JP4985798B2 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP4985798B2
JP4985798B2 JP2010029895A JP2010029895A JP4985798B2 JP 4985798 B2 JP4985798 B2 JP 4985798B2 JP 2010029895 A JP2010029895 A JP 2010029895A JP 2010029895 A JP2010029895 A JP 2010029895A JP 4985798 B2 JP4985798 B2 JP 4985798B2
Authority
JP
Japan
Prior art keywords
liquid crystal
axis
phase plate
angle
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010029895A
Other languages
Japanese (ja)
Other versions
JP2010156989A (en
Inventor
守 吉田
弘基 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2010029895A priority Critical patent/JP4985798B2/en
Publication of JP2010156989A publication Critical patent/JP2010156989A/en
Application granted granted Critical
Publication of JP4985798B2 publication Critical patent/JP4985798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

この発明は液晶表示素子に関する。   The present invention relates to a liquid crystal display element.

液晶表示素子としては、対向する面それぞれに互いに対向する領域によりマトリックス状に配列する複数の画素を形成する電極が設けられた一対の基板間に、液晶分子をツイスト配向させた液晶層が設けられ、前記電極間への電圧の印加により前記液晶層の液晶分子の基板面に対する立ち上がり角を制御して透過光の偏光状態を変化させるツイスト配向型液晶素子と、このツイスト配向型液晶素子を挟んで配置された一対の偏光板とからなるTN(ツイステッド・ネマティック)型のものが広く利用されているが、このTN型液晶表示素子は、表示の視野角が狭い。   As a liquid crystal display element, a liquid crystal layer in which liquid crystal molecules are twist-aligned is provided between a pair of substrates provided with electrodes that form a plurality of pixels arranged in a matrix by regions facing each other on opposite surfaces. A twist alignment type liquid crystal element that changes the polarization state of transmitted light by controlling the rising angle of the liquid crystal molecules of the liquid crystal layer with respect to the substrate surface by applying a voltage between the electrodes, and sandwiching the twist alignment type liquid crystal element Although a TN (twisted nematic) type composed of a pair of arranged polarizing plates is widely used, this TN type liquid crystal display element has a narrow display viewing angle.

そのため、前記ツイスト配向型液晶素子と一対の偏光板との間にそれぞれディスコティック液晶フィルムを配置することにより、表示の視野角を広くすることが考えられている(特許文献1参照)。   Therefore, it is considered that a viewing angle of display is widened by disposing a discotic liquid crystal film between the twist alignment type liquid crystal element and the pair of polarizing plates, respectively (see Patent Document 1).

特開平10―039285号公報Japanese Patent Laid-Open No. 10-039285

しかし、ツイスト配向型液晶素子と一対の偏光板との間にそれぞれディスコティック液晶フィルムを配置したTN型液晶表示素子でも、視野角は十分ではなく、表示の観察方位によっては、画面の法線に対してある程度の角度以上傾いた方向から観察したときに、黒表示とグレー表示の輝度が逆転するコントラスト反転現象が発生する。   However, even with a TN liquid crystal display element in which a discotic liquid crystal film is disposed between a twist alignment type liquid crystal element and a pair of polarizing plates, the viewing angle is not sufficient, and depending on the viewing direction of the display, On the other hand, when observed from a direction inclined at a certain angle or more, a contrast inversion phenomenon occurs in which the luminance of black display and gray display is reversed.

この発明は、広い観察方位及び観察角にわたって、コントラスト反転が無く、しかも高コントラストの表示を得ることができる液晶表示素子を提供することを目的としたものである。   It is an object of the present invention to provide a liquid crystal display element that is capable of obtaining a high-contrast display with no contrast inversion over a wide range of viewing directions and viewing angles.

この発明の液晶表示素子は、分子長軸を一方向に揃えて液晶分子をホモジニアス配向させた非ツイストのホモジニアス配向液晶層を挟持する一対の基板の対向する面それぞれに、互いに対向する領域によりマトリックス状に配列する複数の画素を形成する電極が設けられ、前記電極間への電圧の印加により前記液晶層の液晶分子の基板面に対する立ち上がり角を制御して透過光の偏光状態を変化させるホモジニアス配向型液晶素子と、前記ホモジニアス配向型液晶素子を挟持する第1及び第2のディスコティック液晶フィルムと、前記第1及び第2のディスコティック液晶フィルムを挟持する、第1及び第2の二軸性位相板と、前記第1及び第2の二軸性位相板を挟持する、第1及び第2の一軸性位相板と、前記第1及び第2の一軸性位相板を挟持する、第1及び第2の偏光板と、前記第1及び第2の偏光板のいずれか一方の外面側にある面光源と、を備えたことを特徴とする。 The liquid crystal display device of this invention, the molecular long axes homogeneous alignment liquid crystal layer of the non-twist aligned homogeneously the liquid crystal molecules are aligned in one direction on each opposite to that surface of the pair of substrates sandwiching by a region facing each other Homogeneous having electrodes that form a plurality of pixels arranged in a matrix, and changing the polarization state of transmitted light by controlling the rising angle of the liquid crystal molecules with respect to the substrate surface of the liquid crystal layer by applying a voltage between the electrodes An alignment type liquid crystal element, first and second discotic liquid crystal films that sandwich the homogeneous alignment type liquid crystal element , and first and second biaxial axes that sandwich the first and second discotic liquid crystal films First and second uniaxial phase plates sandwiching the first and second biaxial phase plates, and the first and second uniaxial phase plates Sandwiching and first and second polarizing plates, and the surface light source in one of the outer surface side one of said first and second polarizing plates, comprising the.

この発明の液晶表示素子において、前記第1及び第2の二軸性位相板の位相板面における屈折率が最も大きい方向に沿った遅相軸と、前記第1及び第2のディスコティック液晶フィルムの光学軸をフィルム面に投影した面上光学軸と、がそれぞれ隣接する前記ホモジニアス配向型液晶素子の液晶分子配向方向と平行であり、前記第1の二軸性位相板の遅相軸に対する前記第1の一軸性位相板の遅相軸のずれ角をφ1、前記第2の二軸性位相板の遅相軸に対する前記第2の一軸性位相板の遅相軸のずれ角をφ2、前記第1の二軸性位相板の遅相軸に対する前記第1の偏光板の吸収軸のずれ角をθ1、前記第2の二軸性位相板の遅相軸に対する前記第2の偏光板の吸収軸のずれ角をθ2とし、且つ、前記面光源と反対側にある前記第1と第2の偏光板のいずれか一方の外面側から見て左回りの角度を正の角度、右回りの角度を負の角度としたとき、前記第1及び第2の一軸性位相板の遅相軸と前記第1及び第2の偏光板の吸収軸の方向が、
φ1=60°〜80°
φ2=−60°〜−80°
θ1=135°+2φ1
θ2=135°+2φ2
の方向に設定するのが好ましい。
In the liquid crystal display device of the present invention, the slow axis along the direction in which the refractive index is the largest on the phase plate surface of the first and second biaxial phase plates, and the first and second discotic liquid crystal films optical axis and the plane on the optical axis obtained by projecting the film surface, but for the homogeneous orientation type is parallel to the liquid crystal molecular alignment direction of the liquid crystal element, before Symbol slow axis of the first biaxial phase plate adjacent each The shift angle of the slow axis of the first uniaxial phase plate is φ1, the shift angle of the slow axis of the second uniaxial phase plate with respect to the slow axis of the second biaxial phase plate is φ2, The angle of deviation of the absorption axis of the first polarizing plate with respect to the slow axis of the first biaxial phase plate is θ1, and the second polarizing plate with respect to the slow axis of the second biaxial phase plate is the deviation angle of the absorption axis and .theta.2, and, on the opposite side to the surface light source the first and second polarization One of the outer surface of the angle of counterclockwise positive as viewed from the side angle, when the angle of the clockwise and negative angle, the slow axis and the first of said first and second uniaxial phase plate And the direction of the absorption axis of the second polarizing plate is
φ1 = 60 ° -80 °
φ2 = -60 ° ~ -80 °
θ1 = 135 ° + 2φ1
θ2 = 135 ° + 2φ2
It is preferable to set in the direction.

さらに、前記第1と第2の一軸性位相板はそれぞれ250nm〜300nmの範囲の位相差を有しており、前記第1と第2の二軸性位相板はそれぞれ120nm〜150nmの範囲の面内位相差を有し、且つ、位相板面における屈折率が最も大きい方向をx軸、前記位相板面における前記x軸と直交する方向をy軸、前記位相板面に垂直な方向をz軸とし、前記x軸方向の屈折率をn、前記y軸方向の屈折率をn、前記z軸方向の屈折率をnとしたとき、
Nz=(n−n)/(n−n
の値が−0.5〜+0.3の範囲のNz係数を有しているのが望ましい。
Furthermore, the first and has a phase difference in the range of each second uniaxial phase plate 250-300 nm, the first and second biaxial phase plate respectively is 1 20 nm to 150 nm of A direction having an in-plane retardation within a range and having the largest refractive index on the phase plate surface is the x axis, a direction perpendicular to the x axis is the y axis, and a direction perpendicular to the phase plate surface when was the z axis, the x-axis direction of the refractive index n x, the y-axis direction of the refractive index n y, the refractive index of the z-axis direction is n z,
Nz = (n x -n z) / (n x -n y)
It is desirable to have an Nz coefficient in the range of -0.5 to +0.3.

また、この発明の液晶表示素子において、前記ホモジニアス配向型液晶素子の対向する前記一対の基板のいずれか一方の面に、複数の画素にそれぞれ対応する赤、緑、青の3色のカラーフィルタが設けられており、前記複数の画素のうち、赤色フィルタに対応する画素と、緑色フィルタに対応する画素と、青色フィルタに対応する画素の液晶の屈折率異方性Δnと液晶層厚dとの積Δn・dの値がそれぞれ、前記赤色フィルタに対応する画素の液晶層厚をd、前記緑色フィルタに対応する画素の液晶層厚をd、前記青色フィルタに対応する画素の液晶層厚をdとし、液晶の屈折率異方性Δnの650nm、550nm、450nmの各波長光に対する値をそれぞれΔn(650nm)、Δn(550nm)、Δn(450nm)としたとき、
255nm<Δn(550nm)・d<355nm
−25nm<Δn(650nm)・d−Δn(550nm)・d<+30nm
−35nm<Δn(450nm)・d−Δn(550nm)・d<+10nm
の範囲に設定するのが望ましい。
また、前記第1及び第2のディスコティック液晶フィルムは、円板状のディスコティック液晶分子を、そのチルト方向を一方向に揃え、且つ一方の面から他方の面に向かって徐々にチルト角が大きくなるように配列させてポリマー化したものであり、液晶分子のチルト角が小さい一方のフィルム面側から液晶分子のチルト角が大きい他方のフィルム面側に向かって、前記チルト状態で配列したディスコティック液晶分子の分子軸、即ち円板状の分子面に対して垂直な軸の向きを平均した方向に斜めに傾いた傾斜光学軸を具備し、前記傾斜光学軸に沿った方向の屈折率が最も小さい、負の光学異方性を有しているのが望ましい。
また、前記面光源側の前記偏光板と前記一軸性位相板と前記二軸性位相板とが一組となって広帯域の円偏光板として機能し、前記面光源とは反対側の前記偏光板と前記一軸性位相板と前記二軸性位相板とが一組となって広帯域の円偏光板として機能し、前記ホモジニアス配向型液晶素子は、1/2波長の位相差を与えるλ/2板の状態と位相差を与えない状態とを電圧で切り替える光学素子として機能するのが望ましい。
In the liquid crystal display device of the present invention, in any one surface of the pair of substrates facing the homogeneous alignment liquid crystal element, red corresponding to a plurality of pixels, green, color filters of three colors of blue Among the plurality of pixels, a liquid crystal refractive index anisotropy Δn and a liquid crystal layer thickness d of a pixel corresponding to a red filter, a pixel corresponding to a green filter, and a pixel corresponding to a blue filter The value of the product Δn · d is d R for the liquid crystal layer thickness of the pixel corresponding to the red filter, d G for the liquid crystal layer thickness of the pixel corresponding to the green filter, and the liquid crystal layer thickness of the pixel corresponding to the blue filter. was a d B, 650 nm of the liquid crystal refractive index anisotropy [Delta] n, 550 nm, respectively a value for each wavelength of 450nm Δn (650nm), Δn ( 550nm), when the [Delta] n (450 nm),
255 nm <Δn (550 nm) · d G <355 nm
−25 nm <Δn (650 nm) · d R −Δn (550 nm) · d G <+30 nm
−35 nm <Δn (450 nm) · d B −Δn (550 nm) · d G <+10 nm
It is desirable to set the range.
Further, the first and second discotic liquid crystal films are formed by aligning disc-shaped discotic liquid crystal molecules in one direction and gradually tilting from one surface to the other surface. It is a polymer that is arranged so as to increase in size, and is arranged in the tilted state from one film surface side where the tilt angle of liquid crystal molecules is small toward the other film surface side where the tilt angle of liquid crystal molecules is large. A tick liquid crystal molecule, that is, a tilted optical axis inclined obliquely in a direction averaged with respect to the direction of the axis perpendicular to the disc-like molecular plane, and the refractive index in the direction along the tilted optical axis is It is desirable to have the smallest negative optical anisotropy.
Further, the polarizing plate on the surface light source side, the uniaxial phase plate and the biaxial phase plate function as a wide-band circular polarizing plate, and the polarizing plate on the side opposite to the surface light source And the uniaxial phase plate and the biaxial phase plate function as a wide-band circularly polarizing plate, and the homogeneously aligned liquid crystal element is a λ / 2 plate that gives a phase difference of ½ wavelength It is desirable to function as an optical element that switches between this state and a state that does not give a phase difference by voltage.

この発明の液晶表示素子は、広い観察方位及び観察角にわたって、コントラスト反転が無く、しかも高コントラストの表示を得ることができる。 The liquid crystal display device of the invention, over the observation azimuth and viewing angle have wide, can contrast reversal is obtained without addition of high-contrast display.

この発明の一実施例を示す液晶表示素子の分解斜視図。1 is an exploded perspective view of a liquid crystal display element showing one embodiment of the present invention. 前記液晶表示素子の一部分の断面図。FIG. 3 is a cross-sectional view of a part of the liquid crystal display element. 前記液晶表示素子の左右方向における視角による白表示輝度及び黒表示輝度の変化とコントラストの変化を示す図。The figure which shows the change of the white display brightness | luminance by the viewing angle in the left-right direction of the said liquid crystal display element, the change of black display brightness, and the change of contrast. 前記液晶表示素子の上下方向における視角による白表示輝度及び黒表示輝度の変化とコントラストの変化を示す図。The figure which shows the change of the white display brightness | luminance by the visual angle in the up-down direction of the said liquid crystal display element, the change of black display brightness, and the change of contrast. 前記液晶表示素子の視角によるコントラスト反転特性を示す図。The figure which shows the contrast inversion characteristic by the viewing angle of the said liquid crystal display element. 前記液晶表示素子の液晶層厚と光の透過率の関係を示す図。The figure which shows the relationship between the liquid-crystal layer thickness of the said liquid crystal display element, and the transmittance | permeability of light. 前記液晶表示素子の液晶層厚と透過光の色度の関係を示す図。The figure which shows the relationship between the liquid crystal layer thickness of the said liquid crystal display element, and the chromaticity of transmitted light. 前記液晶表示素子の赤、緑、青の波長域の中心波長光の電圧―透過率特性を示す図。The figure which shows the voltage-transmittance characteristic of the center wavelength light of the red, green, blue wavelength range of the said liquid crystal display element. 図8の透過率が最も低くなった部分の拡大図。The enlarged view of the part where the transmittance | permeability of FIG. 8 became the lowest. 前記液晶表示素子の赤、緑、青の波長域の中心波長光に対する最適黒表示電圧と液晶層厚との関係を示す図。The figure which shows the relationship between the optimal black display voltage with respect to the center wavelength light of the wavelength range of red of the said liquid crystal display element, and blue, and a liquid crystal layer thickness.

図1〜図10はこの発明の一実施例を示しており、図1は液晶表示素子の分解斜視図、図2は前記液晶表示素子の一部分の断面図である。   1 to 10 show an embodiment of the present invention. FIG. 1 is an exploded perspective view of a liquid crystal display element, and FIG. 2 is a sectional view of a part of the liquid crystal display element.

この実施例の液晶表示素子は、図1及び図2に示したように、ホモジニアス配向型液晶素子1と、前記液晶素子1を挟んで配置された第1と第2の偏光板12,13と、前記液晶素子1と前記第1の偏光板及び第2の偏光板12,13との間にそれぞれ配置された第1及び第2のディスコティック液晶フィルム14,15と、前記第1の偏光板12と第1のディスコティック液晶フィルム14との間に互いに重ねて配置された第1の一軸性位相板16及び第1の二軸性位相板18と、前記第2の偏光板13と第2のディスコティック液晶フィルム15との間に互いに重ねて配置された第2の一軸性位相板17及び第2の二軸性位相板19とを備えている。   As shown in FIGS. 1 and 2, the liquid crystal display element of this embodiment includes a homogeneous alignment type liquid crystal element 1 and first and second polarizing plates 12 and 13 disposed with the liquid crystal element 1 interposed therebetween. The first and second discotic liquid crystal films 14 and 15 disposed between the liquid crystal element 1 and the first and second polarizing plates 12 and 13, respectively, and the first polarizing plate The first uniaxial phase plate 16 and the first biaxial phase plate 18 which are disposed so as to overlap each other between the first discotic liquid crystal film 12 and the first discotic liquid crystal film 14, the second polarizing plate 13 and the second polarizing plate 13. A second uniaxial phase plate 17 and a second biaxial phase plate 19 are provided so as to overlap each other with the discotic liquid crystal film 15.

前記ホモジニアス配向型液晶素子1は、図2に示したように、分子長軸を一方向に揃えて液晶分子11aをホモジニアス配向させた非ツイストのホモジニアス配向液晶層11を挟んで対向する一対の透明基板2,3の対向する内面それぞれに、互いに対向する領域によりマトリックス状に配列する複数の画素を形成する透明電極4,5を設けたものであり、前記一対の基板2,3のいずれか一方、例えば表示の観察側(図において上側)である前側の基板(以下、前基板という)2の内面には、前記複数の画素にそれぞれ対応する赤、緑、青の3色のカラーフィルタ7R,7G,7Bが設けられている。   As shown in FIG. 2, the homogeneous alignment type liquid crystal element 1 includes a pair of transparent layers facing each other with a non-twisted homogeneous alignment liquid crystal layer 11 in which the liquid crystal molecules 11a are aligned homogeneously with the molecular long axis aligned in one direction. Each of the opposing inner surfaces of the substrates 2 and 3 is provided with transparent electrodes 4 and 5 for forming a plurality of pixels arranged in a matrix by regions facing each other, and one of the pair of substrates 2 and 3 For example, on the inner surface of the front substrate (hereinafter referred to as the front substrate) 2 that is the observation side (upper side in the drawing) of the display, color filters 7R of three colors of red, green, and blue corresponding to the plurality of pixels, respectively. 7G and 7B are provided.

この液晶素子1は、一対の基板2,3の一方、例えば前記前基板2の内面に一枚膜状の対向電極4を設け、他方の基板である後側の基板(以下、後基板という)3の内面に複数の画素電極5を行方向及び列方向にマトリックス状に配列させて設けたアクティブマトリックス液晶素子であり、前記複数の画素電極5は、前記後基板3の内面に設けられた複数のTFT(薄膜トランジスタ)6にそれぞれ接続されている。   This liquid crystal element 1 is provided with a single film-like counter electrode 4 on one of a pair of substrates 2 and 3, for example, the inner surface of the front substrate 2, and a rear substrate (hereinafter referred to as a rear substrate) which is the other substrate. 3 is an active matrix liquid crystal element in which a plurality of pixel electrodes 5 are arranged in a matrix in the row direction and the column direction, and the plurality of pixel electrodes 5 are provided on the inner surface of the rear substrate 3. The TFTs (thin film transistors) 6 are respectively connected.

なお、図2ではTFT6を簡略化して示しているが、このTFT6は後基板3の基板面に形成されたゲート電極と、このゲート電極を覆って前記後基板3の略全体に形成された透明なゲート絶縁膜と、前記ゲート絶縁膜の上に前記ゲート電極と対向させて形成されたi型半導体膜と、前記i型半導体膜の両側部の上にn型半導体膜を介して形成されたソース電極及びドレイン電極とからなっている。   In FIG. 2, the TFT 6 is shown in a simplified form. This TFT 6 is a gate electrode formed on the substrate surface of the rear substrate 3 and a transparent electrode that covers the gate electrode and is formed on substantially the entire rear substrate 3. A gate insulating film, an i-type semiconductor film formed on the gate insulating film so as to face the gate electrode, and an n-type semiconductor film formed on both sides of the i-type semiconductor film It consists of a source electrode and a drain electrode.

さらに、図2では省略しているが、前記後基板3の内面には、各行のTFT6にゲート信号を供給する複数のゲート配線と、各列のTFT6にデータ信号を供給する複数のデータ配線が設けられており、前記ゲート配線は、後基板3の基板面に前記TFT6のゲート電極と一体に形成されて前記ゲート絶縁膜により覆われ、前記データ配線は、前記ゲート絶縁膜の上に形成され、前記TFT6のドレイン電極につながっている。   Further, although omitted in FIG. 2, on the inner surface of the rear substrate 3, there are a plurality of gate wirings for supplying gate signals to the TFTs 6 in each row and a plurality of data wirings for supplying data signals to the TFTs 6 in each column. The gate wiring is formed integrally with the gate electrode of the TFT 6 on the substrate surface of the rear substrate 3 and covered with the gate insulating film, and the data wiring is formed on the gate insulating film. , Connected to the drain electrode of the TFT 6.

そして、前記複数の画素電極5は、前記ゲート絶縁膜の上に形成され、前記TFT6のソース電極に接続されている。   The plurality of pixel electrodes 5 are formed on the gate insulating film and connected to the source electrode of the TFT 6.

一方、前基板2の内面に設けられた赤、緑、青の3色のカラーフィルタ7R,7G,7Bは、前記前基板2の基板面に形成されており、その上に、前記3色のカラーフィルタ7R,7G,7Bのうち、赤色フィルタ7Rが設けられた画素(以下、赤色画素という)の液晶層厚dと、緑色フィルタ7Gが設けられた画素(以下、緑色画素という)の液晶層厚dと、青色フィルタ7Bが設けられた画素(以下、青色画素という)の液晶層厚dとを、d>d>dの関係に設定するための透明な液晶層厚調整膜8が設けられ、この液晶層厚調整膜8の上に前記対向電極4が形成されている。 On the other hand, the three color filters 7R, 7G, and 7B of red, green, and blue provided on the inner surface of the front substrate 2 are formed on the substrate surface of the front substrate 2, and the three color filters are formed thereon. color filters 7R, 7G, among 7B, pixels red filter 7R is provided (hereinafter, referred to as red pixels) and a liquid crystal layer thickness d R of the pixel of the green filter 7G is provided (hereinafter, referred to as a green pixel) LCD and the layer thickness d G, pixels blue filter 7B is provided (hereinafter, referred to as a blue pixel) and a liquid crystal layer thickness d B of, d R> d G> d transparent liquid crystal layer thickness for setting the relationship of B An adjustment film 8 is provided, and the counter electrode 4 is formed on the liquid crystal layer thickness adjustment film 8.

さらに、前記前基板2と後基板3の内面にはそれぞれ前記電極4,5を覆って水平配向膜9,10が設けられており、これらの基板2,3の内面、つまり前記水平配向膜9,10の膜面はそれぞれ、互いに平行で且つ逆方向にラビング処理されている。   Further, horizontal alignment films 9 and 10 are provided on the inner surfaces of the front substrate 2 and the rear substrate 3 so as to cover the electrodes 4 and 5, respectively, and the inner surfaces of these substrates 2 and 3, that is, the horizontal alignment film 9. , 10 are rubbed in parallel and in opposite directions.

図1において、矢印2aは前基板2の内面のラビング方向、矢印3aは後基板3の内面のラビング方向を示しており、この実施例では、前記第1と第2の偏光板12,13のいずれか一方、例えば観察側である前側の偏光板12の外面側から見て左回りの角度を正の角度、右回りの角度を負の角度としたとき、前基板2の内面のラビング方向2aを、液晶素子の画面の横軸xに対して135°の方向、後基板3の内面のラビング方向3aを、前記前基板2の内面のラビング方向2aと平行で且つ逆向きの方向(画面の横軸xに対して−45°の方向)とし、これらのラビング方向2a,3aに沿った方向に液晶分子11aをホモジニアス配向させている。   In FIG. 1, the arrow 2a indicates the rubbing direction of the inner surface of the front substrate 2, and the arrow 3a indicates the rubbing direction of the inner surface of the rear substrate 3. In this embodiment, the first and second polarizing plates 12, 13 Any one of the rubbing directions 2a on the inner surface of the front substrate 2 when the counterclockwise angle is a positive angle and the clockwise angle is a negative angle when viewed from the outer surface side of the front polarizing plate 12 that is the observation side, for example. The direction of 135 ° with respect to the horizontal axis x of the screen of the liquid crystal element, and the rubbing direction 3a of the inner surface of the rear substrate 3 are parallel to and opposite to the rubbing direction 2a of the inner surface of the front substrate 2 (screen The liquid crystal molecules 11a are homogeneously aligned in the direction along the rubbing directions 2a and 3a.

そして、前記一対の基板2,3は、前記複数の画素がマトリックス状に配列する表示エリアを囲む枠状のシール材(図示せず)を介して接合されており、これらの基板2,3間の前記シール材により囲まれた領域に、正の誘電異方性を有するネマティック液晶が充填されて液晶層11が形成されている。   The pair of substrates 2 and 3 are joined together via a frame-shaped sealing material (not shown) surrounding a display area in which the plurality of pixels are arranged in a matrix. A region surrounded by the sealing material is filled with nematic liquid crystal having positive dielectric anisotropy to form a liquid crystal layer 11.

この液晶層11の液晶分子11aは、前記一対の基板2,3面のラビング方向2a,3aに沿った方向に分子長軸を揃えてホモジニアス配向しており、前記複数の画素の電極4,5間への電圧の印加により、前記基板2,3面に対して立ち上がるように配向状態を変える。   The liquid crystal molecules 11a of the liquid crystal layer 11 are homogeneously aligned with the molecular long axes aligned in the direction along the rubbing directions 2a and 3a of the pair of substrates 2 and 3, and the electrodes 4 and 5 of the plurality of pixels. By applying a voltage between them, the orientation state is changed so as to rise with respect to the surfaces of the substrates 2 and 3.

すなわち、前記ホモジニアス配向型液晶素子1は、前記複数の画素の電極4,5間への電圧の印加により前記液晶層11の液晶分子11aの基板2,3面に対する立ち上がり角を制御して透過光の偏光状態を変化させる。   That is, the homogeneous alignment type liquid crystal device 1 controls the rising angle of the liquid crystal molecules 11a of the liquid crystal layer 11 with respect to the substrates 2 and 3 by applying a voltage between the electrodes 4 and 5 of the plurality of pixels. Change the polarization state of.

そして、このホモジニアス配向型液晶素子1の赤色画素と緑色画素と青色画素の液晶の屈折率異方性Δnと液晶層厚dとの積Δn・dの値はそれぞれ、前記赤色画素の液晶層厚をd、前記緑色画素の液晶層厚をd、前記青色画素の液晶層厚をdとし、液晶の屈折率異方性Δnの650nm、550nm、450nmの各波長光に対する値をそれぞれΔn(650nm)、Δn(550nm)、Δn(450nm)としたとき、
255nm<Δn(550nm)・d<355nm
−25nm<Δn(650nm)・d−Δn(550nm)・d<+30nm
−35nm<Δn(450nm)・d−Δn(550nm)・d<+10nm
の範囲に設定されている。
The product Δn · d of the refractive index anisotropy Δn and the liquid crystal layer thickness d of the liquid crystals of the red, green, and blue pixels of the homogeneous alignment type liquid crystal element 1 is the liquid crystal layer thickness of the red pixel, respectively. D R , the liquid crystal layer thickness of the green pixel is d G , the liquid crystal layer thickness of the blue pixel is d B , and the value of the refractive index anisotropy Δn of the liquid crystal with respect to light of each wavelength of 650 nm, 550 nm, and 450 nm is Δn (650 nm), Δn (550 nm), Δn (450 nm),
255 nm <Δn (550 nm) · d G <355 nm
−25 nm <Δn (650 nm) · d R −Δn (550 nm) · d G <+30 nm
−35 nm <Δn (450 nm) · d B −Δn (550 nm) · d G <+10 nm
Is set in the range.

この実施例では、前記液晶層厚調整膜8を、前記赤色画素の液晶層厚dと、緑色画素の液晶層厚dと、青色画素の液晶層厚dとがそれぞれ、d=約4.2μm、d=約4.0μm、d=約3.7μmになる膜厚に形成するとともに、前記液晶層11を屈折率異方性ΔnがΔn=0.073の液晶材料により形成し、前記赤色画素の液晶層11のΔn・dの値を約306.6nm、前記緑色画素の液晶層11のΔn・dの値を約292.0nm、前記青色画素の液晶層11のΔn・dを約270.1nmに設定している。 In this embodiment, the liquid crystal layer thickness adjusting films 8, and the liquid crystal layer thickness d R of the red pixel, a liquid crystal layer thickness d G of the green pixel, and a liquid crystal layer thickness d B of the blue pixel, respectively, d R = The liquid crystal layer 11 is formed of a liquid crystal material having a thickness of about 4.2 μm, d G = about 4.0 μm, d B = about 3.7 μm, and a refractive index anisotropy Δn of Δn = 0.073. The value of Δn · d R of the liquid crystal layer 11 of the red pixel is about 306.6 nm, the value of Δn · d G of the liquid crystal layer 11 of the green pixel is about 292.0 nm, and the liquid crystal layer 11 of the blue pixel is formed. the Δn · d B is set to about 270.1nm.

なお、前記赤、緑、青の各色画素の液晶層厚d,d,dは、前記液晶層厚調整膜8を設ける代わりに、赤、緑、青の各色のカラーフィルタ7R,7G,7Bの厚さを異ならせて上記のように設定してもよい。 Note that the liquid crystal layer thicknesses d R , d G , and d B of the red, green, and blue color pixels are the color filters 7R, 7G for the red, green, and blue colors instead of providing the liquid crystal layer thickness adjusting film 8, respectively. , 7B may be set as described above with different thicknesses.

一方、前記第1と第2の偏光板12,13はそれぞれ、互いに直交する方向に透過軸(図示せず)と吸収軸12a,13aを有する吸収偏光板であり、これらの偏光板12,13のうち、観察側である前側の偏光板12は、その吸収軸12aを前記画面の横軸xに対して30°(前側偏光板12の外面側から見て左回りに30°)の方向に向けて配置され、観察側とは反対側である後側の偏光板13は、その吸収軸13aを前記画面の横軸xに対して150°(前側偏光板12の外面側から見て左回りに150°)の方向に向けて配置されている。   On the other hand, the first and second polarizing plates 12 and 13 are absorption polarizing plates each having a transmission axis (not shown) and absorption axes 12a and 13a in directions orthogonal to each other. Among them, the polarizing plate 12 on the front side that is the observation side has its absorption axis 12a in a direction of 30 ° (30 ° counterclockwise when viewed from the outer surface side of the front polarizing plate 12) with respect to the horizontal axis x of the screen. The rear polarizing plate 13, which is disposed facing away from the observation side, has an absorption axis 13 a that is 150 ° with respect to the horizontal axis x of the screen (counterclockwise when viewed from the outer surface side of the front polarizing plate 12). At 150 °).

前記第1及び第2のディスコティック液晶フィルム14,15は、その構造は図示しないが、円板状のディスコティック液晶分子を、そのチルト方向を一方向に揃え、且つ一方の面から他方の面に向かって徐々にチルト角が大きくなるように配列させてポリマー化したものであり、このディスコティック液晶フィルム14,15は、液晶分子のチルト角が小さい一方のフィルム面側から液晶分子のチルト角が大きい他方のフィルム面側に向かって、前記チルト状態で配列したディスコティック液晶分子の分子軸(円板状の分子面に対して垂直な軸)の向きを平均した方向に斜めに傾いた光学軸をもっている。   Although the structure of the first and second discotic liquid crystal films 14 and 15 is not shown in the drawing, the discotic liquid crystal molecules in a disk shape are aligned in one direction and the tilt direction is aligned in one direction. The discotic liquid crystal films 14 and 15 are polymerized so that the tilt angle gradually increases toward the surface, and the discotic liquid crystal films 14 and 15 have a tilt angle of liquid crystal molecules from one film surface side where the tilt angle of liquid crystal molecules is small. Optical tilted obliquely in the direction of the average of the molecular axes of the discotic liquid crystal molecules arranged in the tilted state (the axis perpendicular to the disk-like molecular plane) toward the other film surface side with a large Has an axis.

言い換えれば、このディスコティック液晶フィルム14,15は、前記チルト状態で配列したディスコティック液晶分子の分子軸(円板状の分子面に対して垂直な軸)の向きを平均した方向で、且つフィルム厚さ方向に並ぶチルト角の異なる液晶分子の分子面間隔の開き方向とは反対方向に向いた傾斜光学軸をもっている。   In other words, the discotic liquid crystal films 14 and 15 have a direction in which the directions of the molecular axes of the discotic liquid crystal molecules arranged in the tilted state (axis perpendicular to the disc-like molecular plane) are averaged, and the film The liquid crystal molecules having different tilt angles arranged in the thickness direction have tilted optical axes oriented in the direction opposite to the opening direction of the molecular plane spacing.

そして、前記ディスコティック液晶フィルム14,15は、前記光学軸に沿った方向の屈折率が最も小さい、負の光学異方性を有している。   The discotic liquid crystal films 14 and 15 have negative optical anisotropy having the smallest refractive index in the direction along the optical axis.

図1において、14a,15aは前記ディスコティック液晶フィルム14,15の光学軸をフィルム面に投影した面上光学軸を示している。   In FIG. 1, reference numerals 14a and 15a denote on-plane optical axes obtained by projecting the optical axes of the discotic liquid crystal films 14 and 15 onto the film surface.

そして、前記第1と第2のディスコティック液晶フィルム14,15のうち、前側(観察側)のディスコティック液晶フィルム14は、その面上光学軸14aを前記画面の横軸xに対して135°(前側偏光板12の外面側から見て左回りに135°)の方向に向けて配置され、後側のディスコティック液晶フィルム15は、その面上光学軸15aを前記画面の横軸xに対して−45°(前側偏光板12の外面側から見て右回りに45°)の方向に向けて配置されている。   Of the first and second discotic liquid crystal films 14 and 15, the front (observation side) discotic liquid crystal film 14 has an on-plane optical axis 14a of 135 ° with respect to the horizontal axis x of the screen. The discotic liquid crystal film 15 on the rear side is arranged in a direction (135 ° counterclockwise when viewed from the outer surface side of the front polarizing plate 12), and the optical disc 15a on the surface thereof has an optical axis 15a on the horizontal axis x of the screen. Are arranged in the direction of −45 ° (45 ° clockwise when viewed from the outer surface side of the front polarizing plate 12).

また、前記第1と第2の一軸性位相板16,17は、ノルボルネン系樹脂フィルムからなっており、これらの一軸性位相板16,17はそれぞれ、250nm〜300nmの範囲、例えば270nmの位相差を有している。   The first and second uniaxial phase plates 16 and 17 are made of norbornene resin films, and each of the uniaxial phase plates 16 and 17 has a phase difference of 250 nm to 300 nm, for example, 270 nm. have.

さらに、前記第1と第2の二軸性位相板18,19は、ポリカーボネイト系樹脂フィルムからなっており、その位相板面における屈折率が最も大きい方向をx軸、前記位相板面における前記x軸と直交する方向をy軸、前記位相板面に垂直な方向をz軸とし、前記x軸方向の屈折率をn、前記y軸方向の屈折率をn、前記z軸方向の屈折率をnとしたとき、これらの屈折率n,n,nがn>n>nの関係にある特性を有している。 Further, the first and second biaxial phase plates 18 and 19 are made of a polycarbonate resin film, and the direction in which the refractive index on the phase plate surface is the largest is the x axis, and the x on the phase plate surface is the x axis. y-axis and a direction perpendicular to the axial the direction perpendicular to the phase plate surface and the z-axis, the x-axis direction of the refractive index n x, the y-axis direction of the refractive index n y, the refractive of the z-axis direction when the rate was n z, these refractive index n x, n z, n y has a characteristic in the relation of n x> n z> n y .

これらの二軸性位相板18,19の位相板面における前記x軸方向の屈折率nとy軸方向の屈折率nと板厚tとによる面内位相差(n−n)×tはそれぞれ、120nm〜150nmの範囲、例えば135nmであり、且つ、Nz=(n−n)/(n−n)の値が−0.5〜+0.3の範囲、例えばNz=0.15のNz係数を有している。 Plane retardation by said x refractive index of the axis of the refractive indices n x and y-axis direction n y and the plate thickness t of the phase plate surfaces of the biaxial phase plate 18, 19 (n x -n y) × t are each, range 120Nm~150nm, for example 135 nm, and, Nz = (n x -n z ) / (n x -n y) range value of -0.5 to + 0.3, e.g. It has an Nz coefficient of Nz = 0.15.

第1及び第2の一軸性位相板16,17と二軸性位相板18,19はそれぞれ、前記一軸性位相板16,17を前記偏光板12,13に隣接させ、前記二軸性位相板18,19を前記ディスコティック液晶フィルム14,15に隣接させて配置されている。   The first and second uniaxial phase plates 16 and 17 and the biaxial phase plates 18 and 19 make the uniaxial phase plates 16 and 17 adjacent to the polarizing plates 12 and 13, respectively. 18 and 19 are arranged adjacent to the discotic liquid crystal films 14 and 15.

そして、前記第1と第2の二軸性位相板18,19のうち、前側の偏光板12とディスコティック液晶フィルム14との間に配置された前側二軸性位相板18は、その遅相軸18aを前記画面の横軸xに対して135°(前側偏光板12の外面側から見て左回りに135°)の方向に向けて配置され、後側の偏光板13とディスコティック液晶フィルム15との間に配置された後側二軸性位相板19は、その遅相軸19aを前記画面の横軸xに対して135°(前側偏光板12の外面側から見て左回りに135°)の方向に向けて配置されている。   Of the first and second biaxial phase plates 18 and 19, the front biaxial phase plate 18 disposed between the front polarizing plate 12 and the discotic liquid crystal film 14 has a slow phase. The axis 18a is disposed in a direction of 135 ° (135 ° counterclockwise when viewed from the outer surface side of the front polarizing plate 12) with respect to the horizontal axis x of the screen, and the rear polarizing plate 13 and the discotic liquid crystal film The rear biaxial phase plate 19 disposed between the lower polarizing plate 15 and the slow axis 19a is 135 ° with respect to the horizontal axis x of the screen (135 counterclockwise as viewed from the outer surface side of the front polarizing plate 12). °) is oriented toward the direction.

また、前記第1と第2の一軸性位相板16,17のうち、前側の偏光板12とディスコティック液晶フィルム14との間に配置された前側一軸性位相板16は、その遅相軸16aを前記画面の横軸xに対して15°(前側偏光板12の外面側から見て左回りに15°)の方向に向けて配置され、後側の偏光板13とディスコティック液晶フィルム15との間に配置された後側一軸性位相板17は、その遅相軸17aを前記画面の横軸xに対して75°(前側偏光板12の外面側から見て左回りに75°)の方向に向けて配置されている。   Of the first and second uniaxial phase plates 16 and 17, the front uniaxial phase plate 16 disposed between the front polarizing plate 12 and the discotic liquid crystal film 14 has a slow axis 16a. Is oriented in the direction of 15 ° (15 ° counterclockwise when viewed from the outer surface side of the front polarizing plate 12) with respect to the horizontal axis x of the screen, and the rear polarizing plate 13 and the discotic liquid crystal film 15 The rear uniaxial phase plate 17 disposed between the slow axis 17a and the horizontal axis x of the screen is 75 ° (75 ° counterclockwise when viewed from the outer surface side of the front polarizing plate 12). It is arranged in the direction.

したがって、前記前側及び後側のディスコティック液晶フィルム14,15の面上光学軸14a,15aと、前記前側及び後側の二軸性位相板18,19の遅相軸18a,19aはそれぞれ、前記ホモジニアス配向型液晶素子1の液晶分子配向方向(一対の基板2,3の内面のラビング方向2a,3aに沿った方向)と平行である。   Therefore, the optical axes 14a and 15a on the front and rear discotic liquid crystal films 14 and 15 and the slow axes 18a and 19a of the front and rear biaxial phase plates 18 and 19, respectively, It is parallel to the liquid crystal molecule alignment direction (direction along the rubbing directions 2a and 3a of the inner surfaces of the pair of substrates 2 and 3) of the homogeneous alignment type liquid crystal element 1.

また、前記前側及び後側の一軸性位相板16,17の遅相軸16a,17aと前側及び後側の偏光板12,13の吸収軸12a,13aは、前記前側二軸性位相板18の遅相軸18aに対する前側一軸性位相板16の遅相軸16aのずれ角をφ1、前記後側二軸性位相板19の遅相軸19aに対する後側一軸性位相板17の遅相軸17aのずれ角をφ2、前記前側二軸性位相板18の遅相軸18aに対する前側偏光板12の吸収軸12aのずれ角をθ1、前記後側二軸性位相板19の遅相軸19aに対する後側偏光板13の吸収軸13aのずれ角をθ2とし、且つ、上述したように前側偏光板12の外面側から見て左回りの角度を正の角度、右回りの角度を負の角度としたとき、
φ1=60°
φ2=−60°
θ1=135°+2φ1
θ2=135°+2φ2
の方向にある。
The slow axes 16 a and 17 a of the front and rear uniaxial phase plates 16 and 17 and the absorption axes 12 a and 13 a of the front and rear polarizing plates 12 and 13 are the same as those of the front biaxial phase plate 18. The shift angle of the slow axis 16a of the front uniaxial phase plate 16 with respect to the slow axis 18a is φ1, and the slow axis 17a of the rear uniaxial phase plate 17 with respect to the slow axis 19a of the rear biaxial phase plate 19 is The deviation angle is φ2, the deviation angle of the absorption axis 12a of the front polarizing plate 12 with respect to the slow axis 18a of the front biaxial phase plate 18 is θ1, and the rear side of the rear biaxial phase plate 19 with respect to the slow axis 19a. When the shift angle of the absorption axis 13a of the polarizing plate 13 is θ2, and as described above, the counterclockwise angle when viewed from the outer surface side of the front polarizing plate 12 is a positive angle and the clockwise angle is a negative angle. ,
φ1 = 60 °
φ2 = -60 °
θ1 = 135 ° + 2φ1
θ2 = 135 ° + 2φ2
In the direction of

すなわち、図1に示したように、前側二軸性位相板18の遅相軸18aは、画面の横軸xに対し、前側偏光板12の外面側から見て左回りに135°の方向、前側一軸性位相板16の遅相軸16aは、前記横軸xに対し、前記前側偏光板12の外面側から見て左回りに15°の方向、前側偏光板12の吸収軸12aは、前記横軸xに対し、この前側偏光板12の外面側から見て左回りに30°の方向にあり、また、後側二軸性位相板19の遅相軸19aは、前記横軸xに対し、前記前側偏光板12の外面側から見て左回りに135°の方向、後側一軸性位相板17の遅相軸17aは、前記横軸xに対し、前記前側偏光板12の外面側から見て左回りに75°の方向、後側偏光板13の吸収軸13aは、前記横軸xに対し、前記前側偏光板12の外面側から見て左回りに150°の方向にある。   That is, as shown in FIG. 1, the slow axis 18a of the front biaxial phase plate 18 is in a direction of 135 ° counterclockwise as viewed from the outer surface side of the front polarizing plate 12 with respect to the horizontal axis x of the screen. The slow axis 16a of the front uniaxial phase plate 16 is in the direction of 15 ° counterclockwise when viewed from the outer surface side of the front polarizing plate 12 with respect to the horizontal axis x, and the absorption axis 12a of the front polarizing plate 12 is With respect to the horizontal axis x, it is in the direction of 30 ° counterclockwise as viewed from the outer surface side of the front polarizing plate 12, and the slow axis 19a of the rear biaxial phase plate 19 is in relation to the horizontal axis x. The slow axis 17a of the rear uniaxial phase plate 17 is oriented in a counterclockwise direction of 135 ° when viewed from the outer surface side of the front polarizing plate 12, and from the outer surface side of the front polarizing plate 12 with respect to the horizontal axis x. The absorption axis 13 a of the rear polarizing plate 13 is 75 ° counterclockwise as viewed from the outside of the front polarizing plate 12 with respect to the horizontal axis x. It is in the direction of 150 ° counterclockwise when viewed from the surface side.

そして、前側二軸性位相板18の遅相軸18aに対する前側一軸性位相板16の遅相軸16aのずれ角φ1及び後側二軸性位相板19の遅相軸19aに対する後側一軸性位相板17の遅相軸17aのずれ角φ2がそれぞれ、前側偏光板12の外面側から見て、二軸性位相板18,19の遅相軸18a,19aに対して左回りにずれた方向に一軸性位相板16,17の遅相軸16a,17aがあるときに正の値をとり、前記二軸性位相板18,19の遅相軸18a,19aに対して右回りにずれた方向に一軸性位相板16,17の遅相軸16a,17aがあるときに負の値をとるとすると、この実施例では、前記前側一軸性位相板16の遅相軸16aは前記前側二軸性位相板18の遅相軸18aに対して前側偏光板12の外面側から見て左回りに60°ずれ、前記後側一軸性位相板17の遅相軸17aは前記後側二軸性位相板19の遅相軸19aに対して前側偏光板12の外面側から見て右回りに60°ずれているため、前記前側二軸性位相板18の遅相軸18aに対する前側一軸性位相板16の遅相軸16aのずれ角φ1は60°、前記後側二軸性位相板19の遅相軸19aに対する後側一軸性位相板17の遅相軸17aのずれ角φ2は−60°である。   The shift angle φ1 of the slow axis 16a of the front uniaxial phase plate 16 with respect to the slow axis 18a of the front biaxial phase plate 18 and the rear uniaxial phase of the rear biaxial phase plate 19 with respect to the slow axis 19a. The shift angle φ2 of the slow axis 17a of the plate 17 is shifted in the counterclockwise direction with respect to the slow axes 18a and 19a of the biaxial phase plates 18 and 19 when viewed from the outer surface side of the front polarizing plate 12, respectively. It takes a positive value when the slow axes 16a and 17a of the uniaxial phase plates 16 and 17 are present, and is shifted in a clockwise direction with respect to the slow axes 18a and 19a of the biaxial phase plates 18 and 19. If a negative value is assumed when the slow axes 16a and 17a of the uniaxial phase plates 16 and 17 are present, in this embodiment, the slow axis 16a of the front uniaxial phase plate 16 is the front biaxial phase. When viewed from the outer surface side of the front polarizing plate 12 with respect to the slow axis 18a of the plate 18, it is counterclockwise. The slow axis 17 a of the rear uniaxial phase plate 17 is shifted by 60 °, and the slow axis 17 a of the rear biaxial phase plate 19 is 60 ° clockwise when viewed from the outer surface side of the front polarizing plate 12 with respect to the slow axis 19 a of the rear biaxial phase plate 19. Because of the deviation, the deviation angle φ1 of the slow axis 16a of the front uniaxial phase plate 16 with respect to the slow axis 18a of the front biaxial phase plate 18 is 60 °, and the slow phase of the rear biaxial phase plate 19 The deviation angle φ2 of the slow axis 17a of the rear uniaxial phase plate 17 with respect to the axis 19a is −60 °.

また、前側二軸性位相板18の遅相軸18aに対する前側偏光板12の吸収軸12aのずれ角θ1及び後側二軸性位相板19の遅相軸19aに対する後側偏光板13の吸収軸13aのずれ角θ2がそれぞれ、前側偏光板12の外面側から見て、二軸性位相板18,19の遅相軸18a,19aに対して左回りにずれた方向に偏光板12,13の吸収軸12a,13aがあるときに正の値をとり、前記二軸性位相板18,19の遅相軸18a,19aに対して右回りにずれた方向に偏光板12,13の吸収軸12a,13aがあるときに負の値をとるとすると、この実施例では、前記前側二軸性位相板18の遅相軸18aに対する前側一軸性位相板16の遅相軸16aのずれ角φ1が60°、前記後側二軸性位相板19の遅相軸19aに対する後側一軸性位相板17の遅相軸17aのずれ角φ2が−60°であるため、前記前側二軸性位相板18の遅相軸18aに対する前側偏光板12の吸収軸12aのずれ角θ1は、
θ1=135°+2φ1=135°+2×60°=255°
であり、前記後側二軸性位相板19の遅相軸19aに対する後側偏光板13の吸収軸13aのずれ角θ2は、
θ2=135°+2φ2=135°+2×(−60°)=15°
である。
Also, the shift angle θ1 of the absorption axis 12a of the front polarizing plate 12 with respect to the slow axis 18a of the front biaxial phase plate 18 and the absorption axis of the rear polarizing plate 13 with respect to the slow axis 19a of the rear biaxial phase plate 19 13a of the polarizing plates 12 and 13 are shifted in the counterclockwise direction with respect to the slow axes 18a and 19a of the biaxial phase plates 18 and 19 when viewed from the outer surface side of the front polarizing plate 12, respectively. When the absorption axes 12a and 13a are present, they take a positive value, and the absorption axes 12a of the polarizing plates 12 and 13 are shifted in the clockwise direction with respect to the slow axes 18a and 19a of the biaxial phase plates 18 and 19. , 13a and take a negative value, in this embodiment, the deviation angle φ1 of the slow axis 16a of the front uniaxial phase plate 16 with respect to the slow axis 18a of the front biaxial phase plate 18 is 60 °, rear side of the rear biaxial phase plate 19 with respect to the slow axis 19a Since the deviation angle φ2 of the slow axis 17a of the uniaxial phase plate 17 is -60 °, the deviation angle θ1 of the absorption axis 12a of the front polarizer 12 for the slow axis 18a of the front biaxial phase plate 18,
θ1 = 135 ° + 2φ1 = 135 ° + 2 × 60 ° = 255 °
The deviation angle θ2 of the absorption axis 13a of the rear polarizing plate 13 with respect to the slow axis 19a of the rear biaxial phase plate 19 is
θ2 = 135 ° + 2φ2 = 135 ° + 2 × (−60 °) = 15 °
It is.

この液晶表示素子は、その後側(表示の観察側とは反対側)に配置された図示しない面光源からの光の透過を制御して画像を表示するものであり、この液晶表示素子では、前記二軸性位相板18,19が透過光の常光と異常光との間に1/4波長の位相差を与えるλ/4板に相当し、前記一軸性位相板16,17が透過光の常光と異常光との間に1/2波長の位相差を与えるλ/2板に相当するため、観察側の偏光板12と一軸性位相板16と二軸性位相板18とが一組となって広帯域の円偏光板として機能し、反対側の偏光板13と一軸性位相板17と二軸性位相板19とが一組となって広帯域の円偏光板として機能する。   This liquid crystal display element displays an image by controlling the transmission of light from a surface light source (not shown) disposed on the rear side (the side opposite to the display observation side). In this liquid crystal display element, The biaxial phase plates 18 and 19 correspond to λ / 4 plates that give a phase difference of ¼ wavelength between the ordinary light and the extraordinary light of the transmitted light, and the uniaxial phase plates 16 and 17 are the ordinary light of the transmitted light. Is equivalent to a λ / 2 plate that gives a phase difference of ½ wavelength between the extraordinary light and the extraordinary light, so that the polarizing plate 12, the uniaxial phase plate 16 and the biaxial phase plate 18 on the observation side form a pair. The polarizing plate 13 on the opposite side, the uniaxial phase plate 17 and the biaxial phase plate 19 function as a wide band circular polarizing plate.

そのため、この液晶表示素子では、その後側から後側偏光板13によりその吸収軸13aと直交する方向(透過軸方向)の直線偏光とされて入射した光が、後側一軸性位相板17及び後側二軸性位相板19により円偏光とされ、その円偏光が後側ディスコティック液晶フィルム15を透過してホモジニアス配向型液晶素子1に入射する。   For this reason, in this liquid crystal display element, the light incident as the linearly polarized light in the direction (transmission axis direction) orthogonal to the absorption axis 13a from the rear side polarizing plate 13 from the rear side is incident on the rear uniaxial phase plate 17 and the rear side. The side biaxial phase plate 19 makes the circularly polarized light, which passes through the rear discotic liquid crystal film 15 and enters the homogeneous alignment type liquid crystal element 1.

そして、前記ホモジニアス配向型液晶素子1の複数の画素の電極4,5間に液晶層11の液晶分子11aを初期のホモジニアス配向状態に配向させる電圧を印加したときは、前記液晶層11がλ/2板に相当するため、この液晶素子1に入射した前記円偏光が液晶層11を透過する間に逆回りの円偏光となって前記液晶素子1から出射し、その光(逆回りの円偏光)が前側ディスコティック液晶フィルム14を透過し、前側二軸性位相板18及び前側一軸性位相板16により前側偏光板12の吸収軸12aと直交する方向(透過軸方向)の直線偏光とされて前記前側偏光板12に入射し、この前側偏光板12を透過して観察側に出射して明表示になる。   When a voltage for aligning the liquid crystal molecules 11a of the liquid crystal layer 11 in the initial homogeneous alignment state is applied between the electrodes 4 and 5 of the plurality of pixels of the homogeneous alignment type liquid crystal element 1, the liquid crystal layer 11 becomes λ / Since the circularly polarized light incident on the liquid crystal element 1 is transmitted through the liquid crystal layer 11, the circularly polarized light enters the liquid crystal element 11 and is emitted from the liquid crystal element 1, and the light (reversely circularly polarized light) is emitted. ) Is transmitted through the front discotic liquid crystal film 14, and is converted into linearly polarized light in the direction (transmission axis direction) perpendicular to the absorption axis 12a of the front polarizing plate 12 by the front biaxial phase plate 18 and the front uniaxial phase plate 16. The light enters the front polarizing plate 12, passes through the front polarizing plate 12, exits to the observation side, and becomes bright display.

また、前記ホモジニアス配向型液晶素子1の複数の画素の電極4,5間に液晶層11の液晶分子11aを基板2,3面に対して予め定めた角度で立上がり配向させる電圧を印加したときは、この液晶素子1に入射した前記円偏光が、偏光状態をほとんど変えずに液晶層11を透過して前記液晶素子1から出射し、その円偏光が前側ディスコティック液晶フィルム14を透過し、前側二軸性位相板18及び前側一軸性位相板16により前側偏光板12の吸収軸12aに平行な直線偏光とされて前記前側偏光板12に入射し、この前側偏光板12により吸収されて黒が表示される。   In addition, when a voltage is applied between the electrodes 4 and 5 of the plurality of pixels of the homogeneous alignment type liquid crystal element 1 so that the liquid crystal molecules 11a of the liquid crystal layer 11 rise and align at a predetermined angle with respect to the surfaces of the substrates 2 and 3. The circularly polarized light incident on the liquid crystal element 1 is transmitted through the liquid crystal layer 11 with almost no change in the polarization state and emitted from the liquid crystal element 1, and the circularly polarized light is transmitted through the front discotic liquid crystal film 14 to The biaxial phase plate 18 and the front uniaxial phase plate 16 make the linearly polarized light parallel to the absorption axis 12a of the front polarizing plate 12 and enter the front polarizing plate 12, which is absorbed by the front polarizing plate 12 and becomes black. Is displayed.

なお、前記ホモジニアス配向型液晶素子1の前記明表示電圧が印加された画素に対応する領域からの出射光は、前記液晶素子1の前基板2の内面に複数の画素にそれぞれ対応させて設けられた赤、緑、青の3色のカラーフィルタ7R,7G,7Bにより着色された赤、緑、青の3色の光であり、これらの着色光の混色によりフルカラー画像が表示される。   The emitted light from the region corresponding to the pixel to which the bright display voltage is applied of the homogeneous alignment type liquid crystal element 1 is provided on the inner surface of the front substrate 2 of the liquid crystal element 1 so as to correspond to a plurality of pixels, respectively. The three color filters 7R, 7G, and 7B of red, green, and blue are colored light of red, green, and blue, and a full color image is displayed by mixing these colored lights.

この液晶表示素子は、ホモジニアス配向型液晶素子1とこの液晶素子1を挟んで配置された前側及び後側の偏光板12,13との間にそれぞれディスコティック液晶フィルム14,15を配置し、さらに、前記観察側の偏光板12とディスコティック液晶フィルム14との間に前側一軸性位相板16と前側二軸性位相板18を、反対側の偏光板13とディスコティック液晶フィルム15との間に後側一軸性位相板17と後側二軸性位相板19とを配置しているため、前側及び後側のディスコティック液晶フィルム14,15と、前側の一軸性位相板16と二軸性位相板18及び後側の一軸性位相板17と二軸性位相板19との相乗作用により、広い観察方位及び観察角にわたって、コントラスト反転が無く、しかも高コントラストの表示を得ることができる。   In this liquid crystal display element, discotic liquid crystal films 14 and 15 are respectively disposed between the homogeneous alignment type liquid crystal element 1 and the front and rear polarizing plates 12 and 13 disposed so as to sandwich the liquid crystal element 1. The front-side uniaxial phase plate 16 and the front-side biaxial phase plate 18 are interposed between the observation-side polarizing plate 12 and the discotic liquid crystal film 14, and the opposite-side polarizing plate 13 and the discotic liquid crystal film 15 are interposed. Since the rear uniaxial phase plate 17 and the rear biaxial phase plate 19 are arranged, the front and rear discotic liquid crystal films 14 and 15, the front uniaxial phase plate 16 and the biaxial phase are arranged. Due to the synergistic action of the plate 18 and the uniaxial phase plate 17 and the biaxial phase plate 19 on the rear side, there is no contrast inversion over a wide observation direction and angle, and a high contrast display is obtained. It is possible.

上記実施例では、前記前側及び後側の一軸性位相板16,17と二軸性位相板18,19を、前記一軸性位相板16,17を偏光板12,13に隣接させ、前記二軸性位相板18,19をディスコティック液晶フィルム14,15に隣接させて配置し、前側及び後側のディスコティック液晶フィルム14,15の光学軸をフィルム面に投影した面上光学軸14a,15aと、前記前側及び後側の二軸性位相板18,19の遅相軸18a,19aをそれぞれ、ホモジニアス配向型液晶素子1の液晶分子配向方向と平行にし、前記前側及び後側の一軸性位相板16,17の遅相軸16a,17aと前記前側及び後側の偏光板12,13の吸収軸12a,13aの方向を、前側偏光板12の外面側から見て左回りの角度を正の角度、右回りの角度を負の角度としたとき、前側二軸性位相板18の遅相軸18aに対する前側一軸性位相板16の遅相軸16aのずれ角φ1が60°〜80°、後側二軸性位相板19の遅相軸19aに対する後側一軸性位相板17の遅相軸17aのずれ角φ2が−60°〜−80°、前記前側二軸性位相板18の遅相軸18aに対する前側偏光板12の吸収軸12aのずれ角θ1が135°+2φ1、前記後側二軸性位相板19の遅相軸19aに対する後側偏光板13の吸収軸13aのずれ角θ2が135°+2φ2の方向に設定しているため、より広い観察方位及び観察角にわたって、コントラスト反転が無く、しかも高コントラストの表示を得ることができる。   In the above embodiment, the front and rear uniaxial phase plates 16 and 17 and the biaxial phase plates 18 and 19 are made adjacent to the polarizing plates 12 and 13, and the biaxial phase plates 18 and 19 are made adjacent to each other. Optical phase plates 18 and 19 are disposed adjacent to the discotic liquid crystal films 14 and 15, and on-surface optical axes 14a and 15a obtained by projecting the optical axes of the front and rear discotic liquid crystal films 14 and 15 onto the film surface; The slow axes 18a and 19a of the front and rear biaxial phase plates 18 and 19 are parallel to the liquid crystal molecular alignment direction of the homogeneous alignment type liquid crystal element 1, respectively, and the front and rear uniaxial phase plates are arranged. 16, 17 slow axes 16 a, 17 a and the absorption axes 12 a, 13 a of the front and rear polarizing plates 12, 13 as viewed from the outer surface side of the front polarizing plate 12, a counterclockwise angle is a positive angle , Clockwise angle The angle φ1 of the slow axis 16a of the front uniaxial phase plate 16 with respect to the slow axis 18a of the front biaxial phase plate 18 is 60 ° to 80 °, and the rear biaxial phase plate 19 The deviation angle φ2 of the slow axis 17a of the rear uniaxial phase plate 17 with respect to the slow axis 19a is −60 ° to −80 °, and the absorption of the front polarizing plate 12 with respect to the slow axis 18a of the front biaxial phase plate 18 The deviation angle θ1 of the shaft 12a is set to 135 ° + 2φ1, and the deviation angle θ2 of the absorption axis 13a of the rear polarizing plate 13 with respect to the slow axis 19a of the rear biaxial phase plate 19 is set to 135 ° + 2φ2. Therefore, there is no contrast inversion over a wider viewing direction and viewing angle, and a high-contrast display can be obtained.

さらに、上記実施例では、前記前側と後側の一軸性位相板16,17の位相差をそれぞれ250nm〜300nmの範囲、前記前側と後側の二軸性位相板18,19の面内位相差をそれぞれ120nm〜150nmの範囲とし、且つ、前記前側と後側の二軸性位相板18,19のNz係数、Nz=(n−n)/(n−n)の値をそれぞれ−0.5〜+0.3の範囲にしているため、さらに広い観察方位及び観察角にわたって、コントラスト反転が無く、しかも高コントラストの表示を得ることができる。 Further, in the above embodiment, the phase difference between the front and rear uniaxial phase plates 16 and 17 is in the range of 250 nm to 300 nm, respectively, and the in-plane phase difference between the front and rear biaxial phase plates 18 and 19. were each in the range of 120Nm~150nm, and, Nz coefficient of the front and rear side biaxial phase plate 18, 19, Nz = the value of (n x -n z) / ( n x -n y) , respectively Since it is in the range of −0.5 to +0.3, there is no contrast inversion over a wider viewing direction and viewing angle, and a high contrast display can be obtained.

図3は前記液晶表示素子の左右方向(画面の横軸xに沿った方向)における視角による白表示(明表示)輝度及び黒表示(暗表示)輝度の変化とコントラストの変化を示し、図4は前記液晶表示素子の上下方向(画面の縦軸に沿った方向)における視角による白表示(明表示)輝度及び黒表示(暗表示)輝度の変化とコントラストの変化を示しており、いずれの特性も、前記ホモジニアス配向型液晶素子1を、カラーフィルタを省略し、他の構成は同じにした液晶素子に置き換えたときの特性である。   FIG. 3 shows changes in white display (bright display) luminance and black display (dark display) luminance and changes in contrast depending on the viewing angle in the left-right direction (direction along the horizontal axis x of the screen) of the liquid crystal display element. Indicates changes in white display (bright display) luminance and black display (dark display) luminance and changes in contrast depending on the viewing angle in the vertical direction (direction along the vertical axis of the screen) of the liquid crystal display element. The characteristics are obtained when the homogeneous alignment type liquid crystal element 1 is replaced with a liquid crystal element in which a color filter is omitted and the other configurations are the same.

なお、図3及び図4において、視角は、画面の法線に対する角度であり、正の視角は前記画面の法線に対して右方向の角度、負の視角は前記画面の法線に対して左方向の角度である。   3 and 4, the viewing angle is an angle with respect to the normal line of the screen, the positive viewing angle is the right angle with respect to the normal line of the screen, and the negative viewing angle is with respect to the normal line of the screen. The angle in the left direction.

前記液晶表示素子は、図3(a)及び図4(a)のように左右方向及び上下方向の白表示輝度が十分に高く、図3(b)及び図4(b)のように左右方向及び上下方向の黒表示輝度が十分に低いため、図3(c)及び図4(c)のように、特に正面方向、つまり視角0°の付近のコントラスト比が著しく高く、また画面周囲の全方位にわたって高いコントラスト比が得られる。   The liquid crystal display element has sufficiently high white display brightness in the horizontal direction and vertical direction as shown in FIGS. 3A and 4A, and in the horizontal direction as shown in FIGS. 3B and 4B. Since the black display brightness in the vertical direction is sufficiently low, the contrast ratio is particularly high in the front direction, that is, in the vicinity of the viewing angle of 0 °, as shown in FIGS. 3 (c) and 4 (c). A high contrast ratio can be obtained over the azimuth.

図5は前記液晶表示素子の視角によるコントラスト反転特性を示しており、この特性は、前記ホモジニアス配向型液晶素子1を、カラーフィルタを省略し、他の構成は同じにした液晶素子に置き換え、その電極4,5間に正面方向輝度が白表示輝度の15%になるグレー表示電圧を印加したときの特性である。   FIG. 5 shows contrast inversion characteristics depending on the viewing angle of the liquid crystal display element. This characteristic is obtained by replacing the homogeneous alignment type liquid crystal element 1 with a liquid crystal element in which the color filter is omitted and the other configuration is the same. This is a characteristic when a gray display voltage is applied between the electrodes 4 and 5 so that the luminance in the front direction is 15% of the white display luminance.

なお、図5において、同心円は画面の法線に対する視角、放射線(破線)は画面の周方向における視角方位であり、方位角0°は画面の右方向、180°は画面の左方向、90°は画面の上方向、270°は画面の下方向である。   In FIG. 5, concentric circles are viewing angles with respect to the normal of the screen, and radiation (broken lines) are viewing angle azimuths in the circumferential direction of the screen, the azimuth angle 0 ° is the right direction of the screen, 180 ° is the left direction of the screen, 90 ° Is the upward direction of the screen and 270 ° is the downward direction of the screen.

前記液晶表示素子は、図5に正面方向輝度が白表示輝度の15%になるグレー表示の輝度と黒表示輝度の強さが逆転する視角範囲Aを示したように、画面の法線に対する視角が80°近くになったときに、45°、135°、225°及び315°の方位付近に前記グレー表示と黒表示の輝度逆転が発生する程度であり、画面の法線に対する視角がそれよりも小さい範囲、つまり正面方向に近い範囲では、前記グレー表示と黒表示の輝度逆転は無い。   The liquid crystal display element has a viewing angle with respect to the normal of the screen, as shown in FIG. 5 in a viewing angle range A in which the intensity of the gray display and the intensity of the black display are reversed, where the brightness in the front direction is 15% of the white display brightness. When the angle becomes close to 80 °, brightness inversion of the gray display and black display occurs in the vicinity of azimuths of 45 °, 135 °, 225 °, and 315 °, and the viewing angle with respect to the normal line of the screen is larger than that. In a small range, that is, a range close to the front direction, there is no luminance reversal between the gray display and the black display.

したがって、前記液晶表示素子は、広い観察方位及び観察角にわたって、コントラスト反転が無く、しかも高コントラストの表示を得ることができる。   Therefore, the liquid crystal display element has no contrast inversion over a wide viewing direction and viewing angle, and can provide a high contrast display.

また、前記液晶表示素子は、上述したように、前記ホモジニアス配向型液晶素子1の赤色フィルタ7Rに対応する赤色画素の液晶層厚dと、緑色フィルタ7Gに対応する緑色画素の液晶層厚dと、青色フィルタ7Gに対応する青色画素の液晶層厚dとをそれぞれ、d=約4.2μm、d=約4.0μm、d=約3.7μmにするとともに、液晶層11をΔn=0.073の液晶材料により形成し、前記赤色画素の液晶層11のΔn・dの値を約306.6nm、前記緑色画素の液晶層11のΔn・dの値を約292.0nm、前記青色画素の液晶層11のΔn・dを約270.1nmに設定しているため、前記液晶素子1の赤、緑、青の各色の画素を透過した赤、緑、青の着色光が他の色を帯びる帯色を無くすとともに、前記液晶素子1の各画素の電極4,5間に同じ値の黒表示電圧を印加して十分な暗さの黒を表示させ、色相が良く、しかも高コントラストのカラー画像を表示することができる。 Further, as described above, the liquid crystal display element includes a red pixel liquid crystal layer thickness d R corresponding to the red filter 7R of the homogeneous alignment type liquid crystal element 1, and a green pixel liquid crystal layer thickness d corresponding to the green filter 7G. G and the liquid crystal layer thickness d B of the blue pixel corresponding to the blue filter 7G are set to d R = about 4.2 μm, d G = about 4.0 μm, d B = about 3.7 μm, respectively, and the liquid crystal layer 11 is formed of a liquid crystal material of Δn = 0.073, the value of Δn · d R of the liquid crystal layer 11 of the red pixel is about 306.6 nm, and the value of Δn · d G of the liquid crystal layer 11 of the green pixel is about 292.0Nm, since the set [Delta] n · d B about 270.1nm of the liquid crystal layer 11 of the blue pixel, wherein the liquid crystal device 1 red, green, red transmitted through each color of the pixels of the blue, green, and blue The colored light of other colors loses the band color A black display voltage of the same value is applied between the electrodes 4 and 5 of each pixel of the liquid crystal element 1 to display a sufficiently dark black to display a color image with good hue and high contrast. it can.

すなわち、図6は前記液晶表示素子の液晶層厚dと光の透過率の関係を示し、図7は前記液晶表示素子の液晶層厚dと透過光の色度の関係を示しており、いずれの特性も、前記ホモジニアス配向型液晶素子1を、カラーフィルタを省略し、全ての画素の液晶層厚dを同じにした液晶素子に置き換え、液晶層を前記Δn=0.073の液晶材料により形成したときの特性を示している。   That is, FIG. 6 shows the relationship between the liquid crystal layer thickness d of the liquid crystal display element and the light transmittance, and FIG. 7 shows the relationship between the liquid crystal layer thickness d of the liquid crystal display element and the chromaticity of the transmitted light. The characteristic alignment liquid crystal element 1 is replaced with a liquid crystal element in which the color filter is omitted and the liquid crystal layer thickness d of all the pixels is the same, and the liquid crystal layer is formed of the liquid crystal material of Δn = 0.073. The characteristics are shown.

前記液晶表示素子は、図7に示したように液晶素子の液晶層厚dが大きいほど透過率が高くなるが、白表示の色度は、図6に示したように、液晶層厚dが4.0〜4.2μm付近であるときに無彩色点に近く、その範囲外では、白表示色度が無彩色点からずれて帯色を生じる。   The liquid crystal display element has a higher transmittance as the liquid crystal layer thickness d of the liquid crystal element is larger as shown in FIG. 7, but the chromaticity of white display is as shown in FIG. When it is in the vicinity of 4.0 to 4.2 μm, it is close to the achromatic color point, and outside the range, the white display chromaticity is shifted from the achromatic color point, and a band color is generated.

そのため、この実施例では、前記ホモジニアス配向型液晶素子1の赤、緑、青の各色の画素のうち、可視光帯域の中間波長域である緑の波長域の光を透過させる緑色画素の液晶層厚dを、前記無彩色点に近い白表示が得られる液晶層厚に相当する約4.0μmにし、前記可視光帯域の長波長域である赤の波長域の光を透過させる赤色画素の液晶層厚dを約4.2μm、前記可視光帯域の短波長域である青の波長域の光を透過させる青色画素の液晶層厚dを約3.7μmにするとともに、液晶層11をΔn=0.073の液晶材料により形成し、前記赤色画素の液晶層11のΔn・dの値を約306.6nm、前記緑色画素の液晶層11のΔn・dの値を約292.0nm、前記青色画素の液晶層11のΔn・dを約270.1nmに設定している。 Therefore, in this embodiment, the liquid crystal layer of the green pixel that transmits light in the green wavelength range that is the intermediate wavelength range of the visible light band among the red, green, and blue color pixels of the homogeneous alignment type liquid crystal element 1. The thickness d G is set to about 4.0 μm corresponding to the thickness of the liquid crystal layer capable of obtaining a white display close to the achromatic point, and the red pixel that transmits light in the red wavelength range which is a long wavelength range of the visible light range is transmitted. about 4.2μm liquid crystal layer thickness d R, as well as to the liquid crystal layer thickness d B of about 3.7μm of the blue pixel for transmitting light in the wavelength region of the a short wavelength range of the visible light band blue, the liquid crystal layer 11 Is made of a liquid crystal material of Δn = 0.073, the value of Δn · d R of the liquid crystal layer 11 of the red pixel is about 306.6 nm, and the value of Δn · d G of the liquid crystal layer 11 of the green pixel is about 292. .0Nm, about a [Delta] n · d B of the liquid crystal layer 11 of the blue pixel 270.1n It is set to.

図8は前記液晶表示素子の赤色画素に対応する領域における赤の波長域の中心波長(650nm)光と、緑色画素に対応する領域における緑の波長域の中心波長(550nm)光と、青色画素に対応する領域における青の波長域の中心波長(450nm)光の電圧―透過率特性とを示しており、ここでは、正面方向から観察した透過率を示している。図9は前記図8の透過率が最も低くなった部分の拡大図である。   FIG. 8 shows the center wavelength (650 nm) light in the red wavelength region in the region corresponding to the red pixel of the liquid crystal display element, the center wavelength (550 nm) light in the green wavelength region in the region corresponding to the green pixel, and the blue pixel. 4 shows the voltage-transmittance characteristics of light having a center wavelength (450 nm) in the blue wavelength region in the region corresponding to 1. Here, the transmittance observed from the front direction is shown. FIG. 9 is an enlarged view of a portion where the transmittance in FIG. 8 is lowest.

図8及び図9のように、前記液晶表示素子は、前記液晶素子1の赤、緑、青の各色の画素の電極4,5間に液晶分子11aを初期のホモジニアス配向状態に配向させる電圧(図では0〜1V)を印加したときの赤、緑、青の着色光の透過率がいずれも十分に高く、また、前記各色の画素の電極4,5間に同じ値の黒表示電圧(図では3.4〜3.6V)を印加したときの黒表示の暗さも十分である。   As shown in FIGS. 8 and 9, the liquid crystal display element has a voltage (a voltage for aligning the liquid crystal molecules 11 a in the initial homogeneous alignment state between the electrodes 4 and 5 of the red, green, and blue pixels of the liquid crystal element 1. In the figure, the transmittance of red, green, and blue colored light when 0 to 1 V is applied is sufficiently high, and the black display voltage (the figure is the same) between the electrodes 4 and 5 of the pixels of each color. Then, the darkness of black display when 3.4 to 3.6 V) is applied is sufficient.

図10は、前記液晶素子1の液晶層11をΔn=0.073の液晶材料により形成したときの赤の波長域の中心波長(650nm)光と、緑の波長域の中心波長(550nm)光と、青の波長域の中心波長(450nm)光とに対する最適黒表示電圧(十分な暗さの黒表示が得られる電圧)と液晶層厚との関係を示しており、赤、緑、青の光に対する最適黒表示電圧と液晶層厚との関係には図のような差があるため、前記液晶素子1の赤、緑、青の各色の画素の電極4,5間に同じ値の黒表示電圧を印加したときに前記赤、緑、青の各色の画素に対応する領域の光の透過率がいずれも最も低くなるようにするには、赤色画素の液晶層厚d 緑色画素の液晶層厚dと青色画素の液晶層厚dとを、d>d>dの関係にし、且つ、赤色画素と緑色画素の液晶層厚d,dの差を約0.2μm、緑色画素と青色画素の液晶層厚d,dの差を約0.3μmにするのが望ましい。 FIG. 10 shows the center wavelength (650 nm) light in the red wavelength region and the center wavelength (550 nm) light in the green wavelength region when the liquid crystal layer 11 of the liquid crystal element 1 is formed of a liquid crystal material having Δn = 0.073. And the relationship between the optimum black display voltage (the voltage at which a sufficiently dark black display can be obtained) and the liquid crystal layer thickness for the central wavelength (450 nm) light in the blue wavelength range, and the red, green and blue Since the relationship between the optimum black display voltage for light and the liquid crystal layer thickness has a difference as shown in the figure, black display of the same value is made between the electrodes 4 and 5 of the red, green and blue pixels of the liquid crystal element 1. In order to make the light transmittance of the regions corresponding to the red, green, and blue color pixels the lowest when a voltage is applied, the liquid crystal layer thickness d R of the red pixel and the liquid crystal of the green pixel are set. The layer thickness d G and the liquid crystal layer thickness d B of the blue pixel are in a relationship of d R > d G > d B , and The liquid crystal layer thickness of the red and green pixels d R, approximately 0.2μm a difference d G, a liquid crystal layer thickness of the green pixel and the blue pixel d G, is to the difference of about 0.3μm of d B desirable.

そして、上記液晶表示素子では、上述したように、緑色画素の液晶層厚dを無彩色点に近い白表示が得られる液晶層厚に相当する約4.0μmにし、赤色画素の液晶層厚dを前記緑色画素の液晶層厚dよりも約0.2μm大きい約4.2μm、青色画素の液晶層厚dを前記緑色画素の液晶層厚dよりも約0.3μm小さい約3.7μmにしているため、前記液晶素子1の赤、緑、青の各色の画素を透過した赤、緑、青の着色光が他の色を帯びる帯色を無くすとともに、前記液晶素子1の各画素の電極4,5間に同じ値の黒表示電圧を印加して十分な暗さの黒を表示させることができる。 In the liquid crystal display element, as described above, the liquid crystal layer thickness d G of the green pixel is set to about 4.0 μm corresponding to the liquid crystal layer thickness at which white display close to the achromatic point is obtained, and the liquid crystal layer thickness of the red pixel is set. d R is about 4.2 μm larger than the liquid crystal layer thickness d G of the green pixel, and blue liquid crystal layer thickness d B is about 0.3 μm smaller than the liquid crystal layer thickness d G of the green pixel. Since the thickness is 3.7 μm, the red, green, and blue colored light transmitted through the pixels of the red, green, and blue colors of the liquid crystal element 1 are eliminated from the other colors, and the liquid crystal element 1 A sufficiently dark black display voltage can be displayed by applying the same black display voltage between the electrodes 4 and 5 of each pixel.

なお、上記実施例では、液晶素子1の赤、緑、青の各色の画素の液晶層厚d,d,dを、d=約4.2μm、d=約4.0μm、d=約3.7μmとし、液晶層11を屈折率異方性ΔnがΔn=0.073の液晶材料により形成することにより、前記赤色画素の液晶層11のΔn・dの値を約306.6nm、前記緑色画素の液晶層11のΔn・dの値を約292.0nm、前記青色画素の液晶層11のΔn・dを約270.1nmに設定しているが、前記赤、緑、青の各色の画素のΔn・d,Δn・d,Δn・dの値はそれぞれ、
255nm<Δn(550nm)・d<355nm
−25nm<Δn(650nm)・d−Δn(550nm)・d<+30nm
−35nm<Δn(450nm)・d−Δn(550nm)・d<+10nm
の範囲であればよく、このようにすることにより、前記液晶素子1の赤、緑、青の各色の画素を透過した赤、緑、青の着色光が他の色を帯びる帯色を無くすとともに、前記液晶素子1の各画素の電極4,5間に同じ値の黒表示電圧を印加して十分な暗さの黒を表示させ、色相が良く、しかも高コントラストのカラー画像を表示することができる。
In the above embodiment, the liquid crystal layer thicknesses d R , d G and d B of the red, green and blue pixels of the liquid crystal element 1 are set to d R = about 4.2 μm, d G = about 4.0 μm, When d B = about 3.7 μm and the liquid crystal layer 11 is formed of a liquid crystal material having a refractive index anisotropy Δn of Δn = 0.073, the value of Δn · d R of the liquid crystal layer 11 of the red pixel is about The value of Δn · d G of the liquid crystal layer 11 of the green pixel is set to about 292.0 nm, and the value of Δn · d B of the liquid crystal layer 11 of the blue pixel is set to about 270.1 nm. The values of Δn · d R , Δn · d G , and Δn · d B for pixels of green, blue,
255 nm <Δn (550 nm) · d G <355 nm
−25 nm <Δn (650 nm) · d R −Δn (550 nm) · d G <+30 nm
−35 nm <Δn (450 nm) · d B −Δn (550 nm) · d G <+10 nm
In this way, the red, green, and blue colored light that has passed through the pixels of the red, green, and blue colors of the liquid crystal element 1 can be eliminated from the other colors. A black display voltage of the same value is applied between the electrodes 4 and 5 of each pixel of the liquid crystal element 1 to display a sufficiently dark black to display a color image with good hue and high contrast. it can.

また、上記実施例では、前側及び後側のディスコティック液晶フィルム14,15の光学軸をフィルム面に投影した面上光学軸14a,15aと、前側及び後側の二軸性位相板18,19の位相板面における屈折率が最も大きい方向に沿った遅相軸18a,19aをそれぞれ、ホモジニアス配向型液晶素子1の液晶分子配向方向と平行にしているが、これらは、±5°程度の平行度の差は許容される。   Moreover, in the said Example, the surface optical axes 14a and 15a which projected the optical axis of the front and back discotic liquid crystal films 14 and 15 on the film surface, and the front and back biaxial phase plates 18 and 19 The slow axes 18a and 19a along the direction in which the refractive index is the largest on the phase plate surface of each of the phase plate surfaces are parallel to the liquid crystal molecule alignment direction of the homogeneous alignment type liquid crystal element 1, but these are parallel at about ± 5 °. Differences in degrees are acceptable.

さらに、上記実施例では、前側二軸性位相板18の遅相軸18aに対する前側一軸性位相板16の遅相軸16aのずれ角φ1と、後側二軸性位相板19の遅相軸19aに対する後側一軸性位相板17の遅相軸17aのずれ角φ2とを、φ1=60°,φ2=−60°としているが、これらのずれ角φ1,φ2は、φ1=60°〜80°,φ2=−60°〜−80°の範囲であればよく、このようにすることにより、十分に広い観察方位及び観察角にわたって、コントラスト反転が無く、しかも高コントラストの表示を得ることができる。   Further, in the above embodiment, the shift angle φ1 of the slow axis 16a of the front uniaxial phase plate 16 with respect to the slow axis 18a of the front biaxial phase plate 18 and the slow axis 19a of the rear biaxial phase plate 19 are set. The shift angle φ2 of the slow axis 17a of the rear uniaxial phase plate 17 is set to φ1 = 60 ° and φ2 = −60 °, but these shift angles φ1 and φ2 are φ1 = 60 ° to 80 °. , Φ2 = −60 ° to −80 °, and in this way, there is no contrast inversion over a sufficiently wide viewing direction and viewing angle, and a high-contrast display can be obtained.

また、上記実施例では、前側偏光板12の外面側から見て左回りの角度を正の角度、右回りの角度を負の角度としているが、それと逆に、後側偏光板13の外面側から見て左回りの角度を正の角度、右回りの角度を負の角度としてもよく、その場合も、前側二軸性位相板18の遅相軸18aに対する前側一軸性位相板16の遅相軸16aのずれ角φ1と、後側二軸性位相板19の遅相軸19aに対する後側一軸性位相板17の遅相軸17aのずれ角φ2と、前記前側二軸性位相板18の遅相軸18aに対する前側偏光板12の吸収軸12aのずれ角θ1と、前記後側二軸性位相板19の遅相軸19aに対する後側偏光板13の吸収軸13aのずれ角θ2とを、
φ1=60°
φ2=−60°
θ1=135°+2φ1
θ2=135°+2φ2
の方向にすることにより、上記実施例を同じ効果を得ることができる。
In the above embodiment, the counterclockwise angle when viewed from the outer surface side of the front polarizing plate 12 is a positive angle and the clockwise angle is a negative angle, but conversely, the outer surface side of the rear polarizing plate 13. The counterclockwise angle may be a positive angle and the clockwise angle may be a negative angle. In this case as well, the slow phase of the front uniaxial phase plate 16 relative to the slow axis 18a of the front biaxial phase plate 18 may be used. The deviation angle φ1 of the shaft 16a, the deviation angle φ2 of the slow axis 17a of the rear uniaxial phase plate 17 with respect to the slow axis 19a of the rear biaxial phase plate 19, and the delay of the front biaxial phase plate 18 A deviation angle θ1 of the absorption axis 12a of the front polarizing plate 12 with respect to the phase axis 18a and a deviation angle θ2 of the absorption axis 13a of the rear polarizing plate 13 with respect to the slow axis 19a of the rear biaxial phase plate 19 are
φ1 = 60 °
φ2 = -60 °
θ1 = 135 ° + 2φ1
θ2 = 135 ° + 2φ2
The same effect as in the above embodiment can be obtained by setting the direction as described above.

さらに、上記実施例では、図1及び図2において上側を観察側としているが、それと逆に、図1及び図2において下側を観察側としてもよく、その場合も上記実施例を同じ効果を得ることができる。   Further, in the above embodiment, the upper side in FIGS. 1 and 2 is the observation side, but on the contrary, the lower side in FIGS. 1 and 2 may be the observation side. Obtainable.

1…ホモジニアス配向型液晶素子、2,3…基板、2a,3a…ラビング方向、4,5…電極、6…TFT、7R,7G,7B…カラーフィルタ、11…液晶層、11a…液晶分子、12,13…偏光板、12a,13a…吸収軸、14,15…ディスコティック液晶フィルム、14a,15a…面上光学軸、16,17…一軸性位相板、16a,17a…遅相軸、18,19…二軸性位相板、18a,19a…遅相軸。   DESCRIPTION OF SYMBOLS 1 ... Homogeneous alignment type liquid crystal element, 2, 3 ... Substrate, 2a, 3a ... Rubbing direction, 4, 5 ... Electrode, 6 ... TFT, 7R, 7G, 7B ... Color filter, 11 ... Liquid crystal layer, 11a ... Liquid crystal molecule, DESCRIPTION OF SYMBOLS 12, 13 ... Polarizing plate, 12a, 13a ... Absorption axis, 14, 15 ... Discotic liquid crystal film, 14a, 15a ... On-plane optical axis, 16, 17 ... Uniaxial phase plate, 16a, 17a ... Slow axis, 18 , 19 ... biaxial phase plate, 18a, 19a ... slow axis.

Claims (6)

分子長軸を一方向に揃えて液晶分子をホモジニアス配向させた非ツイストのホモジニアス配向液晶層を挟持する一対の基板の対向する面それぞれに、互いに対向する領域によりマトリックス状に配列する複数の画素を形成する電極が設けられ、前記電極間への電圧の印加により前記液晶層の液晶分子の基板面に対する立ち上がり角を制御して透過光の偏光状態を変化させるホモジニアス配向型液晶素子と、
前記ホモジニアス配向型液晶素子を挟持する第1及び第2のディスコティック液晶フィルムと、
前記第1及び第2のディスコティック液晶フィルムを挟持する、第1及び第2の二軸性位相板と、
前記第1及び第2の二軸性位相板を挟持する、第1及び第2の一軸性位相板と、
前記第1及び第2の一軸性位相板を挟持する、第1及び第2の偏光板と、
前記第1及び第2の偏光板のいずれか一方の外面側にある面光源と、
を備えたことを特徴とする液晶表示素子。
Homogeneous alignment liquid crystal layer of the non-twist aligned homogeneously the liquid crystal molecules align the molecular long axis in one direction to each opposite to that surface of the pair of substrates sandwiching a plurality of pixels arranged in a matrix by region facing each other A homogeneous alignment type liquid crystal element that changes the polarization state of transmitted light by controlling the rising angle of the liquid crystal molecules of the liquid crystal layer with respect to the substrate surface by applying a voltage between the electrodes; and
First and second discotic liquid crystal films sandwiching the homogeneous alignment type liquid crystal element ;
First and second biaxial phase plates sandwiching the first and second discotic liquid crystal films;
First and second uniaxial phase plates sandwiching the first and second biaxial phase plates;
First and second polarizing plates sandwiching the first and second uniaxial phase plates;
A surface light source on the outer surface side of one of the first and second polarizing plates;
A liquid crystal display element comprising:
前記第1及び第2の二軸性位相板の位相板面における屈折率が最も大きい方向に沿った遅相軸と、前記第1及び第2のディスコティック液晶フィルムの光学軸をフィルム面に投影した面上光学軸と、がそれぞれ隣接する前記ホモジニアス配向型液晶素子の液晶分子配向方向と平行であり、
記第1の二軸性位相板の遅相軸に対する前記第1の一軸性位相板の遅相軸のずれ角をφ1、前記第2の二軸性位相板の遅相軸に対する前記第2の一軸性位相板の遅相軸のずれ角をφ2、前記第1の二軸性位相板の遅相軸に対する前記第1の偏光板の吸収軸のずれ角をθ1、前記第2の二軸性位相板の遅相軸に対する前記第2の偏光板の吸収軸のずれ角をθ2とし、且つ、前記面光源と反対側にある前記第1と第2の偏光板のいずれか一方の外面側から見て左回りの角度を正の角度、右回りの角度を負の角度としたとき、
前記第1及び第2の一軸性位相板の遅相軸と前記第1及び第2の偏光板の吸収軸の方向が、
φ1=60°〜80°
φ2=−60°〜−80°
θ1=135°+2φ1
θ2=135°+2φ2
の方向に設定されていることを特徴とする請求項1に記載の液晶表示素子。
Projecting the slow axis along the direction in which the refractive index is largest on the phase plate surface of the first and second biaxial phase plates and the optical axis of the first and second discotic liquid crystal films onto the film surface And the surface optical axis is parallel to the liquid crystal molecule alignment direction of the adjacent homogeneous liquid crystal element,
The deviation angle of the slow axis of said first uniaxial phase plate to the previous SL slow axis of the first biaxial phase plate .phi.1, the second for the slow axis of the second biaxial phase plate The angle of deviation of the slow axis of the uniaxial phase plate is φ2, the angle of deviation of the absorption axis of the first polarizing plate with respect to the slow axis of the first biaxial phase plate is θ1, and the second biaxial The angle of deviation of the absorption axis of the second polarizing plate with respect to the slow axis of the phase-difference phase plate is θ2, and the outer surface side of one of the first and second polarizing plates on the side opposite to the surface light source When the counterclockwise angle is a positive angle and the clockwise angle is a negative angle,
The direction of the slow axis of the first and second uniaxial phase plates and the direction of the absorption axis of the first and second polarizing plates are:
φ1 = 60 ° -80 °
φ2 = -60 ° ~ -80 °
θ1 = 135 ° + 2φ1
θ2 = 135 ° + 2φ2
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is set in a direction.
前記第1と第2の一軸性位相板はそれぞれ250nm〜300nmの範囲の位相差を有しており、前記第1と第2の二軸性位相板はそれぞれ120nm〜150nmの範囲の面内位相差を有し、且つ、位相板面における屈折率が最も大きい方向をx軸、前記位相板面における前記x軸と直交する方向をy軸、前記位相板面に垂直な方向をz軸とし、前記x軸方向の屈折率をn、前記y軸方向の屈折率をn、前記z軸方向の屈折率をnとしたとき、
Nz=(n−n)/(n−n
の値が−0.5〜+0.3の範囲のNz係数を有していることを特徴とする請求項2に記載の液晶表示素子。
It said first and have a phase difference of ranges of the second uniaxial phase plate 250-300 nm, the range of the first and second biaxial phase plate respectively is 1 20 nm to 150 nm The direction having the in-plane phase difference and having the largest refractive index on the phase plate surface is the x axis, the direction perpendicular to the x axis on the phase plate surface is the y axis, and the direction perpendicular to the phase plate surface is z. as an axis, when the x-axis direction of the refractive index n x, the y-axis direction of the refractive index n y, the refractive index of the z-axis direction is n z,
Nz = (n x -n z) / (n x -n y)
3. The liquid crystal display element according to claim 2, having a Nz coefficient in a range of −0.5 to +0.3.
前記ホモジニアス配向型液晶素子の対向する前記一対の基板のいずれか一方の面に、複数の画素にそれぞれ対応する赤、緑、青の3色のカラーフィルタが設けられており、前記複数の画素のうち、赤色フィルタに対応する画素と、緑色フィルタに対応する画素と、青色フィルタに対応する画素の液晶の屈折率異方性Δnと液晶層厚dとの積Δn・dの値がそれぞれ、前記赤色フィルタに対応する画素の液晶層厚をd、前記緑色フィルタに対応する画素の液晶層厚をd、前記青色フィルタに対応する画素の液晶層厚をdとし、液晶の屈折率異方性Δnの650nm、550nm、450nmの各波長光に対する値をそれぞれΔn(650nm)、Δn(550nm)、Δn(450nm)としたとき、
255nm<Δn(550nm)・d<355nm
−25nm<Δn(650nm)・d−Δn(550nm)・d<+30nm
−35nm<Δn(450nm)・d−Δn(550nm)・d<+10nm
の範囲に設定されていることを特徴とする請求項1〜3のいずれかに記載の液晶表示素子。
On either side of the pair of substrates facing the homogeneous alignment liquid crystal element, red corresponding to a plurality of pixels, a green color filter of three colors of blue are provided, the plurality of pixels Among them, the value of the product Δn · d of the refractive index anisotropy Δn and the liquid crystal layer thickness d of the liquid crystal of the pixel corresponding to the red filter, the pixel corresponding to the green filter, and the pixel corresponding to the blue filter is the liquid crystal layer thickness of the pixel corresponding to the red filter d R, the liquid crystal layer thickness of d G of the pixels corresponding to the green filter, a liquid crystal layer thickness of the pixel corresponding to the blue filter and d B, the liquid crystal refractive index different When the values of the directivity Δn with respect to light of each wavelength of 650 nm, 550 nm, and 450 nm are Δn (650 nm), Δn (550 nm), and Δn (450 nm), respectively.
255 nm <Δn (550 nm) · d G <355 nm
−25 nm <Δn (650 nm) · d R −Δn (550 nm) · d G <+30 nm
−35 nm <Δn (450 nm) · d B −Δn (550 nm) · d G <+10 nm
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is set in a range of
前記第1及び第2のディスコティック液晶フィルムは、円板状のディスコティック液晶分子を、そのチルト方向を一方向に揃え、且つ一方の面から他方の面に向かって徐々にチルト角が大きくなるように配列させてポリマー化したものであり、液晶分子のチルト角が小さい一方のフィルム面側から液晶分子のチルト角が大きい他方のフィルム面側に向かって、前記チルト状態で配列したディスコティック液晶分子の分子軸、即ち円板状の分子面に対して垂直な軸の向きを平均した方向に斜めに傾いた傾斜光学軸を具備し、前記傾斜光学軸に沿った方向の屈折率が最も小さい、負の光学異方性を有していることを特徴とする請求項1〜4のいずれかに記載の液晶表示素子。In the first and second discotic liquid crystal films, disc-like discotic liquid crystal molecules are aligned in one direction and the tilt angle gradually increases from one surface to the other. The discotic liquid crystal is arranged in the tilted state from one film surface side where the tilt angle of liquid crystal molecules is small toward the other film surface side where the tilt angle of liquid crystal molecules is large. It has an inclined optical axis inclined obliquely in a direction averaged with respect to the molecular axis of the molecule, that is, the direction perpendicular to the disc-like molecular plane, and the refractive index in the direction along the inclined optical axis is the smallest The liquid crystal display element according to claim 1, which has negative optical anisotropy. 前記面光源側の前記偏光板と前記一軸性位相板と前記二軸性位相板とが一組となって広帯域の円偏光板として機能し、前記面光源とは反対側の前記偏光板と前記一軸性位相板と前記二軸性位相板とが一組となって広帯域の円偏光板として機能し、前記ホモジニアス配向型液晶素子は、1/2波長の位相差を与えるλ/2板の状態と位相差を与えない状態とを電圧で切り替える光学素子として機能することを特徴とする請求項1〜5のいずれかに記載の液晶表示素子。The polarizing plate on the surface light source side, the uniaxial phase plate, and the biaxial phase plate function as a wide band circular polarizing plate, and the polarizing plate on the side opposite to the surface light source and the The uniaxial phase plate and the biaxial phase plate function as a wide-band circularly polarizing plate, and the homogeneously aligned liquid crystal element is a λ / 2 plate that gives a half-wave phase difference The liquid crystal display element according to claim 1, wherein the liquid crystal display element functions as an optical element that switches between voltage and a state in which no phase difference is given.
JP2010029895A 2010-02-15 2010-02-15 Liquid crystal display element Expired - Fee Related JP4985798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010029895A JP4985798B2 (en) 2010-02-15 2010-02-15 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010029895A JP4985798B2 (en) 2010-02-15 2010-02-15 Liquid crystal display element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004004240A Division JP4496780B2 (en) 2004-01-09 2004-01-09 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2010156989A JP2010156989A (en) 2010-07-15
JP4985798B2 true JP4985798B2 (en) 2012-07-25

Family

ID=42574911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010029895A Expired - Fee Related JP4985798B2 (en) 2010-02-15 2010-02-15 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP4985798B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11212078A (en) * 1998-01-22 1999-08-06 Fuji Photo Film Co Ltd Liquid crystal display device
JPH11271759A (en) * 1998-03-23 1999-10-08 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP3807584B2 (en) * 1998-06-29 2006-08-09 シャープ株式会社 Liquid crystal display
JP3206743B2 (en) * 1998-12-25 2001-09-10 日本電気株式会社 Liquid crystal display
JP2000347188A (en) * 1999-06-07 2000-12-15 Matsushita Electric Ind Co Ltd Liquid crystal display device
JP3596756B2 (en) * 1999-08-06 2004-12-02 シャープ株式会社 Liquid crystal display
JP3763401B2 (en) * 2000-05-31 2006-04-05 シャープ株式会社 Liquid crystal display
JP2002072210A (en) * 2000-08-28 2002-03-12 Fuji Photo Film Co Ltd Liquid crystal display device
JP3544348B2 (en) * 2000-09-12 2004-07-21 シャープ株式会社 Liquid crystal display
JP2002116463A (en) * 2000-10-04 2002-04-19 Mitsubishi Electric Corp Liquid crystal display device
JP3969126B2 (en) * 2002-03-01 2007-09-05 カシオ計算機株式会社 Liquid crystal display element
JP2003279992A (en) * 2002-03-26 2003-10-02 Casio Comput Co Ltd Liquid crystal display element

Also Published As

Publication number Publication date
JP2010156989A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP4225279B2 (en) Liquid crystal display device and electronic device
US7864278B2 (en) Liquid crystal display device with a pair of discotic liquid crystal compensating films
JP4419959B2 (en) Liquid crystal display
JP5628611B2 (en) Liquid crystal display
JP4687507B2 (en) Liquid crystal display element
JP4441971B2 (en) Liquid crystal display element
US7295271B2 (en) Liquid crystal display device and multilayer phase plate
JP2005292709A (en) Liquid crystal display element
JP2006030688A (en) Liquid crystal display
JP2012242678A (en) Liquid crystal device and electronic apparatus
TWI610096B (en) Liquid crystal display device and head-up display device
JP5254477B2 (en) Liquid crystal display
JP4496780B2 (en) Liquid crystal display element
JP4894319B2 (en) Liquid crystal display element
KR20080059832A (en) Display apparatus
JP2014016642A (en) Liquid crystal display device
JP4366985B2 (en) Liquid crystal display
JP4985798B2 (en) Liquid crystal display element
KR101138262B1 (en) Transflective LCD
KR20140078382A (en) Liquid Crystal Display Device
US20050140901A1 (en) Fringe field switching liquid crystal display
KR101948827B1 (en) Transparent Liquid Crystal Display Device
JP2011112952A (en) Liquid crystal display element and optical compensation method thereof
KR102509173B1 (en) Polarizing plate including optical compensation film and liquid crystal display device having thereof
CN110908169B (en) Liquid crystal display panel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4985798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees