WO2007086168A1 - Liquid crystal display and television receiver - Google Patents

Liquid crystal display and television receiver Download PDF

Info

Publication number
WO2007086168A1
WO2007086168A1 PCT/JP2006/319946 JP2006319946W WO2007086168A1 WO 2007086168 A1 WO2007086168 A1 WO 2007086168A1 JP 2006319946 W JP2006319946 W JP 2006319946W WO 2007086168 A1 WO2007086168 A1 WO 2007086168A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
panel
display device
crystal display
light
Prior art date
Application number
PCT/JP2006/319946
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Tokuda
Yoshiki Takata
Toshihide Tsubata
Naoshi Yamada
Shigeaki Mizushima
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007086168A1 publication Critical patent/WO2007086168A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/023Display panel composed of stacked panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0443Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
    • G09G2300/0447Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction

Definitions

  • the present invention relates to a liquid crystal display device with improved contrast and a television receiver including the same.
  • Patent Documents 1 to 7 There are various techniques disclosed in the following Patent Documents 1 to 7 as techniques for improving the contrast of a liquid crystal display device.
  • Patent Document 1 discloses a technique for improving the contrast ratio by appropriately adjusting the content and specific surface area of the yellow pigment in the pigment component of the color filter. As a result, it is possible to improve the problem that the contrast ratio of the liquid crystal display device is lowered due to the scattering and depolarization of the polarized light molecules of the color filter. According to the technique disclosed in Patent Document 1, the contrast ratio of the liquid crystal display device is improved from 280 to 420.
  • Patent Document 2 discloses a technique for improving the contrast ratio by increasing the transmittance and the degree of polarization of a polarizing plate. According to the technique disclosed in Patent Document 2, the contrast ratio of the liquid crystal display device is improved from 200 to 250.
  • Patent Document 3 and Patent Document 4 disclose a technique for improving contrast in a guest-host method using the light absorptivity of a dichroic dye.
  • Patent Document 3 describes a method for improving contrast by a structure in which a guest-host liquid crystal cell has two layers and a 1Z4 wavelength plate is sandwiched between the two layers of cells.
  • Patent Document 4 discloses a liquid crystal display element of a type in which a dichroic dye is mixed with a liquid crystal used in a dispersion type liquid crystal system. Patent Document 4 describes that the contrast ratio is 101.
  • Patent Document 3 and Patent Document 4 have a lower contrast than other methods, and in order to further improve the contrast, the light absorption of the dichroic dye is improved. Strength that requires increasing the dye content and increasing the thickness of the guest-host liquid crystal cell In any case, new problems such as technical problems, reduced reliability and poor response characteristics arise.
  • Patent Document 5 and Patent Document 6 disclose a contrast improvement method using an optical compensation method, in which a liquid crystal display panel and a liquid crystal panel for optical compensation are provided between a pair of polarizing plates.
  • Patent Document 5 in the STN method, the contrast ratio of the display cell, the liquid crystal cell for differential optical compensation, and the retardation is improved from 14 to 35! /.
  • Patent Document 6 a liquid crystal cell for optical compensation is installed to compensate for the wavelength dependence of a TN liquid crystal display cell during black display, and the contrast ratio is improved from 8 to 100. ing.
  • Patent Document 7 discloses a composite liquid crystal display in which two liquid crystal panels are overlapped so that each polarizing plate forms a cross-coll. An apparatus is disclosed. Patent Document 7 describes that a contrast ratio of one panel is 100, and the contrast ratio can be expanded to about 3 to 4 digits by superimposing two panels.
  • Patent Document 1 Japanese Published Patent Publication “JP 2001-188120 (Publication Date: July 10, 2001)”
  • Patent Document 2 Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2002-90536 (Publication Date: March 27, 2002)”
  • Patent Document 3 Japanese Patent Publication “JP-A 63-25629 (Publication Date: February 3, 1988)”
  • Patent Document 4 Japanese Patent Publication “Japanese Patent Laid-Open No. 5-2194 (Publication Date: January 8, 1993)”
  • Patent Document 5 Japanese Published Patent Publication “Japanese Patent Laid-Open No. 64-49021” (Publication Date: February 1989)
  • Patent Document 6 Japanese Patent Publication “Japanese Patent Laid-Open No. 2-23 (Publication Date: January 5, 1990) J
  • Patent Document 7 Japanese Patent Publication “JP-A-5-88197 (Publication Date: April 9, 1993)”
  • Patent Document 7 can improve the contrast by overlapping two liquid crystal panels, it is particularly considered for improving the color reproduction range at the time of display. If the display image is poor in color reproduction, the display quality is low, and the image becomes!
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to improve the color reproduction range when two or more liquid crystal panels are stacked, and to achieve high display quality and liquid crystal display. To realize the device.
  • the CF film thickness is increased or the CF pigment concentration is increased. It is possible to raise.
  • the CF is generally formed by a photolithography method using a photosensitive material. If the film thickness of CF is increased, light does not reach the substrate surface, so that photocuring in the vicinity of the substrate interface is insufficient and it becomes difficult to obtain a desired pattern shape. Especially at the pattern edge, the coverage of the counter electrode such as ITO is worse. In addition, when the pigment concentration of the CF material is increased, the ratio of the resin component that contributes to curing is reduced by that amount, and a desired pattern shape can be obtained as in the case of increasing the film thickness. It becomes difficult.
  • the liquid crystal display device is a liquid crystal display device in which two or more liquid crystal panels are stacked, and at least two of the plurality of liquid crystal panels are used.
  • the liquid crystal panel has a color frame on the insulating substrate constituting the liquid crystal panel. It is characterized by the fact that a filter is provided.
  • the color filter is provided on the insulating substrate that constitutes the liquid crystal panel, so that the superimposed liquid crystal The panel will transmit light through the color filter at least twice.
  • the polarization absorbing layer may be provided in a cross-col relationship with the liquid crystal panel interposed therebetween.
  • the contrast ratio can be greatly improved.
  • the insulating substrates provided with the color filters may be disposed adjacent to each other.
  • the thickness of at least one insulating substrate on the side adjacent to each other of the stacked liquid crystal panels may be thinner than the thickness of the insulating substrate on the side not adjacent to each other.
  • the number of the insulating substrates provided with the color filter may be two, and the insulating substrate may be an active matrix substrate of one liquid crystal panel and an insulating substrate opposite to the active matrix substrate.
  • a light diffusion layer having light diffusibility may be provided on at least one of the plurality of the liquid crystal panels that are superposed.
  • the light diffusing layer having light diffusibility is provided on at least one of the plurality of liquid crystal panels that are overlaid, so that the light transmitted through the light diffusing layer is spatially blurred. be able to.
  • the strength of asynchronous interference between fine structures having the same period of adjacent panels such as a bus line, a black matrix, and an alignment control protrusion.
  • it is possible to suppress the occurrence of moiré due to structural interference and thus it is possible to prevent display quality from being deteriorated due to the occurrence of moiré.
  • the light diffusion layer may be provided on the display surface side of the superimposed liquid crystal panel.
  • the moiré period information generated in the superimposed liquid crystal panel is erased or relaxed by the light diffusing layer oozing, thereby preventing the moiré from being observed.
  • the light diffusing layer is provided between the stacked liquid crystal panels! /!
  • the periodic information of the fine structure of the lower panel is erased or relaxed by causing the light diffusion layer to bleed, and the generation of moire can be prevented.
  • the light diffusion layer may be provided between the display surface side of the overlapped liquid crystal panel and the overlapped liquid crystal panel.
  • At least two polarization absorption layers may be provided between the stacked liquid crystal panels, and a light diffusion layer may be provided between the at least two polarization absorption layers! /.
  • an illumination device that irradiates the superimposed liquid crystal panel with a force light opposite to the display surface is provided, and the illumination device transmits visible light. It has a light source having a peak in the green region, and the wavelength of the peak is 505 ⁇ ! It is preferably in the range of ⁇ 540 nm.
  • the peak wavelength in the green region of visible light is in the range of 505 nm to 540 nm.
  • a more preferable wavelength of the peak in the green region is 520 nm.
  • the phosphor composition capable of improving the color reproduction range includes BaMgAl 2 O 3
  • a method for driving a liquid crystal display device is a method for driving a liquid crystal display device in which each of the liquid crystal panels of the liquid crystal display device having the above-described structure outputs image data based on a video source.
  • the outermost LCD panel is the first LCD panel
  • each polarization absorption layer has a cross-col relationship with the polarization absorption layer of the adjacent liquid crystal panel.
  • the transmission axis direction of the polarization absorption layer This leakage light can be cut off by the absorption axis of the next polarization absorbing layer.
  • the Nicol angle which is the intersection angle of the polarization axes of adjacent polarization absorbing layers, collapses, no increase in the amount of light due to light leakage is observed. In other words, black is less likely to float against the widening of the Nicol angle at an oblique viewing angle.
  • the first panel may be a color panel, and at least one of the other second panels may be a monochrome panel.
  • the gradation power of one pixel of the monochrome liquid crystal panel is set to the gradation corresponding to the maximum gradation signal among the pixel signals constituting one picture element of the video source.
  • the vicinity of the black gradation X may be G (X) ⁇ G (X).
  • the value of ⁇ of the image data output from the first panel may be G ( ⁇ )> 0 (not 0! /) At all gradations! / ,.
  • a liquid crystal display device of the present invention is used as a display device in a television receiver including a tuner unit that receives a television broadcast and a display device that displays the television broadcast received by the tuner unit. Can be used.
  • the liquid crystal display device is a liquid crystal display device in which two or more liquid crystal panels are overlapped, and at least two of the plurality of liquid crystal panels include the liquid crystal panels.
  • a color filter is provided on the insulating substrate that constitutes the liquid crystal panel.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
  • 2 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
  • FIG. 3 is a plan view of the vicinity of a pixel electrode of the liquid crystal display device shown in FIG.
  • FIG. 4 is a schematic configuration diagram of a drive system that drives the liquid crystal display device shown in FIG.
  • FIG. 5 is a diagram showing a connection relationship between the driver of the liquid crystal display device shown in FIG. 1 and a panel drive circuit.
  • FIG. 6 is a schematic configuration diagram of a knocklight included in the liquid crystal display device shown in FIG.
  • FIG. 7 is a block diagram of a display controller that is a drive circuit for driving the liquid crystal display device shown in FIG.
  • FIG. 8 is a schematic cross-sectional view of a liquid crystal display device with one liquid crystal panel.
  • FIG. 9 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
  • [10 (a)] is a diagram for explaining the principle of contrast improvement.
  • [10 (b)] is a diagram for explaining the principle of contrast improvement.
  • [10 (c)] is a diagram for explaining the principle of contrast improvement.
  • [11 (a)] is a diagram for explaining the principle of contrast improvement.
  • [11 (b)] is a diagram for explaining the principle of contrast improvement.
  • [11 (c)] is a diagram for explaining the principle of contrast improvement.
  • [11 (d)] is a diagram for explaining the principle of contrast improvement.
  • [12 (a)] is a diagram for explaining the principle of contrast improvement.
  • [12 (b)] is a diagram for explaining the principle of contrast improvement.
  • [12 (c)] is a diagram for explaining the principle of contrast improvement.
  • [13 (a)] is a diagram for explaining the principle of contrast improvement.
  • [13 (b)] is a diagram for explaining the principle of contrast improvement.
  • [14 (a)] is a diagram for explaining the principle of contrast improvement.
  • [14 (b)] is a diagram for explaining the principle of contrast improvement.
  • [14 (c)] is a diagram for explaining the principle of contrast improvement.
  • [15 (a)] is a diagram for explaining the principle of contrast improvement.
  • [15 (b)] is a diagram for explaining the principle of contrast improvement.
  • [16 (b)] is a diagram for explaining the principle of contrast improvement.
  • FIG. 17 is a graph showing the relationship between the wavelength and transmittance of each color in the panel of the present invention and the conventional panel.
  • FIG. 18 is a graph showing the relationship between wavelength and spectral intensity when displaying blue in the panel of the present invention and the conventional panel.
  • FIG. 19 is a graph showing the entire chromaticity diagram.
  • FIG. 20 is an enlarged view of the main part of the chromaticity diagram shown in FIG.
  • FIG. 21 is a view showing an embodiment of the present invention and showing an example in which a light diffusion layer is arranged in front of a polarizing plate of a first panel.
  • FIG. 22 is a view showing an embodiment of the present invention and showing an example in which a light diffusion layer is arranged in front of a second panel.
  • FIG. 23 illustrates an embodiment of the present invention and is a diagram illustrating an example in which a light diffusion layer is disposed between polarizing plates of a first panel and a second panel.
  • FIG. 24 shows an embodiment of the present invention, and is a diagram showing an example in which a lens sheet as a light diffusion layer is disposed between respective polarizing plates of a first panel and a second panel.
  • FIG. 25 is a schematic cross-sectional view for explaining the mechanism of moire generation in a two-panel liquid crystal display device.
  • FIG. 26 is a schematic cross-sectional view of a configuration in which moiré is suppressed in a two-panel liquid crystal display device.
  • FIG. 27 is a schematic cross-sectional view showing another example of a configuration in which moiré is suppressed in a two-panel liquid crystal display device.
  • FIG. 28 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 29 is a diagram showing an arrangement relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
  • FIG. 30 is a plan view of the vicinity of a pixel electrode of the liquid crystal display device shown in FIG.
  • FIG. 31 (a) is a diagram showing another example of countermeasures for moire.
  • FIG. 31 (b) is a diagram showing another example of countermeasures for moire.
  • FIG. 31 (c) is a diagram showing another example of countermeasure against moire.
  • FIG. 32 is a block diagram of a display controller for realizing the moire countermeasure shown in FIG. 31.
  • FIG. 33 (a) is a diagram showing another example of countermeasures for moire.
  • FIG. 33 (b) is a diagram showing another example of countermeasure against moire.
  • FIG. 33 (c) is a diagram showing another example of countermeasure against moire.
  • FIG. 34 is a block diagram of a display controller for realizing the moire countermeasure shown in FIG. 33.
  • FIG. 35 is a graph showing gradation-luminance characteristics.
  • FIG. 36 is a logarithmic graph of the gradation-one luminance characteristic shown in FIG.
  • FIG. 37 is a graph showing gradation-luminance characteristics.
  • FIG. 38 is a logarithmic graph of the gradation-one luminance characteristic shown in FIG.
  • FIG. 39 is a graph showing gradation-luminance characteristics.
  • FIG. 40 is a logarithmic graph of the gradation-one luminance characteristic shown in FIG.
  • FIG. 41 is a schematic block diagram of a television receiver including the liquid crystal display device of the present invention.
  • FIG. 42 is a block diagram showing a relationship between a tuner unit and a liquid crystal display device in the television receiver shown in FIG. 41.
  • FIG. 43 is an exploded perspective view of the television receiver shown in FIG. 41.
  • a general liquid crystal display device is configured by bonding polarizing plates A and B to a liquid crystal panel including a color filter and a driving substrate.
  • MVA Multiple ain Vertical Alignment
  • the polarization axes of the polarizing plates A and B are perpendicular to each other, and the threshold voltage is applied to the pixel electrode 8.
  • the direction in which the liquid crystal is tilted and aligned is set to 45 ° with the polarization axis of the polarizing plates A and B.
  • the polarization axis rotates when the incident polarized light passing through the polarizing plate A passes through the liquid crystal layer, light is emitted from the polarizing plate B.
  • the liquid crystal when only a voltage lower than the threshold voltage is applied to the pixel electrode, the liquid crystal is aligned perpendicular to the substrate and the deflection angle of incident polarization does not change, resulting in black display.
  • the MVA method achieves a high viewing angle by dividing the direction in which the liquid crystal tilts when a voltage is applied into four (Multidomain).
  • the inventors of the present application show that the shutter performance is improved in both the front and the diagonal directions by adopting three polarizing plates for each of the two liquid crystal display panels (each installed in a cross-coll). I found it.
  • Cross-col transmission axis direction force leakage light was generated due to depolarization in the panel (scattering of CF, etc.).
  • transmission through the second polarizing plate It was found that the leakage light can be cut by matching the absorption axis of the third polarizing plate with respect to the axial leakage light.
  • FIG. 10 (a) assumes the case where there is one liquid crystal display panel in the configuration (1).
  • FIG. 10 (b) shows an example in which two polarizing plates 101a′101b are arranged in a cross-col, and FIG. 10 (b) shows that in configuration (2), the three polarizing plates 101a′101b′101c are cross-cold with each other. It is a figure which shows the example arrange
  • the configuration (2) assumes that there are two liquid crystal display panels, there are two pairs of polarizing plates arranged in a cross-col.
  • FIG. 10 (c) is a diagram showing an example in which the polarizing plates 101a and 101b facing each other are arranged in a cross-col, and polarizing plates having the same polarization direction are superimposed on the outer sides of the respective polarizing plates.
  • a pair of polarizing plates in a force cross-col relationship showing the configuration of four polarizing plates is assumed to hold one liquid crystal display panel. .
  • the transmittance when the liquid crystal display panel displays black is modeled as the transmittance when the polarizing plate without the liquid crystal panel is arranged in a cross-cor arrangement, that is, the cross transmittance, and is called black display.
  • the transmittance when the display panel displays white is modeled as the black transmittance when the polarizing plate without the liquid crystal panel is arranged in parallel-col, that is, parallel transmittance.
  • the modeled transmittance corresponds to an ideal value of transmittance for white display and black display in a method in which a polarizing plate is arranged in a crossed Nicol manner and a liquid crystal panel is held.
  • Fig. 11 (a) is a graph when the relationship between the wavelength of the transmission spectrum and the cross transmittance when the polarizing plate is viewed from the front is compared between the configuration (1) and the configuration (2). is there. From this graph, it can be seen that the transmittance characteristics in the front of the black display tend to be similar to configurations (1) and (2).
  • FIG. 11 (b) is a graph in the case where the relationship between the wavelength of the transmission spectrum and the parallel transmittance when the frontal force of the polarizing plate is viewed is compared between the configuration (1) and the configuration (2). . From this graph, it can be seen that the transmittance characteristics in the front of the white display tend to be similar to configurations (1) and (2).
  • Figure 11 (c) shows the relationship between the wavelength of the transmission spectrum and the cross transmittance when the polarizing plate is tilted (azimuth angle 45 °-polar angle 60 °). It is a graph when comparing with the configuration (2). From this graph, the transmittance characteristics in the diagonal of black display are mostly in the configuration (2). It can be seen that the transmissivity is almost 0 in any wavelength range, and in the configuration (1), a slight amount of light can be seen in most wavelength ranges.
  • Figure 11 (d) shows the relationship between the wavelength of the transmission spectrum and the parallel transmittance when the polarizing plate is tilted (azimuth angle 45 °-polar angle 60 °). It is a graph when comparing with the configuration (2). From this graph power, it can be seen that the transmittance characteristics of the white display in the oblique direction tend to be similar between the configuration (1) and the configuration (2).
  • the front contrast in configuration (2) is approximately twice that in configuration (1), and the diagonal contrast in configuration (2) is approximately 22 times that in configuration (1). And the diagonal contra It can be seen that the strike is greatly improved.
  • FIG. 12 (a) is a graph showing the relationship between the polar angle and the transmittance during white display. From this graph, the transmittance of the configuration (2) is generally lower than that of the configuration (1). In this case, the viewing angle characteristics (parallel viewing angle characteristics) are the same as those of the configuration (2). It can be said that the structure (1) has a similar tendency.
  • FIG. 12B is a graph showing the relationship between polar angle and transmittance during black display. It can be seen that in the case of configuration (2), this graph power suppresses transmittance at an oblique viewing angle (around polar angle ⁇ 80 °). Conversely, in the case of the configuration (1), it can be seen that the transmittance at an oblique viewing angle is increased. In other words, the configuration (1) is more prominent in black tightening at an oblique viewing angle than the configuration (2).
  • FIG. 12 (c) is a graph showing the relationship between polar angle and contrast. From this graph, the configuration
  • the change in the amount of leakage light is insensitive to the collapse of the polarizing plate Nicol angle ⁇ , that is, the black tightening is less likely to occur with respect to the spread of the ⁇ Col angle ⁇ at an oblique viewing angle.
  • the polarizing plate-col angle ⁇ means an angle in a state in which the polarization axes of the polarizing plates facing each other are in a twisted relationship.
  • Fig. 13 (a) is a perspective view of a polarizing plate in which crossed Nicols are arranged, and the Nicol angle ⁇ changes by 90 ° (corresponding to the collapse of the -Col angle).
  • FIG. 13 (b) is a graph showing the relationship between the Nicol angle ⁇ and the cross transmittance. Calculate using the ideal polarizer (parallel-col transmittance 50%, cross-col transmittance 0%). From this graph, it can be seen that the degree of change in the transmittance with respect to the change in the Nicol angle ⁇ is smaller in the configuration (2) than in the configuration (1) during black display. In other words, the three-polarizer configuration is less susceptible to changes in the -col angle ⁇ than the two-polarizer configuration. Karu.
  • FIG. 10 (c) shows an example in which polarizing plates 101a and 101b having the same polarization direction are superimposed on each of a pair of cross-cold polarizing plates 101a and 101b.
  • the cross is one-on-one.
  • the cross pair is ⁇ 3, ⁇ 4,.
  • FIG. 14 (a) is a graph showing the relationship between the polarizing plate thickness and the transmittance (cross transmittance) of a pair of cross-col arranged polarizing plates during black display! .
  • this graph shows the transmittance in the case of having two pairs of cross-cold polarizing plates.
  • FIG. 14 (b) is a graph showing the relationship between the thickness of the polarizing plates arranged in a pair of cross-cols and the transmittance (parallel transmittance) during white display. For comparison, this graph shows the transmittance in the case of having two pairs of cross-cold polarizing plates.
  • FIG. 14 (c) a graph showing the relationship between the thickness of a polarizing plate arranged in a pair of cross-cols and contrast is as shown in FIG. 14 (c).
  • this graph shows the contrast in the case of having two pairs of crossed Nicol polarizing plates.
  • FIG. 15 (a) is a diagram showing the crossed-coll pair of polarizing plates in the configuration (1), that is, the cross-coll viewing angle characteristics
  • FIG. 15 (b) is the diagram of the configuration (2).
  • FIG. 5 is a diagram showing the cross-col viewing angle characteristics of a case where three crossed Nicols two pairs of polarizing plates are used.
  • FIGS. 16 (a) and 16 (b) specifically show the contrast viewing angle characteristics (parallel Z cross luminance).
  • FIG. 16 (a) is a diagram showing the contrast viewing angle characteristics of the configuration (1), that is, the configuration of two cross-coll pair polarizers
  • FIG. 16 (b) shows the field of the configuration (2). In other words, it is a diagram showing the contrast viewing angle characteristics of the three cross-col pair polarizing plate configuration.
  • FIG. 1 is a diagram showing a schematic cross section of a liquid crystal display device 100 according to the present embodiment.
  • the liquid crystal display device 100 is configured by alternately bonding a first panel, a second panel, and polarizing plates A, B, and C.
  • FIG. 2 is a diagram showing the arrangement of the polarizing plate and the liquid crystal panel in the liquid crystal display device 100 shown in FIG.
  • polarizing plates A and B and polarizing plates B and C are configured with their polarization axes perpendicular to each other. That is, polarizing plates A and B and polarizing plates B and C are arranged in a cross-coll.
  • Each of the first panel and the second panel encloses a liquid crystal between a pair of transparent substrates (color filter substrate 20 and active matrix substrate 30), and electrically changes the alignment of the liquid crystal. Rotates the polarized light incident on polarizing plate A by approximately 90 degrees. And means for arbitrarily changing the state in which the polarization is not rotated and the intermediate state thereof.
  • Each of the first panel and the second panel includes a color filter (CF) and has a function of displaying an image with a plurality of pixels.
  • Display methods with such functions include TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In Plain Switching) method, FFS method (Fringe Field Switching) method or a combination of these methods.
  • VA Transmission Nematic
  • VA Very Alignment
  • IPS In Plain Switching
  • FFS method Fe Field Switching
  • the VA method with high contrast is suitable even when used alone.
  • the force IPS method and FFS method that are explained using the MVA (Multidomain Vertical Alignment) method are also normally black methods, so there is a sufficient effect.
  • the drive system uses active matrix drive by TFT (Thin Film Transistor). MVA manufacturing The details are disclosed in Japanese Patent Publication (Japanese Patent Laid-Open No. 2001-83523).
  • the first and second panels in the liquid crystal display device 100 have the same structure, and have the color filter substrate 20 and the active matrix substrate 30 facing each other, as described above, In addition, a columnar resin structure provided on the color filter substrate 20 or the like is used as a spacer (not shown) to keep the substrate interval constant. Liquid crystal is sealed between a pair of substrates (color filter substrate 20 and active matrix substrate 30), and a vertical alignment film 25 is formed on the surface of each substrate in contact with the liquid crystal. As the liquid crystal, a nematic liquid crystal having a negative dielectric anisotropy is used.
  • the color filter substrate 20 is obtained by forming the color filter 21, the black matrix (BM) 24, and the like on the transparent substrate 10.
  • the active matrix substrate 30 has a TFT element 3, a pixel electrode 8, etc. formed on a transparent substrate 10, and further, alignment control protrusions 22 that define the alignment direction of the liquid crystal and It has a slit pattern 11 (see Fig. 3).
  • the liquid crystal molecules are tilted in a direction perpendicular to the protrusions 22 and the slit pattern 11.
  • the protrusion 22 and the slit pattern 11 are formed so that the liquid crystal is aligned in the direction of an azimuth angle of 45 degrees with respect to the polarization axis of the polarizing plate.
  • FIG. 3 the protrusion 22 and the slit pattern 11 are formed so that the liquid crystal is aligned in the direction of an azimuth angle of 45 degrees with respect to the polarization axis of the polarizing plate.
  • FIG. 3 is a diagram in which the black matrix 24 of the color filter substrate 20 is virtually superimposed on the TFT element 3 on the active matrix substrate 30, and the black matrix 24 is connected to the TFT. It is not a figure showing a state (BMonTFT) installed directly on element 3.
  • the first panel and the second panel correspond to the red color of each color filter 21.
  • the (R) green (G) blue (B) pixels are configured such that their positions when viewed from the vertical direction match each other.
  • the R pixel on the first panel is the R pixel on the second panel
  • the G pixel on the first panel is the G pixel on the second panel
  • the B pixel on the first panel is The position viewed from the vertical direction coincides with the B pixel of the second panel.
  • FIG. 4 shows an outline of a drive system of the liquid crystal display device 100 having the above configuration.
  • the drive system has a display controller necessary for displaying an image on the liquid crystal display device 100.
  • the display controller includes first and second panel drive circuits (1) and (2) for driving the first panel and the second panel with predetermined signals, respectively. Furthermore, the first and second panel drive circuits (1) and (2) have a signal distribution circuit section for distributing video source signals.
  • the display controller sends a signal to each panel so that an appropriate image can be displayed on the liquid crystal display device 100.
  • the display controller is a device for sending an appropriate electrical signal to a given video signal power panel, and includes a driver, a circuit board, a panel drive circuit, and the like.
  • FIG. 5 shows the connection relationship between the first and second panels and the respective panel drive circuits.
  • the polarizing plate is omitted.
  • the first panel drive circuit (1) is connected to a terminal (1) provided on the circuit board (1) of the first panel via a driver (TCP) (1).
  • a driver (TCP) (1) is connected to the first panel, connected by the circuit board (1), and connected to the panel drive circuit (1).
  • connection of the second panel drive circuit (2) in the second panel is also the same as that in the first panel, and a description thereof will be omitted.
  • the pixels of the first panel are driven based on a display signal, and the corresponding pixels of the second panel corresponding to the positions of the pixels of the first panel and the positions viewed from the vertical direction of the panel are Driven corresponding to the first panel.
  • Consists of polarizing plate A, first panel and polarizing plate B When the part (component 1) is in the transmissive state, the part formed by the polarizing plate B, the second panel, and the polarizing plate C (component 2) is also in the transmissive state, and when the part 1 is in the non-transmissive state Component 2 is also driven to be non-transmissive.
  • the same image signal may be input to the first and second panels, or different signals linked to each other may be input to the first and second panels.
  • a Ti / Al / Ti laminated film is formed on the transparent substrate 10 by sputtering in order to form the scanning signal wiring (gate wiring or gate bus line) 1 and the auxiliary capacitance wiring 2.
  • a metal such as a film is formed, a resist pattern is formed by a photolithography method, dry etching is performed using an etching gas such as a chlorine-based gas, and the resist is peeled off.
  • the scanning signal wiring 1 and the auxiliary capacitance wiring 2 are simultaneously formed on the transparent substrate 10.
  • a gate insulating film such as silicon nitride (SiNx), an active semiconductor layer made of amorphous silicon, or the like, an amorphous silicon doped with phosphorus or the like, and a low resistance semiconductor layer also made of amorphous silicon or the like are formed by CVD.
  • Data signal wiring (source wiring or source nose line) 4, drain lead wiring 5, auxiliary capacitance forming electrode 6 A metal such as AlZTi is formed by sputtering, and a resist pattern is formed by photolithography. The resist is removed by dry etching using an etching gas such as a chlorine-based gas. As a result, the data signal wiring 4, the drain lead wiring 5, and the auxiliary capacitance forming electrode 6 are formed simultaneously.
  • auxiliary capacitance is formed by sandwiching a gate insulating film of about 4000 A between the auxiliary capacitance wiring 2 and the auxiliary capacitance forming electrode 6.
  • the TFT element 3 is formed by dry etching the low-resistance semiconductor layer using chlorine gas or the like for source / drain separation.
  • an interlayer insulating film 7 having a strength such as an acrylic photosensitive resin is applied by spin coating, and a contact hole for electrically contacting the drain lead wiring 5 and the pixel electrode 8 9 is formed by a photolithography method.
  • the film thickness of the interlayer insulating film 7 is about 3 m.
  • the pixel electrode 8 and the vertical alignment film are formed in this order.
  • the present embodiment is an MVA type liquid crystal display device as described above, and the slit pattern 11 is provided in the pixel electrode 8 made of ITO or the like. Specifically, a film is formed by sputtering, a resist pattern is formed by a photolithography method, etching is performed with an etching solution such as a mixed solution of ferric chloride and hydrochloric acid, and a pixel electrode pattern as shown in FIG. 3 is formed. obtain.
  • the active matrix substrate 30 is obtained as described above.
  • FIG. 3 [reference numerals 12a, 12b, 12c, 12d, 12e, 12fi shown in FIG.
  • the orientation is disturbed and an orientation abnormality occurs.
  • the voltage supplied to the gate wiring is normally applied to the positive potential supplied to operate the TFT element 3 in the ON state, which is usually in the order of seconds.
  • the time during which the minus potential supplied to operate the TFT element 3 in the off state is normally on the order of milliseconds, so the time during which the minus potential is applied is dominant.
  • the slits 12a to 12d are positioned on the gate wiring, impurity ions contained in the liquid crystal gather due to the gate minus DC application component, and may be visually recognized as display unevenness. Therefore, since the slits 12a to 12d need to be provided in a region that does not overlap with the gate wiring in a plan view, it is preferable to hide the slits 12a to 12d with the black matrix 24 as shown in FIG.
  • the color filter substrate 20 is formed on the transparent substrate 10 with a color filter layer 21 made of three primary colors (red, green, blue) 21 and a black matrix (BM) 24, a counter electrode 23, a vertical alignment film, and the like. 25 and a protrusion 22 for controlling the orientation.
  • a color filter layer 21 made of three primary colors (red, green, blue) 21 and a black matrix (BM) 24, a counter electrode 23, a vertical alignment film, and the like. 25 and a protrusion 22 for controlling the orientation.
  • a negative acrylic photosensitive resin solution in which carbon fine particles are dispersed is applied onto the transparent substrate 10 by spin coating, and then dried to form a black photosensitive resin layer. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form a black matrix (BM) 24.
  • the first colored layer for example, red layer
  • the second colored layer For example, an opening for the first colored layer, an opening for the second colored layer, and an opening for the third colored layer in the regions where the third colored layer (for example, the blue layer) is formed (for example, the green layer) BM is formed so that each opening corresponds to each pixel electrode). More specifically, as shown in FIG.
  • the BM pattern is formed in an island shape to shield the alignment abnormal region generated in the slits 12a to 12d of the electrically connected portions of the slits 12a to 12f formed in the pixel electrode 8.
