JP2004354750A - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP2004354750A
JP2004354750A JP2003152936A JP2003152936A JP2004354750A JP 2004354750 A JP2004354750 A JP 2004354750A JP 2003152936 A JP2003152936 A JP 2003152936A JP 2003152936 A JP2003152936 A JP 2003152936A JP 2004354750 A JP2004354750 A JP 2004354750A
Authority
JP
Japan
Prior art keywords
liquid crystal
retardation
retardation plate
crystal cell
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003152936A
Other languages
Japanese (ja)
Inventor
Mamoru Yoshida
守 吉田
Tetsushi Yoshida
哲志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2003152936A priority Critical patent/JP2004354750A/en
Publication of JP2004354750A publication Critical patent/JP2004354750A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TN type liquid crystal display element capable of obtaining display which is bright and has high quality without a color tinge. <P>SOLUTION: The liquid crystal display element is provided with a liquid crystal cell 1 having a liquid crystal layer wherein liquid crystal molecules are aligned at 90° twist angle and the value of Δnd is set in the range of 350 to 500 nm, a pair of polarizing plates 11 and 12, and an optical retardation plate 13 disposed between the one substrate 11 and the liquid crystal cell 1 and having 650 nm or 400 nm retardation value, and a deviation angle between a delay phase axis 13a of the retardation plate 13 and an alignment direction 2a of liquid crystal molecules in the vicinity of a substrate 2 adjacent to the retardation plate 13 of the liquid crystal cell is set to be 5°. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、TN(ツイステッドネマティック)型の液晶表示素子に関する。
【0002】
【従来の技術】
液晶表示素子としては、互いに対向する面にそれぞれ電極が形成された一対の基板間に、液晶分子を前記基板間において実質的に90°のツイスト角でツイスト配向させた液晶層を設けてなる液晶セルと、前記液晶セルを挟んで配置された一対の偏光板とにより構成されたTN型液晶表示素子が広く利用されている(特許文献1参照)。
【0003】
【特許文献1】
特開平06−202068号公報
【0004】
【発明が解決しようとする課題】
前記TN型液晶表示素子の表示特性は、液晶の屈折率異方性Δnと液晶層厚dとの積Δndの値によって決まる。
【0005】
しかし、従来のTN型液晶表示素子は、明るい表示が得られるようにΔnd値を設定したものは表示に帯色を生じ、また、帯色を生じないようにΔnd値を設定したものは明るい表示が得られないという問題をもっている。
【0006】
この発明は、明るく、しかも帯色の無い高品質の表示を得ることができるTN型の液晶表示素子を提供することを目的としたものである。
【0007】
【課題を解決するための手段】
この発明の液晶表示素子は、互いに対向する面にそれぞれ電極が形成された一対の基板間に、液晶分子を前記基板間において実質的に90°のツイスト角でツイスト配向させ、液晶の屈折率異方性Δnと液晶層厚dとの積Δndの値を350〜500nmの範囲に設定した液晶層を設けてなる液晶セルと、前記液晶セルを挟んで配置された一対の偏光板と、前記一対の偏光板の少なくとも一方と前記液晶セルとの間に配置された実質的に650nmまたは400nmのリタデーションを有する位相差板とを備え、前記位相差板の遅相軸と前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向とのずれ角を、実質的に5°に設定したことを特徴とする。
【0008】
この液晶表示素子は上記のような構成であるため、明るく、しかも帯色の無い高品質の表示を得ることができる。
【0009】
このように、この発明の液晶表示素子は、液晶分子を実質的に90°のツイスト角でツイスト配向させ、Δndの値を350〜500nmの範囲に設定した液晶層を有する液晶セルと、前記液晶セルを挟んで配置された一対の偏光板と、前記一対の偏光板の少なくとも一方と前記液晶セルとの間に配置された実質的に650nmまたは400nmのリタデーションを有する位相差板とを備え、前記位相差板の遅相軸と前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向とのずれ角を実質的に5°に設定することにより、明るく、しかも帯色の無い高品質の表示を得ることができるようにしたものである。
【0010】
この発明の液晶表示素子は、前記液晶層のΔndを実質的に500nmに設定し、前記一対の偏光板の一方と前記液晶セルとの間に、実質的に650nmのリタデーションを有する位相差板を、その遅相軸を前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらして配置した構成とするのが望ましい。
【0011】
また、この発明の液晶表示素子は、前記液晶層のΔndを実質的に400nmに設定し、前記一対の偏光板の一方と前記液晶セルとの間に、実質的に400nmのリタデーションを有する位相差板を、その遅相軸を前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらして配置した構成とするのが望ましい。
【0012】
さらに、この発明の液晶表示素子は、前記液晶層のΔndを実質的に470nmに設定し、前記一対の偏光板の一方と前記液晶セルとの間に、実質的に650nmのリタデーションを有する第1の位相差板を、その遅相軸を前記液晶セルの前記第1の位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記第1の位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらして配置し、他方の偏光板と前記液晶セルとの間に、実質的に400nmのリタデーションを有する第2の位相差板を、その遅相軸を前記液晶セルの前記第2の位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記第2の位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらして配置した構成とするのが望ましい。
【0013】
【発明の実施の形態】
図1〜図4はこの発明の第1の実施例を示しており、図1及び図2は液晶表示素子の分解斜視図及び一部分の断面図である。
【0014】
この液晶表示素子はTN型のものであり、図1及び図2に示したように、液晶セル1と、前記液晶セル1を挟んでその前側と後側とに配置された一対の偏光板11,12と、前記一対の偏光板11,12の一方と前記液晶セル1との間に配置された位相差板13とを備えている。
【0015】
前記液晶セル1は、図2に示したように、互いに対向する面にそれぞれ透明な電極4,5が形成された一対の透明基板2,3間に、液晶分子を前記基板2,3間において実質的に90°のツイスト角でツイスト配向させた液晶層10を設けたものであり、その液晶の屈折率異方性Δnと液晶層厚dとの積Δndの値は350〜500nmの範囲に設定されている。
【0016】
この液晶セル1は、例えばTFT(薄膜トランジスタ)をアクティブ素子とするアクティブマトリックス型のものであり、一対の基板2,3の対向面にそれぞれ形成された電極4,5のうち、一方の基板、例えば表示の観察側である前側(図において上側)の基板(以下、前基板と言う)1に形成された電極4は、基板1面の略全体にわたる一枚膜状の対向電極、他方の基板(以下、後基板と言う)3に形成された電極5は、行方向及び列方向にマトリックス状に配列する複数の画素電極である。
【0017】
なお、図では省略しているが、前記後基板3の前基板2に対向する面には、前記複数の画素電極5にそれぞれ接続された複数のTFTと、各行のTFTにゲート信号を供給する複数のゲート配線と、各列のTFTにデータ信号を供給する複数のデータ配線が設けられている。
【0018】
また、この液晶セル1は、前記複数の画素電極5と対向電極4とが互いに対向する領域からなる複数の画素にそれぞれ対応する複数の色、例えば赤、緑、青の3色のカラーフィルタ6R,6G,6Bを備えており、このカラーフィルタ6R,6G,6Bは、前基板2の後基板3に対向する面に形成され、その上に前記対向電極4が形成されている。
【0019】
そして、前記一対の基板2,3は、前記複数の画素の配列領域(表示エリア)を囲む枠状のシール材9(図1参照)を介して接合されており、これらの基板2,3間の前記シール材9により囲まれた領域に液晶層10が設けられている。
【0020】
前記液晶層10の液晶分子は、前記一対の基板2,3の対向面にそれぞれ前記電極4,5を覆って形成された配向膜7,8により両基板2,3の近傍の配向方向を規定され、前記基板2,3間において実質的に90°のツイスト角でツイスト配向している。
【0021】
この実施例では、図1に示したように、前基板2の近傍の液晶分子を画面の横軸xに対し前側から見て左回りに実質的に45°ずれた方向2aに配向させ、後基板3の近傍の液晶分子を前記横軸xに対し前側から見て右回りに実質的に45°ずれた方向3aに配向させ、前記液晶層10の液晶分子を、そのツイスト方向を破線矢印で示したように、後基板3から前基板2に向かい、前側から見て右回りに実質的に90°のツイスト角でツイスト配向させている。
【0022】
また、この実施例の液晶表示素子はノーマリーホワイトモードのものであり、前記液晶セル1を挟んでその前側と後側とに配置された一対の偏光板11,12は、それぞれの透過軸11a,12aを実質的に互いに直交させるとともに、前側の偏光板11の透過軸11aを前記液晶セル1の前基板2の近傍の液晶分子配向方向2aと実質的に直交させるか或いは実質的に平行にし、後側の偏光板12の透過軸12aを前記液晶セル1の後基板3の近傍の液晶分子配向方向3aと実質的に直交させるか或いは実質的に平行にして配置されている。
【0023】
なお、前記液晶セル1の液晶分子のツイスト角と、一対の偏光板11,12の透過軸11a,12aの交差角は、いずれも90°±10°であり、好ましくは90°±5°、より好ましくは90°±3°である。
【0024】
さらに、前記位相差板13は、実質的に650nmまたは400nmのリタデーションを有する位相差板であり、この位相差板13は、前記一対の偏光板11,12の一方と前記液晶セル1との間に、前記位相差板13の遅相軸13aと前記液晶セル1の前記位相差板13に隣接する前基板の近傍の液晶分子配向方向2aとのずれ角を実質的に5°に設定して配置されている。
【0025】
この実施例では、前記液晶セル1の液晶層10のΔndを実質的に500nmに設定し、実質的に650nmのリタデーションを有する位相差板13を、前側の偏光板11と前記液晶セル1との間に、前記位相差板13の遅相軸13aを前記液晶セル1の前記位相差板13に隣接する前基板2の近傍の液晶分子配向方向2aに対し、前記前基板2から後基板3に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらして配置している。
【0026】
図3は、この実施例における前側から見た液晶セル1の前後の基板2,3の近傍の液晶分子配向方向2a,3a及び液晶分子のツイスト方向と位相差板13の遅相軸13aの向きを示しており、この図では、前記位相差板13の遅相軸13aを一点鎖線で示している。
【0027】
なお、上述したように、前記液晶セル1の前基板2の近傍の液晶分子配向方向2aは、画面の横軸xに対し前側から見て左回りに実質的に45°ずれた方向であり、液晶分子は、後基板3から前基板2に向かい、前側から見て右回りにツイスト配向している。
【0028】
そして、この実施例では、前記位相差板13を前側の偏光板11と液晶セル1との間に配置しているため、前記液晶セル1の前記位相差板13に隣接する前基板2から他方の後基板3に向かう液晶分子のツイスト方向は、図に破線矢印で示した方向とは逆の左回り方向である。
【0029】
そのため、この実施例では、前記位相差板13を図1のように、その遅相軸13aを前記画面の横軸xに対し前側から見て左回りに実質的に50°ずらして配置し、この位相差板13の遅相軸13aを、前記液晶セル1の前記位相差板13に隣接する前基板2の近傍の液晶分子配向方向2aに対し、前記前基板2から後基板3に向かう液晶分子のツイスト方向(図の破線矢印の向きとは逆のツイスト方向)と同方向に実質的に5°ずらしている。
【0030】
なお、この実施例において、前記液晶セル1の液晶層10のΔndは、500nm±10nmであり、好ましくは500nm±5nmである。また、前記位相差板13のリタデーションは、650nm±10nmであり、好ましくは650nm±5nmである。さらに、前記位相差板13の遅相軸13aと前記液晶セル1の前記位相差板13に隣接する前基板2の近傍の液晶分子配向方向2aとのずれ角は、5°±2°であり、好ましくは5°±1°である。
【0031】
この液晶表示素子は、上述したように、液晶分子を実質的に90°のツイスト角でツイスト配向させ、Δndの値を実質的に500nmに設定した液晶層10を有する液晶セル1と、前記液晶セル1を挟んでその前側と後側とに配置された一対の偏光板11,12と、前側の偏光板11と前記液晶セル1との間に配置された実質的に650nmのリタデーションを有する位相差板13とを備え、前記位相差板13の遅相軸13aを、前記液晶セル1の前記位相差板13に隣接する前基板2の近傍の液晶分子配向方向2aに対し、前記位相差板13に隣接する前基板2から他方の後基板3に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらしたものであるため、明るく、しかも帯色の無い高品質の表示を得ることができる。
【0032】
図4は、前記第1の実施例についてカラーフィルタを省略した試験素子を製作し、その波長―透過率特性を測定した結果を、前記位相差板13を備えない比較例1,2の波長―透過率特性と比較して示している。
【0033】
なお、前記比較例1,2はいずれも、カラーフィルタを備えないノーマリーホワイトモードのTN型液晶表示素子であり、比較例1はΔndを470nmに設定したもの、比較例2はΔndを400nmに設定したものである。
【0034】
図4のように、Δndを470nmに設定した比較例1は、可視光帯域の中間付近(550nm付近)の波長光の透過率が高く、明るい表示が得られるが、人間の眼による感度が弱い青の波長域(450nm付近)の光の透過率が低いため、白表示が黄緑色に帯色する。
【0035】
また、Δndを400nmに設定した比較例2は、透過率が最大となる波長域が前記比較例1よりも青の波長側にシフトするため、白表示の帯色は改善されるが、可視光帯域の中間付近の波長光の透過率が低く、明るい表示が得られない。
【0036】
それに対し、前記第1の実施例は、透過率が、青の波長域(450nm付近)から赤の波長域(650nm付近)にわたって高く、したがって、高輝度でしかも帯色の無い白表示が得られる。
【0037】
そして、前記第1の実施例の液晶表示素子は、液晶セル1に、複数の画素にそれぞれ対応する赤、緑、青の3色のカラーフィルタ6R,6G,6Bを備えさせたものであり、これらの画素から色純度の良い赤、緑、青の光を出射させることができるため、明るく、しかも色相の良い高品質のカラー画像を表示することができる。
【0038】
なお、前記第1の実施例では、前側の偏光板11と液晶セル1との間に位相差板13を配置しているが、前記位相差板13は、後側の偏光板12と液晶セル1との間に配置してもよく、その場合は、前記位相差板13を、その遅相軸13aを前記液晶セル1の前記位相差板13に隣接する後基板3の近傍の液晶分子配向方向3aに対し、前記位相差板13に隣接する後基板3から他方の前基板2に向かう液晶分子のツイスト方向(図の破線矢印の方向)と同方向に実質的に5°ずらして配置すればよい。
【0039】
図5はこの発明の第2の実施例を示す液晶表示素子の分解斜視図であり、この液晶表示素子は、液晶セル1の液晶層のΔndを実質的に400nmに設定し、前側の偏光板11と前記液晶セル1との間に、実質的に400nmのリタデーションを有する位相差板14を、その遅相軸14aを前記液晶セル1の前記位相差板14に隣接する前基板2の近傍の液晶分子配向方向2aに対し、前記前基板2から後基板3に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらして配置したものである。
【0040】
なお、この実施例の液晶表示素子は、液晶セル1の液晶層のΔndと位相差板14のリタデーション及びその遅相軸14aの向きが上述した第1の実施例と異なるが、他の構成は同じであるから、重複する説明は図に同符号を付して省略する。
【0041】
図6は、この実施例における前側から見た液晶セル1の前後の基板2,3の近傍の液晶分子配向方向2a,3a及び液晶分子のツイスト方向と位相差板14の遅相軸14aの向きを示しており、この図では、前記位相差板14の遅相軸14aを二点鎖線で示している。
【0042】
図6のように、この実施例では、前記位相差板14を、その遅相軸14aを画面の横軸xに対し前側から見て左回りに実質的に40°ずらして配置し(図5参照)、この位相差板14の遅相軸14aを、前記液晶セル1の前記位相差板14に隣接する前基板2の近傍の液晶分子配向方向(画面の横軸xに対し前側から見て左回りに実質的に45°ずれた方向)2aに対し、前記前基板2から後基板3に向かう液晶分子のツイスト方向(図の破線矢印の向きとは逆のツイスト方向)とは逆方向に実質的に5°ずらしている。
【0043】
なお、この実施例において、前記液晶セル1の液晶層のΔndは、400nm±10nmであり、好ましくは400nm±5nmである。また、前記位相差板14のリタデーションは、400nm±10nmであり、好ましくは400nm±5nmである。さらに、前記位相差板14の遅相軸14aと前記液晶セル1の前記位相差板14に隣接する前基板2の近傍の液晶分子配向方向2aとのずれ角は、5°±2°であり、好ましくは5°±1°である。
【0044】
この液晶表示素子は、上述したように、液晶分子を実質的に90°のツイスト角でツイスト配向させ、Δndの値を実質的に400nmに設定した液晶層を有する液晶セル1と、前記液晶セル1を挟んでその前側と後側とに配置された一対の偏光板11,12と、前側の偏光板11と前記液晶セル1との間に配置された実質的に400nmのリタデーションを有する位相差板14とを備え、前記位相差板14の遅相軸14aを、前記液晶セル1の前記位相差板14に隣接する前基板2の近傍の液晶分子配向方向2aに対し、前記位相差板14に隣接する前基板2から他方の後基板3に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらしたものであるため、明るく、しかも帯色の無い高品質の表示を得ることができる。
【0045】
図7は、前記第2の実施例についてカラーフィルタを省略した試験素子を製作し、その波長―透過率特性を測定した結果を、上述した比較例1,2の波長―透過率特性と比較して示している。
【0046】
図7のように、前記第2の実施例は、透過率が、可視光帯域の中間付近である緑の波長域(450nm付近)から青の波長域(450nm付近)にわたって高くしかも略一定で、また赤の波長域(650nm付近)においても充分に高く、高輝度でしかも帯色の無い白表示が得られる。
【0047】
したがって、前記第2の実施例の液晶表示素子は、明るく、しかも色相の良い高品質のカラー画像を表示することができる。
【0048】
なお、前記第2の実施例では、前側の偏光板11と液晶セル1との間に位相差板14を配置しているが、前記位相差板14は、後側の偏光板12と液晶セル1との間に配置してもよく、その場合は、前記位相差板14を、その遅相軸14aを前記液晶セル1の前記位相差板14に隣接する後基板3の近傍の液晶分子配向方向3aに対し、前記位相差板14に隣接する後基板3から他方の前基板2に向かう液晶分子のツイスト方向(図の破線矢印の方向)とは逆方向に実質的に5°ずらして配置すればよい。
【0049】
図8はこの発明の第3の実施例を示す液晶表示素子の分解斜視図であり、この液晶表示素子は、液晶セル1の液晶層のΔndを実質的に470nmに設定し、前側の偏光板11と前記液晶セル1との間に、実質的に650nmのリタデーションを有する第1の位相差板(第1の実施例における位相差板)13を、その遅相軸13aを前記液晶セル1の前記第1の位相差板13に隣接する前基板2の近傍の液晶分子配向方向2aに対し、前記前基板2から後基板3に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらして配置し、後側の偏光板12と前記液晶セル1との間に、実質的に400nmのリタデーションを有する第2の位相差板(第2の実施例における位相差板)14を、その遅相軸14aを前記液晶セル1の前記第2の位相差板14に隣接する後基板3の近傍の液晶分子配向方向3aに対し、前記後基板3から前基板2に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらして配置したものである。
【0050】
なお、この実施例において、前記液晶セル1は、その液晶層のΔndの値が上述した第1の実施例と異なるが、他の構成は同じであり、また、前後の偏光板11,12の配置状態も第1の実施例と同じであるから、重複する説明は図に同符号を付して省略する。
【0051】
図9は、この実施例における前側から見た液晶セル1の前後の基板2,3の近傍の液晶分子配向方向2a,3a及び液晶分子のツイスト方向と第1及び第2の位相差板13,14の遅相軸13a,14aの向きを示しており、この図では、第1の位相差板13の遅相軸13aを一点鎖線で示し、第2の位相差板14の遅相軸14aを二点鎖線で示している。
【0052】
図9のように、この実施例では、前記第1の位相差板13を、その遅相軸13aを画面の横軸xに対し前側から見て左回りに実質的に50°ずらして配置し(図8参照)、この第1の位相差板13の遅相軸13aを、前記液晶セル1の前記第1の位相差板13に隣接する前基板2の近傍の液晶分子配向方向(画面の横軸xに対し前側から見て左回りに実質的に45°ずれた方向)2aに対し、前記前基板2から後基板3に向かう液晶分子のツイスト方向(図の破線矢印の向きとは逆のツイスト方向)と同方向に実質的に5°ずらし、前記第2の位相差板14を、その遅相軸14aを前記画面の横軸xに対し前側から見て右回りに実質的に40°ずらして配置し(図8参照)、この第2の位相差板14の遅相軸14aを、前記液晶セル1の前記第2の位相差板14に隣接する後基板3の近傍の液晶分子配向方向(画面の横軸xに対し前側から見て右回りに実質的に45°ずれた方向)3aに対し、前記後基板3から前基板2に向かう液晶分子のツイスト方向(図の破線矢印の方向)とは逆方向に実質的に5°ずらしている。
【0053】
なお、この実施例において、前記液晶セル1の液晶層のΔndは、470nm±10nmであり、好ましくは500nm±5nmである。また、前記第1の位相差板13のリタデーションは、650nm±10nm、好ましくは650nm±5nmであり、第2の位相差板14のリタデーションは、400nm±10nm、好ましくは400nm±5nmである。さらに、前記第1の位相差板13の遅相軸13aと前記液晶セル1の前記第1の位相差板13に隣接する前基板2の近傍の液晶分子配向方向2aとのずれ角は、5°±2°、好ましくは5°±1°であり、前記第2の位相差板14の遅相軸14aと前記液晶セル1の前記第2の位相差板14に隣接する後基板3の近傍の液晶分子配向方向3aとのずれ角は、5°±2°、好ましくは5°±1°である。
【0054】
この液晶表示素子は、上述したように、液晶分子を実質的に90°のツイスト角でツイスト配向させ、Δndの値を実質的に470nmに設定した液晶層を有する液晶セル1と、前記液晶セル1を挟んでその前側と後側とに配置された一対の偏光板11,12と、前側の偏光板11と前記液晶セル1との間に配置された実質的に650nmのリタデーションを有する第1の位相差板13と、後側の偏光板12と前記液晶セル1との間に配置された実質的に400nmのリタデーションを有する第2の位相差板14とを備え、前記第1の位相差板13の遅相軸13aを、前記液晶セル1の前記第1の位相差板13に隣接する前基板2の近傍の液晶分子配向方向2aに対し、前記第1の位相差板13に隣接する前基板2から他方の後基板3に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらし、前記第2の位相差板14の遅相軸14aを、前記液晶セル1の前記第2の位相差板14に隣接する後基板3の近傍の液晶分子配向方向3aに対し、前記前記第2の位相差板14に隣接する後基板3から他方の前基板2に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらしたものであるため、明るく、しかも帯色の無い高品質の表示を得ることができる。
【0055】
図10は、前記第3の実施例についてカラーフィルタを省略した試験素子を製作し、その波長―透過率特性を測定した結果を、上述した比較例1,2の波長―透過率特性と比較して示している。
【0056】
図10のように、前記第3の実施例は、透過率が、青の波長域(450nm付近)から赤の波長域(650nm付近)にわたって高く、しかも略一定であり、したがって、上述した第1及び第2の実施例よりもさらに高輝度でしかも帯色の無い白表示が得られる。
【0057】
したがって、前記第3の実施例の液晶表示素子は、さらに明るく、しかも、より色相の良い高品質のカラー画像を表示することができる。
【0058】
なお、前記第3の実施例では、前側の偏光板11と液晶セル1との間に実質的に650nmのリタデーションを有する第1の位相差板13を配置し、後側の偏光板12と液晶セル1との間に実質的に400nmのリタデーションを有する第2の位相差板14を配置しているが、それと反対に、前記第1の位相差板13を後側の偏光板12と液晶セル1との間に配置し、前記第2の位相差板14を前側の偏光板11と液晶セル1との間に配置してもよい。
【0059】
その場合は、前記第1の位相差板13を、その遅相軸13aを前記液晶セル1の前記第1の位相差板13に隣接する後基板3の近傍の液晶分子配向方向3aに対し、前記第1の位相差板13に隣接する後基板3から他方の前基板2に向かう液晶分子のツイスト方向(図の破線矢印の方向)と同方向に実質的に5°ずらして配置し、前記第2の位相差板14を、その遅相軸14aを前記液晶セル1の前記第2の位相差板14に隣接する前基板2の近傍の液晶分子配向方向2aに対し、前記第2の位相差板14に隣接する前基板2から他方の後基板3に向かう液晶分子のツイスト方向とは逆方向(図の破線矢印の向きとは逆のツイスト方向)に実質的に5°ずらして配置すればよい。
【0060】
また、この発明において、液晶セルの液晶層のΔndと位相差板のリタデーションは、上述した第1〜第3の実施例の値に限らず、前記液晶層のΔndの値が350〜500nmの範囲、位相差板のリタデーションが実質的に650nmまたは400nmであればよく、その場合も、前記液晶セルの位相差板に隣接する基板の近傍の液晶分子配向方向と前記位相差板の遅相軸とのずれ角を実質的に5°にし、且つ、前記液晶層のΔnd値と、位相差板のリタデーション値と、前記液晶分子配向方向に対する前記位相差板の遅相軸のずれ方向とを適正に設定することにより、明るく、しかも帯色の無い高品質の表示を得ることができる。
【0061】
さらに、上記実施例の液晶表示素子、液晶セル1に、複数の画素にそれぞれ対応する赤、緑、青の3色のカラーフィルタ6R,6G,6Bを備えさせたものであるが、この発明は、カラーフィルタを備えないフィールドシーケンシャル液晶表示装置用の液晶表示素子や、白黒画像を表示する液晶表示素子にも適用することができる。
【0062】
【発明の効果】
この発明の液晶表示素子は、液晶分子を実質的に90°のツイスト角でツイスト配向させ、Δndの値を350〜500nmの範囲に設定した液晶層を有する液晶セルと、前記液晶セルを挟んで配置された一対の偏光板と、前記一対の偏光板の少なくとも一方と前記液晶セルとの間に配置された実質的に650nmまたは400nmのリタデーションを有する位相差板とを備え、前記位相差板の遅相軸と前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向とのずれ角を実質的に5°に設定したものであるため、明るく、しかも帯色の無い高品質の表示を得ることができる。
【0063】
この発明の液晶表示素子は、前記液晶層のΔndを実質的に500nmに設定し、前記一対の偏光板の一方と前記液晶セルとの間に、実質的に650nmのリタデーションを有する位相差板を、その遅相軸を前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらして配置した構成とするのが望ましく、このような構成とすることにより、明るく、しかも帯色の無い高品質の表示を得ることができる。
【0064】
また、この発明の液晶表示素子は、前記液晶層のΔndを実質的に400nmに設定し、前記一対の偏光板の一方と前記液晶セルとの間に、実質的に400nmのリタデーションを有する位相差板を、その遅相軸を前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらして配置した構成とするのが望ましく、このような構成とすることにより、明るく、しかも帯色の無い高品質の表示を得ることができる。
【0065】
さらに、この発明の液晶表示素子は、前記液晶層のΔndを実質的に470nmに設定し、前記一対の偏光板の一方と前記液晶セルとの間に、実質的に650nmのリタデーションを有する第1の位相差板を、その遅相軸を前記液晶セルの前記第1の位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記第1の位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらして配置し、他方の偏光板と前記液晶セルとの間に、実質的に400nmのリタデーションを有する第2の位相差板を、その遅相軸を前記液晶セルの前記第2の位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記第2の位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらして配置した構成とするのが望ましく、このような構成とすることにより、さらに明るく、しかも、より帯色の無い高品質の表示を得ることができる。
【図面の簡単な説明】
【図1】この発明の第1の実施例を示す液晶表示素子の分解斜視図。
【図2】第1の実施例の液晶表示素子の一部分の断面図。
【図3】第1の実施例における液晶セルの前後の基板の近傍の液晶分子配向方向及び液晶分子のツイスト方向と位相差板の遅相軸の向きを示す図。
【図4】第1の実施例と比較例の波長―透過率特性図。
【図5】この発明の第2の実施例を示す液晶表示素子の分解斜視図。
【図6】第2の実施例における液晶セルの前後の基板の近傍の液晶分子配向方向及び液晶分子のツイスト方向と位相差板の遅相軸の向きを示す図。
【図7】第2の実施例と比較例の波長―透過率特性図。
【図8】この発明の第3の実施例を示す液晶表示素子の分解斜視図。
【図9】第3の実施例における液晶セルの前後の基板の近傍の液晶分子配向方向及び液晶分子のツイスト方向と位相差板の遅相軸の向きを示す図。
【図10】第3の実施例と比較例の波長―透過率特性図。
【符号の説明】
1…液晶セル、2,3…基板、2a,3a…基板近傍の液晶分子配向方向、4,5…電極、6R,6G,6B…カラーフィルタ、7,8…配向膜、10…液晶層、11,12…偏光板、11a,12a…透過軸、13,14…位相差板、13a,14a…遅相軸。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a TN (twisted nematic) liquid crystal display device.
[0002]
[Prior art]
A liquid crystal display element includes a liquid crystal layer provided between a pair of substrates having electrodes formed on surfaces facing each other and having a liquid crystal layer in which liquid crystal molecules are twisted substantially at a twist angle of 90 ° between the substrates. 2. Description of the Related Art A TN-type liquid crystal display device including a cell and a pair of polarizing plates sandwiching the liquid crystal cell is widely used (see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-06-202068
[0004]
[Problems to be solved by the invention]
The display characteristics of the TN type liquid crystal display element are determined by the value of the product Δnd of the refractive index anisotropy Δn of the liquid crystal and the thickness d of the liquid crystal layer.
[0005]
However, in the conventional TN type liquid crystal display element, a display in which the .DELTA.nd value is set so as to obtain a bright display produces a band, and a display in which the .DELTA.nd value is set so as not to produce a band produces a bright display. Have a problem that they cannot be obtained.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a TN type liquid crystal display device capable of obtaining a bright, high-quality display without banding.
[0007]
[Means for Solving the Problems]
According to the liquid crystal display device of the present invention, liquid crystal molecules are twisted at a twist angle of substantially 90 ° between a pair of substrates having electrodes formed on surfaces facing each other, and the refractive index of the liquid crystal is changed. A liquid crystal cell provided with a liquid crystal layer in which the value of the product Δnd of the anisotropy Δn and the liquid crystal layer thickness d is set in a range of 350 to 500 nm; a pair of polarizing plates disposed so as to sandwich the liquid crystal cell; A retardation plate having a retardation of substantially 650 nm or 400 nm disposed between at least one of the polarizing plates and the liquid crystal cell, wherein a slow axis of the retardation plate and the retardation of the liquid crystal cell are provided. The angle of deviation from the liquid crystal molecule alignment direction near the substrate adjacent to the plate is set to substantially 5 °.
[0008]
Since the liquid crystal display element has the above-described structure, it is possible to obtain a bright, high-quality display without banding.
[0009]
As described above, the liquid crystal display element of the present invention comprises a liquid crystal cell having a liquid crystal layer in which liquid crystal molecules are twist-oriented substantially at a twist angle of 90 ° and the value of Δnd is set in a range of 350 to 500 nm. A pair of polarizing plates disposed with a cell interposed therebetween, and a retardation plate having a retardation of substantially 650 nm or 400 nm disposed between at least one of the pair of polarizing plates and the liquid crystal cell; By setting the shift angle between the slow axis of the phase difference plate and the liquid crystal molecule alignment direction near the substrate adjacent to the phase difference plate of the liquid crystal cell to substantially 5 °, it is bright and free of banding. High quality display can be obtained.
[0010]
In the liquid crystal display element of the present invention, a Δnd of the liquid crystal layer is set to substantially 500 nm, and a retardation plate having a retardation of substantially 650 nm is provided between one of the pair of polarizing plates and the liquid crystal cell. The slow axis of the liquid crystal cell in the same direction as the twist direction of the liquid crystal molecules from the substrate adjacent to the retardation plate to the other substrate with respect to the liquid crystal molecule alignment direction near the substrate adjacent to the retardation plate of the liquid crystal cell. It is desirable to adopt a configuration in which they are arranged substantially 5 ° apart from each other.
[0011]
Further, in the liquid crystal display element of the present invention, Δnd of the liquid crystal layer is set to substantially 400 nm, and a phase difference having a retardation of substantially 400 nm between one of the pair of polarizing plates and the liquid crystal cell. The plate has its slow axis with respect to the liquid crystal molecule alignment direction near the substrate adjacent to the phase difference plate of the liquid crystal cell, and the twist direction of the liquid crystal molecules from the substrate adjacent to the phase difference plate toward the other substrate. Are desirably arranged at substantially 5 ° in the opposite direction.
[0012]
Further, in the liquid crystal display element of the present invention, the liquid crystal layer has a Δnd of substantially 470 nm, and a first liquid crystal layer having a retardation of substantially 650 nm between one of the pair of polarizing plates and the liquid crystal cell. The retardation axis of the liquid crystal cell, with respect to the liquid crystal molecule alignment direction near the substrate adjacent to the first retardation plate of the liquid crystal cell, from the substrate adjacent to the first retardation plate to the other. A second retardation plate having a retardation of substantially 400 nm is disposed between the other polarizing plate and the liquid crystal cell at a position substantially shifted by 5 ° in the same direction as the twist direction of the liquid crystal molecules toward the substrate. Liquid crystal molecules whose slow axis is directed from the substrate adjacent to the second retardation plate to the other substrate with respect to the liquid crystal molecule alignment direction near the substrate adjacent to the second retardation plate of the liquid crystal cell. In the direction opposite to the twist direction It is desirable to adopt a configuration qualitatively shifted by 5 °.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 4 show a first embodiment of the present invention. FIGS. 1 and 2 are an exploded perspective view and a partial cross-sectional view of a liquid crystal display device.
[0014]
This liquid crystal display element is of a TN type, and as shown in FIGS. 1 and 2, a liquid crystal cell 1 and a pair of polarizing plates 11 arranged on the front and rear sides of the liquid crystal cell 1 therebetween. , 12 and a retardation plate 13 arranged between one of the pair of polarizing plates 11, 12 and the liquid crystal cell 1.
[0015]
As shown in FIG. 2, the liquid crystal cell 1 includes a pair of transparent substrates 2 and 3 having transparent electrodes 4 and 5 formed on opposing surfaces, respectively. A liquid crystal layer 10 that is twist-oriented substantially at a twist angle of 90 ° is provided. The value of the product Δnd of the refractive index anisotropy Δn of the liquid crystal and the liquid crystal layer thickness d is in the range of 350 to 500 nm. Is set.
[0016]
The liquid crystal cell 1 is of an active matrix type using, for example, a TFT (thin film transistor) as an active element, and is one of electrodes 4, 5 formed on opposing surfaces of a pair of substrates 2, 3, for example, An electrode 4 formed on a substrate (hereinafter, referred to as a front substrate) 1 on a front side (upper side in the figure) which is a display observation side includes a single-film counter electrode covering substantially the entire surface of the substrate 1 and the other substrate ( The electrodes 5 formed on the rear substrate 3 are a plurality of pixel electrodes arranged in a matrix in the row direction and the column direction.
[0017]
Although not shown in the figure, on the surface of the rear substrate 3 facing the front substrate 2, a plurality of TFTs connected to the plurality of pixel electrodes 5 and a gate signal are supplied to the TFTs in each row. A plurality of gate wirings and a plurality of data wirings for supplying data signals to the TFTs in each column are provided.
[0018]
The liquid crystal cell 1 has a plurality of color filters 6R corresponding to a plurality of pixels formed of regions where the plurality of pixel electrodes 5 and the counter electrode 4 face each other, for example, three colors of red, green, and blue. , 6G, and 6B. The color filters 6R, 6G, and 6B are formed on the surface of the front substrate 2 facing the rear substrate 3, and the counter electrode 4 is formed thereon.
[0019]
The pair of substrates 2 and 3 are joined via a frame-shaped sealing material 9 (see FIG. 1) surrounding the array area (display area) of the plurality of pixels. A liquid crystal layer 10 is provided in a region surrounded by the sealing material 9.
[0020]
The alignment directions of the liquid crystal molecules of the liquid crystal layer 10 in the vicinity of the substrates 2 and 3 are defined by the alignment films 7 and 8 formed on the opposing surfaces of the pair of substrates 2 and 3 so as to cover the electrodes 4 and 5, respectively. The substrates 2 and 3 are twist-oriented at a twist angle of substantially 90 °.
[0021]
In this embodiment, as shown in FIG. 1, the liquid crystal molecules in the vicinity of the front substrate 2 are aligned in a direction 2a substantially 45 ° counterclockwise as viewed from the front with respect to the horizontal axis x of the screen. The liquid crystal molecules in the vicinity of the substrate 3 are oriented in a direction 3a substantially 45 ° clockwise shifted with respect to the horizontal axis x when viewed from the front, and the twist direction of the liquid crystal molecules of the liquid crystal layer 10 is indicated by a broken line arrow. As shown, the substrate is twisted from the rear substrate 3 to the front substrate 2 at a twist angle of substantially 90 ° clockwise when viewed from the front.
[0022]
The liquid crystal display element of this embodiment is of a normally white mode, and a pair of polarizing plates 11 and 12 disposed on the front and rear sides of the liquid crystal cell 1 have respective transmission axes 11a. , 12a are substantially perpendicular to each other, and the transmission axis 11a of the front polarizer 11 is substantially perpendicular to or substantially parallel to the liquid crystal molecule alignment direction 2a near the front substrate 2 of the liquid crystal cell 1. The transmission axis 12a of the rear polarizing plate 12 is arranged substantially orthogonal to or substantially parallel to the liquid crystal molecule orientation direction 3a near the rear substrate 3 of the liquid crystal cell 1.
[0023]
Note that the twist angle of the liquid crystal molecules of the liquid crystal cell 1 and the cross angle of the transmission axes 11a and 12a of the pair of polarizing plates 11 and 12 are both 90 ° ± 10 °, preferably 90 ° ± 5 °. More preferably, it is 90 ° ± 3 °.
[0024]
Further, the retardation plate 13 is a retardation plate having a retardation of substantially 650 nm or 400 nm, and the retardation plate 13 is provided between one of the pair of polarizing plates 11 and 12 and the liquid crystal cell 1. Then, the shift angle between the slow axis 13a of the retardation plate 13 and the liquid crystal molecule alignment direction 2a near the front substrate of the liquid crystal cell 1 adjacent to the retardation plate 13 is set to substantially 5 °. Are located.
[0025]
In this embodiment, Δnd of the liquid crystal layer 10 of the liquid crystal cell 1 is set to substantially 500 nm, and the retardation plate 13 having a retardation of substantially 650 nm is provided between the front polarizing plate 11 and the liquid crystal cell 1. In the meantime, the slow axis 13a of the retardation plate 13 is moved from the front substrate 2 to the rear substrate 3 with respect to the liquid crystal molecule alignment direction 2a near the front substrate 2 adjacent to the retardation plate 13 of the liquid crystal cell 1. The liquid crystal molecules are arranged at substantially the same direction as the twist direction of the liquid crystal molecules to be shifted by 5 °.
[0026]
FIG. 3 shows the liquid crystal molecule orientation directions 2a and 3a near the substrates 2 and 3 before and after the liquid crystal cell 1 and the twist direction of the liquid crystal molecules and the direction of the slow axis 13a of the phase difference plate 13 in this embodiment. In this figure, the slow axis 13a of the phase difference plate 13 is indicated by a one-dot chain line.
[0027]
As described above, the liquid crystal molecule orientation direction 2a in the vicinity of the front substrate 2 of the liquid crystal cell 1 is substantially 45 ° counterclockwise when viewed from the front with respect to the horizontal axis x of the screen, The liquid crystal molecules are twisted clockwise from the rear substrate 3 to the front substrate 2 when viewed from the front.
[0028]
In this embodiment, since the retardation plate 13 is disposed between the front polarizing plate 11 and the liquid crystal cell 1, the other end of the liquid crystal cell 1 is separated from the front substrate 2 adjacent to the retardation plate 13. The twist direction of the liquid crystal molecules toward the rear substrate 3 is a counterclockwise direction opposite to the direction indicated by the dashed arrow in the figure.
[0029]
Therefore, in this embodiment, as shown in FIG. 1, the retardation plate 13 is arranged such that its slow axis 13a is substantially 50 ° counterclockwise as viewed from the front with respect to the horizontal axis x of the screen, The liquid crystal flowing from the front substrate 2 to the rear substrate 3 with respect to the liquid crystal molecule orientation direction 2a near the front substrate 2 adjacent to the phase plate 13 of the liquid crystal cell 1 It is substantially shifted by 5 ° in the same direction as the twist direction of the molecule (the twist direction opposite to the direction of the dashed arrow in the figure).
[0030]
In this embodiment, Δnd of the liquid crystal layer 10 of the liquid crystal cell 1 is 500 nm ± 10 nm, preferably 500 nm ± 5 nm. The retardation of the retardation plate 13 is 650 nm ± 10 nm, preferably 650 nm ± 5 nm. Further, the shift angle between the slow axis 13a of the phase difference plate 13 and the liquid crystal molecule alignment direction 2a near the front substrate 2 of the liquid crystal cell 1 adjacent to the phase difference plate 13 is 5 ° ± 2 °. , Preferably 5 ° ± 1 °.
[0031]
As described above, this liquid crystal display element has a liquid crystal cell 1 having a liquid crystal layer 10 in which liquid crystal molecules are twist-oriented substantially at a twist angle of 90 ° and the value of Δnd is set to substantially 500 nm. A pair of polarizers 11 and 12 disposed on the front side and the rear side of the cell 1, and a position having a retardation of substantially 650 nm disposed between the front polarizer 11 and the liquid crystal cell 1. A retardation plate 13, wherein the retardation axis 13 a of the retardation plate 13 is set such that the retardation axis 13 a of the retardation plate 13 Since the liquid crystal molecules are substantially shifted by 5 ° in the same direction as the twist direction of the liquid crystal molecules from the front substrate 2 adjacent to the substrate 13 to the other rear substrate 3, it is possible to obtain a bright and high-quality display without banding. Can be.
[0032]
FIG. 4 shows the results of measuring a wavelength-transmittance characteristic of a test element in which the color filter was omitted from the first embodiment and measuring the wavelength-transmittance characteristics of Comparative Examples 1 and 2 without the retardation plate 13. It is shown in comparison with the transmittance characteristics.
[0033]
Each of Comparative Examples 1 and 2 is a normally white mode TN-type liquid crystal display device without a color filter. Comparative Example 1 sets Δnd to 470 nm, and Comparative Example 2 sets Δnd to 400 nm. It is set.
[0034]
As shown in FIG. 4, in Comparative Example 1 in which Δnd is set to 470 nm, the transmittance of light having a wavelength near the middle of the visible light band (around 550 nm) is high, and a bright display is obtained, but the sensitivity of the human eye is weak. Since the transmittance of light in the blue wavelength range (around 450 nm) is low, white display is colored yellow-green.
[0035]
In Comparative Example 2 in which Δnd was set to 400 nm, the wavelength range in which the transmittance became maximum shifted to the blue wavelength side as compared with Comparative Example 1, so that the band of white display was improved, but visible light was The transmittance of light having a wavelength near the center of the band is low, and a bright display cannot be obtained.
[0036]
On the other hand, in the first embodiment, the transmittance is high from the blue wavelength range (around 450 nm) to the red wavelength range (around 650 nm), so that white display with high luminance and no banding can be obtained. .
[0037]
The liquid crystal display element of the first embodiment has the liquid crystal cell 1 provided with three color filters 6R, 6G, 6B of red, green, and blue corresponding to a plurality of pixels, respectively. Since red, green, and blue light with good color purity can be emitted from these pixels, a bright, high-quality color image with good hue can be displayed.
[0038]
In the first embodiment, the retardation plate 13 is disposed between the front polarizing plate 11 and the liquid crystal cell 1, but the retardation plate 13 is connected to the rear polarizing plate 12 and the liquid crystal cell 1. In this case, the retardation plate 13 has a slow axis 13 a whose liquid crystal molecule alignment near the rear substrate 3 adjacent to the retardation plate 13 of the liquid crystal cell 1. With respect to the direction 3 a, the liquid crystal molecules are arranged at a position substantially shifted by 5 ° from the rear substrate 3 adjacent to the phase difference plate 13 in the same direction as the twist direction of the liquid crystal molecules from the rear substrate 3 toward the other front substrate 2 (the direction of the broken arrow in the drawing). Just fine.
[0039]
FIG. 5 is an exploded perspective view of a liquid crystal display device showing a second embodiment of the present invention. In this liquid crystal display device, the liquid crystal layer of the liquid crystal cell 1 has a Δnd of substantially 400 nm and a front polarizing plate. A retardation plate 14 having a retardation of substantially 400 nm is provided between the liquid crystal cell 11 and the liquid crystal cell 1 so that its slow axis 14a is located near the front substrate 2 adjacent to the retardation plate 14 of the liquid crystal cell 1. The liquid crystal molecules are arranged so as to be substantially 5 ° away from the liquid crystal molecule alignment direction 2 a in a direction opposite to the twist direction of the liquid crystal molecules from the front substrate 2 to the rear substrate 3.
[0040]
The liquid crystal display element of this embodiment is different from the first embodiment in the Δnd of the liquid crystal layer of the liquid crystal cell 1, the retardation of the retardation plate 14, and the direction of the slow axis 14a thereof, but other configurations are the same. Since they are the same, the same description is given to the drawings with the same reference numerals and their description is omitted.
[0041]
FIG. 6 shows the liquid crystal molecule alignment directions 2a and 3a near the substrates 2 and 3 before and after the liquid crystal cell 1 and the twist direction of the liquid crystal molecules and the direction of the slow axis 14a of the retardation plate 14 in this embodiment. In this figure, the slow axis 14a of the phase difference plate 14 is indicated by a two-dot chain line.
[0042]
As shown in FIG. 6, in this embodiment, the retardation plate 14 is arranged such that its slow axis 14a is shifted substantially 40 ° counterclockwise as viewed from the front with respect to the horizontal axis x of the screen (FIG. 5). ), The slow axis 14a of the retardation plate 14 is aligned with the liquid crystal molecule alignment direction near the front substrate 2 adjacent to the retardation plate 14 of the liquid crystal cell 1 (as viewed from the front with respect to the horizontal axis x of the screen). In the direction opposite to the twist direction of the liquid crystal molecules from the front substrate 2 toward the rear substrate 3 (the direction opposite to the direction of the dashed arrow in the figure) with respect to the counterclockwise direction 2a). Substantially 5 ° shifted.
[0043]
In this embodiment, Δnd of the liquid crystal layer of the liquid crystal cell 1 is 400 nm ± 10 nm, preferably 400 nm ± 5 nm. The retardation of the retardation plate 14 is 400 nm ± 10 nm, preferably 400 nm ± 5 nm. Further, the shift angle between the slow axis 14a of the phase difference plate 14 and the liquid crystal molecule alignment direction 2a near the front substrate 2 of the liquid crystal cell 1 adjacent to the phase difference plate 14 is 5 ° ± 2 °. , Preferably 5 ° ± 1 °.
[0044]
As described above, this liquid crystal display element has a liquid crystal cell 1 having a liquid crystal layer in which liquid crystal molecules are twisted at a twist angle of substantially 90 ° and the value of Δnd is set to substantially 400 nm. 1 and a pair of polarizers 11 and 12 disposed on the front side and the rear side of the liquid crystal cell 1 and a phase difference having a retardation of substantially 400 nm disposed between the front polarizer 11 and the liquid crystal cell 1. A retardation axis 14a of the retardation plate 14 with respect to a liquid crystal molecule alignment direction 2a near the front substrate 2 adjacent to the retardation plate 14 of the liquid crystal cell 1. The liquid crystal molecules are displaced substantially 5 ° in the direction opposite to the twist direction of liquid crystal molecules from the front substrate 2 adjacent to the other rear substrate 3 to obtain a bright, high-quality display without banding. Can be.
[0045]
FIG. 7 shows a result of fabricating a test device in which the color filter was omitted from the second embodiment and measuring the wavelength-transmittance characteristics thereof with the wavelength-transmittance characteristics of Comparative Examples 1 and 2 described above. Is shown.
[0046]
As shown in FIG. 7, in the second embodiment, the transmittance is high and substantially constant from the green wavelength range (around 450 nm), which is near the middle of the visible light band, to the blue wavelength range (around 450 nm). Also in the red wavelength range (around 650 nm), white display with high luminance and no banding can be obtained.
[0047]
Therefore, the liquid crystal display device of the second embodiment can display a high-quality color image that is bright and has good hue.
[0048]
In the second embodiment, the retardation plate 14 is disposed between the front polarizing plate 11 and the liquid crystal cell 1, but the retardation plate 14 is connected to the rear polarizing plate 12 and the liquid crystal cell 1. In this case, the retardation plate 14 may be arranged such that its slow axis 14a has a liquid crystal molecule alignment near the rear substrate 3 adjacent to the retardation plate 14 of the liquid crystal cell 1. The liquid crystal molecules are arranged at a position substantially shifted by 5 ° with respect to the direction 3a in a direction opposite to the twist direction of the liquid crystal molecules from the rear substrate 3 adjacent to the retardation plate 14 toward the other front substrate 2 (the direction of the broken arrow in the drawing). do it.
[0049]
FIG. 8 is an exploded perspective view of a liquid crystal display device according to a third embodiment of the present invention. In this liquid crystal display device, the liquid crystal layer of the liquid crystal cell 1 has Δnd substantially set to 470 nm, and the front polarizing plate is set. A first retardation plate (a retardation plate in the first embodiment) 13 having a retardation of substantially 650 nm is provided between the liquid crystal cell 1 and the liquid crystal cell 1. The liquid crystal molecule alignment direction 2a in the vicinity of the front substrate 2 adjacent to the first retardation plate 13 is shifted by substantially 5 ° in the same direction as the twist direction of the liquid crystal molecules from the front substrate 2 to the rear substrate 3. And a second retardation plate (retardation plate in the second embodiment) 14 having a retardation of substantially 400 nm is provided between the rear polarizing plate 12 and the liquid crystal cell 1. The phase axis 14a is set to the second phase of the liquid crystal cell 1. The liquid crystal molecules are arranged at a position substantially shifted by 5 ° in a direction opposite to the twist direction of the liquid crystal molecules from the rear substrate 3 toward the front substrate 2 with respect to the liquid crystal molecule alignment direction 3a near the rear substrate 3 adjacent to the difference plate 14. It is.
[0050]
In this embodiment, the liquid crystal cell 1 is different from the above-described first embodiment in the value of Δnd of the liquid crystal layer, but the other configuration is the same. Since the arrangement state is also the same as that of the first embodiment, the same explanation is given to the drawings by omitting the duplicated explanations.
[0051]
FIG. 9 shows the liquid crystal molecule orientation directions 2a and 3a near the substrates 2 and 3 before and after the liquid crystal cell 1 viewed from the front side in this embodiment and the twist directions of the liquid crystal molecules and the first and second retardation plates 13 and 14 shows the directions of the slow axes 13a, 14a. In this figure, the slow axis 13a of the first retardation plate 13 is indicated by a dashed line, and the slow axis 14a of the second retardation plate 14 is This is indicated by a two-dot chain line.
[0052]
As shown in FIG. 9, in this embodiment, the first retardation plate 13 is arranged such that its slow axis 13a is substantially 50 ° counterclockwise as viewed from the front with respect to the horizontal axis x of the screen. (Refer to FIG. 8), the slow axis 13a of the first retardation plate 13 is aligned with the liquid crystal molecule orientation direction near the front substrate 2 adjacent to the first retardation plate 13 of the liquid crystal cell 1 (in the screen). With respect to 2a, a twist direction of liquid crystal molecules from the front substrate 2 toward the rear substrate 3 (a direction deviated substantially 45 degrees counterclockwise as viewed from the front side with respect to the horizontal axis x) Of the second retardation plate 14 by substantially 5 ° in the same direction as the twist direction of FIG. 8 (see FIG. 8), and the slow axis 14a of the second retardation plate 14 is The liquid crystal molecule alignment direction 3a (direction substantially 45 ° clockwise as viewed from the front with respect to the horizontal axis x of the screen) near the rear substrate 3 adjacent to the retardation plate 14 of FIG. The liquid crystal molecules are displaced substantially by 5 ° in a direction opposite to the twist direction of the liquid crystal molecules from the liquid crystal molecules toward the front substrate 2 (the direction of the dashed arrow in the figure).
[0053]
In this embodiment, Δnd of the liquid crystal layer of the liquid crystal cell 1 is 470 nm ± 10 nm, preferably 500 nm ± 5 nm. Further, the retardation of the first retardation plate 13 is 650 nm ± 10 nm, preferably 650 nm ± 5 nm, and the retardation of the second retardation plate 14 is 400 nm ± 10 nm, preferably 400 nm ± 5 nm. Further, the shift angle between the slow axis 13a of the first retardation plate 13 and the liquid crystal molecule orientation direction 2a near the front substrate 2 of the liquid crystal cell 1 adjacent to the first retardation plate 13 is 5 °. ° ± 2 °, preferably 5 ° ± 1 °, in the vicinity of the slow axis 14a of the second retardation plate 14 and the rear substrate 3 adjacent to the second retardation plate 14 of the liquid crystal cell 1. Is 5 ° ± 2 °, and preferably 5 ° ± 1 °.
[0054]
As described above, this liquid crystal display element has a liquid crystal cell 1 having a liquid crystal layer in which liquid crystal molecules are twist-oriented substantially at a twist angle of 90 ° and the value of Δnd is set to substantially 470 nm. And a pair of polarizing plates 11 and 12 disposed on the front side and the rear side of the liquid crystal cell 1, and a first 650 nm retardation disposed between the front polarizing plate 11 and the liquid crystal cell 1. , And a second retardation plate 14 having a retardation of substantially 400 nm disposed between the rear polarizing plate 12 and the liquid crystal cell 1, wherein the first retardation The slow axis 13a of the plate 13 is adjacent to the first retardation plate 13 with respect to the liquid crystal molecule orientation direction 2a near the front substrate 2 adjacent to the first retardation plate 13 of the liquid crystal cell 1. From the front substrate 2 to the other rear substrate 3 The liquid crystal molecules are shifted by substantially 5 ° in the same direction as the twist direction, so that the slow axis 14a of the second retardation plate 14 is shifted from the rear substrate 3 adjacent to the second retardation plate 14 of the liquid crystal cell 1. Is substantially shifted by 5 ° in a direction opposite to the twist direction of the liquid crystal molecules from the rear substrate 3 adjacent to the second retardation plate 14 toward the other front substrate 2 with respect to the liquid crystal molecule orientation direction 3a near the second retardation plate 14. Therefore, a high-quality display that is bright and has no banding can be obtained.
[0055]
FIG. 10 shows a result of fabricating a test device in which the color filter was omitted from the third embodiment and measuring the wavelength-transmittance characteristics thereof with the wavelength-transmittance characteristics of Comparative Examples 1 and 2 described above. Is shown.
[0056]
As shown in FIG. 10, in the third embodiment, the transmittance is high from the blue wavelength range (around 450 nm) to the red wavelength range (around 650 nm) and is substantially constant. In addition, a white display having a higher luminance than the second embodiment and having no banding can be obtained.
[0057]
Therefore, the liquid crystal display device of the third embodiment can display a brighter and higher quality color image with better hue.
[0058]
In the third embodiment, the first retardation plate 13 having a retardation of substantially 650 nm is disposed between the front polarizing plate 11 and the liquid crystal cell 1, and the rear polarizing plate 12 and the liquid crystal cell 1 are disposed. A second retardation plate 14 having a retardation of substantially 400 nm is arranged between the first retardation plate 13 and the rear polarizing plate 12 and the liquid crystal cell. 1 and the second retardation plate 14 may be disposed between the front polarizer 11 and the liquid crystal cell 1.
[0059]
In this case, the first retardation plate 13 is set so that its slow axis 13a is oriented with respect to the liquid crystal molecule alignment direction 3a near the rear substrate 3 adjacent to the first retardation plate 13 of the liquid crystal cell 1. The liquid crystal molecules are arranged at a position substantially shifted by 5 ° in the same direction as the twist direction of the liquid crystal molecules from the rear substrate 3 adjacent to the first retardation plate 13 toward the other front substrate 2 (the direction of the dashed arrow in the drawing). The second retardation plate 14 has its slow axis 14a with respect to the liquid crystal molecule alignment direction 2a in the vicinity of the front substrate 2 adjacent to the second retardation plate 14 of the liquid crystal cell 1. The liquid crystal molecules are arranged at a position substantially shifted by 5 ° in a direction opposite to the twist direction of the liquid crystal molecules from the front substrate 2 adjacent to the phase difference plate 14 toward the other rear substrate 3 (the direction opposite to the direction of the dashed arrow in the drawing). Just fine.
[0060]
Further, in the present invention, the Δnd of the liquid crystal layer of the liquid crystal cell and the retardation of the retardation plate are not limited to the values of the above-described first to third embodiments. The retardation of the retardation plate may be substantially 650 nm or 400 nm. In this case, too, the liquid crystal molecule alignment direction near the substrate adjacent to the retardation plate of the liquid crystal cell and the slow axis of the retardation plate Is substantially 5 °, and the Δnd value of the liquid crystal layer, the retardation value of the phase difference plate, and the direction of the shift of the slow axis of the phase difference plate with respect to the liquid crystal molecule alignment direction are properly adjusted. By setting, it is possible to obtain a bright, high-quality display without banding.
[0061]
Further, the liquid crystal display element and the liquid crystal cell 1 of the above embodiment are provided with three color filters 6R, 6G and 6B of red, green and blue corresponding to a plurality of pixels, respectively. Also, the present invention can be applied to a liquid crystal display element for a field sequential liquid crystal display device having no color filter and a liquid crystal display element for displaying a black and white image.
[0062]
【The invention's effect】
The liquid crystal display element of the present invention has a liquid crystal cell having a liquid crystal layer in which liquid crystal molecules are twisted substantially at a twist angle of 90 ° and the value of Δnd is set in a range of 350 to 500 nm, and the liquid crystal cell is sandwiched between the liquid crystal cells. A pair of polarizing plates disposed, a retardation plate having a retardation of substantially 650 nm or 400 nm disposed between at least one of the pair of polarizing plates and the liquid crystal cell; Since the angle of deviation between the slow axis and the liquid crystal molecule alignment direction near the substrate adjacent to the retardation plate of the liquid crystal cell is set to substantially 5 °, it is bright and has high quality without banding. Can be obtained.
[0063]
In the liquid crystal display device of the present invention, Δnd of the liquid crystal layer is set to substantially 500 nm, and a retardation plate having a retardation of substantially 650 nm is provided between one of the pair of polarizing plates and the liquid crystal cell. The slow axis of the liquid crystal cell in the same direction as the twist direction of the liquid crystal molecules from the substrate adjacent to the retardation plate to the other substrate with respect to the liquid crystal molecule alignment direction near the substrate adjacent to the retardation plate of the liquid crystal cell. It is desirable to adopt a configuration in which the display is substantially shifted by 5 ° from the center. With such a configuration, it is possible to obtain a bright, high-quality display without banding.
[0064]
Further, in the liquid crystal display device of the present invention, Δnd of the liquid crystal layer is set to substantially 400 nm, and a phase difference having a retardation of substantially 400 nm between one of the pair of polarizing plates and the liquid crystal cell. The plate has its slow axis with respect to the liquid crystal molecule alignment direction near the substrate adjacent to the phase difference plate of the liquid crystal cell, and the twist direction of the liquid crystal molecules from the substrate adjacent to the phase difference plate toward the other substrate. Is desirably arranged so as to be substantially shifted by 5 ° in the reverse direction. With such a structure, a bright, high-quality display without banding can be obtained.
[0065]
Further, in the liquid crystal display element of the present invention, the liquid crystal layer has a Δnd of substantially 470 nm, and a first liquid crystal layer having a retardation of substantially 650 nm between one of the pair of polarizing plates and the liquid crystal cell. The retardation axis of the liquid crystal cell, with respect to the liquid crystal molecule alignment direction near the substrate adjacent to the first retardation plate of the liquid crystal cell, from the substrate adjacent to the first retardation plate to the other. A second retardation plate having a retardation of substantially 400 nm is disposed between the other polarizing plate and the liquid crystal cell at a position substantially shifted by 5 ° in the same direction as the twist direction of the liquid crystal molecules toward the substrate. Liquid crystal molecules whose slow axis is directed from the substrate adjacent to the second retardation plate to the other substrate with respect to the liquid crystal molecule alignment direction near the substrate adjacent to the second retardation plate of the liquid crystal cell. In the direction opposite to the twist direction It is desirable to adopt a configuration qualitatively displaced by 5 °. With such a configuration, it is possible to obtain a brighter, high-quality display without banding.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a liquid crystal display device according to a first embodiment of the present invention.
FIG. 2 is a sectional view of a part of the liquid crystal display device of the first embodiment.
FIG. 3 is a diagram showing a liquid crystal molecule alignment direction, a twist direction of liquid crystal molecules, and a slow axis direction of a retardation plate in the vicinity of a substrate before and after a liquid crystal cell in a first embodiment.
FIG. 4 is a wavelength-transmittance characteristic diagram of the first embodiment and a comparative example.
FIG. 5 is an exploded perspective view of a liquid crystal display device according to a second embodiment of the present invention.
FIG. 6 is a diagram showing a liquid crystal molecule orientation direction, a liquid crystal molecule twist direction, and a slow axis direction of a retardation plate in the vicinity of a substrate before and after a liquid crystal cell in a second embodiment.
FIG. 7 is a wavelength-transmittance characteristic diagram of the second embodiment and a comparative example.
FIG. 8 is an exploded perspective view of a liquid crystal display device according to a third embodiment of the present invention.
FIG. 9 is a diagram showing a liquid crystal molecule alignment direction, a liquid crystal molecule twist direction, and a slow axis direction of a retardation plate in the vicinity of a substrate before and after a liquid crystal cell in a third embodiment.
FIG. 10 is a wavelength-transmittance characteristic diagram of a third embodiment and a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Liquid crystal cell, 2,3 ... Substrate, 2a, 3a ... Liquid crystal molecule orientation direction near a substrate, 4,5 ... Electrode, 6R, 6G, 6B ... Color filter, 7,8 ... Alignment film, 10 ... Liquid crystal layer, 11, 12: polarizing plate, 11a, 12a: transmission axis, 13, 14: retardation plate, 13a, 14a: slow axis.

Claims (4)

互いに対向する面にそれぞれ電極が形成された一対の基板間に、液晶分子を前記基板間において実質的に90°のツイスト角でツイスト配向させ、液晶の屈折率異方性Δnと液晶層厚dとの積Δndの値を350〜500nmの範囲に設定した液晶層を設けてなる液晶セルと、
前記液晶セルを挟んで配置された一対の偏光板と、
実質的に650nmまたは400nmのリタデーションを有し、前記一対の偏光板の少なくとも一方と前記液晶セルとの間に配置された位相差板とを備え、
前記位相差板の遅相軸と前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向とのずれ角を、実質的に5°に設定したことを特徴とする液晶表示素子。
The liquid crystal molecules are twist-oriented at a twist angle of substantially 90 ° between the pair of substrates having electrodes formed on the surfaces facing each other, and the refractive index anisotropy Δn of the liquid crystal and the liquid crystal layer thickness d A liquid crystal cell provided with a liquid crystal layer in which the value of the product Δnd is set in the range of 350 to 500 nm;
A pair of polarizing plates disposed with the liquid crystal cell interposed therebetween,
Substantially having a retardation of 650 nm or 400 nm, comprising a retardation plate disposed between at least one of the pair of polarizing plates and the liquid crystal cell,
A liquid crystal display element, wherein a shift angle between a slow axis of the retardation plate and a liquid crystal molecule alignment direction near a substrate adjacent to the retardation plate of the liquid crystal cell is set to substantially 5 °. .
液晶層のΔndは実質的に500nmであり、一対の偏光板の一方と液晶セルとの間に、実質的に650nmのリタデーションを有する位相差板が、その遅相軸を、前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらして配置されていることを特徴とする請求項1に記載の液晶表示素子。The Δnd of the liquid crystal layer is substantially 500 nm, and a retardation plate having a retardation of substantially 650 nm between one of the pair of polarizing plates and the liquid crystal cell has its slow axis set to the slow axis of the liquid crystal cell. The liquid crystal molecules are arranged at a position substantially shifted by 5 ° in the same direction as the twist direction of the liquid crystal molecules from the substrate adjacent to the phase difference plate toward the other substrate with respect to the liquid crystal molecule alignment direction near the substrate adjacent to the phase difference plate. The liquid crystal display device according to claim 1, wherein 液晶層のΔndは実質的に400nmであり、一対の偏光板の一方と液晶セルとの間に、実質的に400nmのリタデーションを有する位相差板が、その遅相軸を、前記液晶セルの前記位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらして配置されていることを特徴とする請求項1に記載の液晶表示素子。Δnd of the liquid crystal layer is substantially 400 nm, and a retardation plate having a retardation of substantially 400 nm is provided between one of the pair of polarizing plates and the liquid crystal cell. The liquid crystal molecules are arranged at a position substantially shifted by 5 ° in a direction opposite to a twist direction of liquid crystal molecules from the substrate adjacent to the phase difference plate to the other substrate with respect to a liquid crystal molecule alignment direction near the substrate adjacent to the phase difference plate. The liquid crystal display device according to claim 1, wherein: 液晶層のΔndは実質的に470nmであり、一対の偏光板の一方と液晶セルとの間に、実質的に650nmのリタデーションを有する第1の位相差板が、その遅相軸を、前記液晶セルの前記第1の位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記第1の位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向と同方向に実質的に5°ずらして配置され、他方の偏光板と前記液晶セルとの間に、実質的に400nmのリタデーションを有する第2の位相差板が、その遅相軸を、前記液晶セルの前記第2の位相差板に隣接する基板の近傍の液晶分子配向方向に対し、前記第2の位相差板に隣接する基板から他方の基板に向かう液晶分子のツイスト方向とは逆方向に実質的に5°ずらして配置されていることを特徴とする請求項1に記載の液晶表示素子。Δnd of the liquid crystal layer is substantially 470 nm, and a first retardation film having a retardation of substantially 650 nm is provided between one of the pair of polarizing plates and the liquid crystal cell. The liquid crystal molecule alignment direction near the substrate adjacent to the first retardation plate of the cell is substantially in the same direction as the twist direction of liquid crystal molecules from the substrate adjacent to the first retardation plate to the other substrate. A second retardation plate having a retardation of substantially 400 nm between the other polarizing plate and the liquid crystal cell, the slow axis of which is set to the second position of the liquid crystal cell. The liquid crystal molecule alignment direction near the substrate adjacent to the second retardation plate is substantially 5 directions opposite to the twist direction of liquid crystal molecules from the substrate adjacent to the second retardation plate toward the other substrate. Characterized by being staggered The liquid crystal display device according to claim 1.
JP2003152936A 2003-05-29 2003-05-29 Liquid crystal display element Pending JP2004354750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152936A JP2004354750A (en) 2003-05-29 2003-05-29 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152936A JP2004354750A (en) 2003-05-29 2003-05-29 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2004354750A true JP2004354750A (en) 2004-12-16

Family

ID=34048033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152936A Pending JP2004354750A (en) 2003-05-29 2003-05-29 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2004354750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186830A (en) * 2008-02-07 2009-08-20 Nitto Denko Corp Liquid crystal panel and polarizing plate with retardation layer
US10768461B2 (en) 2017-04-28 2020-09-08 Lg Chem, Ltd. Light modulation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186830A (en) * 2008-02-07 2009-08-20 Nitto Denko Corp Liquid crystal panel and polarizing plate with retardation layer
US10768461B2 (en) 2017-04-28 2020-09-08 Lg Chem, Ltd. Light modulation device
US11009725B2 (en) 2017-04-28 2021-05-18 Lg Chem, Ltd. Light modulation device
US11262600B2 (en) 2017-04-28 2022-03-01 Lg Chem, Ltd. Light modulation device
US11314106B2 (en) 2017-04-28 2022-04-26 Lg Chem, Ltd. Light modulation device
US11347080B2 (en) 2017-04-28 2022-05-31 Lg Chem, Ltd. Light modulation device
US11506915B2 (en) 2017-04-28 2022-11-22 Lg Chem, Ltd. Light modulation device
US11536987B2 (en) 2017-04-28 2022-12-27 Lg Chem, Ltd. Light modulation device

Similar Documents

Publication Publication Date Title
JP2006350106A (en) Liquid crystal display device
JP2001013501A (en) Liquid crystal display device
JP4687507B2 (en) Liquid crystal display element
JP4894319B2 (en) Liquid crystal display element
JP3183634B2 (en) Liquid crystal display
JP2002122866A (en) Color liquid crystal display panel, reflection type color liquid crystal display panel, and semitransmission type color liquid crystal display panel
JPH0815691A (en) Color liquid crystal display device
JP4366985B2 (en) Liquid crystal display
JP3969126B2 (en) Liquid crystal display element
JP2006330164A (en) Liquid crystal display device
JP4997582B2 (en) Reflective liquid crystal display
JP2004354750A (en) Liquid crystal display element
JP5316270B2 (en) Liquid crystal display
JP2003021838A (en) Liquid crystal display device
JP2847187B2 (en) Liquid crystal display device
JPH095702A (en) Color liquid crystal display device
JPH08262434A (en) Color liquid crystal display device
JP3058971B2 (en) Liquid crystal display device
JPH08262399A (en) Color liquid crystal display device
JPH03191326A (en) Liquid crystal display device
JP2001188232A (en) Liquid crystal display device
JPH0973105A (en) Color liquid crystal display device
JPH07318927A (en) Active matrix liquid crystal display device
JP2001272699A (en) Liquid crystal display device
JPH08262435A (en) Color liquid crystal display device