WO2007069384A1 - Liquid crystal display and television receiver - Google Patents

Liquid crystal display and television receiver Download PDF

Info

Publication number
WO2007069384A1
WO2007069384A1 PCT/JP2006/319950 JP2006319950W WO2007069384A1 WO 2007069384 A1 WO2007069384 A1 WO 2007069384A1 JP 2006319950 W JP2006319950 W JP 2006319950W WO 2007069384 A1 WO2007069384 A1 WO 2007069384A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
display device
crystal display
panel
Prior art date
Application number
PCT/JP2006/319950
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiki Takata
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007069384A1 publication Critical patent/WO2007069384A1/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/023Display panel composed of stacked panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance

Definitions

  • the present invention relates to a liquid crystal display device with improved contrast and a television receiver including the same.
  • Patent Document 1 and Patent Document 2 disclose a contrast improvement method using an optical compensation method, in which a liquid crystal display panel and a liquid crystal panel for optical compensation are provided between a pair of polarizing plates.
  • Patent Document 1 discloses a technique for improving the contrast ratio between a display cell, a liquid crystal cell for differential optical compensation, and a retardation in the STN system from 14 to 35.
  • Patent Document 2 improves the contrast ratio from 8 to 100 by installing a liquid crystal cell for optical compensation to compensate for the wavelength dependency of a TN liquid crystal display cell during black display. is doing.
  • Patent Document 1 Japanese Patent Publication “Japanese Patent Laid-Open No. 64-49021 (Publication Date: February 23, 1989)”
  • Patent Document 2 Japanese Patent Publication “Japanese Patent Laid-Open No. 2-23 (Publication Date: January 5, 1990) J
  • the present invention has been made in view of the above problems, and an object of the present invention is to realize a liquid crystal display device with high display quality with a simple structure and a greatly improved contrast ratio. is there.
  • the liquid crystal display device has two or more liquid crystal panels stacked, and a polarization transmission layer is provided in a cross-col relationship with the liquid crystal panel sandwiched therebetween.
  • the first liquid crystal panel displays V based on the first display signal.
  • the liquid crystal display device in which the second liquid crystal panel displays based on the second display signal obtained from the first display signal, and at least one of the polarization transmission layers has a function of polarization reflection. It is characterized by being a polarizing reflection layer.
  • the polarization transmission layer is provided in a cross-col relationship with the liquid crystal panel sandwiched therebetween.
  • the polarization transmission layer The leakage light in the direction of the transmission axis can force the leakage light by the transmission axis of the next polarization transmission layer.
  • the coll angle which is the intersection angle of the polarization axes of the adjacent polarized light transmitting layers, collapses, no increase in the amount of light due to light leakage is observed. In other words, black is less likely to float with respect to the expansion of the -col angle at an oblique viewing angle.
  • At least one of the polarized light transmitting layers is a polarized light reflecting layer having a polarized light reflection function, so that light transmitted through the polarized light reflecting layer can be reflected. Therefore, the liquid crystal panel can be irradiated with light efficiently. This makes it possible to increase the brightness while improving the contrast.
  • an illumination device for supplying display light to the first liquid crystal panel and the second liquid crystal panel is provided, and the polarization reflection layer includes the illumination device among a plurality of polarization transmission layers. It is preferred to be placed in the position closest to the position.
  • the light of the illumination device power can be used most effectively, so that the brightness can be further increased.
  • a hot cathode fluorescent lamp may be used as the light source of the illumination device.
  • a hot cathode fluorescent lamp requires a lower applied voltage than a cold cathode fluorescent lamp, and therefore there is no problem of electrical withstand voltage even if lamps that are easy to handle are arranged close to each other.
  • the hot cathode fluorescent lamp is also suitable for its low calorific value due to its large light emission per lamp and good luminous efficiency, compared to the cold cathode fluorescent lamp. As a result, many lamps can be arranged in close proximity, and at the same time, very high-density light emission (high brightness) can be achieved with a minimum temperature rise.
  • Only one of the first liquid crystal panel and the second liquid crystal panel may be provided with a color filter.
  • the color filter is provided only in one of the liquid crystal panels, it is not necessary to provide the color filter in the other liquid crystal panel. As a result, when the liquid crystal display device is manufactured, the manufacturing process of the color filter is completed only once, so that the manufacturing cost can be reduced.
  • the liquid crystal panel on the side provided with the color filter preferably has an active matrix substrate, and at least a black matrix is preferably formed on the counter substrate facing the active matrix substrate.
  • the counter substrate further includes a light-transmitting resin layer formed in the opening portion of the black matrix.
  • the light transmissive resin layer when forming the light transmissive resin layer, it is used when forming a color filter.
  • a mask can be used.
  • the light-transmitting resin layer is formed so as to cover the black matrix and the opening of the black matrix.
  • the light-transmitting resin layer is formed so as to cover the black matrix and the opening of the black matrix, so there is no need for pattern jung.
  • the exposure and development process using a mask can be omitted.
  • n greater than 1 is equal to the direction along the gate bus line, and m is the direction along the source bus line.
  • the number of source drivers of the liquid crystal panel on the side not provided with the color filter can be reduced to lZn and the number of gate drivers on the liquid crystal panel including the color filter. Thereby, the cost of the liquid crystal display device can be significantly reduced.
  • display control means for outputting a display signal to the liquid crystal panel and performing display control of the liquid crystal panel is provided, and the display control means does not include the color filter.
  • M may be controlled so as to be the maximum gradation data in the direction along the source bus line) or to be the gradation data indicated by the calculation result reflecting the maximum gradation.
  • the liquid crystal panel on the side provided with the color filter has picture elements composed of red pixels, green pixels, and blue pixels arranged in a matrix, and includes the color filter.
  • the panel is preferably provided with the above-described color filter, and pixels having a size that is an integral multiple of the picture element of the liquid crystal panel on the other side are arranged in a matrix.
  • the source driver of the liquid crystal panel on the side not provided with the color filter and The number of gate drivers can be significantly reduced compared to liquid crystal panels equipped with color filters.
  • a light diffusing layer having light diffusibility may be provided on at least one of the plurality of liquid crystal panels superimposed on each other! ,.
  • the light transmitted through the light diffusing layer can be spatially blurred by providing the light diffusing layer having the light diffusing property on at least one of the superimposed liquid crystal panels.
  • the strength of asynchronous interference between microstructures having the same period of adjacent panels (nosline, black matrix, alignment control protrusion, etc.).
  • it is possible to suppress the occurrence of moire due to structural interference and thus it is possible to prevent the display quality from being deteriorated due to the occurrence of moire.
  • a liquid crystal display device of the present invention is used as a display device in a television receiver including a tuner unit that receives a television broadcast and a display device that displays the television broadcast received by the tuner unit. Can be used.
  • FIG. 1 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
  • FIG. 3 is a plan view of the vicinity of a pixel electrode of the liquid crystal display device shown in FIG.
  • FIG. 4 is a schematic configuration diagram of a drive system that drives the liquid crystal display device shown in FIG.
  • FIG. 5 is a diagram showing a connection relationship between a driver of the liquid crystal display device shown in FIG. 1 and a panel drive circuit.
  • FIG. 6 is a schematic configuration diagram of a backlight included in the liquid crystal display device shown in FIG.
  • FIG. 7 is a block diagram of a display controller that is a drive circuit for driving the liquid crystal display device shown in FIG.
  • FIG. 8 is a schematic cross-sectional view of a liquid crystal display device with one liquid crystal panel.
  • FIG. 9 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
  • FIG. 10 (a) is a diagram for explaining the principle of contrast improvement.
  • FIG. 10 (b) is a diagram for explaining the principle of contrast improvement.
  • FIG. 11, showing an embodiment of the present invention, is a schematic sectional view of a liquid crystal display device.
  • FIG. 12 is a diagram showing the positional relationship between the polarizing plate and the panel in the liquid crystal display device shown in FIG.
  • FIG. 13, showing an embodiment of the present invention, is a schematic sectional view of a liquid crystal display device.
  • FIG. 14, showing an embodiment of the present invention is a schematic sectional view of a liquid crystal display device.
  • FIG. 15 is a diagram showing pixels when performing color display of a liquid crystal display device.
  • FIG. 16 is a diagram showing one pixel having a size corresponding to the pixel shown in FIG.
  • FIG. 17 is a diagram showing a pixel obtained by enlarging the pixel shown in FIG. 16 twice.
  • FIG. 18 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 19 is a plan view of pixels provided in the liquid crystal display device shown in FIG.
  • FIG. 20, showing an embodiment of the present invention is a diagram showing an example in which a light diffusion layer is disposed in front of a polarizing plate of a first liquid crystal panel.
  • FIG. 21, showing an embodiment of the present invention is a diagram showing an example in which a light diffusion layer is arranged in front of a second liquid crystal panel.
  • FIG. 22, showing an embodiment of the present invention is a diagram showing an example in which a light diffusing layer is disposed between respective polarizing plates of a first liquid crystal panel and a second liquid crystal panel.
  • FIG. 23 shows an embodiment of the present invention, and is a diagram showing an example in which a lens sheet as a light diffusion layer is disposed between respective polarizing plates of a first liquid crystal panel and a second liquid crystal panel.
  • FIG. 24 is a schematic block diagram of a television receiver including the liquid crystal display device of the present invention.
  • 25 is a block diagram showing a relationship between a tuner unit and a liquid crystal display device in the television receiver shown in FIG.
  • FIG. 26 is an exploded perspective view of the television receiver shown in FIG. 24.
  • a general liquid crystal display device is configured by attaching polarizing plates A and B to a liquid crystal panel having a color filter and a driving substrate.
  • MVA Multiple ain Vertical Alignment
  • FIG. 9 the polarizing axes of the polarizing plates A and B are perpendicular to each other, and when the threshold voltage is applied to the pixel electrode 8, the direction in which the liquid crystal is tilted is aligned with the polarizing plates A and B.
  • the polarization axis rotates when the incident polarized light passing through the polarizing plate A passes through the liquid crystal layer, light is emitted from the polarizing plate B.
  • the liquid crystal is aligned perpendicular to the substrate and the deflection angle of incident polarization does not change, resulting in black display.
  • the MVA method achieves a high viewing angle by dividing the direction in which the liquid crystal tilts when a voltage is applied into four (Multidomain).
  • the vertical alignment refers to a state in which the liquid crystal molecular axes (“axial orientation”) are aligned at an angle of about 85 ° or more with respect to the surface of the vertical alignment film.
  • the inventor of the present application has a configuration in which polarizing plates are provided on both sides of the liquid crystal panel as shown in FIG. 9, and further, as shown in FIG. 2, the second liquid crystal panel and a polarizing reflector (polarizing reflective layer).
  • polarizing plates are provided on both sides of the liquid crystal panel as shown in FIG. 9, and further, as shown in FIG. 2, the second liquid crystal panel and a polarizing reflector (polarizing reflective layer).
  • polarizing reflector a dielectric optical mirror that reflects linearly polarized light as it is is used.
  • a polarizing reflector that reflects linearly polarized light as it is a polarizing reflector that reflects linearly polarized light converted from circularly polarized light may be used.
  • the polarization reflector in this case has a function of converting circularly polarized light into linearly polarized light through a 4 ⁇ plate.
  • Figs. 10 (a) and 10 (b) the configuration of the two polarizing plates A and B shown in FIG.
  • FIG. 10 (a) is configured (1), and a polarizing reflector is further added to the polarizing plates A and B shown in FIG. 10 (b).
  • the three-plate polarizing plate configuration will be described as the configuration (2).
  • the improvement in the contrast in the oblique direction is essentially caused by the configuration of the polarizing plate. Therefore, here, the description is made by using only the polarizing plate as a model without using a liquid crystal panel.
  • FIG. 10 (a) assumes the case where there is one liquid crystal display panel in the configuration (1), and the two polarizing plates A and B are arranged so that their transmission axes are cross-cold.
  • FIG. 10 (b) shows an example in which the transmission axes of the two polarizing plates A and B and one polarizing reflector are arranged in a cross-cored manner in the configuration (2).
  • FIG. In other words, in configuration (2) Assumes two liquid crystal display panels, so there are two pairs of polarizing plates arranged in a cross-coll. Since the polarizing reflector has a function as a polarizing plate, for the convenience of explanation, it is used as a polarizing plate except for a case where the function of reflecting polarized light is described.
  • leakage light was generated from the cross-coll transmission axis direction due to depolarization in the panel (scattering of CF, etc.). It was found that the leakage light can be cut by making the transmission axis of the third polarizing plate coincide with the leakage light in the transmission axis direction of the first polarizing plate.
  • the transmittance when the liquid crystal display panel performs black display is modeled as the transmittance when the liquid crystal panel is not provided and the polarizing plate in the case of the cross-col arrangement, that is, the cross transmittance, and is referred to as black display.
  • the transmittance when the liquid crystal display panel displays white is modeled as the transmittance when the polarizing plate without the liquid crystal panel is arranged in parallel-col, that is, parallel transmittance, and is called black display. .
  • FIG. 1 is a diagram showing a schematic cross section of a liquid crystal display device 100 according to the present embodiment.
  • the liquid crystal display device 100 includes a first liquid crystal panel, a second liquid crystal panel, polarizing plates A and B, and a polarizing reflecting plate (polarizing reflecting layer) that are alternately bonded. It is configured.
  • the liquid crystal display device 100 according to the present embodiment is for improving contrast on the light source side with respect to the liquid crystal display element composed of the first liquid crystal panel and the polarizing plates A and B.
  • the second liquid crystal panel and a polarizing reflector are provided.
  • the polarizing reflector is provided on the light source side with respect to the polarizing plates A and B and on the light source side with respect to the second liquid crystal panel.
  • FIG. 2 is a diagram schematically showing the arrangement of the polarizing plate, the polarizing reflector, and each liquid crystal panel in the liquid crystal display device 100 shown in FIG.
  • the polarizing plate A and the polarizing plate B, and the polarizing plate B and the polarizing reflector are configured so that their polarization axes are orthogonal to each other. That is, the polarization axes (transmission axes) of the polarizing plates A and B, the polarizing plate B, and the polarizing reflector are respectively arranged in a cross-col.
  • Each of the first liquid crystal panel and the second liquid crystal panel is formed by encapsulating liquid crystal between a pair of transparent substrates (color filter substrate (CF) 20 and active matrix substrate (TFT) 30).
  • CF color filter substrate
  • TFT active matrix substrate
  • Each of the first liquid crystal panel and the second liquid crystal panel includes a color filter, and has a function of displaying an image with a plurality of pixels.
  • the display method with such functions is TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In Plain Switching) method, FFS method (Fringe Field Switching) method, or a combination of these methods.
  • VA Transmission Nematic
  • VA Very Alignment
  • IPS In Plain Switching
  • FFS method Fe Field Switching
  • the VA method which has high contrast even when used alone, is suitable.
  • the power IPS method and FFS method which are explained using the MVA (Multidomain Vertical Alignment) method, are also normally black methods.
  • the drive system uses active matrix drive by TFT (Thin Film Transistor). Details of the method for producing MVA are disclosed in JP-A-2001-83523.
  • the first and second liquid crystal panels in the liquid crystal display device 100 have the same structure. As described above, each of the first and second liquid crystal panels has the color filter substrate 20 and the active matrix substrate 30 facing each other. In addition, a columnar resin structure provided on the color filter substrate 20 or the like is used as a spacer (not shown), and the substrate spacing is kept constant. Liquid crystal is sealed between a pair of substrates (color filter substrate 20 and active matrix substrate 30), and a vertical alignment film 25 is formed on the surface of each substrate in contact with the liquid crystal. Liquid crystal A nematic liquid crystal having negative dielectric anisotropy is used.
  • the color filter substrate 20 is obtained by forming the color filter 21, the black matrix 24, etc. on the transparent substrate 10.
  • the active matrix substrate 30 has a TFT element 3, a pixel electrode 8, and the like formed on a transparent substrate 10, and further includes alignment control protrusions 22 that define the alignment direction of the liquid crystal and A slit pattern 11 is provided.
  • the liquid crystal molecules are tilted in a direction perpendicular to the protrusions 22 and the slit pattern 11.
  • the protrusions 22 and the slit pattern 11 are formed so that the liquid crystal is aligned in the direction of 45 ° azimuth with respect to the polarization axis of the polarizing plate.
  • the red (R) green (G) blue (B) pixels of the respective color filters 21 saw the vertical force respectively.
  • the positions are configured to match.
  • the R pixel of the first liquid crystal panel is the R pixel of the second liquid crystal panel
  • the G pixel of the first liquid crystal panel is the G pixel of the second liquid crystal panel
  • the first liquid crystal panel is configured such that their positions viewed from the vertical direction coincide with the B pixels of the second liquid crystal panel.
  • FIG. 4 shows an outline of a drive system of the liquid crystal display device 100 having the above configuration.
  • the drive system includes a display controller necessary for displaying an image on the liquid crystal display device 100.
  • the display controller includes first and second liquid crystal drive units (1) and (2) for driving the first liquid crystal panel and the second liquid crystal panel with predetermined signals, respectively. Further, the first and second liquid crystal drive units (1) and (2) have signal distribution circuit units for distributing video source signals.
  • the display controller sends a signal to each panel so that an appropriate image can be displayed on the liquid crystal display device 100.
  • the display controller is a device for sending an appropriate electrical signal from a given video signal to the panel, and includes a driver, a circuit board, a panel drive circuit, and the like.
  • FIG. 5 shows the connection relationship between the first and second liquid crystal panels and the panel drive circuits.
  • the polarizing plate and the polarizing reflector are omitted.
  • the first liquid crystal drive unit (1) is connected to the first liquid crystal panel via a driver (TCP) (1). It is connected to a terminal (1) provided on the road board (1). That is, the driver (TCP) (1) is connected to the first liquid crystal panel, connected by the circuit board (1), and connected to the first liquid crystal drive unit (1).
  • TCP driver
  • connection of the second liquid crystal drive unit (2) in the second liquid crystal panel is also the same as that in the first liquid crystal panel, and the description thereof is omitted.
  • the pixels of the first liquid crystal panel are driven based on a display signal, and the corresponding second liquid crystal panel in which the position of the pixel of the first liquid crystal panel coincides with the position viewed from the vertical direction of the panel. These pixels are driven in correspondence with the first liquid crystal panel.
  • the part composed of polarizing plate A, first liquid crystal panel, and polarizing plate B (component 1) is in the transmissive state
  • the part composed of polarizing plate B, the second liquid crystal panel, and the polarizing reflector (Component 2) is also in a transmissive state
  • component 1 is in a non-transmissive state
  • the component 2 is also driven in a non-transmissive state.
  • the same image signal may be input to the first and second liquid crystal panels, or separate signals associated with each other may be input to the first and second liquid crystal panels.
  • a Ti / Al / Ti laminated film is formed on the transparent substrate 10 by sputtering in order to form a scanning signal wiring (gate wiring or gate bus line) 1 and an auxiliary capacitance wiring 2.
  • a metal such as a film is formed, a resist pattern is formed by a photolithography method, dry etching is performed using an etching gas such as a chlorine-based gas, and the resist is peeled off.
  • the scanning signal wiring 1 and the auxiliary capacitance wiring 2 are simultaneously formed on the transparent substrate 10.
  • a gate insulating film such as silicon nitride (SiNx), an active semiconductor layer made of amorphous silicon, or the like, an amorphous silicon doped with phosphorus or the like, and a low-resistance semiconductor layer also made of amorphous silicon or the like are formed by CVD.
  • Data signal wiring (source wiring or source line) 4, drain lead wiring 5, auxiliary capacitance forming electrode 6 A metal such as AlZTi is formed by sputtering, and a resist pattern is formed by photolithography. The resist is removed by dry etching using an etching gas such as a chlorine-based gas. As a result, the data signal wiring 4, the drain lead wiring 5, and the auxiliary capacitance forming electrode 6 are formed simultaneously.
  • the auxiliary capacitance is formed by sandwiching a gate insulating film of about 4000 A between the auxiliary capacitance wiring 2 and the auxiliary capacitance forming electrode 6.
  • the TFT element 3 is formed by dry etching the low-resistance semiconductor layer using chlorine gas or the like for source / drain separation.
  • an interlayer insulating film 7 having a strength such as an acrylic photosensitive resin is applied by spin coating, and a contact hole for electrically contacting the drain lead wiring 5 and the pixel electrode 8
  • the film thickness of the interlayer insulating film 7 is approximately.
  • the pixel electrode 8 and the vertical alignment film are formed in this order.
  • the present embodiment is an MVA type liquid crystal display device as described above, and the slit pattern 11 is provided in the pixel electrode 8 made of ITO or the like. Specifically, a film is formed by sputtering, a resist pattern is formed by a photolithography method, and etching is performed with an etching solution such as salt and ferric iron to obtain a pixel electrode pattern as shown in FIG.
  • the active matrix substrate 30 is obtained.
  • FIG. 3 [denoted by reference numerals 12a, 12b, 12c, 12d, 12e, 12fi, the pixel electrode 8] represents the formed slits.
  • the orientation is disturbed and an orientation abnormality occurs.
  • the time when the voltage supplied to the gate wiring is applied with the positive potential supplied to operate the TFT element 3 in the on state is usually on the order of seconds. Since the time during which the negative potential supplied to operate the TFT element 3 in the off state is normally on the order of milliseconds, the time during which the negative potential is applied is dominant.
  • the slits 12a to 12d are positioned on the gate wiring, the impurity ions contained in the liquid crystal gather due to the gate minus DC application component, which may be visually recognized as display unevenness. Therefore, since the slits 12a to 12d need to be provided in a region that does not overlap with the gate wiring in a plan view, as shown in FIG. It is better to hide with Black Matrix 24.
  • the color filter substrate 20 is formed on the transparent substrate 10 with a color filter layer 21 made of three primary colors (red, green, blue) 21 and a black matrix (BM) 24, a counter electrode 23, and a vertical alignment film. 25 and a protrusion 22 for controlling the orientation.
  • a color filter layer 21 made of three primary colors (red, green, blue) 21 and a black matrix (BM) 24, a counter electrode 23, and a vertical alignment film. 25 and a protrusion 22 for controlling the orientation.
  • a negative acrylic photosensitive resin liquid in which carbon fine particles are dispersed is applied onto the transparent substrate 10 by spin coating, followed by drying to form a black photosensitive resin layer. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form a black matrix (BM) 24. At this time, in the regions where the first colored layer (for example, red layer), the second colored layer (for example, green layer), and the third colored layer (for example, blue layer) are formed, the first colored layer opening, The BM is formed so that an opening for the second colored layer and an opening for the third colored layer (each opening corresponds to each pixel electrode) are formed. More specifically, as shown in FIG.
  • the BM pattern is formed in an island shape to shield the alignment abnormal region generated in the slits 12a to 12d of the electrically connected portions of the slits 12a to 12f formed in the pixel electrode 8.
  • a light shielding portion is formed on the TFT element 3 in order to prevent an increase in leakage current that is photoexcited by external light entering the TFT element 3.
  • the second color layer for example, the green layer
  • the third color layer for example, the blue layer
  • a counter electrode 23 having a transparent electrode force such as ITO is formed by sputtering, and then a positive type phenol novolac photosensitive resin solution is applied by spin coating, followed by drying and a photomask. Are used for exposure and development to form vertical alignment control protrusions 22.
  • the color filter substrate 20 is formed.
  • a BM made of a force metal as shown in the case of a BM made of a resin may be used.
  • the three primary color layers may include cyan, magenta, yellow, and other white layers as well as red, green, and blue, and may include a white layer.
  • a method of manufacturing a liquid crystal panel (first liquid crystal panel, second liquid crystal panel) using the color filter substrate 20 and the active matrix substrate 30 manufactured as described above will be described below.
  • the vertical alignment film 25 is formed on the surfaces of the color filter substrate 20 and the active matrix substrate 30 that are in contact with the liquid crystal. Specifically, baking is performed as a degassing process before alignment film application, and then substrate cleaning and alignment film application are performed. After the alignment film is applied, the alignment film is baked. After the alignment film is applied and washed, further baking is performed as a degassing process.
  • the vertical alignment film 25 defines the alignment direction of the liquid crystal 26.
  • an injection port for injecting a part of the thermosetting seal resin around the substrate for liquid crystal injection, the injection port is immersed in liquid crystal in a vacuum, and then opened to the atmosphere. It may be performed by a method such as a vacuum injection method in which liquid crystal is injected and then the injection port is sealed with UV curing resin or the like.
  • the vertical alignment liquid crystal panel has a drawback that the injection time is much longer than that of the horizontal alignment panel.
  • explanation is given by the liquid crystal drop bonding method.
  • a UV curable seal resin is applied around the active matrix substrate side, and liquid crystal is dropped onto the color filter substrate by a dropping method.
  • the optimal amount of liquid crystal is regularly dropped on the inner part of the seal so that the desired cell gap is achieved by liquid crystal by the liquid crystal dropping method.
  • the atmosphere in the bonding apparatus is reduced to lPa, and under this reduced pressure, the substrate After bonding, the seal portion is crushed by setting the atmosphere to atmospheric pressure, and the desired gap of the seal portion is obtained.
  • the structure having the desired cell gap in the seal portion is subjected to UV irradiation with a UV curing device to temporarily cure the seal resin.
  • beta is performed to final cure the seal resin.
  • the liquid crystal spreads inside the seal resin and the liquid crystal is filled in the cell.
  • the liquid crystal panel is completed by dividing the structure into liquid crystal panel units after the beta is completed.
  • the first liquid crystal panel and the second liquid crystal panel are manufactured by the same process.
  • polarizing plates A and B are attached to the front and back surfaces of the first liquid crystal panel, respectively.
  • a polarizing reflector is attached to the back surface of the second liquid crystal panel. Note that an optical compensation sheet or the like may be laminated on the polarizing plate as necessary.
  • a driver (a liquid crystal driving LSI) is connected.
  • TCP Transmission Carrier Package
  • Polarizing plate B has an adhesive layer on both sides. Clean the surface of the second liquid crystal panel, peel off the adhesive layer of the polarizing plate B attached to the first liquid crystal panel, align it precisely, and align the first liquid crystal panel and the second liquid crystal panel. Paste. At this time, since bubbles may remain between the panel and the adhesive layer, it is desirable to bond them under vacuum.
  • an adhesive that cures at room temperature or below the heat resistance temperature of the panel such as an epoxy adhesive, is applied to the periphery of the panel, and a plastic spacer is sprayed, for example, fluorine. Oil or the like may be enclosed.
  • the terminal surface of the first liquid crystal panel and the terminal surface of the second liquid crystal panel are in the same position.
  • the present invention is not limited to this.
  • mechanical fixation regardless of adhesion The fixed method may be used.
  • the liquid crystal display device 100 is obtained by integrating with an illumination device called a backlight.
  • the ability to provide a larger amount of light than a conventional panel is required for the knocklight based on the display principle.
  • the absorption of short wavelengths becomes more prominent even in the wavelength region, it is necessary to use a light source with a shorter wavelength and a light source on the backlight side.
  • An example of a backlight that satisfies these conditions is shown in FIG.
  • a hot cathode lamp is used as a light source in order to obtain the same luminance as the conventional one.
  • Hot cathode lamps are characterized by being able to output about 6 times more light than cold cathode lamps used in general specifications.
  • a housing mainly made of metal is provided on a light source driving circuit (inverter), and a plurality of hot cathode lamps are arranged in this housing.
  • optical sheets for obtaining a predetermined optical effect specifically, a lower force diffusion sheet, a lens sheet, and a lens sheet are arranged this time.
  • the amount of heat generated by this backlight is five times that of the conventional one, so there are fins on the back of the back chassis that promote heat dissipation to the air, and a fan that forces the air flow Is provided.
  • the mechanism member of the backlight serves as the main mechanism member of the entire module, and the mounted panel is arranged on the backlight, and includes a panel drive circuit and a signal distributor, a liquid crystal display controller, a light source A power supply for home use, and in some cases a general power supply for home use, are installed to complete the LCD module.
  • the liquid crystal display device of the present invention is obtained by arranging the mounted panel on the backlight and installing a frame body that holds the panel.
  • a direct illumination device using a hot cathode tube is shown.
  • a light source that may be a projection method or an edge light method is a cold cathode tube, LED, OEL, Electron fluorescent tubes or the like may be used, or an appropriate combination of optical sheets Is possible.
  • a slit is provided on the pixel electrode of the active matrix substrate and the color filter substrate side. Protrusions for orientation control are provided, but they may be reversed.
  • a structure in which slits are provided on the electrodes on both substrates, and an MVA type with orientation control projections on the electrode surfaces of both substrates It may be a liquid crystal panel.
  • a method using vertical alignment films in which pretilt directions (alignment processing directions) defined by a pair of alignment films other than the MVA type are orthogonal to each other may be used. Also, it may be called VATN (Vertical Alibnment Twisted Nematic) mode, which may be VA mode in which the liquid crystal molecules are twisted.
  • VA Vertical Alibnment Twisted Nematic
  • the VATN method is more preferable for the present invention because there is no decrease in contrast due to light leakage at the alignment control protrusion.
  • the pretilt is formed by optical alignment or the like.
  • the first liquid crystal drive unit (1) of the display controller performs the drive signal processing such as ⁇ conversion and overshoot on the 8-bit input signal (video source) from the input unit, and the first liquid crystal panel 8bit gradation data is output to the first panel source driving means.
  • the second liquid crystal drive unit (2) performs signal processing such as ⁇ conversion and overshoot on the 8-bit input signal from the input unit to perform the second panel of the second liquid crystal panel. Output 8-bit gradation data to the source drive means.
  • the first liquid crystal panel, the second liquid crystal panel, and the output image output as a result are 8 bits, one-to-one corresponding to the input signal, and an image faithful to the input image.
  • the liquid crystal display device 100 having the above-described configuration is configured such that the polarizing axes of the polarizing plate A and the polarizing plate B, and the polarizing plate B and the polarizing reflecting plate are orthogonal to each other, as shown in FIG. And That is, the polarization axes (transmission axes) of the polarizing plates A and B, the polarizing plate B, and the polarizing reflector are respectively arranged in a cross-cored manner.
  • each of the two panels of the liquid crystal display device 100 has a color filter.
  • only one of the panels is provided with a color filter.
  • An example will be described. This is advantageous in terms of cost because the RGB forming process can be reduced compared to the case of forming color filters on both panels.
  • FIG. 11 shows a schematic cross-sectional outline of the liquid crystal display device of the present embodiment based on the present invention.
  • Figure 12 shows the configuration of a liquid crystal display device including a polarizing plate.
  • the liquid crystal display device 100 shown in FIG. 11 does not form the color filter 21 on the second liquid crystal panel, but has the color filter 21 only on the first liquid crystal panel. It differs in the point that it formed.
  • the film thickness of the color filter 21 of the first liquid crystal panel is the same as that of the color filter 21 in the case of a conventional single panel. do it.
  • the film thickness of the color filter 21 of the first LCD panel was set to 1.8 m.
  • the second liquid crystal panel on the side where the color filter 21 is not provided is driven based on the first liquid crystal panel provided with the color filter 21.
  • the pixel of the second liquid crystal panel immediately below the first blue pixel is driven based on the signal of the first blue pixel. .
  • the same signal may be input
  • the panel provided with the color filter 21 may be on the second liquid crystal panel side, contrary to the above example. Since the other configuration 'operation is the same as that of the liquid crystal display device 100 shown in Fig. 1 of the basic configuration, description thereof is omitted here. [0122] When the liquid crystal display device 100 having the above configuration is used, the process of forming the RGB color filter 21 of three primary colors (red, green, and blue) is 1 compared to the liquid crystal display device 100 shown in FIG. This is advantageous in terms of cost.
  • FIG. 13 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
  • the film thickness of the BM resin is thick.
  • the alignment state may be disturbed near the edge of the BM (reference; the resin BM is inferior in light-shielding properties compared to the metal BM, so a thick film is required).
  • a transparent layer 27 not containing a color pigment may be formed at a position where the color filter 21 is formed.
  • the material of the transparent layer 27 is not particularly limited, but a material having high transparency and no coloring is preferable.
  • the transparent layer 27 may be a negative acrylic photosensitive resin solution photosensitive material containing no color pigment. Then, in the liquid crystal display device 100 shown in FIG. 1, the photomask for forming the pattern of the color filter 21 described in the method of manufacturing the color filter substrate 20 is diverted to form the pattern of the transparent layer 27. Can be used during Alternatively, a dedicated photomask capable of batch exposure may be used. Alternatively, negative photosensitive resin may be used with BM as a mask, backside force exposure, and development may be performed.
  • FIG. 14 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention.
  • the purpose is to prevent alignment disorder caused by the same thick resin BM24 as the liquid crystal display device 100 shown in FIG. Here, a flat film 28 is used.
  • planarization film 28 is used for the purpose of reducing the level difference and reducing the unevenness of the surface. Planarization film
  • a flat sheet material or an overcoat material is formed by applying and curing a material called a flat sheet material or an overcoat material.
  • Various materials are available on the market for flattened materials (overcoat materials), and highly transparent materials with high flatness have been developed.
  • overcoat materials there is a material that does not require the use of a photomask. By using such a material, the exposure and development processes can be simplified as compared with the liquid crystal display device 100 shown in FIG. .
  • the flat film 28 is used for the thick resin BM24, the level difference due to the resin BM can be reduced, and the alignment disorder generated at the edge of the resin BM can be prevented. As a result, it is possible to suppress the occurrence of moire due to the alignment disorder.
  • each liquid crystal display device disclosed in the present embodiment it is possible to further increase the brightness by using the hot cathode lamp described in the above embodiment as the light source to be used. .
  • the size of one dot of a panel without a color filter (hereinafter referred to as a black and white panel) and a gate bus line for one dot of a panel with a color filter (hereinafter referred to as a color panel).
  • the gradation data of the monochrome panel having the above configuration was driven so as to be equal to the maximum gradation of the gradation data for three dots of the corresponding color panel.
  • the gradation data of the monochrome panel having the above configuration is set to be equal to the maximum gradation of the gradation data for 12 dots of the corresponding color panel.
  • the counter substrate facing the active matrix substrate 30 may include at least a black matrix. Thereby, off-leakage of the TFT element 3 formed on the active matrix substrate 30 can be reduced.
  • a light-transmitting resin layer may be provided in the opening of the black matrix.
  • the film thickness is so thick that it is possible to prevent the occurrence of orientation disorder at the BM edge.
  • a light-transmitting resin layer (flattening film) may be provided so as to cover the black matrix and the opening of the black matrix.
  • the film thickness is so thick that it is possible to prevent the occurrence of alignment disorder at the BM edge.
  • the exposure / development process using a mask can be omitted.
  • the gradation data of the monochrome panel in the present invention is set to be equal to the maximum gradation of the gradation data for three dots of the corresponding color panel.
  • the source driver can be reduced to 1Z6 and the gate driver can be reduced to 1Z2.
  • the gradation data of the monochrome panel of the present invention is set to be equal to the maximum gradation of the 12-dot gradation data of the corresponding color panel.
  • the size of the pixel electrode 8 in the second liquid crystal panel is three times the size of the pixel electrode 8 in the first liquid crystal panel. It is formed to be.
  • a picture element is formed corresponding to each R GB and the same video signal is displayed by three picture elements.
  • a pixel that is three times as large as one pixel of the first liquid crystal panel is used as the pixel.
  • each liquid crystal display device disclosed in the present embodiment it is possible to further increase the brightness by using the hot cathode lamp described in the first embodiment as the light source used.
  • the light diffusion layer is described as a light diffusion plate.
  • the light diffusing plate may be provided with a light diffusing layer on the outer side of the polarizing plate A of the first liquid crystal panel, or as shown in FIG.
  • a light diffusing layer may be provided between the second liquid crystal panel and the polarizing plate B, but the most preferable is as shown in FIG.
  • a polarizing plate D is arranged, and a light diffusion layer is provided between the polarizing plate D and the polarizing plate B. Polarizers D and B were arranged in parallel.
  • the light diffusing layer includes an acrylic cured resin layer, a TAC (triacetyl cellulose) film, a PET (polyethylene terephthalate) film, and other materials, silica beads, aluminum oxide, and titanium oxide.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • silica beads aluminum oxide
  • titanium oxide titanium oxide
  • the light diffusion layer a transparent layer having a rough surface may be used.
  • the structure of the portion in contact with the air layer as shown in FIG. 20 can provide a reliable light diffusion effect while being inexpensive.
  • diffusion particles having a refractive index different from that of a substrate having an average particle diameter of 370 nm or more may be dispersed and contained.
  • light with a wavelength of around 555 nm, which is the most visible and dominant as visible light, is 555 ⁇ 1.5 wavelength 370 ⁇ m among the members with a refractive index of 1.5. It can be scattered by refraction.
  • diffusion particles having a refractive index different from that of the substrate having an average particle diameter of 520 nm or more may be dispersed and contained.
  • the light diffusion layer has a diffusion particle having a refractive index different from that of a base material having an average particle diameter of 3.7 ⁇ m or more.
  • the child may be dispersed and contained.
  • stable scattering can be realized by the refractive action that makes the entire visible light region different depending on the wavelength.
  • a moiré-dominant structure that does not necessarily limit the gist of the present invention to diffusion in all directions or a layer that exhibits diffusivity perpendicular to the direction of the moire stripes is provided. You may apply. Specifically, a prism-shaped layer (lens sheet) parallel to the structure or stripes can be used. Further, it may be combined with the diffusion layer described above.
  • the method of giving haze is 0% to 98% by increasing the concentration of the scattering particles, increasing the refractive index of the scattering particles, optimizing the average particle diameter, thickening the base material, etc. It is possible to control up to close.
  • a television receiver to which the liquid crystal display device of the present invention is applied will be described below with reference to FIGS.
  • FIG. 24 shows a circuit block of a liquid crystal display device 601 for a television receiver.
  • the liquid crystal display device 601 includes a Y / C separation circuit 500, a video chroma circuit 5001, an A / D converter 502, a liquid crystal controller 503, a liquid crystal non-504, a backlight driving circuit 505, a back
  • the configuration includes a light 506, a microcomputer 507, and a gradation circuit 508.
  • the liquid crystal panel 504 has a two-panel configuration including a first liquid crystal panel and a second liquid crystal panel, and may have any of the configurations described in the above embodiments.
  • an input video signal of a television signal is input to the Y ZC separation circuit 500 and separated into a luminance signal and a color signal.
  • the luminance and color signals are converted to R, G, and B, which are the three primary colors of light, by the video chroma circuit 501, and this analog RGB signal is converted to a digital RGB signal by the AZD converter 502. Input to controller 503.
  • the RGB signal from the liquid crystal controller 503 is input at a predetermined timing, and the RGB gradation voltages from the gradation circuit 508 are supplied to display an image.
  • the microcomputer 507 controls the entire system including these processes. It will be.
  • the video signal can be displayed based on various video signals such as a video signal based on television broadcasting, a video signal captured by a camera, and a video signal supplied via an Internet line. .
  • tuner unit 600 shown in FIG. 25 receives a television broadcast and outputs a video signal, and liquid crystal display device 601 displays an image (video) based on the video signal output from tuner unit 600. Do.
  • the liquid crystal display device 601 is a television receiver, for example, as shown in FIG. 26, the liquid crystal display device 601 is wrapped in a first housing 301 and a second housing 306. It is a structure that is held between.
  • the first casing 301 is formed with an opening 301a through which an image displayed on the liquid crystal display device 601 is transmitted.
  • the second casing 306 covers the back side of the liquid crystal display device 601.
  • An operation circuit 305 for operating the liquid crystal display device 601 is provided, and a supporting member is provided below. 308 is attached!
  • the television receiver having the above-described configuration can display high-quality images with higher contrast and higher brightness than those with a single liquid crystal panel.
  • the force described when two liquid crystal panels are overlapped is not limited to this, and there are three or more liquid crystal panels.
  • the present invention can be applied even when they are stacked. That is, two or more liquid crystal panels are overlapped, and the polarized light transmission layer is provided in a cross-col relationship with the liquid crystal panel sandwiched between them.
  • the first LCD panel is based on the first display signal!
  • the present invention can also be applied to a liquid crystal display device that displays and displays the second liquid crystal panel based on the second display signal obtained from the first display signal.
  • at least one of the polarized light transmitting layers may be a polarized light reflecting layer having a polarized light reflection function for reflecting polarized light.
  • liquid crystal display device of the present invention can greatly improve the contrast, it can be applied to a television receiver, a broadcast monitor, and the like.

Abstract

A liquid crystal display comprising a first liquid crystal panel and a second liquid crystal panel laid in layers wherein the first liquid crystal panel presents a display based on a first display signal and the second liquid crystal panel presents a display based on a second display signal obtained from the first display signal. A polarizing plate (A) is arranged on the surface side of the first liquid crystal panel, a polarizing plate (B) is arranged on the back side thereof, the polarizing plate (B) is arranged on the surface side of the second liquid crystal panel and a polarization reflection plate is arranged on the back side thereof. Since contrast and luminance can be enhanced, a liquid crystal display having high display quality can be achieved.

Description

明 細 書  Specification
液晶表示装置およびテレビジョン受信機  Liquid crystal display device and television receiver
技術分野  Technical field
[0001] 本発明は、コントラストを向上させた液晶表示装置およびそれを備えたテレビジョン 受信機に関するものである。  The present invention relates to a liquid crystal display device with improved contrast and a television receiver including the same.
背景技術  Background art
[0002] 液晶表示装置のコントラストを向上させる技術として、以下の特許文献 1、 2に開示 されて!/、るような種々の技術がある。  [0002] As techniques for improving the contrast of a liquid crystal display device, there are various techniques disclosed in Patent Documents 1 and 2 below.
[0003] 例えば、特許文献 1および特許文献 2は、 1対の偏光板の間に液晶表示パネルと光 学補償用の液晶パネルを有する、光学補償方式によるコントラスト改善方法を開示し ている。 [0003] For example, Patent Document 1 and Patent Document 2 disclose a contrast improvement method using an optical compensation method, in which a liquid crystal display panel and a liquid crystal panel for optical compensation are provided between a pair of polarizing plates.
[0004] 特許文献 1は、 STN方式において表示用セルと差光学補償用の液晶セルとリタデ ーシヨンのコントラスト比 14から 35に改善する技術を開示して 、る。  [0004] Patent Document 1 discloses a technique for improving the contrast ratio between a display cell, a liquid crystal cell for differential optical compensation, and a retardation in the STN system from 14 to 35.
[0005] また、特許文献 2は、 TN方式などの液晶表示用セルの黒表示時における波長依 存性を補償するための光学補償用の液晶セルを設置してコントラスト比を 8から 100 に改善している。  [0005] In addition, Patent Document 2 improves the contrast ratio from 8 to 100 by installing a liquid crystal cell for optical compensation to compensate for the wavelength dependency of a TN liquid crystal display cell during black display. is doing.
特許文献 1 :日本国公開特許公報「特開昭 64— 49021号公報 (公開日:1989年 2月 23日)」  Patent Document 1: Japanese Patent Publication “Japanese Patent Laid-Open No. 64-49021 (Publication Date: February 23, 1989)”
特許文献 2 :日本国公開特許公報「特開平 2— 23号公報 (公開日:1990年 1月 5日) J  Patent Document 2: Japanese Patent Publication “Japanese Patent Laid-Open No. 2-23 (Publication Date: January 5, 1990) J
発明の開示  Disclosure of the invention
[0006] し力しながら、上記の各特許文献に開示された技術では、 2倍強〜 10倍強のコント ラスト比改善効果が得られるが、コントラスト比は 35〜: LOO程度し力得られない。つま り、上記の各引用文献に開示された技術では、液晶表示装置においては、十分なコ ントラスト比の改善効果を得ることができないという問題が生じる。  [0006] However, with the techniques disclosed in each of the above-mentioned patent documents, the contrast ratio improvement effect of slightly over 2 to 10 times is obtained, but the contrast ratio is about 35 to: LOO. Absent. In other words, the technique disclosed in each of the above cited references has a problem in that a sufficient contrast ratio improvement effect cannot be obtained in the liquid crystal display device.
[0007] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、簡単な構成で 、コントラスト比が大幅に改善された表示品位の高い液晶表示装置を実現することに ある。 [0007] The present invention has been made in view of the above problems, and an object of the present invention is to realize a liquid crystal display device with high display quality with a simple structure and a greatly improved contrast ratio. is there.
[0008] 本発明に係る液晶表示装置は、上記課題を解決するために、液晶パネルを 2枚以 上重ね合わせ、偏光透過層が液晶パネルを挟んでクロス-コルの関係に設けられ、 重ね合わせた液晶パネルのうち、隣接する液晶パネルの一方を第一の液晶パネル、 他方を第二の液晶パネルとしたときに、第一の液晶パネルが第一の表示信号に基づ V、て表示し、第二の液晶パネルが第一の表示信号から得られる第二の表示信号に 基づいて表示する液晶表示装置であって、上記偏光透過層のうち、少なくとも 1層が 、偏光反射の機能を有して 、る偏光反射層であることを特徴として 、る。  In order to solve the above problems, the liquid crystal display device according to the present invention has two or more liquid crystal panels stacked, and a polarization transmission layer is provided in a cross-col relationship with the liquid crystal panel sandwiched therebetween. When one of the adjacent liquid crystal panels is the first liquid crystal panel and the other is the second liquid crystal panel, the first liquid crystal panel displays V based on the first display signal. The liquid crystal display device in which the second liquid crystal panel displays based on the second display signal obtained from the first display signal, and at least one of the polarization transmission layers has a function of polarization reflection. It is characterized by being a polarizing reflection layer.
[0009] 上記構成によれば、液晶パネルを 2枚以上重ね合わせ、偏光透過層が液晶パネル を挟んでクロス-コルの関係に設けられていることで、例えば、正面方向においては 、偏光透過層の透過軸方向の漏れ光が次の偏光透過層の透過軸により漏れ光を力 ットすることが可能となる。また、斜め方向においては、隣接する偏光透過層の偏光 軸の交差角である-コル角が崩れても、光漏れによる光量の増加が見られない。つ まり、斜め視角での-コル角の拡がりに対して黒が浮きにくくなる。  [0009] According to the above configuration, two or more liquid crystal panels are stacked, and the polarization transmission layer is provided in a cross-col relationship with the liquid crystal panel sandwiched therebetween. For example, in the front direction, the polarization transmission layer The leakage light in the direction of the transmission axis can force the leakage light by the transmission axis of the next polarization transmission layer. Further, in the oblique direction, even if the coll angle, which is the intersection angle of the polarization axes of the adjacent polarized light transmitting layers, collapses, no increase in the amount of light due to light leakage is observed. In other words, black is less likely to float with respect to the expansion of the -col angle at an oblique viewing angle.
[0010] 以上のことから、 2枚以上の液晶パネルを重ね合わせた場合、少なくとも、偏光透過 層は 3層備えていることになる。つまり、偏光透過層を 3層構成にし、それぞれをクロス ニコルに配置することで、正面 ·斜め方向ともにシャッター性能の大幅な向上を図るこ とが可能となる。これにより、コントラストを大幅に向上させることができる。  [0010] From the above, when two or more liquid crystal panels are overlapped, at least three polarization transmission layers are provided. In other words, it is possible to significantly improve the shutter performance in both the front and diagonal directions by using three layers of polarized light transmission layers and arranging them in crossed Nicols. Thereby, the contrast can be greatly improved.
[0011] そして、上記偏光透過層のうち、少なくとも 1層が、偏光反射の機能を有している偏 光反射層であることにより、該偏光反射層において透過した光を反射させることが可 能なるので、効率よく液晶パネルに光を照射できる。これにより、コントラストの向上に カロえて、高輝度化も可能となる。  [0011] At least one of the polarized light transmitting layers is a polarized light reflecting layer having a polarized light reflection function, so that light transmitted through the polarized light reflecting layer can be reflected. Therefore, the liquid crystal panel can be irradiated with light efficiently. This makes it possible to increase the brightness while improving the contrast.
[0012] また、上記第一の液晶パネルと上記第二の液晶パネルに表示用の光を供給するた めの照明装置を備え、上記偏光反射層は、複数ある偏光透過層のうち上記照明装 置に最も近 、位置に配置されて 、るのが好ま 、。  [0012] In addition, an illumination device for supplying display light to the first liquid crystal panel and the second liquid crystal panel is provided, and the polarization reflection layer includes the illumination device among a plurality of polarization transmission layers. It is preferred to be placed in the position closest to the position.
[0013] これにより、照明装置力 の光を最も有効に利用することができるので、さらに、高 輝度化を図ることができる。  [0013] Thereby, the light of the illumination device power can be used most effectively, so that the brightness can be further increased.
[0014] 例えば、上記照明装置の光源として、熱陰極蛍光ランプを用いてもよい。 [0015] 一般に、熱陰極蛍光ランプは、冷陰極蛍光ランプに比べて印加電圧が低くて済む ので、取扱易ぐランプ同士を近接して並べても電気的耐圧の問題が生じない。さら に熱陰極蛍光ランプは冷陰極蛍光ランプに比べ、一本あたりの発光量が大きぐ発 光効率が良いことに起因する発熱量の少なさも好適である。このため、ランプを近接 して多く並べることができると同時に非常に高密度な発光 (高輝度)を最小限の温度 上昇で実現すること出来る。 [0014] For example, a hot cathode fluorescent lamp may be used as the light source of the illumination device. [0015] In general, a hot cathode fluorescent lamp requires a lower applied voltage than a cold cathode fluorescent lamp, and therefore there is no problem of electrical withstand voltage even if lamps that are easy to handle are arranged close to each other. In addition, the hot cathode fluorescent lamp is also suitable for its low calorific value due to its large light emission per lamp and good luminous efficiency, compared to the cold cathode fluorescent lamp. As a result, many lamps can be arranged in close proximity, and at the same time, very high-density light emission (high brightness) can be achieved with a minimum temperature rise.
[0016] 上記第一の液晶パネルまたは上記第二の液晶パネルの何れか一方の液晶パネル にのみ、カラーフィルタが備えられていてもよい。  [0016] Only one of the first liquid crystal panel and the second liquid crystal panel may be provided with a color filter.
[0017] このように、第一の液晶パネルまたは上記第二の表示信号に基づいた表示を行う 液晶パネルの何れか一方の液晶パネルにのみ、カラーフィルタが備えられて 、ること で、一方の液晶パネルを透過した光が他方の液晶パネルを透過する際に、色混じり が生じない。これにより、色混じりに起因するモアレの発生を抑制することが可能とな る。  [0017] Thus, only one of the first liquid crystal panel and the liquid crystal panel that performs display based on the second display signal is provided with a color filter. When light transmitted through the liquid crystal panel passes through the other liquid crystal panel, color mixing does not occur. As a result, it is possible to suppress the occurrence of moire due to color mixing.
[0018] また、一方の液晶パネルのみにカラーフィルタが設けられていることで、他方の液 晶パネルにはカラーフィルタを設ける必要が無くなる。この結果、液晶表示装置を製 造する際、カラーフィルタの製造工程が 1回で済むので、製造コストを低減させるとい う効果も奏する。  [0018] Further, since the color filter is provided only in one of the liquid crystal panels, it is not necessary to provide the color filter in the other liquid crystal panel. As a result, when the liquid crystal display device is manufactured, the manufacturing process of the color filter is completed only once, so that the manufacturing cost can be reduced.
[0019] 上記カラーフィルタを備えて ヽな 、側の液晶パネルは、アクティブマトリクス基板を 有し、該アクティブマトリクス基板に対向する対向基板には、少なくともブラックマトリク スが形成されて 、ることが好まし 、。  [0019] The liquid crystal panel on the side provided with the color filter preferably has an active matrix substrate, and at least a black matrix is preferably formed on the counter substrate facing the active matrix substrate. Better ,.
[0020] これにより、アクティブマトリクス基板に形成されている TFT素子等のスイッチング素 子に対して、光照射によるオフリークを低減させることができる。  [0020] Thereby, it is possible to reduce off-leakage due to light irradiation with respect to switching elements such as TFT elements formed on the active matrix substrate.
[0021] 上記対向基板には、さらに、上記ブラックマトリクスの開口部分に光透過性榭脂層 が形成されて ヽることが好ま ヽ。  [0021] It is preferable that the counter substrate further includes a light-transmitting resin layer formed in the opening portion of the black matrix.
[0022] これにより、対向基板上のブラックマトリクスのエッジ部を光透過性榭脂層によって 平坦ィ匕されるので、ブラックマトリクスのエッジ部における配向乱れを無くすことができ 、この配向乱れに起因する表示品位の低下を防止することができる。  [0022] Thereby, since the edge of the black matrix on the counter substrate is flattened by the light-transmitting resin layer, the alignment disorder at the edge of the black matrix can be eliminated. Deterioration of display quality can be prevented.
[0023] また、上記光透過性榭脂層を形成する場合、カラーフィルタを形成する際に使用し たマスクを使用することができる。 [0023] Further, when forming the light transmissive resin layer, it is used when forming a color filter. A mask can be used.
[0024] 上記光透過性榭脂層は、上記ブラックマトリクスおよび該ブラックマトリクスの開口部 分を覆うように形成されて 、るのが好ま 、。  [0024] Preferably, the light-transmitting resin layer is formed so as to cover the black matrix and the opening of the black matrix.
[0025] これにより、対向基板を平坦化できるので、配向乱れに起因する表示品位の低下を 確実に防止することができる。 [0025] Thereby, since the counter substrate can be flattened, it is possible to reliably prevent the display quality from being deteriorated due to the alignment disorder.
[0026] この場合、上記光透過性榭脂層は、ブラックマトリクスおよび該ブラックマトリクスの 開口部分を覆うように形成されるので、パターンユングの必要が無い。この結果、光 透過性榭脂層形成時に、マスクによる露光'現像工程を省略することができる。 [0026] In this case, the light-transmitting resin layer is formed so as to cover the black matrix and the opening of the black matrix, so there is no need for pattern jung. As a result, when the light-transmitting resin layer is formed, the exposure and development process using a mask can be omitted.
[0027] 上記カラーフィルタを備えていない側の液晶パネルの 1ドットの大きさ力 カラーフィ ルタを備えて 、る側の液晶パネルの 1ドットの n X m倍 (n, mは実数少なくとも一方は[0027] One-dot magnitude force of the liquid crystal panel on the side not provided with the color filter n X m times one dot of the liquid crystal panel on the side provided with the color filter (n and m are real numbers, at least one of which is a real number
1より大きぐ nはゲートバスラインに沿った方向、 mはソースバスラインに沿った方向) に等しいことが好ましい。 Preferably, n greater than 1 is equal to the direction along the gate bus line, and m is the direction along the source bus line.
[0028] これにより、カラーフィルタを備えていない側の液晶パネルのソースドライバの数を カラーフィルタを備えている液晶パネルの lZn個、ゲートドライバの数を lZm個に することが可能となる。これにより、液晶表示装置のコストを大幅に削減することができ る。 Thus, the number of source drivers of the liquid crystal panel on the side not provided with the color filter can be reduced to lZn and the number of gate drivers on the liquid crystal panel including the color filter. Thereby, the cost of the liquid crystal display device can be significantly reduced.
[0029] 具体的には、上記液晶パネルに表示信号を出力し、該液晶パネルの表示制御を 行う表示制御手段を備え、上記表示制御手段は、 上記カラーフィルタを備えていな V、側の液晶パネルの 1ドットの階調データを、対応するカラーフィルタを備えて 、る側 の液晶パネルの n X mドット(n, mは実数少なくとも一方は 1より大きぐ nはゲートバス ラインに沿った方向、 mはソースバスラインに沿った方向)の最大階調データとなるよ うに、また、最大階調を反映した演算結果で示される階調データとなるように制御する ようにしてもよい。  [0029] Specifically, display control means for outputting a display signal to the liquid crystal panel and performing display control of the liquid crystal panel is provided, and the display control means does not include the color filter. N X m dots (1 and n are real numbers at least one greater than 1) n is the direction along the gate bus line. , M may be controlled so as to be the maximum gradation data in the direction along the source bus line) or to be the gradation data indicated by the calculation result reflecting the maximum gradation.
[0030] 上記カラーフィルタを備えている側の液晶パネルは、赤画素と緑画素と青画素から 構成される絵素がマトリクス状に配置され、上記カラーフィルタを備えて 、な 、側の液 晶パネルは、上記カラーフィルタを備えて 、る側の液晶パネルの絵素の整数倍の大 きさの画素がマトリクス状に配置されて 、ることが好ま 、。  [0030] The liquid crystal panel on the side provided with the color filter has picture elements composed of red pixels, green pixels, and blue pixels arranged in a matrix, and includes the color filter. The panel is preferably provided with the above-described color filter, and pixels having a size that is an integral multiple of the picture element of the liquid crystal panel on the other side are arranged in a matrix.
[0031] これにより、カラーフィルタを備えていない側の液晶パネルのソースドライバおよび ゲートドライバの数を、カラーフィルタを備えている液晶パネルよりも大幅に削減する ことが可能となる。 Accordingly, the source driver of the liquid crystal panel on the side not provided with the color filter and The number of gate drivers can be significantly reduced compared to liquid crystal panels equipped with color filters.
[0032] また、上記重ね合わせた複数の液晶パネルの少なくとも一枚に光拡散性を有する 光拡散層が設けられて 、てもよ!、。  [0032] In addition, a light diffusing layer having light diffusibility may be provided on at least one of the plurality of liquid crystal panels superimposed on each other! ,.
[0033] この場合、重ね合わせた複数の液晶パネルの少なくとも一枚に光拡散性を有する 光拡散層が設けられていることで、光拡散層を透過した光を空間的にじませることが できる。これにより、例えば、隣接するパネルの同等な周期を持つ微細構造物同士( ノ スライン、ブラックマトリックス、配向制御用の突起など)の非同期干渉の強度を抑 制することが可能となる。この結果、構造干渉に起因するモアレの発生を抑制できる ので、モアレの発生による表示品位の低下を防止することができる。  [0033] In this case, the light transmitted through the light diffusing layer can be spatially blurred by providing the light diffusing layer having the light diffusing property on at least one of the superimposed liquid crystal panels. As a result, for example, it is possible to suppress the strength of asynchronous interference between microstructures having the same period of adjacent panels (nosline, black matrix, alignment control protrusion, etc.). As a result, it is possible to suppress the occurrence of moire due to structural interference, and thus it is possible to prevent the display quality from being deteriorated due to the occurrence of moire.
[0034] 本発明の液晶表示装置は、テレビジョン放送を受信するチューナ部と、該チューナ 部で受信したテレビジョン放送を表示する表示装置とを備えたテレビジョン受信機に おける、該表示装置として使用することができる。  [0034] A liquid crystal display device of the present invention is used as a display device in a television receiver including a tuner unit that receives a television broadcast and a display device that displays the television broadcast received by the tuner unit. Can be used.
図面の簡単な説明  Brief Description of Drawings
[0035] [図 1]本発明の実施形態を示すものであり、液晶表示装置の概略断面図である。  FIG. 1 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention.
[図 2]図 1に示す液晶表示装置における偏光板とパネルとの配置関係を示す図であ る。  2 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
[図 3]図 1に示す液晶表示装置の画素電極近傍の平面図である。  3 is a plan view of the vicinity of a pixel electrode of the liquid crystal display device shown in FIG.
[図 4]図 1に示す液晶表示装置を駆動する駆動システムの概略構成図である。  4 is a schematic configuration diagram of a drive system that drives the liquid crystal display device shown in FIG.
[図 5]図 1に示す液晶表示装置のドライバとパネル駆動回路との接続関係を示す図で ある。  FIG. 5 is a diagram showing a connection relationship between a driver of the liquid crystal display device shown in FIG. 1 and a panel drive circuit.
[図 6]図 1に示す液晶表示装置が備えているバックライトの概略構成図である。  FIG. 6 is a schematic configuration diagram of a backlight included in the liquid crystal display device shown in FIG.
[図 7]図 1に示す液晶表示装置を駆動する駆動回路である表示コントローラのブロック 図である。  FIG. 7 is a block diagram of a display controller that is a drive circuit for driving the liquid crystal display device shown in FIG.
[図 8]液晶パネル 1枚の液晶表示装置の概略断面図である。  FIG. 8 is a schematic cross-sectional view of a liquid crystal display device with one liquid crystal panel.
[図 9]図 8に示す液晶表示装置における偏光板とパネルとの配置関係を示す図であ る。  FIG. 9 is a diagram showing the positional relationship between a polarizing plate and a panel in the liquid crystal display device shown in FIG.
[図 10(a)]コントラスト向上の原理を説明する図である。 [図 10(b)]コントラスト向上の原理を説明する図である。 FIG. 10 (a) is a diagram for explaining the principle of contrast improvement. FIG. 10 (b) is a diagram for explaining the principle of contrast improvement.
[図 11]本発明の実施形態を示すものであり、液晶表示装置の概略断面図である。  FIG. 11, showing an embodiment of the present invention, is a schematic sectional view of a liquid crystal display device.
[図 12]図 11に示す液晶表示装置における偏光板とパネルとの配置関係を示す図で ある。 12 is a diagram showing the positional relationship between the polarizing plate and the panel in the liquid crystal display device shown in FIG.
[図 13]本発明の実施形態を示すものであり、液晶表示装置の概略断面図である。  FIG. 13, showing an embodiment of the present invention, is a schematic sectional view of a liquid crystal display device.
[図 14]本発明の実施形態を示すものであり、液晶表示装置の概略断面図である。  FIG. 14, showing an embodiment of the present invention, is a schematic sectional view of a liquid crystal display device.
[図 15]液晶表示装置のカラー表示を行うときの画素を示す図である。  FIG. 15 is a diagram showing pixels when performing color display of a liquid crystal display device.
[図 16]図 15に示す画素に対応した大きさの 1画素を示す図である。  FIG. 16 is a diagram showing one pixel having a size corresponding to the pixel shown in FIG.
[図 17]図 16に示す画素を 2倍に拡大した画素を示す図である。  FIG. 17 is a diagram showing a pixel obtained by enlarging the pixel shown in FIG. 16 twice.
[図 18]本発明の実施形態を示すものであり、液晶表示装置の概略断面図である。  FIG. 18 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention.
[図 19]図 18に示す液晶表示装置に備えられた画素の平面図である。  FIG. 19 is a plan view of pixels provided in the liquid crystal display device shown in FIG.
[図 20]本発明の実施形態を示すものであり、光拡散層を第 1の液晶パネルの偏光板 の前に配置した例を示す図である。  FIG. 20, showing an embodiment of the present invention, is a diagram showing an example in which a light diffusion layer is disposed in front of a polarizing plate of a first liquid crystal panel.
[図 21]本発明の実施形態を示すものであり、光拡散層を第 2の液晶パネルの前に配 置した例を示す図である。  FIG. 21, showing an embodiment of the present invention, is a diagram showing an example in which a light diffusion layer is arranged in front of a second liquid crystal panel.
[図 22]本発明の実施形態を示すものであり、光拡散層を第 1の液晶パネルと第 2の液 晶パネルのそれぞれの偏光板の間に配置した例を示す図である。  FIG. 22, showing an embodiment of the present invention, is a diagram showing an example in which a light diffusing layer is disposed between respective polarizing plates of a first liquid crystal panel and a second liquid crystal panel.
[図 23]本発明の実施形態を示すものであり、光拡散層としてのレンズシートを第 1の 液晶パネルと第 2の液晶パネルのそれぞれの偏光板の間に配置した例を示す図で ある。  FIG. 23 shows an embodiment of the present invention, and is a diagram showing an example in which a lens sheet as a light diffusion layer is disposed between respective polarizing plates of a first liquid crystal panel and a second liquid crystal panel.
[図 24]本発明の液晶表示装置を備えたテレビジョン受信機の概略ブロック図である。  FIG. 24 is a schematic block diagram of a television receiver including the liquid crystal display device of the present invention.
[図 25]図 24に示すテレビジョン受信機におけるチューナ部と液晶表示装置との関係 を示すブロック図である。 25 is a block diagram showing a relationship between a tuner unit and a liquid crystal display device in the television receiver shown in FIG.
[図 26]図 24に示すテレビジョン受信機の分解斜視図である。  FIG. 26 is an exploded perspective view of the television receiver shown in FIG. 24.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
一般的な液晶表示装置は、図 8に示すように、カラーフィルタおよび駆動用基板を 備えた液晶パネルに偏光板 A、 Bを貼り合せて構成される。ここでは MVA (Multidom ain Vertical Alignment)方式について説明する。 [0037] 偏光板 A、 Bは、図 9に示すように、偏光軸が直行しており、画素電極 8に閾値電圧 を印加した場合に液晶が傾いて配向する方向は、偏光板 A, Bの偏光軸と方位角 45 度に設定してある。このとき、偏光板 Aを通った入射偏光が液晶層を通るときに、偏光 軸が回転するため、偏光板 Bから光が出射される。また、画素電極に閾値電圧以下 の電圧しか印加されない場合は、液晶は基板に対して垂直に配向しており、入射偏 光の偏向角の変化しないため、黒表示となる。 MVA方式はでは、電圧印加時の液 晶の倒れる方向を 4つに分割 (Multidomain)することによって、高視野角を実現して いる。 As shown in FIG. 8, a general liquid crystal display device is configured by attaching polarizing plates A and B to a liquid crystal panel having a color filter and a driving substrate. Here, the MVA (Multidom ain Vertical Alignment) method is explained. As shown in FIG. 9, the polarizing axes of the polarizing plates A and B are perpendicular to each other, and when the threshold voltage is applied to the pixel electrode 8, the direction in which the liquid crystal is tilted is aligned with the polarizing plates A and B. The polarization axis and the azimuth angle of 45 degrees. At this time, since the polarization axis rotates when the incident polarized light passing through the polarizing plate A passes through the liquid crystal layer, light is emitted from the polarizing plate B. In addition, when only a voltage lower than the threshold voltage is applied to the pixel electrode, the liquid crystal is aligned perpendicular to the substrate and the deflection angle of incident polarization does not change, resulting in black display. The MVA method achieves a high viewing angle by dividing the direction in which the liquid crystal tilts when a voltage is applied into four (Multidomain).
[0038] ここで、垂直配向とは、垂直配向膜の表面に対して、液晶分子軸(「軸方位」)が約 8 5° 以上の角度で配向した状態をいう。  Here, the vertical alignment refers to a state in which the liquid crystal molecular axes (“axial orientation”) are aligned at an angle of about 85 ° or more with respect to the surface of the vertical alignment film.
[0039] し力しながら、 2枚偏光板構成の場合には、コントラストの向上に限界があった。そこ で、本願発明者は、図 9に示す、液晶パネルの両面に偏光板をそれぞれ設けた構成 に、さらに、図 2に示すように、第 2の液晶パネルと偏光反射板 (偏光反射層)とを設け 、 2枚の偏光板 (偏光透過層)と、 1枚の偏光反射板 (偏光反射層)との透過軸がそれ ぞれクロス-コルに配置することで、コントラストが向上することを見出した。  However, in the case of the two-polarizing plate configuration, there is a limit to the improvement in contrast. Therefore, the inventor of the present application has a configuration in which polarizing plates are provided on both sides of the liquid crystal panel as shown in FIG. 9, and further, as shown in FIG. 2, the second liquid crystal panel and a polarizing reflector (polarizing reflective layer). By arranging the transmission axes of two polarizing plates (polarization transmission layer) and one polarization reflection plate (polarization reflection layer) in cross-coll, the contrast can be improved. I found it.
[0040] 上記偏光反射板としては、直線偏光をそのまま反射する誘電体光学ミラーが用いら れる。なお、直線偏光をそのまま反射する偏光反射板以外に、円偏光を変換した直 線偏光を反射する偏光反射板であってもよい。この場合の偏光反射板は、円偏光を ΐΖ4 λ板に通して直線偏光に変換する機能を有している。以下において、コントラス ト向上の原理について、図 10 (a) (b)を参照しながら以下に説明する。ここでは、図 1 0 (a)に示す偏光板 A, Bの二枚偏光板構成を構成(1)、図 10 (b)に示す偏光板 A, Bに、さらに、偏光反射板を加えた三枚偏光板構成を構成(2)として説明する。斜め 方向のコントラスト向上は、本質的には偏光板の構成が要因となっているため、ここで は液晶パネルを用いずに、偏光板のみによってモデルィ匕して説明している。  As the polarizing reflector, a dielectric optical mirror that reflects linearly polarized light as it is is used. In addition to a polarizing reflector that reflects linearly polarized light as it is, a polarizing reflector that reflects linearly polarized light converted from circularly polarized light may be used. The polarization reflector in this case has a function of converting circularly polarized light into linearly polarized light through a 4λ plate. In the following, the principle of improving contrast will be described below with reference to Figs. 10 (a) and 10 (b). Here, the configuration of the two polarizing plates A and B shown in FIG. 10 (a) is configured (1), and a polarizing reflector is further added to the polarizing plates A and B shown in FIG. 10 (b). The three-plate polarizing plate configuration will be described as the configuration (2). The improvement in the contrast in the oblique direction is essentially caused by the configuration of the polarizing plate. Therefore, here, the description is made by using only the polarizing plate as a model without using a liquid crystal panel.
[0041] 図 10 (a)は、構成(1)において、一枚の液晶表示パネルがある場合を想定しており 、二枚の偏光板 A, Bがそれぞれの透過軸がクロス-コルに配置された例を示し、図 10 (b)は、構成(2)において、二枚の偏光板 A, Bと一枚の偏光反射板とのそれぞれ の透過軸が互いにクロス-コルに配置された例を示す図である。つまり、構成(2)で は、液晶表示パネルが二枚である場合を想定しているので、クロス-コルに配置され ている偏光板は 2対となる。なお、偏光反射板は、偏光板としての機能を有している ので、説明の便宜上、特に、偏光を反射する機能を説明する場合を除いて偏光板と している。 [0041] FIG. 10 (a) assumes the case where there is one liquid crystal display panel in the configuration (1), and the two polarizing plates A and B are arranged so that their transmission axes are cross-cold. FIG. 10 (b) shows an example in which the transmission axes of the two polarizing plates A and B and one polarizing reflector are arranged in a cross-cored manner in the configuration (2). FIG. In other words, in configuration (2) Assumes two liquid crystal display panels, so there are two pairs of polarizing plates arranged in a cross-coll. Since the polarizing reflector has a function as a polarizing plate, for the convenience of explanation, it is used as a polarizing plate except for a case where the function of reflecting polarized light is described.
[0042] 上記の各構成の、 [0042] For each of the above configurations,
(1)正面方向について  (1) Front direction
上記の構成(1)では、パネル内の偏光解消(CF等の散乱)により、クロス-コルの 透過軸方向から漏れ光が発生していたが、上記の構成(2)にすることで、二枚目の 偏光板の透過軸方向漏れ光に対し、三枚目の偏光板の透過軸を一致させて漏れ光 をカットすることができることを見出した。  In the configuration (1) above, leakage light was generated from the cross-coll transmission axis direction due to depolarization in the panel (scattering of CF, etc.). It was found that the leakage light can be cut by making the transmission axis of the third polarizing plate coincide with the leakage light in the transmission axis direction of the first polarizing plate.
[0043] (2)斜め方向について [0043] (2) About diagonal direction
偏光板ニコル角 φの崩れに対し、漏れ光量変化が鈍感になること、すなわち、斜め 視角での-コル角 φの広がりに対して黒が浮きにくいことを見出した。  It was found that the change in the amount of leaked light was insensitive to the collapse of the polarizing plate Nicol angle φ, that is, black did not easily float with respect to the spread of the −Col angle φ at an oblique viewing angle.
[0044] 以上のことから、液晶表示装置においてコントラストが大幅に向上することを見出し た。 From the above, it has been found that the contrast is greatly improved in the liquid crystal display device.
[0045] ここで、液晶表示パネルが黒表示をする場合の透過率を、液晶パネル無 、場合の 偏光板をクロス-コル配置したときの透過率すなわちクロス透過率としてモデルィ匕し 黒表示と呼ぶことにし、液晶表示パネルが白表示をする場合の透過率を、液晶パネ ル無い場合の偏光板をパラレル-コル配置したときの透過率すなわちパラレル透過 率としてモデルィ匕し黒表示と呼ぶことにする。  Here, the transmittance when the liquid crystal display panel performs black display is modeled as the transmittance when the liquid crystal panel is not provided and the polarizing plate in the case of the cross-col arrangement, that is, the cross transmittance, and is referred to as black display. The transmittance when the liquid crystal display panel displays white is modeled as the transmittance when the polarizing plate without the liquid crystal panel is arranged in parallel-col, that is, parallel transmittance, and is called black display. .
[0046] ここで、上述したコントラスト向上の原理を利用した液晶表示装置について、図 1〜 図 9を参照しながら以下に説明する。  Here, a liquid crystal display device using the above-described principle of improving contrast will be described below with reference to FIGS.
[0047] 〔実施の形態 1〕  [Embodiment 1]
図 1は、本実施の形態に係る液晶表示装置 100の概略断面を示す図である。  FIG. 1 is a diagram showing a schematic cross section of a liquid crystal display device 100 according to the present embodiment.
[0048] 上記液晶表示装置 100は、図 1に示すように、第 1の液晶パネルと第 2の液晶パネ ルと偏光板 A、 B、偏光反射板 (偏光反射層)を交互に貼り合せて構成されている。換 言すれば、本実施の形態に力かる液晶表示装置 100は、第 1の液晶パネルと偏光板 Aおよび Bで構成された液晶表示素子に対して、光源側に、コントラスト向上のため の第 2の液晶パネルと偏光反射板とを設けた構成となっている。ここで、偏光反射板 は、偏光板 A, Bよりも、光源側であり、且つ第 2の液晶パネルよりも光源側に設けら れている。 As shown in FIG. 1, the liquid crystal display device 100 includes a first liquid crystal panel, a second liquid crystal panel, polarizing plates A and B, and a polarizing reflecting plate (polarizing reflecting layer) that are alternately bonded. It is configured. In other words, the liquid crystal display device 100 according to the present embodiment is for improving contrast on the light source side with respect to the liquid crystal display element composed of the first liquid crystal panel and the polarizing plates A and B. The second liquid crystal panel and a polarizing reflector are provided. Here, the polarizing reflector is provided on the light source side with respect to the polarizing plates A and B and on the light source side with respect to the second liquid crystal panel.
[0049] 図 2は、図 1に示す液晶表示装置 100における偏光板、偏光反射板、各液晶パネ ルとを模式的に配置を示した図である。図 2では、偏光板 Aと偏光板 B、偏光板 Bと偏 光反射板はそれぞれ偏光軸が直交するように構成されている。すなわち、偏光板 Aと B、偏光板 Bと偏光反射板のそれぞれの偏光軸(透過軸)は、それぞれクロス-コル に配置されている。  FIG. 2 is a diagram schematically showing the arrangement of the polarizing plate, the polarizing reflector, and each liquid crystal panel in the liquid crystal display device 100 shown in FIG. In FIG. 2, the polarizing plate A and the polarizing plate B, and the polarizing plate B and the polarizing reflector are configured so that their polarization axes are orthogonal to each other. That is, the polarization axes (transmission axes) of the polarizing plates A and B, the polarizing plate B, and the polarizing reflector are respectively arranged in a cross-col.
[0050] 第 1の液晶パネルおよび第 2の液晶パネルは、それぞれ 1対の透明基板 (カラーフ ィルタ基板 (CF) 20とアクティブマトリクス基板 (TFT) 30)間に液晶を封入してなり、 電気的に液晶の配向を変化させることによって、光源から偏光板 Aに入射した偏光を 約 90度回転させる状態と、偏光を回転させない状態と、その中間状態とを任意に変 ィ匕させる手段を備える。  [0050] Each of the first liquid crystal panel and the second liquid crystal panel is formed by encapsulating liquid crystal between a pair of transparent substrates (color filter substrate (CF) 20 and active matrix substrate (TFT) 30). By changing the orientation of the liquid crystal, there is provided means for arbitrarily changing the state where the polarized light incident on the polarizing plate A from the light source is rotated by about 90 degrees, the state where the polarized light is not rotated, and the intermediate state.
[0051] また、第 1の液晶パネルおよび第 2の液晶パネルは、それぞれカラーフィルタを備え 、複数の画素により画像を表示できる機能を有している。このような機能を有する表 示方式は、 TN (Twisted Nematic)方式、 VA (Vertical Alignment)方式、 IPS (In Plai n Switching)方式、 FFS方式(Fringe Field Switching)方式またはそれぞれの組み合 わせによる方法があるが、単独でも高いコントラストを有する VA方式が適しており、こ こでは MVA(Multidomain Vertical Alignment)方式を用いて説明する力 IPS方式、 FFS方式もノーマリーブラック方式であるため、十分な効果がある。駆動方式は TFT (Thin Film Transistor)によるアクティブマトリックス駆動を用いる。 MVAの製造方法 についての詳細は、特開平 2001— 83523などに開示されている。  [0051] Each of the first liquid crystal panel and the second liquid crystal panel includes a color filter, and has a function of displaying an image with a plurality of pixels. The display method with such functions is TN (Twisted Nematic) method, VA (Vertical Alignment) method, IPS (In Plain Switching) method, FFS method (Fringe Field Switching) method, or a combination of these methods. However, the VA method, which has high contrast even when used alone, is suitable.In this case, the power IPS method and FFS method, which are explained using the MVA (Multidomain Vertical Alignment) method, are also normally black methods. There is. The drive system uses active matrix drive by TFT (Thin Film Transistor). Details of the method for producing MVA are disclosed in JP-A-2001-83523.
[0052] 上記液晶表示装置 100における第 1および第 2の液晶パネルは、同じ構造であり、 上述のように、それぞれ互いに対向するカラーフィルタ基板 20とアクティブマトリクス 基板 30とを有し、プラスチックビーズや、カラーフィルタ基板 20上などに設けた柱状 榭脂構造物をスぺーサ(図示せず)として用い基板間隔を一定に保持した構造となつ ている。 1対の基板 (カラーフィルタ基板 20とアクティブマトリクス基板 30)間に液晶を 封入し、各基板の液晶に接する表面には垂直配向膜 25が形成されている。液晶は、 負の誘電率異方性を有するネマティック液晶を使用する。 [0052] The first and second liquid crystal panels in the liquid crystal display device 100 have the same structure. As described above, each of the first and second liquid crystal panels has the color filter substrate 20 and the active matrix substrate 30 facing each other. In addition, a columnar resin structure provided on the color filter substrate 20 or the like is used as a spacer (not shown), and the substrate spacing is kept constant. Liquid crystal is sealed between a pair of substrates (color filter substrate 20 and active matrix substrate 30), and a vertical alignment film 25 is formed on the surface of each substrate in contact with the liquid crystal. Liquid crystal A nematic liquid crystal having negative dielectric anisotropy is used.
[0053] カラーフィルタ基板 20は、透明基板 10上にカラーフィルタ 21、ブラックマトリクス 24 等が形成されたものである。  The color filter substrate 20 is obtained by forming the color filter 21, the black matrix 24, etc. on the transparent substrate 10.
[0054] アクティブマトリクス基板 30は、図 3に示すように、透明基板 10上に、 TFT素子 3、 画素電極 8等が形成され、さらに、液晶の配向方向を規定する配向制御用の突起 22 およびスリットパターン 11を有する。画素電極 8に閾値以上の電圧が印加された場合 、液晶分子は突起 22およびスリットパターン 11に対して垂直な方向に倒れる。本実 施の形態では、偏光板の偏光軸に対して方位角 45度方向に液晶が配向するように 、突起 22およびスリットパターン 11を形成して 、る。  As shown in FIG. 3, the active matrix substrate 30 has a TFT element 3, a pixel electrode 8, and the like formed on a transparent substrate 10, and further includes alignment control protrusions 22 that define the alignment direction of the liquid crystal and A slit pattern 11 is provided. When a voltage higher than the threshold value is applied to the pixel electrode 8, the liquid crystal molecules are tilted in a direction perpendicular to the protrusions 22 and the slit pattern 11. In the present embodiment, the protrusions 22 and the slit pattern 11 are formed so that the liquid crystal is aligned in the direction of 45 ° azimuth with respect to the polarization axis of the polarizing plate.
[0055] 以上のように、第 1の液晶パネルと第 2の液晶パネルとは、それぞれのカラーフィル タ 21の赤 (R)緑 (G)青 (B)の画素がそれぞれ鉛直方向力 見た位置が一致するよう に構成されている。具体的には、第 1の液晶パネルの R画素は、第 2の液晶パネルの R画素に、第 1の液晶パネルの G画素は第 2の液晶パネルの G画素に、第 1の液晶パ ネルの B画素は、第 2の液晶パネルの B画素に、それぞれ鉛直方向から見た位置が 一致するように構成されて 、る。  [0055] As described above, in the first liquid crystal panel and the second liquid crystal panel, the red (R) green (G) blue (B) pixels of the respective color filters 21 saw the vertical force respectively. The positions are configured to match. Specifically, the R pixel of the first liquid crystal panel is the R pixel of the second liquid crystal panel, the G pixel of the first liquid crystal panel is the G pixel of the second liquid crystal panel, and the first liquid crystal panel. The B pixels are configured such that their positions viewed from the vertical direction coincide with the B pixels of the second liquid crystal panel.
[0056] 上記構成の液晶表示装置 100の駆動システムの概略を、図 4に示す。  FIG. 4 shows an outline of a drive system of the liquid crystal display device 100 having the above configuration.
[0057] 上記駆動システムは、液晶表示装置 100に映像を表示するために必要な表示コン トローラを有している。  The drive system includes a display controller necessary for displaying an image on the liquid crystal display device 100.
[0058] 上記表示コントローラは、第 1の液晶パネル、第 2の液晶パネルを所定の信号でそ れぞれ駆動する第 1、第 2の液晶駆動部(1) (2)を有する。さらに、第 1、第 2の液晶 駆動部(1) (2)に、映像ソース信号分配する信号分配回路部を有している。  [0058] The display controller includes first and second liquid crystal drive units (1) and (2) for driving the first liquid crystal panel and the second liquid crystal panel with predetermined signals, respectively. Further, the first and second liquid crystal drive units (1) and (2) have signal distribution circuit units for distributing video source signals.
[0059] 従って、表示コントローラは、液晶表示装置 100に適切な画像を表示できるよう信 号を各パネルに送るようになって 、る。  Accordingly, the display controller sends a signal to each panel so that an appropriate image can be displayed on the liquid crystal display device 100.
[0060] 上記表示コントローラは、与えられた映像信号からパネルに適切な電気信号を送る ための装置であり、ドライバ、回路基板、パネル駆動回路などで構成される。  [0060] The display controller is a device for sending an appropriate electrical signal from a given video signal to the panel, and includes a driver, a circuit board, a panel drive circuit, and the like.
[0061] 上記の第 1、第 2の液晶パネルと、それぞれのパネル駆動回路との接続関係を、図 5に示す。図 5では、偏光板および偏光反射板を省略している。  [0061] FIG. 5 shows the connection relationship between the first and second liquid crystal panels and the panel drive circuits. In FIG. 5, the polarizing plate and the polarizing reflector are omitted.
[0062] 上記第 1の液晶駆動部(1)は、ドライバ (TCP) (1)を介して第 1の液晶パネルの回 路基板(1)に設けられた端子(1)に接続されている。すなわち、第 1の液晶パネルに ドライバ (TCP) (1)を接続し、回路基板(1)で連結し、第 1の液晶駆動部(1)に接続 している。 [0062] The first liquid crystal drive unit (1) is connected to the first liquid crystal panel via a driver (TCP) (1). It is connected to a terminal (1) provided on the road board (1). That is, the driver (TCP) (1) is connected to the first liquid crystal panel, connected by the circuit board (1), and connected to the first liquid crystal drive unit (1).
[0063] なお、第 2の液晶パネルにおける第 2の液晶駆動部(2)の接続も上記の第 1の液晶 パネルと同じであるので、その説明を省略する。  Note that the connection of the second liquid crystal drive unit (2) in the second liquid crystal panel is also the same as that in the first liquid crystal panel, and the description thereof is omitted.
[0064] 次に、上記構成の液晶表示装置 100の動作について説明する。  Next, the operation of the liquid crystal display device 100 having the above configuration will be described.
[0065] 上記第 1の液晶パネルの画素は、表示信号に基づいて駆動され、該第 1の液晶パ ネルの画素とパネルの鉛直方向から見た位置が一致する対応する第 2の液晶パネ ルの画素は、第 1の液晶パネルに対応して駆動される。偏光板 Aと第 1の液晶パネル と偏光板 Bとで構成される部分 (構成部 1)が透過状態の場合は、偏光板 Bと第 2の液 晶パネルと偏光反射板により構成される部分 (構成部 2)も透過状態となり、構成部 1 が非透過状態の時は構成部 2も非透過状態となるよう駆動される。  [0065] The pixels of the first liquid crystal panel are driven based on a display signal, and the corresponding second liquid crystal panel in which the position of the pixel of the first liquid crystal panel coincides with the position viewed from the vertical direction of the panel. These pixels are driven in correspondence with the first liquid crystal panel. When the part composed of polarizing plate A, first liquid crystal panel, and polarizing plate B (component 1) is in the transmissive state, the part composed of polarizing plate B, the second liquid crystal panel, and the polarizing reflector (Component 2) is also in a transmissive state, and when component 1 is in a non-transmissive state, the component 2 is also driven in a non-transmissive state.
[0066] 第 1、第 2の液晶パネルには同一の画像信号を入力しても良いし、第 1、第 2の液晶 パネルに互いに連関した別々の信号を入力しても良い。  [0066] The same image signal may be input to the first and second liquid crystal panels, or separate signals associated with each other may be input to the first and second liquid crystal panels.
[0067] ここで、上記アクティブマトリクス基板 30およびカラーフィルタ基板 20の製造方法に ついて説明する。  Here, a manufacturing method of the active matrix substrate 30 and the color filter substrate 20 will be described.
[0068] はじめに、アクティブマトリクス基板 30の製造方法にっ 、て説明する。  First, a method for manufacturing the active matrix substrate 30 will be described.
[0069] まず、透明基板 10上に、図 3に示すように、走査信号用配線 (ゲート配線またはゲ ートバスライン) 1と補助容量配線 2とを形成するためにスパッタリングにより Ti/Al/Ti 積層膜などの金属を成膜し、フォトリソグラフィ一法によりレジストパターンを形成、塩 素系ガスなどのエッチングガスを用いてドライエッチングし、レジストを剥離する。これ により、透明基板 10上に、走査信号用配線 1と補助容量配線 2とが同時に形成され る。 First, as shown in FIG. 3, a Ti / Al / Ti laminated film is formed on the transparent substrate 10 by sputtering in order to form a scanning signal wiring (gate wiring or gate bus line) 1 and an auxiliary capacitance wiring 2. A metal such as a film is formed, a resist pattern is formed by a photolithography method, dry etching is performed using an etching gas such as a chlorine-based gas, and the resist is peeled off. As a result, the scanning signal wiring 1 and the auxiliary capacitance wiring 2 are simultaneously formed on the transparent substrate 10.
[0070] その後、窒化シリコン(SiNx)など力もなるゲート絶縁膜、アモルファスシリコン等か らなる活性半導体層、リンなどをドープしたアモルファスシリコン等力もなる低抵抗半 導体層を CVDにて成膜、その後、データ信号用配線 (ソース配線またはソースノスラ イン) 4、ドレイン引き出し配線 5、補助容量形成用電極 6を形成するためにスパッタリ ングにより AlZTiなどの金属を成膜し、フォトリソグラフィ一法によりレジストパターン を形成、塩素系ガスなどのエッチングガスを用いてドライエッチングし、レジストを剥離 する。これにより、データ信号用配線 4、ドレイン引き出し配線 5、補助容量形成用電 極 6が同時に形成される。 [0070] Thereafter, a gate insulating film such as silicon nitride (SiNx), an active semiconductor layer made of amorphous silicon, or the like, an amorphous silicon doped with phosphorus or the like, and a low-resistance semiconductor layer also made of amorphous silicon or the like are formed by CVD. , Data signal wiring (source wiring or source line) 4, drain lead wiring 5, auxiliary capacitance forming electrode 6 A metal such as AlZTi is formed by sputtering, and a resist pattern is formed by photolithography. The resist is removed by dry etching using an etching gas such as a chlorine-based gas. As a result, the data signal wiring 4, the drain lead wiring 5, and the auxiliary capacitance forming electrode 6 are formed simultaneously.
[0071] なお、補助容量は補助容量配線 2と補助容量形成用電極 6の間に約 4000 Aのゲ ート絶縁膜をはさんで形成されて 、る。 The auxiliary capacitance is formed by sandwiching a gate insulating film of about 4000 A between the auxiliary capacitance wiring 2 and the auxiliary capacitance forming electrode 6.
[0072] その後、ソースドレイン分離のために低抵抗半導体層を塩素ガスなどを用いてドラ ィエッチングし TFT素子 3を形成する。 Thereafter, the TFT element 3 is formed by dry etching the low-resistance semiconductor layer using chlorine gas or the like for source / drain separation.
[0073] 次に、アクリル系感光性榭脂など力もなる層間絶縁膜 7をスピンコートにより塗布し、 ドレイン引き出し配線 5と画素電極 8を電気的にコンタクトするためのコンタクトホール[0073] Next, an interlayer insulating film 7 having a strength such as an acrylic photosensitive resin is applied by spin coating, and a contact hole for electrically contacting the drain lead wiring 5 and the pixel electrode 8
(図示せず)をフォトリソグラフィ—法で形成する。層間絶縁膜 7の膜厚は、約 で ある。 (Not shown) is formed by photolithography. The film thickness of the interlayer insulating film 7 is approximately.
[0074] さらに、画素電極 8、および垂直配向膜 (図示せず)をこの順に形成して構成される  Further, the pixel electrode 8 and the vertical alignment film (not shown) are formed in this order.
[0075] なお、本実施形態は、上述したように、 MVA型液晶表示装置であり、 ITOなどから なる画素電極 8にスリットパターン 11が設けられている。具体的には、スパッタリング により成膜し、フォトリソグラフィ一法によりレジストパターンを形成、塩ィ匕第二鉄などの エッチング液によりエッチングし、図 3に示すような画素電極パターンを得る。 Note that the present embodiment is an MVA type liquid crystal display device as described above, and the slit pattern 11 is provided in the pixel electrode 8 made of ITO or the like. Specifically, a film is formed by sputtering, a resist pattern is formed by a photolithography method, and etching is performed with an etching solution such as salt and ferric iron to obtain a pixel electrode pattern as shown in FIG.
[0076] 以上により、アクティブマトリクス基板 30を得る。  As described above, the active matrix substrate 30 is obtained.
[0077] なお、図 3【こ示す符号 12a, 12b, 12c, 12d, 12e, 12fiま、画素電極 8【こ形成れた スリットを示す。このスリットにおける電気的接続部分では配向が乱れ配向異常が発 生する。ただし、スリット 12a〜12dについては、配向異常に加えて、ゲート配線に供 給される電圧が、 TFT素子 3をオン状態に動作させるために供給されるプラス電位が 印加される時間が通常 秒オーダーであり、 TFT素子 3をオフ状態に動作させるた めに供給されるマイナス電位が印加される時間が通常 m秒オーダーであるため、マイ ナス電位が印加される時間が支配的である。このため、スリット 12a〜12dをゲート配 線上に位置させるとゲートマイナス DC印加成分により液晶中に含まれる不純物ィォ ンが集まるため、表示ムラとして視認される場合がある。よって、スリット 12a〜12dは ゲート配線と平面的に重ならない領域に設ける必要があるため、図 3に示すように、 ブラックマトリクス 24で隠すほうが望ましい。 [0077] Note that FIG. 3 [denoted by reference numerals 12a, 12b, 12c, 12d, 12e, 12fi, the pixel electrode 8] represents the formed slits. At the electrical connection part in this slit, the orientation is disturbed and an orientation abnormality occurs. However, for the slits 12a to 12d, in addition to the alignment abnormality, the time when the voltage supplied to the gate wiring is applied with the positive potential supplied to operate the TFT element 3 in the on state is usually on the order of seconds. Since the time during which the negative potential supplied to operate the TFT element 3 in the off state is normally on the order of milliseconds, the time during which the negative potential is applied is dominant. For this reason, when the slits 12a to 12d are positioned on the gate wiring, the impurity ions contained in the liquid crystal gather due to the gate minus DC application component, which may be visually recognized as display unevenness. Therefore, since the slits 12a to 12d need to be provided in a region that does not overlap with the gate wiring in a plan view, as shown in FIG. It is better to hide with Black Matrix 24.
[0078] 続、て、カラーフィルタ基板 20の製造方法にっ 、て説明する。 Next, a method for manufacturing the color filter substrate 20 will be described.
[0079] 上記カラーフィルタ基板 20は、透明基板 10上に、 3原色 (赤、緑、青)のカラーフィ ルタ 21およびブラックマトリクス(BM) 24などからなるカラーフィルタ層、対向電極 23 、垂直配向膜 25、および配向制御用の突起 22を有する。 [0079] The color filter substrate 20 is formed on the transparent substrate 10 with a color filter layer 21 made of three primary colors (red, green, blue) 21 and a black matrix (BM) 24, a counter electrode 23, and a vertical alignment film. 25 and a protrusion 22 for controlling the orientation.
[0080] まず、透明基板 10上に、スピンコートによりカーボンの微粒子を分散したネガ型の アクリル系感光性榭脂液を塗布した後、乾燥を行い、黒色感光性榭脂層を形成する 。続いて、フォトマスクを介して黒色感光性榭脂層を露光した後、現像を行って、ブラ ックマトリクス (BM) 24を形成する。このとき第 1着色層(例えば赤色層)、第 2着色層( 例えば緑色層)、および第 3着色層(例えば青色層)が形成される領域に、それぞれ 第 1着色層用の開口部、第 2着色層用の開口部、第 3着色層用の開口部 (それぞれ の開口部は各画素電極に対応)が形成されるように BMを形成する。より具体的には 、図 3に示すように、画素電極 8に形成されたスリット 12a〜12fにおける電気的接続 部分のスリット 12a〜l 2dに生じる配向異常領域を遮光する BMパターンを島状に形 成し、また、 TFT素子 3に外光が入射することにより光励起されるリーク電流の増加を 防ぐために TFT素子 3上に遮光部(BM)を形成する。 First, a negative acrylic photosensitive resin liquid in which carbon fine particles are dispersed is applied onto the transparent substrate 10 by spin coating, followed by drying to form a black photosensitive resin layer. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form a black matrix (BM) 24. At this time, in the regions where the first colored layer (for example, red layer), the second colored layer (for example, green layer), and the third colored layer (for example, blue layer) are formed, the first colored layer opening, The BM is formed so that an opening for the second colored layer and an opening for the third colored layer (each opening corresponds to each pixel electrode) are formed. More specifically, as shown in FIG. 3, the BM pattern is formed in an island shape to shield the alignment abnormal region generated in the slits 12a to 12d of the electrically connected portions of the slits 12a to 12f formed in the pixel electrode 8. In addition, a light shielding portion (BM) is formed on the TFT element 3 in order to prevent an increase in leakage current that is photoexcited by external light entering the TFT element 3.
[0081] 次に、スピンコートにより顔料を分散したネガ型のアクリル系感光性榭脂液を塗布し た後、乾燥を行い、フォトマスクを用いて露光および現像を行い赤色層を形成する。 Next, after applying a negative acrylic photosensitive resin solution in which a pigment is dispersed by spin coating, drying is performed, and exposure and development are performed using a photomask to form a red layer.
[0082] その後、第 2色層用(例えば緑色層)、および第 3色層用(例えば青色層)について も同様に形成し、カラーフィルタ 21が完成する。 [0082] Thereafter, the second color layer (for example, the green layer) and the third color layer (for example, the blue layer) are similarly formed, and the color filter 21 is completed.
[0083] さらに、 ITOなどの透明電極力もなる対向電極 23をスパッタリングにより形成し、そ の後、スピンコートによりポジ型のフエノールノボラック系感光性榭脂液を塗布した後 、乾燥を行い、フォトマスクを用いて露光および現像を行い垂直配向制御用の突起 2 2を形成する。 [0083] Further, a counter electrode 23 having a transparent electrode force such as ITO is formed by sputtering, and then a positive type phenol novolac photosensitive resin solution is applied by spin coating, followed by drying and a photomask. Are used for exposure and development to form vertical alignment control protrusions 22.
[0084] 以上により、カラーフィルタ基板 20が形成される。  As described above, the color filter substrate 20 is formed.
[0085] また、本実施形態では榭脂からなる BMの場合を示した力 金属からなる BMでも 構わない。また、 3原色の着色層は、赤、緑、青、に限られることはなぐシアン、マゼ ンタ、イェローなどの着色層があってもよぐまたホワイト層が含まれていても良い。 [0086] 上述のように製造されたカラーフィルタ基板 20とアクティブマトリクス基板 30とで液 晶パネル (第 1の液晶パネル、第 2の液晶パネル)を製造する方法について以下に説 明する。 [0085] Further, in the present embodiment, a BM made of a force metal as shown in the case of a BM made of a resin may be used. The three primary color layers may include cyan, magenta, yellow, and other white layers as well as red, green, and blue, and may include a white layer. A method of manufacturing a liquid crystal panel (first liquid crystal panel, second liquid crystal panel) using the color filter substrate 20 and the active matrix substrate 30 manufactured as described above will be described below.
[0087] まず、上記カラーフィルタ基板 20およびアクティブマトリクス基板 30の、液晶と接す る面に、垂直配向膜 25を形成する。具体的には、配向膜塗布前に脱ガス処理として 焼成を行いその後、基板洗浄、配向膜塗布行う。配向膜塗布後には配向膜焼成を 行う。配向膜塗布後洗浄を行った後、脱ガス処理としてさらに焼成を行う。垂直配向 膜 25は液晶 26の配向方向を規定する。  First, the vertical alignment film 25 is formed on the surfaces of the color filter substrate 20 and the active matrix substrate 30 that are in contact with the liquid crystal. Specifically, baking is performed as a degassing process before alignment film application, and then substrate cleaning and alignment film application are performed. After the alignment film is applied, the alignment film is baked. After the alignment film is applied and washed, further baking is performed as a degassing process. The vertical alignment film 25 defines the alignment direction of the liquid crystal 26.
[0088] 次に、アクティブマトリクス基板 30とカラーフィルタ基板 20との間に液晶を封入する 方法について説明する。  Next, a method for sealing liquid crystal between the active matrix substrate 30 and the color filter substrate 20 will be described.
[0089] 液晶の封入方法については、たとえば熱硬化型シール榭脂を基板周辺に一部液 晶注入のため注入口を設け、真空で注入口を液晶に浸し、大気開放することによつ て液晶を注入し、その後 UV硬化榭脂などで注入口を封止する、真空注入法などの 方法で行ってもよい。しかしながら、垂直配向の液晶パネルでは、水平配向パネルに 比べ注入時間が非常に長くなる欠点がある。ここでは液晶滴下貼り合せ法による説 明を行う。  [0089] Regarding the method of sealing the liquid crystal, for example, an injection port is provided for injecting a part of the thermosetting seal resin around the substrate for liquid crystal injection, the injection port is immersed in liquid crystal in a vacuum, and then opened to the atmosphere. It may be performed by a method such as a vacuum injection method in which liquid crystal is injected and then the injection port is sealed with UV curing resin or the like. However, the vertical alignment liquid crystal panel has a drawback that the injection time is much longer than that of the horizontal alignment panel. Here, explanation is given by the liquid crystal drop bonding method.
[0090] アクティブマトリクス基板側の周囲に UV硬化型シール榭脂を塗布し、カラーフィル タ基板に滴下法により液晶の滴下を行う。液晶滴下法により液晶によって所望のセル ギャップとなるよう最適な液晶量をシールの内側部分に規則的に滴下する。  [0090] A UV curable seal resin is applied around the active matrix substrate side, and liquid crystal is dropped onto the color filter substrate by a dropping method. The optimal amount of liquid crystal is regularly dropped on the inner part of the seal so that the desired cell gap is achieved by liquid crystal by the liquid crystal dropping method.
[0091] さらに、上記のようにシール描画および液晶滴下を行ったカラーフィルタ基板とァク ティブマトリクス基板を貼合せるため、貼り合わせ装置内の雰囲気を lPaまで減圧を 行い、この減圧下において基板の貼合せを行った後、雰囲気を大気圧にしてシール 部分が押しつぶされ、所望のシール部のギャップが得られる。  [0091] Further, in order to bond the color filter substrate and the active matrix substrate on which the seal drawing and liquid crystal dropping are performed as described above, the atmosphere in the bonding apparatus is reduced to lPa, and under this reduced pressure, the substrate After bonding, the seal portion is crushed by setting the atmosphere to atmospheric pressure, and the desired gap of the seal portion is obtained.
[0092] 次に、シール部分の所望のセルギャップを得た構造体にっ 、て、 UV硬化装置に て UV照射を行いシール榭脂の仮硬化を行う。さらに、シール榭脂の最終硬化を行う 為にベータを行う。この時点でシール榭脂の内側に液晶が行き渡り液晶がセル内に 充填された状態に至る。ベータ完了後に構造体を液晶パネル単位に分断することで 液晶パネルが完成する。 [0093] 本実施の形態では、第 1の液晶パネルも第 2の液晶パネルも同一のプロセスで製 造される。 Next, the structure having the desired cell gap in the seal portion is subjected to UV irradiation with a UV curing device to temporarily cure the seal resin. In addition, beta is performed to final cure the seal resin. At this point, the liquid crystal spreads inside the seal resin and the liquid crystal is filled in the cell. The liquid crystal panel is completed by dividing the structure into liquid crystal panel units after the beta is completed. In the present embodiment, the first liquid crystal panel and the second liquid crystal panel are manufactured by the same process.
[0094] 続いて、上述の製造方法により製造された第 1の液晶パネルと第 2の液晶パネルと の実装方法につ!、て説明する。  [0094] Subsequently, a mounting method of the first liquid crystal panel and the second liquid crystal panel manufactured by the above-described manufacturing method will be described.
[0095] ここでは、第 1の液晶パネルおよび第 2の液晶パネルを洗浄後、図 4に示すように、 第 1の液晶パネルの表面および裏面にそれぞれ偏光板 Aおよび Bを貼り付ける。また 、第 2の液晶パネルの裏面に偏光反射板を貼り付ける。なお、偏光板には必要に応 じて、光学補償シート等を積層してもよい。  Here, after cleaning the first liquid crystal panel and the second liquid crystal panel, as shown in FIG. 4, polarizing plates A and B are attached to the front and back surfaces of the first liquid crystal panel, respectively. In addition, a polarizing reflector is attached to the back surface of the second liquid crystal panel. Note that an optical compensation sheet or the like may be laminated on the polarizing plate as necessary.
[0096] 次に、ドライバ (液晶駆動用 LSI)を接続する。ここでは、ドライバを TCP (TapeCaree r Package)方式による接続について説明する。  Next, a driver (a liquid crystal driving LSI) is connected. Here, the connection of the driver using the TCP (Tape Carrier Package) method will be described.
[0097] 例えば、図 5に示すように、第 1の液晶パネルの端子部(1)に ACF (Arisotoropi Co nduktive Film)を仮圧着後、ドライバが乗せられた TCP (1)を、キャリアテープから打 ち抜き、パネル端子電極に位置合せし、加熱、本圧着する。その後、ドライバ TCP (1 )同士を連結するための回路基板(1)と TCP (l)の入力端子(1)を ACFで接続する  [0097] For example, as shown in FIG. 5, after temporarily crimping an ACF (Arisotoropic Conductive Film) on the terminal portion (1) of the first liquid crystal panel, the TCP (1) on which the driver is placed is removed from the carrier tape. Punch, align with the panel terminal electrode, heat and crimp. After that, connect the circuit board (1) for connecting the drivers TCP (1) to the input terminal (1) of TCP (l) with ACF.
[0098] 次に、 2枚のパネルを貼り合せる。偏光板 Bは両面に粘着層を供えている。第 2の液 晶パネルの表面を洗浄し、第 1の液晶パネルに貼り付けられた偏光板 Bの粘着層の ラミネートをはがし、精密に位置合せし、第 1の液晶パネルおよび第 2の液晶パネル を貼り合せる。このとき、パネルと粘着層の間に気泡が残る場合があるので、真空下 で貼り合せることが望ましい。 [0098] Next, the two panels are bonded together. Polarizing plate B has an adhesive layer on both sides. Clean the surface of the second liquid crystal panel, peel off the adhesive layer of the polarizing plate B attached to the first liquid crystal panel, align it precisely, and align the first liquid crystal panel and the second liquid crystal panel. Paste. At this time, since bubbles may remain between the panel and the adhesive layer, it is desirable to bond them under vacuum.
[0099] また、別の貼り合せ方法としては、常温またはパネルの耐熱温度以下で硬化する接 着剤たとえばエポキシ接着剤などをパネルの周辺部に塗布し、プラスチックスぺーサ を散布し、たとえばフッ素油などを封入しても良い。光学的に等方性で、ガラス基板と 同程度の屈折率を持ち、液晶と同程度の安定性な液体が望ましい。  [0099] As another bonding method, an adhesive that cures at room temperature or below the heat resistance temperature of the panel, such as an epoxy adhesive, is applied to the periphery of the panel, and a plastic spacer is sprayed, for example, fluorine. Oil or the like may be enclosed. A liquid that is optically isotropic, has a refractive index similar to that of a glass substrate, and is as stable as liquid crystal is desirable.
[0100] なお、本実施の形態では、図 4および図 5に記載されているように、第 1の液晶パネ ルの端子面と第 2の液晶パネルの端子面が同じ位置にあるような場合について説明 したが、これに限定されるものではない。また、パネルに対する端子の方向や貼り合 せ方法についても特に限定するものではない。たとえば、接着によらず機械的な固 定方法でもよい。 [0100] In the present embodiment, as described in FIGS. 4 and 5, the terminal surface of the first liquid crystal panel and the terminal surface of the second liquid crystal panel are in the same position. However, the present invention is not limited to this. Also, there are no particular restrictions on the direction of terminals and the method of bonding to the panel. For example, mechanical fixation regardless of adhesion The fixed method may be used.
[0101] その後、バックライトと呼ばれる照明装置と一体ィ匕することで、液晶表示装置 100と なる。  [0101] Thereafter, the liquid crystal display device 100 is obtained by integrating with an illumination device called a backlight.
[0102] ここで、本願発明に好適なバックライトの具体例にっ 、て、以下に説明する。但し、 本発明は、以下にあげる照明装置の形態に限られるものではなく適宜変更可能であ る。  [0102] Here, a specific example of a backlight suitable for the present invention will be described below. However, the present invention is not limited to the form of the lighting device described below, and can be changed as appropriate.
[0103] 本発明の液晶表示装置 100は表示原理により、従来のパネルより多くの光の量を 提供する能力がノ ックライトには求められる。し力も、波長領域でも短波長の吸収がよ り顕著になるのでバックライト側にはより波長の短 ヽ青 、光源を用いる必要性がある。 これらの条件を満たすバックライトの一例を図 6に示す。  In the liquid crystal display device 100 of the present invention, the ability to provide a larger amount of light than a conventional panel is required for the knocklight based on the display principle. However, since the absorption of short wavelengths becomes more prominent even in the wavelength region, it is necessary to use a light source with a shorter wavelength and a light source on the backlight side. An example of a backlight that satisfies these conditions is shown in FIG.
[0104] 本発明における液晶表示装置 100では、従来と同様の輝度を出すために、光源と して熱陰極ランプを使用する。熱陰極ランプは、一般的仕様で用いられている冷陰 極ランプより光の量が 6倍程度多く出力できることを特徴とする。  [0104] In the liquid crystal display device 100 of the present invention, a hot cathode lamp is used as a light source in order to obtain the same luminance as the conventional one. Hot cathode lamps are characterized by being able to output about 6 times more light than cold cathode lamps used in general specifications.
[0105] 図 6において、光源駆動回路 (インバータ)上に、主として、金属からなるハウジング が設けられ、このハウジング内に、熱陰極ランプが複数本配置した構成である。その 上部に、所定の光学効果を得るための光学シート類、具体的には今回は下力 拡散 シート、レンズシート、レンズシートが配置された構成となっている。  In FIG. 6, a housing mainly made of metal is provided on a light source driving circuit (inverter), and a plurality of hot cathode lamps are arranged in this housing. In the upper part, optical sheets for obtaining a predetermined optical effect, specifically, a lower force diffusion sheet, a lens sheet, and a lens sheet are arranged this time.
[0106] なお、図示しないが、本バックライトの発熱量は従来のものの 5倍にいたるためバッ クシャーシの背面には空気への放熱を促すフィンと、空気の流れを強制的に行うファ ンとが設けられている。  [0106] Although not shown in the drawing, the amount of heat generated by this backlight is five times that of the conventional one, so there are fins on the back of the back chassis that promote heat dissipation to the air, and a fan that forces the air flow Is provided.
[0107] 本バックライトの機構部材は、モジュール全体の主要機構部材をかねて 、て、本バ ックライトに前記実装済みパネルを配置し、パネル駆動回路や信号分配器を備えた 液晶表示用コントローラ、光源用電源、場合によっては家庭用一般電源を取り付け、 液晶モジュールが完成する。本バックライトに前記実装済みパネルを配置し、パネル を押える枠体を設置することで本発明の液晶表示装置となる。  [0107] The mechanism member of the backlight serves as the main mechanism member of the entire module, and the mounted panel is arranged on the backlight, and includes a panel drive circuit and a signal distributor, a liquid crystal display controller, a light source A power supply for home use, and in some cases a general power supply for home use, are installed to complete the LCD module. The liquid crystal display device of the present invention is obtained by arranging the mounted panel on the backlight and installing a frame body that holds the panel.
[0108] 本実施の形態では、熱陰極管を用いた直下方式の照明装置を示したが、用途に応 じて、投射方式やエッジライト方式でも良ぐ光源は冷陰極管或いは LED、 OEL、電 子線蛍光管などを用いてもよく、光学シートなどの組み合わせにお 、ても適宜選択 することが可能である。 [0108] In this embodiment mode, a direct illumination device using a hot cathode tube is shown. However, depending on the application, a light source that may be a projection method or an edge light method is a cold cathode tube, LED, OEL, Electron fluorescent tubes or the like may be used, or an appropriate combination of optical sheets Is possible.
[0109] さらに、他の実施形態として、液晶の垂直配向液晶分子の配向方向を制御する方 法として、以上に説明した実施形態ではアクティブマトリクス基板の画素電極にスリツ トを設けカラーフィルタ基板側に配向制御用の突起を設けたが、それらが逆の場合 でもよぐまた、両基板の電極にスリットを持たせた構造や、両基板の電極表面に配 向制御用の突起を設けた MVA型液晶パネルであっても構わない。  Furthermore, as another embodiment, as a method for controlling the alignment direction of the vertically aligned liquid crystal molecules of the liquid crystal, in the embodiment described above, a slit is provided on the pixel electrode of the active matrix substrate and the color filter substrate side. Protrusions for orientation control are provided, but they may be reversed. In addition, a structure in which slits are provided on the electrodes on both substrates, and an MVA type with orientation control projections on the electrode surfaces of both substrates It may be a liquid crystal panel.
[0110] カロえて、上記 MVA型ではなぐ一対の配向膜によって規定されるプレチルト方向( 配向処理方向)が互いに直交する垂直配向膜を用いる方法でも良い。また、液晶分 子がツイスト配向となる VAモードであってもよぐ VATN (Vertical Alibnment Twisted Nematic)モードと呼ばれることもある。 VATN方式は、配向制御用突起の部分での 光漏れによるコントラストの低下が無 、ことから、本願発明にお 、てはより好ま 、。 プレチルトは、光配向等により形成される。  [0110] A method using vertical alignment films in which pretilt directions (alignment processing directions) defined by a pair of alignment films other than the MVA type are orthogonal to each other may be used. Also, it may be called VATN (Vertical Alibnment Twisted Nematic) mode, which may be VA mode in which the liquid crystal molecules are twisted. The VATN method is more preferable for the present invention because there is no decrease in contrast due to light leakage at the alignment control protrusion. The pretilt is formed by optical alignment or the like.
[0111] ここで、上記構成の液晶表示装置 100の表示コントローラにおける駆動方法の具体 例について、図 7を参照しなが以下に説明する。ここでは、入力 8bit (256階調)、液 晶ドライバ 8bitの場合にっ 、て説明する。  [0111] Here, a specific example of the driving method in the display controller of the liquid crystal display device 100 having the above configuration will be described below with reference to FIG. Here, the case of input 8 bits (256 gradations) and liquid crystal driver 8 bits will be described.
[0112] 表示コントローラの第 1の液晶駆動部(1)は、入力部からの 8bitの入力信号(映像 ソース)に対し、 γ変換、オーバーシュートなどの駆動信号処理を行って第 1の液晶 パネルの第 1のパネルソース駆動手段に対し 8bit階調データを出力する。  [0112] The first liquid crystal drive unit (1) of the display controller performs the drive signal processing such as γ conversion and overshoot on the 8-bit input signal (video source) from the input unit, and the first liquid crystal panel 8bit gradation data is output to the first panel source driving means.
[0113] 一方、第 2の液晶駆動部(2)は、入力部からの 8bitの入力信号に対して、 γ変換、 オーバーシュートなどの信号処理を行って第 2の液晶パネルの第 2のパネルソース駆 動手段に対し 8bit階調データを出力する。  [0113] On the other hand, the second liquid crystal drive unit (2) performs signal processing such as γ conversion and overshoot on the 8-bit input signal from the input unit to perform the second panel of the second liquid crystal panel. Output 8-bit gradation data to the source drive means.
[0114] 第 1の液晶パネル、第 2の液晶パネルおよびその結果出力される出力画像は 8bit となり、入力信号に対し 1対 1に対応し、入力画像に忠実な画像となる。  [0114] The first liquid crystal panel, the second liquid crystal panel, and the output image output as a result are 8 bits, one-to-one corresponding to the input signal, and an image faithful to the input image.
[0115] 以上のように、上記構成の液晶表示装置 100は、図 2に示すように、偏光板 Aと偏 光板 B、偏光板 Bと偏光反射板はそれぞれ偏光軸が直交するように構成されて 、る。 すなわち、偏光板 Aと B、偏光板 Bと偏光反射板のそれぞれの偏光軸 (透過軸)は、 それぞれクロス-コルに配置されて 、る。  [0115] As described above, the liquid crystal display device 100 having the above-described configuration is configured such that the polarizing axes of the polarizing plate A and the polarizing plate B, and the polarizing plate B and the polarizing reflecting plate are orthogonal to each other, as shown in FIG. And That is, the polarization axes (transmission axes) of the polarizing plates A and B, the polarizing plate B, and the polarizing reflector are respectively arranged in a cross-cored manner.
[0116] これにより、第 1の液晶パネルが一枚だけの場合に比べて、コントラストを向上させ ることができる。し力も、光源側に偏光反射板を設けているので、光源からの偏光反 射板を透過した光が、第 2の液晶パネルに照射される場合に、該第 2の液晶パネル を透過しな力つた光 (戻り光)が、再度、偏光反射板に反射されて、第 2の液晶パネル に照射される。このように、光源力 の光は、偏光反射板を通して効率よぐ第 2の液 晶パネルに照射されるようになるので、高輝度化を可能とする。 [0116] This improves the contrast compared to the case where there is only one first liquid crystal panel. Can. In addition, since the polarizing reflector is provided on the light source side, when the light transmitted through the polarizing reflector from the light source is irradiated to the second liquid crystal panel, the light does not pass through the second liquid crystal panel. The strong light (return light) is reflected again by the polarizing reflector and applied to the second liquid crystal panel. In this way, the light of the light source power is irradiated on the second liquid crystal panel through the polarizing reflector so that the luminance can be increased.
[0117] 〔実施の形態 2〕 [Embodiment 2]
上記の実施の形態において、液晶表示装置 100の 2枚のパネルは、何れもカラー フィルタを有している場合について説明した力 本実施の形態では、何れか一方の パネルのみにカラーフィルタを設けた例について説明する。これにより、 2枚のパネル ともカラーフィルタを形成する場合に比べ、 RGB形成プロセスを削減できるため、コス ト的に有利となる。  In the above embodiment, the power described in the case where each of the two panels of the liquid crystal display device 100 has a color filter. In this embodiment, only one of the panels is provided with a color filter. An example will be described. This is advantageous in terms of cost because the RGB forming process can be reduced compared to the case of forming color filters on both panels.
[0118] 図 11、図 12を用いて本実施形態を説明する。図 11には、本発明に基づく本実施 形態の液晶表示装置の概略断面概要を示す。図 12には、偏光板を含めた液晶表示 装置の構成を示す。  This embodiment will be described with reference to FIGS. 11 and 12. FIG. 11 shows a schematic cross-sectional outline of the liquid crystal display device of the present embodiment based on the present invention. Figure 12 shows the configuration of a liquid crystal display device including a polarizing plate.
[0119] 図 1に示す液晶表示装置 100に比べて、図 11に示す液晶表示装置 100は、第 2の 液晶パネルにカラーフィルタ 21を形成せず、第 1の液晶パネルのみにカラーフィルタ 21を形成した点で異なって 、る。  Compared with the liquid crystal display device 100 shown in FIG. 1, the liquid crystal display device 100 shown in FIG. 11 does not form the color filter 21 on the second liquid crystal panel, but has the color filter 21 only on the first liquid crystal panel. It differs in the point that it formed.
[0120] 従来例と同じ色再現性を保ちたい場合には、第 1の液晶パネルのカラーフィルタ 21 の膜厚は、従来の一つのパネルで構成された場合のカラーフィルタ 21と同じ膜厚に すればよい。今回は第 1の液晶パネルのカラーフィルタ 21の膜厚は、 1. 8 mとした 。カラーフィルタ 21を設けない側の第 2の液晶パネルは、カラーフィルタ 21を設けた 第 1の液晶パネルに基づいて駆動される。たとえば、第 1の液晶パネルのある青表示 用の画素において、前記第 1の青画素の直下にある第 2の液晶パネルの画素は、前 記第 1の青画素の信号に基づいて駆動される。たとえば、同じ信号を入力しても良い  [0120] In order to maintain the same color reproducibility as in the conventional example, the film thickness of the color filter 21 of the first liquid crystal panel is the same as that of the color filter 21 in the case of a conventional single panel. do it. This time, the film thickness of the color filter 21 of the first LCD panel was set to 1.8 m. The second liquid crystal panel on the side where the color filter 21 is not provided is driven based on the first liquid crystal panel provided with the color filter 21. For example, in a blue display pixel with the first liquid crystal panel, the pixel of the second liquid crystal panel immediately below the first blue pixel is driven based on the signal of the first blue pixel. . For example, the same signal may be input
[0121] なお、カラーフィルタ 21を設けるパネルは、上記例と反対に、第 2の液晶パネル側 であってもかまわない。その他の構成'動作については、基本構成の図 1に示す液晶 表示装置 100と同様であるのでここでは説明を省略する。 [0122] 上記構成の液晶表示装置 100を用いた場合、基本構成の図 1に示す液晶表示装 置 100と比べ、 3原色 (赤、緑、青)の RGBカラーフィルタ 21を形成するプロセスを 1回 にすることができるため、コスト的に有利である。 [0121] Note that the panel provided with the color filter 21 may be on the second liquid crystal panel side, contrary to the above example. Since the other configuration 'operation is the same as that of the liquid crystal display device 100 shown in Fig. 1 of the basic configuration, description thereof is omitted here. [0122] When the liquid crystal display device 100 having the above configuration is used, the process of forming the RGB color filter 21 of three primary colors (red, green, and blue) is 1 compared to the liquid crystal display device 100 shown in FIG. This is advantageous in terms of cost.
[0123] また、図 13を用いて本実施の形態の他の例について説明する。図 13は、本発明に 基づく実施形態の液晶表示装置の概略断面図である。  [0123] Another example of the present embodiment will be described with reference to FIG. FIG. 13 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present invention.
[0124] 図 11に示す液晶表示装置 100では、カラーフィルタ 21を設けない側のパネルにお いて、ブラックマトリックス層(以下 BM) 24を榭脂で形成する場合、 BM榭脂の膜厚が 厚い場合には、 BMエッジ付近において配向状態が乱れる場合がある(参考;メタル BMに比べて榭脂 BMは光遮光性に劣るため、厚膜化が必要)。  [0124] In the liquid crystal display device 100 shown in FIG. 11, when the black matrix layer (hereinafter referred to as BM) 24 is formed of a resin on the panel on which the color filter 21 is not provided, the film thickness of the BM resin is thick. In some cases, the alignment state may be disturbed near the edge of the BM (reference; the resin BM is inferior in light-shielding properties compared to the metal BM, so a thick film is required).
[0125] この問題を解決するため、図 13に示す液晶表示装置 100において、カラーフィル タ 21を形成する位置に、色顔料を含まない透明層 27を形成すればよい。透明層 27 の材料は特に限定されるものではないが、透明性が高ぐ着色が無いものが良い。  In order to solve this problem, in the liquid crystal display device 100 shown in FIG. 13, a transparent layer 27 not containing a color pigment may be formed at a position where the color filter 21 is formed. The material of the transparent layer 27 is not particularly limited, but a material having high transparency and no coloring is preferable.
[0126] たとえば、透明層 27には色顔料を含まないネガ型のアクリル系感光性榭脂液感光 性を用いるとよい。そうすれば、図 1に示す液晶表示装置 100においてカラーフィル タ基板 20の製造方法の中で述べた、カラーフィルタ 21のパターンを形成するための フォトマスクを転用して、透明層 27のパターン形成の際に使用することができる。また は、専用に、一括露光できるフォトマスクを用いても良い。また、 BMをマスクとしてネ ガの感光性榭脂を使用し、裏面力 露光し、現像してもよい。  [0126] For example, the transparent layer 27 may be a negative acrylic photosensitive resin solution photosensitive material containing no color pigment. Then, in the liquid crystal display device 100 shown in FIG. 1, the photomask for forming the pattern of the color filter 21 described in the method of manufacturing the color filter substrate 20 is diverted to form the pattern of the transparent layer 27. Can be used during Alternatively, a dedicated photomask capable of batch exposure may be used. Alternatively, negative photosensitive resin may be used with BM as a mask, backside force exposure, and development may be performed.
[0127] なお、図 13ではカラーフィルタ 21が BM24の上に重なっている部分の乗り上げ段 差が強調して、記載されているが、一般的なアクリル系の感光性榭脂では、塗布の際 、 BM24の上に乗りあがる部分の膜厚は、 BM24の無い部分の膜厚よりも、大きく減 少するのが一般的である。そして、乗り上げ段差により配向が乱れる虞が高い。しか しながら、図 13に示す液晶表示装置 100では、乗り上げ段差による配向乱れは生じ ていない。  [0127] Note that in Fig. 13, the step-up difference of the portion where the color filter 21 is superimposed on the BM24 is emphasized, but in the case of a general acrylic photosensitive resin, it is not applied. In general, the film thickness of the part that rides on BM24 is much smaller than the film thickness of the part without BM24. In addition, there is a high possibility that the alignment is disturbed by the climbing step. However, in the liquid crystal display device 100 shown in FIG. 13, the alignment disorder due to the climbing step does not occur.
[0128] 本実施形態を用いた場合、透明層 27を形成することにより、カラーフィルタ 21を形 成した場合と、榭脂 BM24付近の断面形状がほぼ同じとなるため、榭脂 BM24のェ ッジで発生する配向乱れを防止することができる。これにより、配向乱れに起因する モアレを抑制することができる。 [0129] 図 14を用いて本実施の形態のさらに他の例について説明する。図 14は本発明に 基づく実施形態の液晶表示装置の概略断面図である。 When this embodiment is used, the transparent layer 27 is formed so that the cross-sectional shape in the vicinity of the resin BM24 is almost the same as that when the color filter 21 is formed. It is possible to prevent the alignment disorder generated by the die. As a result, moiré caused by orientation disorder can be suppressed. Still another example of the present embodiment will be described with reference to FIG. FIG. 14 is a schematic sectional view of a liquid crystal display device according to an embodiment of the present invention.
[0130] 目的は図 13に示す液晶表示装置 100と同じぐ厚膜の榭脂 BM24による、配向乱 れを防止することである。ここでは、平坦ィ匕膜 28を用いる。 [0130] The purpose is to prevent alignment disorder caused by the same thick resin BM24 as the liquid crystal display device 100 shown in FIG. Here, a flat film 28 is used.
[0131] 平坦化膜 28は、段差を軽減して表面の凹凸を減らす目的で使用される。平坦化膜[0131] The planarization film 28 is used for the purpose of reducing the level difference and reducing the unevenness of the surface. Planarization film
28は、平坦ィ匕材あるいはオーバーコート材と呼ばれる材料を塗布し、硬化させること により形成される。平坦ィ匕材 (オーバーコート材)は各種材料が市販されており、平坦 化が高ぐ透明性の高い材料も開発されている。また、材料によっては、フォトマスク を用いる必要の無い材料もあり、このような材料を用いれば、図 13に示す液晶表示 装置 100に比べ、露光、現像プロセスを簡略ィ匕することが可能である。 28 is formed by applying and curing a material called a flat sheet material or an overcoat material. Various materials are available on the market for flattened materials (overcoat materials), and highly transparent materials with high flatness have been developed. Depending on the material, there is a material that does not require the use of a photomask. By using such a material, the exposure and development processes can be simplified as compared with the liquid crystal display device 100 shown in FIG. .
[0132] 厚膜の榭脂 BM24に平坦ィ匕膜 28を用いれば、榭脂 BMによる段差が軽減され、榭 脂 BMのエッジで発生する配向乱れを防止することができる。これにより、配向乱れに 起因するモアレの発生を抑制することができる。 [0132] If the flat film 28 is used for the thick resin BM24, the level difference due to the resin BM can be reduced, and the alignment disorder generated at the edge of the resin BM can be prevented. As a result, it is possible to suppress the occurrence of moire due to the alignment disorder.
[0133] 以上、本実施の形態によれば、液晶表示パネルを 2枚重ねた場合においても、確 実にモアレの発生を抑制することができるので、光透過率の向上が図れ、結果として[0133] As described above, according to the present embodiment, even when two liquid crystal display panels are stacked, the occurrence of moire can be reliably suppressed, so that the light transmittance can be improved, and as a result.
、さらなる高輝度化を実現することが可能となる。 Thus, it is possible to realize further higher brightness.
[0134] 本実施の形態で開示した各液晶表示装置において、使用される光源についても前 記実施の形態で説明した熱陰極ランプを使用することで、さらなる高輝度化を図るこ とがでさる。 [0134] In each liquid crystal display device disclosed in the present embodiment, it is possible to further increase the brightness by using the hot cathode lamp described in the above embodiment as the light source to be used. .
[0135] また、熱陰極ランプを用いる場合には、冷却手段も前記実施の形態 1で説明したよ うな冷却手段を使用するのが好ましい。  [0135] When using a hot cathode lamp, it is preferable to use the cooling means as described in the first embodiment as the cooling means.
[0136] 〔実施の形態 3〕 [Embodiment 3]
本実施の形態では、カラーフィルタの無いパネル (以後、白黒パネルと呼ぶ)の 1ド ットの大きさ力 カラーフィルタの有るパネル(以後カラーパネルと呼ぶ)の 1ドットに対 し、ゲートバスラインの方向に 3倍(n= 3)、ソースバスラインの方向に 1倍(m= l)の 大きさとした。  In the present embodiment, the size of one dot of a panel without a color filter (hereinafter referred to as a black and white panel) and a gate bus line for one dot of a panel with a color filter (hereinafter referred to as a color panel). The size is 3 times (n = 3) in the direction of, and 1 time (m = l) in the direction of the source bus line.
[0137] 上記構成により、ソースドライバの個数を 1Z3に削減でき、コストダウンを図ることが できる。 [0138] つまり、 2枚のパネルともカラーフィルタを有するものであれば、どちらのパネルも 1ド ット力 図 15に示すように、 RGB毎に存在する。これに対して、一枚のパネルのみに カラーフィルタを形成するようにすれば、残りのパネルにはカラーフィルタを形成する 必要がなくなり、図 16に示すように、 1ドットの大きさを、図 15に示す 1ドットに対し、ゲ ートバスラインの方向に 3倍 (n= 3)、ソースバスラインの方向に 1倍 (m= 1)の大きさ にした。 [0137] With the above configuration, the number of source drivers can be reduced to 1Z3, and the cost can be reduced. That is, if two panels have color filters, both panels exist for each RGB as shown in FIG. On the other hand, if the color filter is formed on only one panel, it is not necessary to form the color filter on the remaining panels. As shown in FIG. The size of one dot shown in Fig. 15 was tripled in the direction of the gate bus line (n = 3) and 1 in the direction of the source bus line (m = 1).
[0139] 上記の構成の白黒パネルの階調データは、対応するカラーパネルの 3ドット分の階 調データのうちの最大階調に等しくなるように駆動した。  [0139] The gradation data of the monochrome panel having the above configuration was driven so as to be equal to the maximum gradation of the gradation data for three dots of the corresponding color panel.
[0140] また本実施の形態の別の例では、図 17に示すように、 n=6、 m= 2となるように白 黒パネルのドットサイズを形成した。これにより、ソースドライバは 1Z6、ゲートドライバ は 1Z2に削減できる。 In another example of the present embodiment, as shown in FIG. 17, the black and white panel dot size is formed so that n = 6 and m = 2. This reduces the source driver to 1Z6 and the gate driver to 1Z2.
[0141] 上記構成の白黒パネルの階調データは、対応するカラーパネルの 12ドット分の階 調データのうちの最大階調に等しくなるように設定されている。  [0141] The gradation data of the monochrome panel having the above configuration is set to be equal to the maximum gradation of the gradation data for 12 dots of the corresponding color panel.
[0142] 以上のように、 2枚のパネルのうち、一方のパネルのみがカラーフィルタを備えてい ることで、他方のパネルにカラーフィルタを形成する必要がない。これにより、コストダ ゥンを図ることができる。  [0142] As described above, since only one of the two panels includes the color filter, it is not necessary to form a color filter on the other panel. As a result, the cost can be reduced.
[0143] また、 2枚のパネルのうち、カラーフィルタが形成されていないパネルにおいて、ァク ティブマトリクス基板 30に対向する対向基板には、少なくともブラックマトリクスを備え てもよい。これにより、アクティブマトリクス基板 30に形成された TFT素子 3のオフリー クを低減でさる。  [0143] In addition, in the panel in which the color filter is not formed out of the two panels, the counter substrate facing the active matrix substrate 30 may include at least a black matrix. Thereby, off-leakage of the TFT element 3 formed on the active matrix substrate 30 can be reduced.
[0144] 上記のブラックマトリクスの開口部分に光透過性榭脂層を備えてもよい。この場合、 榭脂 BMの場合、膜厚が厚!、ため BMエッジでの配向乱れが発生することを防ぐこと ができる。  [0144] A light-transmitting resin layer may be provided in the opening of the black matrix. In this case, in the case of the resin BM, the film thickness is so thick that it is possible to prevent the occurrence of orientation disorder at the BM edge.
[0145] また、上記ブラックマトリクスおよびブラックマトリクスの開口部分を覆うように光透過 性榭脂層(平坦化膜)を備えてもょ ヽ。  [0145] Further, a light-transmitting resin layer (flattening film) may be provided so as to cover the black matrix and the opening of the black matrix.
[0146] この場合、榭脂 BMの場合、膜厚が厚!、ため BMエッジでの配向乱れが発生するこ とを防ぐことができる。し力も、マスクによる露光 ·現像工程の省略も可能となる。 [0146] In this case, in the case of the resin BM, the film thickness is so thick that it is possible to prevent the occurrence of alignment disorder at the BM edge. In addition, the exposure / development process using a mask can be omitted.
[0147] 図 15〜図 17で説明したように、本実施の形態では、カラーフィルタの無いパネル( 以後白黒パネルと呼ぶ)の 1ドットの大きさ力 s、カラーフィルタの有るパネル (以後カラ 一パネルと呼ぶ)の 1ドットに対し、ゲートバスラインの方向に 3倍(n= 3)、ソースバス ラインの方向に 1倍 (m= l)の大きさとしている。この構成により、ソースドライバの個 数を 1Z3に削減でき、コストダウンを図ることができる。 [0147] As described with reference to FIGS. 15 to 17, in this embodiment, a panel without a color filter ( The size of one dot in the black and white panel (hereinafter referred to as a black-and-white panel) s, three times in the direction of the gate bus line (n = 3) for one dot in a panel with a color filter (hereinafter referred to as a color panel), source bus The size is 1 time (m = l) in the direction of the line. With this configuration, the number of source drivers can be reduced to 1Z3, and costs can be reduced.
[0148] また、本発明における白黒パネルの階調データは、対応するカラーパネルの 3ドット 分の階調データのうちの最大階調に等しくなるように設定されている。  [0148] In addition, the gradation data of the monochrome panel in the present invention is set to be equal to the maximum gradation of the gradation data for three dots of the corresponding color panel.
[0149] また、別の実施形態では、 n=6、 m= 2となるように白黒パネルのドットサイズを形 成した。  [0149] In another embodiment, the dot size of the black and white panel is formed so that n = 6 and m = 2.
[0150] 本実施の形態により、ソースドライバは 1Z6、ゲートドライバは 1Z2に削減できると いう効果を奏する。  [0150] According to the present embodiment, there is an effect that the source driver can be reduced to 1Z6 and the gate driver can be reduced to 1Z2.
[0151] また、本発明の白黒パネルの階調データは、対応するカラーパネルの 12ドット分の 階調データのうちの最大階調に等しくなるように設定されている。  [0151] The gradation data of the monochrome panel of the present invention is set to be equal to the maximum gradation of the 12-dot gradation data of the corresponding color panel.
[0152] 具体的な液晶表示装置 100は、図 18に示すように、第 2の液晶パネルにおける画 素電極 8の大きさが、第 1の液晶パネルの画素電極 8の大きさの 3倍になるように形成 されている。  [0152] In the specific liquid crystal display device 100, as shown in FIG. 18, the size of the pixel electrode 8 in the second liquid crystal panel is three times the size of the pixel electrode 8 in the first liquid crystal panel. It is formed to be.
[0153] つまり、図 19に示すように、第 1の液晶パネルのアクティブマトリクス基板 30では、 R GBそれぞれに対応して絵素が形成され、 3つの絵素で同じ映像信号を表示するた めの画素を形成し、第 2の液晶パネルのアクティブマトリクス基板 30では、第 1の液晶 パネルの 1絵素の 3倍の大きさの絵素を画素としている。  That is, as shown in FIG. 19, in the active matrix substrate 30 of the first liquid crystal panel, a picture element is formed corresponding to each R GB and the same video signal is displayed by three picture elements. In the active matrix substrate 30 of the second liquid crystal panel, a pixel that is three times as large as one pixel of the first liquid crystal panel is used as the pixel.
[0154] 以上のように、白黒パネルの最小ドットを RGBの倍数単位に集合することに起因す るモアレを低減することができる。  [0154] As described above, it is possible to reduce moire caused by gathering the minimum dots of a monochrome panel in multiples of RGB.
[0155] 本実施の形態で開示した各液晶表示装置において、使用される光源についても前 記実施の形態 1で説明した熱陰極ランプを使用することで、さらなる高輝度化を図る ことができる。  [0155] In each liquid crystal display device disclosed in the present embodiment, it is possible to further increase the brightness by using the hot cathode lamp described in the first embodiment as the light source used.
[0156] ところで、液晶表示装置 100のように、第 1の液晶パネルと第 2の液晶パネルとを重 ね合わせた場合、モアレの発生が顕著になる。これは、二枚の液晶パネルを重ね合 わせたときに、生じる画素ズレに起因する。一般的に、二枚の液晶パネルを画素ズレ なく貼り合わせるのは非常に難しぐ完全に画素ズレを無くして貼り合わせることは非 常に困難である。また、ガラスなどに厚みがあるため、視差によるモアレ発生も起こりう る。 By the way, when the first liquid crystal panel and the second liquid crystal panel are overlapped as in the liquid crystal display device 100, the occurrence of moiré becomes significant. This is due to pixel shift that occurs when two liquid crystal panels are overlapped. In general, it is very difficult to bond two liquid crystal panels without pixel misalignment. Always difficult. In addition, since the glass is thick, moire due to parallax may occur.
[0157] 本願発明では、以下の実施の形態において、 2枚のパネルを重ね合わせた場合の モアレ対策について説明する。  In the present invention, a countermeasure against moire when two panels are overlapped in the following embodiment will be described.
[0158] 〔実施の形態 4〕  [Embodiment 4]
本実施の形態では、液晶表示装置 100に光拡散層を設けることでモアレの発生を 低減することについて説明する。ここでは、光拡散層を光拡散板として説明する。  In the present embodiment, description will be given of reducing the generation of moire by providing a light diffusion layer in the liquid crystal display device 100. Here, the light diffusion layer is described as a light diffusion plate.
[0159] 光拡散板の配設位置としては、例えば、図 20に示すように、第 1の液晶パネルの偏 光板 Aのさらに外側に光拡散層を備えてもよいし、図 21に示すように、第 2の液晶パ ネルと偏光板 Bとの間に光拡散層を備えてもよいが、最も好ましいのは、図 22に示す ように、第 2の液晶パネルと偏光板 Bとの間にさらに、偏光板 Dを配し、この偏光板 Dと 偏光板 Bとの間に光拡散層を備えたものである。偏光板 Dと偏光板 Bはパラレルニコ ルにして配置した。  For example, as shown in FIG. 20, the light diffusing plate may be provided with a light diffusing layer on the outer side of the polarizing plate A of the first liquid crystal panel, or as shown in FIG. In addition, a light diffusing layer may be provided between the second liquid crystal panel and the polarizing plate B, but the most preferable is as shown in FIG. Further, a polarizing plate D is arranged, and a light diffusion layer is provided between the polarizing plate D and the polarizing plate B. Polarizers D and B were arranged in parallel.
[0160] 上記光拡散層としては、アクリル系の硬化榭脂層や TAC (トリアセチルセルロース) フィルム、 PET (ポリエチレンテレフタラート)フィルムなどの基材に、シリカビーズ、酸 化アルミニウム、酸ィ匕チタン等の透明粒子を混ぜて固めたものを用いる。  [0160] The light diffusing layer includes an acrylic cured resin layer, a TAC (triacetyl cellulose) film, a PET (polyethylene terephthalate) film, and other materials, silica beads, aluminum oxide, and titanium oxide. Use a mixture of transparent particles such as
[0161] 上記光拡散層には、表面を荒らした透明層を用いてもよい。この場合、図 20に示 すような空気層と接触する部分の構成では安価でありながら確実な光拡散効果を得 ることがでさる。  [0161] As the light diffusion layer, a transparent layer having a rough surface may be used. In this case, the structure of the portion in contact with the air layer as shown in FIG. 20 can provide a reliable light diffusion effect while being inexpensive.
[0162] 上記光拡散層には、平均粒径が 370nm以上である基材と屈折率が異なる拡散粒 子が分散し含有されていてもよい。この場合、可視光線として最も視感度が高く支配 的な 555nm前後の波長の光は、屈折率 1. 5の部材の中で 555÷ 1. 5 =波長 370η mとなって 、て、その光を屈折作用により散乱することができる。  [0162] In the light diffusion layer, diffusion particles having a refractive index different from that of a substrate having an average particle diameter of 370 nm or more may be dispersed and contained. In this case, light with a wavelength of around 555 nm, which is the most visible and dominant as visible light, is 555 ÷ 1.5 = wavelength 370 ηm among the members with a refractive index of 1.5. It can be scattered by refraction.
[0163] 上記光拡散層には、平均粒径が 520nm以上である基材と屈折率が異なる拡散粒 子が分散し含有されていてもよい。この場合、可視光線として最も長波長な 780nm の波長の光は、屈折率 1. 5の部材の中で 780+ 1. 5 =波長 520nmとなっていて、 可視光線全領域を屈折作用により散乱することができる。  [0163] In the light diffusion layer, diffusion particles having a refractive index different from that of the substrate having an average particle diameter of 520 nm or more may be dispersed and contained. In this case, the light having the longest wavelength of visible light of 780 nm is 780 + 1.5 = wavelength of 520 nm among the members having a refractive index of 1.5, and the entire visible light region is scattered by refraction. be able to.
[0164] 上記光拡散層には、平均粒径が 3. 7 μ m以上である基材と屈折率が異なる拡散粒 子が分散し含有されていてもよい。この場合、可視光線散乱条件より平均粒径のォ 一ダーを一桁大きくすることで、可視光線全領域を波長による違いなぐ屈折作用に より安定的な散乱を実現することができる。 [0164] The light diffusion layer has a diffusion particle having a refractive index different from that of a base material having an average particle diameter of 3.7 μm or more. The child may be dispersed and contained. In this case, by increasing the order of the average particle size by an order of magnitude larger than the visible light scattering condition, stable scattering can be realized by the refractive action that makes the entire visible light region different depending on the wavelength.
[0165] また、図 23に示すように必ずしも全方位に対する拡散に本発明の趣旨を限定する ものではなぐモアレに支配的な構造物やモアレの縞の向きに垂直な拡散性を発揮 する層を適用しても構わない。具体的には、上記構造物や縞に対し平行なプリズム 形状の層(レンズシート)などを用いることができる。また前述した拡散層と組み合わ せてもよい。  [0165] Further, as shown in FIG. 23, a moiré-dominant structure that does not necessarily limit the gist of the present invention to diffusion in all directions or a layer that exhibits diffusivity perpendicular to the direction of the moire stripes is provided. You may apply. Specifically, a prism-shaped layer (lens sheet) parallel to the structure or stripes can be used. Further, it may be combined with the diffusion layer described above.
[0166] 上記ヘイズを与える方法は、散乱粒子の濃度を増やす、散乱粒子の屈折率を上げ る、平均粒径を最適化する、基材を厚くする等の方法でヘイズを 0%から 98%近くま でコントロールすることが可能である。  [0166] The method of giving haze is 0% to 98% by increasing the concentration of the scattering particles, increasing the refractive index of the scattering particles, optimizing the average particle diameter, thickening the base material, etc. It is possible to control up to close.
[0167] 〔実施の形態 5〕  [Embodiment 5]
本発明の液晶表示装置を適用したテレビジョン受信機について、図 24〜図 26を参 照しながら以下に説明する。  A television receiver to which the liquid crystal display device of the present invention is applied will be described below with reference to FIGS.
[0168] 図 24は、テレビジョン受信機用の液晶表示装置 601の回路ブロックを示す。  FIG. 24 shows a circuit block of a liquid crystal display device 601 for a television receiver.
[0169] 液晶表示装置 601は、図 24に示すように、 Y/C分離回路 500、ビデオクロマ回路 5 01、 A/Dコンバータ 502、液晶コントローラ 503、液晶ノネル 504、バックライト駆動 回路 505、バックライト 506、マイコン 507、階調回路 508を備えた構成となっている。  [0169] As shown in FIG. 24, the liquid crystal display device 601 includes a Y / C separation circuit 500, a video chroma circuit 5001, an A / D converter 502, a liquid crystal controller 503, a liquid crystal non-504, a backlight driving circuit 505, a back The configuration includes a light 506, a microcomputer 507, and a gradation circuit 508.
[0170] 上記液晶パネル 504は、第 1の液晶パネルと第 2の液晶パネルの 2枚構成であり、 上述した各実施の形態で説明した何れの構成であってもよい。  [0170] The liquid crystal panel 504 has a two-panel configuration including a first liquid crystal panel and a second liquid crystal panel, and may have any of the configurations described in the above embodiments.
[0171] 上記構成の液晶表示装置 601において、まず、テレビ信号の入力映像信号は、 Y ZC分離回路 500に入力され、輝度信号と色信号に分離される。輝度信号と色信号 はビデオクロマ回路 501にて光の 3原色である、 R、 G、 Bに変換され、さらに、このァ ナログ RGB信号は AZDコンバータ 502により、デジタル RGB信号に変換され、液 晶コントローラ 503に入力される。  In the liquid crystal display device 601 having the above configuration, first, an input video signal of a television signal is input to the Y ZC separation circuit 500 and separated into a luminance signal and a color signal. The luminance and color signals are converted to R, G, and B, which are the three primary colors of light, by the video chroma circuit 501, and this analog RGB signal is converted to a digital RGB signal by the AZD converter 502. Input to controller 503.
[0172] 液晶パネル 504では液晶コントローラ 503からの RGB信号が所定のタイミングで入 力されると共に、階調回路 508からの RGBそれぞれの階調電圧が供給され、画像が 表示されることになる。これらの処理を含め、システム全体の制御はマイコン 507が行 うことになる。 In the liquid crystal panel 504, the RGB signal from the liquid crystal controller 503 is input at a predetermined timing, and the RGB gradation voltages from the gradation circuit 508 are supplied to display an image. The microcomputer 507 controls the entire system including these processes. It will be.
[0173] なお、映像信号として、テレビジョン放送に基づく映像信号、カメラにより撮像された 映像信号、インターネット回線を介して供給される映像信号など、様々な映像信号に 基づ 、て表示可能である。  [0173] Note that the video signal can be displayed based on various video signals such as a video signal based on television broadcasting, a video signal captured by a camera, and a video signal supplied via an Internet line. .
[0174] さらに、図 25に示すチューナ部 600ではテレビジョン放送を受信して映像信号を出 力し、液晶表示装置 601ではチューナ部 600から出力された映像信号に基づいて 画像(映像)表示を行う。 Further, tuner unit 600 shown in FIG. 25 receives a television broadcast and outputs a video signal, and liquid crystal display device 601 displays an image (video) based on the video signal output from tuner unit 600. Do.
[0175] また、上記構成の液晶表示装置をテレビジョン受像機とするとき、例えば、図 26に 示すように、液晶表示装置 601を第 1筐体 301と第 2筐体 306とで包み込むようにし て挟持した構成となって 、る。 [0175] When the liquid crystal display device having the above configuration is a television receiver, for example, as shown in FIG. 26, the liquid crystal display device 601 is wrapped in a first housing 301 and a second housing 306. It is a structure that is held between.
[0176] 第 1筐体 301は、液晶表示装置 601で表示される映像を透過させる開口部 301aが 形成されている。 [0176] The first casing 301 is formed with an opening 301a through which an image displayed on the liquid crystal display device 601 is transmitted.
[0177] また、第 2筐体 306は、液晶表示装置 601の背面側を覆うものであり、該液晶表示 装置 601を操作するための操作用回路 305が設けられるとともに、下方に支持用部 材 308が取り付けられて!/、る。  The second casing 306 covers the back side of the liquid crystal display device 601. An operation circuit 305 for operating the liquid crystal display device 601 is provided, and a supporting member is provided below. 308 is attached!
[0178] 以上のように、上記構成のテレビジョン受信機では、液晶パネルが 1枚構成のもの よりも、コントラストが高ぐ且つ輝度の高い高品位の画像を表示することができる。  [0178] As described above, the television receiver having the above-described configuration can display high-quality images with higher contrast and higher brightness than those with a single liquid crystal panel.
[0179] なお、上記の各実施の形態においては、図 1に示すように、液晶パネルを 2枚を重 ねた場合について説明した力 これに限定されるものではなぐ液晶パネルを 3枚以 上重ねた場合であっても本発明を適用することができる。つまり、液晶パネルを 2枚 以上重ね合わせ、偏光透過層が液晶パネルを挟んでクロス-コルの関係に設けられ 、重ね合わせた液晶パネルのうち、隣接する液晶パネルの一方を第一の液晶パネル 、他方を第二の液晶パネルとしたときに、第一の液晶パネルが第一の表示信号に基 づ!、て表示し、第二の液晶パネルが第一の表示信号から得られる第二の表示信号 に基づいて表示する液晶表示装置についても適用可能である。この場合、上記偏光 透過層のうち、少なくとも 1層が、偏光を反射する偏光反射機能を有している偏光反 射層であればよい。  In each of the above embodiments, as shown in FIG. 1, the force described when two liquid crystal panels are overlapped is not limited to this, and there are three or more liquid crystal panels. The present invention can be applied even when they are stacked. That is, two or more liquid crystal panels are overlapped, and the polarized light transmission layer is provided in a cross-col relationship with the liquid crystal panel sandwiched between them. When the other is the second LCD panel, the first LCD panel is based on the first display signal! Thus, the present invention can also be applied to a liquid crystal display device that displays and displays the second liquid crystal panel based on the second display signal obtained from the first display signal. In this case, at least one of the polarized light transmitting layers may be a polarized light reflecting layer having a polarized light reflection function for reflecting polarized light.
[0180] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性 [0180] The present invention is not limited to the embodiments described above, but within the scope of the claims. Various modifications are possible, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. Industrial applicability
本発明の液晶表示装置は、コントラストを大幅に向上できるので、テレビジョン受信 機、放送用のモニタ等に適用できる。  Since the liquid crystal display device of the present invention can greatly improve the contrast, it can be applied to a television receiver, a broadcast monitor, and the like.

Claims

請求の範囲 The scope of the claims
[1] 液晶パネルを 2枚以上重ね合わせ、偏光透過層が液晶パネルを挟んでクロスニコ ルの関係に設けられ、重ね合わせた液晶パネルのうち、隣接する液晶パネルの一方 を第一の液晶パネル、他方を第二の液晶パネルとしたときに、第一の液晶パネルが 第一の表示信号に基づ 、て表示し、第二の液晶パネルが第一の表示信号力 得ら れる第二の表示信号に基づいて表示する液晶表示装置であって、  [1] Two or more liquid crystal panels are stacked, and a polarized light transmission layer is provided in a crossed nicols relationship across the liquid crystal panel, and one of the adjacent liquid crystal panels is the first liquid crystal panel, When the other is the second liquid crystal panel, the first liquid crystal panel displays based on the first display signal, and the second liquid crystal panel obtains the first display signal power. A liquid crystal display device that displays based on a signal,
上記偏光透過層のうち、少なくとも 1層が、偏光を反射する偏光反射機能を有して V、る偏光反射層であることを特徴とする液晶表示装置。  2. A liquid crystal display device according to claim 1, wherein at least one of the polarized light transmitting layers is a polarized light reflecting layer having a polarized light reflecting function for reflecting polarized light.
[2] 上記第一の液晶パネルと上記第二の液晶パネルに表示用の光を供給するための 照明装置を備え、  [2] An illumination device for supplying display light to the first liquid crystal panel and the second liquid crystal panel is provided,
上記偏光反射層は、複数ある偏光透過層のうち上記照明装置に最も近い位置に 配置されて 、ることを特徴とする請求項 1に記載の液晶表示装置。  2. The liquid crystal display device according to claim 1, wherein the polarization reflection layer is disposed at a position closest to the illumination device among a plurality of polarization transmission layers.
[3] 上記照明装置の光源として、熱陰極蛍光ランプが用いられていることを特徴とする 請求項 2に記載の液晶表示装置。 3. The liquid crystal display device according to claim 2, wherein a hot cathode fluorescent lamp is used as a light source of the illumination device.
[4] 上記第一の液晶パネルまたは上記第二の液晶パネルの何れか一方の液晶パネル にのみ、カラーフィルタが備えられて ヽることを特徴とする請求項 1から 3の何れか 1 項に記載の液晶表示装置。 [4] In any one of claims 1 to 3, wherein only one of the first liquid crystal panel and the second liquid crystal panel is provided with a color filter. The liquid crystal display device described.
[5] 上記カラーフィルタを備えて!/、な!/、側の液晶パネルは、アクティブマトリクス基板を 有し、該アクティブマトリクス基板に対向する対向基板には、少なくともブラックマトリク スが形成されていることを特徴とする請求項 4に記載の液晶表示装置。 [5] Equipped with the above color filter! / Wow! 5. The liquid crystal display device according to claim 4, wherein the liquid crystal panel on the / side has an active matrix substrate, and at least a black matrix is formed on a counter substrate facing the active matrix substrate. .
[6] 上記対向基板には、さらに、上記ブラックマトリクスの開口部分に光透過性榭脂層 が形成されて 、ることを特徴とする請求項 5に記載の液晶表示装置。 6. The liquid crystal display device according to claim 5, wherein the counter substrate further includes a light transmissive resin layer formed in an opening portion of the black matrix.
[7] 上記光透過性榭脂層は、上記ブラックマトリクスおよび該ブラックマトリクスの開口部 分を覆うように形成されていることを特徴とする請求項 6に記載の液晶表示装置。 7. The liquid crystal display device according to claim 6, wherein the light-transmitting resin layer is formed so as to cover the black matrix and an opening of the black matrix.
[8] 上記カラーフィルタを備えていない側の液晶パネルの 1ドットの大きさ力 カラーフィ ルタを備えて 、る側の液晶パネルの 1ドットの n X m倍 (n, mは実数少なくとも一方は[8] One dot size force of the LCD panel on the side without the above color filter n X m times one dot of the LCD panel on the other side with the color filter (n and m are real numbers, at least one of which is a real number)
1より大きぐ nはゲートバスラインに沿った方向、 mはソースバスラインに沿った方向) に等しいことを特徴とする請求項 4に記載の液晶表示装置。 5. The liquid crystal display device according to claim 4, wherein n is larger than 1 and n is a direction along the gate bus line, and m is a direction along the source bus line.
[9] 上記カラーフィルタを備えている側の液晶パネルは、赤画素と緑画素と青画素から 構成される絵素がマトリクス状に配置され、 [9] On the liquid crystal panel provided with the color filter, picture elements composed of red pixels, green pixels, and blue pixels are arranged in a matrix,
上記カラーフィルタを備えて 、な 、側の液晶パネルは、上記カラーフィルタを備え ている側の液晶パネルの絵素の整数倍の大きさの画素がマトリクス状に配置されて いることを特徴とする請求項 4に記載の液晶表示装置。  The liquid crystal panel on the side provided with the color filter is characterized in that pixels having an integer multiple of picture elements of the liquid crystal panel on the side provided with the color filter are arranged in a matrix. The liquid crystal display device according to claim 4.
[10] 液晶パネルに表示信号として階調データを出力し、該液晶パネルの表示制御を行 う表示制御手段を備え、 [10] Display control means for outputting gradation data as a display signal to the liquid crystal panel and controlling the display of the liquid crystal panel,
上記表示制御手段は、  The display control means includes
上記カラーフィルタを備えて 、な 、側の液晶パネルの 1ドットの階調データを、対応 するカラーフィルタを備えて 、る側の液晶パネルの n X mドット (n, mは実数少なくと も一方は 1より大きぐ nはゲートバスラインに沿った方向、 mはソースバスラインに沿 つた方向)の最大階調データとなるように、また、最大階調を反映した演算結果で示 される階調データとなるように制御することを特徴とする請求項 4に記載の液晶表示 装置。  Equipped with the above color filter, the gradation data of one dot of the liquid crystal panel on the side, n X m dots of the liquid crystal panel on the other side with the corresponding color filter (n and m are at least one of the real numbers) Is larger than 1, n is the direction along the gate bus line, and m is the direction along the source bus line), and the floor indicated by the calculation result reflecting the maximum gradation. 5. The liquid crystal display device according to claim 4, wherein the liquid crystal display device is controlled so as to become tone data.
[11] 上記重ね合わせた液晶パネルの少なくとも 1枚に光拡散性を有する光拡散層が設 けられて 、ることを特徴とする請求項 1に記載の液晶表示装置。  11. The liquid crystal display device according to claim 1, wherein a light diffusing layer having light diffusibility is provided on at least one of the superposed liquid crystal panels.
[12] テレビジョン放送を受信するチューナ部と、該チューナ部で受信したテレビジョン放 送を表示する表示装置とを備えたテレビジョン受信機において、  [12] In a television receiver comprising a tuner unit that receives a television broadcast and a display device that displays the television broadcast received by the tuner unit,
上記表示装置は、液晶パネルを 2枚以上重ね合わせ、偏光透過層が液晶パネルを 挟んでクロス-コルの関係に設けられ、重ね合わせた液晶パネルのうち、隣接する液 晶パネルの一方を第一の液晶パネル、他方を第二の液晶パネルとしたときに、第一 の液晶パネルが第一の表示信号に基づ 、て表示し、第二の液晶パネルが第一の表 示信号から得られる第二の表示信号に基づいて表示する液晶表示装置であって、 上記偏光透過層のうち、少なくとも 1層が、偏光を反射する偏光反射機能を有してい る偏光反射層であることを特徴とする液晶表示装置であることを特徴とするテレビジョ ン受信機。  In the above display device, two or more liquid crystal panels are overlapped, and a polarization transmission layer is provided in a cross-col relationship with the liquid crystal panel sandwiched therebetween, and one of the adjacent liquid crystal panels among the overlapped liquid crystal panels is the first. When the other liquid crystal panel is the second liquid crystal panel, the first liquid crystal panel displays based on the first display signal, and the second liquid crystal panel is obtained from the first display signal. A liquid crystal display device for displaying based on a second display signal, wherein at least one of the polarized light transmitting layers is a polarized light reflecting layer having a polarized light reflecting function of reflecting polarized light. A television receiver characterized by being a liquid crystal display device.
PCT/JP2006/319950 2005-12-14 2006-10-05 Liquid crystal display and television receiver WO2007069384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005360972 2005-12-14
JP2005-360972 2005-12-14

Publications (1)

Publication Number Publication Date
WO2007069384A1 true WO2007069384A1 (en) 2007-06-21

Family

ID=38162699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319950 WO2007069384A1 (en) 2005-12-14 2006-10-05 Liquid crystal display and television receiver

Country Status (1)

Country Link
WO (1) WO2007069384A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071371A1 (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Transparent substrate and light adjustment member
JP2022551775A (en) * 2019-08-29 2022-12-14 京東方科技集團股▲ふん▼有限公司 Liquid crystal display panel and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588197A (en) * 1991-09-30 1993-04-09 Fuji Electric Co Ltd Composite liquid crystal display panel device
JPH11326887A (en) * 1998-03-18 1999-11-26 Hitachi Ltd Liquid crystal display device
JP2004117652A (en) * 2002-09-25 2004-04-15 Rohm Co Ltd Composite display device
JP2005031552A (en) * 2003-07-10 2005-02-03 Sharp Corp Liquid crystal display element and liquid crystal projector equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0588197A (en) * 1991-09-30 1993-04-09 Fuji Electric Co Ltd Composite liquid crystal display panel device
JPH11326887A (en) * 1998-03-18 1999-11-26 Hitachi Ltd Liquid crystal display device
JP2004117652A (en) * 2002-09-25 2004-04-15 Rohm Co Ltd Composite display device
JP2005031552A (en) * 2003-07-10 2005-02-03 Sharp Corp Liquid crystal display element and liquid crystal projector equipped with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071371A1 (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Transparent substrate and light adjustment member
JP2020126280A (en) * 2018-10-01 2020-08-20 大日本印刷株式会社 Light control member and light control device
JP2022551775A (en) * 2019-08-29 2022-12-14 京東方科技集團股▲ふん▼有限公司 Liquid crystal display panel and display device
JP7474716B2 (en) 2019-08-29 2024-04-25 京東方科技集團股▲ふん▼有限公司 Liquid crystal display panel and display device

Similar Documents

Publication Publication Date Title
JP4772804B2 (en) Liquid crystal display device and television receiver
US8279375B2 (en) Display apparatus, driving apparatus of display apparatus, and electronic device
JP4870151B2 (en) Liquid crystal display device and television receiver
JP4878032B2 (en) Liquid crystal display device and television receiver
WO2007039958A1 (en) Liquid crystal display and television receiver
US8294736B2 (en) Display device driving method, driving circuit, liquid crystal display device, and television receiver
US6636192B1 (en) Electrooptic panel, projection display, and method for manufacturing electrooptic panel
WO2007040139A1 (en) Liquid crystal display device drive method, liquid crystal display device, and television receiver
JP3717333B2 (en) Reflective color liquid crystal display device having luminance-increasing subpixel, light scattering film including subpixel color filter, and method for producing the same
WO2008015830A1 (en) Liquid crystal display device, liquid crystal display method, and tv receiver
US20070058115A1 (en) Liquid crystal display apparatus
WO2007108162A1 (en) Composite type display device and television receiver
WO2007040158A1 (en) Liquid crystal display device and television receiver
JP2007310161A (en) Liquid crystal display device and television receiver
JP2008122536A (en) Liquid crystal display device, method for driving liquid crystal display device, and television receiver
WO2007086168A1 (en) Liquid crystal display and television receiver
JP4548475B2 (en) Liquid crystal display element and projection type liquid crystal display device
JP2003255321A (en) Color display device
JP2008111877A (en) Liquid crystal display apparatus and driving method thereof
US20020047960A1 (en) Liquid crystal display device and method of fabricating thereof
WO2007069384A1 (en) Liquid crystal display and television receiver
JP2009069422A (en) Liquid crystal display element and projection liquid crystal display
JP2008039936A (en) Liquid crystal display, liquid crystal drive device, and television receiver
JPH07318925A (en) Display element
JP2008145981A (en) Liquid crystal display, its driving method and television set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06811288

Country of ref document: EP

Kind code of ref document: A1