WO2007086193A1 - 有限要素法による構造解析方法及びプログラム - Google Patents

有限要素法による構造解析方法及びプログラム Download PDF

Info

Publication number
WO2007086193A1
WO2007086193A1 PCT/JP2006/324105 JP2006324105W WO2007086193A1 WO 2007086193 A1 WO2007086193 A1 WO 2007086193A1 JP 2006324105 W JP2006324105 W JP 2006324105W WO 2007086193 A1 WO2007086193 A1 WO 2007086193A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
displacement
equation
finite element
structural analysis
Prior art date
Application number
PCT/JP2006/324105
Other languages
English (en)
French (fr)
Inventor
Mikio Kurita
Original Assignee
National University Corporation Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation Nagoya University filed Critical National University Corporation Nagoya University
Priority to US12/162,178 priority Critical patent/US20090012751A1/en
Priority to JP2007555861A priority patent/JPWO2007086193A1/ja
Publication of WO2007086193A1 publication Critical patent/WO2007086193A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD

Definitions

  • the present invention relates to a structural analysis method and program using a finite element method.
  • FEM Finite Element Method
  • the shape of the structure to be analyzed is called an “element” (also called a mesh). It is divided into small parts of a polygon or polyhedron, and each divided small part is equivalent to each part.
  • physical quantities such as displacement generated in the structure to be analyzed are calculated and analyzed. It is the most popular numerical analysis method.
  • the finite element method used for structural analysis obtains a result by solving a stiffness matrix having structure information, a constraint condition (boundary condition) and a matrix representing a load, that is, solving a stiffness equation. Therefore, a matrix is created and calculated for each load and constraint condition.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-54863
  • the present invention has been made in view of these problems, and an object of the present invention is to provide a structural analysis method using a finite element method that enables a reduction in calculation time when the magnitude and direction of load conditions are different. To do.
  • the present inventor has found that when a force of a certain magnitude is applied to a structure, a set of displacements at any point constitutes an ellipsoid, and the shape of the ellipsoid is the position of the measurement point. It was found that it depends on the position of the force application point and the restraint method. In other words, the displacement of an arbitrary structure is not complicated even if it is an arbitrary constraint method, and is represented by a vector in three directions.
  • a structure is divided into a plurality of elements, each element is regarded as a panel, and a rigidity equation is set up with the structure as a set of batteries.
  • the load applied to the structure is expressed by the stress and strain in each element, and the deformation of the entire structure is derived.
  • the reverse process is also synonymous.
  • FIG. 5 (a) shows the outer shape of structure 30
  • Fig. 5 (b) shows the case where structure 30 is divided into four parts
  • Fig. 5 (c) shows the case where structure 30 is divided into four parts
  • the structure is divided into multiple elements.
  • the structure is divided into k elements and m nodes.
  • the position and number of nodes are determined by the way the elements are divided.
  • the shape of each element can be expressed by its node coordinates, and the hardness between adjacent nodes is determined by the shape of the element and the physical properties of the material. Therefore, in the case of a structure with m nodal forces, the stiffness equation is given by Equation 1 because the degree of freedom is 3 m.
  • the matrix elements of the load are 0 except for the node to which the load is applied and the node that is constrained. When the dead weight works, the force in the same direction is applied to each node. Of the displacement matrix elements, the constrained nodes are 0.
  • Equation 2 J (Equation 2)
  • Equation 3 shows the resistance from the restraint point s.
  • Equation 5a the stiffness matrix of Equation 5a
  • K the stiffness matrix of Equation 5b
  • is a 3m X 3m matrix
  • Equation 5a Equation 6 below.
  • Equation 7 If this matrix is expanded, the parts other than f are deleted, so it can be rewritten as shown in Equation 7 below. • ⁇ ⁇ Equation 7 If we focus only on the arbitrary i-th element and express only that using a matrix, it becomes a 3 X 3 square matrix as shown in Equation 8 below.
  • the force is determined by the stiffness matrix K. Since the force becomes complicated, the subscripts of 1 and m are added as shown in Equation 9 below.
  • Equation 10 Let us consider the case where is constant. Substitute this constant load into Equation 10 below.
  • Equation 9 becomes as shown in Equation 11 below.
  • the size of the principal axis of the ellipse is proportional to the magnitude of the force.
  • the three axes of the ellipsoid do not coincide with the axes of the coordinate system. In other words, the direction of load and the direction of displacement do not match.
  • the matrix K is expanded and divided into two matrices, and the stiffness matrix (Equation 5a) is also kept square. Therefore, there is an inverse matrix.
  • the final matrix P is a 3 x 3 matrix, and the stiffness equation can be solved in the same way. Therefore, the displacement ellipsoid is a force that is established even in multipoint constraints. Its shape depends on the position of the constraint points.
  • a set of displacements at arbitrary points constitutes an ellipsoid. Its shape depends on the position of the measurement point, the position of the force application point, and the restraint method.
  • the invention is the structure analysis method according to the finite element method as defined in claim 1, wherein when a load is applied to the structure, an arbitrary point of the structure is an ellipsoid according to the direction of the load. Based on the property of drawing the shape, calculate the ellipsoidal shape formula when any point of the structure is displaced from the constraint condition, load condition and stiffness matrix for the structure, and calculate the ellipsoid Based on the shape formula, the displacement of an arbitrary point when an arbitrary load is applied to the structure is obtained.
  • the displacement of the structure can be obtained by solving the load condition into a simple ellipsoidal shape equation that does not require enormous matrix calculations each time the load changes. Therefore, it is possible to shorten the calculation time required for structural analysis by the finite element method.
  • the “constraint condition” is a constraint condition within a range where the displacement ellipsoid can be applied per one analysis result.
  • the condition is performed at the node of the element, and its number, position and direction are It is specified. When this condition is changed, it is necessary to perform a new analysis.
  • the "load condition” is a load condition within a range in which the displacement ellipsoid can be applied to one analysis result.
  • the load is applied to the node of the element, its number and position are specified, and the size and direction are arbitrary. If the size is constant, the displacement ellipsoid can be adapted, and if the size and direction are specified, the displacement ellipsoidal force derives the displacement caused by the condition. Any other change in load conditions requires a new analysis.
  • the structural analysis method based on the finite element method includes the process of dividing the structure to be analyzed into meshes and the process of solving the stiffness equation! Convenient to.
  • the structure to be analyzed is divided into a plurality of meshes having a plurality of nodal forces.
  • analysis condition input step to input constraint condition, load condition and stiffness matrix, analysis condition input step to input constraint condition, load condition and material physical property of structure, and created mesh are input
  • the stiffness matrix is created from the constraint conditions and material properties, and the stiffness equation is solved from the input constraint conditions, load conditions, and the created stiffness matrix, and the displacement of all nodes for the load conditions is obtained.
  • An ellipsoid shape calculation step for calculating an ellipsoid shape expression formed by each node from the obtained displacement, and an ellipse for calculating the displacement of each node when an arbitrary load is applied to the structure. It is advisable to perform structural analysis of the structure by the displacement calculation step for obtaining the circular force.
  • the "stiffness matrix” is a matrix that represents characteristics related to the rigidity of the structure, and the elements of the matrix also have information (eg, Young's modulus) force indicating the rigidity.
  • the “rigidity equation” is an equation expressed by a constraint condition (boundary condition), a matrix representing the load, and a stiffness matrix. How is the structure represented by the stiffness matrix under a given load condition? An equation that expresses whether or not to displace.
  • input means that the person who performs analysis (hereinafter also referred to as a user) performs an input operation. This includes the case of inputting a numerical value or the like, or the case of reading a numerical value or the like set and stored in advance in a storage device or the like.
  • the program according to claim 3 is based on the property that when a load is applied to the structure, an arbitrary point of the structure draws an ellipsoidal shape according to the direction of the load.
  • the ellipsoidal shape calculation step that calculates the ellipsoidal shape formula that is formed when an arbitrary point of the structure is displaced from the constraint condition, load condition, and stiffness matrix, and the calculated ellipsoidal shape formula
  • a displacement calculation step for obtaining a displacement at an arbitrary point when an arbitrary load is applied to the structure, and a structural analysis program based on a finite element method.
  • This program is a program having the effects obtained by the structural analysis method using the finite element method according to claim 1.
  • the program according to claim 4 is the computer-aided structural analysis program according to claim 3, wherein the structure to be analyzed is converted into a plurality of meshes including a plurality of nodes. Stiffness to create a stiffness matrix from the mesh creation step to divide, the analysis condition input step to input constraint conditions, load conditions and material properties of the structure, and the created mesh and the input constraint conditions and material properties The matrix creation step is executed, and as the ellipsoidal shape calculation step, the stiffness equation is solved from the input constraint conditions and load conditions and the created stiffness matrix, and the displacements of all nodes with respect to the load conditions are obtained.
  • the calculated displacement force Calculates the ellipsoidal shape formed by each node, and as a displacement calculation step, the displacement of each node when an arbitrary load is applied to the structure Calculated let me ellipsoidal shape formula Ca ⁇ et demanded of a structural analysis program according to the finite element method and performing structural analysis of the structure.
  • This program is a program having an effect obtained by the structural analysis method using the finite element method according to claim 2.
  • This program may be an independent program! /, But it may be incorporated into an existing FEM program such as NASTRAN!
  • FIG. 2 is a diagram showing a truss structure 10 to be analyzed.
  • FIG. 3 (a)-(b) Analysis diagrams showing displacement of the model 20 of the truss structure 10.
  • FIG. 4 is a diagram showing the displacement of node C of model 20.
  • FIG. 5 is a diagram showing an example in which the structure 30 is divided into a plurality of elements.
  • FIG. 6 is a diagram showing a locus of a node C when a load is applied to the model 20.
  • FIGS. 1A to 1B are flowcharts of the structural analysis process by the finite element method.
  • Fig. 1 (a) shows a flowchart of the structural analysis process to which the present invention is applied
  • Fig. 1 (b) shows a flowchart of the conventional structural analysis process for comparison.
  • the computer on which this process is executed has only a storage device, an input device, a display device, and the like and can perform structural analysis by the finite element method, and thus description thereof is omitted.
  • a model of a structure is input in S100. That is, in the present embodiment, the truss formed of the nodes 11a, ib, 11c, 11d, the wires 12a, 12b, 12c, 12d and the bases 13a, 13b to which the wires are fixed as shown in FIG.
  • the shape of the structure 10 that is, the coordinates of the nodes l la to l id and the bases 13 a and 13 b, the nodes 11 a to 1 Id, the correspondence between the bases 13 a and 13 b and the wires 12 a to 12 d, and the like are input.
  • Model 20 is a triangle with nodes A, B, and C at the vertices of triangle ABC as shown in Fig. 3 (a).
  • Side c between nodes A and B, side a between nodes B and C, side b between nodes C and A, and the angle formed by side b and side c is angle Q; side c and side a
  • be the angle formed by and ⁇ be the angle formed by side a and side b.
  • a mesh having a plurality of nodal forces is created based on the model input in S100. Since the mesh may be formed by using a known method, for example, an adaptive method, detailed description is omitted.
  • the triangular model 20 shown in FIG. 3 (a) is a mesh. Move to S110 after creating the mesh.
  • the material physical property input here represents a material property of the structure, for example, a panel constant of the material.
  • the cross-sectional areas of the wires constituting the sides a, b, and c of the triangle are the same, and the panel constant ES per unit length of the wire is 1.
  • S is the cross-sectional area of the wire
  • E is the Young's modulus of the wire.
  • a stiffness matrix is created. That is, a load F of unit force is set, and the load F is divided into a direction AC and a component orthogonal thereto. The balance between the divided force, the force fca applied to the side b, and the force fcb applied to the wire a is as shown in the following equations 13a and 13b.
  • tan A J And ⁇ ca and ⁇ cb are expressed by the following equations 16a and 16b when they are expressed by X, Y coordinate displacements ⁇ , ⁇ y.
  • Equation 16a Equation 16b
  • a constraint condition is input.
  • the constraint condition input here is the position of the constraint point of the structure or the direction of the constraint.
  • the constraint is that point A and point B are fixed. After entering the constraint conditions, go to S125.
  • a load condition is input.
  • the load condition input here is the position and unit force of the load applied to each node.
  • the vertex C The unit force applied to node C
  • F l.
  • the load condition may be input by reading what is stored in advance in a storage device of a computer, or by inputting a keyboard force operated by the user.
  • the stiffness equation is solved to obtain displacement ellipsoids at all points.
  • the displacement of the node C that is, the ellipsoidal shape drawn by the node C is obtained as follows.
  • ⁇ , Sy is expressed by the following equations 20a and 20b, and can be expressed by a sine function.
  • nodes a and b are constrained, only the trajectory of node C is obtained. However, in the case of other models, if there are unconstrained nodes, node C and Similarly, we obtain the displacement ellipsoid of all points. After calculating the ellipsoidal shape drawn by the node C in this way, the process proceeds to S135.
  • a model change input process is performed.
  • the model change input operation is performed by the user based on the display of the ellipsoid displayed in S140. Therefore, in S145, a display prompting the user to make a model change input, for example, “Do you want to change the model? (YesZNo)?” Is displayed on the screen.
  • S150 a determination is made as to whether or not the force is to be checked for a specific load condition. In other words, when a specific load condition is entered to determine whether or not the force is to be checked, it is determined whether or not the force is input. If the input has been made (Yes in S 150), the process proceeds to S 155 and the input has been made. If not (No in S150), the process ends.
  • a load condition is input. That is, a change in the direction and magnitude of the load is input for the load condition input in S125. After entering, go to S160
  • the input of the load condition may be read in advance stored in a storage device of the computer, or may be input from a keyboard operated by the user. .
  • Equation 20b the displacement of contact C can be obtained by calculating Equation 2 la and Equation 2 lb.
  • S170 it is input whether or not the force to be checked for another load condition is input. If input (if Yes in S170), the process returns to S155 and repeats the input. If not (No in S 170), the process is terminated.
  • the truss structure 10 is the target of structural analysis.
  • the target of structural analysis is any structure as long as it is a target of structural analysis by the finite element method. Also good.
  • the force may be a polygon with a mesh as a triangle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)

Abstract

 荷重条件のうち大きさと向きが異なる場合における計算時間の短縮を可能とする有限要素法による構造解析方法を提供する。有限要素法による構造解析方法において、構造物に荷重が加わったときに構造物の任意の点が荷重の方向に応じて楕円体形状を描くという性質に基づいて、構造物に対する拘束条件と荷重条件と剛性行列とから構造物の任意の点が変位する際に形成する楕円体形状の式を算出し、その算出した楕円体形状の式に基づいて、構造物に任意の荷重が加わったときの任意の点の変位を求める。

Description

明 細 書
有限要素法による構造解析方法及びプログラム
技術分野
[0001] 本発明は、有限要素法による構造解析方法及びプログラムに関する。
背景技術
[0002] 従来、複雑な形状を有する構造物等の強度を解析する場合、コンピュータによって 有限要素法(FEM : Finite Element Method)を実行して解析することがよく行わ れる。有限要素法では、解析対象となる構造物の形状を「要素」と呼ばれる (メッシュ とも呼ばれる。)多角形又は多面体の小部分に分割し、分割した小部分の 1つ 1つに 対して等価なモデルを作り、それらのモデル群カゝら物体全体の方程式を組立てること によって解析対象構造物等に生じる変位等の物理量を計算し、解析する。最も普及 して ヽる数値解析法である。
[0003] 構造解析に用いられる有限要素法は、構造物の情報を持つ剛性行列、拘束条件( 境界条件)と荷重を表す行列を解ぐつまり、剛性方程式を解くことによって結果を得 る。したがって、荷重や拘束条件ごとに行列の作成と計算を行う。
[0004] 通常、三次元モデルの力学解析を行う場合、拘束条件や荷重の作用点などは一 定であり、一方その荷重の様々な方向に対する変形量に注目することが多い。また、 モデルが機能を維持できるかどうかは、全体の変形を知るよりもむしろモデル内の特 定の場所の変形が許容値を越えるかどうかで検討されることが多い。そのため、モデ ルの解析においては、荷重の方向を変えながら、つまり、荷重条件ごとに計算を繰り 返す (例えば、特許文献 1参照)。
特許文献 1:特開 2004— 54863号公報
発明の開示
発明が解決しょうとする課題
[0005] ところが、この繰返し計算において、剛性方程式を解く際には数種類の条件と膨大 な情報が必要であり、一般的に数万行 X数万行の行列計算を行うので、かなりの時 間を要する。つまり、解析条件ごとに計算を繰り返す必要があるので、従来の有限要 素法においては、解析作業には膨大な時間を要する。
[0006] また、有限要素法は数値解析であるので、常に定量的な解析を行う。つまり、各荷 重条件ごとに計算を行う必要があるので、計算時間の効率が図れない。
[0007] 本発明は、こうした問題に鑑みなされたもので、荷重条件のうち大きさと向きが異な る場合における計算時間の短縮を可能とする有限要素法による構造解析方法を提 供することを目的とする。
課題を解決するための手段
[0008] 本発明の理解をより明確にするために、特許請求の範囲に記載した課題解決手段 を具体的に解説する前に、本発明の技術的思想の創作過程について説明する。
[0009] 構造解析等では、荷重の大きさや方向などの解析条件を種々変化させて解析を行 う必要がある。その解析のために有限要素法を用いた場合、解析条件を変えるたび に剛性方程式を解く必要があるので、膨大な計算量が必要である。
[0010] ところが、本願発明者は、構造物に一定の大きさの力を加えたときに任意の点の変 位の集合は楕円体を構成し、その楕円体の形状は、測定点の位置、力の作用点の 位置、拘束方法に依存することを見出した。つまり、任意の構造物の変位は、任意の 拘束方法であっても、複雑なものではなく、 3方向のベクトルで代表されるのである。
[0011] 簡単にいうと、ある構造物の任意の点は、一定の力が印加されると、その力の方向 に応じて、楕円体形状を描きつつ移動(変位)するのである。以下、このようにして形 成される楕円体を「変位楕円体」と称する。
[0012] そこで、この変位楕円体の特性を有限要素法に適用して、解析条件を変化させる たびに剛性方程式を解く必要がない解析方法を発明した。以下、それを説明する。
[0013] 有限要素法は構造物を複数の要素に分割し、各要素をパネとみなし、構造物をバ ネの集合として剛性方程式を立てる。構造物に加わる荷重を各要素内の応力とひず みで表し、構造物全体の変形を導出する。その逆過程も同義である。
[0014] 図 5 (a) - (b) - (c)により、構造物 30を複数の要素に分割した例を示す。図 5 (a) が構造物 30の外形を示し、図 5 (b)に構造物 30を 4個に分割した場合を示し、図 5 (c
)に構造物 30を 16個に分割した場合を示す。
[0015] 図 5 (a)― (b)― (c)に示すように構造物を複数の要素を分割する場合を一般化し 、構造物を k個の要素と m個の節点に分割したとする。図 5 (a) - (b) - (c)から分か るように要素の分け方で節点の位置と数は決まる。各要素の形状はその節点座標で 表現でき、隣り合う節点間のかたさは要素の形状と材料の物性で決定される。よって 、 m個の節点力 なる構造物の場合は、自由度が 3mあるため、剛性方程式は、式 1 で示される。
[0016] [数 1]
(式 1 )
Figure imgf000005_0001
Figure imgf000005_0002
左辺が各節点にはたらく力の 1 X 3mの行列。右辺が 3m X 3mの剛性行列 K (kj)と 1 X 3mの変位を表す行列となる。今、座標系を (X, y, z)のデカルト座標にとったとき 、要素の分割の仕方で節点の位置や数が変わるので、剛性行列も変わる。
[0017] しかし、十分に分割が細かければ剛性行列が異なっても、導出される変位や応力 分布の結果の差は無視できる。剛性行列の性質として、各節点間は力の向きが逆で も、ばね定数は同じであるために必ず対称行列となる(k =k )。
[0018] 荷重の行列要素は荷重が加わった節点と拘束される節点以外は 0となる。自重が はたらく場合、各節点に同じ向きの力がかかる。変位の行列要素のうち、拘束される 節点は 0となる。
[0019] 構造物の n番目の節点に下記式 2で示す力をかけ、 s番目の節点を拘束したとする [0020] [数 2] J (式 2 ) この s番目の拘束によって、構造物は剛体としての並進と回転を拘束され、剛性行 列は逆行列を持つとする。拘束点 sからの抗カを下記式 3に示す。
[0021] [数 3] ん,ん,ん' · · (式3 )
なおこの抗カは当然 n番目にかける力の関数 (未知)となる。このときの剛性方程式 は、式 4で示される。
[0022] [数 4]
• · · (式 4 )
Figure imgf000006_0001
これを展開する。拘束点の 0成分を考慮すると、下記式 5a、式 5bに示すような 2つ の行列計算に分けることができる。
[0023] [数 5]
· · (式 5 a )
(式 5 b )
Figure imgf000007_0001
式 5aの剛性行列を K,、式 5bの剛性行列を Kとする。 Κ,は 3m X 3mの行列 から
s
拘束点の自由度分 3を行と列力 差し引いた 3m— 3ゾ// X 3m— 3の行列なので、正方 行列であり、逆行列をもつことができる。つまり、剛体としての並進と回転とを拘束され た物体に力をかけたときの変位と力との関係は、 1対 1対応なので逆行列を持つこと なる。この剛性行列 K'の逆行列を G' (g )とすると式 5aは、下記式 6のように書き換え ることがでさる。
[数 6]
(式 6 )
Figure imgf000007_0003
Figure imgf000007_0002
この行列を展開すると f以外に力かる部分は消去されるため、下記式 7のように書き 換えることができる。 • · · 式 7
Figure imgf000008_0001
任意の i番目の要素だけに注目し、そこだけを行列を使って表現すると下記式 8 示すように 3 X 3の正方行列となる。
[数 8]
人ん
Λ (式 8 )
Figure imgf000008_0002
ここで再び両辺にこの行列 Gの逆行列 P (p )を作用させる。この逆行列はもともと
lm
剛性行列 Kで決まるものだ力 煩雑になるため 1, mの通し添え字を付け直すと下記 式 9に示すようになる。
[数 9]
(式 9 )
Figure imgf000008_0003
これは、荷重を変位で表す,
[0028] この荷重の大きさ
[0029] [数 10] を一定とした場合を考える。この一定荷重を下記式 10に代入する
[0030] [数 11]
. + ΛΪ + = · ■ (式 i o )
すると、式 9は、下記式 11で示すようになる。
[0031] [数 12]
(Pn + Pn + Pn )ul + (Ρ ι + Pli; UL iPli + P + P}} l +
2(p„P2i + Pn P2i + ΡΏ Ρ23 α »^ +
ΆΡη Ρίΐ + ΡΙΙ Ρ-Ώ + Ρ23 Ρ33 +
ΆΡ,, Ρη + Pii Pn + Pa Pu )ub llx = \ Fn ) - · · (式 1 1 )
det K J この式は楕円体 (面)を意味する。つまり大きさ一定の荷重による任意の節点 (U , U
, u )の描く軌跡は、原点を中心とした三軸楕円体の表面となる。ここでいう原点とは iy lz
荷重 0のときの位置である。その楕円の主軸の大きさは力の大きさに比例する。一般 に楕円体の 3軸は座標系の軸と一致しない。つまり荷重の方向と変位方向は一致し ない。
[0032] 以上は任意の 1節点に荷重をカ卩え、任意の 1節点を拘束したときの任意の 1節点の 変位が描く軌跡である。通常、構造物の拘束方法や荷重のかけ方はさまざまである。 そこで次に拘束点と作用点の数を増やしたときも、変位の楕円体が成り立つことを説 明する。
[0033] 拘束点を増やした場合、行列 Kを展開し、 2つの行列に分けたときの剛性行列 (式 5 a)も正方性は保たれる。よって、逆行列が存在する。最終的に得られる行列 Pは 3 X 3の行列となり、剛性方程式を同様に解くことができる。よって変位の楕円体は多点 拘束においても成立する力 その形状は拘束点の位置に依存する。
[0034] 節点 nとは別の節点 n'に下記式 12で示される力をかけたとする。
[0035] [数 13] = An.Fn- · ■ (式 1 2 )
ただし、 A,はスカラー量。このとき行列 G'より uの各成分は、 fnの各行列要素に A ,
n l n をかけたものの和になるため、任意の点の変位は楕円体となり、その形状は力がかか る大きさ、数、場所による。
[0036] 以上のように、任意の構造物に同じ大きさの力を四方八方力 かけたときに構造物 の何れの点の変位も楕円体の面上に分布する。このイメージを図 6に示す。
[0037] 以上説明したように、構造物に大きさ一定の力をかけたとき、任意の点の変位の集 合は楕円体を構成する。その形状は、測定点の位置、力の作用点の位置、拘束方法 に依存する。
[0038] そこで、構造物に大きさ一定の力をかけたとき、任意の点の変位の集合は楕円体を 構成することを有限要素法に適用して構造解析を行うという発明を行ったのである。
[0039] その発明とは、請求項 1に記載のように、有限要素法による構造解析方法において 、構造物に荷重が加わったときに構造物の任意の点が荷重の方向に応じて楕円体 形状を描くという性質に基づいて、構造物に対する拘束条件と荷重条件と剛性行列 とから構造物の任意の点が変位する際に形成する楕円体形状の式を算出し、その算 出した楕円体形状の式に基づいて、構造物に任意の荷重が加わったときの任意の 点の変位を求めることを特徴とする。
[0040] このようにすると、前述したように、構造物に荷重が加わったときに、その構造物の 任意の点の変位を算出した楕円体形状の式力 求めることができる。したがって、有 限要素法による構造物の構造解析において、荷重が変化したときでも、その荷重の 変化に対して剛性方程式を解く必要がない。
[0041] つまり、荷重が変化するたびに膨大な行列計算をする必要がなぐ簡単な楕円体 形状の式に荷重条件を入れて解けば構造物の変位を求めることができる。したがつ て、有限要素法による構造解析に力かる計算時間を短縮することができる。
[0042] なお、「拘束条件」とは、 1回の解析結果につき、変位楕円体を適応できる範囲内の 拘束条件のことである。条件は、要素の節点において行われ、その数、位置、方向が 指定される。この条件を変更する場合は、新規の解析を行う必要がある。
[0043] また、「荷重条件」とは、 1回の解析結果につき、変位楕円体を適応できる範囲内の 荷重条件のことである。荷重は要素の節点に加えられ、その数、位置が指定され、大 きさと方向とは任意とする。大きさが一定であれば、変位楕円体は適応でき、大きさと 方向を指定すれば、変位楕円体力 その条件によって起きる変位が導出される。こ れ以外の荷重条件の変更は、新規の解析を必要とする。
[0044] ところで、有限要素法による構造解析方法に、解析対象となる構造物をメッシュに 分割する処理や剛性方程式を解!ヽたりする処理が含まれて!/ヽると構造解析を行うの に都合がよい。
[0045] そこで、請求項 2に記載のように、請求項 1に記載の有限要素法による構造解析方 法において、解析対象となる構造物を複数の節点力もなる複数のメッシュに分割する メッシュ作成ステップと、拘束条件と荷重条件と剛性行列とを入力する解析条件入力 ステップと、拘束条件と荷重条件と構造物の材料物性とを入力する解析条件入カス テツプと、作成されたメッシュと入力された拘束条件及び材料物性とから剛性行列を 作成する剛性行列作成ステップと、入力された拘束条件と荷重条件と作成された剛 性行列とから剛性方程式を解き、荷重条件に対する全節点の変位を求め、その求め た変位から各節点が形成する楕円体形状の式を算出する楕円体形状算出ステップ と、構造物に任意の荷重が加わったときの各節点の変位を算出した楕円体形状の式 力 求める変位計算ステップと、により構造物の構造解析を行うようにするとよい。
[0046] このようにして得られた各節点に対して楕円体形状の式を算出し、その算出した楕 円体形状の式力 構造物に任意の荷重が加わったときの各節点の変位、つまり構造 物の変位が求められるので、計算時間を短縮することができる。
[0047] なお、「剛性行列」とは、構造物の剛性に関する特性を表す行列であり、その行列 の要素は、剛性を示す情報 (例えば、ヤング率など)力もなる。また、「剛性方程式」と は、拘束条件 (境界条件)と荷重を表す行列及び剛性行列で表される方程式であり、 与えられた荷重条件において、剛性行列で表される構造物がどのように変位するか を表す方程式をいう。
[0048] また、「入力する」とは、解析を行う者 (以下、使用者とも称する。 )が入力操作を行つ た数値等を入力する場合や予め記憶装置等に設定されて記憶されている数値等を 読み込んだりする場合を含む。
[0049] 請求項 3に記載のプログラムは、コンピュータに、構造物に荷重が加わったときに構 造物の任意の点が荷重の方向に応じて楕円体形状を描くという性質に基づいて、構 造物に対する拘束条件と荷重条件と剛性行列とから構造物の任意の点が変位する 際に形成する楕円体形状の式を算出させる楕円体形状算出ステップと、算出した楕 円体形状の式に基づいて、構造物に任意の荷重が加わったときの任意の点の変位 を求める変位計算ステップと、を実行させることを特徴とする有限要素法による構造 解析プログラムである。
[0050] このプログラムは、請求項 1に記載の有限要素法による構造解析方法によって得ら れる効果を備えたプログラムとなる。
[0051] また、請求項 4に記載のプログラムは、請求項 3に記載の有限要素法による構造解 析プログラムにおいて、コンピュータに、解析対象となる構造物を複数の節点からな る複数のメッシュに分割するメッシュ作成ステップと、拘束条件と荷重条件と構造物の 材料物性とを入力する解析条件入力ステップと、作成されたメッシュと入力された拘 束条件及び材料物性とから剛性行列を作成する剛性行列作成ステップと、を実行さ せ、さらに、楕円体形状算出ステップとして、入力された拘束条件と荷重条件と作成 された剛性行列とから剛性方程式を解き、荷重条件に対する全節点の変位を求め、 その求めた変位力 各節点が形成する楕円体形状の式を算出させ、変位計算ステツ プとして、構造物に任意の荷重が加わったときの各節点の変位を算出した楕円体形 状の式カゝら求めさせて、構造物の構造解析を行うことを特徴とする有限要素法による 構造解析プログラムである。
[0052] このプログラムは、請求項 2に記載の有限要素法による構造解析方法によって得ら れる効果を備えたプログラムとなる。
[0053] なお、このプログラムは、独立したプログラムであってもよ!/、が、既存の FEMプログ ラム、例えば NASTRAN等へ組み込むようにしてもよ!、。
図面の簡単な説明
[0054] [図 1(a)- (b)]有限要素法による構造解析処理のフローチャートである。 [図 2]解析対象のトラス構造 10を示す図である。
[図 3(a)- (b)]トラス構造 10のモデル 20の変位を示す解析図である。
[図 4]モデル 20の節点 Cの変位を示す図である。
[図 5(a)- (b)-(c)]構造物 30を複数の要素に分割した例を示す図である。
[図 6]モデル 20に荷重が加わったときの節点 Cの軌跡を示す図である。
符号の説明
[0055] 10· · ·トラス構造、 11a, l ib, 11c, l id…節、 12a, 12b, 12c, 12d…線材、 13a , 13b…基部、 20· "モデル、 30· · ·構造物。
発明を実施するための最良の形態
[0056] 以下、本発明が適用された実施形態について図面を用いて説明する。なお、本発 明の実施の形態は、下記の実施形態に何ら限定されることはなぐ本発明の技術的 範囲に属する限り種々の形態を採りうる。
[0057] 本実施形態では、前述した変位楕円体の考えをトラス構造に適用して、トラス構造 を解析する場合について説明する。
[0058] 図 1 (a)— (b)は、有限要素法による構造解析処理のフローチャートである。図 1 (a) には本発明が適用された構造解析処理のフローチャートを示し、図 1 (b)には、比較 のために従来の構造解析処理のフローチャートを示した。
[0059] なお、本処理が実行されるコンピュータは、記憶装置、入力装置、表示装置等を備 え、有限要素法による構造解析が実行可能なものであればよいので、説明は省略す る。
[0060] 図 1 (a)に示す構造解析処理においては、まず、 S 100において構造物のモデルを 入力する。つまり、本実施形態においては、図 2に示すような節 11a, l ib, 11c, 11 dと線材 12a, 12b, 12c, 12dと線材が固定される基部 13a, 13bとから形成されるト ラス構造 10の形状、つまり、各節 l la〜 l id及び各基部 13a, 13bの座標や各節 11 a〜 1 Idや基部 13a, 13bと各線材 12a〜 12dとの対応付け等を入力する。
[0061] 本実施形態では、単位面積あたりの三角トラスの変形量を計算するので、トラス構 造を形成する三角形のうち 1つの三角形 ABCをモデル 20として入力する。モデル 2 0は、図 3 (a)に示すように三角形 ABCの各頂点を節点 A, B, Cとする三角形である [0062] 節点 A, B間を辺 c、節点 B, C間を辺 a、節点 C, A間を辺 bとし、辺 bと辺 cとが成す 角を角 Q;、辺 cと辺 aとが成す角を β、辺 aと辺 bとが成す角を βとする。
[0063] また、図 3 (a)に示す三角形のモデル 20の節点 Cに単位力をかけるようにする。この ようにモデルを入力した後 S 105へ移行する。
[0064] なお、さらに複雑な形状の構造物をモデルとして入力する際の入力を容易にするた めに、公知のプログラム、例えば、 CAD (Computer Aided Design)用のプログラ ムを本処理に組み込んでモデル入力処理を行うようにしてもよ!、。
[0065] S105では、 S100において入力されたモデルに基づいて、複数の節点力もなるメッ シュを作成する。このメッシュ作成は公知の方法、例えば、ァダプティブ法を用いてメ ッシュを形成すればよいので、詳細な説明は省略する。本実施形態の場合、図 3 (a) に示す三角形のモデル 20がメッシュとなる。メッシュ作成後 S110へ移行する。
[0066] S110にお ヽては、材料物性を入力する。ここで入力する材料物性とは、構造物の 材料に関する特性を表すもの、例えば、材料のパネ定数等である。
[0067] 本実施形態では、三角形の各辺 a, b, cを構成する線材の断面積は同じで、その 線材の単位長さあたりのパネ定数 ESを 1とする。ただし、 Sは線材の断面積、 Eは線 材のヤング率である。
[0068] このようにして材料物性を入力した後、 S115へ移行する。
[0069] S115では、剛性行列を作成する。すなわち、単位力の荷重 Fとおき、荷重 Fを方向 ACとそれと直交する成分とに分割する。この分割した力と辺 bにかかる力 fcaと線材 a にかかる力 fcbとのつりあいは、以下の式 13a及び式 13bで示すようになる。
[0070] [数 14]
F sin ^ = fca sin γ · · · (式 1 3
F cos 6> = fcb - fca cos 1 · - - (式 1 3 b ) これより、下記式 14a、式 14bを得る。
[0071] [数 15] „ F sm Θ . 、
f„, = · · (式 1 4 a )
sin γ fcb = Fcos0 + Fsine— ~* · · (式 1 4 b )
tan γ この荷重 Fによる線材 b, cの伸び縮みの量 δ ca, δ cbは、下記式 15a、式 15bで示 すようになる。
[0072] [数 16] oca = a · · Λ ΐ o a )
sm γ
Sch ^b(Fcos0+ Fsl e · · (式 1 5 b)
tan A J そして、 δ ca及び δ cbを X, Y座標の変位 δ χ, δ yで表すと下記式 16a、式 16bで 示すようになる。
[0073] [数 17]
Sca = δχ cos a - Sysma ' · , (式 1 6 a )
Scb = ~SX cos β -S sin β ' · · (式 1 6 b ) この式 16a、式 16bを行列形式で書き換えると下記式 17に示すようになる,
[数 18]
(式 1 7)
Figure imgf000015_0001
したがって、結局剛性方程式は、式 18に示すようになる。
[数 19] cos a - sin a
• (式 1 8
cos β - sin β j
Figure imgf000015_0002
以上のようにして、剛性行列を作成した後 S 120へ移行する。 [0076] SI 20では、拘束条件を入力する。ここで入力する拘束条件とは、構造物の拘束点 の位置や拘束の方向などをいう。本実施形態の場合、点 A及び点 Bが固定されてい ることが拘束条件となる。拘束条件を入力後、 S125へ移行する。
[0077] S 125では、荷重条件を入力する。ここで入力する荷重条件とは、各節点に加わる 荷重の作用点位置と単位力であり、本実施形態では、図 3 (a)に示すようにモデル 2 0が形成する三角形 ABCの頂点 C (節点 C)に加わる単位力 F= lである。荷重条件 を入力した後、 S 130へ移行する。
[0078] なお、荷重条件の入力は、予めコンピュータの記憶装置に記憶されたものを読み込 んでもよ 、し、使用者が操作するキーボード力 入力するものであってもよ 、。
[0079] S130では、剛性方程式を解き、全点の変位楕円体を得る。本実施形態では、以下 のようにして節点 Cの変位、つまり、節点 Cの描く楕円体形状の式を得る。つまり、図 3 (b)に示すように変位 δ 1を水平成分 δ Xと垂直成分 δ yとに分解すると、それぞれの 辺の変位量は、荷重 F= lであるので、式 17、式 18等から下記式 19のように表すこと ができる。
[0080] [数 20]
(式 1 9 )
Figure imgf000016_0001
これより、 δ χ, S yは、下記式 20a、 20bに示すようになり、正弦関数で表すことが できる。
[0081] [数 21]
Figure imgf000016_0002
ただし、 A, Bは係数で、 ωと ωとは、下記式 21a、式 21bで示される。 [0082] [数 22] b sin a . (式 2
sin β ΰ sin a
γ tan γ b cos a
tan ω (式 2 1 b )
、s β b cos a
sin γ tan γ この結果、節点 C (つまり、節点 C ')の軌跡は、図 4に示すような楕円となる。本実施 形態においても、荷重 Fをかけた方向と変位の方向とがー致しないことが分かる。ま た、それぞれの位相差は一定であるため、最大変位と最小変位とを起こす荷重も直 交する。
[0083] 特に直角二等辺三角形のときのみ、直角の頂点の変位は円の軌跡を描き、変位の 方向と荷重の方向とは一致する。
[0084] なお、本実施形態の場合、節点 a, bは拘束されているので節点 Cののみの軌跡を 得たが、他のモデルの場合、拘束されていない節点があれば、節点 Cと同様にして 全点の変位楕円体を得る。このようにして、節点 Cが描く楕円体形状の式を算出した 後、 S135へ移行する。
[0085] S 135では、 S 130にお!/、て得た変位楕円体のうち何れの解析点が選択されたかを 入力する。本実施形態では節点 cが選択されている。このように解析する点の選択入 力をした後、 S 140へ移行する。
[0086] S 140では、 S 130で得られた計算結果に基づき、 S 135にて選択された解析点、 つまり、図 4に示す節点 Cが描く楕円体形状を表示し、 S145へ移行する。
[0087] S145では、モデルの変更入力処理を行う。ここで、モデル変更入力の操作は、 S1 40において表示された楕円体の表示に基づいて、使用者によって行われる。したが つて、 S145では、使用者に対してモデルの変更入力の有無を促す表示、例えば「モ デル変更入力をおこな 、ますか?(YesZNo)」と!、つた表示を画面上に行う。
[0088] そして、使用者がモデル変更を行う場合には Yesを意味するキーボードの「Y」を押 下するとその「Υ」を入力し、モデル変更を行わない場合には使用者が Noを意味する キーボードの「N」を押下するとその「N」を入力する。
[0089] そして、キーボードの「Y」が押下される、つまり、 S145にて Yesの場合、 S100へ戻 り処理を繰り返す。逆に、キーボードの「N」が押下される、つまり、 S145で Noの場合 、 S 150へ移行する。
[0090] S150では、特定の荷重条件について調べる力否かの判定を行う。すなわち、特定 の荷重条件につ 、て調べる旨の入力がなされて 、る力否かを判定し、入力がされて いれば(S 150で Yesの場合) S 155へ移行し、入力がされていなければ(S 150で No の場合)処理を終了する。
[0091] なお、特定の荷重条件について調べるか否かの入力方法は S145における入力方 法と同様であるので説明を省略する。
[0092] S155では、荷重条件の入力を行う。つまり、 S 125において入力した荷重条件に 対して、荷重の方向及び大きさ等の変更を入力する。入力した後、 S160へ移行する
[0093] なお、荷重条件の入力は、 S125における入力と同様、予めコンピュータの記憶装 置に記憶されたものを読み込んでもよいし、使用者が操作するキーボードから入力す るものであってもよい。
[0094] S160では、単純計算で全点の変位を得る。つまり、 S130において算出された楕 円体形状の式 20a,式 20b及び式 21a,式 21bに基づき、別の荷重が接点 Cに加え られたときの接点 Cの変位を計算する。
[0095] このとき、 S160においては、式 18で示される剛性方程式を解く必要はなぐ C点に 加えられた荷重 Fの大きさ(F= lに対する大きさ)に基づいて、式 20a,式 20b及び 式 2 la,式 2 lbを計算すれば接点 Cの変位が求められる。
[0096] このようにして、全点の変位を得た後、 S 165へ移行して計算結果、つまり全点の変 位を表示した後、 S 170へ移行する。
[0097] S170では、別の荷重条件について調べる旨が入力されている力否かを入力し、入 力されて 、れば(S 170で Yesの場合) S 155に戻って処理を繰り返し、入力されて ヽ なければ(S 170で Noの場合)処理を終了する。
[0098] なお、別の荷重条件について調べ力否かの入力方法は S145における入力方法と 同様であるので説明を省略する。
[0099] 以上に説明した構造解析処理では、トラス構造 10に荷重が加わったときに、そのト ラス構造 10の節点 Cの変位を算出した楕円体形状の式、式 20a,式 20b及び式 21a ,式 21bから求めることができる。したがって、有限要素法によるトラス構造 10の構造 解析において、荷重が変化したときでも、その荷重の変化に対して式 18aに示す剛 性方程式を解く必要がない。
[0100] つまり、図 1 (a)に示す解析処理においては、 図 1 (b)に示す従来の解析方法のよ うに荷重が変化するたびに膨大な行列計算をする必要がなぐ簡単な楕円体形状の 式に荷重条件を入れて解けばトラス構造 10の変位を求めることができる。したがって 、有限要素法による構造解析に力かる計算時間を短縮することができる。
[0101] 以上、本発明の実施形態について説明したが、本発明は、本実施形態に限定され るものではなぐ種々の態様を採ることができる。
[0102] 例えば、本実施形態では、トラス構造 10を構造解析の対象としたが、構造解析の 対象としては、有限要素法による構造解析の対象となるものであればどのような構造 であってもよい。
[0103] また、本実施形態では、メッシュを三角形とした力 他の多角形としてもよい。

Claims

請求の範囲
[1] 有限要素法による構造解析方法にぉ 、て、
構造物に荷重が加わったときに前記構造物の任意の点が前記荷重の方向に応じ て楕円体形状を描くという性質に基づいて、前記構造物に対する拘束条件と荷重条 件と剛性行列とから前記構造物の任意の点が変位する際に形成する楕円体形状の 式を算出し、その算出した楕円体形状の式に基づいて、前記構造物に任意の荷重 が加わったときの前記任意の点の変位を求めることを特徴とする有限要素法による構 造解析方法。
[2] 請求項 1に記載の有限要素法による構造解析方法にぉ 、て、
解析対象となる構造物を複数の節点力 なる複数のメッシュに分割するメッシュ作 成ステップと、
拘束条件と荷重条件と前記構造物の材料物性とを入力する解析条件入力ステップ と、
前記作成されたメッシュと前記入力された前記拘束条件及び前記材料物性とから 剛性行列を作成する剛性行列作成ステップと、
前記入力された拘束条件と荷重条件と前記作成された剛性行列とから剛性方程式 を解き、前記荷重条件に対する全節点の変位を求め、その求めた変位力も各節点が 形成する楕円体形状の式を算出する楕円体形状算出ステップと、
前記構造物に任意の荷重が加わったときの前記各節点の変位を前記算出した楕 円体形状の式力 求める変位計算ステップと、
により構造物の構造解析を行うことを特徴とする有限要素法による構造解析方法。
[3] コンピュータに、
構造物に荷重が加わったときに前記構造物の任意の点が前記荷重の方向に応じ て楕円体形状を描くという性質に基づいて、前記構造物に対する拘束条件と荷重条 件と剛性行列とから前記構造物の任意の点が変位する際に形成する楕円体形状の 式を算出させる楕円体形状算出ステップと、
前記算出した楕円体形状の式に基づいて、前記構造物に任意の荷重が加わった ときの前記任意の点の変位を求める変位計算ステップと、 を実行させることを特徴とする有限要素法による構造解析プログラム。
請求項 3に記載の有限要素法による構造解析プログラムにおいて、
コンピュータに、
解析対象となる構造物を複数の節点力 なる複数のメッシュに分割するメッシュ作 成ステップと、
拘束条件と荷重条件と前記構造物の材料物性とを入力する解析条件入力ステップ と、
前記作成されたメッシュと前記入力された前記拘束条件及び前記材料物性とから 剛性行列を作成する剛性行列作成ステップと、
を実行させ、さらに、
前記楕円体形状算出ステップとして、前記入力された拘束条件と荷重条件と前記 作成された剛性行列とから剛性方程式を解き、前記荷重条件に対する全節点の変 位を求め、その求めた変位力 各節点が形成する楕円体形状の式を算出させ、 前記変位計算ステップとして、構造物に任意の荷重が加わったときの前記各節点 の変位
を前記算出した楕円体形状の式力 求めさせて、
前記構造物の構造解析を行うことを特徴とする有限要素法による構造解析プロダラ ム„
PCT/JP2006/324105 2006-01-27 2006-12-01 有限要素法による構造解析方法及びプログラム WO2007086193A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/162,178 US20090012751A1 (en) 2006-01-27 2006-12-01 Method and program for structure analysis by finite element method
JP2007555861A JPWO2007086193A1 (ja) 2006-01-27 2006-12-01 有限要素法による構造解析方法及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006019255 2006-01-27
JP2006-019255 2006-01-27

Publications (1)

Publication Number Publication Date
WO2007086193A1 true WO2007086193A1 (ja) 2007-08-02

Family

ID=38309000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324105 WO2007086193A1 (ja) 2006-01-27 2006-12-01 有限要素法による構造解析方法及びプログラム

Country Status (3)

Country Link
US (1) US20090012751A1 (ja)
JP (1) JPWO2007086193A1 (ja)
WO (1) WO2007086193A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106874540A (zh) * 2016-12-31 2017-06-20 华晨汽车集团控股有限公司 基于车身底盘安装点静态刚度的自动处理系统
CN111797472A (zh) * 2020-06-24 2020-10-20 中国第一汽车股份有限公司 一种副车架连接点刚度cae仿真自动化建模方法
CN112560167A (zh) * 2020-11-10 2021-03-26 北京航空航天大学 机翼结构力学高保真降阶仿真方法、电子设备、存储介质
CN113673022A (zh) * 2020-05-15 2021-11-19 中航西飞民用飞机有限责任公司 一种变形结构两点之间相对位移计算方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105224750B (zh) * 2015-10-10 2018-12-07 北京工业大学 一种基于响应面方法的新型空间可展铰链中单簧片结构优化设计方法
WO2017077609A1 (ja) * 2015-11-04 2017-05-11 富士通株式会社 構造解析方法、及び構造解析プログラム
CN107918696B (zh) * 2017-10-20 2021-05-11 西安电子科技大学 相控阵天线的多场耦合分析方法及计算机程序
CN108959835B (zh) * 2018-09-28 2023-10-13 苏州上声电子股份有限公司 扬声器盆架在螺钉安装过程中的强度仿真分析方法
CN109543249B (zh) * 2018-11-02 2023-04-18 中国运载火箭技术研究院 一种两级平面四杆机构及参数设计方法
CN112091972B (zh) * 2020-08-24 2023-03-31 上海大学 一种基于刚度性能的多机器人系统姿态与布局方法
CN112948995B (zh) * 2021-02-06 2022-09-30 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种考虑固体润滑涂层影响的球轴承力学行为分析方法
CN115204002A (zh) * 2022-06-10 2022-10-18 潍柴动力股份有限公司 一种发动机爆炸冲击载荷计算方法及系统
CN117454455B (zh) * 2023-11-16 2024-07-09 上海勘测设计研究院有限公司 一种导管架基础结构响应情况的快速计算方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183993A1 (en) * 2001-05-31 2002-12-05 Nec Corporation Analysis method using finite element method, program causing computer to execute same, and system for same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604891A (en) * 1994-10-27 1997-02-18 Lucent Technologies Inc. 3-D acoustic infinite element based on a prolate spheroidal multipole expansion
EP1337942B1 (en) * 2000-11-17 2016-10-12 Battelle Memorial Institute Method and system for structural stress analysis
US20040194051A1 (en) * 2004-05-13 2004-09-30 Croft Bryan L. Finite element modeling system and method for modeling large-deformations using self-adaptive rezoning indicators derived from eigenvalue testing
US20080300831A1 (en) * 2006-12-19 2008-12-04 Board Of Governors For Higher Education, State Of Rhode Island And Providence System and method for finite element based on topology optimization

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183993A1 (en) * 2001-05-31 2002-12-05 Nec Corporation Analysis method using finite element method, program causing computer to execute same, and system for same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106874540A (zh) * 2016-12-31 2017-06-20 华晨汽车集团控股有限公司 基于车身底盘安装点静态刚度的自动处理系统
CN113673022A (zh) * 2020-05-15 2021-11-19 中航西飞民用飞机有限责任公司 一种变形结构两点之间相对位移计算方法
CN111797472A (zh) * 2020-06-24 2020-10-20 中国第一汽车股份有限公司 一种副车架连接点刚度cae仿真自动化建模方法
CN111797472B (zh) * 2020-06-24 2022-12-27 中国第一汽车股份有限公司 一种副车架连接点刚度cae仿真自动化建模方法
CN112560167A (zh) * 2020-11-10 2021-03-26 北京航空航天大学 机翼结构力学高保真降阶仿真方法、电子设备、存储介质
CN112560167B (zh) * 2020-11-10 2023-03-14 北京航空航天大学 机翼结构力学高保真降阶仿真方法、电子设备、存储介质

Also Published As

Publication number Publication date
JPWO2007086193A1 (ja) 2009-06-18
US20090012751A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
WO2007086193A1 (ja) 有限要素法による構造解析方法及びプログラム
San-Vicente et al. Cubical mass-spring model design based on a tensile deformation test and nonlinear material model
Otero et al. Multiscale computational homogenization: review and proposal of a new enhanced-first-order method
Wang et al. Surface flattening based on energy model
Grégoire et al. Interactive simulation of one-dimensional flexible parts
KR100954307B1 (ko) 플렉시블 슬렌더-바디 시스템에 대한 비선형 솔버
JP4653482B2 (ja) コンピュータ変形解析器
US20080300831A1 (en) System and method for finite element based on topology optimization
WO2007076357A2 (en) System and method for finite element based topology optimization
Stanley et al. Deformable model-based methods for shape control of a haptic jamming surface
JP7334125B2 (ja) 任意座標系のメッシュにおける物理的流体のコンピュータシミュレーション
EP4016363A1 (en) Topology optimization with reaction-diffusion equations
JP7040152B2 (ja) 高分子材料のシミュレーション方法
US20230061175A1 (en) Real-Time Simulation of Elastic Body
JP2006294038A (ja) 解放された自由度を有する、制約された変形しやすいシステム用のソルバ
Rangel Educational tool for structural analysis of plane frame models with geometric nonlinearity
Cerrolaza et al. A Cosserat non-linear finite element analysis software for blocky structures
Murakami et al. DO-IT: deformable object as input tool for 3-D geometric operation
Koh et al. A deterministic optimization approach to protein sequence design using continuous models
Devloo et al. Application of a combined continuous–discontinuous Galerkin finite element method for the solution of the Girkmann problem
JP5180735B2 (ja) ゴム材料のシミュレーション方法
JP6050903B1 (ja) 高分子材料のシミュレーション方法
JP6711186B2 (ja) 高分子材料のシミュレーション方法
JP2021081923A (ja) 高分子材料のシミュレーション方法
Cao et al. An improved solution for deformation simulation of nonorthotropic geometric models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007555861

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12162178

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833875

Country of ref document: EP

Kind code of ref document: A1