content of the trifunctional or higher polybasic acid in the polyester resin of the present invention constitutes the polyester resin. It is preferred that the amount be less than 5 mol% with respect to the total acid component to be /.
  • the monocarboxylic acid include, for example, fatty acids such as lauric acid, myristic acid, normitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butyl benzoic acid, cycloaliphatic acid Hexanoic acid, 4-hydroxyphenylstearic acid etc Be
  • fatty acids such as lauric acid, myristic acid, normitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butyl benzoic acid, cycloaliphatic acid Hexanoic acid, 4-hydroxyphenylstearic acid etc Be
  • the alcohol component constituting the polyester resin at least a polyhydric alcohol component is used, and a monoalcohol is used as needed.
  • polyhydric alcohol components include aliphatic glycols, alicyclic glycols, ether bond-containing dacols, and the like.
  • aliphatic glycol examples include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, Examples include neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-acetyl-2-butylpropanediol and the like.
  • alicyclic glycol examples include, for example, 1,4-cyclohexanedimethanol and the like.
  • ether bond-containing dacyl examples include, for example, bisphenols such as diethylene glycol, triethylene glycol, dipropylene glycol, and further, bis (4- (hydroxy) phenyl) propane.
  • Ethylene oxide adducts of phenol A ethylene oxide adducts of bisphenols (bisphenol S) such as bis [4- (hydroxyethoxy) phenyl] sulfone, polyethylene glycol, polypropylene adducts And polytetramethylene glycol.
  • trifunctional or higher functional polyhydric alcohol examples include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, and the like.
  • monoalcohols include, for example, stearyl alcohol, 2-phenoxyethanol and the like.
  • polyester resin is, for example, lactic acid, ⁇
  • Monohydroxy monocarboxylic acids such as hydroxybutyric acid, ⁇ ⁇ ⁇ ⁇ ⁇ hydroxybenzoic acid and aliphatic ratatones such as ⁇ or ⁇ -prolataton, ⁇ - valerolataton.
  • Monohydroxy monocarboxylic acid and aliphatic ratatone should be considered as components applicable to both acid and alcohol components.
  • “total acid component” and “total acid content” as a standard when expressing the content of each monomer
  • the content of the aliphatic ratatone is added to any of the “rucol components” to represent the content of each monomer.
  • the polyester resin used in the present invention contains at least an aromatic dicarboxylic acid and an aliphatic glycol as the components among the above components.
  • the content of the aromatic dicarboxylic acid is the total acid components constituting the polyester ⁇ 30-70 mole 0/0, a Japanese ⁇ This 35-65 mole 0/0, and the content of the aliphatic glycol 70 for all Norre n- Honoré component [this: LOO Monore 0/0, preferably ⁇ or 85 to: LOO Monore 0/0, JP [this 1:90 00 more preferred embodiment is preferably tool that is mol%
  • the aliphatic glycol content is 100 mol%. If the amount of aromatic dicarboxylic acid is less than 30 mol%, the heat of crystal fusion tends to be higher than the range of the present invention.
  • the melting point tends to be higher than the range of the present invention, which is not preferable. If the aliphatic glycol content is less than 70 mol%, the heat of crystal melting tends to be lower than the range of the present invention, which is not preferable.
  • the aromatic dicarboxylic acid preferably contains at least terephthalic acid, and its content is preferably 15 to 50% by mole, particularly preferably 18 to 45% by mole, based on the total acid component constituting the polyester resin. If the amount of terephthalic acid is less than 15 mol%, the heat of crystal fusion tends to be out of the range of the present invention. When the amount of terephthalic acid exceeds 50 mol%, the melting point and the heat of crystal fusion tend to be higher than the range of the present invention, which is not preferable.
  • the aromatic dicarboxylic acid is also more preferable in terms of adhesion, and includes, in an aspect, terephthalic acid and isophthalic acid, and further preferably, in the aspect, only terephthalic acid and isophthalic acid are effective.
  • the total content of terephthalic acid and isophthalic acid from 35 to 65 mol% based on the total acid components constituting the polyester ⁇ , 40 to 65 mole 0/0 force preferably in particular, also terephthalic acid
  • the content ratio of isophthalic acid to the molar ratio (: / ⁇ ) is 30/70 /: LOO / 0, especially 40/60 to 70/30 force ⁇ preferred! / ,.
  • terephthalic acid TPA
  • IPA isophthalic acid
  • the aliphatic glycol preferably contains at least 1,4 butanediol from the viewpoint of adjusting the melting point and the heat of crystal fusion within the scope of the present invention, and the content thereof is the whole of the polyester resin. 70-100 mole 0/0 for alcohol component, in particular 80 to: LOO molar% is preferred.
  • the amount of 1,4-butanediol is less than 70% by mole, the heat of crystal fusion becomes lower than the range of the present invention, which is not preferable.
  • the polyester resin preferably contains, in addition to the above aromatic dicarboxylic acid and aliphatic glycol, an aliphatic dicarboxylic acid and Z or an aliphatic ratatone. More preferably, an aliphatic dicarboxylic acid is contained, or an aliphatic dicarboxylic acid and an aliphatic ratatone are contained.
  • the aliphatic dicarboxylic acid is preferably the above-mentioned saturated aliphatic dicarboxylic acid, more preferably a C4-C10 saturated aliphatic dicarboxylic acid such as succinic acid, succinic anhydride, adipic acid, azelaic acid or sebacic acid, most preferably Aliphatic ratatones which are succinic acid and Z or sebacic acid are preferably ⁇ -force proratatons.
  • each aliphatic dicarboxylic acids or aliphatic Rataton usually 30 to 70 mol 0/0 for the total acid component, particularly 35 to 65 mole 0/0 force child preferable.
  • the total amount thereof may be within the above range.
  • the above-mentioned polyester resin is dispersed in an aqueous medium, and more specifically, a part or all of the carboxyl groups of the above-mentioned polyester resin is a basic compound. It is an aqueous dispersion to be neutralized.
  • the basic compound neutralizes the noreboxyxole group of the polyester resin to form a caneboxynoleite, and the electric repulsion between the particles causes the polyester resin fine particles to be stable without aggregation.
  • organic amine having a boiling point of 250 ° C. or less, or 160 ° C. or less, or ammonia is preferable from the viewpoint of easy volatilization at the time of film formation.
  • organic amines include tolylamine, N, N jetylethanolamine, N, N dimethylethanolamine, aminoethanolamine, N-methyl-N, N diethanolamine , Isopropylamine, Iminobispropylamine, Etylamine, Jetylamine, 3-Ethoxypropylamine, 3-Diethylaminopropylamine, sec-Butylamine, Propylamine, Methylaminopropylamine, Dimethylamino Propylamine, methyliminobispropylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, triethanolamine, morpholine, N-methylmorpholine, N-ethylmorpholine and the like can be mentioned. Among them, ammonia and triethyl
  • the content ratio of the polyester resin in the aqueous dispersion of the present invention can be appropriately selected depending on the film forming method, the type of the coated material, and the thickness and performance of the desired resin coating,
  • the content is not particularly limited, but it is preferably 5 to 60% by mass, based on the total amount of the aqueous dispersion, in terms of maintaining an appropriate viscosity at the time of coating and expressing a good film forming ability. Mass% is optimal.
  • the particle size of the polyester resin is optimally 200 nm or less, which is preferably 300 nm or less in terms of volume average particle size, from the viewpoint of maintaining good storage stability.
  • the aqueous medium constituting the aqueous dispersion of the present invention is a medium composed of a liquid containing water as a main component, and may partially contain the above-mentioned basic binder and an organic solvent described later. Although it is good, the content of organic solvent in the polyester resin aqueous dispersion is 3 in order to improve the environmental problems and the working environment, and to reduce the residual organic solvent that adversely affects the resin film properties. 1% by mass or less is optimum, preferably 1% by mass or less.
  • the aqueous dispersion of the present invention can be produced by phase inversion emulsification by dispersing a solution of polyester resin in an organic solvent together with a basic compound in water. Specifically, in the aqueous dispersion, a step of dissolving polyester resin in an organic solvent (dissolution step) and a step of dispersing an organic solvent solution of polyester resin together with a basic compound in water (phase inversion emulsification) It can be manufactured in 2 steps with step).
  • aqueous dispersion in which the content of the organic solvent is reduced can be obtained. If necessary, filtration and removal of undispersed substances and aggregates results in an aqueous dispersion in a uniform state which can not be observed, such as precipitates and phase separation. Each process will be described.
  • the dissolution step will be described.
  • the polyester resin is dissolved in an organic solvent.
  • the concentration of the polyester resin in the organic solvent solution of the polyester resin to be obtained is preferably in the range of 10 to 60% by mass, and the range of 20 to 50% by mass is optimum.
  • the concentration of the polyester resin in the solution exceeds 60% by mass, the increase in viscosity becomes large when mixed with water in the next phase inversion emulsification step, and a uniform aqueous dispersion may not be obtained. is there.
  • the concentration of polyester resin is less than 10% by mass, the concentration of polyester resin is further decreased in the next phase inversion emulsification step, and a large amount of organic solvent is removed in the solvent removal step.
  • An apparatus for dissolving polyester resin in an organic solvent may be any apparatus provided with a tank into which a liquid can be introduced and capable of appropriate stirring.
  • the polyester resins used in the dissolving step may be used alone or in combination of two or more.
  • organic solvent known ones can be used. For example, ketone organic solvents, aromatic hydrocarbon organic solvents, ether organic solvents, halogen-containing organic solvents, alcohol organic solvents And ester-based organic solvents and glycol-based organic solvents.
  • the organic solvents may be used alone or in combination of two or more, but in order to obtain the aqueous dispersion of the present invention, selection of the organic solvent so as to dissolve 10% by mass or more of polyester resin. It is preferable to use an organic solvent which can be dissolved by 20% by mass or more. An organic solvent which can be dissolved by 30% by mass or more is more preferable.
  • organic solvents examples include acetone, methyl ethyl ketone (2-butanone) (hereinafter referred to as MEK), methyl isopyl ketone (4-methyl-2-pentanone) (hereinafter referred to as Ml BK), dioxane, tetrahydrofuran, cyclopentadiene, etc.
  • phase inversion emulsification an organic solvent solution of polyester resin is dispersed in water together with the basic compound by phase inversion emulsification.
  • a basic compound it is preferable to add a basic compound to a polyester resin solution and gradually add water thereto to carry out phase inversion emulsification. If the rate of water addition is fast, it may be difficult to obtain a uniform aqueous dispersion.
  • phase inversion emulsification means adding an amount of water exceeding the amount of the organic solvent contained in this solution to the organic solvent solution of polyester resin to obtain a system from an organic solvent phase to an oZw emulsion dispersion system. It means to change it.
  • the amount of the basic compound used is determined in accordance with the amount of carboxyl groups contained in the polyester resin, and is an amount capable of neutralizing at least a part of the carboxyl groups, ie, force propoxyl group against 0.4 to 20 times equivalent is preferable 0.4 to 19 times equivalent is more preferable 0.8 to 18 times equivalent is optimum.
  • Phase inversion emulsification is preferably performed at 10 to 40 ° C., particularly preferably 15 to 35 ° C. 15 ° C. to 30 ° C. is optimum.
  • the volume average particle diameter of the obtained aqueous dispersion tends to be small, and an aqueous dispersion having excellent storage stability can be easily obtained.
  • the appearance of the polyester resin contained in the aqueous dispersion of the present invention tends to gradually change its solution state even if it is dissolved in an organic solvent, for example, at a low temperature such as 5 ° C. If stored for 10 hours or more, the viscosity of the organic solvent solution of polyester resin may become high or may become cloudy.
  • the organic solvent solution of polyester resin used in the present invention may have poor dissolution stability at low temperatures, so phase inversion emulsification is preferably 10 ° C. or more, particularly preferably 15 ° C. or more.
  • phase inversion emulsification is carried out without controlling the dissolution state of the polyester resin in the organic solvent solution, the quality of the obtained aqueous dispersion is not stable, which is not preferable.
  • An apparatus for carrying out the phase inversion emulsification process may be any apparatus provided with a tank into which a liquid can be introduced and capable of appropriate stirring. Such devices include devices known to those skilled in the art as solid Z liquid stirrers and emulsifiers (eg, homomixers).
  • the organic solvent contained in the aqueous dispersion obtained in the phase inversion emulsification step is distilled, and a part or all of the organic solvent is removed from the aqueous dispersion.
  • This step can be carried out under reduced pressure or under normal pressure. Desolvent under normal pressure is likely to generate aggregates!
  • the internal temperature may be adjusted to 70 ° C. or less, preferably 60 ° C. or less, and optimally 50 ° C. or less.
  • the apparatus for carrying out the solvent removal step may be any apparatus provided with a tank into which the liquid can be introduced and capable of appropriate stirring.
  • the solvent removal step is carried out to be included in the aqueous dispersion after the phase inversion emulsification step and to contribute to the neutralization of the polyester resin. It is also possible to remove some or all of them.
  • an aqueous dispersion having a uniform state in which the solid concentration locally does not find any difference in solid concentration from other parts, such as precipitation or phase separation in appearance, is obtained.
  • a filtration step may be provided in the process for the purpose of removing foreign matter and the like.
  • a stainless steel filter wire diameter: 0.35 mm, plain weave
  • pressure filtration air pressure: 0.2 MPa
  • the aqueous dispersion of the present invention is excellent in film forming ability, it can be uniformly coated on the surface of various substrates by a known film forming method, dicing method, brush coating method, spray coating method, curtain flow coating method, etc.
  • the heat treatment By applying the heat treatment, the aqueous medium can be removed, and a uniform resin coating can be formed in close contact with the surface of various substrates.
  • a heating device at this time an ordinary hot air circulation type oven, an infrared heater or the like may be used. Further, the heating temperature and the heating time are appropriately selected depending on the type of the base material and the like. However, considering the economy, the heating temperature is optimally 80.degree. To 100.degree. C., preferably 60.degree. To 120.degree.
  • the heating time is preferably 1 second to 30 minutes, more preferably 5 seconds to 20 minutes, and most preferably 10 seconds to 10 minutes.
  • a leveling agent, an antifoaming agent, an anti-glare agent, a pigment dispersant, an ultraviolet light absorber, an antifungal agent, and the like can be used as needed within the scope of achieving the object of the present invention.
  • agents such as agents and preservatives, pigments or dyes such as titanium oxide, zinc oxide and carbon black, and water-soluble polymers such as polybutyl alcohol and polyethylene oxide may be added. Further, by adding water or an organic solvent, it is possible to adjust the viscosity, adjust the wettability to the substrate, and the like.
  • the number average molecular weight is determined by GPC analysis (liquid transfer unit LC-lOADvp type manufactured by Shimadzu Corporation) and And UV-visible spectrophotometer SPD-6AV type, detection wavelength: 254 nm, solvent: tetrahydrofuran, polystyrene conversion).
  • Solid content concentration (mass%) Y / XX 100
  • the aqueous dispersion was diluted with water to 0.1%, and the volume average particle size was measured using Nikkiso, MICROTRAC UPA (model 93 40-UPA). 300 nm or less is preferable.
  • X The viscosity of the aqueous dispersion is high and it is coagulated.
  • the thickness of the substrate is measured in advance using a thickness gauge (manufactured by Union Tool Co., Ltd., MICROFINE), and after a resin coating is formed on the substrate using an aqueous dispersion, the resin coating is provided.
  • the thickness of the substrate was measured by the same method, and the difference was taken as the thickness of the resin coating.
  • the press temperature is 80 ° C and the film does not melt sufficiently and adhesion is poor (if the peel strength is 0.5 NZ 25 mm or less), the press temperature is 120 ° C and adhesion is poor even at that temperature. It was 160 ° C.
  • This sample is cut out with a width of 25 mm, and after one day, using a tensile tester (Intesco Corporation Intesco Precision Universal Material Testing Machine Model 2020), measure the peel strength of the film at a tensile speed of 5 OmmZ and a tensile angle of 180 degrees. The adhesion was evaluated. Peel strength 3.5 NZ 25 mm or more was judged to be comparable in strength to an organic solvent-soluble adhesive. The peel strength is preferably 5. ONZ 25 mm or more. 7. ONZ 25 mm or more is significantly preferable.
  • polyester resins used in the examples and comparative examples were obtained as follows.
  • a mixture consisting of 1163 g of terephthalic acid, 1412 g of isophthalic acid, 1920 g of cenoic acid and 2740 g of 1,4-butanediol was heated at 220 ° C. for 4 hours in an autoclave to carry out an esterification reaction. Then, after 2.6 g of tetrabutyl titanate as a catalyst was added, the temperature of the system was raised to 230 ° C., and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, the temperature of the system is lowered, and 47 g of trimellitic acid is added at 220.degree. Stirring was performed for 2 hours to carry out depolymerization reaction. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. This was cooled to room temperature to obtain a sheet-like polyester resin P-1.
  • a mixture consisting of 831 g of terephthalic acid, 1578 g of isophthalic acid, 708 g of cenoic acid, 799 g of ⁇ -prolabatone and 2424 g of 1,4-butanediol was heated in an autoclave at 220 ° C. for 4 hours to carry out an esterifying reaction . Then, tetrabutyl titaniume as a catalyst After the addition of 1. 7 g of salt, the temperature of the system was raised to 240 ° C., and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours.
  • the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, the temperature of the system is lowered, 32 g of trimellitic acid is added when it reaches 220.degree. C., and 2 hours at 220.degree. Stirring performed depolymerization reaction. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. The mixture was cooled to room temperature to obtain a sheet-like polyester resin P-2.
  • a mixture consisting of 1661 g of terephthalic acid, 3032 g of cenoic acid and 3154 g of 1,4-butanediol was heated in an autoclave at 235 ° C. for 4 hours to carry out an esterifying reaction. Then, after the addition of 2.6 g of tetrabutyl titanate as a catalyst, the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, 183 g of trimellitic anhydride is added while maintaining the system temperature of 235 ° C., and stirring is carried out at 235 ° C. for 2 hours. The depolymerization reaction was carried out. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. The mixture was cooled to room temperature to obtain sheet-like polyester resin P-3.
  • a mixture consisting of 1661 g of terephthalic acid, 3032 g of cenoic acid, 2588 g of 1,4 butanediol and 388 g of ethylene glycol was heated in an autoclave at 235 ° C. for 4 hours to carry out an ester reaction. Then, after adding 2.6 g of tetrabutyl titanate as a catalyst, the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polymerization reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, and 38 g of trimellitic anhydride is added while maintaining the system temperature of 235 ° C., and stirring is carried out at 235 ° C. for 2 hours. The reaction was depolymerized. Thereafter, the system was pressurized with nitrogen gas and the resin was discharged in the form of a sheet. The mixture was cooled to room temperature to obtain a sheet-like polyester resin P-4.
  • a mixture consisting of 2201 g of terephthalic acid, 2375 g of cenoic acid, and 3154 g of 1,4 butane diacetate was heated in an autoclave at 235 ° C. for 4 hours to carry out an esterifying reaction. Then, after adding 2.6 g of tetrabutyl titanate as a catalyst, the pressure of the system is gradually reduced After 5 hours, it was 13Pa. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, 183 g of trimellitic anhydride is added while maintaining the system temperature of 235 ° C., and stirring is carried out at 235 ° C. for 2 hours. The depolymerization reaction was carried out. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. The mixture was cooled to room temperature to obtain sheet-like polyester resin P-5.
  • a mixture consisting of 1263 g of cenosyn, 2214 g of f-NOC, 3143 g of 1,4 butane diisocyanate, and 17 g of trimethyone monolepropane was heated in an autoclave at 235 ° C. for 4 hours to carry out an esterase reaction. Then, after adding 2.6 g of tetrabutyltitanate as a catalyst, the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, 149 g of trimellitic anhydride is added while maintaining the system temperature of 235 ° C., and stirring is carried out at 235 ° C. for 2 hours The reaction was depolymerized. Thereafter, the system was pressurized with nitrogen gas and the resin was discharged in the form of a sheet. It was cooled to room temperature to obtain a sheet-like polyester resin P-6.
  • a mixture consisting of 2492 g of terephthalic acid, 623 g of isophthalic acid, 1263 g of cenoic acid, 1 1 g of ethylene glycolon 1 131 and 1315 g of neopentyl glycol was heated in an autoclave at 250 ° C. for 4 hours to carry out an esterifying reaction. Then, after adding 3.3 g of zinc acetate dihydrate as a catalyst, the temperature of the system was raised to 270 ° C. and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours.
  • the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, the temperature of the system is lowered, and 29 g of trimellitic anhydride is added at 265.degree. The reaction was stirred for 2 hours to carry out a depolymerization reaction. After that, the system was under nitrogen pressure and the resin was disbursed as a sheet. This was cooled to room temperature to obtain a sheet-like polyester resin P-7.
  • a mixture consisting of 1163 g of terephthalic acid, 1412 g of isophthalic acid, 1920 g of cenoic acid and 2740 g of 1,4-butanediol was heated at 220 ° C. for 4 hours in an autoclave to carry out an esterification reaction. Then, after adding 2.6 g of tetrabutyl titanate as a catalyst, The temperature of the system was raised to 230 ° C. and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction was further continued, and after 4 hours, the system was pressurized with nitrogen gas, and the resin was discharged as a sheet. This was cooled to room temperature to obtain a sheet-like polyester resin P-8.
  • a mixture consisting of 1163 g of terephthalic acid, 1412 g of isophthalic acid, 1920 g of cenoic acid and 2740 g of 1,4-butanediol was heated at 220 ° C. for 4 hours in an autoclave to carry out an esterification reaction. Then, after 2.6 g of tetrabutyl titanate as a catalyst was added, the temperature of the system was raised to 230 ° C., and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours.
  • the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, the temperature of the system is lowered, and when it reaches 220 ° C, 125 g of isophthalic acid and 105 g of trimellitic acid are added.
  • the reaction mixture was stirred at 220 ° C. for 2 hours for depolymerization reaction. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. It was cooled to room temperature to obtain sheet-like polyester resin P-9.
  • Example 1 and Example 1 except that the polyester resin is changed to P-4, 32 g of triethylamine is added as a basic compound and the distilled water added in the phase inversion emulsification step is changed to 468 g. The same operation was performed to obtain an aqueous dispersion.
  • volume average particle size 319 nm
  • Polyester resin is changed to P-5, 39 g of 28% by mass ammonia water is added as a basic compound, and distilled water added in the phase inversion emulsification process is changed to 461 g.
  • the same procedure as in Example 3 was carried out to obtain an aqueous dispersion.
  • Example 3 Except changing polyester resin to P-6 and adding 39 g of 28% by mass ammonia water as a basic compound and changing to 477 g distilled water added in the phase inversion emulsification process. The same procedure as in Example 3 was carried out to obtain an aqueous dispersion.
  • volume average particle size 236 nm
  • Example 2 Same as Example 1 except that polyester resin is changed to P-7, 13 g of trytilamine is added as a basic compound, and distilled water added in the phase inversion emulsification step is changed to 487 g. To obtain an aqueous dispersion.
  • volume average particle size 14 lnm
  • Example 1 and Example 1 except that polyester resin is changed to P-8, 3 g of triethylamine is added as a basic compound, and distilled water added in the phase inversion emulsification step is changed to 497 g. The same operation was performed, but the polyester resin was entangled with the stirring blade during addition of distilled water, and a uniform aqueous dispersion was not obtained.
  • Example 2 Same as Example 1, except that polyester resin is changed to P-9, and 23 g of trytilamine is added as a basic compound, and distilled water added in the phase inversion emulsification step is changed to 477 g. To obtain an aqueous dispersion.
  • volume average particle size 136 nm
  • Table 2 shows the polyester resin used in Examples and Comparative Examples, solid concentration of organic solvent solution, phase inversion temperature, and total carboxyl group of polyester resin of used basic compound. The measurement results of equivalent ratio to molar amount, solid content concentration of the obtained aqueous dispersion, organic solvent content, volume average particle diameter, storage stability, and press temperature and peel strength of the obtained film are shown.
  • Example 5 the temperature in the system in the phase inversion process Since the degree was lower than the preferred range of the present invention, the organic solvent solution of polyester resin became cloudy, and the volume average particle diameter of the obtained aqueous dispersion became large. Therefore, the storage stability was not good.
  • Comparative Example 1 had higher strength than the range of the present invention of the melting point of the polyester resin to be used, so the adhesion was poor at press temperatures of 80 ° C and 120 ° C. By raising the press temperature to 160 ° C., the PET film of the bonded force substrate shrank.
  • the polyester resin aqueous dispersion of the present invention is useful for forming a film, and it is useful, for example, as an anchor coating agent for steel plate or film, an adhesive for paper or film, a binder component of paint or ink, paper or film. It is particularly useful as a coating agent.
  • polyester resin aqueous dispersion of the invention is also excellent in storage stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

Disclosed is a polyester resin aqueous dispersion capable of forming a coating film having excellent adhesion. Also disclosed is a method for producing such a polyester resin aqueous dispersion. Specifically disclosed is a polyester resin aqueous dispersion characterized by containing a polyester resin having a melting point of not more than 100˚C, a crystal melting enthalpy of 2-12 J/g, an acid value of 2-30 mgKOH/g and a number average molecular weight of not less than 5,000. Also specifically disclosed is a method for producing such a polyester resin aqueous dispersion, wherein an organic solvent solution of a polyester resin is dispersed into water together with a basic compound, thereby forming a polyester resin aqueous dispersion by phase inversion emulsification. This method for producing such a polyester resin aqueous dispersion is characterized in that the phase inversion emulsification is carried out at 10-40˚C.

Description

明 細 書  Specification
ポリエステル樹脂水性分散体およびその製造方法  Polyester resin aqueous dispersion and method for producing the same
技術分野  Technical field
[0001] 本発明は、接着性に優れた榭脂被膜を形成することができるポリエステル榭脂水性 分散体に関するものである。  The present invention relates to a polyester resin aqueous dispersion capable of forming a resin coating excellent in adhesion.
背景技術  Background art
[0002] ポリエステル榭脂は、被膜形成用榭脂として、被膜の加工性、有機溶剤に対する耐 性 (耐溶剤性)、耐候性、各種基材への密着性などに優れていることから、塗料、イン キ、接着剤、コーティング剤などの分野におけるバインダー成分として大量に使用さ れている。  [0002] A polyester resin is a coating resin, and is excellent in processability of a film, resistance to organic solvents (solvent resistance), weather resistance, adhesion to various substrates, etc. It is used in large quantities as a binder component in the fields such as inks, adhesives and coatings.
[0003] 特に近年、環境保護、省資源、消防法などによる危険物規制、職場環境改善の立 場力 有機溶剤の使用が制限される傾向にあり、前記の用途に使用できるポリエステ ル榭脂系バインダーとして、ポリエステル榭脂を水性媒体に微分散させたポリエステ ル榭脂水性分散体の開発が盛んにおこなわれて 、る。  Particularly in recent years, there has been a tendency for the use of organic solvents to be restricted due to environmental protection, resource saving, hazardous materials regulations under the Fire Service Law, etc., and the ability to improve workplace environment. As a binder, polyester resin aqueous dispersions of polyester resin finely dispersed in an aqueous medium have been actively developed.
[0004] 例えば、特許文献 1〜4には、酸価が小さぐ高分子量のポリエステル榭脂を水性 媒体中に分散させたポリエステル榭脂水性分散体が提案され、力かる水性分散体を 用いると加工性、耐水性、耐溶剤性などの性能に優れた被膜を形成できることが記 載されている。し力しながら、これらの文献に記載されたポリエステル榭脂水性分散 体は、 、ずれもポリエステル榭脂のカルボキシル基を塩基性ィ匕合物で中和すること により水性媒体中に分散させた、いわゆる自己乳化型のポリエステル榭脂水性分散 体であり、ポリエステル榭脂を水性媒体中へ安定に分散させるために、使用するポリ エステル榭脂は 8mgKOHZg以上の酸価に相当するカルボキシル基を有している 必要があった。その結果として、ポリエステル榭脂の分子量の上限が制限され、接着 性が不十分になる場合があると 、う問題が残されて!/、た。  For example, Patent Documents 1 to 4 propose a polyester resin aqueous dispersion in which a high molecular weight polyester resin having a low acid value is dispersed in an aqueous medium, and when a strong aqueous dispersion is used, It is described that a film excellent in performance such as processability, water resistance, solvent resistance, etc. can be formed. The aqueous dispersions of polyester resin described in these documents were dispersed in an aqueous medium by neutralizing the carboxyl groups of the polyester resin with a basic mixture. It is a so-called self emulsification type polyester resin aqueous dispersion, and in order to stably disperse the polyester resin in an aqueous medium, the polyester resin used has a carboxyl group corresponding to an acid value of 8 mg KOHZg or more. It was necessary. As a result, if the upper limit of the molecular weight of polyester resin is limited and adhesion may become insufficient, problems will remain! /.
[0005] この問題を解決するために、特許文献 5では、ポリエステル榭脂の酸価が 2mgKO HZg以上、 8mgKOHZg未満と、より低酸価で高分子量のポリエステル榭脂を水性 媒体中に分散させたポリエステル榭脂水性分散体が提案されて 、る。この提案から、 一定レベルの密着性や加工性、耐水性に優れた被膜を形成することはできるが、有 機溶剤溶解型の接着剤に匹敵する接着性を発現するポリエステル榭脂水性分散体 までには至って!/ヽなかった。 [0005] In order to solve this problem, Patent Document 5 disperses a high molecular weight polyester resin having an acid value of 2 mg KO HZg or more and less than 8 mg KOHZg and a high molecular weight polyester resin in an aqueous medium. Aqueous polyester resin dispersions have been proposed. From this proposal, Although it is possible to form a film excellent in a certain level of adhesion, processability and water resistance, it is possible to achieve polyester resin aqueous dispersions that exhibit adhesion comparable to organic solvent-soluble adhesives! / I did not hesitate.
特許文献 1:特開平 9 - 296100号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 9-296100
特許文献 2:特開 2000 - 26709号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2000-26709
特許文献 3 :特開 2000— 313793号公報  Patent Document 3: JP-A 2000-313793
特許文献 4:特開 2002— 173582号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2002-173582
特許文献 5:国際公開第 2004Z037924号パンフレット  Patent Document 5: International Publication 2004Z037924 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0006] 本発明は前記事情に鑑みてなされたものであり、優れた保存安定性を有しながらも 、接着性に優れた被膜を形成可能なポリエステル榭脂水性分散体およびその製造 方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a polyester resin aqueous dispersion capable of forming a film excellent in adhesion while having excellent storage stability, and a method for producing the same. The purpose is to
課題を解決するための手段  Means to solve the problem
[0007] 本発明者らは、前記課題を解決するために鋭意検討した結果、特定の熱的性質を 有するポリエステル榭脂を使用すれば容易に水性分散体を得ることができ、かつ、得 られた水性分散体から形成される被膜は接着性に優れることを見出し、本発明を完 成した。 As a result of intensive studies to solve the above problems, the present inventors can easily obtain an aqueous dispersion by using a polyester resin having specific thermal properties. The coating formed from the aqueous dispersion was found to be excellent in adhesion and completed the present invention.
[0008] すなわち、本発明は、融点が 100°C以下、結晶融解熱量が 2〜12jZg、酸価が 2 〜30mgKOHZg、数平均分子量が 5000以上であるポリエステル榭脂を含有する ことを特徴とするポリエステル榭脂水性分散体に関する。  That is, the present invention is characterized by containing a polyester resin having a melting point of 100 ° C. or less, a heat of crystal fusion of 2 to 12 jZg, an acid value of 2 to 30 mg KOHZg, and a number average molecular weight of 5000 or more. It relates to a polyester resin aqueous dispersion.
[0009] 本発明はまた、ポリエステル榭脂の有機溶剤溶液を塩基性化合物とともに水に分 散させて、転相乳化によりポリエステル榭脂水性分散体を製造する方法であって、 1 0〜40°Cで転相乳化することを特徴とする請求項 1〜4のいずれかに記載のポリエス テル樹脂水性分散体の製造方法に関する。  The present invention is also a method of producing an aqueous polyester resin oil dispersion by phase inversion emulsification, by dispersing an organic solvent solution of polyester resin together with a basic compound in water, wherein 10 to 40 ° The method for producing the aqueous polyester resin dispersion according to any one of claims 1 to 4, characterized in that phase inversion emulsification is carried out with C.
発明の効果  Effect of the invention
[0010] 本発明のポリエステル榭脂水性分散体は、接着性、特にヒートプレスで接着する場 合の低温接着性に優れた榭脂被膜を形成することができるので、金属板やフィルム のアンカーコート剤や、繊維、紙、金属、榭脂などの基材を貼り合わるための接着剤[0010] The polyester resin aqueous dispersion of the present invention has adhesiveness, in particular, a place to be bonded by heat press. As a resin coating with excellent low temperature adhesion properties can be formed, it is possible to form an anchor coating agent for metal plates and films, and an adhesive for laminating substrates such as fiber, paper, metal and resin.
、基材を装飾するための塗料やインキなどの用途に用いられて、それらの性能を向 上させることができるため、産業上の利用価値は極めて高い。特に、本発明のポリエ ステル樹脂水性分散体はプレス温度 120°C以下の低温で十分な接着性を達成する 。本発明のポリエステル榭脂水性分散体は保存安定性にも優れて ヽる。 Industrial application value is extremely high because it can be used in applications such as paints and inks for decorating substrates, and their performance can be improved. In particular, the polyester resin aqueous dispersion of the present invention achieves sufficient adhesion at a low temperature of 120 ° C. or less. The polyester resin aqueous dispersion of the present invention is excellent in storage stability.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] (ポリエステル榭脂水性分散体)  (Polyester Resin Aqueous Dispersion)
本発明のポリエステル榭脂水性分散体 (以下、単に「水性分散体」ということがある) は特定のポリエステル榭脂を含有するものである。  The polyester resin aqueous dispersion (hereinafter simply referred to as "aqueous dispersion") of the present invention contains a specific polyester resin.
[0012] 本発明の水性分散体に含有されるポリエステル榭脂は融点が 100°C以下である必 要があり、 40〜95°Cであることが好ましぐ 42〜90°Cであることが最適である。水性 分散体は一般に融点を十分に上回る温度で加熱することにより微粒子状の樹脂が 溶融されて造膜するのである力 融点が 100°Cを超えると、汎用的な基材である PE Tフィルム上に造膜する際の乾燥温度 120°Cでは十分に造膜せず、被膜とフィルム の密着性に乏しいため、接着性を評価すると界面剥離が起こり、接着性が悪くなる。 また、張り合わせのためのヒートプレス温度についても 80〜120°Cでは樹脂が十分 に溶融しないため、接着性を発揮しない。一方、ヒートプレス温度を 160°Cまで上げ ることによって榭脂を溶融させることは可能であるが、基材の PETフィルムが収縮'変 形してしまうため好ましくな!/、。  The polyester resin contained in the aqueous dispersion of the present invention must have a melting point of 100 ° C. or less, and preferably 40 to 95 ° C., preferably 42 to 90 ° C. Is the best. The aqueous dispersion generally has a fine particle resin melted and formed into a film by heating at a temperature sufficiently higher than the melting point. When the melting point exceeds 100 ° C., it is on a PET T film which is a versatile substrate. Film formation does not occur sufficiently at a drying temperature of 120 ° C., and adhesion between the film and the film is poor. Therefore, when the adhesion is evaluated, interfacial peeling occurs and the adhesion deteriorates. In addition, since the resin is not sufficiently melted at a temperature of 80 to 120 ° C. also for the heat press temperature for bonding, the adhesiveness is not exhibited. On the other hand, although it is possible to melt the resin by raising the heat press temperature to 160 ° C, it is not preferable because the PET film of the base material shrinks and deforms.
[0013] また、ポリエステル榭脂の結晶融解熱量は 2〜12jZgである必要があり、 3〜: L1JZ gが好ましぐ 4〜10jZgが最適である。本発明においては特に上記範囲の結晶融 解熱量を示すポリエステル榭脂を用いることにより、ポリエステルの結晶化による凝集 力向上、十分な硬化により、接着性が向上する。結晶融解熱量が 2jZg未満では、 ポリエステル榭脂の凝集力向上、十分な硬化が得られず、接着性に優れる被膜が得 られない。結晶融解熱量が 12jZgを超えると、有機溶剤に対する溶解性が乏しいた め、転相乳化による製造が困難であったり、水性分散体の保存安定性が悪くなる。  In addition, the heat of crystal fusion of the polyester resin needs to be 2 to 12 jZg, and 3 to 10 jZg, which is preferred: L1 JZ g, is optimum. In the present invention, by using a polyester resin exhibiting a heat of crystallization in the above-mentioned range in particular, the cohesion is improved by the crystallization of the polyester, and the adhesiveness is improved by sufficient curing. If the heat of crystal fusion is less than 2jZg, the cohesion of the polyester resin can not be improved and sufficient curing can not be obtained, and a film having excellent adhesion can not be obtained. If the heat of crystal fusion exceeds 12 jZg, the solubility in organic solvents is poor, so production by phase inversion emulsification is difficult, or the storage stability of the aqueous dispersion is deteriorated.
[0014] ポリエステル榭脂の酸価は 2〜30mgKOHZgである必要があり、 3〜25mgKOH Zgが好ましぐ低温での接着性の観点からは 4〜20mgKOHZgが最適である。酸 価が 2mgKOHZg未満である場合には、均一な水性分散体を得ることが困難である 。また、酸価が 30mgKOHZgを超える場合には、ポリエステル榭脂の数平均分子 量が小さくなり、接着性に優れる被膜が得られない。 The acid value of the polyester resin needs to be 2 to 30 mg KOHZg, 3 to 25 mg KOH From the viewpoint of adhesion at low temperatures where Zg is preferred, 4 to 20 mg KOHZg is optimum. When the acid value is less than 2 mg KOHZg, it is difficult to obtain a uniform aqueous dispersion. In addition, when the acid value exceeds 30 mg KOHZg, the number average molecular weight of the polyester resin becomes small, and a film excellent in adhesiveness can not be obtained.
[0015] ポリエステル榭脂の数平均分子量は 5, 000以上である必要があり、 7, 000-40, 000であること力 S好ましく、 9, 000〜30, 000、特に 10, 000〜25, 000であること力 ^ 最適である。数平均分子量が 5, 000未満では、接着性に優れる被膜が得られない。  The number average molecular weight of the polyester resin needs to be 5,000 or more, and the force S is preferably 7, 000-40, 000, 9,000-30, 000, particularly 10,000-25, It is the power that is 000 ^ optimum. If the number average molecular weight is less than 5,000, a film having excellent adhesion can not be obtained.
[0016] 本発明の水性分散体に含有されるポリエステル榭脂は、(1)所定の酸成分とアルコ ール成分とを重縮合させる方法、(2)そのような重縮合後に多塩基酸成分で解重合 する方法、および(2)重縮合後に酸無水物を付加させる方法などの公知の方法によ つて製造することができる。このとき各種条件を調整することによって、ポリエステル榭 脂の融点、結晶融解熱量、酸価および分子量などが制御可能となり、結果として本 発明の要求に適うポリエステル榭脂を製造できる。そのような物性の制御容易性の観 点からは、上記(2)の方法が好ましい。  The polyester resin contained in the aqueous dispersion of the present invention is (1) a method of polycondensation of a predetermined acid component and an alcohol component, (2) a polybasic acid component after such polycondensation. And (2) addition of an acid anhydride after polycondensation, and the like. At this time, by adjusting various conditions, it becomes possible to control the melting point, the heat of crystal fusion, the acid value and the molecular weight of the polyester resin, and as a result, it is possible to produce the polyester resin meeting the requirements of the present invention. From the viewpoint of such controllability of physical properties, the method (2) is preferable.
[0017] 例えば、後で詳述するように、酸成分として芳香族ジカルボン酸、脂肪族ジカルボ ン酸などが使用されるが、酸成分中の脂肪族ジカルボン酸の割合を増すと、結晶融 解熱量が高くなり、一方、脂肪族ジカルボン酸の割合を減じると、榭脂の融点が高く なる。  For example, as will be described in detail later, aromatic dicarboxylic acids, aliphatic dicarboxylic acids, etc. are used as the acid component, but when the proportion of aliphatic dicarboxylic acid in the acid component is increased, the crystal melting point is increased. The higher the heat, while the lower the proportion of aliphatic dicarboxylic acids, the higher the melting point of the butter.
[0018] また例えば、後で詳述するように、アルコール成分として脂肪族グリコールなどが使 用されるが、脂肪族グリコール、特に 1, 4 ブタンジオールの割合を増すと、榭脂の 結晶融解熱量は増大し、一方、脂肪族グリコール、特に 1, 4 ブタンジオールの割 合を減じると、榭脂の結晶融解熱量は減少する。  Also, for example, as described in detail later, aliphatic glycol and the like are used as the alcohol component, but when the proportion of aliphatic glycol, in particular 1,4 butanediol is increased, the heat of crystal melting of sugar is used. Increases while decreasing the proportion of aliphatic glycols, especially 1,4 butanediol, decreases the heat of crystal fusion of sugars.
[0019] また例えば、解重合のための多塩基酸成分の使用量を増大させると、榭脂の数平 均分子量は小さくなり、酸価は高くなる。一方、当該多塩基酸成分の使用量を減少さ せると、榭脂の数平均分子量は増大し、酸価は低下する。このとき、多塩基酸成分と して 3官能以上のものを用いると、 2官能のものを用いる場合よりも、酸価の増大は顕 著になる。  Also, for example, when the amount of the polybasic acid component used for depolymerization is increased, the number average molecular weight of the salt decreases and the acid value increases. On the other hand, when the amount of the polybasic acid component used is decreased, the number average molecular weight of the fat increases and the acid value decreases. At this time, when the tribasic or higher functional polybasic acid component is used, the increase in acid value is more remarkable than when the bifunctional type is used.
[0020] ポリエステル榭脂を構成する酸成分としては少なくとも多塩基酸成分を使用し、必 要に応じてモノカルボン酸が使用される。 As the acid component constituting polyester resin, at least a polybasic acid component is used, and it is necessary to If necessary, monocarboxylic acids are used.
[0021] 多塩基酸成分としては、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環 式ジカルボン酸などが挙げられる。  Examples of the polybasic acid component include aromatic dicarboxylic acids, aliphatic dicarboxylic acids, and alicyclic dicarboxylic acids.
芳香族ジカルボン酸の具体例として、例えば、テレフタル酸、イソフタル酸、フタル 酸、無水フタル酸、ナフタレンジカルボン酸、ビフエ-ルジカルボン酸などが挙げられ る。  Specific examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid and the like.
脂肪族ジカルボン酸の具体例として、例えば、シユウ酸、マロン酸、コハク酸、無水 コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、ァゼライン酸、セバシン酸 、ドデカン二酸、水添ダイマー酸などの飽和脂肪族ジカルボン酸、およびフマル酸、 マレイン酸、無水マレイン酸、ィタコン酸、無水ィタコン酸、シトラコン酸、無水シトラコ ン酸、ダイマー酸などの不飽和脂肪族ジカルボン酸などが挙げられる。  Specific examples of aliphatic dicarboxylic acids include, for example, oxalic acid, malonic acid, succinic acid, succinic anhydride, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, hydrogenated dimer acid And unsaturated aliphatic dicarboxylic acids such as fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic acid, citraconic acid, citraconic acid, dimer acid and the like.
脂環式ジカルボン酸の具体例として、例えば、 1, 4ーシクロへキサンジカルボン酸 、 1, 3—シクロへキサンジカルボン酸、 1, 2—シクロへキサンジカルボン酸、 2, 5—ノ ルボルネンジカルボン酸、無水 2, 5—ノルボルネンジカルボン酸、テトラヒドロフタル 酸、無水テトラヒドロフタル酸などが挙げられる。  Specific examples of the alicyclic dicarboxylic acid include, for example, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid and 2,5-norbornene dicarboxylic acid. Examples thereof include acids, 2,5-norbornene dicarboxylic acid anhydride, tetrahydrophthalic acid and tetrahydrophthalic anhydride.
また多塩基酸成分として、必要に応じて少量の 5—ナトリウムスルホイソフタル酸ゃ 5 ーヒドロキシイソフタル酸を用いることができる。  Further, as the polybasic acid component, a small amount of 5-sodiumsulfoisophthalic acid and 5-hydroxyisophthalic acid can be used, if necessary.
[0022] 3官能以上の多塩基酸も用いることができ、例えばトリメリット酸、ピロメリット酸、ベン ゾフエノンテトラカルボン酸、無水トリメリット酸、無水ピロメリット酸、無水べンゾフエノン テトラカルボン酸、トリメシン酸、エチレングリコールビス(アンヒドロトリメリテート)、ダリ セロールトリス(アンヒドロトリメリテート)、 1, 2, 3, 4—ブタンテトラカルボン酸などが含 まれていてもよい。 3官能以上の多塩基酸は解重合剤として使用されることが好ましく 、その場合、使用量は、本発明のポリエステル榭脂における 3官能以上の多塩基酸 の含有量が当該ポリエステル榭脂を構成する全酸成分に対して 5モル%未満となる ような量であることが好まし!/、。 A tribasic or higher functional polybasic acid can also be used, and examples thereof include trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimellitic anhydride, pyromellitic anhydride, benzozo phenone anhydride tetracarboxylic acid, trimesin. It may contain an acid, ethylene glycol bis (anhydrotrimellitate), dalycerol tris (anhydrotrimellitate), 1,2,3,4-butanetetracarboxylic acid and the like. The trifunctional or higher polybasic acid is preferably used as a depolymerization agent, in which case the content of the trifunctional or higher polybasic acid in the polyester resin of the present invention constitutes the polyester resin. It is preferred that the amount be less than 5 mol% with respect to the total acid component to be /.
[0023] モノカルボン酸の具体例として、例えば、ラウリン酸、ミリスチン酸、ノルミチン酸、ス テアリン酸、ォレイン酸、リノール酸、リノレン酸などの脂肪酸、安息香酸、 p -tert- ブチル安息香酸、シクロへキサン酸、 4ーヒドロキシフエ-ルステアリン酸などが挙げ られる。 Specific examples of the monocarboxylic acid include, for example, fatty acids such as lauric acid, myristic acid, normitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butyl benzoic acid, cycloaliphatic acid Hexanoic acid, 4-hydroxyphenylstearic acid etc Be
[0024] ポリエステル榭脂を構成するアルコール成分としては少なくとも多価アルコール成 分を使用し、必要に応じてモノアルコールが使用される。  As the alcohol component constituting the polyester resin, at least a polyhydric alcohol component is used, and a monoalcohol is used as needed.
[0025] 多価アルコール成分としては、例えば、脂肪族グリコール、脂環式グリコール、エー テル結合含有ダリコールなどが挙げられる。 Examples of polyhydric alcohol components include aliphatic glycols, alicyclic glycols, ether bond-containing dacols, and the like.
脂肪族グリコールの具体例としては、例えば、エチレングリコール、 1, 2—プロパン ジオール、 1, 3 プロパンジオール、 1, 4 ブタンジオール、 2—メチルー 1, 3 プ 口パンジオール、 1, 5 ペンタンジオール、ネオペンチルグリコール、 1, 6 へキサ ンジオール、 3—メチルー 1, 5 ペンタンジオール、 1, 9ーノナンジオール、 2 ェチ ルー 2—ブチルプロパンジオールなどが挙げられる。  Specific examples of the aliphatic glycol include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, Examples include neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,9-nonanediol, 2-acetyl-2-butylpropanediol and the like.
脂環式グリコールの具体例としては、例えば、 1, 4ーシクロへキサンジメタノールな どが挙げられる。  Specific examples of the alicyclic glycol include, for example, 1,4-cyclohexanedimethanol and the like.
エーテル結合含有ダリコールの具体例としては、例えば、ジエチレングリコール、トリ エチレングリコール、ジプロピレングリコール、さらには、 2, 2 ビス [4— (ヒドロキシェ トキシ)フエ-ル]プロパンのようなビスフエノール類(ビスフエノール A)のエチレンォキ シド付力卩体、ビス [4— (ヒドロキシエトキシ)フエ-ル]スルホンのようなビスフエノール 類(ビスフエノール S)のエチレンォキシド付カ卩体、ポリエチレングリコール、ポリプロピ レンダリコール、ポリテトラメチレングリコールなどが挙げられる。  Specific examples of the ether bond-containing dacyl include, for example, bisphenols such as diethylene glycol, triethylene glycol, dipropylene glycol, and further, bis (4- (hydroxy) phenyl) propane. Ethylene oxide adducts of phenol A), ethylene oxide adducts of bisphenols (bisphenol S) such as bis [4- (hydroxyethoxy) phenyl] sulfone, polyethylene glycol, polypropylene adducts And polytetramethylene glycol.
[0026] 3官能以上の多価アルコールとして、例えばグリセリン、トリメチロールェタン、トリメ チロールプロパン、ペンタエリスリトールなどが含まれて 、てもよ 、。  Examples of the trifunctional or higher functional polyhydric alcohol include glycerin, trimethylolethane, trimethylolpropane, pentaerythritol, and the like.
[0027] モノアルコールの具体例として、例えば、ステアリルアルコール、 2 フエノキシエタ ノールなどが挙げられる。  [0027] Specific examples of monoalcohols include, for example, stearyl alcohol, 2-phenoxyethanol and the like.
[0028] ポリエステル榭脂は、上記酸成分およびアルコール成分以外に、例えば、乳酸、 β  In addition to the above-mentioned acid component and alcohol component, polyester resin is, for example, lactic acid, β
ーヒドロキシ酪酸、 ρ ヒドロキシ安息香酸などのモノヒドロキシモノカルボン酸および Ζまたは ε—力プロラタトン、 δ—バレロラタトンなどの脂肪族ラタトンを含有してもよ V、。モノヒドロキシモノカルボン酸および脂肪族ラタトンは酸成分およびアルコール成 分のいずれにも該当する成分として考えるものとする。例えば、脂肪族ラタトンが含有 される場合、各モノマーの含有量を表すときの基準としての「全酸成分」および「全ァ ルコール成分」のいずれにも当該脂肪族ラタトンの含有量を加算して各モノマー含有 量を表すものとする。 It may also contain monohydroxymonocarboxylic acids such as hydroxybutyric acid, ヒ ド ロ キ シ hydroxybenzoic acid and aliphatic ratatones such as Ζ or ε-prolataton, δ- valerolataton. Monohydroxy monocarboxylic acid and aliphatic ratatone should be considered as components applicable to both acid and alcohol components. For example, when aliphatic ratatone is contained, “total acid component” and “total acid content” as a standard when expressing the content of each monomer The content of the aliphatic ratatone is added to any of the “rucol components” to represent the content of each monomer.
[0029] 本発明で使用されるポリエステル榭脂は以上のような成分のうち少なくとも芳香族ジ カルボン酸および脂肪族グリコールを構成成分として含有するものである。  [0029] The polyester resin used in the present invention contains at least an aromatic dicarboxylic acid and an aliphatic glycol as the components among the above components.
芳香族ジカルボン酸の含有量は当該ポリエステル榭脂を構成する全酸成分に対し て 30〜70モル0 /0、特〖こ 35〜65モル0 /0であり、かつ脂肪族グリコールの含有量は全 ノレ n—ノレ成分【こ対して 70〜: LOOモノレ0 /0、望ましく ίま 85〜: LOOモノレ0 /0、特【こ 90〜1 00モル%であることが好ましぐより好ましい態様において脂肪族グリコールの含有 量は 100モル%である。芳香族ジカルボン酸が 30モル%未満では、結晶融解熱量 が本発明の範囲より高くなる傾向にある。芳香族ジカルボン酸が 70モル%を超えると 、融点が本発明の範囲より高くなる傾向にあり好ましくない。脂肪族グリコールが 70モ ル%未満では、結晶融解熱量が本発明の範囲より低くなる傾向にあり好ましくない。 The content of the aromatic dicarboxylic acid is the total acid components constituting the polyester榭脂30-70 mole 0/0, a Japanese 〖This 35-65 mole 0/0, and the content of the aliphatic glycol 70 for all Norre n- Honoré component [this: LOO Monore 0/0, preferably ί or 85 to: LOO Monore 0/0, JP [this 1:90 00 more preferred embodiment is preferably tool that is mol% The aliphatic glycol content is 100 mol%. If the amount of aromatic dicarboxylic acid is less than 30 mol%, the heat of crystal fusion tends to be higher than the range of the present invention. When the amount of aromatic dicarboxylic acid exceeds 70 mol%, the melting point tends to be higher than the range of the present invention, which is not preferable. If the aliphatic glycol content is less than 70 mol%, the heat of crystal melting tends to be lower than the range of the present invention, which is not preferable.
[0030] 芳香族ジカルボン酸は、少なくともテレフタル酸を含むことが好ましく、その含有量 は当該ポリエステル榭脂を構成する全酸成分に対して 15〜50モル%、特に 18〜45 モル%が好ましい。テレフタル酸が 15モル%未満では、結晶融解熱量が本発明の 範囲から外れる傾向にある。テレフタル酸が 50モル%を超えると、融点および Ζまた は結晶融解熱量が本発明の範囲より高くなる傾向にあり好ましくない。  The aromatic dicarboxylic acid preferably contains at least terephthalic acid, and its content is preferably 15 to 50% by mole, particularly preferably 18 to 45% by mole, based on the total acid component constituting the polyester resin. If the amount of terephthalic acid is less than 15 mol%, the heat of crystal fusion tends to be out of the range of the present invention. When the amount of terephthalic acid exceeds 50 mol%, the melting point and the heat of crystal fusion tend to be higher than the range of the present invention, which is not preferable.
[0031] 芳香族ジカルボン酸は、接着性の観点力もより好ま 、態様にぉ 、て、テレフタル 酸およびイソフタル酸を含み、さらに好ま 、態様にぉ 、てテレフタル酸およびイソフ タル酸のみ力 なる。それらの態様において、テレフタル酸およびイソフタル酸の合 計含有量は当該ポリエステル榭脂を構成する全酸成分に対して 35〜65モル%、特 に 40〜65モル0 /0力好ましく、またテレフタル酸とイソフタル酸との含有比率はモル比 (ΤΡΑ/ΙΡΑ)で 30/70〜: LOO/0、特に 40/60〜70/30力 ^好まし!/、。 The aromatic dicarboxylic acid is also more preferable in terms of adhesion, and includes, in an aspect, terephthalic acid and isophthalic acid, and further preferably, in the aspect, only terephthalic acid and isophthalic acid are effective. In those embodiments, the total content of terephthalic acid and isophthalic acid from 35 to 65 mol% based on the total acid components constituting the polyester榭脂, 40 to 65 mole 0/0 force preferably in particular, also terephthalic acid The content ratio of isophthalic acid to the molar ratio (: / ΙΡΑ) is 30/70 /: LOO / 0, especially 40/60 to 70/30 force ^ preferred! / ,.
[0032] このようにテレフタル酸 (TPA)とイソフタル酸 (IPA)を併用する場合にぉ 、て、例え ば、 TPAを少なぐ IPAを少なくすると、融解熱量は高くなる。  As described above, when terephthalic acid (TPA) and isophthalic acid (IPA) are used in combination, for example, when the amount of IPA that decreases TPA is reduced, the heat of fusion increases.
また例えば、 TPAを少なぐ IPAを多くすると、融解熱量は低くなる。  Also, for example, increasing the amount of IPA to reduce TPA lowers the heat of fusion.
また例えば、 TPAを多ぐ IPAを少なくすると、融点、融解熱量は高くなる。  For example, if TPA is increased and IPA is decreased, the melting point and heat of fusion increase.
また例えば、 TPAを多ぐ IPAを多くすると、融点は高くなる。 [0033] 脂肪族グリコールは、融点と結晶融解熱量を本発明の範囲内に調整する観点から 、少なくとも 1, 4 ブタンジォールを含むことが好ましぐその含有量は当該ポリエス テル榭脂を構成する全アルコール成分に対して 70〜100モル0 /0、特に 80〜: LOOモ ル%が好ましい。 Also, for example, if TPA is increased and IPA is increased, the melting point is increased. The aliphatic glycol preferably contains at least 1,4 butanediol from the viewpoint of adjusting the melting point and the heat of crystal fusion within the scope of the present invention, and the content thereof is the whole of the polyester resin. 70-100 mole 0/0 for alcohol component, in particular 80 to: LOO molar% is preferred.
1, 4 ブタンジォールが 70モル%未満では、結晶融解熱量が本発明の範囲より 低くなるため、好ましくない。  If the amount of 1,4-butanediol is less than 70% by mole, the heat of crystal fusion becomes lower than the range of the present invention, which is not preferable.
[0034] ポリエステル榭脂は、上記芳香族ジカルボン酸および脂肪族グリコール以外に脂 肪族ジカルボン酸および Zまたは脂肪族ラタトンを含有することが好まし 、。より好ま しくは脂肪族ジカルボン酸が含有されるか、または脂肪族ジカルボン酸および脂肪 族ラタトンが含有される。 The polyester resin preferably contains, in addition to the above aromatic dicarboxylic acid and aliphatic glycol, an aliphatic dicarboxylic acid and Z or an aliphatic ratatone. More preferably, an aliphatic dicarboxylic acid is contained, or an aliphatic dicarboxylic acid and an aliphatic ratatone are contained.
脂肪族ジカルボン酸は好ましくは前記飽和脂肪族ジカルボン酸、より好ましくはコ ハク酸、無水コハク酸、アジピン酸、ァゼライン酸、セバシン酸などの炭素数 4〜 10の 飽和脂肪族ジカルボン酸、最も好ましくはコハク酸および Zまたはセバシン酸である 脂肪族ラタトンは好ましくは ε—力プロラタトンである。  The aliphatic dicarboxylic acid is preferably the above-mentioned saturated aliphatic dicarboxylic acid, more preferably a C4-C10 saturated aliphatic dicarboxylic acid such as succinic acid, succinic anhydride, adipic acid, azelaic acid or sebacic acid, most preferably Aliphatic ratatones which are succinic acid and Z or sebacic acid are preferably ε-force proratatons.
脂肪族ジカルボン酸または脂肪族ラタトンそれぞれの含有量は通常、全酸成分に 対して 30〜70モル0 /0、特に 35〜65モル0 /0力 子ましい。脂肪族ジカルボン酸および 脂肪族ラタトンの両者が含有される場合、それらの合計量が上記範囲内であればよ い。 The content of each aliphatic dicarboxylic acids or aliphatic Rataton usually 30 to 70 mol 0/0 for the total acid component, particularly 35 to 65 mole 0/0 force child preferable. When both aliphatic dicarboxylic acid and aliphatic ratatone are contained, the total amount thereof may be within the above range.
[0035] 本発明の水性分散体は上記ポリエステル榭脂が水性媒体中に分散されてなつてお り、詳しくは、上記ポリエステル榭脂のカルボキシル基の一部または全部が塩基性ィ匕 合物で中和されてなる水性分散体である。塩基性化合物によって、ポリエステル榭脂 の力ノレボキシノレ基が中和されてカノレボキシノレア二才ンが生成し、このァニ才ン間の電 気反発力によって、ポリエステル榭脂微粒子は凝集せず安定に分散する。  In the aqueous dispersion of the present invention, the above-mentioned polyester resin is dispersed in an aqueous medium, and more specifically, a part or all of the carboxyl groups of the above-mentioned polyester resin is a basic compound. It is an aqueous dispersion to be neutralized. The basic compound neutralizes the noreboxyxole group of the polyester resin to form a caneboxynoleite, and the electric repulsion between the particles causes the polyester resin fine particles to be stable without aggregation. Distributed to
[0036] 塩基性ィ匕合物としては、被膜形成時に揮散しやすい点から、沸点が 250°C以下さ らには 160°C以下の有機ァミン、あるいはアンモニアが好ましい。そのような有機アミ ンの具体例として、トリェチルァミン、 N, N ジェチルエタノールァミン、 N, N ジメ チルエタノールァミン、アミノエタノールアミン、 N—メチルー N, N ジエタノールアミ ン、イソプロピルァミン、イミノビスプロピルァミン、ェチルァミン、ジェチルァミン、 3— エトキシプロピルァミン、 3—ジェチルァミノプロピルァミン、 sec—ブチルァミン、プロ ピルァミン、メチルァミノプロピルァミン、ジメチルァミノプロピルァミン、メチルイミノビス プロピルァミン、 3—メトキシプロピルァミン、モノエタノールァミン、ジエタノールァミン 、トリエタノールァミン、モルホリン、 N—メチルモルホリン、 N—ェチルモルホリンなど が挙げられる。なかでも、アンモニア、トリェチルァミンが特に好ましい。 As the basic complex, organic amine having a boiling point of 250 ° C. or less, or 160 ° C. or less, or ammonia is preferable from the viewpoint of easy volatilization at the time of film formation. Specific examples of such organic amines include tolylamine, N, N jetylethanolamine, N, N dimethylethanolamine, aminoethanolamine, N-methyl-N, N diethanolamine , Isopropylamine, Iminobispropylamine, Etylamine, Jetylamine, 3-Ethoxypropylamine, 3-Diethylaminopropylamine, sec-Butylamine, Propylamine, Methylaminopropylamine, Dimethylamino Propylamine, methyliminobispropylamine, 3-methoxypropylamine, monoethanolamine, diethanolamine, triethanolamine, morpholine, N-methylmorpholine, N-ethylmorpholine and the like can be mentioned. Among them, ammonia and triethylamine are particularly preferable.
[0037] 本発明の水性分散体にお!、て、ポリエステル榭脂の含有率としては、成膜方法、被 コーティング物の種類、目的とする榭脂被膜の厚さや性能などにより適宜選択でき、 特に限定されるものではないが、コーティングの際に適度な粘性を保ち、かつ、良好 な被膜形成能を発現させる点で、水性分散体全量に対して 5〜60質量%が好ましく 、 10〜40質量%が最適である。また、ポリエステル榭脂の粒子径は、保存安定性を 良好に保つ点から、体積平均粒子径で 300nm以下であることが好ましぐ 200nm以 下であることが最適である。  The content ratio of the polyester resin in the aqueous dispersion of the present invention can be appropriately selected depending on the film forming method, the type of the coated material, and the thickness and performance of the desired resin coating, The content is not particularly limited, but it is preferably 5 to 60% by mass, based on the total amount of the aqueous dispersion, in terms of maintaining an appropriate viscosity at the time of coating and expressing a good film forming ability. Mass% is optimal. The particle size of the polyester resin is optimally 200 nm or less, which is preferably 300 nm or less in terms of volume average particle size, from the viewpoint of maintaining good storage stability.
[0038] 本発明の水性分散体を構成する水性媒体は水を主成分とする液体からなる媒体で あり、一部に前記の塩基性ィ匕合物や後述する有機溶剤を含有していてもよいが、環 境問題や職場環境の改善のため、また、樹脂被膜物性に悪影響を与える残存有機 溶剤の低減のためなどから、ポリエステル榭脂水性分散体に含有される有機溶剤の 含有率は 3質量%以下が好ましぐ 1質量%以下が最適である。  The aqueous medium constituting the aqueous dispersion of the present invention is a medium composed of a liquid containing water as a main component, and may partially contain the above-mentioned basic binder and an organic solvent described later. Although it is good, the content of organic solvent in the polyester resin aqueous dispersion is 3 in order to improve the environmental problems and the working environment, and to reduce the residual organic solvent that adversely affects the resin film properties. 1% by mass or less is optimum, preferably 1% by mass or less.
[0039] (製造方法)  [0039] (Manufacturing method)
次に、本発明のポリエステル榭脂水性分散体の製造方法について説明する。 本発明の水性分散体は、ポリエステル榭脂の有機溶剤溶液を塩基性ィ匕合物ととも に水に分散させて、転相乳化により製造可能である。詳しくは水性分散体は、実質的 に、ポリエステル榭脂を有機溶剤に溶解させる工程 (溶解工程)とポリエステル榭脂の 有機溶剤溶液を塩基性ィ匕合物とともに水に分散させる工程 (転相乳化工程)との 2ェ 程で製造できる。次いで、このようにして得られた水性分散体力 有機溶剤を除去す る工程 (脱溶剤工程)により、有機溶剤の含有率が低減された水性分散体を得ること ができる。必要に応じ、未分散物や凝集物をろ過して取り除くことにより、沈殿物や相 分離などの見られない均一な状態の水性分散体が得られる。 [0040] 各工程について説明する。 Next, the method for producing the polyester resin aqueous dispersion of the present invention will be described. The aqueous dispersion of the present invention can be produced by phase inversion emulsification by dispersing a solution of polyester resin in an organic solvent together with a basic compound in water. Specifically, in the aqueous dispersion, a step of dissolving polyester resin in an organic solvent (dissolution step) and a step of dispersing an organic solvent solution of polyester resin together with a basic compound in water (phase inversion emulsification) It can be manufactured in 2 steps with step). Next, by the step of removing the organic solvent and removing the organic solvent thus obtained (solvent removal step), an aqueous dispersion in which the content of the organic solvent is reduced can be obtained. If necessary, filtration and removal of undispersed substances and aggregates results in an aqueous dispersion in a uniform state which can not be observed, such as precipitates and phase separation. Each process will be described.
まず、溶解工程について説明する。溶解工程では、前記ポリエステル榭脂を有機 溶剤に溶解させる。このとき、得られるポリエステル榭脂の有機溶剤溶液中のポリエス テル樹脂の濃度を 10〜60質量%の範囲とすることが好ましぐ 20〜50質量%の範 囲が最適である。溶液中のポリエステル榭脂の濃度が 60質量%を越える場合には、 次の転相乳化工程において水と混合した場合に、粘度の上昇が大きくなり、均一な 水性分散体が得られない場合がある。また、ポリエステル榭脂の濃度が 10質量%未 満の場合には、次の転相乳化工程においてさらにポリエステル榭脂の濃度が下がつ たり、脱溶剤工程において多量の有機溶剤を除去することになつたりして不経済とな る場合がある。ポリエステル榭脂を有機溶剤に溶解するための装置としては、液体を 投入できる槽を備え、適度な攪拌ができるものであればよい。なお、溶解工程で使用 するポリエステル榭脂は、前記範囲内のものを単独でも、 2種以上を混合して使用し てもよい。  First, the dissolution step will be described. In the dissolving step, the polyester resin is dissolved in an organic solvent. At this time, the concentration of the polyester resin in the organic solvent solution of the polyester resin to be obtained is preferably in the range of 10 to 60% by mass, and the range of 20 to 50% by mass is optimum. When the concentration of the polyester resin in the solution exceeds 60% by mass, the increase in viscosity becomes large when mixed with water in the next phase inversion emulsification step, and a uniform aqueous dispersion may not be obtained. is there. In addition, when the concentration of polyester resin is less than 10% by mass, the concentration of polyester resin is further decreased in the next phase inversion emulsification step, and a large amount of organic solvent is removed in the solvent removal step. It can become uneconomical as it An apparatus for dissolving polyester resin in an organic solvent may be any apparatus provided with a tank into which a liquid can be introduced and capable of appropriate stirring. The polyester resins used in the dissolving step may be used alone or in combination of two or more.
[0041] 有機溶剤としては、公知のものを使用することができ、例えば、ケトン系有機溶剤、 芳香族系炭化水素系有機溶剤、エーテル系有機溶剤、含ハロゲン系有機溶剤、了 ルコール系有機溶剤、エステル系有機溶剤、グリコール系有機溶剤などが挙げられ る。有機溶剤は単独あるいは 2種以上を組み合わせて使用することができるが、本発 明の水性分散体を得るためには、ポリエステル榭脂を 10質量%以上溶解することが できるように有機溶剤の選択をおこなうことが好適であり、 20質量%以上溶解するこ とができる有機溶剤が好ましぐ 30質量%以上溶解することができる有機溶剤がより 最適である。このような有機溶剤としては、アセトン、メチルェチルケトン(2—ブタノン ) (以後 MEKと記す)、メチルイソプチルケトン (4ーメチルー 2—ペンタノン)(以後 Ml BKと記す)、ジォキサン、テトラヒドロフラン、シクロへキサノン単独や、アセトン Zェチ レングリコールモノブチルエーテル混合溶液、 MEKZエチレングリコールモノブチル エーテル混合溶液、 ΜΙΒΚΖエチレングリコールモノブチルエーテル混合溶液、ジ ォキサン Ζエチレングリコールモノブチルエーテル混合溶液、テトラヒドロフラン Ζェ チレングリコールモノブチルエーテル混合溶液、シクロへキサノン Ζエチレングリコー ルモノブチルエーテル混合溶液、アセトン Ζイソプロパノール混合溶液、 ΜΕΚΖイソ プロパノール混合溶液、 MIBKZイソプロパノール混合溶液、ジォキサン Zイソプロ パノール混合溶液、テトラヒドロフラン zイソプロパノール混合溶液、シクロへキサノン zイソプロパノール混合溶液などが好適に使用できる。 [0041] As the organic solvent, known ones can be used. For example, ketone organic solvents, aromatic hydrocarbon organic solvents, ether organic solvents, halogen-containing organic solvents, alcohol organic solvents And ester-based organic solvents and glycol-based organic solvents. The organic solvents may be used alone or in combination of two or more, but in order to obtain the aqueous dispersion of the present invention, selection of the organic solvent so as to dissolve 10% by mass or more of polyester resin. It is preferable to use an organic solvent which can be dissolved by 20% by mass or more. An organic solvent which can be dissolved by 30% by mass or more is more preferable. Examples of such organic solvents include acetone, methyl ethyl ketone (2-butanone) (hereinafter referred to as MEK), methyl isopyl ketone (4-methyl-2-pentanone) (hereinafter referred to as Ml BK), dioxane, tetrahydrofuran, cyclopentadiene, etc. Hexanone alone, acetone mixed solution with ethylene glycol monobutyl ether, MEKZ ethylene glycol monobutyl ether mixed solution, mixed solution of ethylene glycol monobutyl ether, mixed solution of ethylene glycol monobutyl ether, mixed solution of ethylene glycol monobutyl ether with tetrahydrofuran, tetrahydrofuran glycol glycol monobutyl ether Mixed solution, mixed solution of cyclohexanone and ethylene glycol monobutyl ether, mixed solution of acetone and isopropanol, mixed solution A propanol mixed solution, a MIBKZ isopropanol mixed solution, a dioxane Z isopropanol mixed solution, a tetrahydrofuran z isopropanol mixed solution, a cyclohexanone z isopropanol mixed solution, and the like can be suitably used.
[0042] 次に、転相乳化工程について説明する。  Next, the phase inversion emulsification step will be described.
転相乳化工程では、転相乳化により、ポリエステル榭脂の有機溶剤溶液を塩基性 化合物とともに水に分散させる。本発明においては、塩基性化合物をポリエステル榭 脂溶液に加えておき、これに水を徐々に投入して転相乳化をおこなうことが好ましい 。水の添加速度が速い場合には、均一な水性分散体を得ることが困難となる場合が ある。本発明において「転相乳化」とは、ポリエステル榭脂の有機溶剤溶液に、この溶 液に含まれる有機溶剤量を超える量の水を添加して、系を有機溶剤相から oZwェ マルシヨン分散系に変化させることを意味する。  In the phase inversion emulsification step, an organic solvent solution of polyester resin is dispersed in water together with the basic compound by phase inversion emulsification. In the present invention, it is preferable to add a basic compound to a polyester resin solution and gradually add water thereto to carry out phase inversion emulsification. If the rate of water addition is fast, it may be difficult to obtain a uniform aqueous dispersion. In the present invention, “phase inversion emulsification” means adding an amount of water exceeding the amount of the organic solvent contained in this solution to the organic solvent solution of polyester resin to obtain a system from an organic solvent phase to an oZw emulsion dispersion system. It means to change it.
[0043] 塩基性ィ匕合物の使用量としては、ポリエステル榭脂中に含まれるカルボキシル基の 量に応じて決定され、少なくとも一部のカルボキシル基を中和し得る量、すなわち、力 ルポキシル基に対して 0. 4〜20倍当量が好ましぐ 0. 6〜19倍当量がより好ましぐ 0. 8〜18倍当量が最適である。塩基性化合物の使用量を前記範囲とすることで、保 存安定性が特に良好なポリエステル榭脂水性分散体を得ることができる場合が多い  The amount of the basic compound used is determined in accordance with the amount of carboxyl groups contained in the polyester resin, and is an amount capable of neutralizing at least a part of the carboxyl groups, ie, force propoxyl group Against 0.4 to 20 times equivalent is preferable 0.4 to 19 times equivalent is more preferable 0.8 to 18 times equivalent is optimum. By setting the amount of the basic compound to be within the above range, it is often possible to obtain a polyester resin aqueous dispersion having particularly good storage stability.
[0044] 転相乳化は 10〜40°C、特に 15〜35°Cでおこなうことが好ましぐ 15°C〜30°Cが 最適である。 40°C以下で転相乳化をおこなうことにより、得られる水性分散体の体積 平均粒径は小さくなる傾向にあり、容易に保存安定性に優れた水性分散体を得るこ とができる。また、本発明の水性分散体に含まれるポリエステル榭脂は、外観上は有 機溶剤に溶解していてもその溶液の状態は徐々に変化する傾向にあり、例えば、 5 °Cなどの低温で 10時間以上保存するとポリエステル榭脂の有機溶剤溶液の粘度が 高くなつたり、白濁したりする場合がある。このように本発明に使用するポリエステル 榭脂の有機溶剤溶液は、低温での溶解安定性が悪い場合があるため、転相乳化は 、 10°C以上、特に 15°C以上が好ましい。ポリエステル榭脂の有機溶剤溶液の溶解 状態を制御せずに転相乳化した場合には、得られる水性分散体の品質が安定しな いため好ましくない。 [0045] 転相乳化工程をおこなう装置としては、液体を投入できる槽を備え、適度な攪拌が できるものであればよい。そのような装置としては、固 Z液撹拌装置や乳化機 (例え ばホモミキサー)として広く当業者に知られて ヽる装置が挙げられる。 Phase inversion emulsification is preferably performed at 10 to 40 ° C., particularly preferably 15 to 35 ° C. 15 ° C. to 30 ° C. is optimum. By performing phase inversion emulsification at 40 ° C. or less, the volume average particle diameter of the obtained aqueous dispersion tends to be small, and an aqueous dispersion having excellent storage stability can be easily obtained. In addition, the appearance of the polyester resin contained in the aqueous dispersion of the present invention tends to gradually change its solution state even if it is dissolved in an organic solvent, for example, at a low temperature such as 5 ° C. If stored for 10 hours or more, the viscosity of the organic solvent solution of polyester resin may become high or may become cloudy. Thus, the organic solvent solution of polyester resin used in the present invention may have poor dissolution stability at low temperatures, so phase inversion emulsification is preferably 10 ° C. or more, particularly preferably 15 ° C. or more. When phase inversion emulsification is carried out without controlling the dissolution state of the polyester resin in the organic solvent solution, the quality of the obtained aqueous dispersion is not stable, which is not preferable. An apparatus for carrying out the phase inversion emulsification process may be any apparatus provided with a tank into which a liquid can be introduced and capable of appropriate stirring. Such devices include devices known to those skilled in the art as solid Z liquid stirrers and emulsifiers (eg, homomixers).
[0046] 次に、脱溶剤工程について説明する。  Next, the solvent removal step will be described.
脱溶剤工程では、転相乳化工程で得られた水性分散体に含まれる有機溶剤を蒸 留し、その一部またはすベてを水性分散体から除去する。この工程は、減圧下また は常圧下でおこなうことができる。常圧下で脱溶剤すると凝集物が発生しやす!、場合 もあるが、そのようなときは、減圧下でおこない、内温を 70°C以下、好ましくは 60°C以 下、最適には 50°C以下となるように調節するとよい。脱溶剤工程をおこなう装置とし ては、液体を投入できる槽を備え、適度な攪拌ができるものであればよい。  In the solvent removal step, the organic solvent contained in the aqueous dispersion obtained in the phase inversion emulsification step is distilled, and a part or all of the organic solvent is removed from the aqueous dispersion. This step can be carried out under reduced pressure or under normal pressure. Desolvent under normal pressure is likely to generate aggregates! In such cases, the internal temperature may be adjusted to 70 ° C. or less, preferably 60 ° C. or less, and optimally 50 ° C. or less. The apparatus for carrying out the solvent removal step may be any apparatus provided with a tank into which the liquid can be introduced and capable of appropriate stirring.
[0047] なお、転相乳化工程の後に、脱溶剤工程をおこなうことにより、転相乳化工程後の 水性分散体に含まれ、ポリエステル榭脂の中和に寄与して 、な 、塩基性化合物の一 部またはすベてを除去することもできる。  Incidentally, after the phase inversion emulsification step, the solvent removal step is carried out to be included in the aqueous dispersion after the phase inversion emulsification step and to contribute to the neutralization of the polyester resin. It is also possible to remove some or all of them.
[0048] このような製造方法により、外観上、水性媒体中に沈殿、相分離といった、固形分 濃度が局部的に他の部分と相違する部分が見いだされない均一な状態の水性分散 体が得られる。  [0048] According to such a production method, an aqueous dispersion having a uniform state in which the solid concentration locally does not find any difference in solid concentration from other parts, such as precipitation or phase separation in appearance, is obtained. Be
[0049] また、水性分散体の製造にあたっては、異物などを除去する目的で、工程中に濾 過工程を設けてもよい。このような場合には、例えば、 300メッシュ程度のステンレス 製フィルター(線径 0. 035mm、平織)を設置し、加圧濾過(空気圧 0. 2MPa)をおこ なえばよい。  In the production of the aqueous dispersion, a filtration step may be provided in the process for the purpose of removing foreign matter and the like. In such a case, for example, a stainless steel filter (wire diameter: 0.35 mm, plain weave) of about 300 mesh may be installed, and pressure filtration (air pressure: 0.2 MPa) may be performed.
[0050] (使用方法)  (How to use)
次に、本発明の水性分散体の使用方法について説明する。  Next, the method of using the aqueous dispersion of the present invention will be described.
本発明の水性分散体は、被膜形成能に優れているので、公知の成膜方法、デイツ ビング法、はけ塗り法、スプレーコート法、カーテンフローコート法などにより各種基材 表面に均一にコーティングし、加熱処理に供することにより水性媒体を除去して、均 一な榭脂被膜を各種基材表面に密着させて形成することができる。このときの加熱装 置としては、通常の熱風循環型のオーブンや赤外線ヒーターなどを使用すればよい 。また、加熱温度や加熱時間としては、基材の種類などにより適宜選択されるもので あるが、経済性も考慮した場合、加熱温度としては、 60〜120°Cが好ましぐ 80-10 0°Cが最適である。加熱時間としては、 1秒〜 30分間が好ましぐ 5秒〜 20分がより好 ましぐ 10秒〜 10分が最適である。 Since the aqueous dispersion of the present invention is excellent in film forming ability, it can be uniformly coated on the surface of various substrates by a known film forming method, dicing method, brush coating method, spray coating method, curtain flow coating method, etc. By applying the heat treatment, the aqueous medium can be removed, and a uniform resin coating can be formed in close contact with the surface of various substrates. As a heating device at this time, an ordinary hot air circulation type oven, an infrared heater or the like may be used. Further, the heating temperature and the heating time are appropriately selected depending on the type of the base material and the like. However, considering the economy, the heating temperature is optimally 80.degree. To 100.degree. C., preferably 60.degree. To 120.degree. The heating time is preferably 1 second to 30 minutes, more preferably 5 seconds to 20 minutes, and most preferably 10 seconds to 10 minutes.
[0051] 本発明の水性分散体には、本発明の目的を達成できる範囲内で、必要に応じてレ ベリング剤、消泡剤、ヮキ防止剤、顔料分散剤、紫外線吸収剤、防カビ剤、防腐剤な どの各種薬剤や、酸化チタン、亜鉛華、カーボンブラックなどの顔料あるいは染料や 、ポリビュルアルコールやポリエチレンォキシドなどの水溶性高分子が添加されて ヽ てもよい。また、水や有機溶剤を添加することにより、粘度調整ゃ基材への濡れ性の 調整などをすることもできる。 In the aqueous dispersion of the present invention, a leveling agent, an antifoaming agent, an anti-glare agent, a pigment dispersant, an ultraviolet light absorber, an antifungal agent, and the like can be used as needed within the scope of achieving the object of the present invention. Various agents such as agents and preservatives, pigments or dyes such as titanium oxide, zinc oxide and carbon black, and water-soluble polymers such as polybutyl alcohol and polyethylene oxide may be added. Further, by adding water or an organic solvent, it is possible to adjust the viscosity, adjust the wettability to the substrate, and the like.
実施例  Example
[0052] 以下に実施例によって本発明を具体的に説明する。  The present invention will be specifically described by way of the following examples.
[0053] (1)ポリエステル榭脂の構成  (1) Composition of polyester resin
ェ!!ー NMR分析(バリアン社製、 300MHz)より求めた。また、 NMR ^ベクトル 上に帰属 ·定量可能なピークが認められな 、構成モノマーを含む樹脂にっ 、ては、 封管中 230°Cで 3時間メタノール分解をおこなった後に、ガスクロマトグラム分析に供 し、定量分析をおこなった。  Oh! ! -Determined from NMR analysis (Varian 300 MHz). Also, no assignable peaks can be found on the NMR ^ vector, and the resin containing the constituent monomers is subjected to methanolysis at 230 ° C. for 3 hours in a sealed tube and then used for gas chromatogram analysis. And quantitative analysis was performed.
[0054] (2)ポリエステル榭脂の酸価  (2) Acid value of polyester resin
ポリエステル榭脂 0. 5gを 50mlの水 Zジォキサン =1Z9(体積比)に溶解し、タレ ゾールレッドを指示薬として KOHで滴定をおこな!/、、中和に消費された KOHの mg 数をポリエステル榭脂 lgあたりに換算した値を酸価として求めた。 0.5 g of polyester resin is dissolved in 50 ml of water Z Dioxane = 1 Z 9 (volume ratio) and titrated with KOH using taresol red as an indicator! /, Mg mg of KOH consumed for neutralization is polyester The value converted per 1 g of fat was determined as the acid value.
[0055] (3)ポリエステル榭脂の融点および結晶融解熱量  (3) Melting point and heat of crystal fusion of polyester resin
一週間 20°Cに調温したポリエステル榭脂 10mgをサンプルとし、 DSC (示差走査熱 量測定)装置 (パーキンエルマ一社製 DSC7)を用いて、次の条件で測定した値で ある。すなわち、窒素気流中において、 50°Cから昇温速度 20°CZ分で 280°Cま で昇温し、昇温時の融解温度のピークを融点、その時の融解ピーク面積を融解熱量 とする。  It is a value measured under the following conditions using a DSC (differential scanning calorific value measurement) device (DSC7 manufactured by Perkin-Elmer Co., Ltd.) as a sample, using 10 mg of polyester resin thermostated at 20 ° C. for one week. That is, the temperature is raised from 50 ° C. to 280 ° C. at a heating rate of 20 ° C. in a nitrogen stream, the peak of the melting temperature at the time of temperature rising is the melting point, and the melting peak area at that time is the heat of melting.
[0056] (4)ポリエステル榭脂の数平均分子量  (4) Number average molecular weight of polyester resin
数平均分子量は、 GPC分析(島津製作所製の送液ユニット LC— lOADvp型およ び紫外 可視分光光度計 SPD— 6AV型を使用、検出波長: 254nm、溶媒:テトラヒ ドロフラン、ポリスチレン換算)により求めた。 The number average molecular weight is determined by GPC analysis (liquid transfer unit LC-lOADvp type manufactured by Shimadzu Corporation) and And UV-visible spectrophotometer SPD-6AV type, detection wavelength: 254 nm, solvent: tetrahydrofuran, polystyrene conversion).
[0057] (5)固形分濃度 (5) Solid content concentration
水性分散体または有機溶剤溶液を約 lg精秤し (Xgとする)、これを 150°Cで 2時間 乾燥した後の残存物(固形分)の質量を精評し (Ygとする)、次式により固形分濃度を 求めた。  Approximately 1 g of the aqueous dispersion or the organic solvent solution is weighed (Xg), and the mass of the residue (solid content) after drying for 2 hours at 150 ° C. is evaluated (Yg). The solid content concentration was determined by the equation.
固形分濃度 (質量%) =Y/XX 100  Solid content concentration (mass%) = Y / XX 100
[0058] (6)水性分散体の有機溶剤含有率 (6) Organic solvent content of aqueous dispersion
島津製作所社製、ガスクロマトグラフ GC— 8A [FID検出器使用、キャリアーガス: 窒素、カラム充填物質(ジーエルサイエンス社製): PEG-HT(5%) -UNIPORT HP (60Z80メッシュ)、カラムサイズ:直径 3mm X長さ 3m、試料投入温度(インジェ クシヨン温度): 150°C、カラム温度: 60°C、内部標準物質: n—ブタノール]を用い、 水性分散体を水で希釈したものを直接装置内に投入して、有機溶剤含有率を求め た。  Shimadzu Corporation gas chromatograph GC-8A [FID detector used, carrier gas: nitrogen, column packing material (manufactured by GL Science): PEG-HT (5%)-UNIPORT HP (60Z80 mesh), column size: diameter 3 mm x length 3 m, sample input temperature (injection temperature): 150 ° C., column temperature: 60 ° C., internal standard substance: n-butanol], diluted aqueous dispersion with water directly in the device The organic solvent content was determined.
[0059] (7)水性分散体の体積平均粒経  (7) Volume average particle diameter of aqueous dispersion
水性分散体を 0. 1%に水で希釈し、 日機装製、 MICROTRAC UPA (モデル 93 40-UPA)を用いて体積平均粒径を測定した。 300nm以下が好ましい。  The aqueous dispersion was diluted with water to 0.1%, and the volume average particle size was measured using Nikkiso, MICROTRAC UPA (model 93 40-UPA). 300 nm or less is preferable.
[0060] (8)水性分散体の保存安定性 (8) Storage stability of aqueous dispersion
50mlのガラス製サンプル瓶に水性分散体を 30ml入れて、 25°Cで 60日保存した後 の外観を目視で観察し、△および〇を合格とした。  30 ml of the aqueous dispersion was placed in a 50 ml glass sample bottle, and the appearance after storage for 60 days at 25 ° C. was visually observed, and the marks Δ and を were accepted.
〇:変化なし。  ○: No change.
△:サンプル瓶の底部に粒子の一部が沈降して 、る。  Δ: Part of particles settled in the bottom of the sample bottle
X:水性分散体の粘度が高くなり凝固している。  X: The viscosity of the aqueous dispersion is high and it is coagulated.
[0061] (9)榭脂被膜の厚さ (9) Thickness of resin coating
厚み計(ユニオンツール社製、 MICROFINE)を用いて、基材の厚みを予め測定 しておき、水性分散体を用いて基材上に榭脂被膜を形成した後、この榭脂被膜を有 する基材の厚みを同様の方法で測定し、その差を榭脂被膜の厚さとした。  The thickness of the substrate is measured in advance using a thickness gauge (manufactured by Union Tool Co., Ltd., MICROFINE), and after a resin coating is formed on the substrate using an aqueous dispersion, the resin coating is provided. The thickness of the substrate was measured by the same method, and the difference was taken as the thickness of the resin coating.
[0062] (10)榭脂被膜の接着性 卓上型コーティング装置(安田精機製、フィルムアプリケータ No. 542— AB型、バ 一コータ装着)を用いて、 PETフィルム上に水性分散体をコーティングし、 120°Cに 設定されたオーブン中で 1分間加熱することにより、 PETフィルム上に厚み約 2 m の榭脂被膜を形成させた後、 2枚の榭脂被膜形成 PETフィルムを、コート面が接触 するように重ねて、ヒートプレス機(シール圧 0. 2MPaで 10秒間)にて 80°Cでプレス した。プレス温度 80°Cで被膜が十分に溶融せず接着性に乏 、場合 (剥離強度が 0 . 5NZ25mm以下の場合)は、プレス温度を 120°Cとし、当該温度でも接着性に乏 しい場合は 160°Cとした。このサンプルを 25mm幅で切り出し、 1日後、引張試験機( インテスコ株式会社製インテスコ精密万能材料試験機 2020型)を用い、引張速度 5 OmmZ分、引張角度 180度で被膜の剥離強度を測定することで接着性を評価した 。剥離強度 3. 5NZ25mm以上が有機溶剤溶解型の接着剤に匹敵する強度と判定 した。剥離強度は 5. ONZ25mm以上が好ましぐ 7. ONZ25mm以上が顕著に好 ましい。 (10) Adhesiveness of Resin Coating Using a tabletop coating system (Yasuda Seiki, film applicator No. 542-AB, equipped with a bar coater), the aqueous dispersion is coated on a PET film, and in an oven set at 120 ° C 1 After forming a resin film about 2 m thick on the PET film by heating for 1 minute, two sheets of the resin film-formed PET film are overlapped so that the coated surface is in contact, and the heat press (seal It was pressed at 80 ° C. under a pressure of 0.2 MPa for 10 seconds. If the press temperature is 80 ° C and the film does not melt sufficiently and adhesion is poor (if the peel strength is 0.5 NZ 25 mm or less), the press temperature is 120 ° C and adhesion is poor even at that temperature. It was 160 ° C. This sample is cut out with a width of 25 mm, and after one day, using a tensile tester (Intesco Corporation Intesco Precision Universal Material Testing Machine Model 2020), measure the peel strength of the film at a tensile speed of 5 OmmZ and a tensile angle of 180 degrees. The adhesion was evaluated. Peel strength 3.5 NZ 25 mm or more was judged to be comparable in strength to an organic solvent-soluble adhesive. The peel strength is preferably 5. ONZ 25 mm or more. 7. ONZ 25 mm or more is significantly preferable.
[0063] また、実施例及び比較例で用いたポリエステル榭脂は、以下のようにして得た。  The polyester resins used in the examples and comparative examples were obtained as follows.
[ポリエステル榭脂 P— 1の製造例]  [Production example of polyester resin P-1]
テレフタル酸 1163g、イソフタル酸 1412g、セノ シン酸 1920g、 1, 4—ブタンジォ ール 2740gからなる混合物をオートクレーブ中で、 220°Cで 4時間加熱してエステル 化反応をおこなった。次いで、触媒としてテトラブチルチタネート 2. 6gを添加した後、 系の温度を 230°Cに昇温し、系の圧力を徐々に減じて 1. 5時間後に 13Paとした。こ の条件下でさらに重縮合反応を続け、 4時間後に系を窒素ガスで常圧にし、系の温 度を下げ、 220°Cになったところでトリメリット酸 47gを添加し、 220°Cで 2時間攪拌し て解重合反応をおこなった。その後、系を窒素ガスで加圧状態にしておいてシート状 に榭脂を払い出した。これを室温まで冷却し、シート状のポリエステル榭脂 P—1を得 た。  A mixture consisting of 1163 g of terephthalic acid, 1412 g of isophthalic acid, 1920 g of cenoic acid and 2740 g of 1,4-butanediol was heated at 220 ° C. for 4 hours in an autoclave to carry out an esterification reaction. Then, after 2.6 g of tetrabutyl titanate as a catalyst was added, the temperature of the system was raised to 230 ° C., and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, the temperature of the system is lowered, and 47 g of trimellitic acid is added at 220.degree. Stirring was performed for 2 hours to carry out depolymerization reaction. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. This was cooled to room temperature to obtain a sheet-like polyester resin P-1.
[0064] [ポリエステル榭脂 P— 2の製造例]  [Production Example of Polyester Resin P-2]
テレフタル酸 831g、イソフタル酸 1578g、セノ シン酸 708g、 ε—力プロラタトン 79 9g、 1, 4—ブタンジオール 2424gからなる混合物をオートクレーブ中で、 220°Cで 4 時間加熱してエステルイ匕反応をおこなった。次いで、触媒としてテトラブチルチタネ ート 1. 7gを添加した後、系の温度を 240°Cに昇温し、系の圧力を徐々に減じて 1. 5 時間後に 13Paとした。この条件下でさらに重縮合反応を続け、 4時間後に系を窒素 ガスで常圧にし、系の温度を下げ、 220°Cになったところでトリメリット酸 32gを添加し 、 220°Cで 2時間攪拌して解重合反応をおこなった。その後、系を窒素ガスで加圧状 態にしておいてシート状に榭脂を払い出した。これを室温まで冷却し、シート状のポリ エステル榭脂 P— 2を得た。 A mixture consisting of 831 g of terephthalic acid, 1578 g of isophthalic acid, 708 g of cenoic acid, 799 g of ε-prolabatone and 2424 g of 1,4-butanediol was heated in an autoclave at 220 ° C. for 4 hours to carry out an esterifying reaction . Then, tetrabutyl titaniume as a catalyst After the addition of 1. 7 g of salt, the temperature of the system was raised to 240 ° C., and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, the temperature of the system is lowered, 32 g of trimellitic acid is added when it reaches 220.degree. C., and 2 hours at 220.degree. Stirring performed depolymerization reaction. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. The mixture was cooled to room temperature to obtain a sheet-like polyester resin P-2.
[0065] [ポリエステル榭脂 P— 3の製造例]  [Production Example of Polyester Resin P-3]
テレフタル酸 1661g、セノシン酸 3032g、 1, 4 ブタンジオール 3154gからなる混 合物をオートクレープ中で、 235°Cで 4時間加熱してエステルイ匕反応をおこなった。 次いで、触媒としてテトラブチルチタネート 2. 6gを添加した後、系の圧力を徐々に減 じて 1. 5時間後に 13Paとした。この条件下でさらに重縮合反応を続け、 4時間後に 系を窒素ガスで常圧にし、系の温度を 235°Cのまま、無水トリメリット酸 183gを添加し 、 235°Cで 2時間攪拌して解重合反応をおこなった。その後、系を窒素ガスで加圧状 態にしておいてシート状に榭脂を払い出した。これを室温まで冷却し、シート状のポリ エステル榭脂 P— 3を得た。  A mixture consisting of 1661 g of terephthalic acid, 3032 g of cenoic acid and 3154 g of 1,4-butanediol was heated in an autoclave at 235 ° C. for 4 hours to carry out an esterifying reaction. Then, after the addition of 2.6 g of tetrabutyl titanate as a catalyst, the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, 183 g of trimellitic anhydride is added while maintaining the system temperature of 235 ° C., and stirring is carried out at 235 ° C. for 2 hours. The depolymerization reaction was carried out. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. The mixture was cooled to room temperature to obtain sheet-like polyester resin P-3.
[0066] [ポリエステル榭脂 P— 4の製造例]  [Production Example of Polyester Resin P-4]
テレフタル酸 1661g、セノ シン酸 3032g、 1, 4 ブタンジオール 2588g、エチレン グリコール 388gからなる混合物をオートクレーブ中で、 235°Cで 4時間加熱してエス テルィ匕反応をおこなった。次いで、触媒としてテトラブチルチタネート 2. 6gを添加し た後、系の圧力を徐々に減じて 1. 5時間後に 13Paとした。この条件下でさらに重縮 合反応を続け、 4時間後に系を窒素ガスで常圧にし、系の温度を 235°Cのまま、無水 トリメリット酸 38gを添加し、 235°Cで 2時間攪拌して解重合反応をおこなった。その後 、系を窒素ガスで加圧状態にしておいてシート状に榭脂を払い出した。これを室温ま で冷却し、シート状のポリエステル榭脂 P— 4を得た。  A mixture consisting of 1661 g of terephthalic acid, 3032 g of cenoic acid, 2588 g of 1,4 butanediol and 388 g of ethylene glycol was heated in an autoclave at 235 ° C. for 4 hours to carry out an ester reaction. Then, after adding 2.6 g of tetrabutyl titanate as a catalyst, the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polymerization reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, and 38 g of trimellitic anhydride is added while maintaining the system temperature of 235 ° C., and stirring is carried out at 235 ° C. for 2 hours. The reaction was depolymerized. Thereafter, the system was pressurized with nitrogen gas and the resin was discharged in the form of a sheet. The mixture was cooled to room temperature to obtain a sheet-like polyester resin P-4.
[0067] [ポリエステル榭脂 P— 5の製造例]  [Production Example of Polyester Resin P-5]
テレフタノレ酸 2201g、セノ シン酸 2375g、 1, 4 ブタンジ才ーノレ 3154g力 らなる混 合物をオートクレープ中で、 235°Cで 4時間加熱してエステルイ匕反応をおこなった。 次いで、触媒としてテトラブチルチタネート 2. 6gを添加した後、系の圧力を徐々に減 じて 1. 5時間後に 13Paとした。この条件下でさらに重縮合反応を続け、 4時間後に 系を窒素ガスで常圧にし、系の温度を 235°Cのまま、無水トリメリット酸 183gを添加し 、 235°Cで 2時間攪拌して解重合反応をおこなった。その後、系を窒素ガスで加圧状 態にしておいてシート状に榭脂を払い出した。これを室温まで冷却し、シート状のポリ エステル榭脂 P— 5を得た。 A mixture consisting of 2201 g of terephthalic acid, 2375 g of cenoic acid, and 3154 g of 1,4 butane diacetate was heated in an autoclave at 235 ° C. for 4 hours to carry out an esterifying reaction. Then, after adding 2.6 g of tetrabutyl titanate as a catalyst, the pressure of the system is gradually reduced After 5 hours, it was 13Pa. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, 183 g of trimellitic anhydride is added while maintaining the system temperature of 235 ° C., and stirring is carried out at 235 ° C. for 2 hours. The depolymerization reaction was carried out. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. The mixture was cooled to room temperature to obtain sheet-like polyester resin P-5.
[0068] [ポリエステル榭脂 P— 6の製造例]  [Production Example of Polyester Resin P—6]
セノ シン 1263g、 =fノヽク 2214g、 1 , 4 ブタンジ才ーノレ 3143g、 トリメチ P一ノレ プロパン 17gからなる混合物をオートクレーブ中で、 235°Cで 4時間加熱してエステ ルイ匕反応をおこなった。次いで、触媒としてテトラブチルチタネート 2. 6gを添加した 後、系の圧力を徐々に減じて 1. 5時間後に 13Paとした。この条件下でさらに重縮合 反応を続け、 4時間後に系を窒素ガスで常圧にし、系の温度を 235°Cのまま、無水ト リメリット酸 149gを添加し、 235°Cで 2時間攪拌して解重合反応をおこなった。その後 、系を窒素ガスで加圧状態にしておいてシート状に榭脂を払い出した。これを室温ま で冷却し、シート状のポリエステル榭脂 P - 6を得た。  A mixture consisting of 1263 g of cenosyn, 2214 g of f-NOC, 3143 g of 1,4 butane diisocyanate, and 17 g of trimethyone monolepropane was heated in an autoclave at 235 ° C. for 4 hours to carry out an esterase reaction. Then, after adding 2.6 g of tetrabutyltitanate as a catalyst, the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, 149 g of trimellitic anhydride is added while maintaining the system temperature of 235 ° C., and stirring is carried out at 235 ° C. for 2 hours The reaction was depolymerized. Thereafter, the system was pressurized with nitrogen gas and the resin was discharged in the form of a sheet. It was cooled to room temperature to obtain a sheet-like polyester resin P-6.
[0069] [ポリエステル榭脂 P— 7の製造例]  [Production Example of Polyester Resin P- 7]
テレフタノレ酸 2492g、イソフタノレ酸 623g、セノ シン酸 1263g、エチレングリコーノレ 1 31 1g、ネオペンチルグリコール 1315gからなる混合物をオートクレーブ中で、 250°C で 4時間加熱してエステルイ匕反応をおこなった。次いで、触媒として酢酸亜鉛二水和 物 3. 3gを添カ卩した後、系の温度を 270°Cに昇温し、系の圧力を徐々に減じて 1. 5 時間後に 13Paとした。この条件下でさらに重縮合反応を続け、 4時間後に系を窒素 ガスで常圧にし、系の温度を下げ、 265°Cになったところで無水トリメリット酸 29gを添 加し、 265°Cで 2時間攪拌して解重合反応をおこなった。その後、系を窒素ガスでカロ 圧状態にしておいてシート状に榭脂を払い出した。これを室温まで冷却し、シート状 のポリエステル榭脂 P― 7を得た。  A mixture consisting of 2492 g of terephthalic acid, 623 g of isophthalic acid, 1263 g of cenoic acid, 1 1 g of ethylene glycolon 1 131 and 1315 g of neopentyl glycol was heated in an autoclave at 250 ° C. for 4 hours to carry out an esterifying reaction. Then, after adding 3.3 g of zinc acetate dihydrate as a catalyst, the temperature of the system was raised to 270 ° C. and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, the temperature of the system is lowered, and 29 g of trimellitic anhydride is added at 265.degree. The reaction was stirred for 2 hours to carry out a depolymerization reaction. After that, the system was under nitrogen pressure and the resin was disbursed as a sheet. This was cooled to room temperature to obtain a sheet-like polyester resin P-7.
[0070] [ポリエステル榭脂 P— 8の製造例]  [Production Example of Polyester Resin P-8]
テレフタル酸 1163g、イソフタル酸 1412g、セノ シン酸 1920g、 1 , 4 ブタンジォ ール 2740gからなる混合物をオートクレーブ中で、 220°Cで 4時間加熱してエステル 化反応をおこなった。次いで、触媒としてテトラブチルチタネート 2. 6gを添加した後、 系の温度を 230°Cに昇温し、系の圧力を徐々に減じて 1. 5時間後に 13Paとした。こ の条件下でさらに重縮合反応を続け、 4時間後に系を窒素ガスで加圧状態にしてお いてシート状に榭脂を払い出した。これを室温まで冷却し、シート状のポリエステル榭 脂 P— 8を得た。 A mixture consisting of 1163 g of terephthalic acid, 1412 g of isophthalic acid, 1920 g of cenoic acid and 2740 g of 1,4-butanediol was heated at 220 ° C. for 4 hours in an autoclave to carry out an esterification reaction. Then, after adding 2.6 g of tetrabutyl titanate as a catalyst, The temperature of the system was raised to 230 ° C. and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction was further continued, and after 4 hours, the system was pressurized with nitrogen gas, and the resin was discharged as a sheet. This was cooled to room temperature to obtain a sheet-like polyester resin P-8.
[0071] [ポリエステル榭脂 P— 9の製造例]  [Production Example of Polyester Resin P-9]
テレフタル酸 1163g、イソフタル酸 1412g、セノ シン酸 1920g、 1, 4—ブタンジォ ール 2740gからなる混合物をオートクレーブ中で、 220°Cで 4時間加熱してエステル 化反応をおこなった。次いで、触媒としてテトラブチルチタネート 2. 6gを添加した後、 系の温度を 230°Cに昇温し、系の圧力を徐々に減じて 1. 5時間後に 13Paとした。こ の条件下でさらに重縮合反応を続け、 4時間後に系を窒素ガスで常圧にし、系の温 度を下げ、 220°Cになったところでイソフタル酸 125gとトリメリット酸 105gを添カ卩し、 2 20°Cで 2時間攪拌して解重合反応をおこなった。その後、系を窒素ガスで加圧状態 にしておいてシート状に榭脂を払い出した。これを室温まで冷却し、シート状のポリエ ステル樹脂 P— 9を得た。  A mixture consisting of 1163 g of terephthalic acid, 1412 g of isophthalic acid, 1920 g of cenoic acid and 2740 g of 1,4-butanediol was heated at 220 ° C. for 4 hours in an autoclave to carry out an esterification reaction. Then, after 2.6 g of tetrabutyl titanate as a catalyst was added, the temperature of the system was raised to 230 ° C., and the pressure of the system was gradually reduced to 13 Pa after 1.5 hours. Under these conditions, the polycondensation reaction is further continued, and after 4 hours, the system is brought to normal pressure with nitrogen gas, the temperature of the system is lowered, and when it reaches 220 ° C, 125 g of isophthalic acid and 105 g of trimellitic acid are added. The reaction mixture was stirred at 220 ° C. for 2 hours for depolymerization reaction. After that, the system was pressurized with nitrogen gas, and the resin was discharged in the form of a sheet. It was cooled to room temperature to obtain sheet-like polyester resin P-9.
[0072] 前記のようにして得られたポリエステル榭脂の特性を分析した結果を表 1に示す。  The results of analyzing the characteristics of the polyester resin obtained as described above are shown in Table 1.
[表 1] [table 1]
Figure imgf000020_0001
(実施例 1)
Figure imgf000020_0001
(Example 1)
[溶解工程] 21のポリエチレン製容器にポリエステル榭脂 P— 1を 400gと MEKを 60 0g投入し、約 70°Cの温水で容器を加熱しながら、攪拌機 (東京理化器械株式会社 製、 MAZELA NZ— 1000)を用いて攪拌することにより、完全にポリエステル榭脂 を MEKに溶解させ、固形分濃度 40質量%のポリエステル樹脂溶液を得た。  [Dissolution process] 400 g of polyester resin P-1 and 600 g of MEK are put into a polyethylene container 21 and a stirrer (made by Tokyo Rika Kikai Co., Ltd., MAZELA NZ) while heating the container with warm water of about 70 ° C. The polyester resin was completely dissolved in MEK by stirring using 1000) to obtain a polyester resin solution having a solid content concentration of 40% by mass.
[転相乳化工程]次いで、ジャケット付きガラス容器(内容量 21)に前記ポリエステル 榭脂溶液 500gを仕込み、ジャケットに冷水を通して系内温度を 18°Cに保ち、攪拌機 (東京理化器械株式会社製、 MAZELA NZ - 1000)で攪拌した(回転速度 600 rpm)。次いで、攪拌しながら、塩基性ィ匕合物としてトリェチルァミン 38gを添加し、続 V、て lOOgZminの速度で 18°Cの蒸留水 462gを添加した。蒸留水を全量添加する 間、系内温度は常に 20°C以下であった。蒸留水添加終了後、 30分間攪拌して固形 分濃度が 20質量%の水性分散体を得た。 [Phase inversion emulsification process] Next, the above polyester is added to a jacketed glass container (capacity 21) 500 g of the resin solution was charged, cold water was passed through a jacket, the system temperature was maintained at 18 ° C., and stirring was performed with a stirrer (MAZELA NZ-1000, manufactured by Tokyo Rika Kikai Co., Ltd.) (rotational speed 600 rpm). Then, while stirring, 38 g of triethylamine was added as a basic compound, and then 462 g of distilled water at 18 ° C. was added at a rate of 100 g and 100 g Zmin. While the entire amount of distilled water was added, the temperature inside the system was always below 20 ° C. After completion of the addition of distilled water, the mixture was stirred for 30 minutes to obtain an aqueous dispersion having a solid content concentration of 20% by mass.
[脱溶剤工程]次 ヽで、得られたポリエステル榭脂水性分散体 800gを丸底フラスコ に仕込み、メカ-カルスターラーとリービッヒ冷却器を設置し、フラスコをオイルバスで 加熱し、常圧で水性媒体を約 284g留去した。冷却後、フラスコ内の液状物を 600メ ッシュ (綾たたみ織り)のステンレスフィルターでろ過し、濾液の固形分濃度を測定し たところ 31. 0質量%であった。この濾液を攪拌しながら蒸留水を添加し、固形分濃 度を調整した。  [Desolvation process] Next, 800 g of the obtained polyester resin aqueous dispersion is charged into a round bottom flask, a mechanical-cal stirrer and a Liebig cooler are installed, and the flask is heated with an oil bath to obtain aqueous solution under normal pressure. About 284 g of the medium was distilled off. After cooling, the liquid in the flask was filtered with a 600 mesh (tack weave) stainless steel filter, and the solid content concentration of the filtrate was measured to be 31.0% by mass. While stirring this filtrate, distilled water was added to adjust the solid content concentration.
固形分濃度: 30質量% Solid concentration: 30% by mass
有機溶剤の含有率: 0. 03質量% Content rate of organic solvent: 0.03 mass%
体積平均粒子径: 129nm Volume average particle diameter: 129 nm
(実施例 2) (Example 2)
[溶解工程] 21のポリエチレン製容器にポリエステル榭脂 P— 2を 300gと MEKを 70 Og投入し、約 70°Cの温水で容器を加熱しながら、攪拌機 (東京理化器械株式会社 製、 MAZELA NZ— 1000)を用いて攪拌することにより、完全にポリエステル榭脂 を MEKに溶解させ、固形分濃度 30質量%のポリエステル榭脂溶液を得た。  [Dissolution process] 300 g of polyester resin P-2 and 70 Og of MEK are put into a polyethylene container of 21 and a stirrer (made by Tokyo Rika Kikai Co., Ltd., MAZELA NZ) while heating the container with warm water of about 70 ° C. The polyester resin was completely dissolved in MEK by stirring using 1000) to obtain a polyester resin solution having a solid concentration of 30% by mass.
[転相乳化工程]次いで、ジャケット付きガラス容器(内容量 21)に前記ポリエステル 榭脂溶液 500gを仕込み、ジャケットに冷水を通して系内温度を 18°Cに保ち、攪拌機 (東京理化器械株式会社製、 MAZELA NZ - 1000)で攪拌した(回転速度 600 rpm)。次いで、攪拌しながら、塩基性ィ匕合物としてトリェチルァミン 29gを添加し、続 いて lOOgZminの速度で 18°Cの蒸留水 471gを添加した。蒸留水を全量添加する 間、系内温度は常に 20°C以下であった。蒸留水添加終了後、 30分間攪拌して固形 分濃度が 15質量%の水性分散体を得た。  [Phase inversion emulsification process] Next, 500 g of the polyester resin solution was charged in a jacketed glass container (capacity 21), cold water was passed through the jacket and the system temperature was maintained at 18 ° C, and a stirrer (manufactured by Tokyo Rika Kikai Co., Ltd.) The mixture was stirred with MAZELA NZ-1000) (rotational speed 600 rpm). Next, with stirring, 29 g of triethylamine was added as a basic compound, and then 471 g of distilled water at 18 ° C. was added at a rate of 100 g Zmin. While the entire amount of distilled water was added, the temperature inside the system was always below 20 ° C. After completion of the addition of distilled water, the mixture was stirred for 30 minutes to obtain an aqueous dispersion having a solid content concentration of 15% by mass.
[脱溶剤工程]次 ヽで、得られたポリエステル榭脂水性分散体 800gを丸底フラスコ に仕込み、メカ-カルスターラーとリービッヒ冷却器を設置し、フラスコをオイルバスで 加熱し、常圧で水性媒体を約 338g留去した。冷却後、フラスコ内の液状物を 600メ ッシュ (綾たたみ織り)のステンレスフィルターでろ過し、濾液の固形分濃度を測定し たところ 26質量%であった。この濾液を攪拌しながら蒸留水を添加し、固形分濃度を 調整した。 [Solvent removal step] Round bottom flask with 800 g of the polyester resin aqueous dispersion obtained in the following manner. The flask was heated in an oil bath, and about 338 g of the aqueous medium was distilled off under atmospheric pressure. After cooling, the liquid in the flask was filtered with a 600 mesh (tack weave) stainless steel filter, and the solid content concentration of the filtrate was measured to be 26% by mass. While stirring this filtrate, distilled water was added to adjust the solid content concentration.
固形分濃度: 25質量% Solid concentration: 25% by mass
有機溶剤の含有率: 0. 02質量% Organic solvent content: 0.2% by mass
体積平均粒子径: 11 lnm Volume average particle size: 11 lnm
(実施例 3) (Example 3)
[溶解工程] 21のポリエチレン製容器にポリエステル榭脂 P— 3を 300gと MEKを 70 Og投入し、約 70°Cの温水で容器を加熱しながら、攪拌機 (東京理化器械株式会社 製、 MAZELA NZ— 1000)を用いて攪拌することにより、完全にポリエステル榭脂 を MEKに溶解させ、固形分濃度 30質量%のポリエステル榭脂溶液を得た。  [Dissolution process] 300 g of polyester resin P-3 and 70 Og of MEK are put into a polyethylene container of 21 and a stirrer (made by Tokyo Rika Kikai Co., Ltd., MAZELA NZ) while heating the container with warm water of about 70 ° C. The polyester resin was completely dissolved in MEK by stirring using 1000) to obtain a polyester resin solution having a solid concentration of 30% by mass.
[転相乳化工程]次いで、ジャケット付きガラス容器(内容量 21)に前記ポリエステル 榭脂溶液 500gを仕込み、ジャケットに冷水を通して系内温度を 28°Cに保ち、攪拌機 (東京理化器械株式会社製、 MAZELA NZ - 1000)で攪拌した(回転速度 600 rpm)。次いで、攪拌しながら、塩基性ィ匕合物として 28質量%のアンモニア水 37gを 添加し、続いて lOOgZminの速度で 25°Cの蒸留水 463gを添カ卩した。蒸留水を全 量添加する間、系内温度は常に 30°C以下であった。蒸留水添加終了後、 30分間攪 拌して固形分濃度が 15質量%の水性分散体を得た。  [Phase inversion emulsification process] Next, 500 g of the polyester resin solution was charged in a jacketed glass container (capacity 21), cold water was passed through the jacket and the system temperature was maintained at 28 ° C., and a stirrer (manufactured by Tokyo Rika Kikai Co., Ltd.) The mixture was stirred with MAZELA NZ-1000) (rotational speed 600 rpm). Next, 37 g of 28% by mass ammonia water was added as a basic compound while stirring, and subsequently 463 g of distilled water at 25 ° C. was added at a rate of 100 g Zmin. The system temperature was always below 30 ° C. during the total addition of distilled water. After completion of the addition of distilled water, the mixture was stirred for 30 minutes to obtain an aqueous dispersion having a solid content concentration of 15% by mass.
[脱溶剤工程]次 ヽで、得られたポリエステル榭脂水性分散体 800gを丸底フラスコ に仕込み、メカ-カルスターラーとリービッヒ冷却器を設置し、フラスコをオイルバスで 加熱し、常圧で水性媒体を約 387g留去した。冷却後、フラスコ内の液状物を 600メ ッシュ (綾たたみ織り)のステンレスフィルターでろ過し、濾液の固形分濃度を測定し たところ 31質量%であった。この濾液を攪拌しながら蒸留水を添加し、固形分濃度を 調整した。  [Desolvation process] Next, 800 g of the obtained polyester resin aqueous dispersion is charged into a round bottom flask, a mechanical-cal stirrer and a Liebig cooler are installed, and the flask is heated with an oil bath to obtain aqueous solution under normal pressure. About 387 g of the medium was distilled off. After cooling, the liquid in the flask was filtered with a 600 mesh (tack weave) stainless steel filter, and the solid concentration of the filtrate was measured to be 31% by mass. While stirring this filtrate, distilled water was added to adjust the solid content concentration.
固形分濃度: 30質量% Solid concentration: 30% by mass
有機溶剤の含有率: 0. 01質量% 体積平均粒子径: 196nm Organic solvent content: 0.01 mass% Volume average particle diameter: 196 nm
[0076] (実施例 4) Example 4
ポリエステル榭脂を P— 4に変更し、塩基性ィ匕合物としてトリェチルァミンを 32g添カロ すること、および、転相乳化工程で添加する蒸留水を 468gに変更すること以外は、 実施例 1と同様の操作をおこなって水性分散体を得た。  Example 1 and Example 1 except that the polyester resin is changed to P-4, 32 g of triethylamine is added as a basic compound and the distilled water added in the phase inversion emulsification step is changed to 468 g. The same operation was performed to obtain an aqueous dispersion.
固形分濃度: 30質量%  Solid concentration: 30% by mass
有機溶剤の含有率: 0. 03質量%  Content rate of organic solvent: 0.03 mass%
体積平均粒子径: 147nm  Volume average particle diameter: 147 nm
[0077] (実施例 5) Example 5
転相乳化工程において、系内温度を 5°Cに保ち、白濁し始めたポリエステル榭脂溶 液にトリェチルァミンと 5°Cの蒸留水を添加し、蒸留水を全量添加する間、系内温度 は常に 7°C以下とした以外は、実施例 1と同様の操作をおこなって水性分散体を得た 固形分濃度: 30質量%  In the phase inversion emulsification process, while the system temperature is kept at 5 ° C, triethylamine and distilled water at 5 ° C are added to the polyester resin solution that has begun to become cloudy, and while the total amount of distilled water is added, the system temperature is An aqueous dispersion was obtained by the same operation as in Example 1 except that the temperature was always kept at 7 ° C. or less. Solid concentration: 30% by mass
有機溶剤の含有率: 0. 03質量%  Content rate of organic solvent: 0.03 mass%
体積平均粒子径: 319nm  Volume average particle size: 319 nm
[0078] (比較例 1) Comparative Example 1
ポリエステル榭脂を P— 5に変更し、塩基性ィ匕合物として 28質量%のアンモニア水 39gを添加すること、および、転相乳化工程で添加する蒸留水を 461gに変更するこ と以外は、実施例 3と同様の操作をおこなって水性分散体を得た。  Polyester resin is changed to P-5, 39 g of 28% by mass ammonia water is added as a basic compound, and distilled water added in the phase inversion emulsification process is changed to 461 g. The same procedure as in Example 3 was carried out to obtain an aqueous dispersion.
固形分濃度: 30質量%  Solid concentration: 30% by mass
有機溶剤の含有率: 0. 01質量%  Organic solvent content: 0.01 mass%
体積平均粒子径: 202nm  Volume average particle size: 202 nm
[0079] (比較例 2) (Comparative Example 2)
ポリエステル榭脂を P— 6に変更し、塩基性ィ匕合物として 28質量%のアンモニア水 39gを添加すること、および、転相乳化工程で添加する蒸留水を 477gに変更するこ と以外は、実施例 3と同様の操作をおこなって水性分散体を得た。  Except changing polyester resin to P-6 and adding 39 g of 28% by mass ammonia water as a basic compound and changing to 477 g distilled water added in the phase inversion emulsification process. The same procedure as in Example 3 was carried out to obtain an aqueous dispersion.
固形分濃度: 30質量% 有機溶剤の含有率: 0. 01質量% Solid concentration: 30% by mass Organic solvent content: 0.01 mass%
体積平均粒子径: 236nm  Volume average particle size: 236 nm
[0080] (比較例 3) (Comparative Example 3)
ポリエステル榭脂を P— 7に変更し、塩基性ィ匕合物としてトリェチルァミンを 13g添加 すること、および、転相乳化工程で添加する蒸留水を 487gに変更すること以外は、 実施例 1と同様の操作をおこなって水性分散体を得た。  Same as Example 1 except that polyester resin is changed to P-7, 13 g of trytilamine is added as a basic compound, and distilled water added in the phase inversion emulsification step is changed to 487 g. To obtain an aqueous dispersion.
固形分濃度: 30質量%  Solid concentration: 30% by mass
有機溶剤の含有率: 0. 03質量%  Content rate of organic solvent: 0.03 mass%
体積平均粒子径: 14 lnm  Volume average particle size: 14 lnm
[0081] (比較例 4) (Comparative Example 4)
ポリエステル榭脂を P— 8に変更し、塩基性ィ匕合物としてトリェチルァミンを 3g添カロ すること、および、転相乳化工程で添加する蒸留水を 497gに変更すること以外は、 実施例 1と同様の操作をおこなったが、蒸留水添加中にポリエステル榭脂が攪拌羽 に絡まり、均一な水性分散体が得られな力つた。  Example 1 and Example 1 except that polyester resin is changed to P-8, 3 g of triethylamine is added as a basic compound, and distilled water added in the phase inversion emulsification step is changed to 497 g. The same operation was performed, but the polyester resin was entangled with the stirring blade during addition of distilled water, and a uniform aqueous dispersion was not obtained.
[0082] (比較例 5) (Comparative Example 5)
ポリエステル榭脂を P— 9に変更し、塩基性ィ匕合物としてトリェチルァミンを 23g添加 すること、および、転相乳化工程で添加する蒸留水を 477gに変更すること以外は、 実施例 1と同様の操作をおこなって水性分散体を得た。  Same as Example 1, except that polyester resin is changed to P-9, and 23 g of trytilamine is added as a basic compound, and distilled water added in the phase inversion emulsification step is changed to 477 g. To obtain an aqueous dispersion.
固形分濃度: 30質量%  Solid concentration: 30% by mass
有機溶剤の含有率: 0. 03質量%  Content rate of organic solvent: 0.03 mass%
体積平均粒子径: 136nm  Volume average particle size: 136 nm
[0083] 表 2には、実施例および比較例で使用したポリエステル榭脂、有機溶剤溶液の固 形分濃度、転相温度、使用した塩基性ィ匕合物のポリエステル榭脂のカルボキシル基 の総モル量に対する当量比、および得られた水性分散体の固形分濃度、有機溶剤 含有率、体積平均粒径、保存安定性、および得られた被膜のプレス温度と剥離強度 の測定結果を示す。  Table 2 shows the polyester resin used in Examples and Comparative Examples, solid concentration of organic solvent solution, phase inversion temperature, and total carboxyl group of polyester resin of used basic compound. The measurement results of equivalent ratio to molar amount, solid content concentration of the obtained aqueous dispersion, organic solvent content, volume average particle diameter, storage stability, and press temperature and peel strength of the obtained film are shown.
[0084] [表 2]
Figure imgf000025_0001
[Table 2]
Figure imgf000025_0001
実施例および比較例から、本発明のポリエステル樹脂水性分散体より形成される榭 脂被膜は接着性に優れることがわかる。実施例 5では、転相工程において系内の温 度が本発明の好ましい範囲より低カゝつたため、ポリエステル榭脂の有機溶剤溶液が 白濁した状態となり、得られた水性分散体の体積平均粒径が大きくなつた。そのため 保存安定性が良好ではな力つた。 From the examples and comparative examples, it is understood that the resin film formed from the aqueous dispersion of polyester resin of the present invention is excellent in adhesion. In Example 5, the temperature in the system in the phase inversion process Since the degree was lower than the preferred range of the present invention, the organic solvent solution of polyester resin became cloudy, and the volume average particle diameter of the obtained aqueous dispersion became large. Therefore, the storage stability was not good.
[0086] 比較例 1は、使用するポリエステル榭脂の融点本発明の範囲より高力つたので、プ レス温度 80°C、 120°Cでは接着性に乏しかった。プレス温度を 160°Cに上げることに より接着した力 基材の PETフィルムが収縮して 、た。  [0086] Comparative Example 1 had higher strength than the range of the present invention of the melting point of the polyester resin to be used, so the adhesion was poor at press temperatures of 80 ° C and 120 ° C. By raising the press temperature to 160 ° C., the PET film of the bonded force substrate shrank.
比較例 2は、結晶融解熱量が本発明の範囲を上回っていたので、得られた水性分 散体は保存安定性に劣るものであった。  In Comparative Example 2, since the heat of crystal fusion exceeded the range of the present invention, the aqueous dispersion obtained was inferior in storage stability.
比較例 3は、使用するポリエステル榭脂の結晶融解熱量が本発明の範囲を下回つ て!、るので接着性に優れる被膜が得られな力つた。  In Comparative Example 3, since the heat of crystal melting of the polyester resin used falls below the range of the present invention, a film excellent in adhesiveness was not obtained.
比較例 4は、使用するポリエステル榭脂の酸価が本発明の範囲より低力つたので、 水性分散体が得られな力つた。  In Comparative Example 4, an aqueous dispersion was not obtained because the acid value of the polyester resin used was lower than the range of the present invention.
比較例 5は、使用するポリエステル榭脂の酸価が本発明の範囲より高ぐ数平均分 子量が本発明の範囲外であるため、接着性に優れる被膜が得られな力つた。 産業上の利用可能性  In Comparative Example 5, since the number average molecular weight at which the acid value of the polyester resin used is higher than the range of the present invention is out of the range of the present invention, a film excellent in adhesion was not obtained. Industrial applicability
[0087] 本発明のポリエステル榭脂水性分散体は被膜形成用として有用であり、例えば、鋼 板やフィルムのアンカーコート剤、紙やフィルムの接着剤、塗料やインキのバインダー 成分、紙やフィルムのコーティング剤として特に有用である。  The polyester resin aqueous dispersion of the present invention is useful for forming a film, and it is useful, for example, as an anchor coating agent for steel plate or film, an adhesive for paper or film, a binder component of paint or ink, paper or film. It is particularly useful as a coating agent.
発明のポリエステル榭脂水性分散体は保存安定性にも優れている。  The polyester resin aqueous dispersion of the invention is also excellent in storage stability.

Claims

請求の範囲 The scope of the claims
[1] 融点が 100°C以下、結晶融解熱量が 2〜12jZg、酸価が 2〜30mgKOHZg、数 平均分子量が 5000以上であるポリエステル榭脂を含有することを特徴とするポリェ ステル樹脂水性分散体。  [1] An aqueous polyester resin dispersion comprising a polyester resin having a melting point of 100 ° C. or less, a heat of crystal fusion of 2 to 12 jZg, an acid value of 2 to 30 mg KOHZg, and a number average molecular weight of 5000 or more. .
[2] ポリエステル榭脂が構成成分として、全酸成分に対して 30〜70モル%の芳香族ジ カルボン酸および全アルコール成分に対して 70〜100モル%の脂肪族グリコールを 含有することを特徴とする請求項 1記載のポリエステル榭脂水性分散体。  [2] A feature is that the polyester resin contains 30 to 70% by mole of aromatic dicarboxylic acid with respect to the total acid component and 70 to 100% by mole of aliphatic glycol based on the total alcohol component as components. The polyester resin aqueous dispersion according to claim 1.
[3] ポリエステル榭脂が構成成分として、全酸成分に対して 15〜50モル%のテレフタ ル酸および全アルコール成分に対して 70〜 100モル0 /0の 1 , 4 ブタンジオールを 含有することを特徴とする請求項 2記載のポリエステル榭脂水性分散体。 [3] As the polyester榭脂configuration components, contain one, 4-butanediol 70-100 mole 0/0 for terephthalic Le acids and total alcohol component 15 to 50 mol% relative to the total acid component The polyester resin aqueous dispersion according to claim 2, characterized in that
[4] ポリエステル榭脂がさらに脂肪族ジカルボン酸および Zまたは脂肪族ラタトンを含 有することを特徴とする請求項 2または 3に記載のポリエステル榭脂水性分散体。  [4] The polyester resin aqueous dispersion according to claim 2 or 3, wherein the polyester resin further comprises an aliphatic dicarboxylic acid and Z or an aliphatic ratatone.
[5] 転相乳化によりポリエステル榭脂の有機溶剤溶液を塩基性ィ匕合物とともに水に分 散させてポリエステル榭脂水性分散体を製造する方法であって、 10〜40°Cで転相 乳化することを特徴とする請求項 1〜4のいずれかに記載のポリエステル榭脂水性分 散体の製造方法。  [5] A method for producing a polyester resin aqueous dispersion by dispersing an organic solvent solution of polyester resin together with a basic binder in water by phase inversion emulsification, wherein phase inversion is carried out at 10 to 40 ° C. The method for producing a polyester resin aqueous dispersion according to any one of claims 1 to 4, which comprises emulsifying.
PCT/JP2007/050405 2006-01-24 2007-01-15 Polyester resin aqueous dispersion and method for producing same WO2007086266A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007555884A JP5241240B2 (en) 2006-01-24 2007-01-15 Aqueous polyester resin dispersion and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-015258 2006-01-24
JP2006015258 2006-01-24

Publications (1)

Publication Number Publication Date
WO2007086266A1 true WO2007086266A1 (en) 2007-08-02

Family

ID=38309061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050405 WO2007086266A1 (en) 2006-01-24 2007-01-15 Polyester resin aqueous dispersion and method for producing same

Country Status (3)

Country Link
JP (1) JP5241240B2 (en)
KR (1) KR101004241B1 (en)
WO (1) WO2007086266A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153246A (en) * 2010-01-28 2011-08-11 Dic Corp Polyester resin composition and aqueous coating material containing the same
JP2012041408A (en) * 2010-08-17 2012-03-01 Unitika Ltd Polyester resin aqueous dispersion
US20130330542A1 (en) * 2012-05-16 2013-12-12 Yongzhong Wang Photovoltaic backsheet
JP2014005397A (en) * 2012-06-26 2014-01-16 Unitika Ltd Aqueous dispersion, and binder composition for coating material using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248889A (en) * 1990-02-27 1991-11-06 Nippon Synthetic Chem Ind Co Ltd:The Binder for thermal transfer recording medium
JP2003226756A (en) * 2001-11-27 2003-08-12 Dainippon Ink & Chem Inc Spherical polyester resin particle dispersion for adhesive and its manufacturing method, and spherical polyester resin particle for adhesive and its manufacturing method
WO2004037924A1 (en) * 2002-10-22 2004-05-06 Unitika Ltd. Aqueous polyester resin dispersion and method for production thereof
JP2005281547A (en) * 2004-03-30 2005-10-13 Dainippon Ink & Chem Inc Method for producing aqueous spherical polyester resin fine particle dispersion for adhesive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248889A (en) * 1990-02-27 1991-11-06 Nippon Synthetic Chem Ind Co Ltd:The Binder for thermal transfer recording medium
JP2003226756A (en) * 2001-11-27 2003-08-12 Dainippon Ink & Chem Inc Spherical polyester resin particle dispersion for adhesive and its manufacturing method, and spherical polyester resin particle for adhesive and its manufacturing method
WO2004037924A1 (en) * 2002-10-22 2004-05-06 Unitika Ltd. Aqueous polyester resin dispersion and method for production thereof
JP2005281547A (en) * 2004-03-30 2005-10-13 Dainippon Ink & Chem Inc Method for producing aqueous spherical polyester resin fine particle dispersion for adhesive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153246A (en) * 2010-01-28 2011-08-11 Dic Corp Polyester resin composition and aqueous coating material containing the same
JP2012041408A (en) * 2010-08-17 2012-03-01 Unitika Ltd Polyester resin aqueous dispersion
US20130330542A1 (en) * 2012-05-16 2013-12-12 Yongzhong Wang Photovoltaic backsheet
CN104335360A (en) * 2012-05-16 2015-02-04 圣戈班性能塑料谢纳有限公司 Photovoltaic backsheet
JP2014005397A (en) * 2012-06-26 2014-01-16 Unitika Ltd Aqueous dispersion, and binder composition for coating material using the same

Also Published As

Publication number Publication date
JP5241240B2 (en) 2013-07-17
KR20080084843A (en) 2008-09-19
JPWO2007086266A1 (en) 2009-06-18
KR101004241B1 (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP4852665B2 (en) Polyester resin aqueous dispersion
JP5290532B2 (en) POLYESTER RESIN AQUEOUS DISPERSION MIXTURE AND PROCESS FOR PRODUCING THE SAME
JP2011195692A (en) Polyester resin aqueous dispersion and method for producing the same, and polyester resin coating obtained from the same
WO2007029728A1 (en) Polyester resin aqueous dispersion, coating film obtained from same, and packaging bag using such coating film
JP2010215770A (en) Aqueous dispersion of copolyester resin and method for producing the same
JP2009221316A (en) Polyester resin aqueous dispersion, film prepared therefrom, and packaging bag using the film
JP5578891B2 (en) Aqueous polyester resin dispersion, method for producing the same, and resin film obtained therefrom
WO2007086266A1 (en) Polyester resin aqueous dispersion and method for producing same
JP4191522B2 (en) Biodegradable polyester resin aqueous dispersion
JP5666919B2 (en) Aqueous polyester resin dispersion and method for producing the same
JP4746316B2 (en) Aqueous polyester resin dispersion and method for producing the same
JP2007031509A (en) Polyester resin aqueous dispersion and method for producing the same
JP5094063B2 (en) Polyester resin aqueous dispersion
JP4280491B2 (en) Aqueous polyester resin dispersion and method for producing the same
JP2010163517A (en) Polyester resin aqueous dispersion and method for producing the same
JP2012041408A (en) Polyester resin aqueous dispersion
JP5794880B2 (en) Aqueous dispersion and method for producing the same
JP6022852B2 (en) Aqueous polyester resin dispersion and method for producing the same
JP2004300285A (en) Polyester resin for biodegradable adhesive
JP2009084380A (en) Aqueous dispersion of polyester resin and its manufacturing method
JP4708290B2 (en) Aqueous dispersion of polyester resin, process for producing the same, and film-forming product obtained therefrom
JP4763514B2 (en) Polyester resin water dispersion
JP2006182950A (en) Polyester resin aqueous dispersion
JP2011117004A (en) Polyester resin aqueous dispersion and method for producing the same
JP2004143379A (en) Aqueous dispersion of resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007555884

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087018162

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706739

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)