  • a light shielding portion is formed on the TFT element 3 in order to prevent an increase in leakage current that is photoexcited by external light entering the TFT element 3.
  • the second color layer for example, the green layer
  • the third color layer for example, the blue layer
  • a counter electrode 23 having a transparent electrode force such as ITO is formed by sputtering, and then a positive type phenol novolac photosensitive resin solution is applied by spin coating, followed by drying and a photomask. Are used for exposure and development to form vertical alignment control protrusions 22.
  • the color filter substrate 20 is formed.
  • the chromaticity and N TSC ratio in the CIE1931 chromaticity diagram when the liquid crystal panel is used are shown in Table 2 as red (R), green (G), and blue (B).
  • R red
  • G green
  • B blue
  • a color filter having a colored layer was used.
  • the film thickness of each color filter is 1.7 m
  • the film thickness of BM is 1.3 m. Table 2 will be described later.
  • a BM made of a force metal as shown in the case of a BM made of resin may be used.
  • the three primary color layers may include cyan, magenta, yellow, and other white layers as well as red, green, and blue, and may include a white layer.
  • a method of manufacturing a liquid crystal panel (first panel, second panel) using the color filter substrate 20 and the active matrix substrate 30 manufactured as described above will be described below.
  • the vertical alignment film 25 is formed on the surface of the color filter substrate 20 and the active matrix substrate 30 in contact with the liquid crystal. Specifically, baking is performed as a degassing process before alignment film application, and then substrate cleaning and alignment film application are performed. After applying the alignment film, firing the alignment film Do. After the alignment film is applied and washed, further baking is performed as a degassing process.
  • the vertical alignment film 25 defines the alignment direction of the liquid crystal 26.
  • an injection port is provided for injecting a part of the thermosetting seal resin around the substrate, and the injection port is immersed in liquid crystal in a vacuum and opened to the atmosphere. It may be performed by a method such as a vacuum injection method in which liquid crystal is injected and then the injection port is sealed with UV curing resin or the like.
  • the vertical alignment liquid crystal panel has a drawback that the injection time is much longer than that of the horizontal alignment panel.
  • explanation is given by the liquid crystal drop bonding method.
  • a UV curable sealant is applied around the active matrix substrate side, and the liquid crystal is dropped onto the color filter substrate by the dropping method.
  • the optimal amount of liquid crystal is regularly dropped on the inner part of the seal so that the desired cell gap is achieved by liquid crystal by the liquid crystal dropping method.
  • the atmosphere in the bonding apparatus is reduced to lPa. After bonding, the seal portion is crushed by setting the atmosphere to atmospheric pressure, and the desired gap of the seal portion is obtained.
  • the structure having a desired cell gap in the seal portion is subjected to UV irradiation with a UV curing device to temporarily cure the seal resin.
  • beta is performed to final cure the seal resin.
  • the liquid crystal spreads inside the seal resin and the liquid crystal is filled in the cell.
  • the liquid crystal panel is completed by dividing the structure into liquid crystal panel units after the beta is completed.
  • the first panel and the second panel are manufactured by the same process.
  • a polarizing plate is attached to each panel. Specifically, as shown in FIG. 4, polarizing plates A and B are attached to the front and back surfaces of the first panel, respectively. Also attach polarizing plate C to the back of the second panel. wear. In addition, you may laminate
  • a driver (LCD driving LSI) is connected.
  • the driver will be described using a TCP (Tape Carrier Package) connection.
  • TCP (1) on which the driver is placed is driven from the carrier tape. Pull out, align with the panel terminal electrode, heat and crimp. After that, the circuit board (1) for connecting the drivers TCP (1) and the input terminal (1) of TCP (l) are connected by ACF.
  • Polarizing plate B has an adhesive layer on both sides. Clean the surface of the second panel, peel off the laminate of the adhesive layer of Polarizer B attached to the first panel, align precisely, and bond the first panel and the second panel together. At this time, since bubbles may remain between the panel and the adhesive layer, it is desirable to bond them together under vacuum.
  • an adhesive that cures at room temperature or below the heat resistance temperature of the panel such as an epoxy adhesive, is applied to the periphery of the panel, and a plastic spacer is sprayed. Oil or the like may be enclosed.
  • a liquid that is optically isotropic, has a refractive index similar to that of a glass substrate, and is as stable as liquid crystal is desirable.
  • the present embodiment can also be applied to the case where the terminal surface of the first panel and the terminal surface of the second panel are at the same position, as shown in Figs. 4 and 5. . Also, there are no particular restrictions on the direction of terminals and the method of bonding to the panel. For example, a mechanical fixing method may be used regardless of adhesion.
  • the liquid crystal display device 100 is obtained by integrating with an illumination device called a backlight.
  • the liquid crystal display device 100 of the present invention is required to have a backlight capable of providing a larger amount of light than a conventional panel according to the display principle.
  • Figure 6 shows an example of a lighting device that satisfies these conditions.
  • a hot cathode lamp is used this time in order to obtain the same luminance as the conventional one.
  • Hot cathode lamps are characterized by being able to output approximately six times the amount of light than cold cathode lamps used in general specifications.
  • a 37-inch diagonal WXGA as an example of a standard liquid crystal display device, 18 lamps with an outer diameter of 15 mm are placed on a housing made of aluminum. In order to efficiently use the light emitted in the rear direction of the lamp force, this housing is provided with a white reflective sheet using foamed resin. A driving power source for the lamp is disposed on the rear surface of the housing, and the lamp is driven by electric power supplied from a household power source.
  • a milky white resin board is required.
  • a plate member based on polycarbonate which is 2 mm thick and absorbs warp and heat deformation, is placed in the housing on the lamp, and the optical sheet to obtain the predetermined optical effect on its upper surface, specifically this time
  • a diffusion sheet, a lens sheet, a lens sheet, and a polarized light reflection sheet are arranged.
  • This specification makes it possible to obtain a backlight brightness that is about 10 times that of the general specifications of 18 cold-cathode lamps with a diameter of 4 mm, two diffuser sheets, and a polarizing reflection sheet.
  • the liquid crystal display device of the present onset Ming 37 inch (37-) it is possible to obtain a luminance of about 400cdZm 2.
  • the mechanism member of the present lighting device serves as the main mechanism member of the entire module, and the liquid crystal display controller including the panel mounted circuit and the signal distributor, wherein the mounted panel is disposed in the backlight.
  • a liquid crystal module is completed by installing a power source for the light source and, in some cases, a general household power source.
  • the mounted panel is disposed in the backlight, and a frame body that holds the panel is installed to provide the liquid crystal display device of the present invention.
  • a backlight light source having a red dominant wavelength of 611 nm, a green dominant wavelength of 540 ⁇ m, and a blue dominant wavelength of 450 nm was used.
  • a panel with only one color filter is a conventional panel, and a panel with two color filters is A light panel.
  • Table 3 below, the definitions of the conventional panel and the present invention panel are the same as in Table 2.
  • a direct-type illumination device using a hot cathode tube is shown, but depending on the application, a light source that may be a projection method or an edge light method is a cold cathode tube or an LED, It is possible to appropriately select a combination of optical sheets and the like using O EL, electron beam fluorescent tubes, and the like.
  • the NTSC ratio was 74.5% for the conventional panel (panel with only one color filter), but the panel of the present invention (panel with two color filters) Shows a color reproduction range of 92%.
  • FIG. 17 shows a graph of the transmission characteristics of the panel of the present invention panel and the conventional panel. From the graph shown in FIG. 17, it can be seen that the panel of the present invention has a steeper transmittance of the green emission spectrum than the conventional panel. As a result, the green light emission spectrum has a sharp transmittance and the green light emission spectrum eliminates color mixing due to an increase in the number of regions that overlap the blue light emission spectrum transmission region, thereby improving the color reproduction range. It turns out that it is possible.
  • liquid crystal display device of the present invention since two or more liquid crystal panels are stacked, a plurality of color filters can be provided in two or more layers. As a result, the above-described problems can be solved.
  • the absorption spectrum of the color filter can be made steep.
  • the color reproduction range can be further improved by adjusting the emission spectrum of the knock light source.
  • the liquid crystal display device of the present invention has a particularly preferable configuration.
  • the main wavelength peak of each color of the knocklight light source is as shown in Table 3 below. That is, the red dominant wavelength is moved to the long wavelength side (611 nm ⁇ 658 nm), the green dominant wavelength is moved to the short wavelength side (540 nm ⁇ 516 nm), and the blue dominant wavelength is moved to the short wavelength side (450 nm ⁇ 447 nm).
  • the backlight light source set to the wavelength shown in Table 3 is referred to as a high color purity phosphor (high color phosphor).
  • the backlight source set to the wavelength shown in Table 2 is referred to as a conventional phosphor.
  • a backlight light source satisfying the above wavelength for example, there is a phosphor whose composition is BaMgAl 2 O 3.
  • FIG. 18 is a graph showing spectral intensity data when blue display is performed in the conventional panel and the panel of the present invention when the conventional phosphor and the high-color phosphor are used, respectively.
  • FIG. 19 shows a color reproduction range diagram of the CIE1931 colorimeter
  • FIG. 20 shows an enlarged blue region in the color reproduction range diagram shown in FIG.
  • Fig. 8 which is a general liquid crystal display device (conventional panel)
  • the NTSC ratio is 91 5%
  • the green emission spectrum distribution affects the transmission region in the absorption spectrum distribution of the blue color filter
  • the blue color is green as shown in Figs. 19 and 20. It ’s going to happen.
  • the present invention when applied to, for example, the liquid crystal display device (present invention panel) shown in FIG. 1, the blue color can be improved as shown in FIG. 19 and FIG.
  • the NTSC ratio can be 119.6%.
  • each color can be appropriately adjusted by those skilled in the art by variously selecting commercially available phosphor materials from Nichia Corporation and Kasei Optonitas.
  • the peak of the red dominant wavelength is on the long wavelength side
  • the peak of the green dominant wavelength is on the short wavelength side
  • the peak of the blue dominant wavelength is on the short wavelength side. This should be shifted, as is clear from Tables 2 and 3.
  • the peak of the red dominant wavelength is set within the range of visible light on the long wavelength side.
  • the peak of the blue dominant wavelength is also within the range of visible light on the short wavelength side.
  • the peak of the green dominant wavelength is 505 ⁇ ! It is preferably in the range of ⁇ 540 nm.
  • the green peak may be set to 520 nm.
  • the knock light source may be any light source that can adjust the dominant wavelength of each color as appropriate.
  • an LED as shown in Table 14 below may be used instead of the phosphor material described above.
  • InGaN is conceivable as a chip material for the LED.
  • InGaN has a continuous peak position from the emission peak in the blue region by a method such as doping impurities. Can be shifted to a long wavelength of 525 nm or more in the green region. This allows continuous peak wavelength selection.
  • a slit is provided on the pixel electrode of the active matrix substrate and the color filter substrate side. Protrusions for orientation control are provided, but they may be reversed.
  • a structure in which slits are provided on the electrodes on both substrates, and an MVA type with orientation control projections on the electrode surfaces of both substrates It may be a liquid crystal panel.
  • a method using vertical alignment films in which pretilt directions (alignment treatment directions) defined by a pair of alignment films other than the MVA type are orthogonal to each other may be used.
  • pretilt directions alignment treatment directions
  • VA mode alignment angle
  • the VATN method is more preferable for the present invention because there is no decrease in contrast due to light leakage at the alignment control protrusion.
  • the pretilt is formed by optical alignment or the like.
  • the input signal (video source) is subjected to drive signal processing such as 0 conversion and overshoot, and the first panel source driver (source drive means) Output 8-bit gradation data.
  • the panel drive circuit (2) performs signal processing such as ⁇ conversion and overshoot, and outputs 8-bit gradation data to the source driver (source drive means) of the second panel.
  • the first panel, the second panel, and the output image that is output as a result are 8 bits, correspond one-to-one with the input signal, and are faithful to the input image.
  • the light diffusion layer is provided in the liquid crystal display device 100, the light transmitted through the light diffusion layer can be spatially blurred. As a result, for example, it is possible to suppress the strength of asynchronous interference between fine structures (bus lines, black matrix, alignment control protrusions, etc.) having the same period of adjacent panels. As a result, it is possible to suppress the occurrence of moiré due to structural interference, and thus it is possible to prevent display quality from being deteriorated due to the occurrence of moiré.
  • a light diffusion layer may be provided on the outer side of the polarizing plate A, or as shown in FIG.
  • a light diffusing layer may be provided between the polarizing plate B and the polarizing plate B.
  • a polarizing plate D is further disposed between the second panel and the polarizing plate B as shown in FIG.
  • a light diffusing layer is provided between the polarizing plate D and the polarizing plate B.
  • Polarizing plate D and polarizing plate B were arranged in parallel coll.
  • the light diffusing layer includes an acrylic cured resin layer, a TAC (triacetylcellulose) film, a PET (polyethylene terephthalate) film, and other substrates, silica beads, aluminum oxide, and titanium oxide.
  • TAC triacetylcellulose
  • PET polyethylene terephthalate
  • silica beads aluminum oxide
  • titanium oxide titanium oxide
  • the light diffusion layer a transparent layer having a rough surface may be used.
  • the structure of the portion in contact with the air layer as shown in FIG. 21 can provide a reliable light diffusion effect while being inexpensive.
  • diffusion particles having a refractive index different from that of the substrate having an average particle diameter of 370 nm or more may be dispersed and contained.
  • light with a wavelength of around 555 nm, which is the most visible and dominant as visible light, is 555 ⁇ 1.5 wavelength 370 ⁇ m among the members with a refractive index of 1.5. It can be scattered by refraction.
  • diffusion particles having a refractive index different from that of the substrate having an average particle diameter of 520 nm or more may be dispersed and contained.
  • the light diffusion layer may contain dispersed particles having a refractive index different from that of the base material having an average particle diameter of 3.7 ⁇ m or more.
  • dispersed particles having a refractive index different from that of the base material having an average particle diameter of 3.7 ⁇ m or more by increasing the order of the average particle size by an order of magnitude larger than the visible light scattering condition, stable scattering can be realized by the refractive action that makes the entire visible light region different depending on the wavelength.
  • a moiré-dominant structure that does not necessarily limit the gist of the present invention to diffusion in all directions, or a layer that exhibits diffusivity perpendicular to the direction of the stripes of moiré is provided. You may apply. Specifically, a prism-shaped layer (lens sheet) parallel to the structure or stripes can be used. Further, it may be combined with the diffusion layer described above.
  • a liquid crystal display device comprising a plurality of superimposed liquid crystal panels
  • at least one of the inner transparent substrates is thinner than the outer transparent substrate, thereby suppressing the occurrence of moire.
  • the substrates provided with the color filters are adjacent to each other.
  • FIG. 25 shows an optical path added to the liquid crystal display device 100 shown in FIG.
  • the optical path according to the visual field is the optical path (1) when viewed from the front, and the optical path (2) when viewed from an oblique direction.
  • the optical path (1) looks normal, but in the case of the optical path (2), it passes through the pixels next to the second panel, so the color may change or the image may be blurred depending on the angle and image. This is moire caused by parallax.
  • the inner substrates (2) and (3) are thinner than the outer substrates (1) and (4). Since the light is blocked by the black mask (BM), as a result, the angle at which normal images can be seen is wider than in the case of FIG. As a result, it is possible to suppress the occurrence of moire in an oblique direction due to parallax.
  • BM black mask
  • the inner substrates (2) and (3) can be used by using a glass having a large refractive index.
  • the mechanical strength of the panel can be ensured by the outer substrates (1) and (4).
  • a thin substrate can be used from the beginning.
  • glass with a force of 0.4 mm which varies depending on the size of the production line and the liquid crystal panel, can be used as 3 and 4 substrates.
  • the substrates 1 and 4 a 0.7 mm glass substrate may be used.
  • the substrate (substrates 2 and 3) was etched to make it thinner than the outer substrates (substrates 1 and 4).
  • the inner substrate is bonded to two panels with a polarizing plate having a thickness of about 0.2 mm, so it is easier to maintain the strength as a liquid crystal display device than to thin the substrate facing outward. .
  • color filters may be provided on the inner substrates (2) and (3).
  • a terminal for connecting to a driver for driving a liquid crystal is often provided on an active matrix substrate.
  • the active matrix substrate is thinned, the mechanical strength of the terminal portion decreases.
  • the wiring metal layer of the substrate (1) that forms the active matrix may reduce the contrast and display quality in bright places where external light is reflected, the black matrix is placed on the observer side of the wiring metal. Should be formed. For example, this can be achieved by providing a low reflection material layer containing chromium or the like closest to the observer side of the wiring metal.
  • the two panels of the liquid crystal display device 100 both have color filters.
  • FIG. A liquid crystal display device 100 ′ in which a color filter is provided only on the panel will be described.
  • a color filter is provided on each of the active matrix substrate 30 'and the counter substrate 20 of one panel (first panel).
  • the active matrix substrate 30 and the counter substrate 20 ′ ′ of the other panel (second panel) are not provided with color filters. Absent.
  • the distance between the color filters becomes a liquid crystal layer thickness on the order of microns, it is possible to more effectively reduce the moire in the oblique viewing angle direction.
  • only one liquid crystal panel is provided with a color filter, so that when light transmitted through one liquid crystal panel is transmitted through the other liquid crystal panel, color mixing hardly occurs. As a result, it is possible to suppress the occurrence of moire caused by color mixing.
  • FIG. FIG. 28 shows a schematic cross-sectional outline of the liquid crystal display device of the present embodiment based on the present invention.
  • FIG. 29 shows a configuration of a liquid crystal display device including a polarizing plate.
  • FIG. 30 shows a state (BMonTFT) in which the black matrix 24 is directly provided on the TFT element 3 provided on the active matrix substrate 30 ′ constituting the first panel shown in FIG. The black matrix 24 is virtually superimposed on the TFT element 3.
  • BMonTFT state in which the black matrix 24 is directly provided on the TFT element 3 provided on the active matrix substrate 30 ′ constituting the first panel shown in FIG. The black matrix 24 is virtually superimposed on the TFT element 3.
  • the liquid crystal display device 100 shown in FIG. 28 does not form the color filter 21 on the second panel, but forms the color filter only on the first panel. It is different in point.
  • the color filter 21 is formed on the counter substrate facing the active matrix substrate, and the color filter 21 ′ is formed on the active matrix substrate.
  • the color filter 21 provided on the opposite substrate and the color filter 21 provided on the active matrix substrate are red (R) green (G) blue (B) of each color filter as viewed from the lead direction.
  • the positions are matched. Specifically, red in color filter 2 1 is red in color filter 21 ', green in color filter 21 is green in color filter 21', blue in color filter 21 is blue in color filter 21 ' They are configured so that their positions seen from the vertical direction match each other.
  • the active matrix substrate 30 ' will be described.
  • the active matrix substrate 30 and the color filter substrate which is the counter substrate 20 ′ are the same as those in the first embodiment, and thus description thereof is omitted.
  • the counter substrate 20 can be formed by reducing the power filter forming process in the counter substrate 20 '.
  • a metal such as a Ti / Al / Ti laminated film is formed on the transparent substrate 10 by sputtering in order to form the scanning signal wiring (gate wiring or gate bus line) 1 and the auxiliary capacitance wiring 2.
  • a resist pattern is formed by a photolithography method. Dry etching is performed using a ching gas to remove the resist. As a result, the scanning signal wiring 1 and the auxiliary capacitance wiring 2 are simultaneously formed on the transparent substrate 10.
  • a gate insulating film such as silicon nitride (SiNx), an active semiconductor layer made of amorphous silicon, or the like, an amorphous silicon doped with phosphorus or the like, and a low resistance semiconductor layer also made of amorphous silicon or the like are formed by CVD.
  • Data signal wiring (source wiring or source nose line) 4, drain lead wiring 5, auxiliary capacitance forming electrode 6 A metal such as AlZTi is formed by sputtering, and a resist pattern is formed by photolithography. The resist is removed by dry etching using an etching gas such as a chlorine-based gas. As a result, the data signal wiring 4, the drain lead wiring 5, and the auxiliary capacitance forming electrode 6 are formed simultaneously.
  • the auxiliary capacitance is formed by sandwiching a gate insulating film of about 4000 A between the auxiliary capacitance wiring 2 and the auxiliary capacitance forming electrode 6.
  • the TFT element 3 is formed by dry etching the low-resistance semiconductor layer using chlorine gas or the like for source / drain separation.
  • a color filter layer having three primary colors (red, green, blue) 21, a black matrix (BM) 24, and the like is formed.
  • a negative acrylic photosensitive resin solution in which carbon fine particles are dispersed by spin coating drying is performed to form a black photosensitive resin layer.
  • the black photosensitive resin layer is exposed through a photomask and then developed to form a black matrix (BM) 24 ′.
  • the opening for the first colored layer is formed so that an opening for the 2 colored layer and an opening for the 3rd colored layer (each opening corresponds to each pixel electrode) are formed.
  • the active matrix substrate 30 ′ has no alignment disorder concealment BM.
  • a leakage current that is photoexcited by external light incident on the TFT element 3 In order to prevent this increase, a black matrix 24 ′ serving as a light shielding portion (BM) is formed on the TFT element 3.
  • an interlayer insulating film 7 'functioning as a color filter a negative acrylic photosensitive resin solution in which pigments of various colors are dispersed is applied by spin coating, and drain drawing is performed.
  • a contact hole 9 for electrically contacting the lead-out wiring 5 and the pixel electrode 8 is formed by a photolithographic method. This process is similarly performed for the red layer, the green layer, and the blue layer, and the color filter 21 is completed.
  • the film thickness of the color filter 21 is about 1. ⁇ ⁇ ⁇ ⁇ 24, and the film thickness is about 1.3 m.
  • the pixel electrode 8 and the vertical alignment film are formed in this order.
  • the present embodiment is an MVA type liquid crystal display device as described above, and the slit pattern 11 is provided in the pixel electrode 8 made of ITO or the like. Specifically, a film is formed by sputtering, a resist pattern is formed by a photolithography method, and etching is performed with an etching solution such as a mixed solution of ferric chloride and hydrochloric acid.
  • the pixel electrode pattern as shown in FIG.
  • the pixels of the first panel are driven based on the display signal, and the pixels of the second panel corresponding to the positions of the pixels of the first panel and the positions viewed from the vertical direction of the panel match. Driven corresponding to the first panel. If the part composed of Polarizer A, the first panel, and Polarizer B (Component 1) is in the transmissive state, the part composed of Polarizer B, the second panel, and Polarizer C (Component) 2) is also in a transmissive state, and when component 1 is in a non-transmissive state, component 2 is also driven to be in a non-transmissive state.
  • the same image signal may be input to the first and second panels, or different signals associated with each other may be input to the first and second panels.
  • different signals related to each other are input to the first and second panels to display an image.
  • FIG. 31 drive control for the liquid crystal display device 100 shown in FIG. 1 described in the first embodiment will be described.
  • Fig. 31 (a) consider the case where two upper and lower liquid crystal panels (first panel and second panel) are used.
  • Fig. 31 (b) As shown in Fig. 31 (b), here, the case of a liquid crystal panel having the same resolution will be described. If the same display data is displayed on the first panel and the second panel, the images may interfere with each other. Moire caused by this occurs.
  • the display of the first panel is determined from the difference between the display data and the display of the second panel.
  • liquid crystal panel is a surface display, it is performed in two dimensions.
  • specific control includes data input unit 201, synchronization signal generation unit 202, frequency domain converter 203, band division filter 207, inverse frequency domain converter 205, inverse frequency domain transform.
  • This can be realized by the display controller 210 having the device 208.
  • the data input unit 201 separates the input data into a synchronization signal and pixel data of each pixel, outputs the separated synchronization signal to the subsequent-stage synchronization signal generation unit 202, and converts the pixel data into the subsequent-frequency domain conversion. Output to 203.
  • the synchronization signal generation unit 202 generates a control signal for controlling the source drive means and the gate drive means as well as the synchronization signal power from the data input unit 201.
  • control signals For example, the following three types of control signals are generated as the control signals for the source driving means.
  • control signals are generated as control signals for the gate drive means.
  • the frequency domain change 203 converts the pixel data from the data input unit 201 into spatial frequency data, and outputs the spatial frequency data to the subsequent band division filter 207.
  • Typical examples of frequency domain transformation include 2D FFT transformation and 2D DCT transformation.
  • the band-splitting filter 207 divides the data in the high frequency region and the data in the low frequency region, and outputs the data in the low frequency region to the inverse frequency region converter 205 connected to the source driving means of the liquid crystal panel B.
  • the high frequency region data is output to the inverse frequency region changer 208 connected to the source driving means of the liquid crystal panel A.
  • a low-pass filter and a high-pass filter may be used.
  • the inverse frequency domain converter 205 performs the inverse transformation of the frequency domain transformation 203 on the low frequency domain data, and uses the data after the inverse transformation as the pixel data of the second panel.
  • the output is output to the source driving means of the second panel.
  • the inverse frequency domain converter 208 performs the inverse transformation of the frequency domain transformation 203 on the high frequency domain data, and uses the data after the inverse transformation as the pixel data of the first panel.
  • the signal is output to the source driving means of the first panel.
  • FIG. 33 drive control for the liquid crystal display device 100 shown in FIG. 1 described in the first embodiment will be described.
  • Fig. 33 (a) consider the case of using two liquid crystal panels (first panel and second panel) stacked one above the other.
  • the resolution of the second panel is assumed to be lower than the display resolution.
  • the actual display data is the display on the first panel X the display on the second panel.
  • the display of the first panel is determined from the difference between the display data and the display of the second panel.
  • liquid crystal panel is a surface display, it is a two-dimensional display.
  • the resolution on the panel structure is the same as A and B, and even if the same signal is input to multiple source bus lines on the second panel to reduce the display resolution on the second panel. Good.
  • specific control includes a data input unit 201, a synchronization signal generation unit 202, a frequency domain converter 203, a low-pass filter 204, an inverse frequency domain converter 205, and a difference calculator 206.
  • the data input unit 201 separates the input data into a synchronization signal and data of each pixel, outputs the separated synchronization signal to the subsequent-stage synchronization signal generation unit 202, and outputs the pixel data (pixel data) to the subsequent stage. Output to the frequency domain converter 203 and the difference calculator 206.
  • the synchronization signal generation unit 202 generates a control signal for controlling the source drive means and the gate drive means as well as the synchronization signal power from the data input unit 201.
  • control signals For example, the following three types of control signals are generated as the control signals for the source driving means.
  • control signals are generated as control signals for the gate drive means.
  • the frequency domain change 203 converts the pixel data from the data input unit 201 into spatial frequency data, and outputs the spatial frequency data to the low-pass filter 204 at the subsequent stage.
  • Typical examples of frequency domain transformation include 2D FFT transformation and 2D DCT transformation.
  • the low-pass filter 204 passes only the low-frequency domain data from the frequency data from the frequency domain transformation 203, and outputs the low-frequency domain data to the reverse frequency domain transformation 205 in the subsequent stage.
  • the inverse frequency domain converter 205 performs the inverse transformation of the frequency domain transformation 203 on the low frequency domain data, and uses the data after the inverse transformation as the pixel data of the liquid crystal panel B. In addition to being output to the source driving means, it is also output to the difference calculator 206.
  • inverse frequency domain transformation 205 as the inverse frequency transformation, inverse two-dimensional FFT transformation, inverse two-dimensional DCT transformation, etc. are performed, and sampling points are combined with the pixels of the liquid crystal panel ⁇ . Decimation of numbers is performed.
  • the difference calculator 206 calculates the difference between the data from the data input unit 201 which is the original data and the data on the liquid crystal panel B from the inverse frequency domain converter 205, and displays the original data.
  • the pixel data of the first panel is corrected so that the corrected pixel data is output to the source driving means of the first panel.
  • the second panel is monochrome.
  • the pixel corresponding to RGB in the first panel may be used as one pixel, and the resolution may be 1Z3.
  • This configuration is advantageous in terms of transmittance because the second panel does not require an RGB signal line. In addition, problems due to parallax can be reduced.
  • This ⁇ value is described as a function G ( ⁇ ) of gradation X, the ⁇ value of the image data output from the color panel is G ( ⁇ ), and the ⁇ value of the image data output from the monochrome panel is G ( ⁇ )
  • the ⁇ value G (X) force G (X) G (X) + G out 1 in at least one gradation X
  • the output ⁇ is about 2.4 in an area of about 10 gradations (X> 10).
  • G ( ⁇ ) 2.2 for the image data output from the color panel
  • G ( ⁇ ) 0.2 for the image data output from the black-and-white panel.
  • the color panel alone has a low CR, so it is output from the color panel.
  • ⁇ of a monochrome panel with 10 gradations or less may have an inflection point as shown in Figs. 37 and 38. In this case, an image with more emphasized black is obtained.
  • the input signal is a video source or a display signal based thereon.
  • the y setting may be performed by the controller of the liquid crystal panel, the output signal processing circuit to the liquid crystal controller, or both.
  • a saturation reduction suppressing effect sufficient for practical use can be obtained by setting the ratio to 1.8 or more.
  • the grayscale data correspond to the maximum grayscale of the RGB signals in the black-and-white panel data, it is possible to obtain a good image that avoids interference occurring between the panels in addition to the above effects.
  • the liquid crystal panel is able to reduce the blackened image that occurs because the contrast is limited. After correction, an image with a higher contrast is obtained (see Fig. 39 and Fig. 40).
  • a television receiver to which the liquid crystal display device of the present invention is applied will be described below with reference to FIGS.
  • FIG. 41 shows a circuit block of a liquid crystal display device 601 for a television receiver.
  • the liquid crystal display device 601 includes a YZC separation circuit 500, a video chroma circuit 501, an AZD converter 502, a liquid crystal controller 503, a liquid crystal non-504, and a backlight drive.
  • the configuration includes a dynamic circuit 505, a backlight 506, a microcomputer 507, and a gradation circuit 508.
  • the liquid crystal panel 504 has a two-panel configuration of a first liquid crystal panel and a second liquid crystal panel, and may have any of the configurations described in the above embodiments.
  • an input video signal of a television signal is input to a YZC separation circuit 500 and separated into a luminance signal and a color signal.
  • the luminance and color signals are converted to R, G, and B, which are the three primary colors of light, by the video chroma circuit 501, and this analog RGB signal is converted to a digital RGB signal by the AZD converter 502. Input to controller 503.
  • the RGB signal from the liquid crystal controller 503 is input at a predetermined timing, and the RGB gradation voltages from the gradation circuit 508 are supplied to display an image.
  • the microcomputer 507 controls the entire system including these processes.
  • the video signal can be displayed based on various video signals such as a video signal based on television broadcasting, a video signal captured by a camera, and a video signal supplied via the Internet line. .
  • the tuner unit 600 shown in FIG. 42 receives a television broadcast and outputs a video signal, and the liquid crystal display device 601 displays an image (video) based on the video signal output from the tuner unit 600. Do.
  • the liquid crystal display device having the above configuration is a television receiver, for example, as shown in FIG. 43, the liquid crystal display device 601 is wrapped in a first housing 301 and a second housing 306. It is a structure that is held between.
  • the first casing 301 is formed with an opening 301a through which an image displayed on the liquid crystal display device 601 is transmitted.
  • the second casing 306 covers the back side of the liquid crystal display device 601.
  • An operation circuit 305 for operating the liquid crystal display device 601 is provided, and a support member is provided below. 308 is attached!
  • the liquid crystal according to the present invention is included in the display device.
  • a crystal display device it is possible to display an image with a very high display quality with a high contrast and color reproduction range.
  • liquid crystal display device of the present invention can greatly improve contrast, it can be applied to television receivers, broadcast monitors, and the like.

Abstract

In a liquid crystal display (100), first and second liquid crystal panels are superposed on one the other. In each of the two liquid crystal panels, a color filter (21) is provided to an insulating substrate (10) constituting the liquid crystal panel. In such a way, a liquid crystal display of high display definition having an improved color reproduction range when two or more liquid crystal panels are superposed can be provided. Since liquid crystal display (100) exhibits a greatly improved contrast, it can be adaptable to a television receiver and a broadcasting monitor.

Description

明 細 書  Specification
液晶表示装置およびテレビジョン受信機  Liquid crystal display device and television receiver
技術分野  Technical field
[0001] 本発明は、コントラストを向上させた液晶表示装置およびそれを備えたテレビジョン 受信機に関するものである。  The present invention relates to a liquid crystal display device with improved contrast and a television receiver including the same.
背景技術  Background art
[0002] 液晶表示装置のコントラストを向上させる技術として、以下の特許文献 1〜7に開示 されて!/、るような種々の技術がある。  [0002] There are various techniques disclosed in the following Patent Documents 1 to 7 as techniques for improving the contrast of a liquid crystal display device.
[0003] 特許文献 1には、カラーフィルタの顔料成分中の黄顔料の含有率および比表面積 を適切にすることでコントラスト比を向上する技術が開示されている。これにより、カラ 一フィルタの顔料分子が偏光を散乱して消偏させることで液晶表示装置のコントラス ト比が低下する課題を改善することができる。この特許文献 1に開示された技術によ れば、液晶表示装置のコントラスト比は 280から 420に向上している。 [0003] Patent Document 1 discloses a technique for improving the contrast ratio by appropriately adjusting the content and specific surface area of the yellow pigment in the pigment component of the color filter. As a result, it is possible to improve the problem that the contrast ratio of the liquid crystal display device is lowered due to the scattering and depolarization of the polarized light molecules of the color filter. According to the technique disclosed in Patent Document 1, the contrast ratio of the liquid crystal display device is improved from 280 to 420.
[0004] また、特許文献 2には、偏光板の透過率および偏光度を上げることでコントラスト比 を改善する技術が開示されている。この特許文献 2に開示された技術によれば、液晶 表示装置のコントラスト比は 200から 250に向上している。 [0004] Patent Document 2 discloses a technique for improving the contrast ratio by increasing the transmittance and the degree of polarization of a polarizing plate. According to the technique disclosed in Patent Document 2, the contrast ratio of the liquid crystal display device is improved from 200 to 250.
[0005] さらに、特許文献 3および特許文献 4には、二色性色素の光吸収性を用いるゲスト ホスト方式におけるコントラスト向上の技術が開示されている。 [0005] Further, Patent Document 3 and Patent Document 4 disclose a technique for improving contrast in a guest-host method using the light absorptivity of a dichroic dye.
[0006] 特許文献 3には、ゲストホスト液晶セルを 2層とし、 2層のセルの間に 1Z4波長板を 挟む構造によって、コントラストを向上させる方法が記載されている。特許文献 3では[0006] Patent Document 3 describes a method for improving contrast by a structure in which a guest-host liquid crystal cell has two layers and a 1Z4 wavelength plate is sandwiched between the two layers of cells. In Patent Document 3,
、偏光板を用いないことが開示されている。 It is disclosed that no polarizing plate is used.
[0007] また、特許文献 4には、分散型液晶方式で用いる液晶に二色性色素を混ぜるタイ プの液晶表示素子が開示されている。この特許文献 4では、コントラスト比が 101との 記載がある。 [0007] Patent Document 4 discloses a liquid crystal display element of a type in which a dichroic dye is mixed with a liquid crystal used in a dispersion type liquid crystal system. Patent Document 4 describes that the contrast ratio is 101.
[0008] し力しながら、特許文献 3および特許文献 4に開示された技術は、他の方式に比べ コントラストは低く、さらにコントラストを改善するには、二色性色素の光吸収性の向上 、色素含有量の増加、ゲストホスト液晶セルの厚みを大きくするなどが必要である力 いずれも技術上の問題、信頼性低下や応答特性が悪くなるという新たな課題が生じ る。 [0008] However, the techniques disclosed in Patent Document 3 and Patent Document 4 have a lower contrast than other methods, and in order to further improve the contrast, the light absorption of the dichroic dye is improved. Strength that requires increasing the dye content and increasing the thickness of the guest-host liquid crystal cell In any case, new problems such as technical problems, reduced reliability and poor response characteristics arise.
[0009] また、特許文献 5および特許文献 6には、 1対の偏光板の間に液晶表示パネルと光 学補償用の液晶パネルを有する、光学補償方式によるコントラスト改善方法が開示さ れている。  [0009] Further, Patent Document 5 and Patent Document 6 disclose a contrast improvement method using an optical compensation method, in which a liquid crystal display panel and a liquid crystal panel for optical compensation are provided between a pair of polarizing plates.
[0010] 特許文献 5では、 STN方式において表示用セルと差光学補償用の液晶セルとリタ デーシヨンのコントラスト比 14から 35に改善して!/、る。  [0010] In Patent Document 5, in the STN method, the contrast ratio of the display cell, the liquid crystal cell for differential optical compensation, and the retardation is improved from 14 to 35! /.
[0011] また、特許文献 6では、 TN方式などの液晶表示用セルの黒表示時における波長 依存性を補償するための光学補償用の液晶セルを設置してコントラス比を 8から 100 に改善している。 [0011] In Patent Document 6, a liquid crystal cell for optical compensation is installed to compensate for the wavelength dependence of a TN liquid crystal display cell during black display, and the contrast ratio is improved from 8 to 100. ing.
[0012] し力しながら、上記の各特許文献に開示された技術では、 1. 2倍〜 10倍強のコント ラスト比改善効果が得られている力 コントラスト比の絶対値としては 35〜420程度で ある。  [0012] However, with the techniques disclosed in each of the above patent documents, a force that improves the contrast ratio by a factor of 2 to 10 is obtained. The absolute value of the contrast ratio is 35 to 420. It is a degree.
[0013] また、コントラストを向上させるための技術として、例えば特許文献 7には、 2枚の液 晶パネルを重ね合わせて、各偏光板が互いにクロス-コルを形成するようにした複合 化液晶表示装置が開示されている。この特許文献 7では、 1枚のパネルにおけるコン トラスト比が 100であったものを、 2枚のパネルを重ね合わせることでコントラスト比を 3 〜4桁程度にまで拡大できることが記載されて 、る。  [0013] As a technique for improving the contrast, for example, Patent Document 7 discloses a composite liquid crystal display in which two liquid crystal panels are overlapped so that each polarizing plate forms a cross-coll. An apparatus is disclosed. Patent Document 7 describes that a contrast ratio of one panel is 100, and the contrast ratio can be expanded to about 3 to 4 digits by superimposing two panels.
特許文献 1 :日本国公開特許公報「特開 2001— 188120号公報 (公開日: 2001年 7 月 10日)」  Patent Document 1: Japanese Published Patent Publication “JP 2001-188120 (Publication Date: July 10, 2001)”
特許文献 2 :日本国公開特許公報「特開 2002— 90536号公報 (公開日: 2002年 3 月 27日)」  Patent Document 2: Japanese Published Patent Publication “Japanese Patent Laid-Open No. 2002-90536 (Publication Date: March 27, 2002)”
特許文献 3 :日本国公開特許公報「特開昭 63— 25629号公報 (公開日:1988年 2月 3日)」  Patent Document 3: Japanese Patent Publication “JP-A 63-25629 (Publication Date: February 3, 1988)”
特許文献 4:日本国公開特許公報「特開平 5— 2194号公報 (公開日:1993年 1月 8 曰)」  Patent Document 4: Japanese Patent Publication “Japanese Patent Laid-Open No. 5-2194 (Publication Date: January 8, 1993)”
特許文献 5 :日本国公開特許公報「特開昭 64— 49021号公報 (公開日:1989年 2月 特許文献 6 :日本国公開特許公報「特開平 2— 23号公報 (公開日:1990年 1月 5日) J Patent Document 5: Japanese Published Patent Publication “Japanese Patent Laid-Open No. 64-49021” (Publication Date: February 1989) Patent Document 6: Japanese Patent Publication “Japanese Patent Laid-Open No. 2-23 (Publication Date: January 5, 1990) J
特許文献 7 :日本国公開特許公報「特開平 5— 88197号公報 (公開日:1993年 4月 9 曰)」  Patent Document 7: Japanese Patent Publication “JP-A-5-88197 (Publication Date: April 9, 1993)”
発明の開示  Disclosure of the invention
[0014] ところが、特許文献 7は、 2枚の液晶パネルを重ねることで、コントラストを向上させる ことができるものの、表示の際の色再現範囲の向上にっ 、て特に考慮されて 、な ヽ ので、表示画像が色再現の悪!、表示品位の低 、画像になってしまうと!、う問題が生 じる。  [0014] However, although Patent Document 7 can improve the contrast by overlapping two liquid crystal panels, it is particularly considered for improving the color reproduction range at the time of display. If the display image is poor in color reproduction, the display quality is low, and the image becomes!
[0015] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、 2枚以上の液 晶パネルを重ねた場合に色再現範囲を向上させ、表示品位の高 、液晶表示装置を 実現することにある。  [0015] The present invention has been made in view of the above-described problems, and an object of the present invention is to improve the color reproduction range when two or more liquid crystal panels are stacked, and to achieve high display quality and liquid crystal display. To realize the device.
[0016] 一般的に、液晶パネルにおいて色再現範囲を向上させる方法、すなわちカラーフィ ルタ(CF)における吸収スペクトルを急峻にするためには、 CFの膜厚を厚くするか、 CFの顔料の濃度を上げることが考えられる。  In general, in order to improve the color reproduction range in a liquid crystal panel, that is, to make the absorption spectrum in a color filter (CF) steep, the CF film thickness is increased or the CF pigment concentration is increased. It is possible to raise.
[0017] 上記 CFは感光性材料のフォトリソグラフィ一法により形成するのが一般的である。 C Fの膜厚を厚くすると光が基板面まで到達しな ヽため、基板界面近傍の光硬化が不 十分となり所望のパターン形状を得ることが困難となる。特にパターンエッジ部では I TOなどカゝらなる対向電極のカバレージが悪ィ匕する。また、 CF材料の顔料濃度を上 げると、その分硬化に寄与する榭脂成分の比率が低下することになり、膜厚を厚くし た場合と同様に、所望のパターン形状を得ることが困難となる。  The CF is generally formed by a photolithography method using a photosensitive material. If the film thickness of CF is increased, light does not reach the substrate surface, so that photocuring in the vicinity of the substrate interface is insufficient and it becomes difficult to obtain a desired pattern shape. Especially at the pattern edge, the coverage of the counter electrode such as ITO is worse. In addition, when the pigment concentration of the CF material is increased, the ratio of the resin component that contributes to curing is reduced by that amount, and a desired pattern shape can be obtained as in the case of increasing the film thickness. It becomes difficult.
[0018] 従って、一枚の CFにおける色再現範囲の向上には限界があった。  Accordingly, there is a limit to the improvement of the color reproduction range in one CF.
[0019] そこで、本願発明者等は、上記の課題を解決すべく鋭意検討した結果、 2枚以上の 液晶パネルを重ね合わせた液晶表示装置において、 CFを 2枚以上設けることで、 C F1枚の場合よりも急峻な分光透過率を得ることができることを見出した。  [0019] Therefore, as a result of intensive studies to solve the above-mentioned problems, the inventors of the present application have provided a CF 1 sheet by providing two or more CFs in a liquid crystal display device in which two or more liquid crystal panels are superimposed. It has been found that a spectral transmittance steeper than in the case of can be obtained.
[0020] すなわち、本発明に係る液晶表示装置は、上記課題を解決するために、液晶パネ ルを 2枚以上重ね合わせた液晶表示装置において、上記複数の液晶パネルうち、少 なくとも 2枚の液晶パネルにぉ 、て、該液晶パネルを構成する絶縁性基板にカラーフ ィルタが設けられて 、ることを特徴として 、る。 That is, in order to solve the above-described problem, the liquid crystal display device according to the present invention is a liquid crystal display device in which two or more liquid crystal panels are stacked, and at least two of the plurality of liquid crystal panels are used. The liquid crystal panel has a color frame on the insulating substrate constituting the liquid crystal panel. It is characterized by the fact that a filter is provided.
[0021] 上記の構成によれば、複数の液晶パネルうち、少なくとも 2枚の液晶パネルにおい て、該液晶パネルを構成する絶縁性基板にカラーフィルタが設けられて ヽることで、 重ね合わせた液晶パネルでは、少なくとも 2回カラーフィルタを光が透過することにな る。  [0021] According to the above configuration, in at least two of the plurality of liquid crystal panels, the color filter is provided on the insulating substrate that constitutes the liquid crystal panel, so that the superimposed liquid crystal The panel will transmit light through the color filter at least twice.
[0022] この場合、上述したように、カラーフィルタを 2枚以上設けることで、カラーフィルタ 1 枚の場合よりも急峻な分光透過率を得ることができるので、色混じりが生じにくくなり、 その結果、色再現範囲を向上させることが可能となる。  In this case, as described above, by providing two or more color filters, it is possible to obtain a spectral transmittance that is steeper than in the case of a single color filter, so that color mixing is less likely to occur. The color reproduction range can be improved.
[0023] また、偏光吸収層が液晶パネルを挟んでクロス-コルの関係に設けられていてもよ い。  [0023] Further, the polarization absorbing layer may be provided in a cross-col relationship with the liquid crystal panel interposed therebetween.
[0024] この場合、各液晶パネルの偏光吸収層が互いにクロス-コルの関係になるので、コ ントラスト比を大幅に向上させることができる。  In this case, since the polarization absorbing layers of the liquid crystal panels are in a cross-col relationship with each other, the contrast ratio can be greatly improved.
[0025] よって、色再現性がよぐ且つ、コントラスト比の高い、表示品位の非常に高い表示 画像を得ることができる。 [0025] Therefore, it is possible to obtain a display image with excellent color reproducibility, a high contrast ratio, and a very high display quality.
[0026] 上記カラーフィルタが設けられた絶縁性基板は、互いに隣接して配置されて ヽても よい。 [0026] The insulating substrates provided with the color filters may be disposed adjacent to each other.
[0027] さらに、重ね合わせた液晶パネルの、互いに隣接する側の少なくとも一方の絶縁性 基板の厚みが、互いに隣接しない側の絶縁性基板の厚みよりも薄く形成されていて ちょい。  [0027] Furthermore, the thickness of at least one insulating substrate on the side adjacent to each other of the stacked liquid crystal panels may be thinner than the thickness of the insulating substrate on the side not adjacent to each other.
[0028] この場合、カラーフィルタ同士の距離を短くすることができるので、カラーフィルタ同 士が離れていることにより生じる視差による色モアレを低減させることができ、表示品 位を向上させることができる。  [0028] In this case, since the distance between the color filters can be shortened, color moire caused by parallax caused by the separation of the color filters can be reduced, and the display quality can be improved. .
[0029] また、上記カラーフィルタが設けられた絶縁性基板が 2枚であり、該絶縁性基板は 1 枚の液晶パネルのアクティブマトリクス基板とそれに対向する絶縁性基板であっても よい。 [0029] The number of the insulating substrates provided with the color filter may be two, and the insulating substrate may be an active matrix substrate of one liquid crystal panel and an insulating substrate opposite to the active matrix substrate.
[0030] この場合においても、カラーフィルタ同士の距離を短くすることができるので、カラー フィルタ同士が離れていることにより生じる視差による色モアレを低減させることがで き、表示品位を向上させることができる。 [0031] さらに、上記重ね合わせた複数の液晶パネルの少なくとも一枚に光拡散性を有す る光拡散層が設けられて 、てもよ 、。 [0030] Also in this case, since the distance between the color filters can be shortened, color moire due to parallax caused by the separation of the color filters can be reduced, and the display quality can be improved. it can. [0031] Further, a light diffusion layer having light diffusibility may be provided on at least one of the plurality of the liquid crystal panels that are superposed.
[0032] 上記の構成によれば、重ね合わせた複数の液晶パネルの少なくとも一枚に光拡散 性を有する光拡散層が設けられていることで、光拡散層を透過した光を空間的にじま せることができる。これにより、例えば、隣接するパネルの同等な周期を持つ微細構 造物同士 (バスライン、ブラックマトリックス、配向制御用の突起など)の非同期干渉の 強度を抑制することが可能となる。この結果、構造干渉に起因するモアレの発生を抑 制できるので、モアレの発生による表示品位の低下を防止することができる。  [0032] According to the above configuration, the light diffusing layer having light diffusibility is provided on at least one of the plurality of liquid crystal panels that are overlaid, so that the light transmitted through the light diffusing layer is spatially blurred. be able to. As a result, for example, it is possible to suppress the strength of asynchronous interference between fine structures having the same period of adjacent panels (such as a bus line, a black matrix, and an alignment control protrusion). As a result, it is possible to suppress the occurrence of moiré due to structural interference, and thus it is possible to prevent display quality from being deteriorated due to the occurrence of moiré.
[0033] また、上記光拡散層は、重ね合わせた液晶パネルの表示面側に設けられていても よい。  [0033] The light diffusion layer may be provided on the display surface side of the superimposed liquid crystal panel.
[0034] この場合、重ね合わせた液晶パネルで発生したモアレの周期情報を光拡散層がに じませることで消去な 、しは緩和し、モアレが観察されるのを防げる。  [0034] In this case, the moiré period information generated in the superimposed liquid crystal panel is erased or relaxed by the light diffusing layer oozing, thereby preventing the moiré from being observed.
[0035] 上記光拡散層は、上記重ね合わせた液晶パネルの間に設けられて!/、てもよ!/、。 [0035] The light diffusing layer is provided between the stacked liquid crystal panels! /!
[0036] この場合は、下側のパネルの微細構造物の周期情報を光拡散層がにじませること で消去な 、しは緩和し、モアレの発生を防げる。 In this case, the periodic information of the fine structure of the lower panel is erased or relaxed by causing the light diffusion layer to bleed, and the generation of moire can be prevented.
[0037] 上記光拡散層は、重ね合わせた液晶パネルの表示面側と重ね合わせた液晶パネ ルの間とに設けられていてもよい。 [0037] The light diffusion layer may be provided between the display surface side of the overlapped liquid crystal panel and the overlapped liquid crystal panel.
[0038] この場合、光拡散層が重ね合わせた液晶パネルの間にのみ設けられるときに比べ[0038] In this case, as compared with the case where the light diffusion layer is provided only between the stacked liquid crystal panels.
、モアレ対策にともなう偏光解消によるコントラストの低下を低減することが出来る。 Therefore, it is possible to reduce a decrease in contrast due to depolarization due to moiré countermeasures.
[0039] 重ね合わせた液晶パネルの間に少なくとも 2枚の偏光吸収層が設けられ、前記少 なくとも 2枚の偏光吸収層の間に光拡散層が設けられて 、てもよ!/、。 [0039] At least two polarization absorption layers may be provided between the stacked liquid crystal panels, and a light diffusion layer may be provided between the at least two polarization absorption layers! /.
[0040] この場合、パネル間での拡散に伴う消偏を防ぐことが可能となり、モアレ対策に伴う コントラストの低下を生じ難くする。 [0040] In this case, it is possible to prevent the bias caused by diffusion between the panels, and it is difficult to cause a decrease in contrast due to the moire countermeasure.
[0041] また、上記構成の液晶表示装置において、さらに、重ね合わせた液晶パネルに対 して表示面とは反対側力 光を照射する照明装置が設けられ、上記照明装置は、可 視光の緑領域にピークを有する光源を有し、該ピークの波長が 505ηπ!〜 540nmの 範囲内にあることが好ましい。 [0041] Further, in the liquid crystal display device having the above-described configuration, an illumination device that irradiates the superimposed liquid crystal panel with a force light opposite to the display surface is provided, and the illumination device transmits visible light. It has a light source having a peak in the green region, and the wavelength of the peak is 505ηπ! It is preferably in the range of ˜540 nm.
[0042] 上記の構成によれば、可視光の緑領域のピークの波長が 505nm〜540nmの範 囲内にある光源を用いることで、緑色が他の色 (青色、赤色)に混ざるのを低減するこ とが可能となる。 [0042] According to the above configuration, the peak wavelength in the green region of visible light is in the range of 505 nm to 540 nm. By using the light source in the enclosure, it is possible to reduce the mixing of green with other colors (blue and red).
[0043] したがって、色再現範囲の向上を図ることができ、その結果として、表示画像の表 示品位の向上を図ることができる。そして、より好ましい、緑領域のピークの波長は、 5 20nmである。  Therefore, the color reproduction range can be improved, and as a result, the display quality of the display image can be improved. A more preferable wavelength of the peak in the green region is 520 nm.
[0044] また、色再現範囲の向上を図ることのできる蛍光体の組成としては、 BaMgAl O  [0044] The phosphor composition capable of improving the color reproduction range includes BaMgAl 2 O 3
10 17 がある。  There are 10 17.
[0045] 本発明に係る液晶表示装置の駆動方法は、上記構成の液晶表示装置の液晶パネ ルのそれぞれが映像ソースに基づいた画像データを出力する液晶表示装置の駆動 方法であって、重ね合わせた液晶パネルのうち、最表面の液晶パネルを第 1の液晶 パネルとしたときに、液晶表示装置から出力される画像データの γ値が γ =G (X) out [0045] A method for driving a liquid crystal display device according to the present invention is a method for driving a liquid crystal display device in which each of the liquid crystal panels of the liquid crystal display device having the above-described structure outputs image data based on a video source. When the outermost LCD panel is the first LCD panel, the γ value of the image data output from the LCD is γ = G (X) out
〈xは任意の階調〉、第 1の液晶パネルから出力される画像データの γ =。ェ (X)、 他の液晶パネルから出力される画像データの γ =G (x) <X is an arbitrary gradation>, γ = the image data output from the first LCD panel. (X), γ = G (x) of image data output from other LCD panel
2 2 の時、少なくともひとつの 階調 Xにおける γ =G (X) 1S G (X) =G (X) +G (X)でかつ G (X) >G (X)の out 1 2 1 2 関係を満たすことを特徴として 、る  2 2, out of at least one gradation X γ = G (X) 1S G (X) = G (X) + G (X) and G (X)> G (X) 1 2 1 2 Characterized by satisfying relationships
上記の構成によれば、各偏光吸収層は、隣接する液晶パネルの偏光吸収層との間 でクロス-コルの関係にあることで、例えば、正面方向においては、偏光吸収層の透 過軸方向の漏れ光が次の偏光吸収層の吸収軸により漏れ光をカットすることが可能 となる。また、斜め方向においては、隣接する偏光吸収層の偏光軸の交差角である ニコル角が崩れても、光漏れによる光量の増加が見られない。つまり、斜め視角での ニコル角の拡がりに対して黒が浮きにくくなる。  According to the above configuration, each polarization absorption layer has a cross-col relationship with the polarization absorption layer of the adjacent liquid crystal panel. For example, in the front direction, the transmission axis direction of the polarization absorption layer This leakage light can be cut off by the absorption axis of the next polarization absorbing layer. Further, in the oblique direction, even if the Nicol angle, which is the intersection angle of the polarization axes of adjacent polarization absorbing layers, collapses, no increase in the amount of light due to light leakage is observed. In other words, black is less likely to float against the widening of the Nicol angle at an oblique viewing angle.
[0046] 以上のことから、 2枚以上の液晶パネルを重ね合わせた場合、少なくとも、偏光吸収 層は 3層備えていることになる。つまり、偏光吸収層を 3層構成にし、それぞれをクロス ニコルに配置することで、正面 ·斜め方向ともにシャッター性能の大幅な向上を図るこ とが可能となる。これにより、コントラストを大幅に向上させることができる。  [0046] From the above, when two or more liquid crystal panels are stacked, at least three polarization absorbing layers are provided. In other words, it is possible to significantly improve the shutter performance in both the front and diagonal directions by using three polarization absorbing layers and arranging them in crossed Nicols. Thereby, the contrast can be greatly improved.
[0047] し力も、液晶表示装置から出力される画像データの γ値が γ =G (x) 〈xは任意 out  [0047] The γ value of the image data output from the liquid crystal display device is γ = G (x) <x is an arbitrary out
の階調〉、第 1の液晶パネルから出力される画像データの Ύ =G (x)、他の液晶パ ネルから出力される画像データの γ =G (x)の時、少なくともひとつの階調 Xにおけ る γ = G (X)力 G (X) = G (X) + G (X)でかつ G (X) >G (X)の関係を満たす out 1 2 1 2 At least one gradation when 画像 = G (x) of the image data output from the first LCD panel and γ = G (x) of the image data output from another liquid crystal panel In X Γ = G (X) force G (X) = G (X) + G (X) and satisfies the relationship of G (X)> G (X) out 1 2 1 2
ことによって、彩度低下が抑制でき、良好な表示が得られる。  As a result, saturation reduction can be suppressed and a good display can be obtained.
[0048] 上記第 1のパネルがカラーパネル、他の第 2のパネルの少なくとも 1つが白黒パネ ルであってもよい。 [0048] The first panel may be a color panel, and at least one of the other second panels may be a monochrome panel.
[0049] より具体的な処理としては、以下のような処理が好ましい。 [0049] As a more specific process, the following process is preferable.
[0050] 上記白黒液晶パネルの 1画素の階調力 映像ソースの 1絵素を構成する画素信号 のうちの最大階調の信号に対応した階調に設定する。  [0050] The gradation power of one pixel of the monochrome liquid crystal panel is set to the gradation corresponding to the maximum gradation signal among the pixel signals constituting one picture element of the video source.
[0051] また、白黒液晶パネルから出力される画像データ力 スムージング処理されていて ちょい。 [0051] The image data output from the monochrome liquid crystal panel is smoothed.
[0052] また、黒階調 X近傍は G (X ) < G (X )であってもよ ヽ。  [0052] Further, the vicinity of the black gradation X may be G (X) <G (X).
2 1 2 2 2  2 1 2 2 2
[0053] また、第 1のパネルから出力される画像データの γ の値が全階調で G (χ) >0であ る(0ではな!/、)であってもよ!/、。  [0053] Further, the value of γ of the image data output from the first panel may be G (χ)> 0 (not 0! /) At all gradations! / ,.
[0054] さらに、該階調 Xにおいて、 G (X)≥ 1. 8であることが好ましい。 [0054] Further, in the gradation X, it is preferable that G (X) ≥ 1.8.
[0055] 本発明の液晶表示装置は、テレビジョン放送を受信するチューナ部と、該チューナ 部で受信したテレビジョン放送を表示する表示装置とを備えたテレビジョン受信機に おける、該表示装置として使用することができる。 [0055] A liquid crystal display device of the present invention is used as a display device in a television receiver including a tuner unit that receives a television broadcast and a display device that displays the television broadcast received by the tuner unit. Can be used.
[0056] 本発明に係る液晶表示装置は、以上のように、液晶パネルを 2枚以上重ね合わせ た液晶表示装置において、上記複数の液晶パネルうち、少なくとも 2枚の液晶パネル にお 、て、該液晶パネルを構成する絶縁性基板にカラーフィルタが設けられて!/、る 構成である。 [0056] As described above, the liquid crystal display device according to the present invention is a liquid crystal display device in which two or more liquid crystal panels are overlapped, and at least two of the plurality of liquid crystal panels include the liquid crystal panels. A color filter is provided on the insulating substrate that constitutes the liquid crystal panel.
[0057] 上記の構成によれば、複数の液晶パネルうち、少なくとも 2枚の液晶パネルにお!、 て、該液晶パネルを構成する絶縁性基板にカラーフィルタが設けられて ヽることで、 重ね合わせた液晶パネルでは、少なくとも 2回カラーフィルタを光が透過することにな り、カラーフィルタ 1枚の場合よりも急峻な分光透過率を得ることができるので、色混じ りが生じにくくなり、その結果、色再現範囲が大幅に向上した表示品位の高い表示画 像を得ることができるという効果を奏する。  [0057] According to the above configuration, at least two liquid crystal panels out of the plurality of liquid crystal panels are arranged in such a manner that the color filter is provided on the insulating substrate that constitutes the liquid crystal panel. In the combined liquid crystal panel, light is transmitted through the color filter at least twice, and a steeper spectral transmittance can be obtained than in the case of a single color filter, so that color mixing is less likely to occur. As a result, it is possible to obtain a display image with a high display quality with a greatly improved color reproduction range.
図面の簡単な説明  Brief Description of Drawings
[0058] [図 1]本発明の実施形態を示すものであり、液晶表示装置の概略断面図である。 [図 2]図 1に示す液晶表示装置における偏光板とパネルとの配置関係を示す図であ る。 FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention. 2 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
[図 3]図 1に示す液晶表示装置の画素電極近傍の平面図である。  3 is a plan view of the vicinity of a pixel electrode of the liquid crystal display device shown in FIG.
圆 4]図 1に示す液晶表示装置を駆動する駆動システムの概略構成図である。 4] FIG. 4 is a schematic configuration diagram of a drive system that drives the liquid crystal display device shown in FIG.
圆 5]図 1に示す液晶表示装置のドライバとパネル駆動回路との接続関係を示す図で ある。 [5] FIG. 5 is a diagram showing a connection relationship between the driver of the liquid crystal display device shown in FIG. 1 and a panel drive circuit.
[図 6]図 1に示す液晶表示装置が備えているノ ックライトの概略構成図である。  6 is a schematic configuration diagram of a knocklight included in the liquid crystal display device shown in FIG.
[図 7]図 1に示す液晶表示装置を駆動する駆動回路である表示コントローラのブロック 図である。  FIG. 7 is a block diagram of a display controller that is a drive circuit for driving the liquid crystal display device shown in FIG.
[図 8]液晶パネル 1枚の液晶表示装置の概略断面図である。  FIG. 8 is a schematic cross-sectional view of a liquid crystal display device with one liquid crystal panel.
[図 9]図 8に示す液晶表示装置における偏光板とパネルとの配置関係を示す図であ る。  FIG. 9 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
圆 10(a)]コントラスト向上の原理を説明する図である。 [10 (a)] is a diagram for explaining the principle of contrast improvement.
圆 10(b)]コントラスト向上の原理を説明する図である。 [10 (b)] is a diagram for explaining the principle of contrast improvement.
圆 10(c)]コントラスト向上の原理を説明する図である。 [10 (c)] is a diagram for explaining the principle of contrast improvement.
圆 11(a)]コントラスト向上の原理を説明する図である。 [11 (a)] is a diagram for explaining the principle of contrast improvement.
圆 11(b)]コントラスト向上の原理を説明する図である。 [11 (b)] is a diagram for explaining the principle of contrast improvement.
圆 11(c)]コントラスト向上の原理を説明する図である。 [11 (c)] is a diagram for explaining the principle of contrast improvement.
圆 11(d)]コントラスト向上の原理を説明する図である。 [11 (d)] is a diagram for explaining the principle of contrast improvement.
圆 12(a)]コントラスト向上の原理を説明する図である。 [12 (a)] is a diagram for explaining the principle of contrast improvement.
圆 12(b)]コントラスト向上の原理を説明する図である。 [12 (b)] is a diagram for explaining the principle of contrast improvement.
圆 12(c)]コントラスト向上の原理を説明する図である。 [12 (c)] is a diagram for explaining the principle of contrast improvement.
圆 13(a)]コントラスト向上の原理を説明する図である。 [13 (a)] is a diagram for explaining the principle of contrast improvement.
圆 13(b)]コントラスト向上の原理を説明する図である。 [13 (b)] is a diagram for explaining the principle of contrast improvement.
圆 14(a)]コントラスト向上の原理を説明する図である。 [14 (a)] is a diagram for explaining the principle of contrast improvement.
圆 14(b)]コントラスト向上の原理を説明する図である。 [14 (b)] is a diagram for explaining the principle of contrast improvement.
圆 14(c)]コントラスト向上の原理を説明する図である。 [14 (c)] is a diagram for explaining the principle of contrast improvement.
圆 15(a)]コントラスト向上の原理を説明する図である。 圆 15(b)]コントラスト向上の原理を説明する図である。 [15 (a)] is a diagram for explaining the principle of contrast improvement. [15 (b)] is a diagram for explaining the principle of contrast improvement.
圆 16(a)]コントラスト向上の原理を説明する図である。 [16] (a)] is a diagram for explaining the principle of contrast improvement.
圆 16(b)]コントラスト向上の原理を説明する図である。 [16 (b)] is a diagram for explaining the principle of contrast improvement.
[図 17]本発明のパネルと従来のパネルにおける各色の波長と透過率との関係を示す グラフである。  FIG. 17 is a graph showing the relationship between the wavelength and transmittance of each color in the panel of the present invention and the conventional panel.
[図 18]本発明のパネルと従来のパネルにおける青色表示時の、波長と分光強度との 関係を示すグラフである。  FIG. 18 is a graph showing the relationship between wavelength and spectral intensity when displaying blue in the panel of the present invention and the conventional panel.
[図 19]色度図の全体を示すグラフである。  FIG. 19 is a graph showing the entire chromaticity diagram.
[図 20]図 19に示す色度図の要部を拡大した図である。  20 is an enlarged view of the main part of the chromaticity diagram shown in FIG.
圆 21]本発明の実施形態を示すものであり、光拡散層を第 1のパネルの偏光板の前 に配置した例を示す図である。 FIG. 21 is a view showing an embodiment of the present invention and showing an example in which a light diffusion layer is arranged in front of a polarizing plate of a first panel.
圆 22]本発明の実施形態を示すものであり、光拡散層を第 2のパネルの前に配置し た例を示す図である。 FIG. 22 is a view showing an embodiment of the present invention and showing an example in which a light diffusion layer is arranged in front of a second panel.
圆 23]本発明の実施形態を示すものであり、光拡散層を第 1のパネルと第 2のパネル のそれぞれの偏光板の間に配置した例を示す図である。 FIG. 23 illustrates an embodiment of the present invention and is a diagram illustrating an example in which a light diffusion layer is disposed between polarizing plates of a first panel and a second panel.
圆 24]本発明の実施形態を示すものであり、光拡散層としてのレンズシートを第 1の パネルと第 2のパネルのそれぞれの偏光板の間に配置した例を示す図である。 FIG. 24 shows an embodiment of the present invention, and is a diagram showing an example in which a lens sheet as a light diffusion layer is disposed between respective polarizing plates of a first panel and a second panel.
[図 25]2枚構成の液晶表示装置におけるモアレ発生のメカニズムを説明するための 概略断面図である。 FIG. 25 is a schematic cross-sectional view for explaining the mechanism of moire generation in a two-panel liquid crystal display device.
[図 26]2枚構成の液晶表示装置におけるモアレ発生を抑えた構成の概略断面図で ある。  FIG. 26 is a schematic cross-sectional view of a configuration in which moiré is suppressed in a two-panel liquid crystal display device.
[図 27]2枚構成の液晶表示装置におけるモアレ発生を抑えた構成の他の例を示す 概略断面図である。  FIG. 27 is a schematic cross-sectional view showing another example of a configuration in which moiré is suppressed in a two-panel liquid crystal display device.
圆 28]本発明の実施形態を示すものであり、液晶表示装置の概略断面図である。 FIG. 28 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
[図 29]図 28に示す液晶表示装置における偏光板とパネルとの配置関係を示す図で ある。 FIG. 29 is a diagram showing an arrangement relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
[図 30]図 28に示す液晶表示装置の画素電極近傍の平面図である。  30 is a plan view of the vicinity of a pixel electrode of the liquid crystal display device shown in FIG.
[図 31(a)]モアレ対策の他の例を示す図である。 [図 31(b)]モアレ対策の他の例を示す図である。 FIG. 31 (a) is a diagram showing another example of countermeasures for moire. FIG. 31 (b) is a diagram showing another example of countermeasures for moire.
[図 31(c)]モアレ対策の他の例を示す図である。  FIG. 31 (c) is a diagram showing another example of countermeasure against moire.
[図 32]図 31に示すモアレ対策を実現するための表示コントローラのブロック図である  FIG. 32 is a block diagram of a display controller for realizing the moire countermeasure shown in FIG. 31.
[図 33(a)]モアレ対策の他の例を示す図である。 FIG. 33 (a) is a diagram showing another example of countermeasures for moire.
[図 33(b)]モアレ対策の他の例を示す図である。  FIG. 33 (b) is a diagram showing another example of countermeasure against moire.
[図 33(c)]モアレ対策の他の例を示す図である。  FIG. 33 (c) is a diagram showing another example of countermeasure against moire.
[図 34]図 33に示すモアレ対策を実現するための表示コントローラのブロック図である  FIG. 34 is a block diagram of a display controller for realizing the moire countermeasure shown in FIG. 33.
[図 35]階調-輝度特性を示すグラフである。 FIG. 35 is a graph showing gradation-luminance characteristics.
[図 36]図 35に示す階調一輝度特性の対数グラフである。  FIG. 36 is a logarithmic graph of the gradation-one luminance characteristic shown in FIG.
[図 37]階調-輝度特性を示すグラフである。  FIG. 37 is a graph showing gradation-luminance characteristics.
[図 38]図 37に示す階調一輝度特性の対数グラフである。  FIG. 38 is a logarithmic graph of the gradation-one luminance characteristic shown in FIG.
[図 39]階調-輝度特性を示すグラフである。  FIG. 39 is a graph showing gradation-luminance characteristics.
[図 40]図 39に示す階調一輝度特'性の対数グラフである。  FIG. 40 is a logarithmic graph of the gradation-one luminance characteristic shown in FIG.
[図 41]本発明の液晶表示装置を備えたテレビジョン受信機の概略ブロック図である。  FIG. 41 is a schematic block diagram of a television receiver including the liquid crystal display device of the present invention.
[図 42]図 41に示すテレビジョン受信機におけるチューナ部と液晶表示装置との関係 を示すブロック図である。  42 is a block diagram showing a relationship between a tuner unit and a liquid crystal display device in the television receiver shown in FIG. 41.
[図 43]図 41に示すテレビジョン受信機の分解斜視図である。  FIG. 43 is an exploded perspective view of the television receiver shown in FIG. 41.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0059] 〔実施の形態 1〕 [Embodiment 1]
本発明の一実施の形態について説明すれば、以下の通りである。  An embodiment of the present invention will be described as follows.
[0060] 本実施の形態に力かる液晶表示装置について説明する前に、一般的な液晶表示 装置の構成について説明する。 [0060] Before describing a liquid crystal display device that works according to the present embodiment, a configuration of a general liquid crystal display device will be described.
[0061] 一般的な液晶表示装置は、図 8に示すように、カラーフィルタおよび駆動用基板を 備えた液晶パネルに偏光板 A、 Bを貼り合せて構成される。ここでは MVA (Multidom ain Vertical Alignment)方式について説明する。 As shown in FIG. 8, a general liquid crystal display device is configured by bonding polarizing plates A and B to a liquid crystal panel including a color filter and a driving substrate. Here, the MVA (Multidom ain Vertical Alignment) method is explained.
[0062] 偏光板 A、 Bは、図 9に示すように、偏光軸が直行しており、画素電極 8に閾値電圧 を印加した場合に液晶が傾いて配向する方向は、偏光板 A, Bの偏光軸と方位角 45 度に設定してある。このとき、偏光板 Aを通った入射偏光が液晶層を通るときに、偏光 軸が回転するため、偏光板 Bから光が出射される。また、画素電極に閾値電圧以下 の電圧しか印加されない場合は、液晶は基板に対して垂直に配向しており、入射偏 光の偏向角の変化しないため、黒表示となる。 MVA方式はでは、電圧印加時の液 晶の倒れる方向を 4つに分割 (Multidomain)することによって、高視野角を実現して いる。 As shown in FIG. 9, the polarization axes of the polarizing plates A and B are perpendicular to each other, and the threshold voltage is applied to the pixel electrode 8. When liquid crystal is applied, the direction in which the liquid crystal is tilted and aligned is set to 45 ° with the polarization axis of the polarizing plates A and B. At this time, since the polarization axis rotates when the incident polarized light passing through the polarizing plate A passes through the liquid crystal layer, light is emitted from the polarizing plate B. In addition, when only a voltage lower than the threshold voltage is applied to the pixel electrode, the liquid crystal is aligned perpendicular to the substrate and the deflection angle of incident polarization does not change, resulting in black display. The MVA method achieves a high viewing angle by dividing the direction in which the liquid crystal tilts when a voltage is applied into four (Multidomain).
[0063] し力しながら、 2枚偏光板構成の場合には、コントラストの向上に限界があった。そこ で、本願発明者らは、液晶表示パネル 2枚に対して、偏光板 3枚構成 (それぞれをク ロス-コルに設置)とすることで、正面 ·斜め方向ともにシャッター性能が向上すること を見出した。  However, in the case of the two-polarizing plate configuration, there is a limit to the improvement in contrast. Therefore, the inventors of the present application show that the shutter performance is improved in both the front and the diagonal directions by adopting three polarizing plates for each of the two liquid crystal display panels (each installed in a cross-coll). I found it.
[0064] コントラスト改善の原理について以下に説明する。  [0064] The principle of contrast improvement will be described below.
[0065] 具体的には、 [0065] Specifically,
(1)正面方向について  (1) Front direction
パネル内の偏光解消(CF等の散乱)により、クロス-コルの透過軸方向力 漏れ光 が発生していたが、上記の偏光板三枚構成にすることで、二枚目の偏光板の透過軸 方向漏れ光に対し、三枚目の偏光板吸収軸を一致させて漏れ光をカットすることが できることを見出した。  Cross-col transmission axis direction force leakage light was generated due to depolarization in the panel (scattering of CF, etc.). By using the above three polarizing plates, transmission through the second polarizing plate It was found that the leakage light can be cut by matching the absorption axis of the third polarizing plate with respect to the axial leakage light.
[0066] (2)斜め方向について  [0066] (2) About diagonal direction
偏光板ニコル角 φの崩れに対し、漏れ光量変化が鈍感になること、すなわち、斜め 視角での-コル角 φの広がりに対して黒が浮きにくいことを見出した。  It was found that the change in the amount of leaked light was insensitive to the collapse of the polarizing plate Nicol angle φ, that is, black did not easily float with respect to the spread of the −Col angle φ at an oblique viewing angle.
[0067] 以上のことから、液晶表示装置においてコントラストが大幅に向上することを見出し た。以下において、コントラスト向上の原理について、図 10〜図 16および表 1を参照 しながら以下に説明する。ここでは、二枚偏光板構成を構成(1)、三枚偏光板構成を 構成(2)として説明する。斜め方向のコントラスト向上は、本質的には偏光板の構成 が要因となっているため、ここでは液晶パネルを用いずに、偏光板のみによってモデ ルイ匕して説明している。  [0067] From the above, it was found that the contrast is greatly improved in the liquid crystal display device. In the following, the principle of contrast improvement will be described with reference to FIGS. 10 to 16 and Table 1. Here, the description will be made assuming that the two-polarizing plate configuration is the configuration (1) and the three-polarizing plate configuration is the configuration (2). The improvement in the contrast in the oblique direction is essentially caused by the configuration of the polarizing plate. Therefore, the description here is based on the polarizing plate alone, without using the liquid crystal panel.
[0068] 図 10 (a)は、構成(1)において、一枚の液晶表示パネルがある場合を想定しており 、二枚の偏光板 101a ' 101bがクロス-コルに配置された例を示し、図 10 (b)は、構 成(2)において、三枚の偏光板 101a' 101b ' 101cが互いにクロス-コルに配置され た例を示す図である。つまり、構成(2)では、液晶表示パネルが二枚である場合を想 定しているので、クロス-コルに配置されている偏光板は 2対となる。図 10 (c)は、対 向する偏光板 101aと偏光板 101bとをクロス-コルに配置し、それぞれの偏光板の 外側に偏光方向が同じ偏光板を重ね合わせた例を示す図である。なお、図 10 ( で は、四枚の偏光板の構成を示している力 クロス-コルの関係にある偏光板は 1枚の 液晶表示パネルを挟持する場合を想定して ヽる 1対となる。 [0068] FIG. 10 (a) assumes the case where there is one liquid crystal display panel in the configuration (1). FIG. 10 (b) shows an example in which two polarizing plates 101a′101b are arranged in a cross-col, and FIG. 10 (b) shows that in configuration (2), the three polarizing plates 101a′101b′101c are cross-cold with each other. It is a figure which shows the example arrange | positioned at. In other words, since the configuration (2) assumes that there are two liquid crystal display panels, there are two pairs of polarizing plates arranged in a cross-col. FIG. 10 (c) is a diagram showing an example in which the polarizing plates 101a and 101b facing each other are arranged in a cross-col, and polarizing plates having the same polarization direction are superimposed on the outer sides of the respective polarizing plates. In addition, in FIG. 10 (, a pair of polarizing plates in a force cross-col relationship showing the configuration of four polarizing plates is assumed to hold one liquid crystal display panel. .
[0069] 液晶表示パネルが黒表示をする場合の透過率を、液晶パネル無い場合の偏光板 をクロス-コル配置したときの透過率すなわちクロス透過率としてモデルィ匕し黒表示と 呼ぶことにし、液晶表示パネルが白表示をする場合の透過率を、液晶パネル無い場 合の偏光板をパラレル-コル配置したときの透過率すなわちパラレル透過率としてモ デルイ匕し黒表示と呼ぶことにしたとき、偏光板を正面力もみたときの透過スペクトルの 波長と透過率の関係と、偏光板を斜め力 みたときの透過スペクトルの波長と透過率 の関係とを示した例力 図 11 (a)〜図 11 (d)に示すグラフである。なお、上記モデル 化した透過率は偏光板をクロスニコル配置し液晶パネルを狭持する方式の、白表示 、黒表示の透過率の理想値にあたるものである。 [0069] The transmittance when the liquid crystal display panel displays black is modeled as the transmittance when the polarizing plate without the liquid crystal panel is arranged in a cross-cor arrangement, that is, the cross transmittance, and is called black display. The transmittance when the display panel displays white is modeled as the black transmittance when the polarizing plate without the liquid crystal panel is arranged in parallel-col, that is, parallel transmittance. Example forces showing the relationship between the wavelength and transmittance of the transmission spectrum when the frontal force is seen on the plate, and the relationship between the wavelength and transmittance of the transmission spectrum when the polarizing plate is seen obliquely Fig. 11 (a) to Fig. 11 ( It is a graph shown in d). The modeled transmittance corresponds to an ideal value of transmittance for white display and black display in a method in which a polarizing plate is arranged in a crossed Nicol manner and a liquid crystal panel is held.
[0070] 図 11 (a)は、偏光板を正面からみたときの透過スペクトルの波長とクロス透過率との 関係を、上記の構成(1)と構成(2)とで比較した場合のグラフである。このグラフから 、黒表示の正面での透過率特性は、構成(1)と構成(2)とは似た傾向にあることが分 かる。 [0070] Fig. 11 (a) is a graph when the relationship between the wavelength of the transmission spectrum and the cross transmittance when the polarizing plate is viewed from the front is compared between the configuration (1) and the configuration (2). is there. From this graph, it can be seen that the transmittance characteristics in the front of the black display tend to be similar to configurations (1) and (2).
[0071] 図 11 (b)は、偏光板を正面力もみたときの透過スペクトルの波長とパラレル透過率 の関係を、上記の構成(1)と構成 (2)とで比較した場合のグラフである。このグラフか ら、白表示の正面での透過率特性は、構成(1)と構成(2)とは似た傾向にあることが 分かる。  [0071] FIG. 11 (b) is a graph in the case where the relationship between the wavelength of the transmission spectrum and the parallel transmittance when the frontal force of the polarizing plate is viewed is compared between the configuration (1) and the configuration (2). . From this graph, it can be seen that the transmittance characteristics in the front of the white display tend to be similar to configurations (1) and (2).
[0072] 図 11 (c)は、偏光板を斜め(方位角 45° —極角 60° )力もみたときの透過スぺタト ルの波長とクロス透過率の関係を、上記の構成(1)と構成 (2)とで比較した場合のグ ラフである。このグラフから、黒表示の斜めでの透過率特性は、構成(2)では、ほとん どの波長域で透過率がほぼ 0を示し、構成(1)では、ほとんどの波長域で若干の光の 透過が見られることが分かる。つまり、偏光板二枚構成では、黒表示時に斜め視野角 で光もれ (黒の締まりの悪化)が生じていることが分かり、逆に、偏光板三枚構成では 、黒表示時に斜め視野角で光もれ (黒の締まりの悪化)が抑えられていることが分か る。 [0072] Figure 11 (c) shows the relationship between the wavelength of the transmission spectrum and the cross transmittance when the polarizing plate is tilted (azimuth angle 45 °-polar angle 60 °). It is a graph when comparing with the configuration (2). From this graph, the transmittance characteristics in the diagonal of black display are mostly in the configuration (2). It can be seen that the transmissivity is almost 0 in any wavelength range, and in the configuration (1), a slight amount of light can be seen in most wavelength ranges. In other words, it can be seen that light leakage occurs at an oblique viewing angle when black is displayed (a worsening of black tightening) in the two-polarizing plate configuration, and conversely, an oblique viewing angle is displayed when black is displayed in the three-polarizing plate configuration. It can be seen that light leakage (deterioration of black tightening) is suppressed.
[0073] 図 11 (d)は、偏光板を斜め(方位角 45° —極角 60° )力もみたときの透過スぺタト ルの波長とパラレル透過率の関係を、上記の構成(1)と構成 (2)とで比較した場合の グラフである。このグラフ力ゝら、白表示の斜めでの透過率特性は、構成(1)と構成(2) とで似た傾向にあることが分かる。  [0073] Figure 11 (d) shows the relationship between the wavelength of the transmission spectrum and the parallel transmittance when the polarizing plate is tilted (azimuth angle 45 °-polar angle 60 °). It is a graph when comparing with the configuration (2). From this graph power, it can be seen that the transmittance characteristics of the white display in the oblique direction tend to be similar between the configuration (1) and the configuration (2).
[0074] 以上のことから、白表示時では、図 11 (b)、図 11 (d)に示すように、偏光板の枚数、 すなわち偏光板の-コルクロス対の数による差はほとんどなぐ正面であっても斜め であってもほとんど同じ透過率特性を示すことが分かる。  [0074] From the above, at the time of white display, as shown in Fig. 11 (b) and Fig. 11 (d), the difference depending on the number of polarizing plates, that is, the number of -colcross pairs of polarizing plates is almost in front. It can be seen that the transmittance characteristics are almost the same regardless of whether it is diagonal or oblique.
[0075] し力しながら、黒表示時では、図 11 (c)に示すように、クロス-コル対が 1の構成(1) の場合では、斜め視野角で黒の締まりの悪ィ匕が生じ、クロス-コル対が 2の構成(2) の場合では、斜め視野角での黒の締まりの悪ィ匕を抑えていることが分かる。  [0075] However, when black is displayed, as shown in Fig. 11 (c), in the case of the configuration (1) in which the cross-col pair is 1, there is a black tightening error at an oblique viewing angle. As a result, in the case of the configuration (2) in which the cross-col pair is 2, it is understood that the black tightening at the oblique viewing angle is suppressed.
[0076] 例えば、透過スペクトルの波長が 550nmのときの、正面、斜めのからみたときの透 過率の関係は、以下の表 1に示すようになる。  [0076] For example, when the wavelength of the transmission spectrum is 550 nm, the relationship between the transmittance when viewed from the front and oblique directions is as shown in Table 1 below.
[0077] [表 1]  [0077] [Table 1]
550nm 550nm
Figure imgf000015_0001
Figure imgf000015_0001
[0078] ここで、表 1において、パラレルとは、パラレル透過率を示し、白表示時の透過率を 示す。また、クロスとは、クロス透過率を示し、黒表示時の透過率を示す。従って、パ ラレル/クロスは、コントラスを示す。 Here, in Table 1, “parallel” indicates parallel transmittance, and indicates transmittance when white is displayed. Further, the cross indicates a cross transmittance, and indicates a transmittance during black display. Therefore, Parallel / Cross indicates contrast.
[0079] 表 1から、構成(2)における正面のコントラスは、構成(1)に対して約 2倍となり、構 成(2)における斜めのコントラストは、構成(1)に対して約 22倍となり、斜めのコントラ ストが大幅に向上していることが分かる。 [0079] From Table 1, the front contrast in configuration (2) is approximately twice that in configuration (1), and the diagonal contrast in configuration (2) is approximately 22 times that in configuration (1). And the diagonal contra It can be seen that the strike is greatly improved.
[0080] また、白表示時と黒表示時とにおける視野角特性について、図 12 (a)〜図 12 (c) を参照しながら以下に説明する。ここでは、偏光板に対する方位角が 45° で、透過 スペクトルの波長が 550nmの場合について説明する。  [0080] The viewing angle characteristics during white display and black display will be described below with reference to FIGS. 12 (a) to 12 (c). Here, the case where the azimuth angle with respect to the polarizing plate is 45 ° and the wavelength of the transmission spectrum is 550 nm will be described.
[0081] 図 12 (a)は、白表示時の極角と透過率との関係を示すグラフである。このグラフから 、構成(2)の方が構成(1)の場合よりも透過率が全体的に低くなつているが、この場 合の視野角特性 (パラレル視野角特性)は構成 (2)と構成(1)とでは似た傾向にある ことが分力ゝる。  FIG. 12 (a) is a graph showing the relationship between the polar angle and the transmittance during white display. From this graph, the transmittance of the configuration (2) is generally lower than that of the configuration (1). In this case, the viewing angle characteristics (parallel viewing angle characteristics) are the same as those of the configuration (2). It can be said that the structure (1) has a similar tendency.
[0082] 図 12 (b)は、黒表示時の極角と透過率との関係を示すグラフである。このグラフ力 、構成(2)の場合、斜め視野角(極角 ± 80° 付近)での透過率を抑えていることが分 かる。逆に、構成(1)の場合、斜め視野角での透過率が上がっていることが分かる。 つまり、構成(1)の方が、構成(2)の場合に比べて、斜め視野角における黒の締まり の悪ィ匕が顕著であることを示して 、る。  FIG. 12B is a graph showing the relationship between polar angle and transmittance during black display. It can be seen that in the case of configuration (2), this graph power suppresses transmittance at an oblique viewing angle (around polar angle ± 80 °). Conversely, in the case of the configuration (1), it can be seen that the transmittance at an oblique viewing angle is increased. In other words, the configuration (1) is more prominent in black tightening at an oblique viewing angle than the configuration (2).
[0083] 図 12 (c)は、極角とコントラストとの関係を示したグラフである。このグラフから、構成  [0083] FIG. 12 (c) is a graph showing the relationship between polar angle and contrast. From this graph, the configuration
(2)の方が構成(1)の場合よりもコントラストが格段によくなつて!、ることが分かる。な お、図 12 (c)の構成 2の 0度付近が平坦となっているのは、黒の透過率が小さいため 桁落ちして計算が出来ないためであり、実際は滑らかな曲線となる。  It can be seen that the contrast in (2) is much better than in the case of configuration (1)! The reason why the vicinity of 0 ° in configuration 2 in Fig. 12 (c) is flat is that the black transmittance is so small that it cannot be calculated and the calculation is smooth.
[0084] 次に、偏光板ニコル角 φの崩れに対し、漏れ光量変化が鈍感になること、すなわち 、斜め視角での-コル角 φの広がりに対して黒の締まりの悪ィ匕が生じにくくなることに ついて、図 13 (a) (b)を参照しながら以下に説明する。ここで、偏光板-コル角 φと は、図 13 (a)に示すように、対向する偏光板の偏光軸同士がねじれの関係にある状 態での角度をいう。図 13 (a)は偏光板をクロスニコル配置したものを斜視したもので あり、ニコル角 φが 90° 力 変化(上記-コル角の崩れに対応)している。  [0084] Next, the change in the amount of leakage light is insensitive to the collapse of the polarizing plate Nicol angle φ, that is, the black tightening is less likely to occur with respect to the spread of the −Col angle φ at an oblique viewing angle. This will be described below with reference to FIGS. 13 (a) and 13 (b). Here, as shown in FIG. 13 (a), the polarizing plate-col angle φ means an angle in a state in which the polarization axes of the polarizing plates facing each other are in a twisted relationship. Fig. 13 (a) is a perspective view of a polarizing plate in which crossed Nicols are arranged, and the Nicol angle φ changes by 90 ° (corresponding to the collapse of the -Col angle).
[0085] 図 13 (b)は、ニコル角 φとクロス透過率との関係を示すグラフである。理想的な偏 光子(パラレル-コル透過率 50%、クロス-コル透過率 0%)を用いて計算して 、る。 このグラフから、黒表示時において、ニコル角 φの変化に対する透過率の変化の度 合いは、構成(2)の方が構成(1)の場合よりも少ないことが分かる。つまり、偏光板三 枚構成の方が、偏光板二枚構成よりも-コル角 Φの変化の影響を受け難いことが分 かる。 FIG. 13 (b) is a graph showing the relationship between the Nicol angle φ and the cross transmittance. Calculate using the ideal polarizer (parallel-col transmittance 50%, cross-col transmittance 0%). From this graph, it can be seen that the degree of change in the transmittance with respect to the change in the Nicol angle φ is smaller in the configuration (2) than in the configuration (1) during black display. In other words, the three-polarizer configuration is less susceptible to changes in the -col angle Φ than the two-polarizer configuration. Karu.
[0086] 次に、偏光板の厚み依存性について、図 14 (a)〜図 14 (c)を参照しながら以下に 説明する。ここでは、偏光板の厚み調整は、図 10 (c)に示すように、 1対のクロスニコ ル配置された偏光板に対して、 1枚ずつ同じ偏光軸の偏光板を重ね合わせた構成 ( 3)のようにすることで行う。図 10 (c)では、 1対のクロス-コル配置された偏光板 101a • 101bのそれぞれに対して、同じ偏光方向の偏光軸を有する偏光板 101a' 101bを それぞれ重ね合わせて例を示している。この場合、 1対のクロス-コル配置された偏 光板二枚の他に、二枚の偏光板を有した構成となっているので、クロス一対一 2とす る。同様に、重ね合わせる偏光板が増えれば、クロス一対— 3、—4、…とする。  Next, the thickness dependency of the polarizing plate will be described below with reference to FIGS. 14 (a) to 14 (c). Here, as shown in Fig. 10 (c), the thickness of the polarizing plate is adjusted by superposing polarizing plates with the same polarization axis one by one on a pair of polarizing plates arranged in crossed Nicols (3 ). FIG. 10 (c) shows an example in which polarizing plates 101a and 101b having the same polarization direction are superimposed on each of a pair of cross-cold polarizing plates 101a and 101b. . In this case, since the polarizing plate is provided with two polarizing plates in addition to two polarizing plates arranged in a pair of cross-colls, the cross is one-on-one. Similarly, if the number of polarizing plates to be superimposed increases, it is assumed that the cross pair is −3, −4,.
[0087] 図 14 (a)は、黒表示時にお!、て、 1対のクロス-コル配置された偏光板の偏光板厚 みと透過率 (クロス透過率)との関係を示すグラフである。なお、このグラフには、比較 のために、 2対のクロス-コル配置された偏光板を有する場合の透過率を示して 、る  FIG. 14 (a) is a graph showing the relationship between the polarizing plate thickness and the transmittance (cross transmittance) of a pair of cross-col arranged polarizing plates during black display! . For comparison, this graph shows the transmittance in the case of having two pairs of cross-cold polarizing plates.
[0088] 図 14 (b)は、白表示時において、 1対のクロス-コルに配置された偏光板の厚みと 透過率 (パラレル透過率)との関係を示すグラフである。なお、このグラフには、比較 のために、 2対のクロス-コル配置された偏光板を有する場合の透過率を示して 、る [0088] FIG. 14 (b) is a graph showing the relationship between the thickness of the polarizing plates arranged in a pair of cross-cols and the transmittance (parallel transmittance) during white display. For comparison, this graph shows the transmittance in the case of having two pairs of cross-cold polarizing plates.
[0089] 図 14 (a)に示すグラフから、偏光板を重ね合わせれば、黒表示時の透過率を小さく することができることが分かるが、図 14 (b)に示すグラフから、偏光板を重ね合わせれ ば、白表示時の透過率が小さくなることが分かる。つまり、黒表示時の黒の締まりの悪 化を抑えるために、偏光板を重ねただけでは、白表示時の透過率が低下することに なる。 [0089] From the graph shown in Fig. 14 (a), it can be seen that if the polarizing plates are overlapped, the transmittance during black display can be reduced, but the polarizing plate is overlapped from the graph shown in Fig. 14 (b). When combined, it can be seen that the transmittance during white display is reduced. In other words, in order to suppress the deterioration of black tightening at the time of black display, the transmittance at the time of white display is lowered only by overlapping the polarizing plates.
[0090] また、 1対のクロス-コルに配置された偏光板の厚みとコントラストとの関係を示すグ ラフは、図 14 (c)に示すようになる。なお、このグラフには、比較のために、 2対のクロ スニコル配置された偏光板を有する場合のコントラストを示している。  [0090] Further, a graph showing the relationship between the thickness of a polarizing plate arranged in a pair of cross-cols and contrast is as shown in FIG. 14 (c). For comparison, this graph shows the contrast in the case of having two pairs of crossed Nicol polarizing plates.
[0091] 以上、図 14 (a)〜図 14 (c)に示すグラフから、 2対のクロス-コル配置された偏光板 の構成であれば、黒表示時の黒の締まりの悪ィ匕を抑え、且つ白表示時の透過率の 低下を防ぐことができることが分かる。しかも、 2対のクロス-コル配置された偏光板は 、合計 3枚の偏光板からなっているので、液晶表示装置全体の厚みを厚くすることも なぐさらに、コントラストも大幅に向上できることが分かる。 [0091] As described above, from the graphs shown in FIGS. 14 (a) to 14 (c), the configuration of the polarizing plates arranged in two pairs of cross-cols shows that the black tightening at the time of black display is poor. It can be seen that the transmittance can be suppressed and the decrease in transmittance during white display can be prevented. Moreover, two pairs of cross-cold polarizing plates Since it consists of three polarizing plates in total, it can be seen that the thickness of the entire liquid crystal display device can be increased and the contrast can be greatly improved.
[0092] クロス-コル透過率の視野角特性を具体的に示したものとして、図 15 (a) (b)がある 。図 15 (a)は、構成(1)の場合、すなわち、クロス-コル一対の偏光板 2枚構成のクロ スニコル視野角特性を示す図であり、図 15 (b)は、構成(2)の場合、すなわちクロス ニコル二対の偏光板 3枚構成のクロス-コル視野角特性を示す図である。  [0092] Figs. 15 (a) and 15 (b) specifically show the viewing angle characteristics of the cross-col transmittance. FIG. 15 (a) is a diagram showing the crossed-coll pair of polarizing plates in the configuration (1), that is, the cross-coll viewing angle characteristics, and FIG. 15 (b) is the diagram of the configuration (2). FIG. 5 is a diagram showing the cross-col viewing angle characteristics of a case where three crossed Nicols two pairs of polarizing plates are used.
[0093] 図 15 (a) (b)に示す図から、クロス-コル二対の構成では、黒の締まりの悪化(黒表 示時の透過率の上昇に相当)がほとんど見られないことがわかる(特に 45° 、 135° 、 225° 、 315° 方向)。  [0093] From the diagrams shown in Figs. 15 (a) and 15 (b), in the cross-col two-pair configuration, there is almost no deterioration in black tightening (corresponding to an increase in transmittance during black display). You can see (especially 45 °, 135 °, 225 °, 315 ° directions).
[0094] また、コントラスト視野角特性 (パラレル Zクロス輝度)を具体的に示したものとして、 図 16 (a) (b)がある。図 16 (a)は、構成(1)の場合、すなわち、クロス-コル一対の偏 光板 2枚構成のコントラスト視野角特性を示す図であり、図 16 (b)は、構成(2)の場 合、すなわちクロス-コル二対の偏光板 3枚構成のコントラスト視野角特性を示す図 である。  [0094] Further, FIGS. 16 (a) and 16 (b) specifically show the contrast viewing angle characteristics (parallel Z cross luminance). FIG. 16 (a) is a diagram showing the contrast viewing angle characteristics of the configuration (1), that is, the configuration of two cross-coll pair polarizers, and FIG. 16 (b) shows the field of the configuration (2). In other words, it is a diagram showing the contrast viewing angle characteristics of the three cross-col pair polarizing plate configuration.
[0095] 図 16 (a) (b)に示す図から、クロス-コル二対の構成では、クロス-コル一対の構成 よりもコントラストが向上していることが分かる。  [0095] From the diagrams shown in FIGS. 16 (a) and 16 (b), it can be seen that the contrast of the cross-col pair configuration is improved compared to the cross-col pair configuration.
[0096] ここで、上述したコントラスト向上の原理を利用した液晶表示装置について色再現 範囲を向上させる形態を、図 1〜図 8を参照しながら以下に説明する。 Here, an embodiment for improving the color reproduction range of the liquid crystal display device using the above-described principle of improving contrast will be described below with reference to FIGS.
[0097] 図 1は、本実施の形態に係る液晶表示装置 100の概略断面を示す図である。 FIG. 1 is a diagram showing a schematic cross section of a liquid crystal display device 100 according to the present embodiment.
[0098] 上記液晶表示装置 100は、図 1に示すように、第 1のパネルと第 2のパネルと偏光 板 A、 B、 Cを交互に貼り合せて構成されている。 As shown in FIG. 1, the liquid crystal display device 100 is configured by alternately bonding a first panel, a second panel, and polarizing plates A, B, and C.
[0099] 図 2は、図 1に示す液晶表示装置 100における偏光板と液晶パネルと配置を示した 図である。図 2では、偏光板 Aと B、偏光板 Bと Cはそれぞれ偏光軸が直行して構成さ れる。すなわち、偏光板 Aと B、偏光板 Bと Cは、それぞれクロス-コルに配置されて いる。 FIG. 2 is a diagram showing the arrangement of the polarizing plate and the liquid crystal panel in the liquid crystal display device 100 shown in FIG. In FIG. 2, polarizing plates A and B and polarizing plates B and C are configured with their polarization axes perpendicular to each other. That is, polarizing plates A and B and polarizing plates B and C are arranged in a cross-coll.
[0100] 第 1のパネルおよび第 2のパネルは、それぞれ 1対の透明基板 (カラーフィルタ基板 20とアクティブマトリクス基板 30)間に液晶を封入してなり、電気的に液晶の配向を 変化させることによって、光源力も偏光板 Aに入射した偏光を約 90度回転させる状態 と、偏光を回転させない状態と、その中間状態とを任意に変化させる手段を備える。 [0100] Each of the first panel and the second panel encloses a liquid crystal between a pair of transparent substrates (color filter substrate 20 and active matrix substrate 30), and electrically changes the alignment of the liquid crystal. Rotates the polarized light incident on polarizing plate A by approximately 90 degrees. And means for arbitrarily changing the state in which the polarization is not rotated and the intermediate state thereof.
[0101] また、第 1のパネルおよび第 2のパネルは、それぞれカラーフィルタ (CF)を備え、 複数の画素により画像を表示できる機能を有している。このような機能を有する表示 方式は、 TN (Twisted Nematic)方式、 VA (Vertical Alignment)方式、 IPS (In Plai n Switching)方式、 FFS方式(Fringe Field Switching)方式またはそれぞれの組み 合わせによる方法があるが、単独でも高いコントラストを有する VA方式が適しており、 ここでは MVA(Multidomain Vertical Alignment)方式を用いて説明する力 IPS方 式、 FFS方式もノーマリーブラック方式であるため、十分な効果がある。駆動方式は T FT (Thin Film Transistor)によるアクティブマトリックス駆動を用いる。 MVAの製造
Figure imgf000019_0001
、ての詳細は、日本国公開特許公報 (特開平 2001— 83523)などに開示 されている。
[0101] Each of the first panel and the second panel includes a color filter (CF) and has a function of displaying an image with a plurality of pixels. Display methods with such functions include TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In Plain Switching) method, FFS method (Fringe Field Switching) method or a combination of these methods. However, the VA method with high contrast is suitable even when used alone. Here, the force IPS method and FFS method that are explained using the MVA (Multidomain Vertical Alignment) method are also normally black methods, so there is a sufficient effect. . The drive system uses active matrix drive by TFT (Thin Film Transistor). MVA manufacturing
Figure imgf000019_0001
The details are disclosed in Japanese Patent Publication (Japanese Patent Laid-Open No. 2001-83523).
[0102] 上記液晶表示装置 100における第 1および第 2のパネルは、同じ構造であり、上述 のように、それぞれ互いに対向するカラーフィルタ基板 20とアクティブマトリクス基板 3 0とを有し、プラスチックビーズや、カラーフィルタ基板 20上などに設けた柱状榭脂構 造物をスぺーサ(図示せず)として用い基板間隔を一定に保持した構造となっている 。 1対の基板 (カラーフィルタ基板 20とアクティブマトリクス基板 30)間に液晶を封入し 、各基板の液晶に接する表面には垂直配向膜 25が形成されている。液晶は、負の 誘電率異方性を有するネマティック液晶を使用する。  [0102] The first and second panels in the liquid crystal display device 100 have the same structure, and have the color filter substrate 20 and the active matrix substrate 30 facing each other, as described above, In addition, a columnar resin structure provided on the color filter substrate 20 or the like is used as a spacer (not shown) to keep the substrate interval constant. Liquid crystal is sealed between a pair of substrates (color filter substrate 20 and active matrix substrate 30), and a vertical alignment film 25 is formed on the surface of each substrate in contact with the liquid crystal. As the liquid crystal, a nematic liquid crystal having a negative dielectric anisotropy is used.
[0103] カラーフィルタ基板 20は、透明基板 10上にカラーフィルタ 21、ブラックマトリクス (B M) 24等が形成されたものである。  [0103] The color filter substrate 20 is obtained by forming the color filter 21, the black matrix (BM) 24, and the like on the transparent substrate 10.
[0104] アクティブマトリクス基板 30は、図 1に示すように、透明基板 10上に、 TFT素子 3、 画素電極 8等が形成され、さらに、液晶の配向方向を規定する配向制御用の突起 22 およびスリットパターン 11 (図 3参照)を有する。画素電極 8に閾値以上の電圧が印加 された場合、液晶分子は突起 22およびスリットパターン 11に対して垂直な方向に倒 れる。本実施の形態では、図 3に示すように、偏光板の偏光軸に対して方位角 45度 方向に液晶が配向するように、突起 22およびスリットパターン 11を形成している。ここ で、図 3は、アクティブマトリクス基板 30にカラーフィルタ基板 20のブラックマトリクス 2 4を TFT素子 3上に仮想的に重ね合わせた図であり、該ブラックマトリクス 24を TFT 素子 3上に直接設けた状態 (BMonTFT)を示す図ではな ヽ。 As shown in FIG. 1, the active matrix substrate 30 has a TFT element 3, a pixel electrode 8, etc. formed on a transparent substrate 10, and further, alignment control protrusions 22 that define the alignment direction of the liquid crystal and It has a slit pattern 11 (see Fig. 3). When a voltage equal to or higher than the threshold value is applied to the pixel electrode 8, the liquid crystal molecules are tilted in a direction perpendicular to the protrusions 22 and the slit pattern 11. In the present embodiment, as shown in FIG. 3, the protrusion 22 and the slit pattern 11 are formed so that the liquid crystal is aligned in the direction of an azimuth angle of 45 degrees with respect to the polarization axis of the polarizing plate. Here, FIG. 3 is a diagram in which the black matrix 24 of the color filter substrate 20 is virtually superimposed on the TFT element 3 on the active matrix substrate 30, and the black matrix 24 is connected to the TFT. It is not a figure showing a state (BMonTFT) installed directly on element 3.
[0105] 以上のように、第 1のパネルと第 2のパネルとは、それぞれのカラーフィルタ 21の赤 [0105] As described above, the first panel and the second panel correspond to the red color of each color filter 21.
(R)緑 (G)青 (B)の画素が、それぞれ鉛直方向から見た位置が一致するように構成 されている。具体的には、第 1のパネルの R画素は、第 2のパネルの R画素に、第 1の ノ《ネルの G画素は第 2のパネルの G画素に、第 1のパネルの B画素は、第 2のパネル の B画素に、それぞれ鉛直方向から見た位置が一致するように構成されている。  The (R) green (G) blue (B) pixels are configured such that their positions when viewed from the vertical direction match each other. Specifically, the R pixel on the first panel is the R pixel on the second panel, the G pixel on the first panel is the G pixel on the second panel, and the B pixel on the first panel is The position viewed from the vertical direction coincides with the B pixel of the second panel.
[0106] 上記構成の液晶表示装置 100の駆動システムの概略を、図 4に示す。 FIG. 4 shows an outline of a drive system of the liquid crystal display device 100 having the above configuration.
[0107] 上記駆動システムは、液晶表示装置 100に映像を表示するために必要な表示コン トローラを有している。 The drive system has a display controller necessary for displaying an image on the liquid crystal display device 100.
[0108] 上記表示コントローラは、第 1のパネル、第 2のパネルを所定の信号でそれぞれ駆 動する第 1、第 2のパネル駆動回路(1) (2)を有する。さらに、第 1、第 2のパネル駆動 回路(1) (2)に、映像ソース信号分配する信号分配回路部を有している。  [0108] The display controller includes first and second panel drive circuits (1) and (2) for driving the first panel and the second panel with predetermined signals, respectively. Furthermore, the first and second panel drive circuits (1) and (2) have a signal distribution circuit section for distributing video source signals.
[0109] 従って、表示コントローラは、液晶表示装置 100に適切な画像を表示できるよう信 号を各パネルに送るようになって 、る。  Accordingly, the display controller sends a signal to each panel so that an appropriate image can be displayed on the liquid crystal display device 100.
[0110] 上記表示コントローラは、与えられた映像信号力 パネルに適切な電気信号を送る ための装置であり、ドライバ、回路基板、パネル駆動回路などで構成される。  [0110] The display controller is a device for sending an appropriate electrical signal to a given video signal power panel, and includes a driver, a circuit board, a panel drive circuit, and the like.
[0111] 上記の第 1、第 2のパネルと、それぞれのパネル駆動回路との接続関係を、図 5に 示す。図 5では、偏光板を省略している。  [0111] FIG. 5 shows the connection relationship between the first and second panels and the respective panel drive circuits. In FIG. 5, the polarizing plate is omitted.
[0112] 上記第 1のパネル駆動回路(1)は、ドライバ (TCP) (1)を介して第 1のパネルの回 路基板(1)に設けられた端子(1)に接続されている。すなわち、第 1のパネルにドライ ノ (TCP) (1)を接続し、回路基板(1)で連結し、パネル駆動回路(1)に接続している  The first panel drive circuit (1) is connected to a terminal (1) provided on the circuit board (1) of the first panel via a driver (TCP) (1). In other words, a dry (TCP) (1) is connected to the first panel, connected by the circuit board (1), and connected to the panel drive circuit (1).
[0113] なお、第 2のパネルにおける第 2のパネル駆動回路(2)の接続も上記の第 1のパネ ルと同じであるので、その説明を省略する。 [0113] Note that the connection of the second panel drive circuit (2) in the second panel is also the same as that in the first panel, and a description thereof will be omitted.
[0114] 次に、上記構成の液晶表示装置 100の動作について説明する。 Next, the operation of the liquid crystal display device 100 having the above configuration will be described.
[0115] 上記第 1のパネルの画素は、表示信号に基づいて駆動され、該第 1のパネルの画 素とパネルの鉛直方向から見た位置が一致する対応する第 2のパネルの画素は、第 1のパネルに対応して駆動される。偏光板 Aと第 1のパネルと偏光板 Bとで構成される 部分 (構成部 1)が透過状態の場合は、偏光板 Bと第 2のパネルと偏光板 Cにより構成 される部分 (構成部 2)も透過状態となり、構成部 1が非透過状態の時は構成部 2も非 透過状態となるよう駆動される。 [0115] The pixels of the first panel are driven based on a display signal, and the corresponding pixels of the second panel corresponding to the positions of the pixels of the first panel and the positions viewed from the vertical direction of the panel are Driven corresponding to the first panel. Consists of polarizing plate A, first panel and polarizing plate B When the part (component 1) is in the transmissive state, the part formed by the polarizing plate B, the second panel, and the polarizing plate C (component 2) is also in the transmissive state, and when the part 1 is in the non-transmissive state Component 2 is also driven to be non-transmissive.
[0116] 第 1、第 2のパネルには同一の画像信号を入力しても良いし、第 1、第 2のパネルに 互いに連関した別々の信号を入力してもよ 、。 [0116] The same image signal may be input to the first and second panels, or different signals linked to each other may be input to the first and second panels.
[0117] ここで、上記アクティブマトリクス基板 30およびカラーフィルタ基板 20の製造方法に ついて説明する。 Here, a manufacturing method of the active matrix substrate 30 and the color filter substrate 20 will be described.
[0118] はじめに、アクティブマトリクス基板 30の製造方法について説明する。  First, a method for manufacturing the active matrix substrate 30 will be described.
[0119] まず、透明基板 10上に、図 3に示すように、走査信号用配線 (ゲート配線またはゲ ートバスライン) 1と補助容量配線 2とを形成するためにスパッタリングにより Ti/Al/Ti 積層膜などの金属を成膜し、フォトリソグラフィ一法によりレジストパターンを形成、塩 素系ガスなどのエッチングガスを用いてドライエッチングし、レジストを剥離する。これ により、透明基板 10上に、走査信号用配線 1と補助容量配線 2とが同時に形成され る。 First, as shown in FIG. 3, a Ti / Al / Ti laminated film is formed on the transparent substrate 10 by sputtering in order to form the scanning signal wiring (gate wiring or gate bus line) 1 and the auxiliary capacitance wiring 2. A metal such as a film is formed, a resist pattern is formed by a photolithography method, dry etching is performed using an etching gas such as a chlorine-based gas, and the resist is peeled off. As a result, the scanning signal wiring 1 and the auxiliary capacitance wiring 2 are simultaneously formed on the transparent substrate 10.
[0120] その後、窒化シリコン(SiNx)など力もなるゲート絶縁膜、アモルファスシリコン等か らなる活性半導体層、リンなどをドープしたアモルファスシリコン等力もなる低抵抗半 導体層を CVDにて成膜、その後、データ信号用配線 (ソース配線またはソースノ スラ イン) 4、ドレイン引き出し配線 5、補助容量形成用電極 6を形成するためにスパッタリ ングにより AlZTiなどの金属を成膜し、フォトリソグラフィ一法によりレジストパターン を形成、塩素系ガスなどのエッチングガスを用いてドライエッチングし、レジストを剥離 する。これにより、データ信号用配線 4、ドレイン引き出し配線 5、補助容量形成用電 極 6が同時に形成される。  [0120] Thereafter, a gate insulating film such as silicon nitride (SiNx), an active semiconductor layer made of amorphous silicon, or the like, an amorphous silicon doped with phosphorus or the like, and a low resistance semiconductor layer also made of amorphous silicon or the like are formed by CVD. , Data signal wiring (source wiring or source nose line) 4, drain lead wiring 5, auxiliary capacitance forming electrode 6 A metal such as AlZTi is formed by sputtering, and a resist pattern is formed by photolithography. The resist is removed by dry etching using an etching gas such as a chlorine-based gas. As a result, the data signal wiring 4, the drain lead wiring 5, and the auxiliary capacitance forming electrode 6 are formed simultaneously.
[0121] なお、補助容量は補助容量配線 2と補助容量形成用電極 6の間に約 4000 Aのゲ ート絶縁膜をはさんで形成されて 、る。  Note that the auxiliary capacitance is formed by sandwiching a gate insulating film of about 4000 A between the auxiliary capacitance wiring 2 and the auxiliary capacitance forming electrode 6.
[0122] その後、ソースドレイン分離のために低抵抗半導体層を塩素ガスなどを用いてドラ ィエッチングし TFT素子 3を形成する。  [0122] Thereafter, the TFT element 3 is formed by dry etching the low-resistance semiconductor layer using chlorine gas or the like for source / drain separation.
[0123] 次に、アクリル系感光性榭脂など力もなる層間絶縁膜 7をスピンコートにより塗布し、 ドレイン引き出し配線 5と画素電極 8を電気的にコンタクトするためのコンタクトホール 9をフォトリソグラフィ一法で形成する。層間絶縁膜 7の膜厚は、約 3 mである。 [0123] Next, an interlayer insulating film 7 having a strength such as an acrylic photosensitive resin is applied by spin coating, and a contact hole for electrically contacting the drain lead wiring 5 and the pixel electrode 8 9 is formed by a photolithography method. The film thickness of the interlayer insulating film 7 is about 3 m.
[0124] さらに、画素電極 8、および垂直配向膜 (図示せず)をこの順に形成して構成される [0124] Further, the pixel electrode 8 and the vertical alignment film (not shown) are formed in this order.
[0125] なお、本実施形態は、上述したように、 MVA型液晶表示装置であり、 ITOなどから なる画素電極 8にスリットパターン 11が設けられている。具体的には、スパッタリング により成膜し、フォトリソグラフィ一法によりレジストパターンを形成、塩化第二鉄と塩酸 との混合液などのエッチング液によりエッチングし、図 3に示すような画素電極パター ンを得る。 Note that the present embodiment is an MVA type liquid crystal display device as described above, and the slit pattern 11 is provided in the pixel electrode 8 made of ITO or the like. Specifically, a film is formed by sputtering, a resist pattern is formed by a photolithography method, etching is performed with an etching solution such as a mixed solution of ferric chloride and hydrochloric acid, and a pixel electrode pattern as shown in FIG. 3 is formed. obtain.
[0126] 以上により、アクティブマトリクス基板 30を得る。  [0126] The active matrix substrate 30 is obtained as described above.
[0127] なお、図 3【こ示す符号 12a, 12b, 12c, 12d, 12e, 12fiま、画素電極 8【こ形成れた スリットを示す。このスリットにおける電気的接続部分では配向が乱れ配向異常が発 生する。ただし、スリット 12a〜12dでは、配向異常に加えて、ゲート配線に供給され る電圧が、 TFT素子 3をオン状態に動作させるために供給されるプラス電位が印加さ れる時間が通常 秒オーダーであり、 TFT素子 3をオフ状態に動作させるために供 給されるマイナス電位が印加される時間が通常 m秒オーダーであるため、マイナス電 位が印加される時間が支配的である。このため、スリット 12a〜12dをゲート配線上に 位置させるとゲートマイナス DC印加成分により液晶中に含まれる不純物イオンが集 まるため、表示ムラとして視認される場合がある。よって、スリット 12a〜12dはゲート 配線と平面的に重ならない領域に設ける必要があるため、図 3に示すように、ブラック マトリクス 24で隠すほうが望ましい。  In addition, FIG. 3 [reference numerals 12a, 12b, 12c, 12d, 12e, 12fi shown in FIG. At the electrical connection part in this slit, the orientation is disturbed and an orientation abnormality occurs. However, in the slits 12a to 12d, in addition to the alignment abnormality, the voltage supplied to the gate wiring is normally applied to the positive potential supplied to operate the TFT element 3 in the ON state, which is usually in the order of seconds. The time during which the minus potential supplied to operate the TFT element 3 in the off state is normally on the order of milliseconds, so the time during which the minus potential is applied is dominant. For this reason, when the slits 12a to 12d are positioned on the gate wiring, impurity ions contained in the liquid crystal gather due to the gate minus DC application component, and may be visually recognized as display unevenness. Therefore, since the slits 12a to 12d need to be provided in a region that does not overlap with the gate wiring in a plan view, it is preferable to hide the slits 12a to 12d with the black matrix 24 as shown in FIG.
[0128] 続、て、カラーフィルタ基板 20の製造方法にっ 、て説明する。  [0128] Next, a method for manufacturing the color filter substrate 20 will be described.
[0129] 上記カラーフィルタ基板 20は、透明基板 10上に、 3原色 (赤、緑、青)のカラーフィ ルタ 21およびブラックマトリクス(BM) 24などからなるカラーフィルタ層、対向電極 23 、垂直配向膜 25、および配向制御用の突起 22を有する。  [0129] The color filter substrate 20 is formed on the transparent substrate 10 with a color filter layer 21 made of three primary colors (red, green, blue) 21 and a black matrix (BM) 24, a counter electrode 23, a vertical alignment film, and the like. 25 and a protrusion 22 for controlling the orientation.
[0130] まず、透明基板 10上に、スピンコートによりカーボンの微粒子を分散したネガ型の アクリル系感光性榭脂液を塗布した後、乾燥を行い、黒色感光性榭脂層を形成する 。続いて、フォトマスクを介して黒色感光性榭脂層を露光した後、現像を行って、ブラ ックマトリクス (BM) 24を形成する。このとき第 1着色層(例えば赤色層)、第 2着色層( 例えば緑色層)、および第 3着色層(例えば青色層)が形成される領域に、それぞれ 第 1着色層用の開口部、第 2着色層用の開口部、第 3着色層用の開口部 (それぞれ の開口部は各画素電極に対応)が形成されるように BMを形成する。より具体的には 、図 3に示すように、画素電極 8に形成されたスリット 12a〜12fにおける電気的接続 部分のスリット 12a〜l 2dに生じる配向異常領域を遮光する BMパターンを島状に形 成し、また、 TFT素子 3に外光が入射することにより光励起されるリーク電流の増加を 防ぐために TFT素子 3上に遮光部(BM)を形成する。 First, a negative acrylic photosensitive resin solution in which carbon fine particles are dispersed is applied onto the transparent substrate 10 by spin coating, and then dried to form a black photosensitive resin layer. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form a black matrix (BM) 24. At this time, the first colored layer (for example, red layer), the second colored layer ( For example, an opening for the first colored layer, an opening for the second colored layer, and an opening for the third colored layer in the regions where the third colored layer (for example, the blue layer) is formed (for example, the green layer) BM is formed so that each opening corresponds to each pixel electrode). More specifically, as shown in FIG. 3, the BM pattern is formed in an island shape to shield the alignment abnormal region generated in the slits 12a to 12d of the electrically connected portions of the slits 12a to 12f formed in the pixel electrode 8. In addition, a light shielding portion (BM) is formed on the TFT element 3 in order to prevent an increase in leakage current that is photoexcited by external light entering the TFT element 3.
[0131] 次に、スピンコートにより顔料を分散したネガ型のアクリル系感光性榭脂液を塗布し た後、乾燥を行い、フォトマスクを用いて露光および現像を行い赤色層を形成する。  Next, after applying a negative acrylic photosensitive resin solution in which a pigment is dispersed by spin coating, drying is performed, and exposure and development are performed using a photomask to form a red layer.
[0132] その後、第 2色層用(例えば緑色層)、および第 3色層用(例えば青色層)について も同様に形成し、カラーフィルタ 21が完成する。  [0132] Thereafter, the second color layer (for example, the green layer) and the third color layer (for example, the blue layer) are similarly formed, and the color filter 21 is completed.
[0133] さらに、 ITOなどの透明電極力もなる対向電極 23をスパッタリングにより形成し、そ の後、スピンコートによりポジ型のフエノールノボラック系感光性榭脂液を塗布した後 、乾燥を行い、フォトマスクを用いて露光および現像を行い垂直配向制御用の突起 2 2を形成する。  [0133] Further, a counter electrode 23 having a transparent electrode force such as ITO is formed by sputtering, and then a positive type phenol novolac photosensitive resin solution is applied by spin coating, followed by drying and a photomask. Are used for exposure and development to form vertical alignment control protrusions 22.
[0134] 以上により、カラーフィルタ基板 20が形成される。  As described above, the color filter substrate 20 is formed.
[0135] なお、本実施形態では、液晶パネルにした時の CIE1931色度図における色度、 N TSC比が表 2に示される、赤 (R)、緑 (G)、青 (B)、の着色層を有するカラーフィルタ を用いた。各カラーフィルタの膜厚は 1. 7 m、また BMの膜厚は 1. 3 mである。 表 2については、後述する。  In this embodiment, the chromaticity and N TSC ratio in the CIE1931 chromaticity diagram when the liquid crystal panel is used are shown in Table 2 as red (R), green (G), and blue (B). A color filter having a colored layer was used. The film thickness of each color filter is 1.7 m, and the film thickness of BM is 1.3 m. Table 2 will be described later.
[0136] また、本実施形態では榭脂からなる BMの場合を示した力 金属からなる BMでも 構わない。また、 3原色の着色層は、赤、緑、青、に限られることはなぐシアン、マゼ ンタ、イェローなどの着色層があってもよぐまたホワイト層が含まれていても良い。  [0136] Further, in the present embodiment, a BM made of a force metal as shown in the case of a BM made of resin may be used. The three primary color layers may include cyan, magenta, yellow, and other white layers as well as red, green, and blue, and may include a white layer.
[0137] 上述のように製造されたカラーフィルタ基板 20とアクティブマトリクス基板 30とで液 晶パネル (第 1のパネル、第 2のパネル)を製造する方法について以下に説明する。  A method of manufacturing a liquid crystal panel (first panel, second panel) using the color filter substrate 20 and the active matrix substrate 30 manufactured as described above will be described below.
[0138] まず、上記カラーフィルタ基板 20およびアクティブマトリクス基板 30の、液晶と接す る面に、垂直配向膜 25を形成する。具体的には、配向膜塗布前に脱ガス処理として 焼成を行いその後、基板洗浄、配向膜塗布行う。配向膜塗布後には配向膜焼成を 行う。配向膜塗布後洗浄を行った後、脱ガス処理としてさらに焼成を行う。垂直配向 膜 25は液晶 26の配向方向を規定する。 First, the vertical alignment film 25 is formed on the surface of the color filter substrate 20 and the active matrix substrate 30 in contact with the liquid crystal. Specifically, baking is performed as a degassing process before alignment film application, and then substrate cleaning and alignment film application are performed. After applying the alignment film, firing the alignment film Do. After the alignment film is applied and washed, further baking is performed as a degassing process. The vertical alignment film 25 defines the alignment direction of the liquid crystal 26.
[0139] 次に、アクティブマトリクス基板 30とカラーフィルタ基板 20との間に液晶を封入する 方法について説明する。  [0139] Next, a method of sealing liquid crystal between the active matrix substrate 30 and the color filter substrate 20 will be described.
[0140] 液晶の封入方法については、たとえば熱硬化型シール榭脂を基板周辺に一部液 晶注入のため注入口を設け、真空で注入口を液晶に浸し、大気開放することによつ て液晶を注入し、その後 UV硬化榭脂などで注入口を封止する、真空注入法などの 方法で行ってもよい。しかしながら、垂直配向の液晶パネルでは、水平配向パネルに 比べ注入時間が非常に長くなる欠点がある。ここでは液晶滴下貼り合せ法による説 明を行う。  [0140] With respect to the method of sealing the liquid crystal, for example, an injection port is provided for injecting a part of the thermosetting seal resin around the substrate, and the injection port is immersed in liquid crystal in a vacuum and opened to the atmosphere. It may be performed by a method such as a vacuum injection method in which liquid crystal is injected and then the injection port is sealed with UV curing resin or the like. However, the vertical alignment liquid crystal panel has a drawback that the injection time is much longer than that of the horizontal alignment panel. Here, explanation is given by the liquid crystal drop bonding method.
[0141] アクティブマトリクス基板側の周囲に UV硬化型シール榭脂を塗布し、カラーフィル タ基板に滴下法により液晶の滴下を行う。液晶滴下法により液晶によって所望のセル ギャップとなるよう最適な液晶量をシールの内側部分に規則的に滴下する。  [0141] A UV curable sealant is applied around the active matrix substrate side, and the liquid crystal is dropped onto the color filter substrate by the dropping method. The optimal amount of liquid crystal is regularly dropped on the inner part of the seal so that the desired cell gap is achieved by liquid crystal by the liquid crystal dropping method.
[0142] さらに、上記のようにシール描画および液晶滴下を行ったカラーフィルタ基板とァク ティブマトリクス基板を貼合せるため、貼り合わせ装置内の雰囲気を lPaまで減圧を 行い、この減圧下において基板の貼合せを行った後、雰囲気を大気圧にしてシール 部分が押しつぶされ、所望のシール部のギャップが得られる。  [0142] Furthermore, in order to bond the color filter substrate on which seal drawing and liquid crystal dropping as described above and the active matrix substrate are bonded, the atmosphere in the bonding apparatus is reduced to lPa. After bonding, the seal portion is crushed by setting the atmosphere to atmospheric pressure, and the desired gap of the seal portion is obtained.
[0143] 次に、シール部分の所望のセルギャップを得た構造体にっ 、て、 UV硬化装置に て UV照射を行いシール榭脂の仮硬化を行う。さらに、シール榭脂の最終硬化を行う 為にベータを行う。この時点でシール榭脂の内側に液晶が行き渡り液晶がセル内に 充填された状態に至る。ベータ完了後に構造体を液晶パネル単位に分断することで 液晶パネルが完成する。  [0143] Next, the structure having a desired cell gap in the seal portion is subjected to UV irradiation with a UV curing device to temporarily cure the seal resin. In addition, beta is performed to final cure the seal resin. At this point, the liquid crystal spreads inside the seal resin and the liquid crystal is filled in the cell. The liquid crystal panel is completed by dividing the structure into liquid crystal panel units after the beta is completed.
[0144] 本実施の形態では、第 1のパネルも第 2のパネルも同一のプロセスで製造される。  In the present embodiment, the first panel and the second panel are manufactured by the same process.
[0145] 続いて、上述の製造方法により製造された第 1のパネルと第 2のパネルとの実装方 法について説明する。  [0145] Next, a mounting method of the first panel and the second panel manufactured by the above-described manufacturing method will be described.
[0146] ここでは、第 1のパネルおよび第 2のパネルを洗浄後、それぞれのパネルに偏光板 を貼り付ける。具体的には、図 4に示すように、第 1のパネルの表面および裏面にそ れぞれ偏光板 Aおよび Bを貼り付ける。また、第 2のパネルの裏面に偏光板 Cを貼り 付ける。なお、偏光板には必要に応じて、光学補償シート等を積層してもよい。 Here, after the first panel and the second panel are washed, a polarizing plate is attached to each panel. Specifically, as shown in FIG. 4, polarizing plates A and B are attached to the front and back surfaces of the first panel, respectively. Also attach polarizing plate C to the back of the second panel. wear. In addition, you may laminate | stack an optical compensation sheet etc. on a polarizing plate as needed.
[0147] 次に、ドライバ (液晶駆動用 LSI)を接続する。ここでは、ドライバを TCP (Tape Car eer Package)方式による接続にっ 、て説明する。 Next, a driver (LCD driving LSI) is connected. Here, the driver will be described using a TCP (Tape Carrier Package) connection.
[0148] 例えば、図 5に示すように、第 1のパネルの端子部(1)に ACF (Arisotoropi Condu ktive Film)を仮圧着後、ドライバが乗せられた TCP (1)を、キャリアテープから打ち 抜き、パネル端子電極に位置合せし、加熱、本圧着する。その後、ドライバ TCP (1) 同士を連結するための回路基板(1)と TCP (l)の入力端子(1)を ACFで接続する。 [0148] For example, as shown in FIG. 5, after ACF (Arisotoropi Conductive Film) is temporarily pressure-bonded to the terminal portion (1) of the first panel, TCP (1) on which the driver is placed is driven from the carrier tape. Pull out, align with the panel terminal electrode, heat and crimp. After that, the circuit board (1) for connecting the drivers TCP (1) and the input terminal (1) of TCP (l) are connected by ACF.
[0149] 次に、 2枚のパネルを貼り合せる。偏光板 Bは両面に粘着層を供えている。第 2のパ ネルの表面を洗浄し、第 1のパネルに貼り付けられた偏光板 Bの粘着層のラミネート をはがし、精密に位置合せし、第 1のパネルおよび第 2のパネルを貼り合せる。このと き、パネルと粘着層の間に気泡が残る場合があるので、真空下で貼り合せることが望 ましい。 [0149] Next, the two panels are bonded together. Polarizing plate B has an adhesive layer on both sides. Clean the surface of the second panel, peel off the laminate of the adhesive layer of Polarizer B attached to the first panel, align precisely, and bond the first panel and the second panel together. At this time, since bubbles may remain between the panel and the adhesive layer, it is desirable to bond them together under vacuum.
[0150] また、別の貼り合せ方法としては、常温またはパネルの耐熱温度以下で硬化する接 着剤たとえばエポキシ接着剤などをパネルの周辺部に塗布し、プラスチックスぺーサ を散布し、たとえばフッ素油などを封入しても良い。光学的に等方性で、ガラス基板と 同程度の屈折率を持ち、液晶と同程度の安定性な液体が望ましい。  [0150] As another bonding method, an adhesive that cures at room temperature or below the heat resistance temperature of the panel, such as an epoxy adhesive, is applied to the periphery of the panel, and a plastic spacer is sprayed. Oil or the like may be enclosed. A liquid that is optically isotropic, has a refractive index similar to that of a glass substrate, and is as stable as liquid crystal is desirable.
[0151] なお、本実施例では、図 4および図 5に記載されているように、第 1のパネルの端子 面と第 2のパネルの端子面が同じ位置にあるような場合にも適用できる。また、パネル に対する端子の方向や貼り合せ方法は特に限定するものではない。たとえば接着に よらず機械的な固定方法でもよい。  [0151] The present embodiment can also be applied to the case where the terminal surface of the first panel and the terminal surface of the second panel are at the same position, as shown in Figs. 4 and 5. . Also, there are no particular restrictions on the direction of terminals and the method of bonding to the panel. For example, a mechanical fixing method may be used regardless of adhesion.
[0152] その後、バックライトと呼ばれる照明装置と一体ィ匕することで、液晶表示装置 100と なる。  [0152] Thereafter, the liquid crystal display device 100 is obtained by integrating with an illumination device called a backlight.
[0153] ここで、本願発明に好適な照明装置の具体例について、以下に説明する。但し、本 発明は、以下にあげる照明装置の形態に限られるものではなく適宜変更可能である  [0153] Here, a specific example of a lighting device suitable for the present invention will be described below. However, this invention is not restricted to the form of the illuminating device given below, It can change suitably.
[0154] 本発明の液晶表示装置 100は表示原理により、従来のパネルより多くの光の量を 提供する能力がバックライトには求められる。これらの条件を満たす照明装置の一例 を図 6に示す。 [0155] 本発明における液晶表示装置 100では、従来と同様の輝度を出すために、今回は 熱陰極ランプを使用する。熱陰極ランプは、一般的仕様で用いられている冷陰極ラ ンプより光の量が 6倍程度出力できることを特徴とする。 [0154] The liquid crystal display device 100 of the present invention is required to have a backlight capable of providing a larger amount of light than a conventional panel according to the display principle. Figure 6 shows an example of a lighting device that satisfies these conditions. In the liquid crystal display device 100 according to the present invention, a hot cathode lamp is used this time in order to obtain the same luminance as the conventional one. Hot cathode lamps are characterized by being able to output approximately six times the amount of light than cold cathode lamps used in general specifications.
[0156] 標準的液晶表示装置として対角 37インチ WXGAを例にあげると、外径 φ 15mm のランプを 18本をアルミニウムで出来たハウジングの上に配置する。本ハウジングに はランプ力 背面方向に出射された光を効率よく利用するために、発泡榭脂を用い た白色反射シートを配置する。本ランプの駆動電源は該ハウジングの背面に配置さ れ、家庭用電源から供給される電力でランプの駆動を行う。  [0156] Taking a 37-inch diagonal WXGA as an example of a standard liquid crystal display device, 18 lamps with an outer diameter of 15 mm are placed on a housing made of aluminum. In order to efficiently use the light emitted in the rear direction of the lamp force, this housing is provided with a white reflective sheet using foamed resin. A driving power source for the lamp is disposed on the rear surface of the housing, and the lamp is driven by electric power supplied from a household power source.
[0157] 次に、本ノヽウジングにランプを複数並べる直下型バックライトにおいてランプィメー ジを消すために乳白色の榭脂板が必要になる。今回は 2mm厚の、吸湿反り及び熱 変形に強いポリカーボネイトをベースにした板部材をランプ上のハウジングに配置し 、さらにその上面に所定の光学効果を得るための光学シート類、具体的には今回は 下から拡散シート、レンズシート、レンズシート、偏光反射シートを配置する。本仕様 により一般的な、冷陰極ランプ φ 4mmの 18灯、拡散シート 2枚と偏光反射シートの 仕様に対して 10倍程度のバックライト輝度を得ることが可能になる。それにより、本発 明の 37インチ(37型)の液晶表示装置は、 400cdZm2程度の輝度を得ることが可能 となる。 [0157] Next, in order to extinguish the lamp image in the direct type backlight in which a plurality of lamps are arranged in this nodding, a milky white resin board is required. This time, a plate member based on polycarbonate, which is 2 mm thick and absorbs warp and heat deformation, is placed in the housing on the lamp, and the optical sheet to obtain the predetermined optical effect on its upper surface, specifically this time In the bottom, a diffusion sheet, a lens sheet, a lens sheet, and a polarized light reflection sheet are arranged. This specification makes it possible to obtain a backlight brightness that is about 10 times that of the general specifications of 18 cold-cathode lamps with a diameter of 4 mm, two diffuser sheets, and a polarizing reflection sheet. Thereby, the liquid crystal display device of the present onset Ming 37 inch (37-), it is possible to obtain a luminance of about 400cdZm 2.
[0158] ただし、本バックライトの発熱量は従来のものの 5倍にいたるためバックシャーシの 背面には空気への放熱を促すフィンと、空気の流れを強制的に行うファンを設置する  [0158] However, since the amount of heat generated by this backlight is five times that of the conventional one, fins that radiate heat to the air and fans that force the air flow are installed on the back of the back chassis.
[0159] 本照明装置の機構部材は、モジュール全体の主要機構部材をかねて 、て、本バッ クライトに前記実装済みパネルを配置し、パネル駆動回路や信号分配器を備えた液 晶表示用コントローラ、光源用電源、場合によっては家庭用一般電源を取り付け、液 晶モジュールが完成する。本バックライトに前記実装済みパネルを配置し、パネルを 押える枠体を設置することで本発明の液晶表示装置となる。 [0159] The mechanism member of the present lighting device serves as the main mechanism member of the entire module, and the liquid crystal display controller including the panel mounted circuit and the signal distributor, wherein the mounted panel is disposed in the backlight. A liquid crystal module is completed by installing a power source for the light source and, in some cases, a general household power source. The mounted panel is disposed in the backlight, and a frame body that holds the panel is installed to provide the liquid crystal display device of the present invention.
[0160] 本実施形態では、表 2に記載の通り、赤の主波長が 611nm、緑の主波長が 540η m、青の主波長が 450nm、のバックライト光源を用いた。表 2において、カラーフィル タが一層のみのパネルを従来パネルとし、カラーフィルタが 2層設けたパネルを本発 明パネルとする。下記の表 3においても、従来パネルと本発明パネルの定義は表 2の 場合と同じとする。 In this embodiment, as described in Table 2, a backlight light source having a red dominant wavelength of 611 nm, a green dominant wavelength of 540 ηm, and a blue dominant wavelength of 450 nm was used. In Table 2, a panel with only one color filter is a conventional panel, and a panel with two color filters is A light panel. In Table 3 below, the definitions of the conventional panel and the present invention panel are the same as in Table 2.
[0161] [表 2] [0161] [Table 2]
Figure imgf000027_0001
Figure imgf000027_0001
[0162] なお、本実施の形態では、熱陰極管を用いた直下方式の照明装置を示したが、用 途に応じて、投射方式やエッジライト方式でも良ぐ光源は冷陰極管或いは LED、 O EL、電子線蛍光管などを用いてもよぐ光学シートなどの組み合わせにおいても適 宜選択することが可能である。 [0162] Note that in this embodiment, a direct-type illumination device using a hot cathode tube is shown, but depending on the application, a light source that may be a projection method or an edge light method is a cold cathode tube or an LED, It is possible to appropriately select a combination of optical sheets and the like using O EL, electron beam fluorescent tubes, and the like.
[0163] 表 2から、 NTSC比は、従来パネル (カラーフィルタが一層のみ設けられて 、るパネ ル)では 74. 5%であったが、本発明パネル (カラーフィルタを 2層設けたパネル)で は 92%となり、色再現範囲が向上していることが分かる。  [0163] From Table 2, the NTSC ratio was 74.5% for the conventional panel (panel with only one color filter), but the panel of the present invention (panel with two color filters) Shows a color reproduction range of 92%.
[0164] ここで、図 17に、本発明パネルと従来パネルにおけるパネルの透過特性のグラフを 示す。図 17に示すグラフから、本発明パネルのほうが従来パネルに比べて緑の発光 スペクトルの透過率が急峻になっていることが分かる。これにより、緑の発光スぺタト ルの透過率が急峻でなぐ該緑の発光スペクトルが青の発光スペクトルの透過領域 に重なる領域が多くなることによる混色を無くし、色再現範囲を向上させることが可能 となることが分かる。  Here, FIG. 17 shows a graph of the transmission characteristics of the panel of the present invention panel and the conventional panel. From the graph shown in FIG. 17, it can be seen that the panel of the present invention has a steeper transmittance of the green emission spectrum than the conventional panel. As a result, the green light emission spectrum has a sharp transmittance and the green light emission spectrum eliminates color mixing due to an increase in the number of regions that overlap the blue light emission spectrum transmission region, thereby improving the color reproduction range. It turns out that it is possible.
[0165] このように、色再現範囲を向上させるには、カラーフィルタの吸収スペクトルを急峻 にする必要がある。カラーフィルタを一層で実現するためには、カラーフィルタの膜厚 を厚くして顔料の量を増やすか、あるいは厚膜化せずに顔料濃度を大きくする必要 がある。し力しながら、カラーフィルタの膜厚を厚くするとカラーフィルタのパターンェ ッジ部の制御が困難となり、例えば、 ITOなど力もなる対向電極のカバレージがパタ ーンエッジ部で悪ィ匕する。また、顔料濃度を大きくした場合も同様にパターンエッジ 部の制御が困難となる。よってカラーフィルタ単層では色再現範囲をさらに向上させ ることが困難であった。 [0165] As described above, in order to improve the color reproduction range, it is necessary to make the absorption spectrum of the color filter steep. In order to realize a color filter in one layer, it is necessary to increase the pigment concentration by increasing the film thickness of the color filter or increasing the pigment concentration without increasing the film thickness. However, increasing the film thickness of the color filter makes it difficult to control the pattern edge portion of the color filter. Do bad at the edge. Similarly, when the pigment concentration is increased, it becomes difficult to control the pattern edge portion. Therefore, it has been difficult to further improve the color reproduction range with a single color filter layer.
[0166] し力しながら、本発明の液晶表示装置では、液晶パネルを 2枚以上重ねているので 、カラーフィルタを 2層以上の複数層設けることができ、この結果、上記のような問題 を生じ難くし、カラーフィルタの吸収スペクトルを急峻にすることができる。  However, in the liquid crystal display device of the present invention, since two or more liquid crystal panels are stacked, a plurality of color filters can be provided in two or more layers. As a result, the above-described problems can be solved. The absorption spectrum of the color filter can be made steep.
[0167] ここで、ノ ックライト光源の発光スペクトルを調整することで、さらに色再現範囲を向 上することができる。本発明の液晶表示装置において特に好適な構成となる。  [0167] Here, the color reproduction range can be further improved by adjusting the emission spectrum of the knock light source. The liquid crystal display device of the present invention has a particularly preferable configuration.
[0168] 具体的には、ノ ックライト光源の各色の主波長のピークが下記の表 3のものを使用 する。すなわち、赤の主波長を長波長側(611nm→658nm)に、緑の主波長を短波 長側(540nm→516nm)に、青の主波長を短波長側(450nm→447nm)に移動す る。  [0168] Specifically, the main wavelength peak of each color of the knocklight light source is as shown in Table 3 below. That is, the red dominant wavelength is moved to the long wavelength side (611 nm → 658 nm), the green dominant wavelength is moved to the short wavelength side (540 nm → 516 nm), and the blue dominant wavelength is moved to the short wavelength side (450 nm → 447 nm).
[0169] [表 3]  [0169] [Table 3]
Figure imgf000028_0001
Figure imgf000028_0001
[0170] ここで、表 3に示す波長に設定されたバックライト光源を、高色純度蛍光体 (高色蛍 光体)と称する。また、表 2に示す波長に設定されたバックライト光源を、従来蛍光体 と称する。また、上記波長を満たすバックライト光源として、例えば、組成が BaMgAl O である蛍光体がある。 Here, the backlight light source set to the wavelength shown in Table 3 is referred to as a high color purity phosphor (high color phosphor). Further, the backlight source set to the wavelength shown in Table 2 is referred to as a conventional phosphor. Moreover, as a backlight light source satisfying the above wavelength, for example, there is a phosphor whose composition is BaMgAl 2 O 3.
0 17  0 17
[0171] 図 18は、従来パネルと本発明パネルとにおいて、それぞれ従来蛍光体と高色蛍光 体とを用いた場合に、青色表示を行ったときの、分光強度データを示すグラフである 。図 19は、 CIE1931表色計の色再現範囲図を示し、図 20は、図 19に示す色再現 範囲図における青領域を拡大した図を示す。  FIG. 18 is a graph showing spectral intensity data when blue display is performed in the conventional panel and the panel of the present invention when the conventional phosphor and the high-color phosphor are used, respectively. FIG. 19 shows a color reproduction range diagram of the CIE1931 colorimeter, and FIG. 20 shows an enlarged blue region in the color reproduction range diagram shown in FIG.
[0172] 例えば、表 3に示すように、高色蛍光体からなるバックライト光源を一般的な液晶表 示装置(従来パネル)である図 8に適用した場合、表 3から、 NTSC比は 91. 5%であ るが、図 18に示すとおり緑の発光スペクトル分布が青のカラーフィルタの吸収スぺタト ル分布における透過領域に力かるため、図 19および図 20に示すように、青の色味が 緑がかってしまう。 [0172] For example, as shown in Table 3, when a backlight source made of a high-color phosphor is applied to Fig. 8, which is a general liquid crystal display device (conventional panel), from Table 3, the NTSC ratio is 91 5% However, as shown in Fig. 18, since the green emission spectrum distribution affects the transmission region in the absorption spectrum distribution of the blue color filter, the blue color is green as shown in Figs. 19 and 20. It ’s going to happen.
[0173] これに対して、本発明の例えば図 1に示す液晶表示装置 (本発明パネル)に適用し た場合、図 19および図 20に示すように、青の色味を改善することができ、 NTSC比 は 119. 6%とすることができる。  On the other hand, when the present invention is applied to, for example, the liquid crystal display device (present invention panel) shown in FIG. 1, the blue color can be improved as shown in FIG. 19 and FIG. The NTSC ratio can be 119.6%.
[0174] ここで、ノ ックライト光源の各色の蛍光体には、以下の表 4に示すものを用いること ができる。  Here, as the phosphors of the respective colors of the knocklight light source, those shown in Table 4 below can be used.
[0175] [表 4]  [0175] [Table 4]
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0001
Figure imgf000029_0002
[0176] なお、各色の主波長は、当業者であれば、 日亜化学工業や化成ォプトニタスの巿 販蛍光体材料を種々選択することにより適宜調整可能である。 [0176] The principal wavelength of each color can be appropriately adjusted by those skilled in the art by variously selecting commercially available phosphor materials from Nichia Corporation and Kasei Optonitas.
[0177] 例えば、日亜ィ匕学工業の蛍光材料であれば、以下の表 5〜表 13に示すようなもの が本願の蛍光材料として好適である。  [0177] For example, in the case of a fluorescent material manufactured by Nichia Corporation, those shown in Tables 5 to 13 below are suitable as the fluorescent material of the present application.
[0178] [表 5] LAMP PHOSPHORS(Halo Phosphate) [0178] [Table 5] LAMP PHOSPHORS (Halo Phosphate)
Figure imgf000030_0001
Figure imgf000030_0001
[0179] [表 6]  [0179] [Table 6]
LAMP PHOSPHORS(Halo Phosphate)  LAMP PHOSPHORS (Halo Phosphate)
Figure imgf000030_0002
Figure imgf000030_0002
[0180] [表 7] [0180] [Table 7]
LAMP PHOSPHORS (for Tri-color Lamps & Cold Cathode Fluorescent Lamps) LAMP PHOSPHORS (for Tri-color Lamps & Cold Cathode Fluorescent Lamps)
Figure imgf000031_0001
Figure imgf000031_0001
[0181] [表 8]  [0181] [Table 8]
し AMP PHOSPHORS ( Blue)  AMP PHOSPHORS (Blue)
Figure imgf000031_0002
Figure imgf000031_0002
[0182] [表 9] [0182] [Table 9]
LAMP PHOSPHORS(Blue-green) LAMP PHOSPHORS (Blue-green)
Figure imgf000032_0001
Figure imgf000032_0001
* Not available from NICHiAfJust listed for reference)  * Not available from NICHiAfJust listed for reference)
[0183] [表 10]  [0183] [Table 10]
LAMP PHOSPHORS (Green)  LAMP PHOSPHORS (Green)
Figure imgf000032_0002
Figure imgf000032_0002
[0184] [表 11] [0184] [Table 11]
LAMP PHOSPHORS(Red)
Figure imgf000033_0001
LAMP PHOSPHORS (Red)
Figure imgf000033_0001
[0185] [表 12] [0185] [Table 12]
Figure imgf000033_0002
Figure imgf000033_0002
[0186] [表 13] [0186] [Table 13]
LAMP PHOSPHORS ( Special Application) LAMP PHOSPHORS (Special Application)
Figure imgf000034_0001
Figure imgf000034_0001
[0187] また、色再現範囲の向上を図るには、赤色の主波長のピークは長波長側に、緑色 の主波長のピークは短波長側に、青色の主波長のピークは短波長側にシフトさせれ ばよい、これは、表 2と表 3からも明らかである。 [0187] In order to improve the color reproduction range, the peak of the red dominant wavelength is on the long wavelength side, the peak of the green dominant wavelength is on the short wavelength side, and the peak of the blue dominant wavelength is on the short wavelength side. This should be shifted, as is clear from Tables 2 and 3.
[0188] この場合、赤色の主波長のピークは、長波長側の可視光の範囲内に設定されてい ればよぐまた、青色の主波長のピークについても、短波長側の可視光の範囲内に 設定されていればよいが、緑色の主波長のピークは、 505ηπ!〜 540nmの範囲内に あることが好ましい。  [0188] In this case, it is only necessary that the peak of the red dominant wavelength is set within the range of visible light on the long wavelength side. The peak of the blue dominant wavelength is also within the range of visible light on the short wavelength side. The peak of the green dominant wavelength is 505ηπ! It is preferably in the range of ˜540 nm.
[0189] これは、例えば日本色彩学会編の『新編色彩科学ハンドブック (第 2版)』に記載さ れた色度図からも明らかであり、 505nmを超える短波長側に緑色のピークが設定さ れれば、青色との混色が生じ、また、 540nmを超える長波長側に緑色のピークが設 定されれば、赤色との混色が生じるので、色再現範囲の向上が望めないからである。  [0189] This is also evident from the chromaticity diagram described in, for example, the “New Color Science Handbook (2nd edition)” edited by the Japan Society of Color Science, where a green peak is set on the short wavelength side exceeding 505 nm. If this occurs, color mixing with blue will occur, and if a green peak is set on the long wavelength side exceeding 540 nm, color mixing with red will occur, so an improvement in the color reproduction range cannot be expected.
[0190] さらに、色再現範囲を向上させるには、緑色のピークを 520nmに設定すればよい。 [0190] Further, in order to improve the color reproduction range, the green peak may be set to 520 nm.
[0191] なお、上記のように、ノ ックライト光源としては、各色の主波長が適宜調整可能な光 源であればよい。 [0191] As described above, the knock light source may be any light source that can adjust the dominant wavelength of each color as appropriate.
[0192] このように、各色のピークの主波長が適宜調整可能な光源としては、上述した蛍光 体材料に限定されるものではなぐ以下の表 14に示すような LEDを用いてもよい。 L EDのチップ材料としては、例えば InGaNが考えられる。ここで、 InGaNは、不純物を ドーピングする等の方法によって、青領域の発光ピークから、連続的にピークの位置 を緑領域である 525nm或いはそれ以上の長波長にシフト可能である。これにより連続 的なピーク波長選択が可能となる。 [0192] As described above, as a light source capable of appropriately adjusting the main wavelength of the peak of each color, an LED as shown in Table 14 below may be used instead of the phosphor material described above. For example, InGaN is conceivable as a chip material for the LED. Here, InGaN has a continuous peak position from the emission peak in the blue region by a method such as doping impurities. Can be shifted to a long wavelength of 525 nm or more in the green region. This allows continuous peak wavelength selection.
[0193] [表 14] [0193] [Table 14]
Figure imgf000035_0001
Figure imgf000035_0001
[0194] さらに、他の実施形態として、液晶の垂直配向液晶分子の配向方向を制御する方 法として、以上に説明した実施形態ではアクティブマトリクス基板の画素電極にスリツ トを設けカラーフィルタ基板側に配向制御用の突起を設けたが、それらが逆の場合 でもよぐまた、両基板の電極にスリットを持たせた構造や、両基板の電極表面に配 向制御用の突起を設けた MVA型液晶パネルであっても構わない。 [0194] Furthermore, as another embodiment, as a method for controlling the alignment direction of vertically aligned liquid crystal molecules of the liquid crystal, in the embodiment described above, a slit is provided on the pixel electrode of the active matrix substrate and the color filter substrate side. Protrusions for orientation control are provided, but they may be reversed. In addition, a structure in which slits are provided on the electrodes on both substrates, and an MVA type with orientation control projections on the electrode surfaces of both substrates It may be a liquid crystal panel.
[0195] カロえて、上記 MVA型ではなぐ一対の配向膜によって規定されるプレチルト方向( 配向処理方向)が互いに直交する垂直配向膜を用いる方法でも良い。また、液晶分 子がツイスト配向となる VAモードであってもよぐ VATN (Vertical Alibnment Twisted Nematic)モードと呼ばれることもある。 VATN方式は、配向制御用突起の部分での 光漏れによるコントラストの低下が無レ、ことから、本願発明におレ、てはより好ま 、。 プレチルトは、光配向等により形成される。  [0195] In addition, a method using vertical alignment films in which pretilt directions (alignment treatment directions) defined by a pair of alignment films other than the MVA type are orthogonal to each other may be used. Also, it may be called VATN (Vertical Alibnment Twisted Nematic) mode, which may be VA mode in which the liquid crystal molecules are twisted. The VATN method is more preferable for the present invention because there is no decrease in contrast due to light leakage at the alignment control protrusion. The pretilt is formed by optical alignment or the like.
[0196] ここで、上記構成の液晶表示装置 100の表示コントローラにおける駆動方法の具体 例について、図 7を参照しながら以下に説明する。ここでは、入力 8bit (256階調)、 液晶ドライバ 8bitの場合について説明する。  [0196] Here, a specific example of a driving method in the display controller of the liquid crystal display device 100 having the above configuration will be described with reference to FIG. Here, the case of input 8bit (256 gradations) and liquid crystal driver 8bit is explained.
[0197] 表示コントローラ部のパネル駆動回路(1)において、入力信号(映像ソース)に対し 、 0変換、オーバーシュートなどの駆動信号処理を行って第 1のパネルのソースドラ ィバ (ソース駆動手段)に対し 8bit階調データを出力する。 [0198] 一方、パネル駆動回路(2)において、 γ変換、オーバーシュートなどの信号処理を 行って第 2のパネルのソースドライバ (ソース駆動手段)に対し 8bit階調データを出力 する。第 1のパネル、第 2のパネルおよびその結果出力される出力画像は 8bitとなり 、入力信号に対し 1対 1に対応し、入力画像に忠実な画像となる。 [0197] In the panel drive circuit (1) of the display controller unit, the input signal (video source) is subjected to drive signal processing such as 0 conversion and overshoot, and the first panel source driver (source drive means) Output 8-bit gradation data. On the other hand, the panel drive circuit (2) performs signal processing such as γ conversion and overshoot, and outputs 8-bit gradation data to the source driver (source drive means) of the second panel. The first panel, the second panel, and the output image that is output as a result are 8 bits, correspond one-to-one with the input signal, and are faithful to the input image.
[0199] 上記のように、第 1のパネルと第 2のパネルとを重ね合わせた場合、パネルの解像 度によっては、二枚のパネルを重ね合わせたときに生じる画素ズレに起因するモアレ が発生することがある。また、ガラスなどに厚みがあるため、 2枚のパネルのカラーフィ ルタを透過した光が、視差により色混じりを起こし、モアレを発生することがある。  [0199] As described above, when the first panel and the second panel are overlaid, depending on the resolution of the panel, moire caused by pixel misalignment that occurs when the two panels are overlaid. May occur. In addition, because glass is thick, the light transmitted through the color filters of the two panels may cause color mixing due to parallax and moiré.
[0200] 本願発明では、以下の各実施の形態において、 2枚のパネルを重ね合わせた場合 のモアレ低減にっ 、て説明する。  [0200] In the present invention, in the following embodiments, the moire reduction when two panels are overlapped will be described.
[0201] 〔実施の形態 2〕  [0201] [Embodiment 2]
本発明の他の実施の形態について説明すれば、以下の通りである。なお、前記実 施の形態 1と同じ機能を有する部材については、同一の符号を付記し、その説明は 省略する。  Another embodiment of the present invention will be described as follows. Note that members having the same functions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0202] 本実施の形態では、液晶表示装置 100に光拡散層を設けることでモアレの発生を 低減することについて説明する。  [0202] In this embodiment, description will be given of reducing the generation of moire by providing a light diffusion layer in liquid crystal display device 100.
[0203] このように、液晶表示装置 100に光拡散層が設けられていることで、光拡散層を透 過した光を空間的にじませることができる。これにより、例えば、隣接するパネルの同 等な周期を持つ微細構造物同士 (バスライン、ブラックマトリックス、配向制御用の突 起など)の非同期干渉の強度を抑制することが可能となる。この結果、構造干渉に起 因するモアレの発生を抑制できるので、モアレの発生による表示品位の低下を防止 することができる。  [0203] As described above, since the light diffusion layer is provided in the liquid crystal display device 100, the light transmitted through the light diffusion layer can be spatially blurred. As a result, for example, it is possible to suppress the strength of asynchronous interference between fine structures (bus lines, black matrix, alignment control protrusions, etc.) having the same period of adjacent panels. As a result, it is possible to suppress the occurrence of moiré due to structural interference, and thus it is possible to prevent display quality from being deteriorated due to the occurrence of moiré.
[0204] 具体的に、光拡散層を配置した場合について説明する。  [0204] Specifically, a case where a light diffusion layer is arranged will be described.
[0205] 光拡散層の配設位置としては、例えば、図 21に示すように、偏光板 Aのさらに外側 に光拡散層を備えてもよいし、図 22に示すように、第 2のパネルと偏光板 Bとの間に 光拡散層を備えてもよいが、最も好ましいのは、図 23に示すように、第 2のパネルと 偏光板 Bとの間にさらに、偏光板 Dを配し、この偏光板 Dと偏光板 Bとの間に光拡散 層を備えたものである。偏光板 Dと偏光板 Bはパラレル-コルにして配置した。 [0206] 上記光拡散層としては、アクリル系の硬化榭脂層や TAC (トリアセチルセルロース) フィルム、 PET (ポリエチレンテレフタラート)フィルムなどの基材に、シリカビーズ、酸 化アルミニウム、酸ィ匕チタン等の透明粒子を混ぜて固めたものを用いる。 [0205] As the arrangement position of the light diffusion layer, for example, as shown in FIG. 21, a light diffusion layer may be provided on the outer side of the polarizing plate A, or as shown in FIG. A light diffusing layer may be provided between the polarizing plate B and the polarizing plate B. Most preferably, however, a polarizing plate D is further disposed between the second panel and the polarizing plate B as shown in FIG. A light diffusing layer is provided between the polarizing plate D and the polarizing plate B. Polarizing plate D and polarizing plate B were arranged in parallel coll. [0206] The light diffusing layer includes an acrylic cured resin layer, a TAC (triacetylcellulose) film, a PET (polyethylene terephthalate) film, and other substrates, silica beads, aluminum oxide, and titanium oxide. Use a mixture of transparent particles such as
[0207] 上記光拡散層には、表面を荒らした透明層を用いてもよい。この場合、図 21に示 すような空気層と接触する部分の構成では安価でありながら確実な光拡散効果を得 ることがでさる。  [0207] As the light diffusion layer, a transparent layer having a rough surface may be used. In this case, the structure of the portion in contact with the air layer as shown in FIG. 21 can provide a reliable light diffusion effect while being inexpensive.
[0208] 上記光拡散層には、平均粒径が 370nm以上である基材と屈折率が異なる拡散粒 子が分散し含有されていてもよい。この場合、可視光線として最も視感度が高く支配 的な 555nm前後の波長の光は、屈折率 1. 5の部材の中で 555÷ 1. 5 =波長 370η mとなって 、て、その光を屈折作用により散乱することができる。  [0208] In the light diffusion layer, diffusion particles having a refractive index different from that of the substrate having an average particle diameter of 370 nm or more may be dispersed and contained. In this case, light with a wavelength of around 555 nm, which is the most visible and dominant as visible light, is 555 ÷ 1.5 = wavelength 370 ηm among the members with a refractive index of 1.5. It can be scattered by refraction.
[0209] 上記光拡散層には、平均粒径が 520nm以上である基材と屈折率が異なる拡散粒 子が分散し含有されていてもよい。この場合、可視光線として最も長波長な 780nm の波長の光は、屈折率 1. 5の部材の中で 780+ 1. 5 =波長 520nmとなっていて、 可視光線全領域を屈折作用により散乱することができる。  [0209] In the light diffusion layer, diffusion particles having a refractive index different from that of the substrate having an average particle diameter of 520 nm or more may be dispersed and contained. In this case, the light having the longest wavelength of visible light of 780 nm is 780 + 1.5 = wavelength of 520 nm among the members having a refractive index of 1.5, and the entire visible light region is scattered by refraction. be able to.
[0210] 上記光拡散層には、平均粒径が 3. 7 μ m以上である基材と屈折率が異なる拡散粒 子が分散し含有されていてもよい。この場合、可視光線散乱条件より平均粒径のォ 一ダーを一桁大きくすることで、可視光線全領域を波長による違いなぐ屈折作用に より安定的な散乱を実現することができる。  [0210] The light diffusion layer may contain dispersed particles having a refractive index different from that of the base material having an average particle diameter of 3.7 μm or more. In this case, by increasing the order of the average particle size by an order of magnitude larger than the visible light scattering condition, stable scattering can be realized by the refractive action that makes the entire visible light region different depending on the wavelength.
[0211] また、図 24に示すように必ずしも全方位に対する拡散に本発明の趣旨を限定する ものではなぐモアレに支配的な構造物やモアレの縞の向きに垂直な拡散性を発揮 する層を適用しても構わない。具体的には、上記構造物や縞に対し平行なプリズム 形状の層(レンズシート)などを用いることができる。また前述した拡散層と組み合わ せてもよい。  [0211] Further, as shown in FIG. 24, a moiré-dominant structure that does not necessarily limit the gist of the present invention to diffusion in all directions, or a layer that exhibits diffusivity perpendicular to the direction of the stripes of moiré is provided. You may apply. Specifically, a prism-shaped layer (lens sheet) parallel to the structure or stripes can be used. Further, it may be combined with the diffusion layer described above.
[0212] 〔実施の形態 3〕  [Embodiment 3]
本発明の他の実施の形態について説明すれば、以下の通りである。なお、前記実 施の形態 1と同じ機能を有する部材については、同一の符号を付記し、その説明は 省略する。  Another embodiment of the present invention will be described as follows. Note that members having the same functions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0213] 本実施の形態では、前記重ね合わせた複数の液晶パネルからなる液晶表示装置 において、内側の透明基板のうち少なくとも一方の透明基板が、外側の透明基板より も厚みが薄いことにより、モアレの発生を抑制するようにしている。さらに、カラーフィ ルタが設けられた基板が互いに隣接することが好ま 、。 [0213] In the present embodiment, a liquid crystal display device comprising a plurality of superimposed liquid crystal panels In this case, at least one of the inner transparent substrates is thinner than the outer transparent substrate, thereby suppressing the occurrence of moire. Furthermore, it is preferable that the substrates provided with the color filters are adjacent to each other.
[0214] 図 25は、図 3に示す液晶表示装置 100において、光路を付記したものである。 FIG. 25 shows an optical path added to the liquid crystal display device 100 shown in FIG.
[0215] 図 25に示す液晶表示装置 100では、視野による光路は、正面視の場合の光路(1 )、斜めから見た場合の光路(2)となる。光路(1)は正常に見えるが、光路(2)の場合 、第 2のパネルの隣の画素を通るため、角度や映像によっては、色味が変わったりム ラが出たりする場合がある。これが、視差に起因するモアレである。 In the liquid crystal display device 100 shown in FIG. 25, the optical path according to the visual field is the optical path (1) when viewed from the front, and the optical path (2) when viewed from an oblique direction. The optical path (1) looks normal, but in the case of the optical path (2), it passes through the pixels next to the second panel, so the color may change or the image may be blurred depending on the angle and image. This is moire caused by parallax.
[0216] 図 26に示した例では、内側の基板(2)、(3)が外側の基板(1)、(4)よりも薄いので 、図 25と同じ角度の光路でも、第 2のパネルのブラックマスク(BM)により光は遮断さ れるので、結果として、図 24の場合と比べ、正常な映像が見られる角度が広がること になる。これにより、視差に起因する斜め方向でのモアレの発生を抑制することがで きる。 [0216] In the example shown in FIG. 26, the inner substrates (2) and (3) are thinner than the outer substrates (1) and (4). Since the light is blocked by the black mask (BM), as a result, the angle at which normal images can be seen is wider than in the case of FIG. As a result, it is possible to suppress the occurrence of moire in an oblique direction due to parallax.
[0217] また、視差に関する問題に関してだけならば、内側の基板 (2)、(3)を屈折率の大 きいガラスを使用することによつても可能である。  [0217] Further, only with respect to the parallax problem, the inner substrates (2) and (3) can be used by using a glass having a large refractive index.
[0218] なお、パネルの機械的強度は、外側の基板(1)、(4)によって、確保することができ る。 [0218] The mechanical strength of the panel can be ensured by the outer substrates (1) and (4).
[0219] ガラス基板を用いた場合、初めから、薄い基板を用いることができる。可能な基板の 厚みについては、製造ラインや液晶パネルの大きさなどによって変わる力 0. 4mm のガラスを 3, 4の基板として用いることができる。 1、 4の基板としては 0. 7mmのガラ ス基板を用いればよい。  [0219] When a glass substrate is used, a thin substrate can be used from the beginning. Regarding the possible substrate thickness, glass with a force of 0.4 mm, which varies depending on the size of the production line and the liquid crystal panel, can be used as 3 and 4 substrates. As the substrates 1 and 4, a 0.7 mm glass substrate may be used.
[0220] また、ガラスを研磨やエッチングする方法もある。ガラスのエッチング方法につ!ヽて は公知の技術(日本国特許 3524540号、日本国特許 3523239号等の公報)がある 力 たとえば 15%フッ酸水溶液などの化学加工液を使う。端子面等のエッチングをし たくない部分は、耐酸性の保護材で皮膜し、前記化学加工液に浸しガラスをエッチ ングしたあと、保護材を除去する。エッチングによりガラスは 0. lmn!〜 0. 4mm程度 まで薄くする。  [0220] There is also a method of polishing or etching glass. How to etch glass! There is a well-known technology (Japanese Patent No. 3524540, Japanese Patent No. 3523239, etc.). For example, a chemical working solution such as a 15% hydrofluoric acid aqueous solution is used. The parts such as the terminal surface that are not to be etched are coated with an acid-resistant protective material, immersed in the chemical working solution, and the glass is etched, and then the protective material is removed. Etching glass is 0. lmn! Thinner to about 0.4mm.
[0221] 本実施形態では、図 23に示す液晶表示装置 100を製造する際に、内側のガラス 基板 (基板 2、 3)についてエッチングを施し、外側の基板 (基板 1、 4)よりも薄くした。 内側の基板は 2つのパネルを、約 0. 2mmの厚みを有する偏光板を挟んで貼り合わ せるため、外側に面する基板を薄くするより液晶表示装置としての強度を保つのに容 易である。 In this embodiment, when manufacturing the liquid crystal display device 100 shown in FIG. The substrate (substrates 2 and 3) was etched to make it thinner than the outer substrates (substrates 1 and 4). The inner substrate is bonded to two panels with a polarizing plate having a thickness of about 0.2 mm, so it is easier to maintain the strength as a liquid crystal display device than to thin the substrate facing outward. .
[0222] 本実施形態ではさらに、図 27に示すように、内側の基板(2)、 (3)にカラーフィルタ を設けてもよい。通常液晶駆動用のドライバに接続するための端子はアクティブマトリ ックス基板に設けることが多い。このため、アクティブマトリックス基板を薄くすると端子 部の機械的強度は低下する。し力しながら、図 27のように、カラーフィルタ基板 (2)、 (3)内側の基板のみ薄くし、アクティブマトリックスを外側の基板(1) (4)に形成するこ とで、アクティブマトリックス基板を薄くする必要が無くなり、端子部の強度を保つこと ができる。アクティブマトリックスを形成する基板(1)の配線用メタル層により外光の反 射される明るい場所でのコントラストや表示品位が低下する場合があるので、配線用 メタルの観察者側の面にブラックマトリックスを形成したほうがよ 、。たとえば配線用メ タルのもっとも観察者側に近 、側にクロムなどを含む低反射材料層を設けて達成す ることがでさる。  In this embodiment, as shown in FIG. 27, color filters may be provided on the inner substrates (2) and (3). Usually, a terminal for connecting to a driver for driving a liquid crystal is often provided on an active matrix substrate. For this reason, when the active matrix substrate is thinned, the mechanical strength of the terminal portion decreases. However, as shown in Fig. 27, only the inner substrate of the color filter substrate (2), (3) is thinned, and the active matrix is formed on the outer substrate (1) (4). It is no longer necessary to reduce the thickness, and the strength of the terminal portion can be maintained. Since the wiring metal layer of the substrate (1) that forms the active matrix may reduce the contrast and display quality in bright places where external light is reflected, the black matrix is placed on the observer side of the wiring metal. Should be formed. For example, this can be achieved by providing a low reflection material layer containing chromium or the like closest to the observer side of the wiring metal.
[0223] 本実施形態では、視差によるモアレの発生を抑制できると共に、液晶表示装置の 強度を保ちつつ、複数のパネルを用いても軽量ィ匕することが可能である。なお、本実 施の形態は、他の実施形態との組合せが可能である。  In this embodiment, it is possible to suppress the occurrence of moire due to parallax, and to reduce the weight even when a plurality of panels are used while maintaining the strength of the liquid crystal display device. Note that this embodiment can be combined with other embodiments.
[0224] 〔実施の形態 4〕 [Embodiment 4]
本発明の他の実施の形態について説明すれば、以下の通りである。なお、前記実 施の形態 1と同じ機能を有する部材については、同一の符号を付記し、その説明は 省略する。  Another embodiment of the present invention will be described as follows. Note that members having the same functions as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
[0225] 上記の各実施の形態において、液晶表示装置 100の 2枚のパネルは、何れもカラ 一フィルタを有していた力 本実施の形態では、図 28に示すように、何れか一方のパ ネルのみにカラーフィルタを設けた液晶表示装置 100'について説明する。  [0225] In each of the above embodiments, the two panels of the liquid crystal display device 100 both have color filters. In this embodiment, as shown in FIG. A liquid crystal display device 100 ′ in which a color filter is provided only on the panel will be described.
[0226] 具体的には、一方のパネル (第 1のパネル)のアクティブマトリクス基板 30'と対向基 板 20,にそれぞれカラーフィルタを設ける。このとき、他方のパネル(第 2のパネル)の アクティブマトリクス基板 30および対向基板 20' 'にはカラーフィルタは設けられてい ない。本実施形態によれば、カラーフィルタ間の距離がミクロンオーダーの液晶層厚 みとなるため、より効果的に斜め視角方向のモアレの低減が可能となる。すなわち 1 枚の液晶パネルにのみカラーフィルタが備えられて 、ることで、一方の液晶パネルを 透過した光が他方の液晶パネルを透過する際に、色混じりが生じ難くなる。これによ り、色混じりに起因するモアレの発生を抑制することが可能となる。 [0226] Specifically, a color filter is provided on each of the active matrix substrate 30 'and the counter substrate 20 of one panel (first panel). At this time, the active matrix substrate 30 and the counter substrate 20 ′ ′ of the other panel (second panel) are not provided with color filters. Absent. According to this embodiment, since the distance between the color filters becomes a liquid crystal layer thickness on the order of microns, it is possible to more effectively reduce the moire in the oblique viewing angle direction. In other words, only one liquid crystal panel is provided with a color filter, so that when light transmitted through one liquid crystal panel is transmitted through the other liquid crystal panel, color mixing hardly occurs. As a result, it is possible to suppress the occurrence of moire caused by color mixing.
[0227] 以下に、図 28から図 30を参照しながら、本実施の形態について説明する。図 28に は、本発明に基づく本実施形態の液晶表示装置の概略断面概要を示す。図 29には 、偏光板を含めた液晶表示装置の構成を示す。図 30には、図 28に示す第 1のパネ ルを構成するアクティブマトリクス基板 30'に設けられた TFT素子 3上にブラックマトリ タス 24,を直接設けた状態 (BMonTFT)を示し、対向基板 20,のブラックマトリクス 2 4を TFT素子 3上に仮想的に重ね合わせて示している。  Hereinafter, the present embodiment will be described with reference to FIGS. 28 to 30. FIG. FIG. 28 shows a schematic cross-sectional outline of the liquid crystal display device of the present embodiment based on the present invention. FIG. 29 shows a configuration of a liquid crystal display device including a polarizing plate. FIG. 30 shows a state (BMonTFT) in which the black matrix 24 is directly provided on the TFT element 3 provided on the active matrix substrate 30 ′ constituting the first panel shown in FIG. The black matrix 24 is virtually superimposed on the TFT element 3.
[0228] 図 1に示す液晶表示装置 100に比べて、図 28に示す液晶表示装置 100は、第 2の パネルにカラーフィルタ 21を形成せず、第 1のパネルのみにカラーフィルタを形成し た点で異なっている。なお、カラーフィルタ 21をアクティブマトリクス基板に対向する 対向基板に形成し、カラーフィルタ 21 'をアクティブマトリクス基板に形成している。対 向基板に設けられたカラーフィルタ 21とアクティブマトリクス基板に設けられたカラー フィルタ 21,の色は、それぞれのカラーフィルタの赤 (R)緑 (G)青(B)がそれぞれ鉛 直方向から見た位置が一致するように構成されている。具体的には、カラーフィルタ 2 1の赤は、カラーフィルタ 21 'の赤に、カラーフィルタ 21の緑は、カラーフィルタ 21 'の 緑に、カラーフィルタ 21の青は、カラーフィルタ 21 'の青に、それぞれ鉛直方向から 見た位置が一致するように構成されて ヽる。  Compared with the liquid crystal display device 100 shown in FIG. 1, the liquid crystal display device 100 shown in FIG. 28 does not form the color filter 21 on the second panel, but forms the color filter only on the first panel. It is different in point. The color filter 21 is formed on the counter substrate facing the active matrix substrate, and the color filter 21 ′ is formed on the active matrix substrate. The color filter 21 provided on the opposite substrate and the color filter 21 provided on the active matrix substrate are red (R) green (G) blue (B) of each color filter as viewed from the lead direction. The positions are matched. Specifically, red in color filter 2 1 is red in color filter 21 ', green in color filter 21 is green in color filter 21', blue in color filter 21 is blue in color filter 21 ' They are configured so that their positions seen from the vertical direction match each other.
[0229] ここで、上記アクティブマトリクス基板 30'の製造方法について説明する。アクティブ マトリクス基板 30と、対向基板 20'であるカラーフィルタ基板は実施形態 1と同等であ るので説明を省略する。また、対向基板 20 "に関しては、対向基板 20'において力 ラーフィルタ形成工程を削減すれば形成できる。  [0229] Here, a method for manufacturing the active matrix substrate 30 'will be described. The active matrix substrate 30 and the color filter substrate which is the counter substrate 20 ′ are the same as those in the first embodiment, and thus description thereof is omitted. Further, the counter substrate 20 "can be formed by reducing the power filter forming process in the counter substrate 20 '.
[0230] まず、透明基板 10上に、走査信号用配線 (ゲート配線またはゲートバスライン) 1と 補助容量配線 2とを形成するためにスパッタリングにより Ti/Al/Ti積層膜などの金属 を成膜し、フォトリソグラフィ一法によりレジストパターンを形成、塩素系ガスなどのエツ チングガスを用いてドライエッチングし、レジストを剥離する。これにより、透明基板 10 上に、走査信号用配線 1と補助容量配線 2とが同時に形成される。 [0230] First, a metal such as a Ti / Al / Ti laminated film is formed on the transparent substrate 10 by sputtering in order to form the scanning signal wiring (gate wiring or gate bus line) 1 and the auxiliary capacitance wiring 2. Then, a resist pattern is formed by a photolithography method. Dry etching is performed using a ching gas to remove the resist. As a result, the scanning signal wiring 1 and the auxiliary capacitance wiring 2 are simultaneously formed on the transparent substrate 10.
[0231] その後、窒化シリコン(SiNx)など力もなるゲート絶縁膜、アモルファスシリコン等か らなる活性半導体層、リンなどをドープしたアモルファスシリコン等力もなる低抵抗半 導体層を CVDにて成膜、その後、データ信号用配線 (ソース配線またはソースノ スラ イン) 4、ドレイン引き出し配線 5、補助容量形成用電極 6を形成するためにスパッタリ ングにより AlZTiなどの金属を成膜し、フォトリソグラフィ一法によりレジストパターン を形成、塩素系ガスなどのエッチングガスを用いてドライエッチングし、レジストを剥離 する。これにより、データ信号用配線 4、ドレイン引き出し配線 5、補助容量形成用電 極 6が同時に形成される。  [0231] After that, a gate insulating film such as silicon nitride (SiNx), an active semiconductor layer made of amorphous silicon, or the like, an amorphous silicon doped with phosphorus or the like, and a low resistance semiconductor layer also made of amorphous silicon or the like are formed by CVD. , Data signal wiring (source wiring or source nose line) 4, drain lead wiring 5, auxiliary capacitance forming electrode 6 A metal such as AlZTi is formed by sputtering, and a resist pattern is formed by photolithography. The resist is removed by dry etching using an etching gas such as a chlorine-based gas. As a result, the data signal wiring 4, the drain lead wiring 5, and the auxiliary capacitance forming electrode 6 are formed simultaneously.
[0232] なお、補助容量は補助容量配線 2と補助容量形成用電極 6の間に約 4000 Aのゲ ート絶縁膜をはさんで形成されて 、る。  [0232] The auxiliary capacitance is formed by sandwiching a gate insulating film of about 4000 A between the auxiliary capacitance wiring 2 and the auxiliary capacitance forming electrode 6.
[0233] その後、ソースドレイン分離のために低抵抗半導体層を塩素ガスなどを用いてドラ ィエッチングし TFT素子 3を形成する。  [0233] Thereafter, the TFT element 3 is formed by dry etching the low-resistance semiconductor layer using chlorine gas or the like for source / drain separation.
[0234] 次に、 3原色(赤、緑、青)のカラーフィルタ 21,およびブラックマトリクス(BM) 24,な ど力もなるカラーフィルタ層を形成する。まず、スピンコートによりカーボンの微粒子を 分散したネガ型のアクリル系感光性榭脂液を塗布した後、乾燥を行い、黒色感光性 榭脂層を形成する。続いて、フォトマスクを介して黒色感光性榭脂層を露光した後、 現像を行って、ブラックマトリクス (BM) 24'を形成する。このとき第 1着色層(例えば 赤色層)、第 2着色層(例えば緑色層)、および第 3着色層(例えば青色層)が形成さ れる領域に、それぞれ第 1着色層用の開口部、第 2着色層用の開口部、第 3着色層 用の開口部(それぞれの開口部は各画素電極に対応)が形成されるように BMを形 成する。より具体的には、アクティブマトリクス基板 30'には配向乱れ隠し BMは設け ない場合であって、図 30に示すように、 TFT素子 3に外光が入射することにより光励 起されるリーク電流の増加を防ぐために、該 TFT素子 3上に遮光部(BM)となるブラ ックマトリクス 24'を形成する。  [0234] Next, a color filter layer having three primary colors (red, green, blue) 21, a black matrix (BM) 24, and the like is formed. First, after applying a negative acrylic photosensitive resin solution in which carbon fine particles are dispersed by spin coating, drying is performed to form a black photosensitive resin layer. Subsequently, the black photosensitive resin layer is exposed through a photomask and then developed to form a black matrix (BM) 24 ′. At this time, in the regions where the first colored layer (for example, red layer), the second colored layer (for example, green layer), and the third colored layer (for example, blue layer) are formed, the opening for the first colored layer, The BM is formed so that an opening for the 2 colored layer and an opening for the 3rd colored layer (each opening corresponds to each pixel electrode) are formed. More specifically, the active matrix substrate 30 ′ has no alignment disorder concealment BM. As shown in FIG. 30, a leakage current that is photoexcited by external light incident on the TFT element 3 In order to prevent this increase, a black matrix 24 ′ serving as a light shielding portion (BM) is formed on the TFT element 3.
[0235] 次に、カラーフィルタとして機能する層間絶縁膜 7'を形成するために、各色の顔料 を分散したネガ型のアクリル系感光性榭脂液をスピンコートにより塗布し、ドレイン引 き出し配線 5と画素電極 8を電気的にコンタクトするためのコンタクトホール 9をフォトリ ソグラフィ一法で形成する。この工程を赤色層、緑色層、青色層について同様に形成 し、カラーフィルタ 21,が完成する。ここで、カラーフィルタ 21,の膜厚は約 1. Ί μ χη^ ΒΜ24,の膜厚は約 1. 3 mである。 [0235] Next, in order to form an interlayer insulating film 7 'functioning as a color filter, a negative acrylic photosensitive resin solution in which pigments of various colors are dispersed is applied by spin coating, and drain drawing is performed. A contact hole 9 for electrically contacting the lead-out wiring 5 and the pixel electrode 8 is formed by a photolithographic method. This process is similarly performed for the red layer, the green layer, and the blue layer, and the color filter 21 is completed. Here, the film thickness of the color filter 21 is about 1. Ίμ χη ^ ΒΜ24, and the film thickness is about 1.3 m.
[0236] さらに、画素電極 8、および垂直配向膜 (図示せず)をこの順に形成する。 [0236] Further, the pixel electrode 8 and the vertical alignment film (not shown) are formed in this order.
[0237] なお、本実施形態は、上述したように、 MVA型液晶表示装置であり、 ITOなどから なる画素電極 8にスリットパターン 11が設けられている。具体的には、スパッタリング により成膜し、フォトリソグラフィ一法によりレジストパターンを形成、塩化第二鉄と塩酸 との混合液などのエッチング液によりエッチングし、図 3同等に、ただし配向乱れ隠し BMは設けられて!/、な!/、)に示すような画素電極パターンを得る。 Note that the present embodiment is an MVA type liquid crystal display device as described above, and the slit pattern 11 is provided in the pixel electrode 8 made of ITO or the like. Specifically, a film is formed by sputtering, a resist pattern is formed by a photolithography method, and etching is performed with an etching solution such as a mixed solution of ferric chloride and hydrochloric acid. The pixel electrode pattern as shown in FIG.
[0238] 以上により、アクティブマトリクス基板 30 'を得る。 [0238] The active matrix substrate 30 'is thus obtained.
[0239] 本実施形態の、上記構成の液晶表示装置 100 'の動作について説明する。  [0239] The operation of the liquid crystal display device 100 'having the above-described configuration according to the present embodiment will be described.
[0240] 上記第 1のパネルの画素は、表示信号に基づいて駆動され、該第 1のパネルの画 素とパネルの鉛直方向から見た位置が一致する対応する第 2のパネルの画素は、第 1のパネルに対応して駆動される。偏光板 Aと第 1のパネルと偏光板 Bとで構成される 部分 (構成部 1)が透過状態の場合は、偏光板 Bと第 2のパネルと偏光板 Cにより構成 される部分 (構成部 2)も透過状態となり、構成部 1が非透過状態の時は構成部 2も非 透過状態となるよう駆動される。  [0240] The pixels of the first panel are driven based on the display signal, and the pixels of the second panel corresponding to the positions of the pixels of the first panel and the positions viewed from the vertical direction of the panel match. Driven corresponding to the first panel. If the part composed of Polarizer A, the first panel, and Polarizer B (Component 1) is in the transmissive state, the part composed of Polarizer B, the second panel, and Polarizer C (Component) 2) is also in a transmissive state, and when component 1 is in a non-transmissive state, component 2 is also driven to be in a non-transmissive state.
[0241] 第 1、第 2のパネルには同一の画像信号を入力しても良いし、第 1、第 2のパネルに 互いに連関した別々の信号を入力してもよい。以下に示す実施の形態では、第 1、 第 2のパネルに互いに関連した別々の信号を入力して、画像表示させる場合の例に ついて説明する。  [0241] The same image signal may be input to the first and second panels, or different signals associated with each other may be input to the first and second panels. In the following embodiment, an example in which different signals related to each other are input to the first and second panels to display an image will be described.
[0242] 〔実施の形態 5〕  [0242] [Embodiment 5]
本発明のさらに他の実施の形態について、図 31および図 32を参照しながら以下に 説明する。なお、本実施の形態では、前記実施の形態 1で説明した図 1に示す液晶 表示装置 100に対する駆動制御について説明する。  Still another embodiment of the present invention will be described below with reference to FIGS. 31 and 32. FIG. In the present embodiment, drive control for the liquid crystal display device 100 shown in FIG. 1 described in the first embodiment will be described.
[0243] 図 31 (a)に示すように、液晶パネル (第 1のパネルおよび第 2のパネル)を上下 2枚 重ねて使用する場合にっ 、て考える。 [0244] 図 31 (b)に示すように、ここでは同一解像度の液晶パネルの場合で説明する。第 1 のパネルと第 2のパネルに同一表示データを表示すると、画像同士の干渉を起こす 場合がある。これに起因するモアレが発生する。 [0243] As shown in Fig. 31 (a), consider the case where two upper and lower liquid crystal panels (first panel and second panel) are used. [0244] As shown in Fig. 31 (b), here, the case of a liquid crystal panel having the same resolution will be described. If the same display data is displayed on the first panel and the second panel, the images may interfere with each other. Moire caused by this occurs.
[0245] そこで、図 31 (c)に示すように、第 1のパネルと第 2のパネルの表示データの空間的 周波数を変えることで、第 1のパネルと第 2のパネルとの間での干渉を無くすことがで きる。これにより、モアレを低減することができる。 [0245] Therefore, as shown in Fig. 31 (c), by changing the spatial frequency of the display data of the first panel and the second panel, the first panel and the second panel are changed. Interference can be eliminated. Thereby, moire can be reduced.
[0246] 図 31 (c)に示すように空間周波数を異ならせる制御は、下記のようにして行う。 [0246] As shown in Fig. 31 (c), the control for varying the spatial frequency is performed as follows.
(1)入力データを DCTや FFTを使用してスペクトラムデータに変換する。  (1) Convert input data to spectrum data using DCT or FFT.
(2)分割フィルタを使用して、高周波成分と低周波成分に分ける。  (2) Use a division filter to separate high frequency components and low frequency components.
(3)高周波成分を逆 DCTや逆 FFTを使用して元の空間データに戻して第 1のパネル に表示する。  (3) Restore high-frequency components to the original spatial data using inverse DCT or inverse FFT and display them on the first panel.
(4)低周波成分を逆 DCTや逆 FFTを使用して元の空間データに戻して第 2のパネル に表示する。  (4) Restore the low-frequency component to the original spatial data using inverse DCT or inverse FFT and display it on the second panel.
[0247] 以上の過程を経て、表示データと第 2のパネルの表示の差から第 1のパネルの表 示を決定する。  [0247] Through the above process, the display of the first panel is determined from the difference between the display data and the display of the second panel.
[0248] なお、以上の説明は一次元で行っている力 液晶パネルは面表示であるので二次 元で行うことになる。  [0248] Note that the above description is performed in one dimension. Since the liquid crystal panel is a surface display, it is performed in two dimensions.
[0249] 具体的な制御は、例えば図 32に示すように、データ入力部 201、同期信号生成部 202、周波数領域変換器 203、帯域分割フィルタ 207、逆周波数領域変換器 205、 逆周波数領域変換器 208を備えた表示コントローラ 210によって実現できる。  For example, as shown in FIG. 32, specific control includes data input unit 201, synchronization signal generation unit 202, frequency domain converter 203, band division filter 207, inverse frequency domain converter 205, inverse frequency domain transform. This can be realized by the display controller 210 having the device 208.
[0250] 上記データ入力部 201は、入力データを同期信号と各画素の画素データに分離し 、分離した同期信号を後段の同期信号生成部 202に出力し、画素データを後段の 周波数領域変翻203に出力するようになっている。  [0250] The data input unit 201 separates the input data into a synchronization signal and pixel data of each pixel, outputs the separated synchronization signal to the subsequent-stage synchronization signal generation unit 202, and converts the pixel data into the subsequent-frequency domain conversion. Output to 203.
[0251] 上記同期信号生成部 202は、データ入力部 201からの同期信号力もソース駆動手 段、ゲート駆動手段を制御するための制御信号を生成する。  [0251] The synchronization signal generation unit 202 generates a control signal for controlling the source drive means and the gate drive means as well as the synchronization signal power from the data input unit 201.
[0252] 例えば、ソース駆動手段用の制御信号としては、下記の 3種類の制御信号を生成 する。  [0252] For example, the following three types of control signals are generated as the control signals for the source driving means.
(1)ソーススタートパルス (2)ソースラッチパノレス (1) Source start pulse (2) Source latch panoramic
(3)ソースクロック  (3) Source clock
また、ゲート駆動手段用の制御信号としては、下記の 2種類の制御信号を生成する  In addition, the following two types of control signals are generated as control signals for the gate drive means.
(1)ゲートスタートパルス (1) Gate start pulse
(2)ゲートシフトクロック  (2) Gate shift clock
上記周波数領域変 203は、上記データ入力部 201からの画素データを空間 周波数データに変換し、空間周波数データを後段の帯域分割フィルタ 207に出力す るようになっている。周波数領域変換として代表的なものとして、二次元 FFT変換、 二次元 DCT変換等がある。  The frequency domain change 203 converts the pixel data from the data input unit 201 into spatial frequency data, and outputs the spatial frequency data to the subsequent band division filter 207. Typical examples of frequency domain transformation include 2D FFT transformation and 2D DCT transformation.
[0253] 上記帯域分割フィルタ 207は、高周波領域のデータと低周波領域のデータを分け て、低周波領域のデータを液晶パネル Bのソース駆動手段に接続された逆周波数領 域変換器 205に出力し、高周波領域のデータを液晶パネル Aのソース駆動手段に 接続された逆周波数領域変 208に出力するようになっている。  [0253] The band-splitting filter 207 divides the data in the high frequency region and the data in the low frequency region, and outputs the data in the low frequency region to the inverse frequency region converter 205 connected to the source driving means of the liquid crystal panel B. In addition, the high frequency region data is output to the inverse frequency region changer 208 connected to the source driving means of the liquid crystal panel A.
[0254] なお、周波数データを 2つに分けるだけであれば、ローパスフィルタとハイパスフィ ルタを使用しても良い。  [0254] If the frequency data is only divided into two, a low-pass filter and a high-pass filter may be used.
[0255] ここで、帯域分割フィルタの場合は、複数の周波数領域のデータに分割できるので [0255] Here, in the case of the band division filter, since it can be divided into data of multiple frequency domains,
、複数毎のパネルに対応できるというメリットを有する。 , It has the merit of being able to handle multiple panels.
[0256] 上記逆周波数領域変換器 205は、低周波領域データに対して、上記周波数領域 変 203の逆変換を行 、、逆変換後のデータを第 2のパネルの画素データとして[0256] The inverse frequency domain converter 205 performs the inverse transformation of the frequency domain transformation 203 on the low frequency domain data, and uses the data after the inverse transformation as the pixel data of the second panel.
、第 2のパネルのソース駆動手段に出力するようになって 、る。 The output is output to the source driving means of the second panel.
[0257] 上記逆周波数領域変換器 208は、高周波領域データに対して、上記周波数領域 変 203の逆変換を行い、逆変換後のデータを第 1のパネルの画素データとして[0257] The inverse frequency domain converter 208 performs the inverse transformation of the frequency domain transformation 203 on the high frequency domain data, and uses the data after the inverse transformation as the pixel data of the first panel.
、第 1のパネルのソース駆動手段に出力するようになっている。 The signal is output to the source driving means of the first panel.
[0258] ここで、逆周波数領域変 205、 208における、逆周波数変換としては、逆二次 元 FFT変換、逆二次元 DCT変換等が行われる。 Here, as the inverse frequency conversion in the inverse frequency domain transformations 205 and 208, inverse two-dimensional FFT transformation, inverse two-dimensional DCT transformation, and the like are performed.
[0259] 以上のように、第 1のパネルおよび第 2のパネルに、互いに関連した別々の信号を 入力して、画像表示させるようにすれば、モアレに起因する表示品位の低下を防止し 、且つ、色再現範囲を向上させた非常に表示品位の高い画像表示を行うことが可能 な液晶表示装置を提供することができる。 [0259] As described above, if different signals related to each other are input to the first panel and the second panel to display an image, deterioration of display quality due to moire can be prevented. In addition, it is possible to provide a liquid crystal display device capable of displaying an image with a very high display quality with an improved color reproduction range.
[0260] 〔実施の形態 6〕  [Embodiment 6]
本発明のさらに他の実施の形態について、図 33および図 34を参照しながら以下に 説明する。なお、本実施の形態では、前記実施の形態 1で説明した図 1に示す液晶 表示装置 100に対する駆動制御について説明する。  Still another embodiment of the present invention will be described below with reference to FIGS. 33 and 34. FIG. In the present embodiment, drive control for the liquid crystal display device 100 shown in FIG. 1 described in the first embodiment will be described.
[0261] 図 33 (a)に示すように、液晶パネル (第 1のパネルおよび第 2のパネル)を上下 2枚 重ねて使用する場合について考える。ここでは、図 33 (b)に示すように、第 2のパネ ルの解像度は表示する解像度に比べて低いものとする。 [0261] As shown in Fig. 33 (a), consider the case of using two liquid crystal panels (first panel and second panel) stacked one above the other. Here, as shown in Fig. 33 (b), the resolution of the second panel is assumed to be lower than the display resolution.
[0262] そこで、図 33 (c)に示すように、第 1のパネルと第 2のパネルの表示データの空間的 周波数を変えることで、第 1のパネルと第 2のパネルとの間での画像同士の干渉を低 減することができる。これにより、モアレを低減することができる。  [0262] Therefore, as shown in Fig. 33 (c), by changing the spatial frequency of the display data of the first panel and the second panel, the first panel and the second panel are changed. Interference between images can be reduced. Thereby, moire can be reduced.
[0263] 図 33 (c)に示すように空間周波数を異ならせる制御は、下記のようにして行う。  [0263] As shown in Fig. 33 (c), the control to vary the spatial frequency is performed as follows.
(1)入力データを DCTや FFTを使用してスペクトラムデータに変換する。  (1) Convert input data to spectrum data using DCT or FFT.
(2)ローパスフィルタを使用して、低周波成分に分ける。  (2) Use a low-pass filter to divide into low frequency components.
(3)低周波成分を逆 DCTや逆 FFTを使用して元の空間データに戻して第 2のパネ ルに表示する。この際、解像度が低いためそれに併せてデータをサンプリング数間 引く。  (3) The low-frequency component is restored to the original spatial data using inverse DCT or inverse FFT and displayed on the second panel. At this time, since the resolution is low, the number of samplings is thinned accordingly.
(4)実際の表示データは、第 1のパネルの表示 X第 2のパネルの表示となる。  (4) The actual display data is the display on the first panel X the display on the second panel.
[0264] 以上の過程を経て、表示データと第 2のパネルの表示の差から第 1のパネルの表 示を決定する。 [0264] Through the above process, the display of the first panel is determined from the difference between the display data and the display of the second panel.
[0265] なお、以上の説明は一次元で行っている力 液晶パネルは面表示であるので二次 元で行うことになる。  [0265] Note that the above description is a one-dimensional force. Since the liquid crystal panel is a surface display, it is a two-dimensional display.
[0266] また、パネル構造上の解像度は Aと B同じで、第 2のパネルの複数のソースバスライ ンに同一の信号を入力して、第 2のパネルの表示上の解像度を落としてもよい。  [0266] Also, the resolution on the panel structure is the same as A and B, and even if the same signal is input to multiple source bus lines on the second panel to reduce the display resolution on the second panel. Good.
[0267] 具体的な制御は、例えば図 34に示すように、データ入力部 201、同期信号生成部 202、周波数領域変換器 203、ローパスフィルタ 204、逆周波数領域変換器 205、 差分演算器 206を備えた表示コントローラ 200によって実現できる。 [0268] 上記データ入力部 201は、入力データを同期信号と各画素のデータに分離し、分 離した同期信号を後段の同期信号生成部 202に出力し、画素データ (ピクセルデー タ)を後段の周波数領域変換器 203および差分演算器 206に出力するようになって いる。 For example, as shown in FIG. 34, specific control includes a data input unit 201, a synchronization signal generation unit 202, a frequency domain converter 203, a low-pass filter 204, an inverse frequency domain converter 205, and a difference calculator 206. This can be realized by the display controller 200 provided. [0268] The data input unit 201 separates the input data into a synchronization signal and data of each pixel, outputs the separated synchronization signal to the subsequent-stage synchronization signal generation unit 202, and outputs the pixel data (pixel data) to the subsequent stage. Output to the frequency domain converter 203 and the difference calculator 206.
[0269] 上記同期信号生成部 202は、データ入力部 201からの同期信号力もソース駆動手 段、ゲート駆動手段を制御するための制御信号を生成する。  [0269] The synchronization signal generation unit 202 generates a control signal for controlling the source drive means and the gate drive means as well as the synchronization signal power from the data input unit 201.
[0270] 例えば、ソース駆動手段用の制御信号としては、下記の 3種類の制御信号を生成 する。 [0270] For example, the following three types of control signals are generated as the control signals for the source driving means.
(1)ソーススタートパルス  (1) Source start pulse
(2)ソースラッチパノレス  (2) Source latch panoramic
(3)ソースクロック  (3) Source clock
また、ゲート駆動手段用の制御信号としては、下記の 2種類の制御信号を生成する  In addition, the following two types of control signals are generated as control signals for the gate drive means.
(1)ゲートスタートパルス (1) Gate start pulse
(2)ゲートシフトクロック  (2) Gate shift clock
上記周波数領域変 203は、上記データ入力部 201からの画素データを空間 周波数データに変換し、空間周波数データを後段のローパスフィルタ 204に出力す るようになっている。周波数領域変換として代表的なものとして、二次元 FFT変換、 二次元 DCT変換等がある。  The frequency domain change 203 converts the pixel data from the data input unit 201 into spatial frequency data, and outputs the spatial frequency data to the low-pass filter 204 at the subsequent stage. Typical examples of frequency domain transformation include 2D FFT transformation and 2D DCT transformation.
[0271] 上記ローパスフィルタ 204は、周波数領域変 203からの周波数データから、低 周波数領域のデータのみを通過させ、該低周波数領域データを後段の逆周波数領 域変 205に出力するようになって 、る。  [0271] The low-pass filter 204 passes only the low-frequency domain data from the frequency data from the frequency domain transformation 203, and outputs the low-frequency domain data to the reverse frequency domain transformation 205 in the subsequent stage. RU
[0272] 上記逆周波数領域変換器 205は、低周波領域データに対して、上記周波数領域 変 203の逆変換を行 、、逆変換後のデータを液晶パネル Bの画素データとして 、液晶パネル Bのソース駆動手段に出力するとともに、差分演算器 206に出力するよ うになつている。  [0272] The inverse frequency domain converter 205 performs the inverse transformation of the frequency domain transformation 203 on the low frequency domain data, and uses the data after the inverse transformation as the pixel data of the liquid crystal panel B. In addition to being output to the source driving means, it is also output to the difference calculator 206.
[0273] ここで、逆周波数領域変 205では、逆周波数変換としては、逆二次元 FFT変 換、逆二次元 DCT変換等が行われ、液晶パネル Βの画素に併せてサンプリング点 数の間引きが行われる。 [0273] Here, in the inverse frequency domain transformation 205, as the inverse frequency transformation, inverse two-dimensional FFT transformation, inverse two-dimensional DCT transformation, etc. are performed, and sampling points are combined with the pixels of the liquid crystal panel Β. Decimation of numbers is performed.
[0274] 上記差分演算器 206は、元データであるデータ入力部 201からのデータと、逆周 波数領域変換器 205からの液晶パネル Bのデータとの差分を計算して、表示が元の データとなるように第 1のパネルの画素データを補正し、補正後の画素データを第 1 のパネルのソース駆動手段に出力するようになって 、る。  [0274] The difference calculator 206 calculates the difference between the data from the data input unit 201 which is the original data and the data on the liquid crystal panel B from the inverse frequency domain converter 205, and displays the original data. Thus, the pixel data of the first panel is corrected so that the corrected pixel data is output to the source driving means of the first panel.
[0275] 本実施形態は前述した実施の形態 4と組み合わせるとより好適である。図 28からわ 力るように実施形態 4では第 2のパネルはモノクロとなる。第 1のパネルの RGBに相当 する画素を一つの画素として用い解像度は 1Z3としてもよい。このような構成にすれ ば、第 2のパネルは RGBの信号線が不要となるため、透過率的に有利になる。また、 視差〖こよる問題ち低減することができる。  [0275] This embodiment is more suitable when combined with Embodiment 4 described above. As can be seen from FIG. 28, in the fourth embodiment, the second panel is monochrome. The pixel corresponding to RGB in the first panel may be used as one pixel, and the resolution may be 1Z3. This configuration is advantageous in terms of transmittance because the second panel does not require an RGB signal line. In addition, problems due to parallax can be reduced.
[0276] 〔実施の形態 7〕  [Embodiment 7]
本発明のさらに他の実施の形態について説明すれば、以下の通りである。なお、本 実施形態では、前記の各実施の形態において説明した液晶表示装置において、第 1のパネル、第 2のパネル各パネルから出力される画像データの γ値による彩度低下 の改善策を説明する。複数のパネルを積層して形成する場合、視差等により彩度が 低下する場合がある。本実施の形態では、第 1のパネルにカラーパネル (すなわち実 施形態 4の第 1のパネル)、第 2のパネルに白黒パネル (すなわち実施形態 4の第 2の パネル)を使用した場合について説明する力 両方パネルともカラーパネルであって も同様の効果がある。  The following will describe still another embodiment of the present invention. In the present embodiment, in the liquid crystal display device described in each of the above-described embodiments, measures for improving the saturation reduction due to the γ value of the image data output from the first panel and the second panel are described. To do. When a plurality of panels are stacked, the saturation may decrease due to parallax or the like. In this embodiment, a case where a color panel (that is, the first panel in Embodiment 4) is used as the first panel and a monochrome panel (that is, the second panel in Embodiment 4) is used as the second panel is described. The same effect can be obtained if both panels are color panels.
[0277] 本実施の形態に力かる液晶表示装置の駆動方法について、以下の実施例を参照 しながら説明する。  [0277] A method for driving a liquid crystal display device according to the present embodiment will be described with reference to the following examples.
[0278] (実施例) [0278] (Example)
γ値は、ディスプレイの場合、入力信号 (階調) Ε、出力 (輝度) iとして i=kX E く k:定数〉で表され、 logi = logk+ y 'logEとなり、 log 'logグラフの傾きとなる。  In the case of a display, the γ value is expressed as i = kX E k = constant> as input signal (gradation) Ε and output (brightness) i, and logi = logk + y 'logE. Become.
[0279] TV信号の γは G = 0. 45で規定されているため、一般にディスプレイの γは G = [0279] Since γ of TV signal is specified by G = 0.45, generally γ of the display is G =
out out
2. 2程度である。ただし、液晶表示装置をはじめとした実際のディスプレイデバイスで は、黒が輝度 0ではない事や、彩度調整などの信号処理のため、全階調同じ γであ ることはほとんどなぐ概ね 1. 8〜2. 6程度に連続して分布している。 [0280] このため、上記 γは全階調で一定の直線とはならず曲線となり、 γは各階調におけ る接線の傾きと定義されるが、実使用上は、微小階調領域(1階調間など)における 直線の傾きに近似される。 2. About 2. However, in an actual display device such as a liquid crystal display device, it is almost impossible for black to have the same gamma for all gradations due to the fact that black is not 0 brightness and signal processing such as saturation adjustment. It is distributed continuously about 8 ~ 2.6. [0280] For this reason, the above γ is not a constant straight line in all gradations but is a curve, and γ is defined as the slope of the tangent line in each gradation. Approximate to the slope of a straight line between tones).
[0281] この γ値を、階調 Xの関数 G (χ)と記述し、カラーパネルから出力される画像データ の γ 値を G (χ)、白黒パネルから出力される画像データの γ値を G (χ)とすると、最 [0281] This γ value is described as a function G (χ) of gradation X, the γ value of the image data output from the color panel is G (χ), and the γ value of the image data output from the monochrome panel is G (χ)
1 1 2 終的に出力される画像のデータの γ 値は G (x) =G (x) +G (x)である。ここで、 out 1 2 1 1 2 The γ value of the final output image data is G (x) = G (x) + G (x). Where out 1 2
本発明では、少なくともひとつの階調 Xにおける γ 値 G (X)力 G (X) =G (X) +G out 1 In the present invention, the γ value G (X) force G (X) = G (X) + G out 1 in at least one gradation X
(X)でかつ G (X) >G (X)の関係を満たすようにする。 (X) and satisfy the relationship of G (X)> G (X).
2 1 2  2 1 2
[0282] 具体的には、  [0282] Specifically,
本実施例では、約 10階調以上の領域 (X> 10)において出力の γ が約 2. 4とな out  In this example, the output γ is about 2.4 in an area of about 10 gradations (X> 10).
るように、カラーパネルから出力される画像データの γ 値をで G (Χ) = 2. 2、白黒パ ネルから出力される画像データの γ 値を G (χ) =0. 2とした。約 10階調以下の領  Thus, G (γ) = 2.2 for the image data output from the color panel, and G (χ) = 0.2 for the image data output from the black-and-white panel. About 10 gradations or less
2 2  twenty two
域 (Xく 10)では、カラーパネル単体の CRが低いことから、カラーパネルから出力さ In the region (X 10), the color panel alone has a low CR, so it is output from the color panel.
2 2
れる画像データの 0 値はほとんど 0になるため G (X ) =0となり、約 10階調以下の  Since the 0 value of the generated image data is almost 0, G (X) = 0, which is about 10 gradations or less.
1 1 2  1 1 2
領域の白黒パネルから出力される画像データの γ  Γ of the image data output from the monochrome panel of the area
2値は、 G (χ ) = 1. 7  The two values are G (χ) = 1.7
2 2 程度にする こと〖こより、出力される画像データの γ 値は全階調領域でほぼ 2. 4を達成する(図 out  Therefore, the γ value of the output image data achieves almost 2.4 in all gradation areas (Figure out).
35、図 36参照)。  35, see Figure 36).
[0283] 本実施例では、 10階調以上のほぼ全域で、 G (X) >G (X)の関係を満たすように  [0283] In this example, the relationship of G (X)> G (X) is satisfied in almost the entire region of 10 gradations or more.
1 2  1 2
設定したが、少なくともひとつの階調で G (X) >G (X)の関係を満たす力ぎり、その  Although it is set, the force that satisfies the relationship of G (X)> G (X) with at least one gradation
1 2  1 2
階調 Xに於ける彩度改善効果は得られる。その場合他の階調 Xに関しては G (X )  Saturation improvement effect at gradation X is obtained. In that case, G (X) for other gradations X
3 1 3 3 1 3
=G (X )となることが彩度改善効果からは望ましいが、例えば実施の形態 1に示し= G (X) is desirable from the viewpoint of the saturation improvement effect.
2 3 twenty three
た他の彩度改善策などを併用することによって彩度改善できるため、 G (X ) < G (X  Since the saturation can be improved by using other saturation improvement measures together, G (X) <G (X
1 3 2 1 3 2
)の関係となる他の階調があっても良い。 There may be other gradations that are related to each other.
3  Three
[0284] また、 10階調以下の白黒パネルの γは、図 37、 38に示すように変極点を持っても よぐこの場合、より黒が強調された画像となる。  [0284] Further, γ of a monochrome panel with 10 gradations or less may have an inflection point as shown in Figs. 37 and 38. In this case, an image with more emphasized black is obtained.
[0285] 以上のように、カラーパネルと白黒パネルとの Ίを設定することで、彩度低下が改 善され、かつ白黒パネルとカラーパネルの視差による画像ボケをなくしかつ十分なコ ントラストをもった液晶表示装置が得られる。 [0286] これらの γ設定は、入力信号に対する出力画像を規定する物であって、入力信号 に対して出力される画像データの輝度等を測定することにより得られる。 [0285] As described above, setting the color between the color panel and the black and white panel improves the saturation reduction, eliminates the image blur caused by the parallax between the black and white panel and the color panel, and has sufficient contrast. A liquid crystal display device can be obtained. [0286] These γ settings are the ones that define the output image for the input signal, and are obtained by measuring the brightness of the image data output for the input signal.
[0287] 入力信号とは、映像ソースもしくは、それに基づく表示信号である。 [0287] The input signal is a video source or a display signal based thereon.
[0288] y設定は、液晶パネルのコントローラで行っても良いし、液晶コントローラへの出力 信号処理回路で行っても良いし両方で行うこともできる。 [0288] The y setting may be performed by the controller of the liquid crystal panel, the output signal processing circuit to the liquid crystal controller, or both.
[0289] また、入力信号によって、 γ値を変化させるアクティブ γ技術を併用する場合にお いても、第 1パネルと第 2パネルに該関係が存在する力ぎり同様の効果が得られる。 [0289] In addition, even when the active γ technology that changes the γ value according to the input signal is used in combination, the same effect as that of the force that exists in the first panel and the second panel can be obtained.
[0290] このとき、第 1パネルから出力される画像データの Ύ 値は大きいほど効果があるが[0290] At this time, the larger the Ύ value of the image data output from the first panel, the more effective it is.
、 1. 8以上とすることで実用上十分な彩度低減抑制効果が得られる。 1. A saturation reduction suppressing effect sufficient for practical use can be obtained by setting the ratio to 1.8 or more.
[0291] さらに、白黒パネルのデータに RGBの信号のうちの最大階調に対応した階調にす ることにより、上記効果とともに、パネル間に生じる干渉を回避した良好な画像が得ら れる。 [0291] Furthermore, by making the grayscale data correspond to the maximum grayscale of the RGB signals in the black-and-white panel data, it is possible to obtain a good image that avoids interference occurring between the panels in addition to the above effects.
[0292] さらに、白黒パネルの表示信号をスムージング処理を行うことによって、斜めから見 た場合の 2枚のパネルの画像ズレも視認されに《なるという効果を奏する。  [0292] Further, by performing smoothing processing on the display signal of the black-and-white panel, there is an effect that the image misalignment between the two panels when viewed obliquely is also visually recognized.
[0293] さらに、第 1パネルから出力される画像の γ 値が全階調で G (χ) >0となるようにす ることによって、液晶パネルがコントラストが有限のために起こる黒つぶれ画像を補正 し、さらにコントラスト感のある画像が得られる(図 39、図 40参照)。  [0293] Furthermore, by setting the γ value of the image output from the first panel to be G (χ)> 0 in all gradations, the liquid crystal panel is able to reduce the blackened image that occurs because the contrast is limited. After correction, an image with a higher contrast is obtained (see Fig. 39 and Fig. 40).
[0294] さらに、前述した実施の形態 5、 6に示すように、第 1のパネルと第 2のパネルの表示 データの空間的周波数を変えることで、パネル間に生じる干渉を回避し、その結果、 元信号の輝度値は変わらず、各画素の色度値も保持される為、彩度低下も無ぐま た下側の CF無しパネルの平面方向の輝度変化は滑らかである為、斜めから見た場 合の 2枚のパネルの画像ズレも視認されに《なるという効果を奏する。  [0294] Furthermore, as shown in the above-described Embodiments 5 and 6, by changing the spatial frequency of the display data of the first panel and the second panel, interference occurring between the panels can be avoided, and as a result Since the luminance value of the original signal is not changed and the chromaticity value of each pixel is retained, the luminance change in the plane direction of the lower CF-free panel is smooth without any loss of saturation. In this case, the image misalignment between the two panels is also visually recognized.
[0295] 〔実施の形態 8〕  [Embodiment 8]
本発明の液晶表示装置を適用したテレビジョン受信機について、図 41〜図 43を参 照しながら以下に説明する。  A television receiver to which the liquid crystal display device of the present invention is applied will be described below with reference to FIGS.
[0296] 図 41は、テレビジョン受信機用の液晶表示装置 601の回路ブロックを示す。  FIG. 41 shows a circuit block of a liquid crystal display device 601 for a television receiver.
[0297] 液晶表示装置 601は、図 34に示すように、 YZC分離回路 500、ビデオクロマ回路 501、 AZDコンバータ 502、液晶コントローラ 503、液晶ノネル 504、バックライト駆 動回路 505、バックライト 506、マイコン 507、階調回路 508を備えた構成となってい る。 [0297] As shown in FIG. 34, the liquid crystal display device 601 includes a YZC separation circuit 500, a video chroma circuit 501, an AZD converter 502, a liquid crystal controller 503, a liquid crystal non-504, and a backlight drive. The configuration includes a dynamic circuit 505, a backlight 506, a microcomputer 507, and a gradation circuit 508.
[0298] 上記液晶パネル 504は、第 1の液晶パネルと第 2の液晶パネルの 2枚構成であり、 上述した各実施の形態で説明した何れの構成であってもよい。  [0298] The liquid crystal panel 504 has a two-panel configuration of a first liquid crystal panel and a second liquid crystal panel, and may have any of the configurations described in the above embodiments.
[0299] 上記構成の液晶表示装置 601にお 、て、まず、テレビ信号の入力映像信号は、 Y ZC分離回路 500に入力され、輝度信号と色信号に分離される。輝度信号と色信号 はビデオクロマ回路 501にて光の 3原色である、 R、 G、 Bに変換され、さらに、このァ ナログ RGB信号は AZDコンバータ 502により、デジタル RGB信号に変換され、液 晶コントローラ 503に入力される。  In the liquid crystal display device 601 having the above configuration, first, an input video signal of a television signal is input to a YZC separation circuit 500 and separated into a luminance signal and a color signal. The luminance and color signals are converted to R, G, and B, which are the three primary colors of light, by the video chroma circuit 501, and this analog RGB signal is converted to a digital RGB signal by the AZD converter 502. Input to controller 503.
[0300] 液晶パネル 504では液晶コントローラ 503からの RGB信号が所定のタイミングで入 力されると共に、階調回路 508からの RGBそれぞれの階調電圧が供給され、画像が 表示されることになる。これらの処理を含め、システム全体の制御はマイコン 507が行 うことになる。  In the liquid crystal panel 504, the RGB signal from the liquid crystal controller 503 is input at a predetermined timing, and the RGB gradation voltages from the gradation circuit 508 are supplied to display an image. The microcomputer 507 controls the entire system including these processes.
[0301] なお、映像信号として、テレビジョン放送に基づく映像信号、カメラにより撮像された 映像信号、インターネット回線を介して供給される映像信号など、様々な映像信号に 基づ 、て表示可能である。  [0301] The video signal can be displayed based on various video signals such as a video signal based on television broadcasting, a video signal captured by a camera, and a video signal supplied via the Internet line. .
[0302] さらに、図 42に示すチューナ部 600ではテレビジョン放送を受信して映像信号を出 力し、液晶表示装置 601ではチューナ部 600から出力された映像信号に基づいて 画像(映像)表示を行う。 Furthermore, the tuner unit 600 shown in FIG. 42 receives a television broadcast and outputs a video signal, and the liquid crystal display device 601 displays an image (video) based on the video signal output from the tuner unit 600. Do.
[0303] また、上記構成の液晶表示装置をテレビジョン受信機とするとき、例えば、図 43に 示すように、液晶表示装置 601を第 1筐体 301と第 2筐体 306とで包み込むようにし て挟持した構成となって 、る。 [0303] When the liquid crystal display device having the above configuration is a television receiver, for example, as shown in FIG. 43, the liquid crystal display device 601 is wrapped in a first housing 301 and a second housing 306. It is a structure that is held between.
[0304] 第 1筐体 301は、液晶表示装置 601で表示される映像を透過させる開口部 301aが 形成されている。 [0304] The first casing 301 is formed with an opening 301a through which an image displayed on the liquid crystal display device 601 is transmitted.
[0305] また、第 2筐体 306は、液晶表示装置 601の背面側を覆うものであり、該液晶表示 装置 601を操作するための操作用回路 305が設けられるとともに、下方に支持用部 材 308が取り付けられて!/、る。  [0305] The second casing 306 covers the back side of the liquid crystal display device 601. An operation circuit 305 for operating the liquid crystal display device 601 is provided, and a support member is provided below. 308 is attached!
[0306] 以上のように、上記構成のテレビジョン受信機において、表示装置に本願発明の液 晶表示装置を用いることで、コントラストおよび色再現範囲が高ぐ非常に表示品位 の高 、映像を表示することが可能となる。 [0306] As described above, in the television receiver having the above-described configuration, the liquid crystal according to the present invention is included in the display device. By using a crystal display device, it is possible to display an image with a very high display quality with a high contrast and color reproduction range.
[0307] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性  [0307] The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Such embodiments are also included in the technical scope of the present invention. Industrial applicability
[0308] 本発明の液晶表示装置は、コントラストを大幅に向上できるので、テレビジョン受信 機、放送用のモニタ等に適用できる。 [0308] Since the liquid crystal display device of the present invention can greatly improve contrast, it can be applied to television receivers, broadcast monitors, and the like.

Claims

請求の範囲 The scope of the claims
[I] 液晶パネルを 2枚以上重ね合わせた液晶表示装置にぉ 、て、  [I] In a liquid crystal display device with two or more liquid crystal panels stacked,
上記複数の液晶パネルうち、少なくとも 2枚の液晶パネルにおいて、該液晶パネル を構成する絶縁性基板にカラーフィルタが設けられていることを特徴とする液晶表示 装置。  Among the plurality of liquid crystal panels, in at least two liquid crystal panels, a color filter is provided on an insulating substrate constituting the liquid crystal panel.
[2] 偏光吸収層が液晶パネルを挟んでクロス-コルの関係に設けられて 、ることを特徴 とする請求項 1に記載の液晶表示装置。  2. The liquid crystal display device according to claim 1, wherein the polarization absorbing layer is provided in a cross-col relationship with the liquid crystal panel interposed therebetween.
[3] 上記カラーフィルタが設けられた絶縁性基板は、互いに隣接して配置されて ヽるこ とを特徴とする請求項 1または 2に記載の液晶表示装置。 [3] The liquid crystal display device according to [1] or [2], wherein the insulating substrates provided with the color filters are arranged adjacent to each other.
[4] 重ね合わせた液晶パネルの、互 、に隣接する側の少なくとも一方の絶縁性基板の 厚みが、互いに隣接しない側の絶縁性基板の厚みよりも薄く形成されていることを特 徴とする請求項 1から 3の何れ力 1項に記載の液晶表示装置。 [4] The feature is that the thickness of at least one insulating substrate adjacent to each other of the stacked liquid crystal panels is thinner than the thickness of the insulating substrates not adjacent to each other. The liquid crystal display device according to any one of claims 1 to 3.
[5] 上記カラーフィルタが設けられた絶縁性基板が 2枚であり、該絶縁性基板は 1枚の 液晶パネルのアクティブマトリクス基板とそれに対向する絶縁性基板であることを特徴 とする請求項 1から 3の何れ力 1項に記載の液晶表示装置。 [5] The number of the insulating substrates provided with the color filter is two, and the insulating substrates are an active matrix substrate of one liquid crystal panel and an insulating substrate opposite to the active matrix substrate. 4. The liquid crystal display device according to any one of items 1 to 3.
[6] 上記重ね合わせた複数の液晶パネルの少なくとも一枚に光拡散性を有する光拡散 層が設けられていることを特徴とする請求項 1から 5の何れか 1項に記載の液晶表示 装置。 6. The liquid crystal display device according to any one of claims 1 to 5, wherein a light diffusing layer having light diffusibility is provided on at least one of the superposed liquid crystal panels. .
[7] 上記光拡散層は、重ね合わせた液晶パネルの表示面側に設けられていることを特 徴とする請求項 6に記載の液晶表示装置。  7. The liquid crystal display device according to claim 6, wherein the light diffusion layer is provided on a display surface side of the superimposed liquid crystal panel.
[8] 上記光拡散層は、上記重ね合わせた液晶パネルの間に設けられて 、ることを特徴 とする請求項 6に記載の液晶表示装置。 8. The liquid crystal display device according to claim 6, wherein the light diffusion layer is provided between the stacked liquid crystal panels.
[9] 上記光拡散層は、重ね合わせた液晶パネルの表示面側と重ね合わせた液晶パネ ルの間とに設けられていることを特徴とする請求項 6に記載の液晶表示装置。 9. The liquid crystal display device according to claim 6, wherein the light diffusion layer is provided between the display surface side of the overlapped liquid crystal panel and the overlapped liquid crystal panel.
[10] 重ね合わせた液晶パネルの間に少なくとも 2枚の偏光吸収層が設けられ、上記少 なくとも 2枚の偏光吸収層の間に光拡散層が設けられて!/ヽることを特徴とする請求項[10] At least two polarization absorption layers are provided between the stacked liquid crystal panels, and a light diffusion layer is provided between the at least two polarization absorption layers. Claims
6に記載の液晶表示装置。 6. The liquid crystal display device according to 6.
[II] 重ね合わせた液晶パネルに対して表示面とは反対側力 光を照射する照明装置 が設けられ、 [II] Illumination device that emits force light on the opposite side of the display surface to the superimposed liquid crystal panel Is provided,
上記照明装置は、可視光の緑領域にピークを有する光源を有し、該ピークの波長 力 05nm〜540nmの範囲内にあることを特徴とする請求項 1から 10の何れ力 1項 に記載の液晶表示装置。  11. The power according to claim 1, wherein the lighting device has a light source having a peak in a green region of visible light, and the wavelength power of the peak is in a range of 05 nm to 540 nm. Liquid crystal display device.
[12] 上記光源の可視光の緑領域のピークの波長力 520nmであることを特徴とする請 求項 11に記載の液晶表示装置。 [12] The liquid crystal display device according to claim 11, wherein a wavelength power of a peak in a green region of visible light of the light source is 520 nm.
[13] 上記照明装置の光源が蛍光灯であり、該蛍光灯の蛍光体の糸且成は BaMgAl O [13] The light source of the illumination device is a fluorescent lamp, and the phosphor of the fluorescent lamp is made of BaMgAl 2 O 3
10 17 であることを特徴とする請求項 12に記載の液晶表示装置。  The liquid crystal display device according to claim 12, wherein the liquid crystal display device is 10 17.
[14] 請求項 1〜13の何れか 1項に記載の液晶表示装置における液晶パネルのそれぞ れが映像ソースに基づいた画像データを出力する液晶表示装置の駆動方法であつ て、 [14] A method of driving a liquid crystal display device in which each of the liquid crystal panels in the liquid crystal display device according to any one of claims 1 to 13 outputs image data based on a video source,
重ね合わせた液晶パネルのうち、最表面の液晶パネルを第 1の液晶パネルとしたと きに、  When the outermost LCD panel is the first LCD panel,
上記液晶表示装置から出力される画像データの γ値が γ =G (X) (xは任意の out  The γ value of the image data output from the liquid crystal display device is γ = G (X) (x is any out
階調)、上記第 1の液晶パネルから出力される画像データの γ =G (x)、他の液晶 パネルから出力される画像データの γ =G (x)の時、少なくともひとつの階調 Xにお  Gradation), γ = G (x) of the image data output from the first liquid crystal panel, and γ = G (x) of the image data output from another liquid crystal panel, at least one gradation X In
2 2  twenty two
ける γ = G (X)力 G (X) = G (X) + G (X)でかつ G (X) > G (X)の関係を満た out 1 2 1 2  Γ = G (X) force G (X) = G (X) + G (X) and satisfies the relationship of G (X)> G (X) out 1 2 1 2
すことを特徴とする液晶表示装置の駆動方法。  A method for driving a liquid crystal display device.
[15] 上記第 1の液晶パネルがカラー液晶パネル、他の少なくとも 1つの液晶パネルが白 黒液晶パネルであることを特徴とする請求項 14に記載の液晶表示装置の駆動方法 15. The method for driving a liquid crystal display device according to claim 14, wherein the first liquid crystal panel is a color liquid crystal panel, and the other at least one liquid crystal panel is a black and white liquid crystal panel.
[16] 上記白黒液晶パネルの 1画素の階調が、映像ソースの 1絵素を構成する画素信号 のうちの最大階調の信号に対応した階調であることを特徴とする請求項 15に記載の 液晶表示装置の駆動方法。 16. The gradation of one pixel of the monochrome liquid crystal panel is a gradation corresponding to a maximum gradation signal among pixel signals constituting one picture element of a video source. A driving method of the liquid crystal display device described.
[17] 上記白黒液晶パネルから出力される画像データ力 スムージング処理されているこ とを特徴とする請求項 16に記載の液晶表示装置の駆動方法。  17. The method for driving a liquid crystal display device according to claim 16, wherein the image data output from the black and white liquid crystal panel is smoothed.
[18] 黒階調 X近傍は G (X ) < G (X )である事を特徴とする請求項 14〜 17の何れか  [18] The black gradation X vicinity is such that G (X) <G (X).
2 1 2 2 2  2 1 2 2 2
1項に記載の液晶表示装置の駆動方法。 2. A method for driving a liquid crystal display device according to item 1.
[19] 上記カラー液晶パネルから出力される画像データの γェの値が全階調で。ェ (X) >0 である(0ではない)事を特徴とする請求項 14〜18の何れか 1項に記載の液晶表示 装置の駆動方法。 [19] The γ values of the image data output from the color liquid crystal panel are all gradations. 19. The method for driving a liquid crystal display device according to any one of claims 14 to 18, wherein (X)> 0 (not 0).
[20] 黒階調 Xにおいて、 G (X)≥1. 8であることを特徴とする請求項 14〜19の何れか [20] In the black gradation X, G (X) ≥ 1.8.
1項に記載に記載の液晶表示装置の駆動方法。 2. A method for driving a liquid crystal display device according to item 1.
[21] テレビジョン放送を受信するチューナ部と、該チューナ部で受信したテレビジョン放 送を表示する表示装置とを備えたテレビジョン受信機において、 [21] In a television receiver including a tuner unit that receives a television broadcast and a display device that displays the television broadcast received by the tuner unit.
上記表示装置に、請求項 1から 13の何れか 1項に記載の液晶表示装置を用いたこ とを特徴とするテレビジョン受信機。  A television receiver using the liquid crystal display device according to any one of claims 1 to 13 for the display device.
PCT/JP2006/319946 2006-01-26 2006-10-05 Liquid crystal display and television receiver WO2007086168A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-018147 2006-01-26
JP2006018147 2006-01-26

Publications (1)

Publication Number Publication Date
WO2007086168A1 true WO2007086168A1 (en) 2007-08-02

Family

ID=38308977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319946 WO2007086168A1 (en) 2006-01-26 2006-10-05 Liquid crystal display and television receiver

Country Status (1)

Country Link
WO (1) WO2007086168A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128814A (en) * 2007-11-27 2009-06-11 Seiko Epson Corp Information display device and program
WO2016063675A1 (en) * 2014-10-22 2016-04-28 ソニー株式会社 Image processing device and image processing method
CN107703673A (en) * 2017-11-28 2018-02-16 武汉华星光电技术有限公司 Display panel and display device
CN107908042A (en) * 2017-12-28 2018-04-13 惠州市华星光电技术有限公司 Liquid crystal module and liquid crystal display device
CN108710244A (en) * 2018-03-30 2018-10-26 友达光电股份有限公司 Display Device
CN110376787A (en) * 2019-07-26 2019-10-25 京东方科技集团股份有限公司 Display panel and manufacturing method, display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107380A (en) * 1984-10-31 1986-05-26 日本精機株式会社 Liquid crystal display unit
JPS61134733A (en) * 1984-12-06 1986-06-21 Matsushita Electric Ind Co Ltd Color liquid crystal display
JPS63264731A (en) * 1987-04-22 1988-11-01 Sharp Corp Color liquid crystal display device
JPH0887022A (en) * 1994-09-14 1996-04-02 Casio Comput Co Ltd Liquid crystal display device
JP2001042349A (en) * 1999-07-27 2001-02-16 Minolta Co Ltd Liquid crystal display device
JP2001075121A (en) * 1999-07-02 2001-03-23 Minolta Co Ltd Liquid crystal display element
JP2004004968A (en) * 2003-08-12 2004-01-08 Fuji Xerox Co Ltd Reflection type color display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107380A (en) * 1984-10-31 1986-05-26 日本精機株式会社 Liquid crystal display unit
JPS61134733A (en) * 1984-12-06 1986-06-21 Matsushita Electric Ind Co Ltd Color liquid crystal display
JPS63264731A (en) * 1987-04-22 1988-11-01 Sharp Corp Color liquid crystal display device
JPH0887022A (en) * 1994-09-14 1996-04-02 Casio Comput Co Ltd Liquid crystal display device
JP2001075121A (en) * 1999-07-02 2001-03-23 Minolta Co Ltd Liquid crystal display element
JP2001042349A (en) * 1999-07-27 2001-02-16 Minolta Co Ltd Liquid crystal display device
JP2004004968A (en) * 2003-08-12 2004-01-08 Fuji Xerox Co Ltd Reflection type color display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128814A (en) * 2007-11-27 2009-06-11 Seiko Epson Corp Information display device and program
WO2016063675A1 (en) * 2014-10-22 2016-04-28 ソニー株式会社 Image processing device and image processing method
CN107703673A (en) * 2017-11-28 2018-02-16 武汉华星光电技术有限公司 Display panel and display device
CN107908042A (en) * 2017-12-28 2018-04-13 惠州市华星光电技术有限公司 Liquid crystal module and liquid crystal display device
CN108710244A (en) * 2018-03-30 2018-10-26 友达光电股份有限公司 Display Device
CN110376787A (en) * 2019-07-26 2019-10-25 京东方科技集团股份有限公司 Display panel and manufacturing method, display device

Similar Documents

Publication Publication Date Title
JP4772804B2 (en) Liquid crystal display device and television receiver
JP4870151B2 (en) Liquid crystal display device and television receiver
JP4878032B2 (en) Liquid crystal display device and television receiver
US8279375B2 (en) Display apparatus, driving apparatus of display apparatus, and electronic device
US8294736B2 (en) Display device driving method, driving circuit, liquid crystal display device, and television receiver
WO2007040139A1 (en) Liquid crystal display device drive method, liquid crystal display device, and television receiver
US8059235B2 (en) Liquid crystal display
WO2007039958A1 (en) Liquid crystal display and television receiver
WO2008015830A1 (en) Liquid crystal display device, liquid crystal display method, and tv receiver
US8208099B2 (en) Transmissive type liquid crystal display comprising a main pixel region having a first color filter and a sub-pixel region having a second color filter having a higher transmittance
WO2007040158A1 (en) Liquid crystal display device and television receiver
JP2007310161A (en) Liquid crystal display device and television receiver
WO2007108162A1 (en) Composite type display device and television receiver
JP2008122536A (en) Liquid crystal display device, method for driving liquid crystal display device, and television receiver
WO2007086168A1 (en) Liquid crystal display and television receiver
JP2008111877A (en) Liquid crystal display apparatus and driving method thereof
JP2008039936A (en) Liquid crystal display, liquid crystal drive device, and television receiver
JPH07318925A (en) Display element
JP4366985B2 (en) Liquid crystal display
JP2008145981A (en) Liquid crystal display, its driving method and television set
JP2011112952A (en) Liquid crystal display element and optical compensation method thereof
WO2007069384A1 (en) Liquid crystal display and television receiver
WO2007110998A1 (en) Liquid crystal display and television receiver
JP2009223350A (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP