JP2006285220A - Liquid crystal display device - Google Patents

Liquid crystal display device Download PDF

Info

Publication number
JP2006285220A
JP2006285220A JP2006058922A JP2006058922A JP2006285220A JP 2006285220 A JP2006285220 A JP 2006285220A JP 2006058922 A JP2006058922 A JP 2006058922A JP 2006058922 A JP2006058922 A JP 2006058922A JP 2006285220 A JP2006285220 A JP 2006285220A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
alignment
polarizing plate
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006058922A
Other languages
Japanese (ja)
Other versions
JP4687507B2 (en
Inventor
Hiromoto Sato
弘基 佐藤
Kunpei Kobayashi
君平 小林
Mamoru Yoshida
守 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006058922A priority Critical patent/JP4687507B2/en
Publication of JP2006285220A publication Critical patent/JP2006285220A/en
Application granted granted Critical
Publication of JP4687507B2 publication Critical patent/JP4687507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display device which can obtain normally white display with a good quality which has sufficiently high contrast and has no tone reversal in an intermediate tone. <P>SOLUTION: Liquid crystal molecules are twist-aligned over an angle range of 90°±5°from one substrate toward the other substrate and encapsulated between the substrates to form a twisted nematic type liquid crystal cell 1. A front polarizing plate 2 is provided on a front side outer surface to be on a display viewer side of the liquid crystal cell 1 so that its transmission axis 2a may be positioned in a direction crossing an alignment treatment direction 16a of a lateral aligning film of the front side substrate at an angle of +45°±5° and a rear polarizing plate 3 is provided on the rear side outer surface of the liquid crystal cell 1 so that its transmission axis 3a may be positioned in a direction crossing the alignment treatment direction 16a of the lateral aligning film of the front side substrate at an angle of -45°±5°. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、液晶分子が略90°の角度でツイスト配向した液晶層を有する液晶表示素子に関する。   The present invention relates to a liquid crystal display element having a liquid crystal layer in which liquid crystal molecules are twist-aligned at an angle of about 90 °.

従来、一対の基板間に挟持された液晶層の液晶分子が一方の基板から他方の基板に向けてツイスト配向しているツイステッドネマチック型液晶表示素子が知られている。液晶分子を略90°の角度でツイスト配向させたTN型液晶表示素子は、特許文献1に示されるように、ツイステッドネマチック液晶層を備える液晶セルの表示の観察側となる前側とその反対側の後側に偏光板がそれぞれ設置されている。   Conventionally, a twisted nematic type liquid crystal display element in which liquid crystal molecules of a liquid crystal layer sandwiched between a pair of substrates is twist-oriented from one substrate to the other substrate is known. As shown in Patent Document 1, a TN liquid crystal display element in which liquid crystal molecules are twist-aligned at an angle of approximately 90 ° includes a front side serving as an observation side of a liquid crystal cell including a twisted nematic liquid crystal layer and a side opposite thereto. Polarizers are respectively installed on the rear side.

それら一対の偏光板は、それぞれの透過軸又は吸収軸の何れか一方の光学軸を前記液晶セルのそれぞれの基板の配向膜に施されている配向処理方向に対して平行又は直交する方向に位置させるとともに、ぞれぞれの偏光板の光学軸を互いに平行若しくは直交させて配置する。それぞれの偏光板の前記光学軸を互いに平行に配置した液晶表示素子は、液晶層に実質的に電界が印加されない状態(ノーマーリー状態)で光の透過が実質的に遮断された暗表示が得られる(ノーマリーブラック表示)。また、それぞれの偏光板の前記光学軸を互いに直交させて配置した液晶表示素子は、ノーマーリー状態で光透過が最大になる明表示(ノーマリーホワイト表示)が得られる。   The pair of polarizing plates is positioned in a direction parallel or perpendicular to the alignment treatment direction applied to the alignment film of each substrate of the liquid crystal cell, with the optical axis of either the transmission axis or the absorption axis. In addition, the optical axes of the respective polarizing plates are arranged parallel or orthogonal to each other. The liquid crystal display element in which the optical axes of the respective polarizing plates are arranged in parallel to each other provides a dark display in which light transmission is substantially blocked in a state where no electric field is applied to the liquid crystal layer (normally state). (Normally black display). In addition, a liquid crystal display element in which the optical axes of the respective polarizing plates are arranged so as to be orthogonal to each other can provide a bright display (normally white display) in which light transmission is maximized in a normally state.

ノーマリーホワイト表示においては、液晶層に充分に強い電界を印加して液晶分子を基板垂直方向に立ち上がらせ、ツイスト配向状態を解除することによって、暗表示が得られる。
特開平6−88962号公報
In normally white display, a dark display can be obtained by applying a sufficiently strong electric field to the liquid crystal layer to raise the liquid crystal molecules in the vertical direction of the substrate and releasing the twist alignment state.
Japanese Patent Laid-Open No. 6-88962

しかし、前記ノーマリーホワイト表示では、各基板の液晶に接する内面に液晶分子の配向を規制するために設けられている配向膜の近傍において、液晶分子が配向膜に施された配向処理による配向規制力を強く受けているためにその液晶分子の挙動が抑制される所謂アンカリング効果により、上述した電界印加時(オン時)における、コントラストの低下や中間階調における階調反転等を引き起こし、表示品質の低下を招く。   However, in the normally white display, in the vicinity of the alignment film provided to regulate the alignment of the liquid crystal molecules on the inner surface of each substrate in contact with the liquid crystal, the alignment is controlled by the alignment process in which the liquid crystal molecules are applied to the alignment film. Due to the so-called anchoring effect that suppresses the behavior of the liquid crystal molecules due to the strong force, the above-mentioned electric field application (on time) causes a decrease in contrast and gradation inversion in the intermediate gradation, and so on. Incurs quality degradation.

本発明の目的は、コントラストが充分に高く中間階調における階調反転の無い良好な品質のノーマリーホワイト表示を得ることができる液晶表示素子を提供することである。   An object of the present invention is to provide a liquid crystal display element capable of obtaining a normally white display of good quality with sufficiently high contrast and no gradation inversion at intermediate gradations.

本発明の第1の観点による液晶表示素子は、少なくとも1つの電極が形成された第1の基板と、前記第1の基板の前記電極が形成された面に対向して配置され、前記第1の基板と対向する面に、前記電極と対向する少なくとも1つの電極が形成された第2の基板と、前記第1の基板の前記電極が形成された内面に、予め定めた第1の方向に配向処理が施された第1の配向膜と、前記第2の基板の前記電極が形成された内面に、前記第1の方向に対して実質的に90゜の角度で交差する第2の方向に配向処理が施された第2の配向膜と、前記第1の基板の前記第1の配向膜と、前記第2の基板の第2の配向膜との間に挟持され、前記第1、第2の電極間に電界が印加されないときに、液晶分子が前記第1の配向膜から前記第2の配向膜に向かって予め定めた方向にツイスト配向し、透過光に対して実質的にλ/2のリタデーションを生じさせる液晶層と、互いに対向配置された前記第1、第2の基板の前記第1の基板より外側に配置され、前記第1、第2の電極間に十分強い電界が印加されたときに、前記第1の配向膜近傍の液晶分子が配列する第3の方向に透過軸又は吸収軸のいずれか一方の光学軸を実質的に一致させて配置した第1の偏光板と、互いに対向配置された前記第1、第2の基板の前記第2の基板より外側に配置され、前記第1の偏光板の光学軸に透過軸又は吸収軸のいずれか一方の光学軸を実質的に直交させて配置した第2の偏光板とを備えることを特徴とするものである。   A liquid crystal display element according to a first aspect of the present invention is disposed so as to face a first substrate on which at least one electrode is formed, and a surface of the first substrate on which the electrode is formed. A second substrate having at least one electrode opposed to the electrode formed on a surface opposed to the substrate, and an inner surface formed with the electrode formed on the first substrate in a predetermined first direction. A second direction intersecting the first alignment film subjected to the alignment treatment and the inner surface of the second substrate on which the electrodes are formed at an angle of substantially 90 ° with respect to the first direction. Sandwiched between a second alignment film subjected to an alignment treatment, the first alignment film of the first substrate, and the second alignment film of the second substrate, When no electric field is applied between the second electrodes, the liquid crystal molecules are directed from the first alignment film to the second alignment film. A liquid crystal layer that is twist-aligned in a predetermined direction and generates a retardation of substantially λ / 2 with respect to transmitted light, and the first and second substrates disposed opposite to each other, outside the first substrate When a sufficiently strong electric field is applied between the first and second electrodes, either the transmission axis or the absorption axis in the third direction in which the liquid crystal molecules in the vicinity of the first alignment film are aligned The first polarizing plate is disposed outside the second substrate of the first and second substrates disposed opposite to each other, with the first polarizing plate disposed substantially coincident with one of the optical axes. And a second polarizing plate arranged so that either the transmission axis or the absorption axis is substantially orthogonal to the optical axis of the plate.

本発明の第2の観点による液晶表示素子は、少なくとも1つの電極が形成された第1の基板と、前記第1の基板の前記電極が形成された面に対向して配置され、前記第1の基板と対向する面に、前記電極と対向する少なくとも1つの電極が形成された第2の基板と、前記第1の基板の前記電極が形成された内面に、観察側から見て左右方向の水平線に対して実質的に45゜で傾斜した第1の方向に配向処理が施された第1の配向膜と、前記第2の基板の前記電極が形成された内面に、前記第1の方向に対して実質的に90゜で交差する第2の方向に配向処理が施された第2の配向膜と、前記第1の基板の前記第1の配向膜と、前記第2の基板の第2の配向膜との間に挟持され、前記第1、第2の電極間に電界が印加されないときに、液晶分子が前記第1の配向膜から前記第2の配向膜に向かって実質的に90゜でツイスト配向し、透過光に対して実質的にλ/2のリタデーションを生じさせる液晶層と、前記第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸をそれぞれ隣接する基板の配向膜に施された配向膜処理の方向に実質的に平行にして配置されたディスコティック液晶層からなる一対の視野角補償フィルムと、互いに対向配置された前記第1、第2の基板の前記第1の基板より外側に配置され、前記第1、第2の電極間に十分強い電界が印加されたときに、前記第1の配向膜近傍の液晶分子が配列する第3の方向に透過軸又は吸収軸のいずれか一方の光学軸を実質的に一致させて配置した第1の偏光板と、互いに対向配置された前記第1、第2の基板の前記第2の基板より外側に配置され、前記第1の偏光板の光学軸に透過軸又は吸収軸のいずれか一方の光学軸を実質的に直交させて配置した第2の偏光板とを備えることを特徴とするものである。   A liquid crystal display element according to a second aspect of the present invention is disposed so as to face a first substrate on which at least one electrode is formed and a surface of the first substrate on which the electrode is formed. A second substrate in which at least one electrode facing the electrode is formed on a surface facing the substrate, and an inner surface of the first substrate on which the electrode is formed in the left-right direction as viewed from the observation side. The first direction is formed on the inner surface of the second substrate on which the electrodes are formed, and the first alignment film is aligned in a first direction substantially inclined at 45 ° with respect to a horizontal line. , A second alignment film that has been subjected to an alignment process in a second direction substantially intersecting at 90 °, the first alignment film of the first substrate, and the second alignment film of the second substrate. Liquid crystal molecules when sandwiched between two alignment films and no electric field is applied between the first and second electrodes. A liquid crystal layer that is twist-aligned substantially at 90 ° from the first alignment film toward the second alignment film to generate a retardation of λ / 2 with respect to transmitted light; Direction of alignment film treatment applied to the alignment film of the adjacent substrate between the polarizing plate and the first substrate, and between the second polarizing plate and the second substrate, respectively. A pair of viewing angle compensation films composed of a discotic liquid crystal layer disposed substantially parallel to the first substrate and the first and second substrates disposed opposite to each other, and disposed outside the first substrate, When a sufficiently strong electric field is applied between the first and second electrodes, the optical axis of either the transmission axis or the absorption axis is set in the third direction in which the liquid crystal molecules in the vicinity of the first alignment film are aligned. Opposing each other with the first polarizing plate arranged substantially coincident The first and second substrates are disposed outside the second substrate, and the optical axis of either the transmission axis or the absorption axis is substantially orthogonal to the optical axis of the first polarizing plate. And a second polarizing plate arranged in such a manner.

さらに、本発明の第3の観点による液晶表示素子は、少なくとも1つの電極が形成された第1の基板と、前記第1の基板の前記電極が形成された面に対向して配置され、前記第1の基板と対向する面に、前記電極と対向する少なくとも1つの電極が形成された第2の基板と、前記第1の基板の前記電極が形成された内面に、観察側から見て左右方向の水平線に対して実質的に45゜で傾斜した第1の方向に配向処理が施された第1の配向膜と、前記第2の基板の前記電極が形成された内面に、前記第1の方向に対して実質的に90゜で交差する第2の方向に配向処理が施された第2の配向膜と、前記第1の基板の前記第1の配向膜と、前記第2の基板の第2の配向膜との間に挟持され、前記第1、第2の電極間に電界が印加されないときに、液晶分子が前記第1の配向膜から前記第2の配向膜に向かって予め定めた方向に実質的に90゜でツイスト配向し、透過光に対して実質的にλ/2のリタデーションを生じさせる液晶層と、前記第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸をそれぞれ隣接する基板の配向膜に施された配向膜処理の方向に実質的に平行にして配置されたディスコティック液晶層からなる一対の視野角補償フィルムと、前記第1の偏光板とこれに隣接する視野角補償フィルムの間、及び前記第2の偏光板とこれに隣接する視野角補償フィルムの間それぞれに、進相軸又は遅相軸の何れか一方の光学軸をそれぞれ隣接する視野角補償フィルムの光学軸の方向と実質的に平行にして配置された一対の位相差板と、互いに対向配置された前記第1、第2の基板の前記第1の基板より外側に配置され、前記第1、第2の電極間に十分強い電界が印加されたときに、前記第1の配向膜近傍の液晶分子が配列する第3の方向に透過軸又は吸収軸のいずれか一方の光学軸を実質的に一致させて配置した第1の偏光板と、互いに対向配置された前記第1、第2の基板の前記第2の基板より外側に配置され、前記第1の偏光板の光学軸に透過軸又は吸収軸のいずれか一方の光学軸を実質的に直交させて配置した第2の偏光板とを備えることを特徴とするものである。   Furthermore, a liquid crystal display element according to a third aspect of the present invention is disposed so as to face a first substrate on which at least one electrode is formed and a surface of the first substrate on which the electrode is formed, A second substrate in which at least one electrode facing the electrode is formed on a surface facing the first substrate, and an inner surface of the first substrate on which the electrode is formed are left and right as viewed from the observation side. A first alignment film having been subjected to an alignment treatment in a first direction substantially inclined at 45 ° with respect to a horizontal line of the direction, and an inner surface on which the electrode of the second substrate is formed; A second alignment film subjected to an alignment process in a second direction substantially intersecting at 90 ° with respect to the first direction, the first alignment film of the first substrate, and the second substrate When the electric field is not applied between the first and second electrodes. The crystal molecules are twist-oriented substantially at 90 ° in a predetermined direction from the first alignment film toward the second alignment film, and a retardation of substantially λ / 2 is generated with respect to the transmitted light. Align the optical axes of the liquid crystal layer, the first polarizing plate and the first substrate, and the second polarizing plate and the second substrate, respectively. A pair of viewing angle compensation films composed of a discotic liquid crystal layer disposed substantially parallel to the direction of the applied alignment film treatment, and between the first polarizing plate and the viewing angle compensation film adjacent thereto, And between the second polarizing plate and the viewing angle compensation film adjacent thereto, the optical axis of either the fast axis or the slow axis is substantially the same as the direction of the optical axis of the adjacent viewing angle compensation film. Pair of phases arranged in parallel When a sufficiently strong electric field is applied between the first and second electrodes, the difference plate and the first and second substrates disposed opposite to each other are disposed outside the first substrate. The first polarizing plate arranged with the optical axis of either the transmission axis or the absorption axis substantially coincided with the third direction in which the liquid crystal molecules in the vicinity of the first alignment film are arranged is arranged opposite to each other. The first and second substrates are arranged outside the second substrate, and arranged such that either the transmission axis or the absorption axis is substantially orthogonal to the optical axis of the first polarizing plate. The second polarizing plate is provided.

本発明の液晶表示素子によれば、液晶層に充分に高い電界を印加したオン時において配向膜近傍の液晶分子が配列する第3の方向に、その配向膜が設けられた基板の外面に設置した偏光板の光学軸を一致させたから、オン時において液晶層に入射する直線偏光が前記配向膜近傍の液晶分子の配列による複屈折性の影響を受けることなく液晶層を透過し、対向基板側の光学軸を直交させて配置されているもう一方の偏光板により確実に吸収される。その結果、充分に暗い暗表示が得られるためにコントラストが高く且つ中間階調における階調の反転が発生しない良好な品質のノーマリーホワイト表示を安定して得ることができる。   According to the liquid crystal display element of the present invention, the liquid crystal layer is placed on the outer surface of the substrate on which the alignment film is provided in the third direction in which the liquid crystal molecules in the vicinity of the alignment film are aligned when a sufficiently high electric field is applied. Since the optical axes of the polarizing plates are aligned, the linearly polarized light incident on the liquid crystal layer when on is transmitted through the liquid crystal layer without being affected by the birefringence due to the alignment of the liquid crystal molecules in the vicinity of the alignment film, and the opposite substrate side Is absorbed by the other polarizing plate arranged with the optical axes orthogonal to each other. As a result, a sufficiently dark dark display can be obtained, so that a normally white display of good quality with high contrast and no inversion of intermediate gradation can be stably obtained.

本発明の第1の観点による液晶表示素子においては、第1の偏光板を、液晶層の液晶分子が第1の配向膜から第2の配向膜に向かってツイスト配向するツイスト角度範囲の中間の角度の方向である第3の方向に、その光学軸を一致させて配置することが好ましい。
すなわち、前記第1の偏光板は、前記第1の配向膜の配向処理方向と前記第2の配向膜の配向処理方向とが成す角度の実質的に1/2の角度だけ、前記第1、第2の配向膜の一方の配向処理方向方から他方に向かって回転した第3の方向に、光学軸を一致させて配置される。また、前記第2配向膜は、前記第1の配向膜の配向処理方向である第1の方向に対して実質的に90で交差する第2の方向に配向処理が施され、前記液晶層は、その液晶分子が前記第1の配向膜から前記第2の配向膜に向かって90゜の角度でツイスト配向していることが好ましい。その場合、前記第1、第2の基板は、観察側から見て左右方向に延びる上下の辺と、上下方向に延びる左右の辺とを有するそれぞれ矩形の基板からなり、前記第1、第2の配向膜は、前記矩形基板の上下の辺に平行な水平軸に対してそれぞれほぼ45゜の方向に配向処理が施され、前記第1の偏光板は、その透過軸を前記水平軸と直行する方向に向けて配置され、前記第2の偏光板は、その透過軸を前記水平軸と平行にして配置されていることが望ましく、また、前記液晶層の透過する光に対する屈折率異方性をΔnとし、その光が透過する液晶層の層厚をdとしたとき、それらの積Δn・dが、380nm〜480nmの範囲に設定されることが好ましい。これにより、高コントラストで中間階調における階調の反転の発生が確実に防止された表示品質の高いツイステッドネマチック型の液晶表示素子が得られる。さらにまた、前記第1、第2の基板の各電極が対向する画素部毎に互いに異なる波長光を選択透過させる複数色のカラーフィルタがそれぞれ配設され、異なる色のカラーフィルタに対応する画素部毎に液晶層厚をそれぞれ異なる値に設定することが望ましく、これにより、色再現性に優れた良好なカラー表示品質を得ることができる。
In the liquid crystal display element according to the first aspect of the present invention, the first polarizing plate is placed in the middle of the twist angle range in which the liquid crystal molecules of the liquid crystal layer are twist-aligned from the first alignment film toward the second alignment film. It is preferable to arrange the optical axis in the third direction which is the direction of the angle.
That is, the first polarizing plate has the first, the first, and the second alignment film formed by an angle that is substantially ½ of an angle formed by the alignment process direction of the first alignment film and the alignment process direction of the second alignment film. The second alignment film is disposed with its optical axis aligned with a third direction rotated from one alignment processing direction to the other. The second alignment film is subjected to an alignment process in a second direction substantially intersecting with the first direction which is an alignment process direction of the first alignment film at 90, and the liquid crystal layer is The liquid crystal molecules are preferably twist-oriented at an angle of 90 ° from the first alignment film toward the second alignment film. In this case, each of the first and second substrates is formed of a rectangular substrate having upper and lower sides extending in the left-right direction and left and right sides extending in the up-down direction when viewed from the observation side. The alignment film is subjected to an alignment process in a direction of approximately 45 ° with respect to a horizontal axis parallel to the upper and lower sides of the rectangular substrate, and the first polarizing plate has its transmission axis perpendicular to the horizontal axis. The second polarizing plate is preferably arranged with its transmission axis parallel to the horizontal axis, and refractive index anisotropy with respect to light transmitted through the liquid crystal layer. Is Δn and the thickness of the liquid crystal layer through which the light is transmitted is d, the product Δn · d is preferably set in the range of 380 nm to 480 nm. As a result, a twisted nematic liquid crystal display element having high display quality and high display quality in which the occurrence of gradation inversion in the intermediate gradation is surely prevented can be obtained. Furthermore, a plurality of color filters for selectively transmitting different wavelength lights are provided for each pixel unit facing each electrode of the first and second substrates, and the pixel unit corresponding to the color filter of different color. It is desirable to set the liquid crystal layer thickness to a different value for each time, and this makes it possible to obtain good color display quality with excellent color reproducibility.

また、本発明の第1の観点による液晶表示素子においては、前記第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸を前記第3の方向と平行にかつ互いに逆向きに向けて配置された、ディスコティック液晶層からなる一対の視野角補償フィルムをさらに備える構成とすることが好ましい。これにより、高いコントラストと中間階調における階調反転の抑制効果が得られるとともに覗き見を防止するための視野角制限効果が得られる。   In the liquid crystal display element according to the first aspect of the present invention, each between the first polarizing plate and the first substrate, and between the second polarizing plate and the second substrate, respectively. It is preferable to further include a pair of viewing angle compensation films made of a discotic liquid crystal layer, the optical axes of which are arranged parallel to the third direction and opposite to each other. Thereby, a high contrast and an effect of suppressing gradation reversal in the intermediate gradation are obtained, and a viewing angle limiting effect for preventing peeping is obtained.

さらに、前記第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸をそれぞれ隣接する基板の配向膜に施された配向膜処理の方向に実質的に平行にして配置されたディスコティック液晶層からなる一対の視野角補償フィルムをさらに備えることが好ましい。この場合、液晶層の透過する光に対する屈折率異方性Δnと層厚dとの積Δn・dが、450nm〜550nmであることがより好ましく、これにより、高いコントラストと中間階調における階調反転の抑制効果が得られるとともに広い視野角が得られる。   Further, the optical axes of the first polarizing plate and the first substrate and between the second polarizing plate and the second substrate are respectively applied to the alignment films of the adjacent substrates. It is preferable to further include a pair of viewing angle compensation films made of a discotic liquid crystal layer arranged substantially parallel to the direction of the alignment film treatment. In this case, the product Δn · d of the refractive index anisotropy Δn with respect to the light transmitted through the liquid crystal layer and the layer thickness d is more preferably 450 nm to 550 nm. A reversal suppression effect is obtained and a wide viewing angle is obtained.

また、上述のように一対の視野角補償フィルムを配置した場合、前記第1の偏光板とこれに隣接する視野角補償フィルムの間、及び前記第2の偏光板とこれに隣接する視野角補償フィルムの間それぞれに、進相軸又は遅相軸の何れか一方の光学軸をそれぞれ隣接する視野角補償フィルムの光学軸の方向と実質的に平行にして配置された一対の位相差板をさらに備える構成とすることが好ましい。この場合、前記液晶層の屈折率異方性Δnとその光が透過する液晶層の層厚dの積Δn・dが、350nm〜450nmの範囲に設定され、且つ、前記一対の位相差板のリタデーションReが、15nm〜55nmの範囲に設定されていることがより好ましく、また、前記第1、第2の基板は、それぞれ矩形の基板からなり、前記第1、第2の配向膜は、前記矩形基板の一辺に対してほぼ45゜の方向に配向処理が施されていることがより好ましい。このように一対の位相差板を配置することにより、所望の高いコントラストと中間階調における階調反転の抑制効果が得られるとともにさらに視野角の広い良好な表示品質が得られる。   Further, when a pair of viewing angle compensation films are arranged as described above, the first polarizing plate and the viewing angle compensation film adjacent thereto, and the second polarizing plate and the viewing angle compensation adjacent thereto are provided. A pair of retardation plates disposed between the films so that either the optical axis of the fast axis or the slow axis is substantially parallel to the direction of the optical axis of the adjacent viewing angle compensation film, respectively. It is preferable to provide a configuration. In this case, the product Δn · d of the refractive index anisotropy Δn of the liquid crystal layer and the layer thickness d of the liquid crystal layer through which the light is transmitted is set in a range of 350 nm to 450 nm, and the pair of retardation plates It is more preferable that the retardation Re is set in a range of 15 nm to 55 nm, and the first and second substrates are each formed of a rectangular substrate, and the first and second alignment films are More preferably, the orientation treatment is performed in a direction of approximately 45 ° with respect to one side of the rectangular substrate. By arranging the pair of retardation plates in this way, desired high contrast and gradation reversal suppression effect at intermediate gradation can be obtained, and a good display quality with a wider viewing angle can be obtained.

本発明の第2の観点による液晶表示素子のように、第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸をそれぞれ隣接する基板の配向膜に施された配向膜処理の方向に実質的に平行にして配置されたディスコティック液晶層を備える液晶表示素子の場合にも、前記第1の偏光板は、前記第1の配向膜の配向処理方向と前記第2の配向膜の配向処理方向とが成す角度の実質的に1/2の角度だけ、前記第1、第2の配向膜の配向処理方向の一方から他方に向かって回転した第3の方向に、光学軸を一致させて配置することが好ましく、また、前記液晶層の透過する光に対する屈折率異方性Δnとその光が透過する液晶層の層厚dの積Δn・dを、450nm〜550nmの範囲に設定することが望ましく、さらに、前記第1、第2の基板は、観察側から見て左右方向に延びる上下の辺と、上下方向に延びる左右の辺とを有するそれぞれ矩形の基板からなり、前記第1、第2の配向膜は、前記矩形基板の上下の辺に平行な水平軸に対してそれぞれほぼ45゜の方向に配向処理が施されていることが望ましい。これにより、所望の高コントラストと中間階調における階調反転の抑制効果が得られるとともに視野角が更に広げられた極めて良好な表示品質が得られる。   As in the liquid crystal display element according to the second aspect of the present invention, each optical element is provided between the first polarizing plate and the first substrate, and between the second polarizing plate and the second substrate. Also in the case of a liquid crystal display element having a discotic liquid crystal layer arranged so that its axis is substantially parallel to the direction of the alignment film treatment applied to the alignment film of the adjacent substrate, the first polarizing plate is The alignment treatment direction of the first and second alignment films is substantially ½ of the angle formed by the alignment treatment direction of the first alignment film and the alignment treatment direction of the second alignment film. It is preferable to arrange the optical axes in the third direction rotated from one side to the other side, and the refractive index anisotropy Δn with respect to the light transmitted through the liquid crystal layer and the liquid crystal layer through which the light is transmitted The product Δn · d of the layer thickness d is set in the range of 450 nm to 550 nm. Preferably, the first and second substrates are each formed of a rectangular substrate having upper and lower sides extending in the left-right direction and left and right sides extending in the up-down direction when viewed from the observation side. The second alignment film is preferably subjected to an alignment process in a direction of approximately 45 ° with respect to a horizontal axis parallel to the upper and lower sides of the rectangular substrate. As a result, the desired high contrast and the effect of suppressing gradation inversion in the intermediate gradation can be obtained, and an extremely good display quality with a wider viewing angle can be obtained.

本発明の第3の観点による液晶表示素子のように、前記第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸をそれぞれ隣接する基板の配向膜に施された配向膜処理の方向に実質的に平行にして配置されたディスコティック液晶層からなる一対の視野角補償フィルムと、前記第1の偏光板とこれに隣接する視野角補償フィルムの間、及び前記第2の偏光板とこれに隣接する視野角補償フィルムの間それぞれに、進相軸又は遅相軸の何れか一方の光学軸をそれぞれ隣接する視野角補償フィルムの光学軸の方向と実質的に平行にして配置された一対の位相差板とを備えた液晶表示素子においては、前記第1、第2の基板は、それぞれ矩形の基板によって構成し、前記第1、第2の配向膜は、前記矩形基板の一辺に対してほぼ45゜の方向に配向処理が施され、前記液晶層の屈折率異方性をΔnとし、その光が透過する液晶層の層厚をdとした場合に、それらの積Δn・dが、350nm〜450nmの範囲に設定され、且つ、前記一対の位相差板のリタデーションReを15nm〜55nmに設定するのが望ましい。また、前記第1、第2の基板の各電極が対向する画素部毎に互いに異なる波長光を選択透過させる複数色のカラーフィルタがそれぞれ配設され、異なる色のカラーフィルタに対応する画素部毎に液晶層厚をそれぞれ異なる値に設定することが好ましく、これにより、所望の高度なコントラストと中間階調における階調反転の抑制効果及び視野角特性を備えるとともに、色再現性に優れた良好なカラー表示品質を得ることができる。   As in the liquid crystal display element according to the third aspect of the present invention, each between the first polarizing plate and the first substrate and between the second polarizing plate and the second substrate. A pair of viewing angle compensation films composed of a discotic liquid crystal layer disposed so as to be substantially parallel to the direction of alignment film treatment applied to the alignment film of the adjacent substrate, and the first polarizing plate; Either the fast axis or the slow axis is adjacent between the adjacent viewing angle compensation film and between the second polarizing plate and the adjacent viewing angle compensation film. In a liquid crystal display device comprising a pair of retardation plates arranged substantially parallel to the direction of the optical axis of the viewing angle compensation film, the first and second substrates are each constituted by a rectangular substrate. The first and second alignment films are When the orientation treatment is performed in a direction of approximately 45 ° with respect to one side of the rectangular substrate, the refractive index anisotropy of the liquid crystal layer is Δn, and the layer thickness of the liquid crystal layer through which the light is transmitted is d, It is desirable that the product Δn · d is set in the range of 350 nm to 450 nm and the retardation Re of the pair of retardation plates is set in the range of 15 nm to 55 nm. In addition, a plurality of color filters for selectively transmitting light of different wavelengths are provided for each pixel unit facing each electrode of the first and second substrates, and each pixel unit corresponding to a different color filter. It is preferable to set the liquid crystal layer thicknesses to different values, thereby providing a desired high contrast, a tone reversal suppressing effect and a viewing angle characteristic in the intermediate gradation, and excellent color reproducibility. Color display quality can be obtained.

(第1実施形態)
図1は本発明の第1実施形態としての液晶表示素子の光学構成を示す分解平面図で、図2はその内部構成を拡大して示す模式的断面図である。
(First embodiment)
FIG. 1 is an exploded plan view showing an optical configuration of a liquid crystal display device as a first embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view showing an enlarged internal configuration thereof.

本実施形態の液晶表示素子は、アクティブマトリクス方式の液晶表示素子であり、図1に示されるように、観察側から見て、液晶表示素子の左右方向の水平軸1hと平行な辺1aとこの水平軸1hと直行する上下方向と平行な辺とを有する平面外形が矩形をなす液晶セル1と、これを挟んで表示の観察側となる前側とその後側にそれぞれ設置された同じく矩形の前、後偏光板2、3とからなる。   The liquid crystal display element of the present embodiment is an active matrix type liquid crystal display element. As shown in FIG. 1, the side 1a parallel to the horizontal axis 1h in the horizontal direction of the liquid crystal display element as viewed from the observation side A liquid crystal cell 1 having a rectangular planar outer shape having a side parallel to the vertical direction perpendicular to the horizontal axis 1h, and the front of the same rectangle installed on the front side and the rear side on the display side across this, It consists of rear polarizing plates 2 and 3.

液晶セル1は、図2に示されるように、一対の前、後ガラス基板11、12が、枠状シール材(不図示)により所定の間隙を保って接合されている。接合された一対のガラス基板11、12のうちの一方の前ガラス基板11の対向面(内面)には、それぞれの画素領域に対応する開口13aが形成されたブラックマスク13が設置されている。   In the liquid crystal cell 1, as shown in FIG. 2, a pair of front and rear glass substrates 11 and 12 are joined together with a frame-shaped sealing material (not shown) with a predetermined gap. On the opposing surface (inner surface) of one of the pair of glass substrates 11 and 12 that are bonded, a black mask 13 having openings 13a corresponding to the respective pixel regions is provided.

前ガラス基板11の前記後ガラス基板12に対向する面には、前記ブラックマスク13の各開口13aに対応させて、赤、緑、青の3種類のカラーフィルタ14R、14G、14Bが所定の配置でそれぞれ設置されている。これらの各カラーフィルタ14R、14G、14Bは、各開口13aよりも全周にわたり適長幅だけ大きい面積を備えており、周縁部をブラックマスク13の開口縁部に重畳させて設置されている。そして、カラーフィルタ14R、14G、14Bの各厚さは、各色カラーフィルタ14R、14G、14Bの配置されたそれぞれの画素領域における液晶層厚(セルギャップ)dr、dg、dbを、この液晶層の各透過波長光毎の屈折率異方性と層厚dr、dg、dbとの積の値が実質的に一致するように、各色フィルタ14R、14G、14B毎に最適に設定されている。この液晶層厚の最適化については、後程詳細に説明する。   On the surface of the front glass substrate 11 facing the rear glass substrate 12, three kinds of color filters 14R, 14G, and 14B of red, green, and blue are arranged in a predetermined manner so as to correspond to the openings 13a of the black mask 13. It is installed in each. Each of these color filters 14R, 14G, and 14B has an area that is larger than the respective openings 13a by an appropriate length over the entire circumference, and is disposed so that the peripheral edge is overlapped with the opening edge of the black mask 13. The thicknesses of the color filters 14R, 14G, and 14B are the liquid crystal layer thicknesses (cell gaps) dr, dg, and db in the respective pixel regions where the color filters 14R, 14G, and 14B are arranged. Each color filter 14R, 14G, 14B is optimally set so that the product of the refractive index anisotropy for each transmitted wavelength light and the layer thickness dr, dg, db substantially match. The optimization of the liquid crystal layer thickness will be described in detail later.

厚さがそれぞれ異なる赤、緑、青の各色カラーフィルタ14R、14G、14Bの表面には、これらを覆う一枚膜状の透明導電膜からなる共通電極15が被着されている。そして、共通電極15の表面には、液晶分子の配向を規制する前水平配向膜16が一様に被着されている。この前水平配向膜16の表面には、図1に示すように、ラビング法により矢印16aの方向へ配向処理が施されている。この配向処理方向16aは、液晶セル1の矩形をなす表示面における下辺1aに平行な水平軸1hに対して右上がりに−45°(時計回り方向を+とする)で交差する方向である。   On the surfaces of the color filters 14R, 14G, and 14B of red, green, and blue having different thicknesses, a common electrode 15 made of a single-layer transparent conductive film that covers them is attached. A front horizontal alignment film 16 that regulates the alignment of liquid crystal molecules is uniformly applied to the surface of the common electrode 15. As shown in FIG. 1, the surface of the front horizontal alignment film 16 is subjected to an alignment process in the direction of an arrow 16a by a rubbing method. This alignment processing direction 16a is a direction that intersects with the horizontal axis 1h parallel to the lower side 1a on the rectangular display surface of the liquid crystal cell 1 at a right angle of −45 ° (clockwise direction is +).

後ガラス基板12の内面には、前述したブラックマスク13の開口に対応させて、透明導電膜からなる複数の画素電極17がマトリックス配置で設置されている。各画素電極17には、能動素子としての薄膜トランジスタ18が、それぞれ接続されている。そして、全ての画素電極17や薄膜トランジスタ18等を覆って後水平配向膜19が一様に被着されている。この後水平配向膜19には、図1に示すように、上述した前水平配向膜16の配向処理方向16aに直交する方向19aの方向へ、ラビング法により配向処理が施されている。この配向処理方向19aは、液晶セル1の水平軸1hに対して右下がりに+45°で交差する方向である。   A plurality of pixel electrodes 17 made of a transparent conductive film are arranged in a matrix arrangement on the inner surface of the rear glass substrate 12 so as to correspond to the openings of the black mask 13 described above. Each pixel electrode 17 is connected to a thin film transistor 18 as an active element. A rear horizontal alignment film 19 is uniformly deposited so as to cover all the pixel electrodes 17 and the thin film transistors 18. Thereafter, as shown in FIG. 1, the horizontal alignment film 19 is subjected to an alignment process by a rubbing method in a direction 19 a perpendicular to the alignment process direction 16 a of the previous horizontal alignment film 16 described above. This alignment processing direction 19a is a direction that intersects with the horizontal axis 1h of the liquid crystal cell 1 in the downward right direction at + 45 °.

双方のガラス基板11、12の各内面に被着された前及び後水平配向膜16、19が対向する空間には、液晶が封入されて液晶層110が形成されている。この液晶層110は、正の誘電率異方性を備えたネマティック液晶からなり、電界が印加されていない初期状態においては、前及び後水平配向膜16、19近傍の液晶分子それぞれが、前及び後水平配向膜16、19のそれぞれに施された配向処理方向16a、19aに沿った配向規制力を受けて配列し、液晶層110の液晶分子は2枚のガラス基板11、12の間でツイスト配向している。   Liquid crystal is sealed to form a liquid crystal layer 110 in spaces where the front and rear horizontal alignment films 16 and 19 are attached to the inner surfaces of both glass substrates 11 and 12 and face each other. The liquid crystal layer 110 is made of nematic liquid crystal having positive dielectric anisotropy, and in the initial state where no electric field is applied, the liquid crystal molecules near the front and rear horizontal alignment films 16 and 19 are respectively The liquid crystal molecules of the liquid crystal layer 110 are twisted between the two glass substrates 11 and 12 by receiving the alignment regulating force along the alignment treatment directions 16a and 19a applied to the rear horizontal alignment films 16 and 19, respectively. Oriented.

すなわち、液晶層110の各液晶分子は、後水平配向膜19の表面から前水平配向膜16の表面に向かって、矢印21で示す時計回り方向へ90°±5°の角度でツイストした状態で配列している。従って、後水平配向膜19の配向処理方向19aから時計回り方向へ45°回転した白抜き矢印20で示される方向(ツイスト角度範囲の中間の角度の方向)、すなわちこの白抜き矢印方向20で示される図面上で下向きの方位に、この液晶表示素子において最も良好なコントラストが得られる視角方位がある。   That is, each liquid crystal molecule of the liquid crystal layer 110 is twisted at an angle of 90 ° ± 5 ° in the clockwise direction indicated by the arrow 21 from the surface of the rear horizontal alignment film 19 to the surface of the front horizontal alignment film 16. Arranged. Therefore, the direction indicated by the white arrow 20 rotated by 45 ° clockwise from the alignment processing direction 19a of the rear horizontal alignment film 19 (direction of an intermediate angle in the twist angle range), that is, indicated by this white arrow direction 20 There is a viewing angle direction in which the best contrast is obtained in the liquid crystal display element in the downward direction on the drawing.

上述のように液晶分子がツイスト配向した液晶層110は、屈折率異方性が、透過する光の波長によって変化する波長依存性を有しているため、色再現性の高いカラー表示を行うために、液晶層110を透過する赤、緑、青の各波長光に対してそれぞれ実質的にλ/2の複屈折作用を与えるように、各色の画素毎に異なる液晶層厚が設定されている。   Since the liquid crystal layer 110 in which the liquid crystal molecules are twist-aligned as described above has a wavelength dependency in which the refractive index anisotropy changes depending on the wavelength of transmitted light, color display with high color reproducibility is performed. Further, different liquid crystal layer thicknesses are set for the pixels of the respective colors so as to substantially give a birefringence action of λ / 2 to the red, green, and blue wavelength light transmitted through the liquid crystal layer 110, respectively. .

つまり、本実施形態の液晶セル1においては、赤、緑、青の各画素毎の層厚dr、dg、dbを、各波長光に対する屈折率異方性Δnの波長依存性を相殺するような値に設定してある。   That is, in the liquid crystal cell 1 of the present embodiment, the layer thicknesses dr, dg, db for each pixel of red, green, and blue cancel the wavelength dependence of the refractive index anisotropy Δn for each wavelength light. Set to value.

すなわち、青色波長光に対する屈折率異方性Δnb、緑色波長光に対する屈折率異方性Δng、及び赤色波長光に対する屈折率異方性Δnrの比は、
Δnb/Δng=1.04±0.03
Δnr/Δng=0.96±0.03
であり、これに応じて、図2に示されるように、赤色カラーフィルタ14Rが配設された画素の液晶層厚drが5.5μm、緑色カラーフィルタ14Gが配設された画素の液晶層厚dgが5.0μm、そして、青色カラーフィルタ14Bが配設された画素の液晶層厚dbが4.8μmとなるように、各色カラーフィルタ14R、14G、14Bの膜厚が設定されている。
That is, the ratio of refractive index anisotropy Δnb for blue wavelength light, refractive index anisotropy Δng for green wavelength light, and refractive index anisotropy Δnr for red wavelength light is:
Δnb / Δng = 1.04 ± 0.03
Δnr / Δng = 0.96 ± 0.03
Accordingly, as shown in FIG. 2, the liquid crystal layer thickness dr of the pixel in which the red color filter 14R is disposed is 5.5 μm, and the liquid crystal layer thickness of the pixel in which the green color filter 14G is disposed. The film thickness of each color filter 14R, 14G, 14B is set so that dg is 5.0 μm and the liquid crystal layer thickness db of the pixel in which the blue color filter 14B is disposed is 4.8 μm.

液晶セル1の前ガラス基板11の外面には、前偏光板2が設置されている。この前偏光板2は、図1に示されるように観察側から見て、その透過軸2aを表示面の水平軸1hに平行に位置させて設置されている。従って、透過軸2aは、液晶セル1の前水平配向膜16に施された配向処理方向16aに対して+45°±5°の角度で交差している。   A front polarizing plate 2 is installed on the outer surface of the front glass substrate 11 of the liquid crystal cell 1. As shown in FIG. 1, the front polarizing plate 2 is installed with its transmission axis 2a positioned parallel to the horizontal axis 1h of the display surface when viewed from the observation side. Accordingly, the transmission axis 2a intersects the alignment processing direction 16a applied to the front horizontal alignment film 16 of the liquid crystal cell 1 at an angle of + 45 ° ± 5 °.

そして、液晶セル1の後ガラス基板12の外面には、後偏光板3が設置されている。この後偏光板3は、その透過軸3aを前偏光板2の透過軸2aに直交させて、つまり表示面の上下方向(観察側から見て、前記液晶表示素子の水平軸1hと直交する方向、以下垂直軸方向という)と平行に設置されている。従って、透過軸3aは、液晶セル1の前水平配向膜16に施された配向処理方向16aに対して−45°±5°の角度で交差している。   A rear polarizing plate 3 is installed on the outer surface of the rear glass substrate 12 of the liquid crystal cell 1. Thereafter, the polarizing plate 3 has its transmission axis 3a orthogonal to the transmission axis 2a of the front polarizing plate 2, that is, the vertical direction of the display surface (the direction orthogonal to the horizontal axis 1h of the liquid crystal display element as viewed from the observation side). , Hereinafter referred to as the vertical axis direction). Therefore, the transmission axis 3a intersects the alignment processing direction 16a applied to the front horizontal alignment film 16 of the liquid crystal cell 1 at an angle of −45 ° ± 5 °.

つまり、前偏光板2は、その透過軸2aを前記液晶層の液晶分子が前記前水平配向膜16から前記後水平配向膜19に向かってツイスト配向するツイスト角度範囲の中間の角度の方向(白抜き矢印20で示される方向)と直交する方向に向け、また、前記透過軸2aと直交する吸収軸2bは前記中間の角度の方向と実質的に一致させて配置されている。そして、前記後偏光板3は、その透過軸3aを前記液晶層の液晶分子が前記前水平配向膜16から前記後水平配向膜19に向かってツイスト配向するツイスト角度範囲の中間の角度の方向(白抜き矢印20で示される方向)と実質的に平行する方向に向け、また、前記透過軸3aと直交する吸収軸3bは前記中間の角度の方向と実質的に直交させ、そして前記前偏光板2の吸収軸2bと互いに実質的に直交させて配置されている。   That is, the front polarizing plate 2 has its transmission axis 2a in the middle direction of the twist angle range in which the liquid crystal molecules of the liquid crystal layer are twist aligned from the front horizontal alignment film 16 toward the rear horizontal alignment film 19 (white The absorption axis 2b perpendicular to the transmission axis 2a is arranged substantially in line with the direction of the intermediate angle. The rear polarizing plate 3 has a transmission axis 3a in the middle angle direction of the twist angle range in which the liquid crystal molecules of the liquid crystal layer are twist-oriented from the front horizontal alignment film 16 toward the rear horizontal alignment film 19 ( And the absorption axis 3b orthogonal to the transmission axis 3a is substantially orthogonal to the intermediate angle direction, and the front polarizing plate. The two absorption axes 2b are arranged so as to be substantially orthogonal to each other.

これは、すなわち、前記前偏光板2は、前記前配向膜19の配向処理方向19aと前記後配向膜16の配向処理方向16aとが成す角度の実質的に1/2の角度(45゜)だけ、前記前、後配向膜19,16の一方の配向処理方向19a,16aから他方に向かって回転した矢印20で示される方向に、透過軸2a或いは吸収軸2bを一致させて配置されているのである。   That is, the front polarizing plate 2 has an angle (45 °) substantially ½ of the angle formed by the alignment treatment direction 19a of the front alignment film 19 and the alignment treatment direction 16a of the rear alignment film 16. Only the transmission axis 2a or the absorption axis 2b is arranged in the direction indicated by the arrow 20 rotated from one alignment processing direction 19a, 16a of the front and rear alignment films 19, 16 toward the other. It is.

次に、上述のように構成された本液晶表示素子における作用効果について、図3(a)、(b)及び図4(a)、(b)の模式的説明図に基づき説明する。ここで、図3(a)、(b)は液晶層に電界が印加されていないときの液晶分子の初期配向状態を示すもので、(a)は平面図、(b)は基板間の液晶分子の配列状態を示す断面図である。また、図4(a)、(b)は液晶層に電界が最大に印加された液晶分子の立上がり配向状態を示すもので、(a)は平面図、(b)は基板間の液晶分子の配列状態を示す断面図である。   Next, the function and effect of the present liquid crystal display element configured as described above will be described with reference to the schematic explanatory views of FIGS. 3 (a) and 3 (b) and FIGS. 4 (a) and 4 (b). Here, FIGS. 3A and 3B show an initial alignment state of liquid crystal molecules when an electric field is not applied to the liquid crystal layer. FIG. 3A is a plan view, and FIG. 3B is a liquid crystal between substrates. It is sectional drawing which shows the arrangement | sequence state of a molecule | numerator. 4 (a) and 4 (b) show the rising alignment state of the liquid crystal molecules when the electric field is applied to the liquid crystal layer at the maximum, (a) is a plan view, and (b) is the liquid crystal molecules between the substrates. It is sectional drawing which shows an arrangement | sequence state.

図3(a)、(b)に示される初期配向状態において、前、後両水平配向膜16、19近傍の液晶分子110aは、対応する水平配向膜16、19の配向規制力を受け、その配向処理方向16a、19aにその長軸方向を沿わせ、且つそれぞれの配向処理方向16a、19aの下流側の先端部をプレチルト角θだけ持ち上げた姿勢で配向している。液晶層110の中間の液晶分子110bは、両基板間で水平配向膜16、19近傍の液晶分子110aの配向と連続的にツイスト配向する。すなわち、液晶分子110a,110bが一方の後水平配向膜19側から他方の前水平配向膜16側に向かって時計回りに矢印21の方向へ略90°にわたりツイストして配向した状態となっている。この液晶分子110a,110bが90度にわたりツイスト配向した状態の液晶層110は、透過光に対してその波長λの1/2の位相差を生じさせる複屈折性を持つように設定してある。従って、この液晶層110を透過する直線偏光は、その偏光面が90°だけ旋光された直線偏光となって出射する。   In the initial alignment state shown in FIGS. 3A and 3B, the liquid crystal molecules 110a in the vicinity of both the front and rear horizontal alignment films 16 and 19 receive the alignment regulating force of the corresponding horizontal alignment films 16 and 19, Alignment is performed in such a manner that the major axis direction is aligned with the alignment processing directions 16a and 19a, and the tip end portions on the downstream side of the alignment processing directions 16a and 19a are lifted by the pretilt angle θ. The liquid crystal molecules 110b in the middle of the liquid crystal layer 110 are continuously twist aligned with the alignment of the liquid crystal molecules 110a in the vicinity of the horizontal alignment films 16 and 19 between the substrates. That is, the liquid crystal molecules 110a and 110b are twisted and aligned in the direction of the arrow 21 in the clockwise direction from the one rear horizontal alignment film 19 side to the other front horizontal alignment film 16 side over approximately 90 °. . The liquid crystal layer 110 in which the liquid crystal molecules 110a and 110b are twist-aligned over 90 degrees is set to have birefringence that causes a phase difference of ½ of the wavelength λ of the transmitted light. Therefore, the linearly polarized light transmitted through the liquid crystal layer 110 is emitted as linearly polarized light whose polarization plane is rotated by 90 °.

本液晶表示素子においては、図1に示されるように、後偏光板3の透過軸3aと前偏光板2の透過軸2aとを直交させてあるから、それぞれの吸収軸3b、2bも直交する配置となっている。従って、図示しないバックライトからの照射光は、後偏光板3を透過して偏光面が透過軸3aに沿った直線偏光となって初期配向状態の液晶層110に入射し、この液晶層110を透過する際にλ/2の位相差が付与され、偏光面が90°旋光されて出射する。この出射直線偏光の偏光面は前偏光板2の透過軸2aに沿っているから、吸収されることなく透過し、明表示がなされる。   In this liquid crystal display element, as shown in FIG. 1, since the transmission axis 3a of the rear polarizing plate 3 and the transmission axis 2a of the front polarizing plate 2 are orthogonal to each other, the absorption axes 3b and 2b are also orthogonal to each other. It is an arrangement. Accordingly, the irradiation light from the backlight (not shown) is transmitted through the rear polarizing plate 3 and is incident on the liquid crystal layer 110 in the initial alignment state with the polarization plane being linearly polarized along the transmission axis 3a. When transmitted, a phase difference of λ / 2 is given, and the polarization plane is rotated 90 ° and emitted. Since the plane of polarization of the outgoing linearly polarized light is along the transmission axis 2a of the front polarizing plate 2, it is transmitted without being absorbed and a bright display is made.

次に、暗表示を行うために液晶層110に、その液晶層110の中間層に位置する液晶分子110bを基板に対して実質的に垂直に配向させるのに充分な強い電界を印加すると、液晶分子の配向状態は、図4(a)、(b)に示されるようになる。   Next, when a strong electric field is applied to the liquid crystal layer 110 for performing dark display, the liquid crystal molecules 110b positioned in the intermediate layer of the liquid crystal layer 110 are aligned substantially perpendicular to the substrate. The molecular orientation is as shown in FIGS. 4 (a) and 4 (b).

各液晶分子は、印加される電界の方向つまり前、後ガラス基板11、12(図2参照)に垂直な方向に長軸方向を沿わせて配向するように立上り配向し、前記液晶層110の層厚方向の中間に位置する液晶分子110bはほぼ垂直に配向して螺旋が解けた状態に配向する。一方前及び後水平配向膜16、19近傍の液晶分子110aは、対応する水平配向膜16、19のアンカリング効果により充分に立ち上がることができず、この螺旋が解ける分子間力によって、各水平配向膜16、19近傍の液晶分子110aは、プレチルト角θは略そのままで長軸方向をツイスト配向のツイスト角度範囲の中間角度、つまり前側配向膜16の配向処理方向16aと後側配向膜の配向処理方向19aとが成す角を2等分する角度の方向、すなわち後側配向膜19の配向処理方向19aから時計回り方向へ45°回転した第3の方向20(図面上で液晶表示素子の垂直軸の方位)に向けて配向する。   Each liquid crystal molecule rises and aligns along the major axis in the direction of the applied electric field, that is, the direction perpendicular to the front and rear glass substrates 11 and 12 (see FIG. 2). The liquid crystal molecules 110b located in the middle of the layer thickness direction are aligned substantially vertically and aligned in a state where the spiral is unwound. On the other hand, the liquid crystal molecules 110a in the vicinity of the front and rear horizontal alignment films 16 and 19 cannot sufficiently rise due to the anchoring effect of the corresponding horizontal alignment films 16 and 19, and each horizontal alignment is caused by the intermolecular force that can dissolve the spiral. The liquid crystal molecules 110a in the vicinity of the films 16 and 19 have the pretilt angle θ substantially unchanged and the major axis direction is an intermediate angle in the twist angle range of the twist orientation, that is, the orientation treatment direction 16a of the front orientation film 16 and the orientation treatment of the rear orientation film. The direction of the angle that bisects the angle formed by the direction 19a, that is, the third direction 20 rotated clockwise by 45 ° from the alignment treatment direction 19a of the rear alignment film 19 (the vertical axis of the liquid crystal display element in the drawing) Orientation).

そして、それぞれの水平配向膜16、19から離れるに伴って、液晶分子110bの立上がり角度が大きくなり、液晶層110の中間部では液晶分子110bが略垂直に立ち上がった配向となっている。この電界印加時(オン時)の立上がり配向状態は、図4(a)に示されるように、各液晶分子がそれぞれの長軸方向を上記第3の方向20に大略揃えた状態で配向する。   As the distance from the horizontal alignment films 16 and 19 increases, the rising angle of the liquid crystal molecules 110b increases, and the liquid crystal molecules 110b are aligned substantially vertically in the middle portion of the liquid crystal layer 110. As shown in FIG. 4A, the rising alignment state when the electric field is applied (ON state) is such that each liquid crystal molecule is aligned with its major axis direction substantially aligned with the third direction 20.

本液晶表示素子においては、図1に示されるように後偏光板3がその透過軸3aを液晶セル1における上記第3の方向20に沿わせて配置されているから、後偏光板3を透過した直線偏光が液晶層110を透過する際に位相差が実質的に付与されず、実質的な直線偏光のまま出射される。この出射直線偏光の偏光面の方向は前偏光板2の吸収軸2bに沿った方向であるから、前偏光板2により確実に吸収され、良好な暗表示が得られる。   In the present liquid crystal display element, as shown in FIG. 1, the rear polarizing plate 3 is arranged with its transmission axis 3 a along the third direction 20 in the liquid crystal cell 1, so that it is transmitted through the rear polarizing plate 3. When the linearly polarized light transmitted through the liquid crystal layer 110 is not substantially imparted with a phase difference, it is emitted as substantially linearly polarized light. Since the direction of the polarization plane of the outgoing linearly polarized light is the direction along the absorption axis 2b of the front polarizing plate 2, it is reliably absorbed by the front polarizing plate 2 and a good dark display is obtained.

図5は、本液晶表示素子の印加電圧に対する各波長光毎の透過率の変化を示すグラフ図であり、透過率を示す縦軸は対数目盛りとなっている。比較例として、図13に示されるように、対向する一対の基板の間に液晶層を配置し、後側基板に形成された配向膜の配向処理方向131aを液晶表示素子の水平線131hに対して−45゜に、前側基板に形成された配向膜の配向処理方向131bを水平線131hに対して−45゜に設定した液晶セル131に、前及び後偏光板132、133が各透過軸132a、133aを対応する水平配向膜の配向処理方向131a、131bと同方向に揃えて配置された従来のTN型液晶表示素子による緑色波長光の透過率特性を、二点鎖線で示してある。   FIG. 5 is a graph showing the change in transmittance for each wavelength light with respect to the applied voltage of the liquid crystal display element, and the vertical axis indicating the transmittance is a logarithmic scale. As a comparative example, as shown in FIG. 13, a liquid crystal layer is disposed between a pair of opposing substrates, and the alignment treatment direction 131a of the alignment film formed on the rear substrate is set to the horizontal line 131h of the liquid crystal display element. The front and rear polarizing plates 132 and 133 are respectively connected to the transmission axes 132a and 133a in the liquid crystal cell 131 in which the alignment processing direction 131b of the alignment film formed on the front substrate is set to −45 ° with respect to the horizontal line 131h. The two-dot chain line shows the transmittance characteristic of green wavelength light by a conventional TN type liquid crystal display element arranged in the same direction as the alignment processing directions 131a and 131b of the corresponding horizontal alignment film.

図5から明らかなように、本実施形態の液晶表示素子では、印加電圧が4.5Vの最大電界印加時(オン時)における透過率が緑色波長光で0.02%と、従来例の同印加電圧における透過率の0.2%に比べて1/10程度に低下しており、その結果、電界無印加時(オフ時)における透過率は略同じであるから、コントラストが約10倍に上昇している。   As is clear from FIG. 5, in the liquid crystal display element of this embodiment, the transmittance at the time of applying a maximum electric field with an applied voltage of 4.5 V (on) is 0.02% for green wavelength light, which is the same as the conventional example. Compared to 0.2% of the transmittance at the applied voltage, the transmittance is reduced to about 1/10. As a result, the transmittance when no electric field is applied (off) is substantially the same, so the contrast is about 10 times. It is rising.

また、従来のTN型液晶表示素子においては、液晶分子の長軸方向と一致する方位に中間階調の階調反転が発生するが、本発明に係わる液晶表示素子においては、上述したように第3の方向20に後偏光板3の透過軸3aを一致させるから、第3の方向20における中間階調における階調反転の発生が抑制される。   Further, in the conventional TN liquid crystal display element, gradation inversion of intermediate gradation occurs in the direction that coincides with the major axis direction of the liquid crystal molecules. However, in the liquid crystal display element according to the present invention, as described above, Since the transmission axis 3a of the rear polarizing plate 3 coincides with the third direction 20, the occurrence of gradation inversion in the intermediate gradation in the third direction 20 is suppressed.

以上のように、本実施形態の液晶表示素子においては、液晶分子を90°の角度でツイスト配向させた液晶セル1を挟んで、その前後にそれぞれ、前偏光板2と後偏光板3を各透過軸2a、3aを直交させて設置し、そのうちのバックライト光を入射させる後偏光板3の透過軸3aを液晶分子がツイスト配向する角度範囲の中間の角度の方向である第3の方向に一致させて配置したから、電界を充分に印加したオン時に配向膜近傍の液晶分子が配列する前記第3の方向と、偏光板の吸収軸又は透過軸からなる光学軸が実質的に平行になるため、透過率が充分に低い良好な暗表示が得られ、表示のコントラストが向上する。   As described above, in the liquid crystal display element of the present embodiment, the front polarizing plate 2 and the rear polarizing plate 3 are respectively arranged before and after the liquid crystal cell 1 in which liquid crystal molecules are twist-oriented at an angle of 90 °. The transmission axes 2a and 3a are set orthogonally, and after the backlight is incident, the transmission axis 3a of the polarizing plate 3 is set in a third direction which is an intermediate angle direction in which the liquid crystal molecules are twist-aligned. Since they are arranged so as to coincide with each other, the third direction in which liquid crystal molecules in the vicinity of the alignment film are aligned when the electric field is sufficiently applied and the optical axis composed of the absorption axis or transmission axis of the polarizing plate are substantially parallel. Therefore, a good dark display with a sufficiently low transmittance is obtained, and the display contrast is improved.

また、赤、緑、青の各色カラーフィルタ14R、14G、14Bがそれぞれ設けられた各画素毎のΔn・dは、液晶分子のツイスト配向によるツイストの効果を考慮して透過光の偏光面を90゜回転させるのに必要なリタデーションの値を示す式(√3・λ/2)によって算出し、その値は、それぞれのカラーフィルタに対応する画素ごとに、380nm〜480nmの範囲で適宜設定された液晶層厚を有するマルチギャップ構造としたから、全ての色の波長光について、透過率が充分に低い良好な暗表示と高いコントラストが得られ、その結果、良好な色度の白色とこれに基づく色再現性に優れた高品位のカラー表示が得られる。   In addition, Δn · d for each pixel provided with the color filters 14R, 14G, and 14B for red, green, and blue respectively has a polarization plane of transmitted light of 90 in consideration of the twist effect due to the twist orientation of liquid crystal molecules. Calculated by an equation (√3 · λ / 2) indicating a retardation value necessary for rotation, and the value was appropriately set in a range of 380 nm to 480 nm for each pixel corresponding to each color filter. Due to the multi-gap structure with the liquid crystal layer thickness, good dark display and high contrast with sufficiently low transmittance can be obtained for wavelength light of all colors. As a result, white with good chromaticity and this are based on this High-quality color display with excellent color reproducibility can be obtained.

なお、この実施例において、後偏光板3は、吸収軸3bを第3の方向20に沿わせて配置してもよい。この場合、前偏光板2は吸収軸2bが配向処理方向16aに対して45°±5°で交差する配置となる。このような光学軸の配置構成としても、上述した所望の効果が同様に奏される。
(第2実施形態)
In this embodiment, the rear polarizing plate 3 may be arranged with the absorption axis 3 b along the third direction 20. In this case, the front polarizing plate 2 is arranged such that the absorption axis 2b intersects the alignment processing direction 16a at 45 ° ± 5 °. Even with such an arrangement configuration of the optical axes, the desired effect described above is similarly achieved.
(Second Embodiment)

次に、本発明の第2実施形態について、図6及び図7に基づき説明する。なお、上記第1実施形態と同一の構成要素については同一の符号を付して、その説明を省略する。   Next, a second embodiment of the present invention will be described with reference to FIGS. In addition, the same code | symbol is attached | subjected about the component same as the said 1st Embodiment, and the description is abbreviate | omitted.

本実施形態の液晶表示素子は、第1実施形態の液晶表示素子の構成に加えて、液晶セル1と前偏光板2との間に前視野角補償フィルム4を、液晶セル1と後偏光板3との間に後視野角補償フィルム5を、それぞれ設置したものである。なお、液晶セル1のマルチギャップ構造は第1実施形態のものと同じであり、赤、緑、青の画素のΔn・dが、380nm〜480nmの範囲で適宜設定されている。
に設定されている。
In addition to the configuration of the liquid crystal display element of the first embodiment, the liquid crystal display element of this embodiment includes a front viewing angle compensation film 4 between the liquid crystal cell 1 and the front polarizing plate 2, and the liquid crystal cell 1 and the rear polarizing plate. 3 and the rear viewing angle compensation film 5 are respectively installed between the two. The multi-gap structure of the liquid crystal cell 1 is the same as that of the first embodiment, and Δn · d of red, green, and blue pixels is appropriately set in the range of 380 nm to 480 nm.
Is set to

視野角補償フィルム4、5は、図7に示されるように、それぞれ、透明なフィルム基板41、51の一方の面に配向膜42、52を形成し、これら配向膜42、52の表面にディスコティック液晶層43、53が積層されてなる。ディスコティック液晶層43、53は、円盤状のディスコティック液晶分子43a、53aが、この液晶分子の円盤面に対して垂直な各分子軸43b、53bを予め定めた方向に揃えたまま個々の角度を連続的に変えて一方の方向に傾けた状態に配列しており、各分子軸43b、53bの方向は、配向膜42、52に施された配向処理方向に沿っている。配向膜42、52に近接するディスコティック液晶分子43a、53aはその各分子の盤面をフィルム基板41、51に略平行に沿わせて配向し、配向膜42、52の表面から離れたディスコティック液晶分子43a、53aは、前記配向膜から離れるにつれて、分子盤面のフィルム基板41a、51aに対する傾斜角度、つまりチルト角度が大きくなっている。これにより、ディスコティック液晶層43、53は、各ディスコティック液晶分子43a、53aの分子軸43b、53bの傾斜角度を平均した方向に屈折率が最小となる光学軸(以下、配向軸という)を備えた負の光学的異方性を発現する。   As shown in FIG. 7, the viewing angle compensation films 4 and 5 are formed by forming alignment films 42 and 52 on one surface of transparent film substrates 41 and 51, respectively, and discos on the surfaces of these alignment films 42 and 52. Tick liquid crystal layers 43 and 53 are laminated. The discotic liquid crystal layers 43 and 53 are arranged so that the discotic liquid crystal molecules 43a and 53a are arranged at individual angles while aligning the molecular axes 43b and 53b perpendicular to the disk surface of the liquid crystal molecules in a predetermined direction. Are continuously tilted in one direction, and the directions of the molecular axes 43b and 53b are along the alignment treatment direction applied to the alignment films 42 and 52. The discotic liquid crystal molecules 43a and 53a adjacent to the alignment films 42 and 52 are aligned so that the disk surfaces of the molecules are substantially parallel to the film substrates 41 and 51, and the discotic liquid crystal molecules separated from the surfaces of the alignment films 42 and 52 are provided. As the molecules 43a and 53a move away from the alignment film, the tilt angle of the molecular disk surface with respect to the film substrates 41a and 51a, that is, the tilt angle increases. Accordingly, the discotic liquid crystal layers 43 and 53 have an optical axis (hereinafter referred to as an alignment axis) having a minimum refractive index in a direction in which the inclination angles of the molecular axes 43b and 53b of the discotic liquid crystal molecules 43a and 53a are averaged. The negative optical anisotropy provided is developed.

本実施形態においては、図6に示されるように、視野角補償フィルム4、5が、各配向軸4a、5aを液晶セル1の第3の方向20と平行で且つ互いに逆向きに向け、液晶セル1を挟んでその前、後に設置されている。すなわち、前側の視野角補償フィルム4の配向軸4aは液晶表示素子の上下方向の上方位に方向を一致させ、後側の視野角補償フィルム5の配向軸5aは下方の方位に方向を一致させてある。   In the present embodiment, as shown in FIG. 6, the viewing angle compensation films 4, 5 direct the alignment axes 4 a, 5 a in parallel with the third direction 20 of the liquid crystal cell 1 and in opposite directions to each other. It is installed before and after the cell 1. That is, the orientation axis 4a of the front viewing angle compensation film 4 is aligned with the upper direction of the liquid crystal display element, and the orientation axis 5a of the rear viewing angle compensation film 5 is aligned with the lower direction. It is.

上述のように構成された本実施形態の液晶表示素子においては、図8に示されるように、左右視野方向(9時−3時方向)におけるコントラストが視角を傾けるに従って急激に低下する。すなわち、コントラストが10以下となる視角で比較すると、図13に示した従来の構成の液晶表示素子では左右双方で45°以上であるのに対し、本実施形態の液晶表示素子では左右双方で15°以上と極めて小さく、これは上記第1実施形態の液晶表示素子の場合の37°程度に比べてもかなり小さい。なお、正面方向のコントラストについては、上記第1実施形態の液晶表示素子と同等の高コントラストが得られている。   In the liquid crystal display element of the present embodiment configured as described above, as shown in FIG. 8, the contrast in the left and right visual field direction (9 o'clock to 3 o'clock direction) rapidly decreases as the viewing angle is tilted. That is, when compared at a viewing angle at which the contrast is 10 or less, the liquid crystal display element of the conventional configuration shown in FIG. 13 is 45 ° or more on both the left and right sides, whereas the liquid crystal display element of this embodiment has 15 on both the left and right sides. It is extremely small, such as at least, and is considerably smaller than about 37 ° in the case of the liquid crystal display element of the first embodiment. As for the contrast in the front direction, a high contrast equivalent to that of the liquid crystal display element of the first embodiment is obtained.

従って、本第2実施形態の液晶表示素子によれば、第1実施形態の液晶表示素子によって得られる色再現性に加えて、左右視野方向における視野角が顕著に狭められるために観察者以外の他人による覗き見を有効に防止できるという有用な効果が得られる。   Therefore, according to the liquid crystal display element of the second embodiment, in addition to the color reproducibility obtained by the liquid crystal display element of the first embodiment, the viewing angle in the left and right viewing direction is remarkably narrowed. A useful effect of effectively preventing peeping by others can be obtained.

なお、視野角補償フィルム4、5の各配向軸4a、5aの向きをそれぞれ上述した向きの逆方向としてもよい。すなわち、視野角補償フィルム4の配向軸4aの向きを上方位の方向とし、視野角補償フィルム5の配向軸5aの向きを下方位の方向としても、得られる効果は変わらない。
(第3実施形態)
In addition, it is good also considering the direction of each orientation axis | shaft 4a, 5a of the viewing angle compensation films 4 and 5 as a reverse direction of the direction mentioned above, respectively. That is, even if the orientation axis 4a of the viewing angle compensation film 4 is in the upward direction and the orientation axis 5a of the viewing angle compensation film 5 is in the downward direction, the obtained effect does not change.
(Third embodiment)

本第3実施形態の液晶表示素子は、第2実施形態の液晶表示素子における液晶セル1のマルチギャップ構造を、赤、緑、青の画素のΔn・dがそれぞれ450nm〜550nmの範囲で適宜設定し、且つ、視野角補償フィルム4、5の配向軸4a、5aの配置方向を変えたものである。   In the liquid crystal display element of the third embodiment, the multi-gap structure of the liquid crystal cell 1 in the liquid crystal display element of the second embodiment is appropriately set so that Δn · d of red, green, and blue pixels is 450 nm to 550 nm, respectively. In addition, the arrangement direction of the orientation axes 4a and 5a of the viewing angle compensation films 4 and 5 is changed.

すなわち、図9に示されるように、液晶セル1と前側偏光板2との間に設置される前視野角補償フィルム6は、そのディスコティック液晶分子の配向軸6aを液晶セル1の前水平配向膜に施されている配向処理方向16aに平行(液晶表示素子の水平軸1hに対して−45°方向)に位置させて配置され、液晶セル1と後偏光板3との間に設置される後視野角補償フィルム7は、そのディスコティック液晶分子の配向軸7aを液晶セル1の後水平配向膜に施されている配向処理方向19aに平行(液晶表示素子の水平軸1hに対して+45°方向)に位置させて配置されている。   That is, as shown in FIG. 9, the front viewing angle compensation film 6 placed between the liquid crystal cell 1 and the front polarizing plate 2 has the discotic liquid crystal molecule alignment axis 6 a aligned in the front horizontal alignment of the liquid crystal cell 1. The film is disposed parallel to the alignment processing direction 16a applied to the film (−45 ° direction with respect to the horizontal axis 1h of the liquid crystal display element), and is disposed between the liquid crystal cell 1 and the rear polarizing plate 3. The rear viewing angle compensation film 7 has the alignment axis 7a of the discotic liquid crystal molecules parallel to the alignment treatment direction 19a applied to the rear horizontal alignment film of the liquid crystal cell 1 (+ 45 ° with respect to the horizontal axis 1h of the liquid crystal display element). (Position).

上述のように構成された本第3実施形態の液晶表示素子によれば、オン時の液晶層110にアンカリング効果により残留するリタデーションが、上述のように配置した前、後視野角補償フィルム6、7により有効に補償されるために、図10に示されるように、第2実施形態の液晶表示素子に比べて左右横方向(液晶表示素子の水平軸方向)における視野角が格段に向上する。   According to the liquid crystal display element of the third embodiment configured as described above, the retardation that remains due to the anchoring effect in the liquid crystal layer 110 when turned on is disposed before and after the rear viewing angle compensation film 6. 7, the viewing angle in the lateral direction (horizontal axis direction of the liquid crystal display element) is remarkably improved as compared with the liquid crystal display element of the second embodiment, as shown in FIG. .

すなわち、図10から明らかなように、本第3実施形態の液晶表示素子は、左右両視野角80°の広範囲で約40以上のコントラストが確保されており、図13に示した従来の構成の液晶表示素子と比べて著しく広い視野角特性をもっている。   That is, as is apparent from FIG. 10, the liquid crystal display element of the third embodiment has a contrast of about 40 or more in a wide range of both the left and right viewing angles of 80 °, and has the conventional configuration shown in FIG. Compared with a liquid crystal display element, it has a remarkably wide viewing angle characteristic.

以上のように、本第3実施形態の液晶表示素子においては、液晶セル1を挟んでその前後両側に配置する一対のディスコティック液晶層を備える視野角補償フィルム6、7の各配向軸6a、7aの方向を、対応する水平配向膜16、19の配向処理方向16a、19aに平行としたから、液晶セル1のオン時における残留リタデーションが有効に補償され、少なくとも表示面の左右横方向における視野角が改善される。その結果、本第3実施形態の液晶表示素子によれば、第1実施形態の液晶表示素子によって得られる色再現性の高いカラー表示品質に加えて、左右横方向において十分に広い良好な視野角特性が得られる。   As described above, in the liquid crystal display element of the third embodiment, the alignment axes 6a of the viewing angle compensation films 6 and 7 each including the pair of discotic liquid crystal layers disposed on both the front and rear sides of the liquid crystal cell 1 are interposed. Since the direction of 7a is parallel to the alignment processing directions 16a and 19a of the corresponding horizontal alignment films 16 and 19, the residual retardation when the liquid crystal cell 1 is turned on is effectively compensated, and at least the visual field in the horizontal direction of the display surface The corner is improved. As a result, according to the liquid crystal display element of the third embodiment, in addition to the color display quality with high color reproducibility obtained by the liquid crystal display element of the first embodiment, a good viewing angle that is sufficiently wide in the lateral direction. Characteristics are obtained.

なお、視野角補償フィルム6、7の各配向軸6a、7aの向きをそれぞれ上述した向きの逆方向としてもよい。すなわち、前視野角補償フィルム6の配向軸6aの向きを左右横方向1hに対して+135°方向とし、後視野角補償フィルム7の配向軸7aの向きを同方向1hに対して−135°方向としても、得られる効果は変わらない。
(第4実施形態)
In addition, it is good also considering the direction of each orientation axis | shaft 6a of the viewing angle compensation films 6 and 7 as a reverse direction of the direction mentioned above, respectively. That is, the orientation of the orientation axis 6a of the front viewing angle compensation film 6 is the + 135 ° direction with respect to the horizontal direction 1h and the orientation axis 7a of the rear viewing angle compensation film 7 is the −135 ° direction with respect to the same direction 1h. However, the effect obtained is not changed.
(Fourth embodiment)

本第4実施形態の液晶表示素子は、第3実施形態の液晶表示素子における液晶セル1のマルチギャップ構造を、赤、緑、青の画素のΔn・dの値を350nm〜450nmの範囲で適宜設定し、且つ、図11に示されるように、前視野角補償フィルム16と前偏光板2との間に前位相差板8を、後視野角補償フィルム7と後偏光板3との間に後位相差板9を、それぞれ配置したものである。   The liquid crystal display element of the fourth embodiment has a multi-gap structure of the liquid crystal cell 1 in the liquid crystal display element of the third embodiment, and the Δn · d values of red, green, and blue pixels are appropriately set in the range of 350 nm to 450 nm. 11, and as shown in FIG. 11, a front retardation plate 8 is provided between the front viewing angle compensation film 16 and the front polarizing plate 2, and a rear viewing angle compensation film 7 and the rear polarizing plate 3 are provided. The rear retardation plates 9 are respectively arranged.

前、後位相差板8、9は、ともに、屈折率異方性Δnと厚さdの積Δn・dつまりリタデーションReが15nm〜55nmの範囲で適宜設定され、遅相軸8a、9aをそれぞれ備えている。そして、前位相差板8はその遅相軸8aを前視野角補償フィルム6の配向軸6aに平行に位置させて前視野角補償フィルム6に積層され、後位相差板9はその遅相軸9aを後視野角補償フィルム7の配向軸7aに平行に位置させ後視野角補償フィルムに積層されている。   Both the front and rear retardation plates 8 and 9 are appropriately set so that the product Δn · d of the refractive index anisotropy Δn and the thickness d, that is, the retardation Re is in the range of 15 nm to 55 nm, and the slow axes 8a and 9a are respectively set. I have. The front retardation plate 8 is laminated on the front viewing angle compensation film 6 with its slow axis 8a positioned parallel to the orientation axis 6a of the front viewing angle compensation film 6, and the rear retardation plate 9 has its slow axis. 9a is positioned parallel to the orientation axis 7a of the rear viewing angle compensation film 7 and laminated on the rear viewing angle compensation film.

上述のように構成された本第4実施形態の液晶表示素子によれば、前、後各視野角補償フィルム6、7によるそれぞれのリタデーション補償効果が、それぞれに光学軸を一致させて積層された前、後各位相差板8、9によって更に改善されることになり、オン時の残留リタデーションが補償されるから、図12に示されるように、第3実施形態の液晶表示素子よりも更に左右横方向(水平軸の方向)の視野角特性が向上する。   According to the liquid crystal display element of the fourth embodiment configured as described above, the retardation compensation effects by the front and rear viewing angle compensation films 6 and 7 are laminated with their optical axes aligned with each other. This is further improved by the front and rear phase difference plates 8 and 9, and the residual retardation at the time of ON is compensated. Therefore, as shown in FIG. The viewing angle characteristics in the direction (horizontal axis direction) are improved.

すなわち、図12から明らかなように、左右両視野角80°の広範囲で、約50以上のコントラストが確保されており、第3実施形態の液晶表示素子による同範囲のコントラスト40以上よりも高く、正面方向近傍を除く視角範囲全般にわたり一様にコントラストが向上している。   That is, as apparent from FIG. 12, a contrast of about 50 or more is secured in a wide range of both left and right viewing angles of 80 °, which is higher than the contrast of 40 or more in the same range by the liquid crystal display element of the third embodiment, The contrast is improved uniformly over the entire viewing angle range except for the vicinity of the front direction.

以上のように、本第4実施形態の液晶表示素子においては、液晶セル1を挟んでその前後両側に、ディスコティック液晶層を備える視野角補償フィルム6、7と、それぞれの位相差板8、9を、各光学軸を対応する水平配向膜16、19の配向処理方向16a、19aに平行に揃えて積層したから、液晶セル1におけるオン時の残留リタデーションをより効果的に補償することができ、表示面の少なくとも左右横方向において視野角がより改善される。その結果、本第4実施形態の液晶表示素子によれば、第1実施形態の液晶表示素子によって得られる色再現性に優れたカラー表示品質に加えて、少なくとも前記水平軸方向における視野角が一層広げられた良好な視野角特性が得られる。   As described above, in the liquid crystal display element according to the fourth embodiment, the viewing angle compensation films 6 and 7 including the discotic liquid crystal layers on both the front and rear sides of the liquid crystal cell 1 and the respective retardation plates 8 are provided. 9 is laminated with the respective optical axes aligned in parallel with the alignment processing directions 16a and 19a of the corresponding horizontal alignment films 16 and 19, so that the residual retardation in the liquid crystal cell 1 can be more effectively compensated. The viewing angle is further improved in at least the left and right lateral direction of the display surface. As a result, according to the liquid crystal display element of the fourth embodiment, in addition to the color display quality excellent in color reproducibility obtained by the liquid crystal display element of the first embodiment, at least a viewing angle in the horizontal axis direction is further increased. Widened viewing angle characteristics can be obtained.

なお、第3実施形態の液晶表示素子の場合と同様に本第4実施形態の場合も、視野角補償フィルム6、7の各配向軸6a、7aの向きをそれぞれ上述した向きの逆方向としてもよく、その場合の得られる効果も、上記効果と変わらない。   As in the case of the liquid crystal display element of the third embodiment, in the case of the fourth embodiment, the orientation axes 6a and 7a of the viewing angle compensation films 6 and 7 may be opposite to the above-described directions. Well, the effect obtained in that case is not different from the above effect.

本発明は、上記の第1乃至第4実施形態に限定されるものではない。例えば、第1乃至第4実施形態においては、後偏光板3の透過軸3aの配置を液晶セル1における液晶分子のツイスト配向角度範囲の中間角度方向に一致させたが、この後偏光板3の透過軸3aは、液晶層110に電界を充分に印加したオン時において対応する側の水平配向膜に近接する液晶分子が配向する第3の方向に一致させればよく、例えば、前記第3の方向が液晶分子のツイスト配向角度の範囲の1/3程度の角度方向であっても、この方向に後偏光板3の透過軸3aを一致させればよい。   The present invention is not limited to the first to fourth embodiments described above. For example, in the first to fourth embodiments, the arrangement of the transmission axis 3a of the rear polarizing plate 3 is made to coincide with the intermediate angle direction of the twist orientation angle range of the liquid crystal molecules in the liquid crystal cell 1. The transmission axis 3a may be aligned with the third direction in which liquid crystal molecules adjacent to the horizontal alignment film on the corresponding side are aligned when the electric field is sufficiently applied to the liquid crystal layer 110. For example, the third axis Even if the direction is an angle direction about 1/3 of the range of the twist alignment angle of the liquid crystal molecules, the transmission axis 3a of the rear polarizing plate 3 may be made to coincide with this direction.

また、本発明は、カラーフィルタを設けたカラー液晶表示素子に限らず、モノクロ表示を行う液晶表示素子にも有効に適用できる。   The present invention is not limited to a color liquid crystal display element provided with a color filter, but can be effectively applied to a liquid crystal display element that performs monochrome display.

本発明の第1実施形態としての液晶表示素子を示す分解平面図である。1 is an exploded plan view showing a liquid crystal display element as a first embodiment of the present invention. 上記液晶表示素子の内部構成を部分的に拡大して示す模式的断面図である。It is typical sectional drawing which expands partially and shows the internal structure of the said liquid crystal display element. 上記液晶表示素子における電界が印加されていないオフ時における液晶分子の配向状態を示す説明図で、(a)は平面図、 (b)はその断面図である。FIG. 2 is an explanatory diagram showing an alignment state of liquid crystal molecules when an electric field is not applied in the liquid crystal display element, in which (a) is a plan view and (b) is a cross-sectional view thereof. 上記液晶表示素子における電界が印加されたオン時における液晶分子の配向状態を示す説明図で、(a)は平面図、 (b)はその断面図である。It is explanatory drawing which shows the orientation state of the liquid crystal molecule at the time of ON to which the electric field was applied in the said liquid crystal display element, (a) is a top view, (b) is the sectional drawing. 上記液晶表示素子における各波長光毎の印加電圧に対する透過率の変化特性を示すグラフ図である。It is a graph which shows the change characteristic of the transmittance | permeability with respect to the applied voltage for every wavelength light in the said liquid crystal display element. 本発明の第2実施形態としての液晶表示素子を示す分解平面図である。It is an exploded top view which shows the liquid crystal display element as 2nd Embodiment of this invention. (a)は上記液晶表示素子の内部構成を部分的に拡大して示す模式的断面図で、(b)はその一部の断面図である。(A) is typical sectional drawing which expands and shows partially the internal structure of the said liquid crystal display element, (b) is the one part sectional drawing. 上記第2実施形態としての液晶表示素子における左右方向の視野角特性を示すグラフ図である。It is a graph which shows the viewing angle characteristic of the left-right direction in the liquid crystal display element as the said 2nd Embodiment. 本発明の第3実施形態としての液晶表示素子を示す分解平面図である。It is a disassembled plan view which shows the liquid crystal display element as 3rd Embodiment of this invention. 上記第3実施形態としての液晶表示素子における左右方向の視野角特性を示すグラフ図である。It is a graph which shows the viewing angle characteristic of the left-right direction in the liquid crystal display element as the said 3rd Embodiment. 本発明の第4実施形態としての液晶表示素子を示す分解平面図である。It is a disassembled top view which shows the liquid crystal display element as 4th Embodiment of this invention. 上記第4実施形態としての液晶表示素子における左右方向の視野角特性を示すグラフ図である。It is a graph which shows the viewing angle characteristic of the left-right direction in the liquid crystal display element as the said 4th Embodiment. 従来の液晶表示素子を示す分解平面図である。It is a disassembled top view which shows the conventional liquid crystal display element.

符号の説明Explanation of symbols

1、131 液晶セル
2、132 前偏光板
3、133 後偏光板
4、6 前視野角補償フィルム
5、7 後視野角補償フィルム
8 前位相差板
9 後位相差板
11、12 ガラス基板
13 ブラックマスク
14R、14G、14B 赤、緑、青カラーフィルタ
15 共通電極
16 前水平配向膜
17 画素電極
18 薄膜トランジスタ
19 後水平配向膜
110 液晶層
1, 131 Liquid crystal cell 2, 132 Front polarizing plate 3, 133 Rear polarizing plate 4, 6 Front viewing angle compensation film 5, 7 Rear viewing angle compensation film 8 Front retardation plate 9 Rear retardation plate 11, 12 Glass substrate 13 Black Mask 14R, 14G, 14B Red, green, blue color filter 15 Common electrode 16 Front horizontal alignment film 17 Pixel electrode 18 Thin film transistor 19 Rear horizontal alignment film 110 Liquid crystal layer

Claims (20)

少なくとも1つの電極が形成された第1の基板と、
前記第1の基板の前記電極が形成された面に対向して配置され、前記第1の基板と対向する面に、前記電極と対向する少なくとも1つの電極が形成された第2の基板と、
前記第1の基板の前記電極が形成された内面に、予め定めた第1の方向に配向処理が施された第1の配向膜と、
前記第2の基板の前記電極が形成された内面に、前記第1の方向に対して実質的に90゜の角度で交差する第2の方向に配向処理が施された第2の配向膜と、
前記第1の基板の前記第1の配向膜と、前記第2の基板の第2の配向膜との間に挟持され、前記第1、第2の電極間に電界が印加されないときに、液晶分子が前記第1の配向膜から前記第2の配向膜に向かって予め定めた方向にツイスト配向し、透過光に対して実質的にλ/2のリタデーションを生じさせる液晶層と、
互いに対向配置された前記第1、第2の基板の前記第1の基板より外側に配置され、前記第1、第2の電極間に十分強い電界が印加されたときに、前記第1の配向膜近傍の液晶分子が配列する第3の方向に透過軸又は吸収軸のいずれか一方の光学軸を実質的に一致させて配置した第1の偏光板と、
互いに対向配置された前記第1、第2の基板の前記第2の基板より外側に配置され、前記第1の偏光板の光学軸に透過軸又は吸収軸のいずれか一方の光学軸を実質的に直交させて配置した第2の偏光板とを備えることを特徴とする液晶表示素子。
A first substrate on which at least one electrode is formed;
A second substrate that is disposed opposite to the surface of the first substrate on which the electrode is formed, and on which the at least one electrode facing the electrode is formed on the surface facing the first substrate;
A first alignment film in which an alignment process is performed in a predetermined first direction on an inner surface of the first substrate on which the electrode is formed;
A second alignment film having an alignment treatment applied in a second direction substantially intersecting the first direction at an angle of 90 ° to an inner surface of the second substrate on which the electrode is formed; ,
The liquid crystal is sandwiched between the first alignment film of the first substrate and the second alignment film of the second substrate, and an electric field is not applied between the first and second electrodes. A liquid crystal layer in which molecules are twist-oriented in a predetermined direction from the first alignment film toward the second alignment film, and a retardation of substantially λ / 2 is generated with respect to transmitted light;
The first orientation when a sufficiently strong electric field is applied between the first and second electrodes, which are arranged outside the first substrate and the first and second substrates disposed opposite to each other. A first polarizing plate arranged with the optical axis of either the transmission axis or the absorption axis substantially aligned with the third direction in which liquid crystal molecules in the vicinity of the film are arranged;
The first and second substrates disposed opposite to each other are disposed outside the second substrate, and the optical axis of the first polarizing plate is substantially the optical axis of either the transmission axis or the absorption axis. And a second polarizing plate arranged orthogonal to the liquid crystal display element.
前記第1の偏光板は、前記液晶層の液晶分子が前記第1の配向膜から前記第2の配向膜に向かってツイスト配向するツイスト角度範囲の中間の角度の方向である第3の方向に、光学軸を一致させて配置したことを特徴とする請求項1に記載の液晶表示素子。   The first polarizing plate has a third direction which is an intermediate angle direction of a twist angle range in which the liquid crystal molecules of the liquid crystal layer are twist-oriented from the first alignment film toward the second alignment film. The liquid crystal display element according to claim 1, wherein the liquid crystal display elements are arranged such that their optical axes coincide with each other. 前記第1の偏光板は、前記第1の配向膜の配向処理方向と前記第2の配向膜の配向処理方向とが成す角度の実質的に1/2の角度だけ、前記第1、第2の配向膜の一方の配向処理方向方から他方に向かって回転した第3の方向に、光学軸を一致させて配置したことを特徴とする請求項1に記載の液晶表示素子。   The first polarizing plate has the first and second angles substantially equal to ½ of the angle formed by the alignment treatment direction of the first alignment film and the alignment treatment direction of the second alignment film. The liquid crystal display element according to claim 1, wherein the alignment film is arranged so that the optical axis coincides with a third direction rotated from one alignment processing direction toward the other. 前記第2配向膜は、前記第1の配向膜の配向処理方向である第1の方向に対して実質的に90で交差する第2の方向に配向処理が施され、
前記液晶層は、その液晶分子が前記第1の配向膜から前記第2の配向膜に向かって90゜の角度でツイスト配向していることを特徴とする請求項1に記載の液晶表示素子。
The second alignment film is subjected to an alignment process in a second direction substantially intersecting at 90 with respect to a first direction that is an alignment process direction of the first alignment film,
2. The liquid crystal display element according to claim 1, wherein the liquid crystal layer has twist alignment of the liquid crystal molecules at an angle of 90 ° from the first alignment film toward the second alignment film.
前記第1、第2の基板は、観察側から見て左右方向に延びる上下の辺と、上下方向に延びる左右の辺とを有するそれぞれ矩形の基板からなり、前記第1、第2の配向膜は、前記矩形基板の上下の辺に平行な水平軸に対してそれぞれほぼ45゜の方向に配向処理が施され、
前記第1の偏光板は、その透過軸を前記水平軸と直行する方向に向けて配置され、前記第2の偏光板は、その透過軸を前記水平軸と平行にして配置されていることを特徴とする請求項4に記載の液晶表示素子。
The first and second substrates are each formed of a rectangular substrate having upper and lower sides extending in the left-right direction as viewed from the observation side and left and right sides extending in the up-down direction, and the first and second alignment films Is subjected to an orientation treatment in a direction of approximately 45 ° with respect to a horizontal axis parallel to the upper and lower sides of the rectangular substrate,
The first polarizing plate is disposed with its transmission axis oriented in a direction perpendicular to the horizontal axis, and the second polarizing plate is disposed with its transmission axis parallel to the horizontal axis. The liquid crystal display element according to claim 4.
前記液晶層の透過する光に対する屈折率異方性をΔnとし、その光が透過する液晶層の層厚をdとした場合に、それらの積Δn・dが、380nm〜480nmの範囲に設定されていることを特徴とする請求項4に記載の液晶表示素子。   When the refractive index anisotropy with respect to the light transmitted through the liquid crystal layer is Δn and the thickness of the liquid crystal layer through which the light is transmitted is d, the product Δn · d is set in the range of 380 nm to 480 nm. The liquid crystal display element according to claim 4, wherein the liquid crystal display element is a liquid crystal display element. 前記第1、第2の基板の各電極が対向する画素部毎に、互いに異なる波長光を選択透過させる複数色のカラーフィルタがそれぞれ配設され、異なる色のカラーフィルタに対応する画素部毎に液晶層厚がそれぞれ異なる値に設定されていることを特徴とする請求項1に記載の液晶表示素子。   A plurality of color filters for selectively transmitting light of different wavelengths are provided for each pixel unit facing each electrode of the first and second substrates, and for each pixel unit corresponding to a color filter of a different color. The liquid crystal display element according to claim 1, wherein the liquid crystal layer thicknesses are set to different values. 前記第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸を前記第3の方向と平行にかつ互いに逆向きに向けて配置された、ディスコティック液晶層からなる一対の視野角補償フィルムをさらに備えることを特徴とする請求項1に記載の液晶表示素子。   The optical axes are parallel to the third direction and opposite to each other between the first polarizing plate and the first substrate and between the second polarizing plate and the second substrate, respectively. The liquid crystal display element according to claim 1, further comprising a pair of viewing angle compensation films made of a discotic liquid crystal layer disposed toward the surface. 前記第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸をそれぞれ隣接する基板の配向膜に施された配向膜処理の方向に実質的に平行にして配置された、ディスコティック液晶層からなる一対の視野角補償フィルムをさらに備えることを特徴とする請求項1に記載の液晶表示素子。   Alignment applied to the alignment films of adjacent substrates between the first polarizing plate and the first substrate and between the second polarizing plate and the second substrate, respectively. The liquid crystal display element according to claim 1, further comprising a pair of viewing angle compensation films made of a discotic liquid crystal layer and arranged substantially parallel to the direction of the film treatment. 前記液晶層の透過する光に対する屈折率異方性をΔnとし、その光が透過する液晶層の層厚をdとした場合に、それらの積Δn・dが、450nm〜550nmの範囲に設定されていることを特徴とする請求項9に記載の液晶表示素子。   When the refractive index anisotropy with respect to the light transmitted through the liquid crystal layer is Δn and the thickness of the liquid crystal layer through which the light is transmitted is d, the product Δn · d is set in the range of 450 nm to 550 nm. The liquid crystal display element according to claim 9. 前記第1の偏光板とこれに隣接する視野角補償フィルムの間、及び前記第2の偏光板とこれに隣接する視野角補償フィルムの間それぞれに、進相軸又は遅相軸の何れか一方の光学軸をそれぞれ隣接する視野角補償フィルムの光学軸の方向と実質的に平行にして配置された、一対の位相差板をさらに備えることを特徴とする請求項9に記載の液晶表示素子。   Either the fast axis or the slow axis between the first polarizing plate and the viewing angle compensation film adjacent thereto and between the second polarizing plate and the viewing angle compensation film adjacent thereto. The liquid crystal display element according to claim 9, further comprising a pair of retardation plates arranged so that their optical axes are substantially parallel to the direction of the optical axis of the adjacent viewing angle compensation film. 前記液晶層の屈折率異方性をΔnとし、その光が透過する液晶層の層厚をdとした場合に、それらの積Δn・dが、350nm〜450nmの範囲に設定され、
且つ、前記一対の位相差板のリタデーションReが、15nm〜55nmの範囲に設定されていることを特徴とする請求項11に記載の液晶表示素子。
When the refractive index anisotropy of the liquid crystal layer is Δn and the thickness of the liquid crystal layer through which the light is transmitted is d, their product Δn · d is set in the range of 350 nm to 450 nm,
The liquid crystal display element according to claim 11, wherein the retardation Re of the pair of retardation plates is set in a range of 15 nm to 55 nm.
前記第1、第2の基板は、それぞれ矩形の基板からなり、前記第1、第2の配向膜は、前記矩形基板の一辺に対してほぼ45゜の方向に配向処理が施されていることを特徴とする請求項11に記載の液晶表示素子。   The first and second substrates are each formed of a rectangular substrate, and the first and second alignment films are subjected to an alignment process in a direction of approximately 45 ° with respect to one side of the rectangular substrate. The liquid crystal display element according to claim 11. 少なくとも1つの電極が形成された第1の基板と、
前記第1の基板の前記電極が形成された面に対向して配置され、前記第1の基板と対向する面に、前記電極と対向する少なくとも1つの電極が形成された第2の基板と、
前記第1の基板の前記電極が形成された内面に、観察側から見て左右方向の水平線に対して実質的に45゜で傾斜した第1の方向に配向処理が施された第1の配向膜と、
前記第2の基板の前記電極が形成された内面に、前記第1の方向に対して実質的に90゜で交差する第2の方向に配向処理が施された第2の配向膜と、
前記第1の基板の前記第1の配向膜と、前記第2の基板の第2の配向膜との間に挟持され、前記第1、第2の電極間に電界が印加されないときに、液晶分子が前記第1の配向膜から前記第2の配向膜に向かって実質的に90゜でツイスト配向し、透過光に対して実質的にλ/2のリタデーションを生じさせる液晶層と、
前記第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸をそれぞれ隣接する基板の配向膜に施された配向膜処理の方向に実質的に平行にして配置されたディスコティック液晶層からなる一対の視野角補償フィルムと、
互いに対向配置された前記第1、第2の基板の前記第1の基板より外側に配置され、前記第1、第2の電極間に十分強い電界が印加されたときに、前記第1の配向膜近傍の液晶分子が配列する第3の方向に透過軸又は吸収軸のいずれか一方の光学軸を実質的に一致させて配置した第1の偏光板と、
互いに対向配置された前記第1、第2の基板の前記第2の基板より外側に配置され、前記第1の偏光板の光学軸に透過軸又は吸収軸のいずれか一方の光学軸を実質的に直交させて配置した第2の偏光板とを備えることを特徴とする液晶表示素子。
A first substrate on which at least one electrode is formed;
A second substrate that is disposed opposite to the surface of the first substrate on which the electrode is formed, and on which the at least one electrode facing the electrode is formed on the surface facing the first substrate;
A first alignment in which an inner surface of the first substrate on which the electrodes are formed is subjected to an alignment process in a first direction substantially inclined at 45 ° with respect to a horizontal line in the horizontal direction when viewed from the observation side. A membrane,
A second alignment film having an alignment treatment applied in a second direction substantially intersecting the first direction at 90 ° on the inner surface of the second substrate on which the electrodes are formed;
The liquid crystal is sandwiched between the first alignment film of the first substrate and the second alignment film of the second substrate, and an electric field is not applied between the first and second electrodes. A liquid crystal layer in which molecules are twist-aligned substantially at 90 ° from the first alignment film toward the second alignment film, and a retardation of substantially λ / 2 is generated with respect to transmitted light;
Alignment applied to the alignment films of adjacent substrates between the first polarizing plate and the first substrate and between the second polarizing plate and the second substrate, respectively. A pair of viewing angle compensation films consisting of a discotic liquid crystal layer disposed substantially parallel to the direction of film treatment;
The first orientation when a sufficiently strong electric field is applied between the first and second electrodes, which are arranged outside the first substrate and the first and second substrates disposed opposite to each other. A first polarizing plate arranged with the optical axis of either the transmission axis or the absorption axis substantially aligned with the third direction in which liquid crystal molecules in the vicinity of the film are arranged;
The first and second substrates disposed opposite to each other are disposed outside the second substrate, and the optical axis of the first polarizing plate is substantially the optical axis of either the transmission axis or the absorption axis. And a second polarizing plate arranged orthogonal to the liquid crystal display element.
前記第1の偏光板は、前記第1の配向膜の配向処理方向と前記第2の配向膜の配向処理方向とが成す角度の実質的に1/2の角度だけ、前記第1、第2の配向膜の配向処理方向の一方から他方に向かって回転した第3の方向に、光学軸を一致させて配置したことを特徴とする請求項14に記載の液晶表示素子。   The first polarizing plate has the first and second angles substantially equal to ½ of the angle formed by the alignment treatment direction of the first alignment film and the alignment treatment direction of the second alignment film. The liquid crystal display element according to claim 14, wherein the liquid crystal display element is arranged so that an optical axis coincides with a third direction rotated from one of the alignment treatment directions of the alignment film toward the other. 前記液晶層の透過する光に対する屈折率異方性をΔnとし、その光が透過する液晶層の層厚をdとした場合に、それらの積Δn・dが、450nm〜550nmの範囲に設定されていることを特徴とする請求項14に記載の液晶表示素子。   When the refractive index anisotropy with respect to the light transmitted through the liquid crystal layer is Δn and the thickness of the liquid crystal layer through which the light is transmitted is d, the product Δn · d is set in the range of 450 nm to 550 nm. The liquid crystal display element according to claim 14, wherein the liquid crystal display element is a liquid crystal display element. 前記第1、第2の基板は、観察側から見て左右方向に延びる上下の辺と、上下方向に延びる左右の辺とを有するそれぞれ矩形の基板からなり、前記第1、第2の配向膜は、前記矩形基板の上下の辺に平行な水平軸に対してそれぞれほぼ45゜の方向に配向処理が施されていることを特徴とする請求項16に記載の液晶表示素子。   The first and second substrates are each formed of a rectangular substrate having upper and lower sides extending in the left-right direction as viewed from the observation side and left and right sides extending in the up-down direction, and the first and second alignment films 17. The liquid crystal display element according to claim 16, wherein an alignment process is performed in a direction of approximately 45 degrees with respect to a horizontal axis parallel to the upper and lower sides of the rectangular substrate. 少なくとも1つの電極が形成された第1の基板と、
前記第1の基板の前記電極が形成された面に対向して配置され、前記第1の基板と対向する面に、前記電極と対向する少なくとも1つの電極が形成された第2の基板と、
前記第1の基板の前記電極が形成された内面に、観察側から見て左右方向の水平線に対して実質的に45゜で傾斜した第1の方向に配向処理が施された第1の配向膜と、
前記第2の基板の前記電極が形成された内面に、前記第1の方向に対して実質的に90゜で交差する第2の方向に配向処理が施された第2の配向膜と、
前記第1の基板の前記第1の配向膜と、前記第2の基板の第2の配向膜との間に挟持され、前記第1、第2の電極間に電界が印加されないときに、液晶分子が前記第1の配向膜から前記第2の配向膜に向かって予め定めた方向に実質的に90゜でツイスト配向し、透過光に対して実質的にλ/2のリタデーションを生じさせる液晶層と、
前記第1の偏光板と前記第1の基板の間、及び前記第2の偏光板と前記第2の基板の間それぞれに、各々の光学軸をそれぞれ隣接する基板の配向膜に施された配向膜処理の方向に実質的に平行にして配置されたディスコティック液晶層からなる一対の視野角補償フィルムと、
前記第1の偏光板とこれに隣接する視野角補償フィルムの間、及び前記第2の偏光板とこれに隣接する視野角補償フィルムの間それぞれに、進相軸又は遅相軸の何れか一方の光学軸をそれぞれ隣接する視野角補償フィルムの光学軸の方向と実質的に平行にして配置された一対の位相差板と、
互いに対向配置された前記第1、第2の基板の前記第1の基板より外側に配置され、前記第1、第2の電極間に十分強い電界が印加されたときに、前記第1の配向膜近傍の液晶分子が配列する第3の方向に透過軸又は吸収軸のいずれか一方の光学軸を実質的に一致させて配置した第1の偏光板と、
互いに対向配置された前記第1、第2の基板の前記第2の基板より外側に配置され、前記第1の偏光板の光学軸に透過軸又は吸収軸のいずれか一方の光学軸を実質的に直交させて配置した第2の偏光板とを備えることを特徴とする液晶表示素子
A first substrate on which at least one electrode is formed;
A second substrate that is disposed opposite to the surface of the first substrate on which the electrode is formed, and on which the at least one electrode facing the electrode is formed on the surface facing the first substrate;
A first alignment in which an inner surface of the first substrate on which the electrodes are formed is subjected to an alignment process in a first direction substantially inclined at 45 ° with respect to a horizontal line in the horizontal direction when viewed from the observation side. A membrane,
A second alignment film having an alignment treatment applied in a second direction substantially intersecting the first direction at 90 ° on the inner surface of the second substrate on which the electrodes are formed;
The liquid crystal is sandwiched between the first alignment film of the first substrate and the second alignment film of the second substrate, and an electric field is not applied between the first and second electrodes. Liquid crystal in which molecules are twist-aligned substantially at 90 ° in a predetermined direction from the first alignment film toward the second alignment film, and a retardation of substantially λ / 2 is generated with respect to transmitted light. Layers,
Alignment applied to the alignment films of adjacent substrates between the first polarizing plate and the first substrate and between the second polarizing plate and the second substrate, respectively. A pair of viewing angle compensation films consisting of a discotic liquid crystal layer disposed substantially parallel to the direction of film treatment;
Either the fast axis or the slow axis between the first polarizing plate and the viewing angle compensation film adjacent thereto and between the second polarizing plate and the viewing angle compensation film adjacent thereto. A pair of retardation plates arranged so that their optical axes are substantially parallel to the direction of the optical axis of the adjacent viewing angle compensation film,
The first orientation when a sufficiently strong electric field is applied between the first and second electrodes, which are arranged outside the first substrate and the first and second substrates disposed opposite to each other. A first polarizing plate arranged with the optical axis of either the transmission axis or the absorption axis substantially aligned with the third direction in which liquid crystal molecules in the vicinity of the film are arranged;
The first and second substrates disposed opposite to each other are disposed outside the second substrate, and the optical axis of the first polarizing plate is substantially the optical axis of either the transmission axis or the absorption axis. And a second polarizing plate arranged orthogonal to the liquid crystal display element
前記第1、第2の基板は、それぞれ矩形の基板からなり、
前記第1、第2の配向膜は、前記矩形基板の一辺に対してほぼ45゜の方向に配向処理が施され、
前記液晶層の屈折率異方性をΔnとし、その光が透過する液晶層の層厚をdとした場合に、それらの積Δn・dが、350nm〜450nmの範囲に設定され、
且つ、前記一対の位相差板のリタデーションReが、15nm〜55nmであることを特徴とする請求項18に記載の液晶表示素子。
Each of the first and second substrates is a rectangular substrate,
The first and second alignment films are subjected to an alignment process in a direction of approximately 45 ° with respect to one side of the rectangular substrate.
When the refractive index anisotropy of the liquid crystal layer is Δn and the thickness of the liquid crystal layer through which the light is transmitted is d, their product Δn · d is set in the range of 350 nm to 450 nm,
The liquid crystal display element according to claim 18, wherein the retardation Re of the pair of retardation plates is 15 nm to 55 nm.
前記第1、第2の基板の各電極が対向する画素部毎に互いに異なる波長光を選択透過させる複数色のカラーフィルタがそれぞれ配設され、異なる色のカラーフィルタに対応する画素部毎に液晶層厚がそれぞれ異なる値に設定されていることを特徴とする請求項18に記載の液晶表示素子。   A plurality of color filters for selectively transmitting light of different wavelengths are provided for each pixel portion facing each electrode of the first and second substrates, and a liquid crystal is provided for each pixel portion corresponding to the color filter of a different color. The liquid crystal display element according to claim 18, wherein the layer thicknesses are set to different values.
JP2006058922A 2005-03-09 2006-03-06 Liquid crystal display element Expired - Fee Related JP4687507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006058922A JP4687507B2 (en) 2005-03-09 2006-03-06 Liquid crystal display element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005064970 2005-03-09
JP2005064970 2005-03-09
JP2006058922A JP4687507B2 (en) 2005-03-09 2006-03-06 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2006285220A true JP2006285220A (en) 2006-10-19
JP4687507B2 JP4687507B2 (en) 2011-05-25

Family

ID=37407162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006058922A Expired - Fee Related JP4687507B2 (en) 2005-03-09 2006-03-06 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP4687507B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158503A (en) * 2006-12-22 2008-07-10 Samsung Electronics Co Ltd Liquid crystal display device
JP2009093166A (en) * 2007-09-19 2009-04-30 Fujifilm Corp Liquid crystal display device
US7532288B2 (en) 2007-01-26 2009-05-12 Casio Computer Co., Ltd. Liquid crystal display device
US7667802B2 (en) 2007-01-26 2010-02-23 Casio Computer Co., Ltd. Television set using liquid crystal display apparatus having improved viewing angle
JP2010107941A (en) * 2008-07-08 2010-05-13 Fujifilm Corp Tn mode liquid crystal display device, optical compensatory film used in it, manufacturing method for the same, and sheet polarizer
JP2011112952A (en) * 2009-11-27 2011-06-09 Casio Computer Co Ltd Liquid crystal display element and optical compensation method thereof
JP2012063584A (en) * 2010-09-16 2012-03-29 Mitsubishi Electric Corp Liquid crystal display apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879277B2 (en) 2012-01-30 2016-03-08 富士フイルム株式会社 Liquid crystal display
JP5879278B2 (en) 2012-01-30 2016-03-08 富士フイルム株式会社 Liquid crystal display

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688962A (en) * 1991-09-30 1994-03-29 Casio Comput Co Ltd Liquid crystal display device
JPH0749493A (en) * 1993-08-06 1995-02-21 Fujitsu Ltd Liquid crystal display panel
JPH0843825A (en) * 1994-07-27 1996-02-16 Fujitsu Ltd Liquid crystal display panel
JPH0926572A (en) * 1995-07-11 1997-01-28 Nippon Oil Co Ltd Liquid crystalline optical film and compensation film for liquid crystal display element consisting of liquid crystalline optical film as well as liquid crystal display device having this compensation film
JPH0961630A (en) * 1995-06-16 1997-03-07 Nippon Oil Co Ltd Compensation film for liquid crystal display element and liquid crystal display device in which this compensation film is built
JPH09197445A (en) * 1996-01-16 1997-07-31 Fujitsu Ltd Color liquid crystal panel
JP2004325795A (en) * 2003-04-24 2004-11-18 Casio Comput Co Ltd Liquid crystal display device
JP2006078539A (en) * 2004-09-07 2006-03-23 Fuji Photo Film Co Ltd Optical film, polarizing plate, and liquid crystal display device
JP2009223350A (en) * 2009-07-10 2009-10-01 Casio Comput Co Ltd Liquid crystal display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688962A (en) * 1991-09-30 1994-03-29 Casio Comput Co Ltd Liquid crystal display device
JPH0749493A (en) * 1993-08-06 1995-02-21 Fujitsu Ltd Liquid crystal display panel
JPH0843825A (en) * 1994-07-27 1996-02-16 Fujitsu Ltd Liquid crystal display panel
JPH0961630A (en) * 1995-06-16 1997-03-07 Nippon Oil Co Ltd Compensation film for liquid crystal display element and liquid crystal display device in which this compensation film is built
JPH0926572A (en) * 1995-07-11 1997-01-28 Nippon Oil Co Ltd Liquid crystalline optical film and compensation film for liquid crystal display element consisting of liquid crystalline optical film as well as liquid crystal display device having this compensation film
JPH09197445A (en) * 1996-01-16 1997-07-31 Fujitsu Ltd Color liquid crystal panel
JP2004325795A (en) * 2003-04-24 2004-11-18 Casio Comput Co Ltd Liquid crystal display device
JP2006078539A (en) * 2004-09-07 2006-03-23 Fuji Photo Film Co Ltd Optical film, polarizing plate, and liquid crystal display device
JP2009223350A (en) * 2009-07-10 2009-10-01 Casio Comput Co Ltd Liquid crystal display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008158503A (en) * 2006-12-22 2008-07-10 Samsung Electronics Co Ltd Liquid crystal display device
US8665400B2 (en) 2006-12-22 2014-03-04 Samsung Display Co., Ltd. Display device
US7532288B2 (en) 2007-01-26 2009-05-12 Casio Computer Co., Ltd. Liquid crystal display device
US7667802B2 (en) 2007-01-26 2010-02-23 Casio Computer Co., Ltd. Television set using liquid crystal display apparatus having improved viewing angle
US7999894B2 (en) 2007-01-26 2011-08-16 Casio Computer Co., Ltd Liquid crystal display device
KR101171426B1 (en) * 2007-01-26 2012-08-06 가시오게산키 가부시키가이샤 Liquid crystal display device with improved viewing angle and television set with such a device
CN101762905B (en) * 2007-01-26 2012-09-12 卡西欧计算机株式会社 Liquid crystal display device
US8493528B2 (en) 2007-01-26 2013-07-23 Casio Computer Co., Ltd. Liquid crystal display device
JP2009093166A (en) * 2007-09-19 2009-04-30 Fujifilm Corp Liquid crystal display device
JP2010107941A (en) * 2008-07-08 2010-05-13 Fujifilm Corp Tn mode liquid crystal display device, optical compensatory film used in it, manufacturing method for the same, and sheet polarizer
JP2011112952A (en) * 2009-11-27 2011-06-09 Casio Computer Co Ltd Liquid crystal display element and optical compensation method thereof
JP2012063584A (en) * 2010-09-16 2012-03-29 Mitsubishi Electric Corp Liquid crystal display apparatus

Also Published As

Publication number Publication date
JP4687507B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
KR100798209B1 (en) Liquid crystal display device
JP4225279B2 (en) Liquid crystal display device and electronic device
JP4080245B2 (en) Liquid crystal display
JP4687507B2 (en) Liquid crystal display element
JP4223993B2 (en) Liquid crystal display
JP4551246B2 (en) Liquid crystal display
WO2011161921A1 (en) Liquid crystal display device
US7995170B2 (en) Liquid crystal display device
JP2009162837A (en) Liquid crystal display
JP2006091229A (en) Liquid crystal display
JP5332548B2 (en) Color filter and liquid crystal display device including the same
JP4894319B2 (en) Liquid crystal display element
JP5544844B2 (en) Liquid crystal display element
JP4496780B2 (en) Liquid crystal display element
KR100798210B1 (en) Liquid crystal display device having liquid crystal layer in which liquid crystal molecules are homogeneously oriented
JP6363006B2 (en) Liquid crystal display
JP4184216B2 (en) Liquid crystal display
JP2007272252A (en) Liquid crystal display device
JP2004325795A (en) Liquid crystal display device
JP4985798B2 (en) Liquid crystal display element
JP3847772B2 (en) Liquid crystal display panel provided with polarizing plate with retardation film
JP2006091114A (en) Liquid crystal display element
JP2004354750A (en) Liquid crystal display element
JP2006251599A (en) Liquid crystal device and electronic equipment
JPH08262428A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees