JP2011112952A - Liquid crystal display element and optical compensation method thereof - Google Patents

Liquid crystal display element and optical compensation method thereof Download PDF

Info

Publication number
JP2011112952A
JP2011112952A JP2009270516A JP2009270516A JP2011112952A JP 2011112952 A JP2011112952 A JP 2011112952A JP 2009270516 A JP2009270516 A JP 2009270516A JP 2009270516 A JP2009270516 A JP 2009270516A JP 2011112952 A JP2011112952 A JP 2011112952A
Authority
JP
Japan
Prior art keywords
liquid crystal
axis
plate
display element
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009270516A
Other languages
Japanese (ja)
Other versions
JP5544844B2 (en
JP2011112952A5 (en
Inventor
Toshiomi Ono
俊臣 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2009270516A priority Critical patent/JP5544844B2/en
Publication of JP2011112952A publication Critical patent/JP2011112952A/en
Publication of JP2011112952A5 publication Critical patent/JP2011112952A5/ja
Application granted granted Critical
Publication of JP5544844B2 publication Critical patent/JP5544844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display element having a wide angle of view and to provide an optical compensation method thereof. <P>SOLUTION: Two substrates opposed to each other in a liquid crystal cell 1 are subjected to alignment treatment in directions orthogonal to each other. A front side polarizing plate 2 is disposed on a viewer side of the liquid crystal cell 1 in such a way that transmission axis 2a of the polarizing plate 2 and a direction 16a of alignment treatment performed on the viewer side substrate of the liquid crystal cell 1 form an angle of 45° and a rear side polarizing plate 3 is disposed on the side opposite to the viewer side of the liquid crystal cell 1 in such a way that transmission axis 3a of the polarizing plate 3 and a direction 19a of alignment treatment performed on the substrate opposite to the viewer side substrate of the liquid crystal cell 1 form an angle of 45°. Angle-of-view compensation films 4 and 5 are disposed between the liquid crystal cell 1 and the front side polarizing plate 2 and between the liquid crystal cell 1 and the rear side polarizing plate 3 respectively in such a way that optical axes 4a and 5a of the films 4 and 5 are made coincident with the alignment treatment directions 16a and 19a, respectively. A retardation plate 9 is disposed between the rear side polarizing plate 3 and the rear side angle-of-view compensation film 5 in such a way that the slow axis 9a of the retardation plate is made coincident with the transmission axis 3a thereof. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液晶表示素子、特に液晶分子を90°の角度でツイスト配向させた液晶層を有する液晶表示素子及びその光学補償方法に関する。   The present invention relates to a liquid crystal display element, and more particularly to a liquid crystal display element having a liquid crystal layer in which liquid crystal molecules are twist-aligned at an angle of 90 ° and an optical compensation method thereof.

一般に、一対の平面電極を有する基板間に挟持された液晶層を有し、当該液晶層中の液晶分子を一方の基板から他方の基板に向けてツイスト配向させた液晶表示素子が知られている。この様な液晶表示素子の1つであるツイステッドネマティック(TN)型液晶表示素子において、液晶層内の液晶分子は、90°の角度でツイスト配向させられている。TN型液晶表示素子では、液晶層の観察側となる前側とその反対側の後側に、偏光板がそれぞれ配設されている。そしてこの一対の偏光板は、その透過軸を互いに直交させて配置されている。また、後側の偏光板の更に後側には、光源であるバックライトが配設されている。この様な構成を有する液晶表示素子においては、液晶層を挟持する平面電極に印加する電圧によって液晶層内の液晶分子の配向を制御できる。この液晶分子の配向の制御により、バックライトから出た光のうち2枚の偏光板を透過する光の量を制御し、当該液晶表示素子は画像の表示を行う。   In general, there is known a liquid crystal display element having a liquid crystal layer sandwiched between substrates having a pair of planar electrodes and liquid crystal molecules in the liquid crystal layer being twist-oriented from one substrate to the other substrate. . In a twisted nematic (TN) type liquid crystal display element which is one of such liquid crystal display elements, the liquid crystal molecules in the liquid crystal layer are twist-aligned at an angle of 90 °. In the TN type liquid crystal display element, polarizing plates are disposed on the front side which is the observation side of the liquid crystal layer and on the rear side on the opposite side. The pair of polarizing plates are arranged with their transmission axes orthogonal to each other. Further, a backlight, which is a light source, is disposed on the rear side of the rear polarizing plate. In the liquid crystal display device having such a configuration, the orientation of the liquid crystal molecules in the liquid crystal layer can be controlled by a voltage applied to the planar electrodes sandwiching the liquid crystal layer. By controlling the orientation of the liquid crystal molecules, the amount of light transmitted through the two polarizing plates among the light emitted from the backlight is controlled, and the liquid crystal display element displays an image.

前記の様な液晶表示素子においては、液晶分子の配向を規制するために基板上に設けられている配向膜の近傍における液晶分子の挙動が、配向膜による強い配向規制力によって抑制される(所謂アンカリング効果)。例えばこの様なアンカリング効果は、液晶表示素子のコントラストの低下や中間階調における階調反転等を引き起こす。その結果、当該液晶表示素子の表示品質は低下する。   In the liquid crystal display device as described above, the behavior of the liquid crystal molecules in the vicinity of the alignment film provided on the substrate in order to regulate the alignment of the liquid crystal molecules is suppressed by the strong alignment regulating force by the alignment film (so-called Anchoring effect). For example, such an anchoring effect causes a decrease in contrast of the liquid crystal display element, gradation inversion at an intermediate gradation, and the like. As a result, the display quality of the liquid crystal display element is degraded.

この様な表示品質の低下に対して、配向膜における配向処理の向きや偏光板の透過軸の向き、液晶セルと前側及び後側の偏光板との間への各種光学フィルムの挿入、及び挿入する各種光学フィルムの光学軸の向き等を最適化し、表示品質を改善する技術が、例えば特許文献1に開示されている。特許文献1には、例えば前記配向膜における配向処理方向と前記偏光板の透過軸の向きを45°の角度で交差するように配置したり、液晶セルと前側及び後側偏光板との間に、ディスコティック液晶層からなる一対の視野角補償フィルムを挿入したりする技術が開示されている。   For such deterioration in display quality, the orientation of the orientation film in the orientation film, the orientation of the transmission axis of the polarizing plate, the insertion of various optical films between the liquid crystal cell and the front and rear polarizing plates, and the insertion For example, Patent Document 1 discloses a technique for optimizing the orientation of the optical axis of various optical films to improve display quality. In Patent Document 1, for example, the alignment treatment direction in the alignment film and the direction of the transmission axis of the polarizing plate are arranged to intersect at an angle of 45 °, or between the liquid crystal cell and the front and rear polarizing plates. A technique for inserting a pair of viewing angle compensation films made of a discotic liquid crystal layer is disclosed.

特開2006−285220号公報JP 2006-285220 A

前記特許文献1に開示されている技術により、特許文献1に記載されている液晶表示素子の表示品質は向上している。しかし、当該液晶表示素子の表示を良好なコントラストで観察することができる観察角度範囲、即ち視野角が、特定方向において他の方向に比べて狭くなるといった課題が依然として存在する。   With the technology disclosed in Patent Document 1, the display quality of the liquid crystal display element described in Patent Document 1 is improved. However, there still remains a problem that an observation angle range in which the display of the liquid crystal display element can be observed with good contrast, that is, a viewing angle becomes narrower in a specific direction than in other directions.

そこで本発明は、全方向の視野角を改善した良好な表示品質を有する液晶表示素子と、その様な液晶表示素子を設計するための方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a liquid crystal display element having a good display quality with improved viewing angles in all directions and a method for designing such a liquid crystal display element.

前記目的を果たすため、本発明の液晶表示素子の一態様は、それぞれ電極が形成された互いに対向する面に、互いに90°を成す方向に配向処理が施された前側基板及び後側基板、並びに該前側基板及び後側基板の間に液晶分子を90°のツイスト角でツイスト配向させて設けられた液晶層を有する液晶素子と、前記前側基板に対して液晶層側とは反対側に、前記前側基板の配向処理の方向に対して透過軸が45°の角を成すように配置された前側偏光板と、前記後側基板に対して液晶層側とは反対側に、前記前側偏光板の透過軸に対して透過軸が90°の角を成すように配置された後側偏光板と、前記液晶素子と前記前側偏光板との間に配置された前側光学異方性フィルムであって、該前側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、該屈折率が最小となる特定方向を該フィルム面へ投影した方向と前記前側基板の配向処理方向との成す角は0°である、前側光学異方性フィルムと、前記液晶素子と前記後側偏光板との間に配置された後側光学異方性フィルムであって、該後側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、該屈折率が最小となる特定方向を該フィルム面へ投影した方向と前記後側基板の配向処理方向との成す角は0°である、後側光学異方性フィルムと、前記後側偏光板と前記後側光学異方性フィルムとの間に配置された位相差板であって、該位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs1軸、f1軸、並びにz1軸とし、該s1軸、該f1軸、及び該z1軸の方向の屈折率をそれぞれns1、nf1、及びnz1としたとき、ns1>nf1=nz1の関係を有し、該s1軸と前記後側偏光板の透過軸との成す角は0°である、位相差板と、を具備することを特徴とする。   In order to achieve the above object, one embodiment of the liquid crystal display element of the present invention includes a front substrate and a rear substrate in which orientation treatments are performed in directions of 90 ° on the surfaces facing each other on which electrodes are formed, and A liquid crystal element having a liquid crystal layer provided by twist-aligning liquid crystal molecules at a twist angle of 90 ° between the front substrate and the rear substrate; and the liquid crystal layer side opposite to the front substrate, A front polarizing plate arranged so that a transmission axis forms an angle of 45 ° with respect to the direction of alignment treatment of the front substrate, and the front polarizing plate on the side opposite to the liquid crystal layer side with respect to the rear substrate. A rear polarizing plate disposed so that the transmission axis forms an angle of 90 ° with respect to the transmission axis, and a front optical anisotropic film disposed between the liquid crystal element and the front polarizing plate, Specific to the normal of the film surface of the front optical anisotropic film A negative optical anisotropy in which the refractive index in the direction inclined in the direction is minimum, and a direction in which the specific direction in which the refractive index is minimum is projected onto the film surface and the alignment processing direction of the front substrate are formed An angle of 0 ° is a front optical anisotropic film, and a rear optical anisotropic film disposed between the liquid crystal element and the rear polarizing plate, the rear optical anisotropic film A negative optical anisotropy having a minimum refractive index in a direction inclined in a specific direction with respect to the normal of the film surface, and a direction in which the specific direction with the minimum refractive index is projected onto the film surface and The angle formed by the alignment treatment direction of the rear substrate is 0 °, the rear optical anisotropic film, and the retardation plate disposed between the rear polarizing plate and the rear optical anisotropic film A direction in which the refractive index is greatest along the plate surface of the retardation plate, and a refractive index which is the largest along the plate surface. The direction perpendicular to the direction and the normal direction of the plate surface are defined as s1, f1, and z1, respectively, and the refractive indexes in the directions of the s1, f1, and z1 axes are ns1, nf1, respectively. And nz1, a retardation plate having a relationship of ns1> nf1 = nz1 and an angle formed by the s1 axis and the transmission axis of the rear polarizing plate is 0 °. Features.

また、本発明の液晶表示素子の別の一態様は、それぞれ電極が形成された互いに対向する面に、互いに90°を成す方向に配向処理が施された前側基板及び後側基板、並びに該前側基板及び後側基板の間に液晶分子を90°のツイスト角でツイスト配向させて設けられた液晶層を有する液晶素子と、前記前側基板に対して液晶層側とは反対側に、前記前側基板の配向処理の方向に対して透過軸が45°の角を成すように配置された前側偏光板と、前記後側基板に対して液晶層側とは反対側に、前記前側偏光板の透過軸に対して透過軸が90°の角を成すように配置された後側偏光板と、前記液晶素子と前記前側偏光板との間に配置された前側光学異方性フィルムであって、該前側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、該屈折率が最小となる特定方向を該フィルム面へ投影した方向と前記前側基板の配向処理方向との成す角は0°である、前側光学異方性フィルムと、前記液晶素子と前記後側偏光板との間に配置された後側光学異方性フィルムであって、該後側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、該屈折率が最小となる特定方向を該フィルム面へ投影した方向と前記後側基板の配向処理方向との成す角は0°である、後側光学異方性フィルムと、前記前側偏光板と前記前側光学異方性フィルムとの間に配置された第1の位相差板であって、該第1の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs1軸、f1軸、並びにz1軸とし、該s1軸、該f1軸、及び該z1軸の方向の屈折率をそれぞれns1、nf1、及びnz1としたとき、ns1>nf1=nz1の関係を有し、該第1の位相差板のs1軸と前記前側光学異方性フィルムの光学軸との成す角は0°である、第1の位相差板と、前記後側偏光板と前記後側光学異方性フィルムとの間に配置された第2の位相差板であって、該第2の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs2軸、f2軸、並びにz2軸とし、該s2軸、該f2軸、及び該z2軸の方向の屈折率をそれぞれns2、nf2、及びnz2としたとき、ns2>nf2=nz2の関係を有し、該第2の位相差板のs2軸と前記後側光学異方性フィルムの光学軸との成す角は0°である、第2の位相差板と、前記後側偏光板と前記第2の位相差板との間に配置された第3の位相差板であって、該第3の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs3軸、f3軸、並びにz3軸とし、該s3軸、該f3軸、及び該z3軸の方向の屈折率をそれぞれns3、nf3、及びnz3としたとき、ns3>nf3=nz3の関係を有し、該第3の位相差板のs3軸と前記後側偏光板の透過軸との成す角は0°である、第3の位相差板と、を具備することを特徴とする。   Another embodiment of the liquid crystal display element of the present invention includes a front substrate and a rear substrate in which orientation treatments are performed in directions of 90 ° with each other on surfaces facing each other, and the front side A liquid crystal element having a liquid crystal layer provided by twist-aligning liquid crystal molecules at a twist angle of 90 ° between the substrate and the rear substrate; and the front substrate on a side opposite to the liquid crystal layer side with respect to the front substrate A front polarizing plate disposed so that a transmission axis forms an angle of 45 ° with respect to the orientation treatment direction, and a transmission axis of the front polarizing plate on a side opposite to the liquid crystal layer side with respect to the rear substrate. A rear polarizing plate arranged so that the transmission axis forms an angle of 90 °, and a front optically anisotropic film arranged between the liquid crystal element and the front polarizing plate, the front side Inclined in a specific direction with respect to the normal of the film surface of the optically anisotropic film The angle formed between the direction in which the specific direction in which the refractive index is minimized and the specific direction in which the refractive index is minimized is projected onto the film surface and the orientation processing direction of the front substrate is 0 °. A rear optical anisotropic film disposed between the front optical anisotropic film and the liquid crystal element and the rear polarizing plate, wherein the film surface of the rear optical anisotropic film A negative optical anisotropy having a minimum refractive index in a direction tilted in a specific direction with respect to the normal, and a direction in which the specific direction with the minimum refractive index is projected onto the film surface and the rear substrate; An angle formed with the orientation treatment direction is 0 °, and is a first optical retardation film disposed between a rear optical anisotropic film, the front polarizing plate and the front optical anisotropic film. A direction in which the refractive index is greatest along the plate surface of the first retardation plate, and a refractive index which is the largest along the plate surface. The direction perpendicular to the direction and the normal direction of the plate surface are defined as s1, f1, and z1, respectively, and the refractive indexes in the directions of the s1, f1, and z1 axes are ns1, nf1, respectively. , And nz1, the relationship is ns1> nf1 = nz1, and the angle formed between the s1 axis of the first retardation plate and the optical axis of the front optical anisotropic film is 0 °. 1 is a second retardation plate disposed between the retardation plate 1 and the rear polarizing plate and the rear optically anisotropic film, along the plate surface of the second retardation plate The direction having the highest refractive index, the direction orthogonal to the direction having the highest refractive index along the plate surface, and the normal direction of the plate surface are defined as the s2 axis, the f2 axis, and the z2 axis, respectively. When the refractive indexes in the directions of the f2 axis and the z2 axis are ns2, nf2, and nz2, respectively. , Ns2> nf2 = nz2, and the angle between the s2 axis of the second retardation plate and the optical axis of the rear optical anisotropic film is 0 °. And a third retardation plate disposed between the rear polarizing plate and the second retardation plate, and having the highest refractive index along the plate surface of the third retardation plate The direction perpendicular to the direction with the highest refractive index along the plate surface, and the normal direction of the plate surface are the s3 axis, the f3 axis, and the z3 axis, respectively, and the s3 axis, the f3 axis, and the When the refractive indexes in the direction of the z3 axis are ns3, nf3, and nz3, respectively, the relationship is ns3> nf3 = nz3, and the s3 axis of the third retardation plate and the transmission axis of the rear polarizing plate And a third retardation plate having an angle of 0 °.

また、本発明の液晶表示素子の光学補償方法の一態様は、それぞれ電極が形成された互いに対向する面に、互いに90°を成す方向に配向処理が施された前側基板及び後側基板、並びに該前側基板及び後側基板の間に液晶分子を90°のツイスト角でツイスト配向させて設けられる液晶層を有する液晶素子と、前記前側基板に対して液晶層側とは反対側に配置された前側偏光板と、前記後側基板に対して液晶層側とは反対側に該前側偏光板の透過軸に対して透過軸が90°の角を成すように配置される後側偏光板とにおける、前記液晶素子の前側基板の配向処理の方向と前記前側偏光板の透過軸との成す角を決定し、前記液晶素子と前記前側偏光板との間に配置される、該フィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有する前側光学異方性フィルムと、該液晶素子と前記後側偏光板との間に配置される、該フィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有する後側光学異方性フィルムとにおける、前記前側基板の配向処理方向と前記前側光学異方性フィルムの屈折率が最小となる向きを該前記前側光学異方性フィルムのフィルム面へ投影した方向との成す角と、前記後側基板の配向処理方向と前記後側光学異方性フィルムの屈折率が最小となる向きを該前記後側光学異方性フィルムのフィルム面へ投影した方向との成す角と、を前記前側基板と前記後側基板との間に十分に強い電場を形成させた時の当該液晶表示素子に表示される輝度の最大値が最小となる様に決定し、前記前側偏光板と前記前側光学異方性フィルムとの間及び前記後側偏光板と前記後側光学異方性フィルムとの間のうち少なくとも一方に配置される位相差板における、前記位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs軸、f軸、並びにz軸とし、該s軸、該f軸、及び該z軸の方向の屈折率をそれぞれns、nf、及びnzとしたとき、前記後側偏光板の透過軸と前記位相差板のs軸との成す角と、ns、nf、nz、及び該位相差板の厚さとの組み合わせと、を前記前側基板と前記後側基板との間に十分に強い電場を形成させた時の当該液晶表示素子に表示される輝度の最大値が最小となる様に決定する、ことを特徴とする。   Further, according to one aspect of the optical compensation method of the liquid crystal display element of the present invention, a front substrate and a rear substrate in which alignment treatments are performed in directions of 90 ° with each other on surfaces facing each other, and A liquid crystal element having a liquid crystal layer provided by twist-aligning liquid crystal molecules at a twist angle of 90 ° between the front substrate and the rear substrate, and disposed on a side opposite to the liquid crystal layer side with respect to the front substrate; A front polarizing plate, and a rear polarizing plate disposed on the opposite side of the liquid crystal layer with respect to the rear substrate so that the transmission axis forms an angle of 90 ° with respect to the transmission axis of the front polarizing plate Determining the angle between the direction of the alignment treatment of the front substrate of the liquid crystal element and the transmission axis of the front polarizing plate, and being disposed between the liquid crystal element and the front polarizing plate. Negative with a minimum refractive index in a direction inclined to a specific direction. The refractive index in the direction inclined in a specific direction with respect to the normal of the film surface, which is arranged between the front optical anisotropic film having optical anisotropy, the liquid crystal element and the rear polarizing plate And the rear optical anisotropic film having negative optical anisotropy, the orientation treatment direction of the front substrate and the direction in which the refractive index of the front optical anisotropic film is minimized An angle formed by the direction projected on the film surface of the conductive film, an orientation treatment direction of the rear substrate, and a direction in which the refractive index of the rear optical anisotropic film is minimized. And the angle formed with the direction projected onto the film surface of the liquid crystal display element when the sufficiently strong electric field is formed between the front substrate and the rear substrate is the minimum value of luminance displayed on the liquid crystal display element The front polarizing plate and the front optical The most refractive index along the plate surface of the retardation plate in the retardation plate disposed between the isotropic film and at least one of the rear polarizing plate and the rear optical anisotropic film. , The direction perpendicular to the direction with the highest refractive index along the plate surface, and the normal direction of the plate surface are the s-axis, f-axis, and z-axis, respectively, and the s-axis, the f-axis, And the refractive index in the direction of the z-axis is ns, nf, and nz, respectively, the angle formed by the transmission axis of the rear polarizing plate and the s-axis of the retardation plate, and ns, nf, nz, and In combination with the thickness of the retardation plate, the maximum value of the brightness displayed on the liquid crystal display element when a sufficiently strong electric field is formed between the front substrate and the rear substrate is minimized. It is characterized in that it is determined in the same way.

また、本発明の液晶表示素子の光学補償方法の別の一態様は、それぞれ電極が形成された互いに対向する面に、互いに90°を成す方向に配向処理が施された前側基板及び後側基板、並びに該前側基板及び後側基板の間に液晶分子を90°のツイスト角でツイスト配向させて設けられた液晶層を有する液晶素子と、前記前側基板に対して液晶層側とは反対側に配置される前側偏光板と、前記後側基板に対して液晶層側とは反対側に該前側偏光板の透過軸に対して透過軸が90°の角を成すように配置される後側偏光板とにおける、前記液晶素子の前側基板の配向処理の方向と前記前側偏光板の透過軸との成す角を決定し、前記液晶素子と前記前側偏光板との間に配置される、該フィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有する前側光学異方性フィルムと、該液晶素子と前記後側偏光板との間に配置される、該フィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有する後側光学異方性フィルムとにおける、前記前側基板の配向処理方向と前記前側光学異方性フィルムの屈折率が最小となる向きを該前記前側光学異方性フィルムのフィルム面へ投影した方向との成す角と、前記後側基板の配向処理方向と前記後側光学異方性フィルムの屈折率が最小となる向きを該前記後側光学異方性フィルムのフィルム面へ投影した方向との成す角と、を前記前側基板と前記後側基板との間に十分に強い電場を形成させた時の当該液晶表示素子に表示される輝度の最大値が最小となる様に決定し、前記前側偏光板と前記前側光学異方性フィルムとの間に配置される第1の位相差板と、前記後側偏光板と前記後側光学異方性フィルムとの間に配置される第2の位相差板とにおける、前記第1の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs1軸、f1軸、並びにz1軸とし、該s1軸、該f1軸、及び該z1軸の方向の屈折率をそれぞれns1、nf1、及びnz1とし、前期第2の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs2軸、f2軸、並びにz2軸とし、該s2軸、該f2軸、及び該z2軸の方向の屈折率をそれぞれns2、nf2、及びnz2としたとき、前記前側偏光板の透過軸と前記第1の位相差板のs1軸との成す角と、前記第1の位相差板のns1、nf1、nz1、及び該第1の位相差板の厚さd1との組み合わせと、前記前側偏光板の透過軸と前記第2の位相差板のs2軸との成す角と、前記第2の位相差板のns2、nf2、nz2、及び該第2の位相差板の厚さd2との組み合わせと、を前記前側基板と後側基板との間に電場を形成していない時の当該液晶表示素子に表示される輝度の最小値が最大となる様に決定し、前記前側偏光板と前記第1の位相差板との間及び前記後側偏光板と前記第2の位相差板との間のうち少なくとも一方に配置される位相差板における、前記位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs軸、f軸、並びにz軸とし、該s軸、該f軸、及び該z軸の方向の屈折率をそれぞれns、nf、及びnzとしたとき、前記後側偏光板の透過軸と前記位相差板のs軸との成す角と、ns、nf、nz、及び該位相差板の厚さとの組み合わせと、を前記前側基板と前記後側基板との間に十分に強い電場を形成させた時の当該液晶表示素子に表示される輝度の最大値が最小となる様に決定する、ことを特徴とする。   Further, another aspect of the optical compensation method for the liquid crystal display element of the present invention is that the front substrate and the rear substrate in which the surfaces opposite to each other on which the electrodes are formed are subjected to alignment treatment in a direction of 90 ° with each other. A liquid crystal element having a liquid crystal layer in which liquid crystal molecules are twist-aligned at a twist angle of 90 ° between the front substrate and the rear substrate, and on the opposite side of the liquid crystal layer side with respect to the front substrate A front polarizing plate disposed and a rear polarizing plate disposed on the opposite side of the liquid crystal layer with respect to the rear substrate so that the transmission axis forms an angle of 90 ° with respect to the transmission axis of the front polarizing plate. And an angle formed between a direction of alignment treatment of the front substrate of the liquid crystal element and a transmission axis of the front polarizing plate in a plate, and the film surface disposed between the liquid crystal element and the front polarizing plate The refractive index in a direction inclined in a specific direction with respect to the normal of A refractive index in a direction inclined in a specific direction with respect to the normal of the film surface, which is disposed between the front optical anisotropic film having negative optical anisotropy, the liquid crystal element, and the rear polarizing plate. In the rear optical anisotropic film having the negative optical anisotropy that minimizes the orientation of the front substrate and the direction in which the refractive index of the front optical anisotropic film is minimized. An angle formed by the direction projected on the film surface of the anisotropic film, an orientation treatment direction of the rear substrate, and a direction in which the refractive index of the rear optical anisotropic film is minimized are the rear optical anisotropic. The angle formed with the direction projected on the film surface of the conductive film, and the maximum value of the luminance displayed on the liquid crystal display element when a sufficiently strong electric field is formed between the front substrate and the rear substrate Is determined to be the smallest, the front polarizing plate and the front side A first retardation plate disposed between the optically anisotropic film and a second retardation plate disposed between the rear polarizing plate and the rear optical anisotropic film, The direction having the highest refractive index along the plate surface of the first retardation plate, the direction orthogonal to the direction having the highest refractive index along the plate surface, and the normal direction of the plate surface are respectively represented by s1 axis, The refractive indices in the directions of the s1 axis, the f1 axis, and the z1 axis are ns1, nf1, and nz1, respectively, and are most refracted along the plate surface of the second phase difference plate. The direction in which the refractive index is large, the direction orthogonal to the direction having the largest refractive index along the plate surface, and the normal direction of the plate surface are the s2 axis, the f2 axis, and the z2 axis, respectively. , And the refractive index in the z2 axis direction are ns2, nf2, and nz2, respectively. The angle formed by the transmission axis of the front polarizing plate and the s1 axis of the first retardation plate, ns1, nf1, nz1 of the first retardation plate, and the thickness of the first retardation plate d1 and the angle formed by the transmission axis of the front polarizer and the s2 axis of the second retardation plate, ns2, nf2, nz2 and the second position of the second retardation plate. The combination with the thickness d2 of the phase difference plate is determined so that the minimum value of luminance displayed on the liquid crystal display element when an electric field is not formed between the front substrate and the rear substrate is maximized. And the phase difference in the phase difference plate disposed between at least one of the front side polarization plate and the first phase difference plate and between the rear side polarization plate and the second phase difference plate. The direction with the highest refractive index along the plate surface of the plate, the direction orthogonal to the direction with the highest refractive index along the plate surface , And the normal direction of the plate surface are s-axis, f-axis, and z-axis, respectively, and the refractive indices in the directions of the s-axis, f-axis, and z-axis are ns, nf, and nz, respectively. A combination of an angle formed by the transmission axis of the rear polarizing plate and the s-axis of the retardation plate, and ns, nf, nz, and the thickness of the retardation plate, the front substrate and the rear substrate. The maximum luminance value displayed on the liquid crystal display element when a sufficiently strong electric field is formed between them is determined to be minimum.

本発明に依れば、全方向の視野角を改善した良好な表示品質を有する液晶表示素子と、その様な液晶表示素子を設計するための方法を提供できる。   According to the present invention, it is possible to provide a liquid crystal display element having good display quality with improved viewing angles in all directions and a method for designing such a liquid crystal display element.

本発明の第1の実施形態に係る液晶表示素子の模式的断面図。1 is a schematic cross-sectional view of a liquid crystal display element according to a first embodiment of the present invention. 本発明の第1の実施形態に係る液晶表示素子の光学的な構成を示す分解平面図。1 is an exploded plan view showing an optical configuration of a liquid crystal display element according to a first embodiment of the present invention. 本発明の第1の実施形態に係る前側視野角補償フィルムの模式的断面図。1 is a schematic cross-sectional view of a front viewing angle compensation film according to a first embodiment of the present invention. 本発明の第1の実施形態に係る液晶表示素子における電場が形成されていない場合の液晶分子の配向状態を説明する図であり、(a)は平面図、(b)は断面図。It is a figure explaining the orientation state of the liquid crystal molecule in case the electric field is not formed in the liquid crystal display element which concerns on the 1st Embodiment of this invention, (a) is a top view, (b) is sectional drawing. 本発明の第1の実施形態に係る液晶表示素子における電場が形成されている場合の液晶分子の配向状態を説明する図であり、(a)は平面図、(b)は断面図。It is a figure explaining the orientation state of a liquid crystal molecule in case the electric field is formed in the liquid crystal display element which concerns on the 1st Embodiment of this invention, (a) is a top view, (b) is sectional drawing. 本発明の第1の実施形態に係る液晶表示素子において黒補償用位相差板が存在しない場合の当該液晶表示素子の視野角特性を示す図。The figure which shows the viewing angle characteristic of the said liquid crystal display element in case the black phase difference plate does not exist in the liquid crystal display element which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る液晶表示素子における、黒補償用位相差板9の遅相軸が後側偏光板の透過軸と直交する場合の、黒補償用位相差板のR0と光漏れの最大値Tmaxとの関係を示す図。In the liquid crystal display device according to the first embodiment of the present invention, when the slow axis of the black compensation phase difference plate 9 is orthogonal to the transmission axis of the rear polarizing plate, R0 and light of the black compensation phase difference plate The figure which shows the relationship with the maximum value Tmax of a leak. 本発明の第1の実施形態に係る液晶表示素子における、黒補償用位相差板9の遅相軸が後側偏光板の透過軸と平行な場合の、黒補償用位相差板のR0と光漏れの最大値Tmaxとの関係を示す図。In the liquid crystal display device according to the first embodiment of the present invention, when the slow axis of the black compensation retardation plate 9 is parallel to the transmission axis of the rear polarizing plate, R0 and light of the black compensation retardation plate The figure which shows the relationship with the maximum value Tmax of a leak. 本発明の第1の実施形態に係る液晶表示素子の視野角特性を示す図。The figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る液晶表示素子の模式的断面図。The typical sectional view of the liquid crystal display element concerning a 2nd embodiment of the present invention. 本発明の第2の実施形態に係る液晶表示素子の光学的な構成を示す分解平面図。The disassembled plan view which shows the optical structure of the liquid crystal display element which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る液晶表示素子において黒補償用位相差板が存在しない場合の当該液晶表示素子の視野角特性を示す図。The figure which shows the viewing angle characteristic of the said liquid crystal display element in case the retardation plate for black compensation does not exist in the liquid crystal display element which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る液晶表示素子における、黒補償用位相差板の遅相軸が後側偏光板の透過軸と直交する場合の、黒補償用位相差板のR0と光漏れの最大値Tmaxとの関係を示す図。In the liquid crystal display device according to the second embodiment of the present invention, when the slow axis of the black compensation retardation plate is orthogonal to the transmission axis of the rear polarizing plate, R0 of the black compensation retardation plate and light leakage The figure which shows the relationship with the maximum value Tmax. 本発明の第2の実施形態に係る液晶表示素子における、黒補償用位相差板の遅相軸が後側偏光板の透過軸と平行な場合の、黒補償用位相差板のR0と光漏れの最大値Tmaxとの関係を示す図。In the liquid crystal display device according to the second embodiment of the present invention, R0 and light leakage of the black compensation phase difference plate when the slow axis of the black compensation phase difference plate is parallel to the transmission axis of the rear polarizing plate. The figure which shows the relationship with the maximum value Tmax. 本発明の第2の実施形態に係る液晶表示素子の視野角特性を示す図。The figure which shows the viewing angle characteristic of the liquid crystal display element which concerns on the 2nd Embodiment of this invention.

[第1の実施形態]
まず、本発明の第1の実施形態について図面を参照して説明する。本発明の第1の実施形態に係る液晶表示素子は、図1にその概略を示す様に、液晶セル1と、前側偏光板2と、後側偏光板3と、前側視野角補償フィルム4と、後側視野角補償フィルム5と、黒補償用位相差板9とを有する。前側偏光板2と後側偏光板3とは、その光の透過軸が互いに直交する様に配置されている。これら2枚の偏光板に挟まれている液晶セル1は、例えばツイステッドネマティック型の液晶セルであり、液晶シャッターとして働く。液晶セル1の前側水平配向膜16及び後側水平配向膜19の配向方向は、互いに直交しており、それぞれ、前側偏光板2の透過軸を45°回転させた方向、後側偏光板3の透過軸を45°回転させた方向である。
[First Embodiment]
First, a first embodiment of the present invention will be described with reference to the drawings. As shown schematically in FIG. 1, the liquid crystal display device according to the first embodiment of the present invention includes a liquid crystal cell 1, a front polarizing plate 2, a rear polarizing plate 3, and a front viewing angle compensation film 4. The rear viewing angle compensation film 5 and the black compensation phase difference plate 9 are provided. The front polarizing plate 2 and the rear polarizing plate 3 are arranged so that their light transmission axes are orthogonal to each other. The liquid crystal cell 1 sandwiched between these two polarizing plates is, for example, a twisted nematic liquid crystal cell and functions as a liquid crystal shutter. The alignment directions of the front horizontal alignment film 16 and the rear horizontal alignment film 19 of the liquid crystal cell 1 are orthogonal to each other, respectively, the direction in which the transmission axis of the front polarizing plate 2 is rotated by 45 °, and the rear polarizing plate 3 This is the direction in which the transmission axis is rotated by 45 °.

後側偏光板3の更に後側(観察側と逆側。図面では下方向側とする)には、図示しない光源であるバックライトが配設されている。液晶セル1の液晶層110を挟持する共通電極15及び画素電極17の間に電場を形成することで、バックライトから出た光のうち2枚の偏光板を透過する光の量を制御できる。この様にして当該液晶表示素子は画像表示を行う。   A backlight, which is a light source (not shown), is disposed on the rear side of the rear polarizing plate 3 (on the opposite side to the observation side, which is the lower side in the drawing). By forming an electric field between the common electrode 15 and the pixel electrode 17 that sandwich the liquid crystal layer 110 of the liquid crystal cell 1, it is possible to control the amount of light transmitted through the two polarizing plates out of the light emitted from the backlight. In this way, the liquid crystal display element displays an image.

液晶セル1と前側偏光板2との間にある前側視野角補償フィルム4と、液晶セル1と後側偏光板3との間にある後側視野角補償フィルム5とは、ディスコティック液晶を含む。ディスコティック液晶は、一方の面から他方の面に向かって倒伏配向状態から徐々に立ち上がるハイブリッド配向をしている。この様な視野角補償フィルムを用いることにより、様々な角度方向の複屈折性を補償することができる。つまり、視野角補償フィルムは、黒色表示を補償して、当該液晶表示素子の表示を良好なコントラストで観察することができる観察角度範囲、即ち視野角を、拡大させる効果を有する。本実施形態において、前側視野角補償フィルム4のディスコティック液晶分子43aの分子軸43bの平均方向のフィルム面投影方向は、前側水平配向膜16の配向方向と一致しており、後側視野角補償フィルム5のディスコティック液晶分子53aの分子軸53bの平均方向のフィルム面投影方向は、後側水平配向膜19の配向方向と一致している。   The front viewing angle compensation film 4 between the liquid crystal cell 1 and the front polarizing plate 2 and the rear viewing angle compensation film 5 between the liquid crystal cell 1 and the rear polarizing plate 3 include discotic liquid crystals. . The discotic liquid crystal has a hybrid orientation that gradually rises from a lying orientation state from one surface to the other surface. By using such a viewing angle compensation film, birefringence in various angular directions can be compensated. That is, the viewing angle compensation film has an effect of compensating the black display and expanding the observation angle range in which the display of the liquid crystal display element can be observed with good contrast, that is, the viewing angle. In this embodiment, the film surface projection direction of the average direction of the molecular axis 43b of the discotic liquid crystal molecules 43a of the front viewing angle compensation film 4 coincides with the orientation direction of the front horizontal alignment film 16, and the rear viewing angle compensation is performed. The film surface projection direction of the average direction of the molecular axis 53 b of the discotic liquid crystal molecules 53 a of the film 5 coincides with the alignment direction of the rear horizontal alignment film 19.

更に、本実施形態に係る液晶表示素子は、後側視野角補償フィルム5と後側偏光板3との間に、黒補償用位相差板9を有している。黒補償用位相差板9は一軸性フィルムであり、黒補償用位相差板の遅相軸は、後側偏光板3の透過軸と平行である。   Furthermore, the liquid crystal display element according to the present embodiment includes a black compensation phase difference plate 9 between the rear viewing angle compensation film 5 and the rear polarizing plate 3. The black compensation phase difference plate 9 is a uniaxial film, and the slow axis of the black compensation phase difference plate is parallel to the transmission axis of the rear polarizing plate 3.

前記の様な黒補償用位相差板9の存在により、前側偏光板2及び後側偏光板3の透過軸を45°回転させた方向の、黒表示時における光漏れを更に低減させることができる。即ち、当該黒補償用位相差板9の存在により、これがないときに比べて、黒表示時の視野角が更に改善される。   Due to the presence of the black compensation phase difference plate 9 as described above, it is possible to further reduce light leakage during black display in a direction in which the transmission axes of the front polarizing plate 2 and the rear polarizing plate 3 are rotated by 45 °. . In other words, the presence of the black compensation phase difference plate 9 further improves the viewing angle during black display compared to the case without this.

本実施形態に係る液晶表示素子を設計するにあたっては、まず、視野角特性をその良否を確認しながら、液晶セル1の前側水平配向膜16及び後側水平配向膜19の配向方向と、前側偏光板2及び後側偏光板3の透過軸の位置関係を決定する。次に、前記の液晶セル1、前側偏光板2、及び後側偏光板3からなる液晶表示素子の視野角特性を改善するために、前側視野角補償フィルム4及び後側視野角補償フィルム5の挿入を検討する。ここでも、これらの光学軸の位置関係を、視野角特性をその良否を確認しながら決定する。そして、更に視野角特性を改善するために、黒補償用位相差板9の挿入を検討する。ここでも、これらの光学軸の位置関係を、視野角特性をその良否を確認しながら決定する。   In designing the liquid crystal display device according to the present embodiment, first, while confirming the quality of the viewing angle characteristics, the alignment direction of the front horizontal alignment film 16 and the rear horizontal alignment film 19 of the liquid crystal cell 1 and the front polarization The positional relationship between the transmission axes of the plate 2 and the rear polarizing plate 3 is determined. Next, in order to improve the viewing angle characteristics of the liquid crystal display element composed of the liquid crystal cell 1, the front polarizing plate 2, and the rear polarizing plate 3, the front viewing angle compensation film 4 and the rear viewing angle compensation film 5 Consider insertion. Again, the positional relationship between these optical axes is determined while checking the viewing angle characteristics. Then, in order to further improve the viewing angle characteristics, the insertion of the black compensation phase difference plate 9 will be examined. Again, the positional relationship between these optical axes is determined while checking the viewing angle characteristics.

[第1の実施例]
次に、第1の実施形態に係る液晶表示素子の、一実施例を図面を参照して具体的に説明する。この液晶表示素子は、アクティブマトリクス方式の液晶表示素子である。図1に示す様に、当該液晶表示素子は、当該液晶表示素子の観察側から順に、前側偏光板2、前側視野角補償フィルム4、液晶セル1、後側視野角補償フィルム5、黒補償用位相差板9、及び後側偏光板3を有する。
[First embodiment]
Next, an example of the liquid crystal display element according to the first embodiment will be specifically described with reference to the drawings. This liquid crystal display element is an active matrix type liquid crystal display element. As shown in FIG. 1, the liquid crystal display element includes, in order from the viewing side of the liquid crystal display element, a front polarizing plate 2, a front viewing angle compensation film 4, a liquid crystal cell 1, a rear viewing angle compensation film 5, and a black compensation device. A retardation plate 9 and a rear polarizing plate 3 are provided.

液晶セル1は、図1に示す様に、前ガラス基板11及び後ガラス基板12が、図示しない枠状シール材によって所定の間隙を保ち接合されている。前ガラス基板11の対向面には、それぞれの画素領域に対応する開口を形成しているブラックマスク13が配設されている。そして、前ガラス基板11の後ガラス基板12に対向する面には、前記ブラックマスク13が形成する各開口に対応させて、赤色カラーフィルタ14R、緑色カラーフィルタ14G、青色カラーフィルタ14Bが所定の配置でそれぞれ設置されている。これらカラーフィルタは、開口よりも適長幅だけ大きい面積を備えており、その周縁部はブラックマスク13の一部と重なっている。赤色カラーフィルタ14R、緑色カラーフィルタ14G、青色カラーフィルタ14Bの厚さはそれぞれ、各カラーフィルタが配置された画素領域毎に設定された液晶層110の厚さ、即ち赤色画素液晶層厚dr、緑色画素液晶層厚dg、青色画素液晶層厚dbとの関係で決められている。この液晶層厚の最適化については後に記載する。   In the liquid crystal cell 1, as shown in FIG. 1, a front glass substrate 11 and a rear glass substrate 12 are bonded together with a frame-shaped sealing material (not shown) with a predetermined gap. On the opposite surface of the front glass substrate 11, a black mask 13 having openings corresponding to the respective pixel regions is disposed. A red color filter 14R, a green color filter 14G, and a blue color filter 14B are arranged in a predetermined arrangement on the surface facing the rear glass substrate 12 of the front glass substrate 11 so as to correspond to the openings formed by the black mask 13. It is installed in each. These color filters have an area larger than the opening by an appropriate length, and the peripheral edge thereof overlaps a part of the black mask 13. The thicknesses of the red color filter 14R, the green color filter 14G, and the blue color filter 14B are the thicknesses of the liquid crystal layer 110 set for each pixel region in which each color filter is arranged, that is, the red pixel liquid crystal layer thickness dr, green It is determined by the relationship between the pixel liquid crystal layer thickness dg and the blue pixel liquid crystal layer thickness db. This optimization of the liquid crystal layer thickness will be described later.

赤色カラーフィルタ14R、緑色カラーフィルタ14G、及び青色カラーフィルタ14Bの表面には、これらを覆う一枚の膜状の透明導電膜からなる共通電極15が被着されている。そして、共通電極15を覆う様に前側水平配向膜16が被着されている。この前側水平配向膜16の表面には、ラビング処理が施され、一定方向の溝が刻まれている。   On the surfaces of the red color filter 14R, the green color filter 14G, and the blue color filter 14B, a common electrode 15 made of a single film-like transparent conductive film is attached so as to cover them. A front horizontal alignment film 16 is deposited so as to cover the common electrode 15. A rubbing process is performed on the surface of the front horizontal alignment film 16 to form grooves in a certain direction.

後ガラス基板12の対向面には、前記ブラックマスク13により形成されている開口に対応させて、透明導電膜からなる複数の画素電極17がマトリックス状に配置されている。各画素電極17には、スイッチング素子としての薄膜トランジスタ18が、それぞれ接続されている。更に、全ての画素電極17と薄膜トランジスタ18等を覆う様に、後側水平配向膜19が一様に被着されている。この後側水平配向膜19の表面も、前記前側水平配向膜16の表面と同様に、ラビング処理が施され、一定方向の溝が刻まれている。尚、前側水平配向膜16の溝の方向と、後側水平配向膜19の溝の方向とは、90°の角度を成すねじれの位置の関係にある。   A plurality of pixel electrodes 17 made of a transparent conductive film are arranged in a matrix on the opposing surface of the rear glass substrate 12 so as to correspond to the openings formed by the black mask 13. A thin film transistor 18 as a switching element is connected to each pixel electrode 17. Further, a rear horizontal alignment film 19 is uniformly applied so as to cover all the pixel electrodes 17 and the thin film transistors 18 and the like. The surface of the rear horizontal alignment film 19 is also rubbed in the same manner as the surface of the front horizontal alignment film 16, and grooves in a certain direction are carved. Note that the direction of the grooves of the front horizontal alignment film 16 and the direction of the grooves of the rear horizontal alignment film 19 are in a relationship of twist positions forming an angle of 90 °.

前側水平配向膜16と後側水平配向膜19との間隙には、液晶層110が形成されている。液晶層110には、正の誘電率異方性を備えたネマティック液晶分子が封入されている。画素電極17と共通電極15との間に電場が形成されていない状態においては、前側水平配向膜16及び後側水平配向膜19それぞれの近傍では、液晶分子はそれぞれ、前側水平配向膜16の溝の方向及び後側水平配向膜19の溝の方向に沿って、配向規制力を受けて配列している。従って、液晶層110中の液晶分子は、前側水平配向膜16と後側水平配向膜19との間でツイスト状に配向している。   A liquid crystal layer 110 is formed in the gap between the front horizontal alignment film 16 and the rear horizontal alignment film 19. In the liquid crystal layer 110, nematic liquid crystal molecules having positive dielectric anisotropy are encapsulated. In the state where no electric field is formed between the pixel electrode 17 and the common electrode 15, the liquid crystal molecules are in the vicinity of the front horizontal alignment film 16 and the rear horizontal alignment film 19, respectively. And the direction of the rear horizontal alignment film 19 along the direction of the grooves are arranged in response to the alignment regulating force. Accordingly, the liquid crystal molecules in the liquid crystal layer 110 are twisted between the front horizontal alignment film 16 and the rear horizontal alignment film 19.

画素電極17と共通電極15との間に電場が形成されていない状態において、本液晶表示素子は白表示をする。この白表示のために光の透過率を最大にするには、液晶分子の屈折率異方性Δnと液晶層厚dとの積であり、常光と異常光との光路差を示す量であるリタデーションΔn・dを特定の値とする必要がある。ここで液晶層110は、透過する光の波長に依存して屈折率異方性Δnが異なる。そのため、当該液晶表示装置が高い色再現性を実現するためには、屈折率異方性Δnの波長依存性を考慮する必要がある。そこで本液晶表示素子では、液晶層110を透過する赤色の光、緑色の光及び青色の光の各波長λに対して、それぞれλ/2の複屈折作用を与える様に、液晶層の厚さが設定されている。本実施例の液晶セル1において、赤色画素液晶層厚dr、緑色画素液晶層厚dg、及び青色画素液晶層厚dbは、各波長光に対する屈折率異方性Δnの波長依存性を相殺する様に、青色波長光に対する屈折率異方性Δnb、緑色波長光に対する屈折率異方性Δng、及び赤色波長光に対する屈折率異方性Δnrの比を、
Δnb/Δng=1.04±0.03、
Δnr/Δng=0.96±0.03、
としている。これに応じて、例えば赤色画素液晶層厚dr、緑色画素液晶層厚dg及び青色画素液晶層厚dbを決定する。本液晶表示素子では、リタデーションΔn・dを色毎にそれぞれ、450nm〜550nmの範囲で適宜設定している。
In a state where no electric field is formed between the pixel electrode 17 and the common electrode 15, the present liquid crystal display element performs white display. In order to maximize the light transmittance for this white display, it is the product of the refractive index anisotropy Δn of the liquid crystal molecules and the liquid crystal layer thickness d, and is an amount indicating the optical path difference between ordinary light and extraordinary light. The retardation Δn · d needs to be a specific value. Here, the liquid crystal layer 110 has different refractive index anisotropy Δn depending on the wavelength of transmitted light. Therefore, in order for the liquid crystal display device to realize high color reproducibility, it is necessary to consider the wavelength dependence of the refractive index anisotropy Δn. Therefore, in the present liquid crystal display element, the thickness of the liquid crystal layer is set so that a birefringence of λ / 2 is given to each wavelength λ of red light, green light, and blue light transmitted through the liquid crystal layer 110. Is set. In the liquid crystal cell 1 of the present embodiment, the red pixel liquid crystal layer thickness dr, the green pixel liquid crystal layer thickness dg, and the blue pixel liquid crystal layer thickness db cancel the wavelength dependence of the refractive index anisotropy Δn with respect to each wavelength light. The refractive index anisotropy Δnb for blue wavelength light, the refractive index anisotropy Δng for green wavelength light, and the refractive index anisotropy Δnr for red wavelength light are
Δnb / Δng = 1.04 ± 0.03,
Δnr / Δng = 0.96 ± 0.03,
It is said. Accordingly, for example, the red pixel liquid crystal layer thickness dr, the green pixel liquid crystal layer thickness dg, and the blue pixel liquid crystal layer thickness db are determined. In this liquid crystal display element, the retardation Δn · d is appropriately set in the range of 450 nm to 550 nm for each color.

本液晶表示素子では、上記の様にして決定した各色の画素に対応する液晶層110の厚さと各色のカラーフィルタの厚さとの和が一定の値となる様に、各色のカラーフィルタの厚さは設定されている。   In the present liquid crystal display element, the thickness of the color filter of each color is set so that the sum of the thickness of the liquid crystal layer 110 corresponding to the pixel of each color determined as described above and the thickness of the color filter of each color becomes a constant value. Is set.

ここで図2に示す当該液晶表示素子の光学構成を示す分解平面図を参照して、液晶セル1の光学的な構成を更に説明する。まず、本実施例の説明における軸を次の様に定義する。矩形をなす液晶セル1の観察側(前側偏光板2側)から当該液晶表示素子を見て左右方向の辺と平行な軸を水平軸1hとする。また、角度を、図2において、水平軸1hの右側を0°とし、反時計回りの方向を+方向とする。このとき、図2の3段目に示す通り、前側水平配向膜16に刻まれた溝の向きである前側水平配向膜配向方向16aは、+45°の方向である。一方、後側水平配向膜19に刻まれた溝の向きである後側水平配向膜配向方向19aは、−45°の方向である。但し実際には、製造誤差等が含まれるため、±5°の幅をもたせて考えるものとする。従って、図2には「+45°±5°」及び「−45°±5°」と記載している。以下同様に、角度についてはある程度の幅があることを考慮する。前記前側水平配向膜16及び後側水平配向膜19に刻まれた溝のため、液晶層110の液晶分子は、そこに電場が形成されていない状態では、後側水平配向膜19の表面から前側水平配向膜16の表面に向かって、矢印21で示す様に−90°±5°の角度でツイストした状態で配列する。   Here, the optical configuration of the liquid crystal cell 1 will be further described with reference to an exploded plan view showing the optical configuration of the liquid crystal display element shown in FIG. First, the axis in the description of this embodiment is defined as follows. A horizontal axis 1h is defined as an axis parallel to the left and right sides when the liquid crystal display element is viewed from the observation side (front side polarizing plate 2 side) of the liquid crystal cell 1 having a rectangular shape. Further, in FIG. 2, the angle is 0 ° on the right side of the horizontal axis 1h, and the counterclockwise direction is the + direction. At this time, as shown in the third row of FIG. 2, the front horizontal alignment film alignment direction 16 a that is the direction of the grooves carved in the front horizontal alignment film 16 is a + 45 ° direction. On the other hand, the rear horizontal alignment film alignment direction 19a which is the direction of the grooves carved in the rear horizontal alignment film 19 is a direction of −45 °. However, in actuality, since manufacturing errors and the like are included, the width of ± 5 ° is considered. Accordingly, FIG. 2 shows “+ 45 ° ± 5 °” and “−45 ° ± 5 °”. Similarly, it is considered that the angle has a certain width. Due to the grooves carved in the front horizontal alignment film 16 and the rear horizontal alignment film 19, the liquid crystal molecules of the liquid crystal layer 110 are in front of the surface of the rear horizontal alignment film 19 when no electric field is formed there. As shown by the arrow 21, they are arranged in a twisted state at an angle of −90 ° ± 5 ° toward the surface of the horizontal alignment film 16.

この様に、例えば前ガラス基板11、後ガラス基板12、共通電極15、前側水平配向膜16、画素電極17、後側水平配向膜19、液晶層110及び液晶分子110aを有する液晶セル1は、それぞれ電極が形成された互いに対向する面に、互いに90°を成す方向に配向処理が施された前側基板及び後側基板、並びに該前側基板及び後側基板の間に液晶分子を90°のツイスト角でツイスト配向させて設けられた液晶層を有する液晶素子として機能する。   Thus, for example, the liquid crystal cell 1 including the front glass substrate 11, the rear glass substrate 12, the common electrode 15, the front horizontal alignment film 16, the pixel electrode 17, the rear horizontal alignment film 19, the liquid crystal layer 110, and the liquid crystal molecules 110a includes: A front substrate and a rear substrate, which have been subjected to alignment treatment in a direction of 90 °, on the surfaces facing each other on which electrodes are formed, and a 90 ° twist of liquid crystal molecules between the front substrate and the rear substrate. It functions as a liquid crystal element having a liquid crystal layer provided with twist alignment at corners.

液晶セル1の前ガラス基板11側の当該液晶表示素子の最も外側には、前側偏光板2が配設されている。その設置角度は、図2の1段目に示す通り前側偏光板2の透過軸である前側偏光板透過軸2aが、水平軸1hと垂直となる角度である。従って、前側偏光板透過軸2aと、液晶セル1の前側水平配向膜配向方向16aとは、45°±5°の角度を成している。   A front polarizing plate 2 is disposed on the outermost side of the liquid crystal display element on the front glass substrate 11 side of the liquid crystal cell 1. The installation angle is an angle at which the front polarizing plate transmission axis 2a which is the transmission axis of the front polarizing plate 2 is perpendicular to the horizontal axis 1h as shown in the first row of FIG. Therefore, the front polarizing plate transmission axis 2a and the front horizontal alignment film alignment direction 16a of the liquid crystal cell 1 form an angle of 45 ° ± 5 °.

液晶セル1の後ガラス基板12側の当該液晶表示素子の最も外側には、後側偏光板3が配設されている。その設置角度は、図2の6段目に示す通り後側偏光板3の透過軸である後側偏光板透過軸3aが、水平軸1hと平行になる角度である。従って、後側偏光板透過軸3aと液晶セル1の後側水平配向膜配向方向19aとは、45°±5°の角度を成している。また、後側偏光板透過軸3aと前側偏光板透過軸2aとの成す角は、90°±5°である。これは以下の様にも言い換えられる。後側水平配向膜19の表面から前側水平配向膜16の表面に向かってツイストしている状態の、ツイスト角度範囲の中間の角度の方向である+270°の方向を白抜き矢印20で示した。この+270°の方向に対して前側偏光板透過軸2aが平行になる様に、前側偏光板2は配置されている。また、白抜き矢印20で示した+270°の方向に対して後側偏光板透過軸3aが直交する様に、後側偏光板3は配置されている。   A rear polarizing plate 3 is disposed on the outermost side of the liquid crystal display element on the rear glass substrate 12 side of the liquid crystal cell 1. The installation angle is an angle at which the rear polarizing plate transmission axis 3a, which is the transmission axis of the rear polarizing plate 3, is parallel to the horizontal axis 1h as shown in the sixth row of FIG. Therefore, the rear polarizing plate transmission axis 3a and the rear horizontal alignment film alignment direction 19a of the liquid crystal cell 1 form an angle of 45 ° ± 5 °. The angle formed by the rear polarizing plate transmission axis 3a and the front polarizing plate transmission axis 2a is 90 ° ± 5 °. This can be paraphrased as follows. A direction of + 270 °, which is an intermediate angle direction in the twist angle range, in a state of being twisted from the surface of the rear horizontal alignment film 19 toward the surface of the front horizontal alignment film 16 is indicated by a white arrow 20. The front polarizing plate 2 is arranged so that the front polarizing plate transmission axis 2a is parallel to the + 270 ° direction. In addition, the rear polarizing plate 3 is arranged so that the rear polarizing plate transmission axis 3a is orthogonal to the + 270 ° direction indicated by the white arrow 20.

この様に、例えば前側偏光板2は、前側基板の配向処理の方向に対して透過軸が45°の角を成すように配置された前側偏光板として機能し、例えば後側偏光板3は、前側偏光板の透過軸に対して透過軸が90°の角を成すように配置された後側偏光板として機能する。   Thus, for example, the front polarizing plate 2 functions as a front polarizing plate arranged so that the transmission axis forms an angle of 45 ° with respect to the direction of the alignment treatment of the front substrate. It functions as a rear polarizing plate arranged so that the transmission axis forms an angle of 90 ° with respect to the transmission axis of the front polarizing plate.

液晶セル1の前ガラス基板11と、前側偏光板2との間には、前側視野角補償フィルム4が配設されている。前側視野角補償フィルム4は、図1に示す様に、前側偏光板2と接する透明なフィルム基板である前側視野角補償フィルム基板41と、前側偏光板2側と反対側の面に形成されている前側視野角補償フィルム配向膜42と、この前側視野角補償フィルム配向膜42の表面に積層されている前側視野角補償フィルムディスコティック液晶層43とを有する。前側視野角補償フィルムディスコティック液晶層43は、円盤形状のディスコティック液晶分子43aを含んでいる。このディスコティック液晶分子43aの、円盤面に対する法線方向を分子軸43bとする。各ディスコティック液晶分子43aの分子軸43bは、前側視野角補償フィルム配向膜42に施された配向処理方向に従って、前側視野角補償フィルム4と垂直な面内にそろっている。この垂直な面を断面とする前側視野角補償フィルム4の模式的断面図を図3に示す。前側視野角補償フィルム配向膜42に近接するディスコティック液晶分子43aは、前側視野角補償フィルム配向膜42に対して、その分子軸43bをほぼ垂直にして配向している。即ち、前側視野角補償フィルム配向膜42に対する円盤面の傾斜角度、つまりチルト角度がほぼ0°となっている。そして、ディスコティック液晶分子43aのチルト角度は、前側視野角補償フィルム配向膜42から離れるに従って、徐々に大きくなっている。   A front viewing angle compensation film 4 is disposed between the front glass substrate 11 of the liquid crystal cell 1 and the front polarizing plate 2. As shown in FIG. 1, the front viewing angle compensation film 4 is formed on a front viewing angle compensation film substrate 41 which is a transparent film substrate in contact with the front polarizing plate 2 and on the surface opposite to the front polarizing plate 2 side. A front viewing angle compensation film alignment film 42 and a front viewing angle compensation film discotic liquid crystal layer 43 laminated on the surface of the front viewing angle compensation film alignment film 42. The front viewing angle compensation film discotic liquid crystal layer 43 includes disc-shaped discotic liquid crystal molecules 43a. The normal direction of the discotic liquid crystal molecules 43a with respect to the disc surface is defined as a molecular axis 43b. The molecular axes 43b of the discotic liquid crystal molecules 43a are aligned in a plane perpendicular to the front viewing angle compensation film 4 in accordance with the alignment treatment direction applied to the front viewing angle compensation film alignment film. FIG. 3 shows a schematic cross-sectional view of the front viewing angle compensation film 4 having a cross section of this vertical plane. The discotic liquid crystal molecules 43a adjacent to the front viewing angle compensation film alignment film 42 are aligned with their molecular axes 43b substantially perpendicular to the front viewing angle compensation film alignment film 42. That is, the tilt angle of the disc surface with respect to the front viewing angle compensation film alignment film 42, that is, the tilt angle is substantially 0 °. The tilt angle of the discotic liquid crystal molecules 43a gradually increases as the distance from the front viewing angle compensation film alignment film 42 increases.

同様に、液晶セル1の後ガラス基板12と、後側偏光板3との間には、後側視野角補償フィルム5が配設されている。後側視野角補償フィルム5は、後側偏光板3と接する透明なフィルム基板である後側視野角補償フィルム基板51と、その後側偏光板3側と反対側の面に形成されている後側視野角補償フィルム配向膜52と、この後側視野角補償フィルム配向膜52の表面に積層されている後側視野角補償フィルムディスコティック液晶層53とを有する。後側視野角補償フィルムディスコティック液晶層53中のディスコティック液晶分子53aの分子軸53bは、後側視野角補償フィルム配向膜52に施された配向処理方向に従って、後側視野角補償フィルム5と垂直な面内にそろっている。そして、後側視野角補償フィルム配向膜52に近接するディスコティック液晶分子53aのチルト角度は、ほぼ0°となっている。そして、ディスコティック液晶分子53aのチルト角度は、後側視野角補償フィルム配向膜52から離れるに従って、徐々に大きくなっている。   Similarly, a rear viewing angle compensation film 5 is disposed between the rear glass substrate 12 of the liquid crystal cell 1 and the rear polarizing plate 3. The rear viewing angle compensation film 5 includes a rear viewing angle compensation film substrate 51 that is a transparent film substrate in contact with the rear polarizing plate 3 and a rear side that is formed on the surface opposite to the rear polarizing plate 3 side. A viewing angle compensation film alignment film 52 and a rear viewing angle compensation film discotic liquid crystal layer 53 laminated on the surface of the rear viewing angle compensation film alignment film 52 are provided. The molecular axis 53b of the discotic liquid crystal molecules 53a in the rear viewing angle compensation film discotic liquid crystal layer 53 is aligned with the rear viewing angle compensation film 5 in accordance with the alignment treatment direction applied to the rear viewing angle compensation film alignment film 52. It is aligned in a vertical plane. The tilt angle of the discotic liquid crystal molecules 53a adjacent to the rear viewing angle compensation film alignment film 52 is approximately 0 °. The tilt angle of the discotic liquid crystal molecules 53a gradually increases as the distance from the rear viewing angle compensation film alignment film 52 increases.

ディスコティック液晶分子43a及びディスコティック液晶分子53aは、その倒伏方向に沿った負の光学異方性を有している。例えば、前側視野角補償フィルムディスコティック液晶層43は、分子軸43bの傾斜角度を平均した方向(図3に矢線で示した方向N)に屈折率が最小となる光学軸を備えた負の光学異方性を発現する。後側視野角補償フィルムディスコティック液晶層53についても同様である。   The discotic liquid crystal molecules 43a and the discotic liquid crystal molecules 53a have negative optical anisotropy along the lodging direction. For example, the front viewing angle compensation film discotic liquid crystal layer 43 has a negative optical axis having an optical axis with a minimum refractive index in a direction (direction N indicated by an arrow in FIG. 3) in which the inclination angles of the molecular axes 43b are averaged. Expresses optical anisotropy. The same applies to the rear viewing angle compensation film discotic liquid crystal layer 53.

ここで図3に示す分子軸43bの方向の平均である方向Nの、フィルム面投影方向を前側視野角補償フィルム光学軸4aとする。当該液晶表示素子において、前側視野角補償フィルム4は、図2の2段目に示す様に、前側視野角補償フィルム光学軸4aが、液晶セル1の前側水平配向膜配向方向16aと同一(+45°±5°方向)となる様に配置されている。また、後側視野角補償フィルム5の分子軸53bの方向の平均である方向Nの、フィルム面投影方向を後側視野角補償フィルム光学軸5aとする。後側視野角補償フィルム5は、図2の4段目に示す様に、後側視野角補償フィルム光学軸5aが、液晶セル1の後側水平配向膜配向方向19aと同一(−45°±5°方向)となる様に配置されている。   Here, the film surface projection direction in the direction N which is the average of the directions of the molecular axes 43b shown in FIG. 3 is defined as the front viewing angle compensation film optical axis 4a. In the liquid crystal display element, the front viewing angle compensation film 4 has the same front viewing angle compensation film optical axis 4a as the front horizontal alignment film alignment direction 16a of the liquid crystal cell 1 (+45) as shown in the second stage of FIG. (° ± 5 ° direction). The film surface projection direction in the direction N, which is the average of the directions of the molecular axes 53b of the rear viewing angle compensation film 5, is defined as the rear viewing angle compensation film optical axis 5a. In the rear viewing angle compensation film 5, as shown in the fourth row of FIG. 2, the rear viewing angle compensation film optical axis 5a is the same as the rear horizontal alignment film alignment direction 19a of the liquid crystal cell 1 (−45 ° ± (5 ° direction).

この様に、例えば前側視野角補償フィルム4は、前側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、該屈折率が最小となる特定方向を該フィルム面へ投影した方向と前記前側基板の配向処理方向との成す角は0°である前側光学異方性フィルムとして機能し、例えば後側視野角補償フィルム5は、後側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、該屈折率が最小となる特定方向を該フィルム面へ投影した方向と前記後側基板の配向処理方向との成す角は0°である後側光学異方性フィルムとして機能する。   Thus, for example, the front viewing angle compensation film 4 has negative optical anisotropy that minimizes the refractive index in the direction inclined in a specific direction with respect to the normal of the film surface of the front optical anisotropic film, It functions as a front optical anisotropic film in which the angle formed between the direction in which the specific direction having the minimum refractive index is projected onto the film surface and the orientation processing direction of the front substrate is 0 °, for example, rear viewing angle compensation The film 5 has negative optical anisotropy in which the refractive index in the direction inclined in a specific direction with respect to the normal line of the film surface of the rear optical anisotropic film is minimum, and the specific index in which the refractive index is minimum It functions as a rear optical anisotropic film in which an angle formed by a direction projected onto the film surface and an orientation processing direction of the rear substrate is 0 °.

次に、前記の通り液晶セル1、前側偏光板2、後側偏光板3、前側視野角補償フィルム4、及び後側視野角補償フィルム5で構成された、本実施例に係る液晶表示素子において黒補償用位相差板9を含まない液晶表示素子における作用効果について図面を参照して説明する。図4は液晶層110に電場が形成されていないときの液晶分子の初期配向状態を、図5は液晶層110に電場が形成されているときの液晶分子の立ち上がり配向状態を示す。また、図4及び図5において、それぞれ(a)は観察側から液晶層を見た場合の平面図、(b)は基板間の液晶分子の配列状態を示す断面図である。   Next, in the liquid crystal display element according to the present embodiment, which is composed of the liquid crystal cell 1, the front polarizing plate 2, the rear polarizing plate 3, the front viewing angle compensation film 4, and the rear viewing angle compensation film 5 as described above. The effects of the liquid crystal display element that does not include the black compensation phase difference plate 9 will be described with reference to the drawings. 4 shows an initial alignment state of liquid crystal molecules when no electric field is formed in the liquid crystal layer 110, and FIG. 5 shows a rising alignment state of liquid crystal molecules when an electric field is formed in the liquid crystal layer 110. 4 and 5, (a) is a plan view when the liquid crystal layer is viewed from the observation side, and (b) is a cross-sectional view showing an arrangement state of liquid crystal molecules between the substrates.

図4に示す初期配向状態において、前側水平配向膜16及び後側水平配向膜19の近傍の液晶分子110aは、前側水平配向膜16又は後側水平配向膜19の配向規制力を受けるため、その長軸方向を、それぞれ前側水平配向膜配向方向16a又は後側水平配向膜配向方向19aの方向へ沿わせる。そして、液晶分子110aは、前側水平配向膜配向方向16a又は後側水平配向膜配向方向19aの下流側の端部を、プレチルト角θだけ持ち上げた状態で配向している。液晶層110中の液晶分子110aは、前側水平配向膜16と後側水平配向膜19との間で、前側水平配向膜16の近傍で配向している液晶分子110aと後側水平配向膜19の近傍で配向している液晶分子110aと連続的にツイスト配向する。即ち、後側水平配向膜19側から前側水平配向膜16側に向かって、液晶分子110aは時計回りに矢印21の方向へほぼ90°にわたりツイストして配向した状態となる。この液晶分子110aが90度にわたりツイスト配向した状態の液晶層110は、透過光に対してその波長λの1/2の位相差を生じさせる複屈折性を持つように設定してある。従って、液晶層110に入射し透過する直線偏光は、その偏光面が90°だけ旋光された直線偏光となって出射される。   In the initial alignment state shown in FIG. 4, the liquid crystal molecules 110a in the vicinity of the front horizontal alignment film 16 and the rear horizontal alignment film 19 receive the alignment regulating force of the front horizontal alignment film 16 or the rear horizontal alignment film 19, The major axis direction is set along the direction of the front horizontal alignment film alignment direction 16a or the rear horizontal alignment film alignment direction 19a, respectively. The liquid crystal molecules 110a are aligned in a state where the downstream end of the front horizontal alignment film alignment direction 16a or the rear horizontal alignment film alignment direction 19a is lifted by the pretilt angle θ. The liquid crystal molecules 110 a in the liquid crystal layer 110 are aligned between the front horizontal alignment film 16 and the rear horizontal alignment film 19 between the liquid crystal molecules 110 a and the rear horizontal alignment film 19 that are aligned in the vicinity of the front horizontal alignment film 16. The liquid crystal molecules 110a aligned in the vicinity are continuously twisted. That is, the liquid crystal molecules 110a are twisted and aligned in the direction of the arrow 21 clockwise by approximately 90 ° from the rear horizontal alignment film 19 side to the front horizontal alignment film 16 side. The liquid crystal layer 110 in which the liquid crystal molecules 110a are twist-aligned over 90 degrees is set to have birefringence that causes a phase difference of ½ of the wavelength λ of the transmitted light. Accordingly, the linearly polarized light that enters and passes through the liquid crystal layer 110 is emitted as linearly polarized light whose polarization plane is rotated by 90 °.

前側視野角補償フィルム4及び後側視野角補償フィルム5の作用効果を考慮しない場合、後側偏光板3の後側に設置された図示しないバックライトからの照射光は、後側偏光板3を透過し、偏光面が後側偏光板透過軸3aに沿った直線偏光となり、液晶層110に入射する。初期配向状態の液晶層110に入射すると、液晶層110を透過する際にλ/2の位相差が付与され、偏光面が90°旋光される。図2に示す様に後側偏光板透過軸3aと前側偏光板透過軸2aとは直交しているので、後側偏光板3を透過して液晶層110でその偏光面が90°旋光された光は、前側偏光板2に吸収されることなく透過し、前側偏光板2から出射される。その結果、明表示がなされることになる。   When the operational effects of the front viewing angle compensation film 4 and the rear viewing angle compensation film 5 are not taken into consideration, irradiation light from a backlight (not shown) installed on the rear side of the rear polarizing plate 3 The light is transmitted, and the polarization plane becomes linearly polarized light along the rear polarizing plate transmission axis 3 a and enters the liquid crystal layer 110. When entering the liquid crystal layer 110 in the initial alignment state, a phase difference of λ / 2 is imparted when passing through the liquid crystal layer 110, and the polarization plane is rotated by 90 °. As shown in FIG. 2, since the rear polarizing plate transmission axis 3a and the front polarizing plate transmission axis 2a are orthogonal to each other, the polarization plane of the liquid crystal layer 110 is rotated by 90 ° through the rear polarizing plate 3. The light passes through the front polarizing plate 2 without being absorbed and is emitted from the front polarizing plate 2. As a result, a bright display is made.

一方、液晶層110に電場が形成された場合、液晶層110中の液晶分子110aの長軸が、電場の向き、即ち前ガラス基板11及び後ガラス基板12に対して垂直な方向に配向する様に、液晶分子110aに力が働く。その結果、図5に示す様な状態になる。このとき、前側水平配向膜16及び後側水平配向膜19の近傍の液晶分子110aは、前側水平配向膜16又は後側水平配向膜19による配向規制力を強く受ける、所謂アンカリング効果のため、充分に立ち上がることができない。そのため、前側水平配向膜16及び後側水平配向膜19の近傍の液晶分子110aは、そのプレチルト角θは初期状態とほぼ変わらず、長軸方向は前側水平配向膜配向方向16aと後側水平配向膜配向方向19aとが成す角を2等分する角度の方向、即ち前側水平配向膜配向方向16aから+45°回転した方向であり、後側水平配向膜配向方向19aから−45°回転した方向に向けて配向する。そして、液晶層110中の液晶分子110aは、前側水平配向膜16の近傍で配向している液晶分子110aと後側水平配向膜19の近傍で配向している液晶分子110aと連続的に配向する。従って、前側水平配向膜16及び後側水平配向膜19から離れるに従って液晶分子110aは、その立ち上がり角度を大きくし、液晶層110の層厚方向の中間に位置する液晶分子110aは、ほぼ垂直に配向する。以上の様に、液晶層に十分に大きな電場が形成された場合、液晶層110中の液晶分子110aは、螺旋が解け、図5に示す様に、各液晶分子110aは、それぞれの長軸方向を白抜き矢印20で示した方向にほぼ揃った状態で配向する。この状態の液晶層110は、透過光に対して位相差を付与しない。   On the other hand, when an electric field is formed in the liquid crystal layer 110, the major axis of the liquid crystal molecules 110a in the liquid crystal layer 110 is oriented in the direction of the electric field, that is, in the direction perpendicular to the front glass substrate 11 and the rear glass substrate 12. In addition, force acts on the liquid crystal molecules 110a. As a result, the state shown in FIG. 5 is obtained. At this time, the liquid crystal molecules 110a in the vicinity of the front horizontal alignment film 16 and the rear horizontal alignment film 19 are strongly subjected to the alignment regulating force by the front horizontal alignment film 16 or the rear horizontal alignment film 19, so-called anchoring effect. I can't get up enough. Therefore, the pretilt angle θ of the liquid crystal molecules 110a in the vicinity of the front horizontal alignment film 16 and the rear horizontal alignment film 19 is substantially the same as the initial state, and the major axis direction is the front horizontal alignment film alignment direction 16a and the rear horizontal alignment. The direction formed by dividing the angle formed by the film alignment direction 19a into two equal parts, that is, the direction rotated by + 45 ° from the front horizontal alignment film alignment direction 16a, and the direction rotated by −45 ° from the rear horizontal alignment film alignment direction 19a Oriented towards. The liquid crystal molecules 110 a in the liquid crystal layer 110 are continuously aligned with the liquid crystal molecules 110 a aligned in the vicinity of the front horizontal alignment film 16 and the liquid crystal molecules 110 a aligned in the vicinity of the rear horizontal alignment film 19. . Accordingly, as the distance from the front horizontal alignment film 16 and the rear horizontal alignment film 19 increases, the rising angle of the liquid crystal molecules 110 a increases, and the liquid crystal molecules 110 a located in the middle of the thickness direction of the liquid crystal layer 110 are aligned substantially vertically. To do. As described above, when a sufficiently large electric field is formed in the liquid crystal layer, the liquid crystal molecules 110a in the liquid crystal layer 110 are unscrewed, and as shown in FIG. Are aligned substantially in the direction indicated by the white arrow 20. The liquid crystal layer 110 in this state does not give a phase difference to the transmitted light.

前側視野角補償フィルム4及び後側視野角補償フィルム5の作用効果を考慮しない場合、本液晶表示素子において、図示しないバックライトからの照射光は、後側偏光板3を透過して偏光面が後側偏光板透過軸3aに沿った直線偏光となって液晶分子110aが立ち上がった状態の液晶層110に入射する。そしてこの光は、位相差は付与されずに直線偏光のまま液晶層110を透過する。液晶層110を透過した直線偏光の偏光面の方向は、前側偏光板吸収軸2bに沿った方向であるから、液晶層110を透過した直線偏光は、前側偏光板2に吸収される。その結果、暗表示がなされることになる。   In the case where the operational effects of the front viewing angle compensation film 4 and the rear viewing angle compensation film 5 are not taken into account, in the present liquid crystal display element, irradiation light from a backlight (not shown) is transmitted through the rear polarizing plate 3 and has a polarization plane. It becomes linearly polarized light along the rear polarizing plate transmission axis 3a and enters the liquid crystal layer 110 in a state where the liquid crystal molecules 110a rise. This light passes through the liquid crystal layer 110 as linearly polarized light without being given a phase difference. The direction of the polarization plane of the linearly polarized light transmitted through the liquid crystal layer 110 is the direction along the front polarizing plate absorption axis 2 b, so that the linearly polarized light transmitted through the liquid crystal layer 110 is absorbed by the front polarizing plate 2. As a result, dark display is performed.

前記の通り、前側水平配向膜16及び後側水平配向膜19に刻まれた溝のため、液晶分子110aは、後側水平配向膜19の表面から前側水平配向膜16の表面に向かって、矢印21で示す様に−90°±5°の角度でツイストした状態で配列している。従って、ツイスト角度範囲の中間の角度の方向である、白抜き矢印20で示した図2における+270°の方位に、当該液晶表示素子において最も良好なコントラストが得られる視角方位がある。例えば携帯電話等の表示部としての液晶表示素子を観察する場合、観察する方向は、表示面に対する法線方向、即ち、真正面、或いはややその表示素子の水平方向の下側、即ち前記座標軸における+270°の方向から見ることが多い。従って、+270°の方位に、当該液晶表示素子において最も良好なコントラストが得られる視角方位があることが好適である。このことを考慮して本実施例においては、前側水平配向膜配向方向16a及び後側水平配向膜配向方向19aを、それぞれ+45°方向及び−45°方向に設定した。   As described above, because of the grooves carved in the front horizontal alignment film 16 and the rear horizontal alignment film 19, the liquid crystal molecules 110 a move from the surface of the rear horizontal alignment film 19 to the surface of the front horizontal alignment film 16. As shown by 21, they are arranged in a twisted state at −90 ° ± 5 °. Therefore, there is a viewing angle direction in which the best contrast is obtained in the liquid crystal display element in the direction of + 270 ° in FIG. 2 indicated by the white arrow 20, which is the middle angle direction of the twist angle range. For example, when observing a liquid crystal display element as a display unit such as a mobile phone, the observation direction is the normal direction to the display surface, that is, directly in front, or slightly below the horizontal direction of the display element, that is, +270 in the coordinate axis. It is often seen from the direction of °. Therefore, it is preferable that the viewing angle direction in which the best contrast is obtained in the liquid crystal display element is in the + 270 ° direction. In consideration of this, in the present embodiment, the front horizontal alignment film alignment direction 16a and the rear horizontal alignment film alignment direction 19a are set to the + 45 ° direction and the −45 ° direction, respectively.

また、一般に、液晶分子110aの長軸方向と一致する方位で、液晶表示素子の中間階調の階調反転が発生する。そこで本実施例においては、液晶層110に電場を形成した場合に、液晶分子110aの長軸が揃う270°の方位に、前側偏光板透過軸2aを一致させ、当該液晶表示素子の表示を270°の方位から観察した場合に発生する中間階調における階調反転を抑制した。   In general, gradation inversion of the intermediate gradation of the liquid crystal display element occurs in an orientation that coincides with the major axis direction of the liquid crystal molecules 110a. Therefore, in this embodiment, when an electric field is formed in the liquid crystal layer 110, the front polarizing plate transmission axis 2a is aligned with the 270 ° azimuth in which the major axes of the liquid crystal molecules 110a are aligned, and the display of the liquid crystal display element is displayed in 270. Gradation inversion at intermediate gradations when observed from the azimuth direction was suppressed.

この様に、良好な表示品質を有する液晶表示素子の設計を決定するために、本実施例においては、まず、前側偏光板透過軸2a及び後側偏光板透過軸3aの方向を決定した。   Thus, in order to determine the design of the liquid crystal display element having good display quality, first, in the present example, the directions of the front polarizing plate transmission axis 2a and the rear polarizing plate transmission axis 3a were determined.

また、本液晶表示素子においては、透過光の偏光面を90゜回転させるのに必要なリタデーションの値を示す式(√3・λ/2)によって算出し、それらを考慮して赤、緑、青の色毎にリタデーションΔn・dの値を450nm〜550nmの範囲で適宜設定した。その結果に基づき、色毎に異なる液晶層厚を有するマルチギャップ構造とした。このため、全ての色の光について透過率が充分に低い良好な暗表示と、良好な色度の明表示とが得られる、液晶表示素子となっている。   Further, in the present liquid crystal display element, it is calculated by an equation (√3 · λ / 2) indicating a retardation value necessary for rotating the polarization plane of transmitted light by 90 °, and red, green, The value of retardation Δn · d was appropriately set in the range of 450 nm to 550 nm for each blue color. Based on the result, a multi-gap structure having a different liquid crystal layer thickness for each color was obtained. For this reason, it is a liquid crystal display element in which good dark display with sufficiently low transmittance and light display with good chromaticity can be obtained for light of all colors.

次に前側視野角補償フィルム4及び後側視野角補償フィルム5の作用効果について説明する。前側視野角補償フィルム4及び後側視野角補償フィルム5を有さない液晶表示素子では、後側偏光板3を透過して液晶層110に入射した光について、垂直方向から入射した光に対するリタデーションと、斜め方向から入射した光に対するリタデーションとが異なる。このため、光の入射方向によって透過率が異なり、表示を良好なコントラストで観察することができる観察角度範囲である視野角が狭く、また表示に帯色が発生してしまう。   Next, functions and effects of the front viewing angle compensation film 4 and the rear viewing angle compensation film 5 will be described. In the liquid crystal display element that does not have the front viewing angle compensation film 4 and the rear viewing angle compensation film 5, with respect to the light that has passed through the rear polarizing plate 3 and entered the liquid crystal layer 110, The retardation for light incident from an oblique direction is different. For this reason, the transmittance varies depending on the incident direction of light, the viewing angle that is an observation angle range in which the display can be observed with a good contrast is narrow, and a band color is generated in the display.

これに対して、本液晶表示素子においては、液晶セル1と前側偏光板2との間及び液晶セル1と後側偏光板3との間にそれぞれ、前側視野角補償フィルム4及び後側視野角補償フィルム5を挿入している。ここで、前側視野角補償フィルム4及び後側視野角補償フィルム5の屈折率が最小となる軸の方向Nのフィルム面投影方向である前側視野角補償フィルム光学軸4a及び後側視野角補償フィルム光学軸5aを、それぞれ前側水平配向膜配向方向16a及び後側水平配向膜配向方向19aに沿った方向となるように配置した。このため、液晶層110に垂直方向から入射した光に対するリタデーションと、斜め方向から入射した光に対するリタデーションとの差が、前側視野角補償フィルム4及び後側視野角補償フィルム5によって補償される。従って、様々な方向からの入射光の透過率の差を小さくし、広い視野角を得ることができた。また、表示の帯色も抑制することができた。   On the other hand, in the present liquid crystal display element, the front viewing angle compensation film 4 and the rear viewing angle are provided between the liquid crystal cell 1 and the front polarizing plate 2 and between the liquid crystal cell 1 and the rear polarizing plate 3, respectively. A compensation film 5 is inserted. Here, the front viewing angle compensation film optical axis 4a and the rear viewing angle compensation film, which are the film surface projection directions in the direction N of the axis where the refractive index of the front viewing angle compensation film 4 and the rear viewing angle compensation film 5 is minimum, are used. The optical axes 5a are arranged so as to be along the front horizontal alignment film alignment direction 16a and the rear horizontal alignment film alignment direction 19a, respectively. Therefore, the difference between the retardation with respect to the light incident on the liquid crystal layer 110 from the vertical direction and the retardation with respect to the light incident from the oblique direction is compensated by the front viewing angle compensation film 4 and the rear viewing angle compensation film 5. Therefore, the difference in transmittance of incident light from various directions can be reduced, and a wide viewing angle can be obtained. Moreover, the display band color could be suppressed.

更に、ディスコティック液晶分子43a及びディスコティック液晶分子53aのチルト角は、前側視野角補償フィルム配向膜42及び後側視野角補償フィルム配向膜52から離れるに従って徐々に大きくなっている。このため、液晶層110に電場が印加された場合に、液晶分子110aに対するアンカリング効果のために残留するリタデーションも、前側視野角補償フィルム4及び後側視野角補償フィルム5により補償される。   Further, the tilt angles of the discotic liquid crystal molecules 43a and the discotic liquid crystal molecules 53a gradually increase as the distance from the front viewing angle compensation film alignment film 42 and the rear viewing angle compensation film alignment film 52 increases. For this reason, when an electric field is applied to the liquid crystal layer 110, the remaining retardation due to the anchoring effect on the liquid crystal molecules 110 a is also compensated by the front viewing angle compensation film 4 and the rear viewing angle compensation film 5.

尚、前側視野角補償フィルム光学軸4a及び後側視野角補償フィルム光学軸5aの方向は、それぞれ前記の方向と180°回転した方向としてもよい。即ち、前側視野角補償フィルム光学軸4aの方向を225°方向とし、後側視野角補償フィルム光学軸5aの方向を135°方向としても、同様の効果が得られる。   The directions of the front viewing angle compensation film optical axis 4a and the rear viewing angle compensation film optical axis 5a may be directions rotated by 180 ° with respect to the above directions. That is, the same effect can be obtained even when the direction of the front viewing angle compensation film optical axis 4a is 225 ° and the direction of the rear viewing angle compensation film optical axis 5a is 135 °.

この様に、良好な表示品質を有する液晶表示素子の設計を決定するために、本実施例においては、前側偏光板透過軸2a及び後側偏光板透過軸3aの方向の次に、前側視野角補償フィルム光学軸4a及び後側視野角補償フィルム光学軸5aの方向を決定した。   Thus, in order to determine the design of the liquid crystal display element having good display quality, in this embodiment, the front viewing angle is next to the front polarizing plate transmission axis 2a and the rear polarizing plate transmission axis 3a. The directions of the compensation film optical axis 4a and the rear viewing angle compensation film optical axis 5a were determined.

液晶セル1、前側偏光板2、後側偏光板3、前側視野角補償フィルム4、後側視野角補償フィルム5からなる液晶表示素子は、前記特許文献1に開示されている液晶表示素子である。当該従来の液晶表示素子の視野角特性を図6に示す。この図は黒表示時の光漏れの値を示す。円周方向角度は当該液晶表示素子を観察する方向を示しており、その方向は図2に定義した角度に対応する。また中心からの距離で示されている軸は、観察する方向と当該液晶表示素子の表示面の法線との成す角度を表す。例えば、中心の0°は当該液晶表示素子の表示面に対して垂直方向、即ち真正面から当該液晶表示素子を観察する場合を示し、その周りの例えば20°、40°は、当該液晶表示素子の表示面の法線に対して20°、40°の角度を成す、斜め方向から観察する場合を示す。光漏れの値は、光の透過がない真っ黒の状態を0とし、光が全て透過する状態(空気層の状態)を1とする。即ち、この場合、0に近いほど黒表示時の光漏れがなく、望ましい液晶表示素子であると言える。図6に示す通り、本液晶表示素子は、液晶表示素子の水平方向(図2中1h)に対して斜め方向である、ほぼ45°、135°、225°、315°周辺の方向から観察した場合に光漏れが認められることが分かる。これは、前側偏光板透過軸2a及び後側偏光板透過軸3aから±45°ずれた方向である。   A liquid crystal display element comprising the liquid crystal cell 1, the front polarizing plate 2, the rear polarizing plate 3, the front viewing angle compensation film 4, and the rear viewing angle compensation film 5 is the liquid crystal display device disclosed in Patent Document 1. . The viewing angle characteristics of the conventional liquid crystal display element are shown in FIG. This figure shows the value of light leakage during black display. The circumferential direction angle indicates the direction in which the liquid crystal display element is observed, and the direction corresponds to the angle defined in FIG. The axis indicated by the distance from the center represents the angle formed by the viewing direction and the normal line of the display surface of the liquid crystal display element. For example, the center 0 ° indicates a case where the liquid crystal display element is observed in a direction perpendicular to the display surface of the liquid crystal display element, that is, from the front, and the surroundings of 20 ° and 40 ° are, for example, 20 ° and 40 °. The case of observing from an oblique direction at an angle of 20 ° or 40 ° with respect to the normal line of the display surface is shown. The value of light leakage is 0 for a completely black state where no light is transmitted, and 1 for a state where all light is transmitted (air layer state). That is, in this case, the closer to 0, there is no light leakage during black display, and it can be said that the liquid crystal display element is desirable. As shown in FIG. 6, the present liquid crystal display element was observed from directions around 45 °, 135 °, 225 °, and 315 °, which are oblique directions with respect to the horizontal direction of the liquid crystal display element (1h in FIG. 2). It can be seen that light leakage is observed. This is a direction shifted by ± 45 ° from the front polarizing plate transmission axis 2a and the rear polarizing plate transmission axis 3a.

本実施例に係る液晶表示素子は、この斜め方向の光漏れを改善するために、位相差板を有している。即ち、本実施例においては、前記特許文献1に開示されている従来の液晶表示素子の後側偏光板3と後側視野角補償フィルム5との間に、図1及び図2に示す通り、黒補償用位相差板9を挿入した。   The liquid crystal display element according to this example has a retardation plate in order to improve the light leakage in the oblique direction. That is, in this example, as shown in FIGS. 1 and 2 between the rear polarizing plate 3 and the rear viewing angle compensation film 5 of the conventional liquid crystal display element disclosed in Patent Document 1, as shown in FIGS. A black compensation phase difference plate 9 was inserted.

ここで、黒補償用位相差板9の厚さ方向をz軸方向とし、板面に沿った最も屈折率が大きい遅相軸をs軸方向とし、板面に沿っておりs軸方向と直交する方向をf軸方向とする。また、s軸方向、f軸方向、及びz軸方向の屈折率をそれぞれnx、ny、及びnzとする。また、黒補償用位相差板9の厚さをdとする。このとき、Nz=(ns−nz)/(ns−nf)、R0=(ns−nf)dと定義する。   Here, the thickness direction of the black compensation phase difference plate 9 is the z-axis direction, the slow axis having the highest refractive index along the plate surface is the s-axis direction, and is along the plate surface and orthogonal to the s-axis direction. The direction to perform is the f-axis direction. Further, the refractive indexes in the s-axis direction, the f-axis direction, and the z-axis direction are nx, ny, and nz, respectively. The thickness of the black compensation phase difference plate 9 is d. At this time, Nz = (ns−nz) / (ns−nf) and R0 = (ns−nf) d are defined.

本実施例では、黒補償用位相差板9に、Nz=(ns−nz)/(ns−nf)=1.0、即ち、ns>nf=nzである一軸性フィルムを用いた。そして、黒補償用位相差板9の導入の最適な条件を決定するため、黒補償用位相差板9のs軸方向である黒補償用位相差板遅相軸9aを0°又は90°とし、R0=(ns−nf)dを様々な値に変更して、黒表示時の光漏れを検討した。   In this example, a uniaxial film with Nz = (ns−nz) / (ns−nf) = 1.0, that is, ns> nf = nz, was used for the black compensation phase difference plate 9. In order to determine the optimum conditions for introducing the black compensation phase difference plate 9, the black compensation phase difference plate slow axis 9a that is the s-axis direction of the black compensation phase difference plate 9 is set to 0 ° or 90 °. , R0 = (ns−nf) d was changed to various values, and light leakage during black display was examined.

得られたR0と光漏れの最大値Tmaxとの関係を図7及び図8に示す。ここで図7は、黒補償用位相差板遅相軸9aが90°の場合であり、図8は、黒補償用位相差板遅相軸9aが0°の場合である。黒補償用位相差板遅相軸9aが90°の場合、図7に示す通り、黒表示時の光漏れの顕著な抑制は認められなかった。一方、黒補償用位相差板遅相軸9aが0°の場合は、図8に示す通り、黒表示時の光漏れの抑制が認められた。特に、R0が100nm以上200nm以下の範囲において、Tmaxは0.02(2%)以下になった。そして、R0がほぼ160nmのとき、光漏れの最大値Tmaxが最小値を取った。R0=160nmの時の視野角特性を図9に示す。黒補償用位相差板9を導入していない場合0.066(6.6%)であった黒表示時の光漏れの最大値Tmaxに比較して、黒補償用位相差板9を導入すると0.0095(0.95%)と1/7程度に低下した。   The relationship between the obtained R0 and the maximum value Tmax of light leakage is shown in FIGS. FIG. 7 shows a case where the black compensation phase difference plate slow axis 9a is 90 °, and FIG. 8 shows a case where the black compensation phase difference plate slow axis 9a is 0 °. When the black compensation retardation plate slow axis 9a was 90 °, as shown in FIG. 7, no significant suppression of light leakage during black display was observed. On the other hand, when the black compensation retardation plate slow axis 9a was 0 °, suppression of light leakage during black display was recognized as shown in FIG. In particular, Tmax was 0.02 (2%) or less in the range where R0 was 100 nm or more and 200 nm or less. When R0 is approximately 160 nm, the maximum value Tmax of light leakage takes the minimum value. The viewing angle characteristic when R0 = 160 nm is shown in FIG. When the black compensation phase difference plate 9 is introduced as compared with the maximum value Tmax of light leakage at the time of black display which was 0.066 (6.6%) when the black compensation phase difference plate 9 is not introduced. It decreased to about 1/7, 0.0095 (0.95%).

この様に、例えば黒補償用位相差板9は、ns>nf=nzの関係を有し、s軸と前記後側偏光板の透過軸との成す角は0°である位相差板として機能する。   Thus, for example, the black compensation phase difference plate 9 has a relationship of ns> nf = nz, and functions as a phase difference plate in which the angle formed between the s axis and the transmission axis of the rear polarizing plate is 0 °. To do.

この様に、良好な表示品質を有する液晶表示素子の設計を決定するために、本実施例においては、前側視野角補償フィルム光学軸4a及び後側視野角補償フィルム光学軸5aの方向の次に、黒補償用位相差板遅相軸9aの方向と、黒補償用位相差板9のR0=(ns−nf)dの値を決定した。   Thus, in order to determine the design of the liquid crystal display element having good display quality, in the present embodiment, the direction of the front viewing angle compensation film optical axis 4a and the rear viewing angle compensation film optical axis 5a is next. The direction of the black compensation phase difference plate slow axis 9a and the value of R0 = (ns−nf) d of the black compensation phase difference plate 9 were determined.

以上の様に、黒表示時の視野角を改善するため、後側偏光板3と後側視野角補償フィルム5の間に、Nzが1.0の一軸性であり、R0=(ns−nf)dがほぼ160nmの黒補償用位相差板9を、黒補償用位相差板遅相軸9aの向きが0°±5°の方向となるように、即ち後側偏光板透過軸3aと平行になるように配設した。その結果、当該液晶表示素子の黒表示時の視野角が改善された。   As described above, in order to improve the viewing angle at the time of black display, Nz is uniaxial between the rear polarizing plate 3 and the rear viewing angle compensation film 5, and R0 = (ns−nf). ) The black compensation phase difference plate 9 having d of approximately 160 nm is set so that the direction of the black compensation phase difference plate slow axis 9a is 0 ° ± 5 °, that is, parallel to the rear polarizing plate transmission axis 3a. It arranged so that it might become. As a result, the viewing angle during black display of the liquid crystal display element was improved.

[第1の実施例の第1の変形例]
次に、第1の実施例の第1の変形例について説明する。本変形例の説明では、前記第1の実施例との相違点について説明する。第1の実施例に係る液晶表示素子において、前側偏光板2を前側偏光板透過軸2aが0°となる向きに、後側偏光板3を後側偏光板透過軸3aが90°の方向となるように配置しても良い。この場合、黒補償用位相差板9を、黒補償用位相差板遅相軸9aが90°の方向となるように配置すると、第1の実施例の場合と同様に、黒表示時の視野角が改善された。
[First Modification of First Embodiment]
Next, a first modification of the first embodiment will be described. In the description of this modification, differences from the first embodiment will be described. In the liquid crystal display device according to the first embodiment, the front polarizing plate 2 is oriented in the direction in which the front polarizing plate transmission axis 2a is 0 °, and the rear polarizing plate 3 is in the direction in which the rear polarizing plate transmission axis 3a is 90 °. You may arrange so that it may become. In this case, if the black compensation phase difference plate 9 is arranged so that the black compensation phase difference plate slow axis 9a is in the direction of 90 °, the visual field at the time of black display is the same as in the first embodiment. The corner was improved.

[第1の実施例の第2の変形例]
次に、前記第1の実施例の第2の変形例について説明する。本変形例の説明では、前記第1の実施例との相違点について説明する。黒補償用位相差板9の代わりに、前側偏光板2と前側視野角補償フィルム4との間に第1の黒補償用位相差板を、後側偏光板3と後側視野角補償フィルム5との間に第2の黒補償用位相差板をそれぞれ配置しても良い。これは、黒補償用位相差板9を第1の黒補償用位相差板と第2の黒補償用位相差板との2枚に分割したことに相当する。この場合、第1の黒補償用位相差板及び第2の黒補償用位相差板のR0の和をほぼ160nmとし、それらの遅相軸を共に0°(前側偏光板2を前側偏光板透過軸2aが0°となる向きに、後側偏光板3を後側偏光板透過軸3aが90°の方向となるように配置した場合には、90°)の方向となるように配置すると、第1の実施例の場合と同様に、黒表示時の視野角が改善された。即ち、第1の黒補償用位相差板及び第2の黒補償用位相差板の厚さをそれぞれd1及びd2としたときに、(ns−nf)(d1+d2)が160nmとなる様に設計した場合、前記第1の実施例と同様の効果が得られた。勿論、第1の黒補償用位相差板及び第2の黒補償用位相差板のR0をそれぞれほぼ80nmとし、それらの遅相軸を共に0°の方向となるように配置しても良い。
[Second Modification of First Embodiment]
Next, a second modification of the first embodiment will be described. In the description of this modification, differences from the first embodiment will be described. Instead of the black compensation phase difference plate 9, the first black compensation phase difference plate is provided between the front polarizing plate 2 and the front viewing angle compensation film 4, and the rear polarizing plate 3 and the rear viewing angle compensation film 5. A second black compensation phase difference plate may be disposed between the two. This is equivalent to dividing the black compensation phase difference plate 9 into two sheets, a first black compensation phase difference plate and a second black compensation phase difference plate. In this case, the sum of R0 of the first black compensation phase difference plate and the second black compensation phase difference plate is approximately 160 nm, and their slow axes are both 0 ° (the front polarization plate 2 is transmitted through the front polarization plate 2). When the rear polarizing plate 3 is disposed so that the rear polarizing plate transmission axis 3a is in the direction of 90 ° in the direction in which the axis 2a is 0 °, the rear polarizing plate 3a is disposed in the direction of 90 °) As in the case of the first embodiment, the viewing angle during black display was improved. That is, when the thicknesses of the first black compensation phase difference plate and the second black compensation phase difference plate are d1 and d2, respectively, (ns−nf) (d1 + d2) is designed to be 160 nm. In this case, the same effect as in the first embodiment was obtained. Of course, R0 of the first black compensation phase difference plate and the second black compensation phase difference plate may be set to approximately 80 nm, respectively, and their slow axes may be arranged in the direction of 0 °.

[第2の実施形態]
次に、本発明の第2の実施形態について説明する。ここで第2の実施形態の説明では、第1の実施形態との相違点について説明し、第1の実施形態と同一の部分については同一の符号を付してその説明は省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. Here, in the description of the second embodiment, differences from the first embodiment will be described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.

本発明の第2の実施形態に係る液晶表示素子は、図10にその概略を示す様に、液晶セル1と、前側偏光板2と、後側偏光板3と、前側視野角補償フィルム4と、後側視野角補償フィルム5と、前側白補償用位相差板6と、後側白補償用位相差板7と、黒補償用位相差板9とにより構成される。ここで、液晶セル1、前側偏光板2、後側偏光板3、前側視野角補償フィルム4、及び後側視野角補償フィルム5の構成は、第1の実施形態におけるそれらと同じである。   As shown schematically in FIG. 10, the liquid crystal display element according to the second embodiment of the present invention includes a liquid crystal cell 1, a front polarizing plate 2, a rear polarizing plate 3, and a front viewing angle compensation film 4. The rear viewing angle compensation film 5, the front white compensation phase difference plate 6, the rear white compensation phase difference plate 7, and the black compensation phase difference plate 9 are configured. Here, the configurations of the liquid crystal cell 1, the front polarizing plate 2, the rear polarizing plate 3, the front viewing angle compensation film 4, and the rear viewing angle compensation film 5 are the same as those in the first embodiment.

前側偏光板2と前側視野角補償フィルム4との間には、前側白補償用位相差板6が配設されており、後側偏光板3と後側視野角補償フィルム5との間には後側白補償用位相差板7が配設されている。前側白補償用位相差板6は、一軸性フィルムであり、その遅相軸が前側視野角補償フィルム4の光学軸と平行になるように配置されている。また、後側白補償用位相差板7も、一軸性フィルムであり、その遅相軸が後側視野角補償フィルム5の光学軸と平行になるように配置されている。このため、前側視野角補償フィルム4及び後側視野角補償フィルム5によるそれぞれのリタデーション補償効果が、それぞれに光学軸を一致させて積層された前側白補償用位相差板6及び後側白補償用位相差板7によって更に改善される。特に、白表示時、即ち液晶層110に電場が形成されていない状態での残留リタデーションが補償され、視野角特性が向上する。   A front white compensation phase difference plate 6 is disposed between the front polarizing plate 2 and the front viewing angle compensation film 4, and between the rear polarizing plate 3 and the rear viewing angle compensation film 5. A rear white compensation phase difference plate 7 is provided. The front white compensation phase difference plate 6 is a uniaxial film, and is arranged so that its slow axis is parallel to the optical axis of the front viewing angle compensation film 4. The rear white compensation phase difference plate 7 is also a uniaxial film, and is arranged so that its slow axis is parallel to the optical axis of the rear viewing angle compensation film 5. For this reason, the retardation compensation effect by the front viewing angle compensation film 4 and the rear viewing angle compensation film 5 is obtained by laminating the front white compensation phase difference plate 6 and the rear white compensation film, which are laminated with their optical axes aligned with each other. Further improvement is achieved by the phase difference plate 7. In particular, residual retardation in white display, that is, in a state where an electric field is not formed in the liquid crystal layer 110 is compensated, and viewing angle characteristics are improved.

更に本実施形態の液晶表示素子は、後側白補償用位相差板7と後側偏光板3との間に、黒補償用位相差板9を有している。黒補償用位相差板9は一軸性フィルムであり、その遅相軸は、後側偏光板3の透過軸と平行である。この様な黒補償用位相差板9を導入することにより、前側偏光板2及び後側偏光板3の透過軸を45°回転させた方向の、黒表示時における光漏れを更に低減させることができる。即ち、当該黒補償用位相差板9を導入することにより、これがないときに比べて、黒表示時の視野角が更に改善される。   Further, the liquid crystal display element of this embodiment includes a black compensation phase difference plate 9 between the rear white compensation phase difference plate 7 and the rear side polarization plate 3. The black compensation phase difference plate 9 is a uniaxial film, and its slow axis is parallel to the transmission axis of the rear polarizing plate 3. By introducing such a black compensation phase difference plate 9, it is possible to further reduce light leakage during black display in a direction in which the transmission axes of the front polarizing plate 2 and the rear polarizing plate 3 are rotated by 45 °. it can. That is, by introducing the black compensation phase difference plate 9, the viewing angle at the time of black display is further improved as compared with the case without this.

本実施形態に係る液晶表示素子を設計するにあたっては、まず、視野角特性をその良否を確認しながら、液晶セル1の前側水平配向膜16及び後側水平配向膜19の配向方向と、前側偏光板2及び後側偏光板3の透過軸の位置関係を決定する。次に、前記の液晶セル1、前側偏光板2、及び後側偏光板3からなる液晶表示素子の視野角特性を改善するために、前側視野角補償フィルム4及び後側視野角補償フィルム5の挿入を検討する。ここでも、これらの光学軸の位置関係を、視野角特性をその良否を確認しながら決定する。そして、更に視野角特性を改善するために、前側白補償用位相差板6及び後側白補償用位相差板7の挿入を検討する。ここでも、これらの光学軸の位置関係を、視野角特性をその良否を確認しながら決定する。更に、視野角特性を改善するため、黒補償用位相差板9の挿入を検討し、これらの光学軸の位置関係を、視野角特性をその良否を確認しながら決定する。   In designing the liquid crystal display device according to the present embodiment, first, while confirming the quality of the viewing angle characteristics, the alignment direction of the front horizontal alignment film 16 and the rear horizontal alignment film 19 of the liquid crystal cell 1 and the front polarization The positional relationship between the transmission axes of the plate 2 and the rear polarizing plate 3 is determined. Next, in order to improve the viewing angle characteristics of the liquid crystal display element composed of the liquid crystal cell 1, the front polarizing plate 2, and the rear polarizing plate 3, the front viewing angle compensation film 4 and the rear viewing angle compensation film 5 Consider insertion. Again, the positional relationship between these optical axes is determined while checking the viewing angle characteristics. In order to further improve the viewing angle characteristics, the insertion of the front white compensation phase difference plate 6 and the rear white compensation phase difference plate 7 will be examined. Again, the positional relationship between these optical axes is determined while checking the viewing angle characteristics. Furthermore, in order to improve the viewing angle characteristics, the insertion of the black compensation phase difference plate 9 is examined, and the positional relationship between these optical axes is determined while checking the viewing angle characteristics.

[第2の実施例]
次に、第2の実施形態に係る液晶表示素子の、一実施例を図面を参照して具体的に説明する。図10に示す様に、当該液晶表示素子は、当該液晶表示素子の観察側から順に、前側偏光板2、前側白補償用位相差板6、前側視野角補償フィルム4、液晶セル1、後側視野角補償フィルム5、後側白補償用位相差板7、黒補償用位相差板9、及び後側偏光板3を有する。
[Second Embodiment]
Next, an example of the liquid crystal display element according to the second embodiment will be described in detail with reference to the drawings. As shown in FIG. 10, the liquid crystal display element includes, in order from the observation side of the liquid crystal display element, a front polarizing plate 2, a front white compensation phase difference plate 6, a front viewing angle compensation film 4, a liquid crystal cell 1, and a rear side. It has a viewing angle compensation film 5, a rear white compensation phase difference plate 7, a black compensation phase difference plate 9, and a rear side polarization plate 3.

液晶セル1の構成は、前記第1の実施例におけるそれと同じである。但し、本液晶表示素子では、リタデーションΔn・dを色毎にそれぞれ、350nm〜450nmの範囲で適宜設定している。   The configuration of the liquid crystal cell 1 is the same as that in the first embodiment. However, in this liquid crystal display element, the retardation Δn · d is appropriately set in the range of 350 nm to 450 nm for each color.

図11を参照して当該液晶表示素子の光学的な構成を説明する。図11における軸及び角度の定義は、図2におけるそれと同じである。液晶セル1の光学的な構成を、図11の4段目に示す。前側水平配向膜16に刻まれた溝の向きである前側水平配向膜配向方向16aは、水平軸1hに対して+45°の方向であり、後側水平配向膜19に刻まれた溝の向きである後側水平配向膜配向方向19aは、水平軸1hに対して−45°の方向である。但し、実際にはこの角度に製造誤差等が含まれるため、本実施例においても第1の実施例の場合と同様に、±5°の幅をもたせて考えるものとする。従って、図2には「+45°±5°」及び「−45°±5°」と記載している。   The optical configuration of the liquid crystal display element will be described with reference to FIG. The definitions of axes and angles in FIG. 11 are the same as those in FIG. The optical configuration of the liquid crystal cell 1 is shown in the fourth row of FIG. The front horizontal alignment film alignment direction 16a, which is the direction of grooves engraved in the front horizontal alignment film 16, is a direction of + 45 ° with respect to the horizontal axis 1h, and is the direction of grooves engraved in the rear horizontal alignment film 19. A rear horizontal alignment film alignment direction 19a is a direction of −45 ° with respect to the horizontal axis 1h. However, since this angle actually includes a manufacturing error or the like, in this embodiment, it is assumed that a width of ± 5 ° is provided as in the case of the first embodiment. Accordingly, FIG. 2 shows “+ 45 ° ± 5 °” and “−45 ° ± 5 °”.

液晶セル1の前ガラス基板11側の当該液晶表示素子の最も外側には、前側偏光板2が配設されている。その設置角度は、図11の1段目に示す通り前側偏光板2の透過軸である前側偏光板透過軸2aが、水平軸1hと垂直となる角度である。従って、前側偏光板透過軸2aと、前側水平配向膜配向方向16aとは、45°±5°の角度を成している。   A front polarizing plate 2 is disposed on the outermost side of the liquid crystal display element on the front glass substrate 11 side of the liquid crystal cell 1. The installation angle is an angle at which the front polarizing plate transmission axis 2a that is the transmission axis of the front polarizing plate 2 is perpendicular to the horizontal axis 1h, as shown in the first row of FIG. Therefore, the front polarizing plate transmission axis 2a and the front horizontal alignment film alignment direction 16a form an angle of 45 ° ± 5 °.

液晶セル1の後ガラス基板12側の当該液晶表示素子の最も外側には、後側偏光板3が配設されている。その設置角度は、図11の8段目に示す通り後側偏光板3の透過軸である後側偏光板透過軸3aが、水平軸1hと平行になる角度である。従って、後側偏光板透過軸3aと、後側水平配向膜配向方向19aとは、45°±5°の角度を成している。また、後側偏光板透過軸3aと前側偏光板透過軸2aとの成す角は、90°±5°である。   A rear polarizing plate 3 is disposed on the outermost side of the liquid crystal display element on the rear glass substrate 12 side of the liquid crystal cell 1. The installation angle is an angle at which the rear polarizing plate transmission axis 3a which is the transmission axis of the rear polarizing plate 3 is parallel to the horizontal axis 1h as shown in the eighth row of FIG. Therefore, the rear polarizing plate transmission axis 3a and the rear horizontal alignment film alignment direction 19a form an angle of 45 ° ± 5 °. The angle formed by the rear polarizing plate transmission axis 3a and the front polarizing plate transmission axis 2a is 90 ° ± 5 °.

前記の通り、前側水平配向膜16及び後側水平配向膜19に刻まれた溝のため、液晶分子110aは、後側水平配向膜19の表面から前側水平配向膜16の表面に向かって、矢印21で示す様に−90°±5°の角度でツイストした状態で配列している。従って、ツイスト角度範囲の中間の角度の方向である、白抜き矢印20で示した+270°の方位に、当該液晶表示素子において最も良好なコントラストが得られる視角方位がある。このことを考慮して本実施例においては、前側水平配向膜配向方向16a及び後側水平配向膜配向方向19aを、それぞれ+45°方向及び−45°方向に設定した。   As described above, because of the grooves carved in the front horizontal alignment film 16 and the rear horizontal alignment film 19, the liquid crystal molecules 110 a move from the surface of the rear horizontal alignment film 19 to the surface of the front horizontal alignment film 16. As shown by 21, they are arranged in a twisted state at −90 ° ± 5 °. Therefore, there is a viewing angle direction in which the best contrast can be obtained in the liquid crystal display element in the direction of + 270 ° indicated by the white arrow 20 which is an intermediate angle direction of the twist angle range. In consideration of this, in the present embodiment, the front horizontal alignment film alignment direction 16a and the rear horizontal alignment film alignment direction 19a are set to the + 45 ° direction and the −45 ° direction, respectively.

また、一般に、液晶分子110aの長軸方向と一致する方位で、液晶表示素子の中間階調の階調反転が発生する。そこで本実施例においては、液晶層110に電場を形成した場合に、液晶分子110aの長軸が揃う+270°の方位に、前側偏光板透過軸2aを一致させ、当該液晶表示素子の表示を+270°の方位から観察した場合に発生する中間階調における階調反転を抑制した。   In general, gradation inversion of the intermediate gradation of the liquid crystal display element occurs in an orientation that coincides with the major axis direction of the liquid crystal molecules 110a. Therefore, in this embodiment, when an electric field is formed in the liquid crystal layer 110, the front polarizing plate transmission axis 2a is aligned with the + 270 ° azimuth in which the major axes of the liquid crystal molecules 110a are aligned, and the display of the liquid crystal display element is +270. Gradation inversion at intermediate gradations when observed from the azimuth direction was suppressed.

この様に、良好な表示品質を有する液晶表示素子の設計を決定するために、本実施例においても、まず、前側偏光板透過軸2a及び後側偏光板透過軸3aの方向を決定した。   Thus, in order to determine the design of the liquid crystal display element having good display quality, the directions of the front polarizing plate transmission axis 2a and the rear polarizing plate transmission axis 3a were also determined in this example.

前側視野角補償フィルム4及び後側視野角補償フィルム5の構成も、第1の実施例におけるそれと同じである。前側視野角補償フィルム光学軸4aは、図11の3段目に示す様に、液晶セル1の前側水平配向膜の前側水平配向膜配向方向16aと同一(+45°±5°方向)に位置させて配置されている。また、後側視野角補償フィルム光学軸5aは、図11の5段目に示す様に、液晶セル1の後側水平配向膜の後側水平配向膜配向方向19aと同一(−45°±5°方向)に位置させて配置されている。尚、前側視野角補償フィルム光学軸4a及び後側視野角補償フィルム光学軸5aの方向は、それぞれ前記の方向と180°回転した方向としてもよい。即ち、前側視野角補償フィルム光学軸4aの方向を225°方向とし、後側視野角補償フィルム光学軸5aの方向を135°方向としても、同様の効果が得られる。   The configurations of the front viewing angle compensation film 4 and the rear viewing angle compensation film 5 are the same as those in the first embodiment. The front viewing angle compensation film optical axis 4a is positioned in the same direction (+ 45 ° ± 5 ° direction) as the front horizontal alignment film alignment direction 16a of the front horizontal alignment film of the liquid crystal cell 1, as shown in the third row of FIG. Are arranged. The rear viewing angle compensation film optical axis 5a is the same as the rear horizontal alignment film alignment direction 19a of the rear horizontal alignment film of the liquid crystal cell 1 as shown in the fifth row of FIG. °)). The directions of the front viewing angle compensation film optical axis 4a and the rear viewing angle compensation film optical axis 5a may be directions rotated by 180 ° with respect to the above directions. That is, the same effect can be obtained even when the direction of the front viewing angle compensation film optical axis 4a is 225 ° and the direction of the rear viewing angle compensation film optical axis 5a is 135 °.

この様に、良好な表示品質を有する液晶表示素子の設計を決定するために、本実施例においては、前側偏光板透過軸2a及び後側偏光板透過軸3aの方向の次に、前側視野角補償フィルム光学軸4a及び後側視野角補償フィルム光学軸5aの方向を決定した。   Thus, in order to determine the design of the liquid crystal display element having good display quality, in this embodiment, the front viewing angle is next to the front polarizing plate transmission axis 2a and the rear polarizing plate transmission axis 3a. The directions of the compensation film optical axis 4a and the rear viewing angle compensation film optical axis 5a were determined.

本実施例においては、更に前側偏光板2と前側視野角補償フィルム4との間に前側白補償用位相差板6が配設されており、後側偏光板3と後側視野角補償フィルム5との間に後側白補償用位相差板7が配設されている。   In the present embodiment, a front white compensation phase difference plate 6 is further disposed between the front polarizing plate 2 and the front viewing angle compensation film 4, and the rear polarizing plate 3 and the rear viewing angle compensation film 5 are disposed. The white compensation phase difference plate 7 is disposed between the two.

ここで、位相差板の厚さ方向をz軸方向とし、板面に沿った最も屈折率が大きい遅相軸をs軸方向とし、板面に沿っておりs軸方向と直交する方向をf軸方向とする。また、s軸方向、f軸方向、及びz軸方向の屈折率をそれぞれnx、ny、及びnzとする。また、黒補償用位相差板9の厚さをdとする。このとき、Nz=(ns−nz)/(ns−nf)、R0=(ns−nf)dと定義する。   Here, the thickness direction of the retardation film is defined as the z-axis direction, the slow axis having the highest refractive index along the plate surface is defined as the s-axis direction, and the direction along the plate surface and orthogonal to the s-axis direction is defined as f. Axial direction. Further, the refractive indexes in the s-axis direction, the f-axis direction, and the z-axis direction are nx, ny, and nz, respectively. The thickness of the black compensation phase difference plate 9 is d. At this time, Nz = (ns−nz) / (ns−nf) and R0 = (ns−nf) d are defined.

前側白補償用位相差板6は、一軸性フィルムであり、Nz=(ns−nz)/(ns−nf)=1.0、即ちns>nf=nzの関係が成り立つフィルムである。その遅相軸である前側白補償用位相差板遅相軸6aは、前側視野角補償フィルム4の前側視野角補償フィルム光学軸4aと平行になるように、即ち+45°±5°方向になるように配置されている。尚、前側白補償用位相差板6のR0=(ns−nf)dは45nmである。また、後側白補償用位相差板7も、前側白補償用位相差板6と同様に一軸性フィルムであり、Nz=(ns−nz)/(ns−nf)=1.0である。後側白補償用位相差板7は、その遅相軸である後側白補償用位相差板遅相軸7aが、後側視野角補償フィルム5の後側視野角補償フィルム光学軸5aと平行になるように、即ち−45°±5°方向になるように配置されている。尚、後側白補償用位相差板7のR0=(ns−nf)dも45nmである。   The front white compensation phase difference plate 6 is a uniaxial film, and is a film that satisfies a relationship of Nz = (ns−nz) / (ns−nf) = 1.0, that is, ns> nf = nz. The front white compensation retardation plate slow axis 6a, which is the slow axis, is parallel to the front viewing angle compensation film optical axis 4a of the front viewing angle compensation film 4, that is, in the + 45 ° ± 5 ° direction. Are arranged as follows. Incidentally, R0 = (ns−nf) d of the front white compensation phase difference plate 6 is 45 nm. The rear white compensation phase difference plate 7 is also a uniaxial film like the front white compensation phase difference plate 6, and Nz = (ns−nz) / (ns−nf) = 1.0. In the rear white compensation phase difference plate 7, the rear white compensation phase difference plate slow axis 7 a, which is the slow axis, is parallel to the rear viewing angle compensation film optical axis 5 a of the rear viewing angle compensation film 5. That is, it is arranged to be in the direction of −45 ° ± 5 °. Incidentally, R0 = (ns−nf) d of the rear white compensation phase difference plate 7 is also 45 nm.

本実施例に依れば、前側視野角補償フィルム4及び後側視野角補償フィルム5によるそれぞれのリタデーション補償効果が、それぞれに光学軸を一致させて積層された前側白補償用位相差板6及び後側白補償用位相差板7によって更に改善される。特に、白表示時、即ち液晶層110に電場が形成されていない状態での残留リタデーションが補償され、視野角特性が向上する。   According to the present embodiment, the retardation compensation effects of the front viewing angle compensation film 4 and the rear viewing angle compensation film 5 are respectively obtained by laminating the front white compensation phase difference plate 6 and the front white compensation phase difference plate 6 laminated with the optical axes aligned with each other. Further improvement is achieved by the rear white compensation phase difference plate 7. In particular, residual retardation in white display, that is, in a state where an electric field is not formed in the liquid crystal layer 110 is compensated, and viewing angle characteristics are improved.

この様に、例えば前側白補償用位相差板6は、ns>nf=nzの関係を有し、s軸と前記前側光学異方性フィルムの光学軸との成す角を0°として配置された第1の位相差板として機能し、例えば後側白補償用位相差板7は、ns>nf=nzの関係を有し、s軸と前記後側光学異方性フィルムの光学軸との成す角を0°として配置された第2の位相差板として機能する。   Thus, for example, the front white compensation phase difference plate 6 has a relationship of ns> nf = nz, and is arranged with the angle formed by the s axis and the optical axis of the front optical anisotropic film being 0 °. For example, the rear white compensation retardation plate 7 has a relationship of ns> nf = nz, and is formed by the s axis and the optical axis of the rear optical anisotropic film. It functions as a second retardation plate arranged with an angle of 0 °.

この様に、良好な表示品質を有する液晶表示素子の設計を決定するために、本実施例においては、前側視野角補償フィルム光学軸4a及び後側視野角補償フィルム光学軸5aの方向の次に、前側白補償用位相差板遅相軸6a及び後側白補償用位相差板遅相軸7aの方向と、前側白補償用位相差板6及び後側白補償用位相差板7のR0=(ns−nf)dの値を決定した。   Thus, in order to determine the design of the liquid crystal display element having good display quality, in the present embodiment, the direction of the front viewing angle compensation film optical axis 4a and the rear viewing angle compensation film optical axis 5a is next. The direction of the front white compensation phase difference plate slow axis 6a and the direction of the rear white compensation phase difference plate slow axis 7a, and R0 of the front white compensation phase difference plate 6 and the rear white compensation phase difference plate 7 = The value of (ns−nf) d was determined.

ここで、液晶セル1、前側偏光板2、後側偏光板3、前側視野角補償フィルム4、後側視野角補償フィルム5、前側白補償用位相差板6、後側白補償用位相差板7からなる液晶表示素子は、前記特許文献1に開示されている液晶表示素子である。当該従来の液晶表示素子の視野角特性を図12に示す。この図は黒表示時の光漏れの値を示す。軸等の定義は、図6のそれと同じである。図12に示す通り、本液晶表示素子は、液晶表示素子の水平方向(図11中1h)に対して斜め方向である、ほぼ45°、135°、225°、315°の周辺の方向から観察した場合に光漏れが認められることが分かる。これは、前側偏光板透過軸2a及び後側偏光板透過軸3aから45°ずれた方向である。   Here, the liquid crystal cell 1, the front polarizing plate 2, the rear polarizing plate 3, the front viewing angle compensation film 4, the rear viewing angle compensation film 5, the front white compensation retardation plate 6, and the rear white compensation retardation plate. 7 is a liquid crystal display element disclosed in Patent Document 1. The viewing angle characteristics of the conventional liquid crystal display element are shown in FIG. This figure shows the value of light leakage during black display. The definition of the axes and the like is the same as that in FIG. As shown in FIG. 12, the present liquid crystal display element is observed from directions around 45 °, 135 °, 225 °, and 315 ° that are oblique to the horizontal direction (1h in FIG. 11) of the liquid crystal display device. It can be seen that light leakage is observed. This is a direction shifted by 45 ° from the front polarizing plate transmission axis 2a and the rear polarizing plate transmission axis 3a.

本実施例における液晶表示素子は、この斜め方向の光漏れを改善するために、位相差板を導入するものである。本実施例に係る液晶表示素子において、図10及び図11に示す通り、前記特許文献1に開示されている従来の液晶表示素子の後側偏光板3と後側白補償用位相差板7との間に、黒補償用位相差板9を導入した。   In the liquid crystal display element in this embodiment, a retardation plate is introduced in order to improve the light leakage in the oblique direction. In the liquid crystal display element according to the present embodiment, as shown in FIGS. 10 and 11, the rear polarizing plate 3 and the rear white compensation phase difference plate 7 of the conventional liquid crystal display element disclosed in Patent Document 1 are disclosed. In between, the black compensation phase difference plate 9 was introduced.

本実施例では、黒補償用位相差板9は、Nz=(ns−nz)/(ns−nf)=1.0である一軸性フィルムを用いた。そして、黒補償用位相差板9の導入の最適な条件を決定するため、黒補償用位相差板9のs軸方向である黒補償用位相差板遅相軸9aを0°又は90°とし、R0=(ns−nf)dを様々な値に変更して、黒表示時の光漏れを検討した。   In this embodiment, the black compensation phase difference plate 9 is a uniaxial film in which Nz = (ns−nz) / (ns−nf) = 1.0. In order to determine the optimum conditions for introducing the black compensation phase difference plate 9, the black compensation phase difference plate slow axis 9a that is the s-axis direction of the black compensation phase difference plate 9 is set to 0 ° or 90 °. , R0 = (ns−nf) d was changed to various values, and light leakage during black display was examined.

得られたR0と光漏れの最大値Tmaxとの関係を図13及び図14に示す。ここで図13は、黒補償用位相差板遅相軸9aが90°の場合であり、図14は、黒補償用位相差板遅相軸9aが0°の場合である。黒補償用位相差板遅相軸9aが90°の場合、図13に示す通り、黒表示時の光漏れの顕著な抑制は認められなかった。一方、黒補償用位相差板遅相軸9aが0°の場合は、図14に示す通り、黒表示時の光漏れの抑制が認められた。特にR0が80nm以上180nm以下の範囲においてTmaxは0.02(2%)以下になった。そして、位相差R0がほぼ140nmのとき、光漏れの最大値Tmaxが最小値を取ることが明らかになった。R0=140nmの時の視野角特性を図15に示す。黒補償用位相差板9を導入していない場合0.038(3.8%)であった黒表示時の光漏れの最大値Tmaxが、黒補償用位相差板9を導入すると0.013(1.3%)と1/3程度に低減された。   The relationship between the obtained R0 and the maximum value Tmax of light leakage is shown in FIGS. Here, FIG. 13 shows a case where the black compensation phase difference plate slow axis 9a is 90 °, and FIG. 14 shows a case where the black compensation phase difference plate slow axis 9a is 0 °. When the black compensation retardation plate slow axis 9a was 90 °, as shown in FIG. 13, no significant suppression of light leakage during black display was observed. On the other hand, when the black compensation retardation plate slow axis 9a was 0 °, suppression of light leakage during black display was recognized as shown in FIG. In particular, Tmax was 0.02 (2%) or less in the range where R0 was 80 nm or more and 180 nm or less. It has been clarified that when the phase difference R0 is approximately 140 nm, the maximum value Tmax of light leakage takes the minimum value. The viewing angle characteristics when R0 = 140 nm are shown in FIG. When the black compensation phase difference plate 9 is not introduced, the maximum value Tmax of light leakage during black display, which was 0.038 (3.8%), is 0.013 when the black compensation phase difference plate 9 is introduced. (1.3%) and reduced to about 1/3.

この様に、例えば黒補償用位相差板9は、ns>nf=nzの関係を有し、s軸と前記後側偏光板の透過軸との成す角を0°として配置された第3の位相差板として機能する。   Thus, for example, the black compensation phase difference plate 9 has a relationship of ns> nf = nz, and is arranged with the third angle arranged with the angle formed between the s-axis and the transmission axis of the rear polarizing plate being 0 °. Functions as a phase difference plate.

この様に、良好な表示品質を有する液晶表示素子の設計を決定するために、本実施例においては、前側白補償用位相差板遅相軸6a及び後側白補償用位相差板遅相軸7aの方向と、前側白補償用位相差板6及び後側白補償用位相差板7のR0=(ns−nf)dの値の次に、黒補償用位相差板遅相軸9aの方向と、黒補償用位相差板9のR0=(ns−nf)dの値を決定した。   In this way, in order to determine the design of the liquid crystal display element having good display quality, in this embodiment, the front white compensation phase difference plate slow axis 6a and the rear white compensation phase difference plate slow axis are determined. Next to the direction of 7a and the value of R0 = (ns−nf) d of the front white compensation phase difference plate 6 and the rear white compensation phase difference plate 7, the direction of the black compensation phase difference plate slow axis 9a Then, the value of R0 = (ns−nf) d of the black compensation phase difference plate 9 was determined.

以上の様に、黒表示時の視野角を改善するため、後側偏光板3と後側白補償用位相差板7の間に、Nzが1.0の一軸性であり、R0=(ns−nf)dがほぼ140nmの黒補償用位相差板9を、黒補償用位相差板遅相軸9aの向きが0°±5°の方向となるように、即ち後側偏光板透過軸3aと平行になるように導入した。その結果、黒表示時の視野角が改善された。   As described above, in order to improve the viewing angle at the time of black display, Nz is uniaxial between the rear polarizing plate 3 and the rear white compensation phase difference plate 7, and R0 = (ns -Nf) The black compensation phase difference plate 9 having d of approximately 140 nm is set so that the direction of the slow axis 9a of the black compensation phase difference plate is 0 ° ± 5 °, that is, the rear polarizing plate transmission axis 3a Introduced to be parallel to As a result, the viewing angle during black display was improved.

[第2の実施例の第1の変形例]
次に、第2の実施例の第1の変形例について説明する。本変形例の説明では、前記第2の実施例との相違点について説明する。第2の実施例に係る液晶表示素子において、前側偏光板2を前側偏光板透過軸2aが0°となる向きに、後側偏光板3を後側偏光板透過軸3aが90°の方向となるように配置しても良い。この場合、黒補償用位相差板9を、黒補償用位相差板遅相軸9aが90°の方向となるように配置すると、第2の実施例の場合と同様に、黒表示時の視野角が改善された。
[First Modification of Second Embodiment]
Next, a first modification of the second embodiment will be described. In the description of this modification, differences from the second embodiment will be described. In the liquid crystal display device according to the second example, the front polarizing plate 2 is oriented in the direction in which the front polarizing plate transmission axis 2a is 0 °, and the rear polarizing plate 3 is in the direction in which the rear polarizing plate transmission axis 3a is 90 °. You may arrange so that it may become. In this case, if the black compensation phase difference plate 9 is arranged so that the black compensation phase difference plate slow axis 9a is in the direction of 90 °, as in the second embodiment, the visual field at the time of black display is displayed. The corner was improved.

[第2の実施例の第2の変形例]
次に、前記第2の実施例の第2の変形例について説明する。本変形例の説明では、前記第2の実施例との相違点について説明する。黒補償用位相差板9の代わりに、前側偏光板2と前側白補償用位相差板6との間に第1の黒補償用位相差板を、後側偏光板3と後側白補償用位相差板7との間に第2の黒補償用位相差板をそれぞれ配置しても良い。これは、黒補償用位相差板9を第1の黒補償用位相差板と第2の黒補償用位相差板との2枚に分割したことに相当する。この場合、第1の黒補償用位相差板及び第2の黒補償用位相差板のR0の和をほぼ140nmとし、それらの遅相軸を共に0°(前側偏光板2を前側偏光板透過軸2aが0°となる向きに、後側偏光板3を後側偏光板透過軸3aが90°の方向となるように配置した場合には、90°)の方向となるように配置すると、第2の実施例の場合と同様に、黒表示時の視野角が改善された。即ち、第1の黒補償用位相差板及び第2の黒補償用位相差板の厚さをそれぞれd1及びd2としたときに、(ns−nf)(d1+d2)が140nmとなる様に設計した場合、前記第1の実施例と同様の効果が得られた。勿論、第1の黒補償用位相差板及び第2の黒補償用位相差板のR0をそれぞれほぼ70nmとし、それらの遅相軸を共に0°の方向となるように配置しても良い。
[Second Modification of Second Embodiment]
Next, a second modification of the second embodiment will be described. In the description of this modification, differences from the second embodiment will be described. Instead of the black compensation phase difference plate 9, the first black compensation phase difference plate is provided between the front side polarization plate 2 and the front side white compensation phase difference plate 6, and the rear side polarization plate 3 and the rear side white compensation value. A second black compensation phase difference plate may be disposed between the phase difference plate 7 and the second phase difference plate 7. This is equivalent to dividing the black compensation phase difference plate 9 into two sheets, a first black compensation phase difference plate and a second black compensation phase difference plate. In this case, the sum of R0 of the first black compensation phase difference plate and the second black compensation phase difference plate is set to about 140 nm, and their slow axes are both 0 ° (the front polarizing plate 2 is transmitted through the front polarizing plate 2). When the rear polarizing plate 3 is disposed so that the rear polarizing plate transmission axis 3a is in the direction of 90 ° in the direction in which the axis 2a is 0 °, the rear polarizing plate 3a is disposed in the direction of 90 °) As in the case of the second embodiment, the viewing angle during black display was improved. That is, when the thicknesses of the first black compensation phase difference plate and the second black compensation phase difference plate are d1 and d2, respectively, (ns−nf) (d1 + d2) is designed to be 140 nm. In this case, the same effect as in the first embodiment was obtained. Of course, R0 of the first black compensation phase difference plate and the second black compensation phase difference plate may be set to approximately 70 nm, respectively, and their slow axes may be arranged in the direction of 0 °.

なお、本発明は前記実施形態、実施例及び変形例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態、実施例及び変形例に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態、実施例及び変形例に示される全構成要素から幾つかの構成要素を削除しても、発明が解決しようとする課題の欄で述べられた課題が解決でき、かつ、発明の効果が得られる場合には、この構成要素が削除された構成も発明として抽出され得る。さらに、異なる実施形態、実施例及び変形例にわたる構成要素を適宜組み合わせてもよい。   In addition, this invention is not limited to the said embodiment, an Example, and a modification example as it is, In the implementation stage, a component can be deform | transformed and embodied in the range which does not deviate from the summary. Moreover, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment, examples, and modifications. For example, even if some components are deleted from all the components shown in the embodiments, examples, and modifications, the problems described in the column of problems to be solved by the invention can be solved, and When an effect is obtained, a configuration from which this component is deleted can also be extracted as an invention. Furthermore, constituent elements over different embodiments, examples, and modifications may be appropriately combined.

1…液晶セル、2…前側偏光板、2a…前側偏光板透過軸、2b…前側偏光板吸収軸、3…後側偏光板、3a…後側偏光板透過軸、3b…後側偏光板吸収軸、4…前側視野角補償フィルム、4a…前側視野角補償フィルム光学軸、5…後側視野角補償フィルム、5a…後側視野角補償フィルム光学軸、6…前側白補償用位相差板、6a…前側白補償用位相差板遅相軸、7…後側白補償用位相差板、7a…後側白補償用位相差板遅相軸、9…黒補償用位相差板、9a…黒補償用位相差板遅相軸、11…前ガラス基板、12…後ガラス基板、13…ブラックマスク、14R…赤色カラーフィルタ、14G…緑色カラーフィルタ、14B…青色カラーフィルタ、15…共通電極、16…前側水平配向膜、16a…前側水平配向膜配向方向、17…画素電極、18…薄膜トランジスタ、19…後側水平配向膜、19a…後側水平配向膜配向方向、110…液晶層、110a…液晶分子、41…前側視野角補償フィルム基板、42…前側視野角補償フィルム配向膜、43…前側視野角補償フィルムディスコティック液晶層、43a…ディスコティック液晶分子、43b…分子軸、51…後側視野角補償フィルム基板、52…後側視野角補償フィルム配向膜、53…後側視野角補償フィルムディスコティック液晶層、53a…ディスコティック液晶分子、53b…分子軸。   DESCRIPTION OF SYMBOLS 1 ... Liquid crystal cell, 2 ... Front side polarizing plate, 2a ... Front side polarizing plate transmission axis, 2b ... Front side polarizing plate absorption axis, 3 ... Rear side polarizing plate, 3a ... Rear side polarizing plate transmission axis, 3b ... Rear side polarizing plate absorption Axis, 4 ... front viewing angle compensation film, 4a ... front viewing angle compensation film optical axis, 5 ... rear viewing angle compensation film, 5a ... rear viewing angle compensation film optical axis, 6 ... front white compensation phase difference plate, 6a: front white compensation phase difference plate slow axis, 7: rear white compensation phase difference plate, 7a: rear white compensation phase difference plate slow axis, 9: black compensation phase difference plate, 9a: black Compensation retardation plate slow axis, 11 ... front glass substrate, 12 ... rear glass substrate, 13 ... black mask, 14R ... red color filter, 14G ... green color filter, 14B ... blue color filter, 15 ... common electrode, 16 ... Front horizontal alignment film, 16a ... Front horizontal alignment film alignment direction, 17 ... Image Electrode, 18 ... Thin film transistor, 19 ... Rear horizontal alignment film, 19a ... Rear horizontal alignment film alignment direction, 110 ... Liquid crystal layer, 110a ... Liquid crystal molecule, 41 ... Front viewing angle compensation film substrate, 42 ... Front viewing angle compensation film Alignment film, 43 ... front viewing angle compensation film discotic liquid crystal layer, 43a ... discotic liquid crystal molecule, 43b ... molecular axis, 51 ... rear viewing angle compensation film substrate, 52 ... rear viewing angle compensation film alignment film, 53 ... Rear viewing angle compensation film discotic liquid crystal layer, 53a... Discotic liquid crystal molecules, 53b.

Claims (20)

それぞれ電極が形成された互いに対向する面に、互いに90°を成す方向に配向処理が施された前側基板及び後側基板、並びに該前側基板及び後側基板の間に液晶分子を90°のツイスト角でツイスト配向させて設けられた液晶層を有する液晶素子と、
前記前側基板に対して液晶層側とは反対側に、前記前側基板の配向処理の方向に対して透過軸が45°の角を成すように配置された前側偏光板と、
前記後側基板に対して液晶層側とは反対側に、前記前側偏光板の透過軸に対して透過軸が90°の角を成すように配置された後側偏光板と、
前記液晶素子と前記前側偏光板との間に配置された前側光学異方性フィルムであって、
該前側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、
該特定方向を該フィルム面へ投影した方向と前記前側基板の配向処理方向との成す角は0°である、
前側光学異方性フィルムと、
前記液晶素子と前記後側偏光板との間に配置された後側光学異方性フィルムであって、
該後側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、
該特定方向を該フィルム面へ投影した方向と前記後側基板の配向処理方向との成す角は0°である、
後側光学異方性フィルムと、
前記後側偏光板と前記後側光学異方性フィルムとの間に配置された位相差板であって、
該位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs1軸、f1軸、並びにz1軸とし、該s1軸、該f1軸、及び該z1軸の方向の屈折率をそれぞれns1、nf1、及びnz1としたとき、
該ns1、該nf1、及び該nz1は、ns1>nf1=nz1の関係を有し、
該s1軸と前記後側偏光板の透過軸との成す角は0°である、
位相差板と、
を具備することを特徴とする液晶表示素子。
A front substrate and a rear substrate, which have been subjected to alignment treatment in a direction of 90 °, on the surfaces facing each other on which electrodes are formed, and a 90 ° twist of liquid crystal molecules between the front substrate and the rear substrate. A liquid crystal element having a liquid crystal layer provided with twist orientation at corners;
A front polarizing plate disposed on the side opposite to the liquid crystal layer side with respect to the front substrate, so that a transmission axis forms an angle of 45 ° with respect to a direction of alignment treatment of the front substrate;
A rear polarizing plate disposed on the side opposite to the liquid crystal layer side with respect to the rear substrate, so that the transmission axis forms an angle of 90 ° with respect to the transmission axis of the front polarizing plate;
A front optically anisotropic film disposed between the liquid crystal element and the front polarizing plate,
The negative optical anisotropy has a minimum refractive index in a direction inclined in a specific direction with respect to the normal of the film surface of the front optically anisotropic film,
The angle formed by the direction in which the specific direction is projected onto the film surface and the orientation treatment direction of the front substrate is 0 °.
A front optically anisotropic film;
A rear optically anisotropic film disposed between the liquid crystal element and the rear polarizing plate,
The negative optical anisotropy has a minimum refractive index in the direction inclined in a specific direction with respect to the normal of the film surface of the rear optical anisotropic film,
The angle formed between the direction in which the specific direction is projected onto the film surface and the orientation processing direction of the rear substrate is 0 °.
A rear optically anisotropic film;
A retardation plate disposed between the rear polarizing plate and the rear optically anisotropic film,
The direction having the largest refractive index along the plate surface of the retardation plate, the direction orthogonal to the direction having the largest refractive index along the plate surface, and the normal direction of the plate surface are respectively represented by s1 axis, f1 axis, And the z1 axis, and the refractive indexes in the directions of the s1 axis, the f1 axis, and the z1 axis are ns1, nf1, and nz1, respectively.
The ns1, the nf1, and the nz1 have a relationship of ns1> nf1 = nz1,
The angle formed between the s1 axis and the transmission axis of the rear polarizing plate is 0 °.
A phase difference plate;
A liquid crystal display element comprising:
前記前側光学異方性フィルム及び前記後側光学異方性フィルムは、それぞれディスコティック液晶を有することを特徴とする請求項1に記載の液晶表示素子。   The liquid crystal display element according to claim 1, wherein each of the front optical anisotropic film and the rear optical anisotropic film has a discotic liquid crystal. 前記前側基板と前記後側基板は矩形であり、
前記前側基板に施された配向処理の方向と前記前側基板の一辺との成す角は45°である、
ことを特徴とする請求項1乃至請求項2のうち何れか1項に記載の液晶表示素子。
The front substrate and the rear substrate are rectangular,
The angle formed between the direction of the alignment treatment applied to the front substrate and one side of the front substrate is 45 °.
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is a liquid crystal display element.
前記前側基板に施された配向処理の方向は、該前側基板の左右方向に延びる水平軸の右側方向に対して、該前側基板側から該前側基板の法線方向に該液晶表示素子を観察して反時計回りとなる方向に45°回転させた方向であり、
前記後側基板に施された配向処理の方向は、前記前側基板に施された配向処理の方向に対して、該前側基板側から該前側基板の法線方向に該液晶表示素子を観察して時計回りとなる方向に90°回転させた方向である、
ことを特徴とする請求項1乃至請求項3のうち何れか1項に記載の液晶表示素子。
The liquid crystal display element is observed from the front substrate side to the normal direction of the front substrate with respect to the right direction of the horizontal axis extending in the left-right direction of the front substrate as the direction of the alignment treatment applied to the front substrate. Is a direction rotated 45 ° counterclockwise,
The direction of the alignment treatment applied to the rear substrate is determined by observing the liquid crystal display element from the front substrate side to the normal direction of the front substrate with respect to the alignment treatment direction applied to the front substrate. It is a direction rotated 90 ° in the clockwise direction.
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is a liquid crystal display element.
前記前側偏光板の透過軸の方向は、前記前側基板に施された配向処理の方向に対して、該前側基板側から該前側基板の法線方向に該液晶表示素子を観察して反時計回りとなる方向に45°回転させた方向であることを特徴とする請求項1乃至請求項4のうち何れか1項に記載の液晶表示素子。   The direction of the transmission axis of the front polarizing plate is counterclockwise by observing the liquid crystal display element from the front substrate side to the normal direction of the front substrate with respect to the direction of alignment treatment applied to the front substrate. 5. The liquid crystal display element according to claim 1, wherein the liquid crystal display element is a direction rotated by 45 ° in the direction to be. 前記液晶層の屈折率異方性Δnと該液晶層の厚さdとの積であるΔn・dの値は450nm以上550nm以下であり、
前記位相差板の厚さをd1としたとき、該位相差板に関する(ns1−nf1)d1の値は100nm以上200nm以下である、
ことを特徴とする請求項1乃至請求項5のうち何れか1項に記載の液晶表示素子。
The value of Δn · d, which is the product of the refractive index anisotropy Δn of the liquid crystal layer and the thickness d of the liquid crystal layer, is 450 nm or more and 550 nm or less,
When the thickness of the retardation plate is d1, the value of (ns1-nf1) d1 relating to the retardation plate is 100 nm or more and 200 nm or less.
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is a liquid crystal display element.
前記位相差板に関する(ns1−nf1)d1の値はほぼ160nmであることを特徴とする請求項6に記載の液晶表示素子。   The liquid crystal display element according to claim 6, wherein a value of (ns1−nf1) d1 relating to the retardation plate is approximately 160 nm. 前記前側偏光板と前記前側光学異方性フィルムとの間に配置された前側位相差板であって、
該前側位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs2軸、f2軸、並びにz2軸とし、該s2軸、該f2軸、及び該z2軸の方向の屈折率をそれぞれns2、nf2、及びnz2としたとき、
該ns2、該nf2、及び該nz2は、それぞれ前記ns1、前記nf1、及び前記nz1と等しく、
該s2軸と前記後側偏光板の透過軸との成す角は0°である、
前側位相差板を更に具備し、
前記液晶層の屈折率異方性Δnと該液晶層の厚さdとの積であるΔn・dの値は450nm以上550nm以下であり、
前記位相差板の厚さをd1とし、前記前側位相差板の厚さをd2としたとき、該位相差板及び該前側位相差板に関する(ns1−nf1)(d1+d2)の値は100nm以上200nm以下である、
ことを特徴とする請求項1乃至請求項5のうち何れか1項に記載の液晶表示素子。
A front retardation plate disposed between the front polarizing plate and the front optically anisotropic film,
The direction having the highest refractive index along the plate surface of the front phase difference plate, the direction orthogonal to the direction having the highest refractive index along the plate surface, and the normal direction of the plate surface are respectively represented by s2 axis and f2 axis. , And z2 axis, and the refractive indexes in the directions of the s2 axis, the f2 axis, and the z2 axis are ns2, nf2, and nz2, respectively.
The ns2, the nf2, and the nz2 are equal to the ns1, the nf1, and the nz1, respectively.
The angle formed by the s2 axis and the transmission axis of the rear polarizing plate is 0 °.
Further comprising a front retardation plate,
The value of Δn · d, which is the product of the refractive index anisotropy Δn of the liquid crystal layer and the thickness d of the liquid crystal layer, is 450 nm or more and 550 nm or less,
When the thickness of the retardation plate is d1 and the thickness of the front retardation plate is d2, the value of (ns1-nf1) (d1 + d2) relating to the retardation plate and the front retardation plate is 100 nm or more and 200 nm. Is
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is a liquid crystal display element.
前記位相差板に関する(ns1−nf1)d1の値及び前記前側位相差板に関する(ns2−nf2)d2の値は共にほぼ80nmであることを特徴とする請求項8に記載の液晶表示素子。   9. The liquid crystal display element according to claim 8, wherein a value of (ns1-nf1) d1 relating to the retardation plate and a value of (ns2-nf2) d2 relating to the front retardation plate are both approximately 80 nm. それぞれ電極が形成された互いに対向する面に、互いに90°を成す方向に配向処理が施された前側基板及び後側基板、並びに該前側基板及び後側基板の間に液晶分子を90°のツイスト角でツイスト配向させて設けられた液晶層を有する液晶素子と、
前記前側基板に対して液晶層側とは反対側に、前記前側基板の配向処理の方向に対して透過軸が45°の角を成すように配置された前側偏光板と、
前記後側基板に対して液晶層側とは反対側に、前記前側偏光板の透過軸に対して透過軸が90°の角を成すように配置された後側偏光板と、
前記液晶素子と前記前側偏光板との間に配置された前側光学異方性フィルムであって、
該前側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、
該特定方向を該フィルム面へ投影した方向と前記前側基板の配向処理方向との成す角は0°である、
前側光学異方性フィルムと、
前記液晶素子と前記後側偏光板との間に配置された後側光学異方性フィルムであって、
該後側光学異方性フィルムのフィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有し、
該特定方向を該フィルム面へ投影した方向と前記後側基板の配向処理方向との成す角は0°である、
後側光学異方性フィルムと、
前記前側偏光板と前記前側光学異方性フィルムとの間に配置された第1の位相差板であって、
該第1の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs1軸、f1軸、並びにz1軸とし、該s1軸、該f1軸、及び該z1軸の方向の屈折率をそれぞれns1、nf1、及びnz1としたとき、
該ns1、該nf1、及び該nz1は、ns1>nf1=nz1の関係を有し、
該第1の位相差板のs1軸と前記前側光学異方性フィルムの光学軸との成す角は0°である、
第1の位相差板と、
前記後側偏光板と前記後側光学異方性フィルムとの間に配置された第2の位相差板であって、
該第2の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs2軸、f2軸、並びにz2軸とし、該s2軸、該f2軸、及び該z2軸の方向の屈折率をそれぞれns2、nf2、及びnz2としたとき、
該ns2、該nf2、及び該nz2は、ns2>nf2=nz2の関係を有し、
該第2の位相差板のs2軸と前記後側光学異方性フィルムの光学軸との成す角は0°である、
第2の位相差板と、
前記後側偏光板と前記第2の位相差板との間に配置された第3の位相差板であって、
該第3の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs3軸、f3軸、並びにz3軸とし、該s3軸、該f3軸、及び該z3軸の方向の屈折率をそれぞれns3、nf3、及びnz3としたとき、
該ns3、該nf3、及び該nz3は、ns3>nf3=nz3の関係を有し、
該第3の位相差板のs3軸と前記後側偏光板の透過軸との成す角は0°である、
第3の位相差板と、
を具備することを特徴とする液晶表示素子。
A front substrate and a rear substrate, which have been subjected to alignment treatment in a direction of 90 °, on the surfaces facing each other on which electrodes are formed, and a 90 ° twist of liquid crystal molecules between the front substrate and the rear substrate. A liquid crystal element having a liquid crystal layer provided with twist orientation at corners;
A front polarizing plate disposed on the side opposite to the liquid crystal layer side with respect to the front substrate, so that a transmission axis forms an angle of 45 ° with respect to a direction of alignment treatment of the front substrate;
A rear polarizing plate disposed on the side opposite to the liquid crystal layer side with respect to the rear substrate, so that the transmission axis forms an angle of 90 ° with respect to the transmission axis of the front polarizing plate;
A front optically anisotropic film disposed between the liquid crystal element and the front polarizing plate,
The negative optical anisotropy has a minimum refractive index in a direction inclined in a specific direction with respect to the normal of the film surface of the front optically anisotropic film,
The angle formed by the direction in which the specific direction is projected onto the film surface and the orientation treatment direction of the front substrate is 0 °.
A front optically anisotropic film;
A rear optically anisotropic film disposed between the liquid crystal element and the rear polarizing plate,
The negative optical anisotropy has a minimum refractive index in the direction inclined in a specific direction with respect to the normal of the film surface of the rear optical anisotropic film,
The angle formed between the direction in which the specific direction is projected onto the film surface and the orientation processing direction of the rear substrate is 0 °.
A rear optically anisotropic film;
A first retardation plate disposed between the front polarizing plate and the front optically anisotropic film,
A direction having the highest refractive index along the plate surface of the first retardation plate, a direction orthogonal to the direction having the highest refractive index along the plate surface, and the normal direction of the plate surface are respectively represented by s1 axis, When the refractive indexes in the directions of the f1 axis and the z1 axis and the s1 axis, the f1 axis, and the z1 axis are ns1, nf1, and nz1, respectively,
The ns1, the nf1, and the nz1 have a relationship of ns1> nf1 = nz1,
The angle formed between the s1 axis of the first retardation plate and the optical axis of the front optical anisotropic film is 0 °.
A first retardation plate;
A second retardation plate disposed between the rear polarizing plate and the rear optically anisotropic film,
The direction having the highest refractive index along the plate surface of the second retardation plate, the direction orthogonal to the direction having the highest refractive index along the plate surface, and the normal direction of the plate surface are respectively represented by s2 axis, When the refractive indexes in the directions of the f2 axis and the z2 axis and the s2 axis, the f2 axis, and the z2 axis are ns2, nf2, and nz2, respectively.
The ns2, the nf2, and the nz2 have a relationship of ns2> nf2 = nz2,
The angle formed by the s2 axis of the second retardation plate and the optical axis of the rear optical anisotropic film is 0 °.
A second retardation plate;
A third retardation plate disposed between the rear polarizing plate and the second retardation plate,
The direction having the highest refractive index along the plate surface of the third retardation plate, the direction orthogonal to the direction having the highest refractive index along the plate surface, and the normal direction of the plate surface are respectively represented by s3 axis, When the refractive indices in the directions of the s3 axis, the f3 axis, and the z3 axis are ns3, nf3, and nz3, respectively, as the f3 axis and the z3 axis,
The ns3, the nf3, and the nz3 have a relationship of ns3> nf3 = nz3,
The angle formed between the s3 axis of the third retardation plate and the transmission axis of the rear polarizing plate is 0 °.
A third retardation plate;
A liquid crystal display element comprising:
前記前側光学異方性フィルム及び前記後側光学異方性フィルムは、それぞれディスコティック液晶を有することを特徴とする請求項10に記載の液晶表示素子。   The liquid crystal display element according to claim 10, wherein each of the front optical anisotropic film and the rear optical anisotropic film has a discotic liquid crystal. 前記前側基板と前記後側基板は矩形であり、
前記前側基板に施された配向処理の方向と前記前側基板の一辺との成す角は45°である、
ことを特徴とする請求項10乃至請求項11のうち何れか1項に記載の液晶表示素子。
The front substrate and the rear substrate are rectangular,
The angle formed between the direction of the alignment treatment applied to the front substrate and one side of the front substrate is 45 °.
The liquid crystal display element according to claim 10, wherein the liquid crystal display element is a liquid crystal display element.
前記前側基板に施された配向処理の方向は、該前側基板の左右方向に延びる水平軸の右側方向に対して、該前側基板側から該前側基板の法線方向に該液晶表示素子を観察して反時計回りとなる方向に45°回転させた方向であり、
前記後側基板に施された配向処理の方向は、前記前側基板に施された配向処理の方向に対して、該前側基板側から該前側基板の法線方向に該液晶表示素子を観察して時計回りとなる方向に90°回転させた方向である、
ことを特徴とする請求項10乃至請求項12のうち何れか1項に記載の液晶表示素子。
The liquid crystal display element is observed from the front substrate side to the normal direction of the front substrate with respect to the right direction of the horizontal axis extending in the left-right direction of the front substrate as the direction of the alignment treatment applied to the front substrate. Is a direction rotated 45 ° counterclockwise,
The direction of the alignment treatment applied to the rear substrate is determined by observing the liquid crystal display element from the front substrate side to the normal direction of the front substrate with respect to the alignment treatment direction applied to the front substrate. It is a direction rotated 90 ° in the clockwise direction.
The liquid crystal display element according to claim 10, wherein the liquid crystal display element is a liquid crystal display element.
前記前側偏光板の透過軸の方向は、前記前側基板に施された配向処理の方向に対して、該前側基板側から該前側基板の法線方向に該液晶表示素子を観察して反時計回りとなる方向に45°回転させた方向であることを特徴とする請求項10乃至請求項13のうち何れか1項に記載の液晶表示素子。   The direction of the transmission axis of the front polarizing plate is counterclockwise by observing the liquid crystal display element from the front substrate side to the normal direction of the front substrate with respect to the direction of alignment treatment applied to the front substrate. The liquid crystal display element according to any one of claims 10 to 13, wherein the liquid crystal display element is a direction rotated by 45 ° in a direction to be. 前記液晶層の屈折率異方性Δnと該液晶層の厚さdとの積であるΔn・dの値は350nm以上450nm以下であり、
前記第1の位相差板の厚さをd1としたとき、該第1の位相差板に関する(ns1−nf1)d1の値は15nm以上65nm以下であり、
前記第2の位相差板の厚さをd2としたとき、該第2の位相差板に関する(ns2−nf2)d2の値は15nm以上65nm以下であり、
前記第3の位相差板の厚さをd3としたとき、該第3の位相差板に関する(ns3−nf3)d3の値は80nm以上180nm以下である、
ことを特徴とする請求項10乃至請求項14のうち何れか1項に記載の液晶表示素子。
The value of Δn · d, which is the product of the refractive index anisotropy Δn of the liquid crystal layer and the thickness d of the liquid crystal layer, is 350 nm or more and 450 nm or less,
When the thickness of the first retardation plate is d1, the value of (ns1-nf1) d1 relating to the first retardation plate is 15 nm or more and 65 nm or less,
When the thickness of the second retardation plate is d2, the value of (ns2-nf2) d2 regarding the second retardation plate is 15 nm or more and 65 nm or less,
When the thickness of the third retardation plate is d3, the value of (ns3-nf3) d3 regarding the third retardation plate is 80 nm or more and 180 nm or less.
The liquid crystal display element according to claim 10, wherein the liquid crystal display element is a liquid crystal display element.
前記第1の位相差板に関する(ns1−nf1)d1の値はほぼ45nmであり、
前記第2の位相差板に関する(ns2−nf2)d2の値はほぼ45nmであり、
前記第3の位相差板に関する(ns3−nf3)d3の値はほぼ140nmである、
ことを特徴とする請求項15に記載の液晶表示素子。
The value of (ns1-nf1) d1 for the first retardation plate is approximately 45 nm,
The value of (ns2-nf2) d2 for the second retardation plate is approximately 45 nm,
The value of (ns3-nf3) d3 for the third retardation plate is approximately 140 nm.
The liquid crystal display element according to claim 15.
前記前側偏光板と前記第1の位相差板との間に配置された第4の位相差板であって、
該第4の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs4軸、f4軸、並びにz4軸とし、該s4軸、該f4軸、及び該z4軸の方向の屈折率をそれぞれns4、nf4、及びnz4としたとき、
該ns4、該nf4、及び該nz4は、それぞれ前記ns3、前記nf3、前記nz3と等しく、
該第4の位相差板のs4軸と前記後側偏光板の透過軸との成す角は0°である、
第4の位相差板を更に具備し、
前記液晶層の屈折率異方性Δnと該液晶層の厚さdとの積であるΔn・dの値は350nm以上450nm以下であり、
前記第1の位相差板の厚さをd1としたとき、該第1の位相差板に関する(ns1−nf1)d1の値は15nm以上65nm以下であり、
前記第2の位相差板の厚さをd2としたとき、該第2の位相差板に関する(ns2−nf2)d2の値は15nm以上65nm以下であり、
前記第3の位相差板の厚さをd3とし、前記第4の位相差板の厚さをd4としたとき、該第3の位相差板及び該第4の位相差板に関する(ns3−nf3)(d3+d4)の値は80nm以上180nm以下である、
ことを特徴とする請求項10乃至請求項15のうち何れか1項に記載の液晶表示素子。
A fourth retardation plate disposed between the front polarizing plate and the first retardation plate,
The direction with the highest refractive index along the plate surface of the fourth retardation plate, the direction orthogonal to the direction with the highest refractive index along the plate surface, and the normal direction of the plate surface are respectively s4 axis, When the refractive index in the directions of the f4 axis and the z4 axis and the s4 axis, the f4 axis, and the z4 axis are ns4, nf4, and nz4, respectively,
The ns4, the nf4, and the nz4 are equal to the ns3, the nf3, and the nz3, respectively.
The angle formed between the s4 axis of the fourth retardation plate and the transmission axis of the rear polarizing plate is 0 °.
A fourth retardation plate;
The value of Δn · d, which is the product of the refractive index anisotropy Δn of the liquid crystal layer and the thickness d of the liquid crystal layer, is 350 nm or more and 450 nm or less,
When the thickness of the first retardation plate is d1, the value of (ns1-nf1) d1 relating to the first retardation plate is 15 nm or more and 65 nm or less,
When the thickness of the second retardation plate is d2, the value of (ns2-nf2) d2 regarding the second retardation plate is 15 nm or more and 65 nm or less,
When the thickness of the third retardation plate is d3 and the thickness of the fourth retardation plate is d4, the third retardation plate and the fourth retardation plate are related to (ns3-nf3). ) The value of (d3 + d4) is not less than 80 nm and not more than 180 nm.
The liquid crystal display element according to claim 10, wherein the liquid crystal display element is a liquid crystal display element.
前記第3の位相差板に関する(ns3−nf3)d3の値及び前記第4の位相差板に関する(ns4−nf4)d4の値は共にほぼ70nmであることを特徴とする請求項17に記載の液晶表示素子。   The value of (ns3-nf3) d3 relating to the third retardation plate and the value of (ns4-nf4) d4 relating to the fourth retardation plate are both approximately 70 nm. Liquid crystal display element. それぞれ電極が形成された互いに対向する面に、互いに90°を成す方向に配向処理が施された前側基板及び後側基板、並びに該前側基板及び後側基板の間に液晶分子を90°のツイスト角でツイスト配向させて設けられた液晶層を有する液晶素子と、前記前側基板に対して液晶層側とは反対側に配置される前側偏光板と、前記後側基板に対して液晶層側とは反対側に該前側偏光板の透過軸に対して透過軸が90°の角を成すように配置される後側偏光板とにおける、
前記前側基板の配向処理の方向と前記前側偏光板の透過軸との成す角を決定し、
前記液晶素子と前記前側偏光板との間に配置される、フィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有する前側光学異方性フィルムと、該液晶素子と前記後側偏光板との間に配置される、フィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有する後側光学異方性フィルムとにおける、
前記前側基板の配向処理方向と該前側光学異方性フィルムの特定方向を該前側光学異方性フィルムのフィルム面へ投影した方向との成す角と、
前記後側基板の配向処理方向と該後側光学異方性フィルムの特定方向を該後側光学異方性フィルムのフィルム面へ投影した方向との成す角と、
を前記前側基板と前記後側基板との間に十分に強い電場を形成させた時の当該液晶表示素子に表示される輝度の最大値が最小となる様に決定し、
前記前側偏光板と前記前側光学異方性フィルムとの間及び前記後側偏光板と前記後側光学異方性フィルムとの間のうち少なくとも一方に配置される位相差板における、
該位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs軸、f軸、並びにz軸とし、該s軸、該f軸、及び該z軸の方向の屈折率をそれぞれns、nf、及びnzとしたとき、
前記後側偏光板の透過軸と該位相差板のs軸との成す角と、
該ns、該nf、該nz、及び該位相差板の厚さとの組み合わせと、
を前記前側基板と前記後側基板との間に十分に強い電場を形成させた時の当該液晶表示素子に表示される輝度の最大値が最小となる様に決定する、
ことを特徴とする液晶表示素子の光学補償方法。
A front substrate and a rear substrate, which have been subjected to alignment treatment in a direction of 90 °, on the surfaces facing each other on which electrodes are formed, and a 90 ° twist of liquid crystal molecules between the front substrate and the rear substrate. A liquid crystal element having a liquid crystal layer provided in a twist orientation at a corner; a front polarizing plate disposed on a side opposite to the liquid crystal layer side with respect to the front substrate; and a liquid crystal layer side with respect to the rear substrate; Is a rear polarizing plate arranged on the opposite side so that the transmission axis forms an angle of 90 ° with respect to the transmission axis of the front polarizing plate,
Determine the angle formed by the direction of the alignment treatment of the front substrate and the transmission axis of the front polarizing plate,
A front optical anisotropic film having a negative optical anisotropy that is disposed between the liquid crystal element and the front polarizing plate and has a minimum refractive index in a direction inclined in a specific direction with respect to the normal of the film surface And a rear optical element having a negative optical anisotropy that is disposed between the liquid crystal element and the rear polarizing plate and has a minimum refractive index in a direction tilted in a specific direction with respect to the normal of the film surface With anisotropic film,
An angle formed by an orientation treatment direction of the front substrate and a direction in which a specific direction of the front optical anisotropic film is projected onto the film surface of the front optical anisotropic film;
An angle formed between the orientation treatment direction of the rear substrate and the direction in which the specific direction of the rear optical anisotropic film is projected onto the film surface of the rear optical anisotropic film;
Is determined so that the maximum value of the brightness displayed on the liquid crystal display element when a sufficiently strong electric field is formed between the front substrate and the rear substrate is minimized,
In the phase difference plate disposed between at least one of the front polarizing plate and the front optical anisotropic film and between the rear polarizing plate and the rear optical anisotropic film,
The direction with the highest refractive index along the plate surface of the retardation plate, the direction orthogonal to the direction with the highest refractive index along the plate surface, and the normal direction of the plate surface are respectively represented as s-axis, f-axis, And the z-axis, and the refractive indexes in the directions of the s-axis, the f-axis, and the z-axis are ns, nf, and nz, respectively.
An angle formed by the transmission axis of the rear polarizing plate and the s-axis of the retardation plate;
A combination of the ns, the nf, the nz, and the thickness of the retardation plate;
Is determined so that the maximum value of the luminance displayed on the liquid crystal display element when a sufficiently strong electric field is formed between the front substrate and the rear substrate is minimized.
An optical compensation method for a liquid crystal display element.
それぞれ電極が形成された互いに対向する面に、互いに90°を成す方向に配向処理が施された前側基板及び後側基板、並びに該前側基板及び後側基板の間に液晶分子を90°のツイスト角でツイスト配向させて設けられた液晶層を有する液晶素子と、前記前側基板に対して液晶層側とは反対側に配置される前側偏光板と、前記後側基板に対して液晶層側とは反対側に該前側偏光板の透過軸に対して透過軸が90°の角を成すように配置される後側偏光板とにおける、
前記液晶素子の前側基板の配向処理の方向と前記前側偏光板の透過軸との成す角を決定し、
前記液晶素子と前記前側偏光板との間に配置される、フィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有する前側光学異方性フィルムと、該液晶素子と前記後側偏光板との間に配置される、フィルム面の法線に対し特定方向に傾いた方向の屈折率が最小となる負の光学異方性を有する後側光学異方性フィルムとにおける、
前記前側基板の配向処理方向と該前側光学異方性フィルムの特定方向を該前側光学異方性フィルムのフィルム面へ投影した方向との成す角と、
前記後側基板の配向処理方向と該後側光学異方性フィルムの特定方向を該後側光学異方性フィルムのフィルム面へ投影した方向との成す角と、
を前記前側基板と前記後側基板との間に十分に強い電場を形成させた時の当該液晶表示素子に表示される輝度の最大値が最小となる様に決定し、
前記前側偏光板と前記前側光学異方性フィルムとの間に配置される第1の位相差板と、前記後側偏光板と前記後側光学異方性フィルムとの間に配置される第2の位相差板とにおける、
前記第1の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs1軸、f1軸、並びにz1軸とし、該s1軸、該f1軸、及び該z1軸の方向の屈折率をそれぞれns1、nf1、及びnz1とし、前記第2の位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs2軸、f2軸、並びにz2軸とし、該s2軸、該f2軸、及び該z2軸の方向の屈折率をそれぞれns2、nf2、及びnz2としたとき、
前記前側偏光板の透過軸と該第1の位相差板のs1軸との成す角と、
該ns1、該nf1、該nz1、及び該第1の位相差板の厚さd1との組み合わせと、
前記前側偏光板の透過軸と該第2の位相差板のs2軸との成す角と、
該ns2、該nf2、該nz2、及び該第2の位相差板の厚さd2との組み合わせと、
を前記前側基板と後側基板との間に電場を形成していない時の当該液晶表示素子に表示される輝度の最小値が最大となる様に決定し、
前記前側偏光板と前記第1の位相差板との間及び前記後側偏光板と前記第2の位相差板との間のうち少なくとも一方に配置される位相差板における、
該位相差板の板面に沿った最も屈折率が大きい方向、該板面に沿った最も屈折率が大きい方向と直交する方向、並びに該板面の法線方向をそれぞれs軸、f軸、並びにz軸とし、該s軸、該f軸、及び該z軸の方向の屈折率をそれぞれns、nf、及びnzとしたとき、
前記後側偏光板の透過軸と該位相差板のs軸との成す角と、
該ns、該nf、該nz、及び該位相差板の厚さとの組み合わせと、
を前記前側基板と前記後側基板との間に十分に強い電場を形成させた時の当該液晶表示素子に表示される輝度の最大値が最小となる様に決定する、
ことを特徴とする液晶表示素子の光学補償方法。
A front substrate and a rear substrate, which have been subjected to alignment treatment in a direction of 90 °, on the surfaces facing each other on which electrodes are formed, and a 90 ° twist of liquid crystal molecules between the front substrate and the rear substrate. A liquid crystal element having a liquid crystal layer provided in a twist orientation at a corner; a front polarizing plate disposed on a side opposite to the liquid crystal layer side with respect to the front substrate; and a liquid crystal layer side with respect to the rear substrate; Is a rear polarizing plate arranged on the opposite side so that the transmission axis forms an angle of 90 ° with respect to the transmission axis of the front polarizing plate,
Determine the angle formed by the direction of the alignment treatment of the front substrate of the liquid crystal element and the transmission axis of the front polarizing plate,
A front optical anisotropic film having a negative optical anisotropy that is disposed between the liquid crystal element and the front polarizing plate and has a minimum refractive index in a direction inclined in a specific direction with respect to the normal of the film surface And a rear optical element having a negative optical anisotropy that is disposed between the liquid crystal element and the rear polarizing plate and has a minimum refractive index in a direction tilted in a specific direction with respect to the normal of the film surface With anisotropic film,
An angle formed by an orientation treatment direction of the front substrate and a direction in which a specific direction of the front optical anisotropic film is projected onto the film surface of the front optical anisotropic film;
An angle formed between the orientation treatment direction of the rear substrate and the direction in which the specific direction of the rear optical anisotropic film is projected onto the film surface of the rear optical anisotropic film;
Is determined so that the maximum value of the brightness displayed on the liquid crystal display element when a sufficiently strong electric field is formed between the front substrate and the rear substrate is minimized,
A first retardation plate disposed between the front polarizing plate and the front optical anisotropic film, and a second retardation disposed between the rear polarizing plate and the rear optical anisotropic film. In the phase difference plate of
The direction having the highest refractive index along the plate surface of the first retardation plate, the direction orthogonal to the direction having the highest refractive index along the plate surface, and the normal direction of the plate surface are respectively represented by s1 axis, The refractive indexes in the directions of the s1 axis, the f1 axis, and the z1 axis are ns1, nf1, and nz1, respectively, and are most refracted along the plate surface of the second retardation plate. The direction in which the refractive index is large, the direction orthogonal to the direction having the largest refractive index along the plate surface, and the normal direction of the plate surface are the s2 axis, the f2 axis, and the z2 axis, respectively. , And the refractive index in the direction of the z2 axis are ns2, nf2, and nz2, respectively.
An angle formed by the transmission axis of the front polarizing plate and the s1 axis of the first retardation plate,
A combination of the ns1, the nf1, the nz1, and the thickness d1 of the first retardation plate;
An angle formed by the transmission axis of the front polarizing plate and the s2 axis of the second retardation plate,
A combination of the ns2, the nf2, the nz2, and the thickness d2 of the second retardation plate;
Is determined so that the minimum value of luminance displayed on the liquid crystal display element when an electric field is not formed between the front substrate and the rear substrate is maximized,
In the retardation plate disposed between at least one of the front polarizing plate and the first retardation plate and between the rear polarizing plate and the second retardation plate,
The direction with the highest refractive index along the plate surface of the retardation plate, the direction orthogonal to the direction with the highest refractive index along the plate surface, and the normal direction of the plate surface are respectively represented as s-axis, f-axis, And the z-axis, and the refractive indexes in the directions of the s-axis, the f-axis, and the z-axis are ns, nf, and nz, respectively.
An angle formed by the transmission axis of the rear polarizing plate and the s-axis of the retardation plate;
A combination of the ns, the nf, the nz, and the thickness of the retardation plate;
Is determined so that the maximum value of the luminance displayed on the liquid crystal display element when a sufficiently strong electric field is formed between the front substrate and the rear substrate is minimized.
An optical compensation method for a liquid crystal display element.
JP2009270516A 2009-11-27 2009-11-27 Liquid crystal display element Expired - Fee Related JP5544844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009270516A JP5544844B2 (en) 2009-11-27 2009-11-27 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009270516A JP5544844B2 (en) 2009-11-27 2009-11-27 Liquid crystal display element

Publications (3)

Publication Number Publication Date
JP2011112952A true JP2011112952A (en) 2011-06-09
JP2011112952A5 JP2011112952A5 (en) 2012-05-17
JP5544844B2 JP5544844B2 (en) 2014-07-09

Family

ID=44235306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009270516A Expired - Fee Related JP5544844B2 (en) 2009-11-27 2009-11-27 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP5544844B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017188428A1 (en) * 2016-04-28 2017-11-02 富士フイルム株式会社 Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device
JPWO2016153024A1 (en) * 2015-03-25 2017-11-16 富士フイルム株式会社 Polarizer
CN109983397A (en) * 2016-11-24 2019-07-05 松下液晶显示器株式会社 Liquid crystal display device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961630A (en) * 1995-06-16 1997-03-07 Nippon Oil Co Ltd Compensation film for liquid crystal display element and liquid crystal display device in which this compensation film is built
JP2001013501A (en) * 1999-06-30 2001-01-19 Casio Comput Co Ltd Liquid crystal display device
JP2001350022A (en) * 2000-04-07 2001-12-21 Tatsuo Uchida Wide viewing angle polarizing plate
JP2002055342A (en) * 2000-05-31 2002-02-20 Sharp Corp Liquid crystal display device
JP2003207782A (en) * 2002-01-11 2003-07-25 Stanley Electric Co Ltd Vertically aligned liquid crystal display device
JP2006285220A (en) * 2005-03-09 2006-10-19 Casio Comput Co Ltd Liquid crystal display device
JP2008249915A (en) * 2007-03-30 2008-10-16 Casio Comput Co Ltd Liquid crystal display device
JP2008304895A (en) * 2007-01-26 2008-12-18 Casio Comput Co Ltd Liquid crystal display element, and television receiving apparatus using the liquid crystal display element
JP2009229901A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Liquid crystal display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961630A (en) * 1995-06-16 1997-03-07 Nippon Oil Co Ltd Compensation film for liquid crystal display element and liquid crystal display device in which this compensation film is built
JP2001013501A (en) * 1999-06-30 2001-01-19 Casio Comput Co Ltd Liquid crystal display device
JP2001350022A (en) * 2000-04-07 2001-12-21 Tatsuo Uchida Wide viewing angle polarizing plate
JP2002055342A (en) * 2000-05-31 2002-02-20 Sharp Corp Liquid crystal display device
JP2003207782A (en) * 2002-01-11 2003-07-25 Stanley Electric Co Ltd Vertically aligned liquid crystal display device
JP2006285220A (en) * 2005-03-09 2006-10-19 Casio Comput Co Ltd Liquid crystal display device
JP2008304895A (en) * 2007-01-26 2008-12-18 Casio Comput Co Ltd Liquid crystal display element, and television receiving apparatus using the liquid crystal display element
JP2008249915A (en) * 2007-03-30 2008-10-16 Casio Comput Co Ltd Liquid crystal display device
JP2009229901A (en) * 2008-03-24 2009-10-08 Fujifilm Corp Liquid crystal display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016153024A1 (en) * 2015-03-25 2017-11-16 富士フイルム株式会社 Polarizer
US10365419B2 (en) 2015-03-25 2019-07-30 Fujifilm Corporation Polarizing plate
WO2017188428A1 (en) * 2016-04-28 2017-11-02 富士フイルム株式会社 Polarizing plate, method for manufacturing polarizing plate, and liquid crystal display device
US10816848B2 (en) 2016-04-28 2020-10-27 Fujifilm Corporation Polarizing plate, and method for manufacturing polarizing plate including bonding optical rotary layer to polarizer and adjusting storage elastic modulus of bonding layer
CN109983397A (en) * 2016-11-24 2019-07-05 松下液晶显示器株式会社 Liquid crystal display device
CN109983397B (en) * 2016-11-24 2022-07-01 松下液晶显示器株式会社 Liquid crystal display device having a plurality of pixel electrodes

Also Published As

Publication number Publication date
JP5544844B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP4564795B2 (en) Liquid crystal display
US7864278B2 (en) Liquid crystal display device with a pair of discotic liquid crystal compensating films
JP4419959B2 (en) Liquid crystal display
JP4687507B2 (en) Liquid crystal display element
US8149354B2 (en) Liquid crystal display device
US7443473B2 (en) Optical compensation polarizing film achieving a higher viewing angle
JP5544844B2 (en) Liquid crystal display element
US20060221283A1 (en) Liquid crystal display device
JP2010026091A (en) Circularly polarizing plate and liquid crystal display device
JP4894319B2 (en) Liquid crystal display element
JP2006106338A (en) Liquid crystal display device
US20110304801A1 (en) Liquid crystal display panel
US20120257147A1 (en) Liquid crystal display panel and liquid crystal display device
TWI344048B (en) Liquid crystal display device having liquid crystal layer in which liquid crystal molecules are homogeneously oriented
JP4366985B2 (en) Liquid crystal display
JP4496780B2 (en) Liquid crystal display element
JP2009031437A (en) Liquid crystal display panel
JP4421271B2 (en) Liquid crystal display
JP2006018185A (en) Liquid crystal display
JP2009031438A (en) Liquid crystal display panel
JP5316270B2 (en) Liquid crystal display
KR20180047549A (en) Liquid Crystal Display Device
JP4985798B2 (en) Liquid crystal display element
JP2006267304A (en) Liquid crystal display device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R150 Certificate of patent or registration of utility model

Ref document number: 5544844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees