WO2007080280A2 - Procédé de pilotage d'un ralentisseur électromagnétique - Google Patents

Procédé de pilotage d'un ralentisseur électromagnétique Download PDF

Info

Publication number
WO2007080280A2
WO2007080280A2 PCT/FR2006/002751 FR2006002751W WO2007080280A2 WO 2007080280 A2 WO2007080280 A2 WO 2007080280A2 FR 2006002751 W FR2006002751 W FR 2006002751W WO 2007080280 A2 WO2007080280 A2 WO 2007080280A2
Authority
WO
WIPO (PCT)
Prior art keywords
coils
coolant
temperature
intensity
retarder
Prior art date
Application number
PCT/FR2006/002751
Other languages
English (en)
Other versions
WO2007080280A3 (fr
Inventor
Bruno Dessirier
Stéphane Hailly
Serge Newiadomy
Original Assignee
Telma
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telma filed Critical Telma
Priority to MX2008008348A priority Critical patent/MX2008008348A/es
Priority to US12/092,148 priority patent/US20090247354A1/en
Priority to BRPI0618537A priority patent/BRPI0618537A2/pt
Priority to EP06841954A priority patent/EP1964255A2/fr
Publication of WO2007080280A2 publication Critical patent/WO2007080280A2/fr
Publication of WO2007080280A3 publication Critical patent/WO2007080280A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/28Eddy-current braking

Definitions

  • the invention relates to a method for controlling an electromagnetic retarder comprising a current generator.
  • the invention applies to a retarder capable of generating a deceleration resistant torque on a main or secondary transmission shaft of a vehicle that it equips, when this retarder is actuated.
  • Such an electromagnetic retarder comprises a rotary shaft which is coupled to the main or secondary drive shaft of the vehicle to exert on it the retarding resisting torque to assist in particular the braking of the vehicle.
  • the deceleration is generated with inductor coils fed with direct current to produce a magnetic field in a metal part made of ferromagnetic material, in order to reveal eddy currents in this metal part.
  • the inductor coils may be fixed to cooperate with at least one metal part of movable ferromagnetic material having a general appearance of disk rigidly secured to the rotary shaft.
  • these inductive coils are generally oriented parallel to the axis of rotation and arranged around this axis, vis-à-vis the disc, being secured to a fixed flange.
  • Two successive inductive coils are electrically powered to generate magnetic fields of opposite directions.
  • the eddy currents that they generate in the disc are opposed by their effects to the cause that gave birth to them, which produces a resistant torque on the disc and thus on the rotating shaft, to slow down the vehicle.
  • the inductor coils are electrically powered by a current from the electrical network of the vehicle, that is to say for example from a battery of the vehicle.
  • a current generator is integrated in the retarder.
  • the electrical supply of the inductor coils is provided by a generator comprising stator primary coils fed by the vehicle network, and rotor secondary coils integral with the rotary shaft. .
  • the inductor coils are then integral with the rotary shaft by being radially projecting, so that they rotate with the rotary shaft to generate a magnetic field ⁇ in a fixed cylindrical jacket which surrounds them.
  • a rectifier such as a diode bridge rectifier is interposed between the secondary rotor windings of the generator and the inductor coils, for converting the alternating current delivered by the secondary windings of the generator into DC power supply of the inductor coils.
  • Two consecutive radial inductor coils around the axis of rotation generate magnetic fields of opposite directions, one generating a centrifugally oriented field, the other a centripetally oriented field.
  • the power supply of the primary coils allows the generator to produce the supply current of the inductor coils, which gives rise to eddy currents in the coil. fixed cylindrical jacket, to generate a resistant torque on the rotating shaft, which slows down the vehicle.
  • the speed of rotation of the retarder shaft is then overdrive relative to the rotational speed of the transmission shaft to which it is coupled. This arrangement makes it possible to significantly increase the electric power delivered by the generator, and therefore the power of the retarder.
  • the object of the invention is a method of determining the maximum allowable current of the excitation current of the primary coils of an electromagnetic retarder to improve its performance and reliability.
  • the subject of the invention is a method for determining, in a control box, a maximum allowable intensity of an excitation current to be injected in stator primary coils of an electromagnetic retarder comprising a rotary shaft bearing secondary windings and induction coils energized electrically by these secondary windings, the primary coils and the secondary coils forming a generator, this retarder comprising a fixed cylindrical jacket surrounding the inductor coils and in which the inductor coils generate eddy currents, and a circuit fluid circulation cooling system of this jacket, which method determines the maximum admissible intensity in real time, so that this maximum admissible intensity corresponds to at a critical temperature of the cylindrical jacket, and to determine this critical temperature by taking into account a temperature value of the coolant.
  • the temperature of the coolant makes it possible to increase the value of the critical temperature of the fixed cylindrical jacket, in particular when the coolant has a temperature which is low.
  • Increasing criticism jacket temperature increases all the intensity of the excitation current, and hence, the "braking torque generated by the retarder.
  • the invention also relates to a method as defined above, in which the temperature of the cooling liquid corresponds to a measurement value resulting from a temperature probe located at the outlet of the cooling circuit.
  • the invention also relates to a method as defined above, of taking into account the flow of the cooling liquid to determine the critical temperature.
  • the invention also relates to a method as defined above, in which the maximum admissible intensity is determined in the control box from tables of digital values stored in this control box, these tables comprising representative values of the current maximum permissible for different operating conditions.
  • the invention also relates to a method as defined above, consisting in determining the representative value of the coolant flow rate from the engine speed of a vehicle engine and a characteristic abacus of a driven water pump. by this heat engine, this water pump causing the circulation of the coolant.
  • the invention also relates to a method as defined above, in which the significant value of the engine speed is derived from data transmitted by a CAN bus.
  • Figure 1 is an overall view with a local tear of an electromagnetic retarder to which the invention applies;
  • FIG. 2 is a schematic representation of the electrical components of the retarder for which the method according to the invention is intended;
  • FIG. 3 is a curve representative of the intensity of the excitation current as a function of the speed of rotation of the rotary shaft in order to obtain a current flowing in the inductor coils having a constant intensity;
  • FIG. 4 is a curve representative of the critical temperature of the cylindrical jacket as a function of the coolant flow rate
  • FIG. 5 is a graph representative of the increase of the critical temperature as a function of the temperature of the coolant
  • FIG. 6 comprises two curves of current intensity injected into the primary coils as a function of the temperature of the cylindrical jacket for two temperatures of the coolant.
  • main casing 2 of generally cylindrical shape having a first end closed by a cover 3, and a second end closed by a coupling part 4 by which this retarder 1 is attached to a gearbox case either directly or indirectly, here via a gear multiplier marked by 6.
  • This casing 2 which is fixed, contains a rotary shaft 7 which is coupled to a transmission shaft not visible in the figure, such as a main shaft for transmitting to the wheels of the vehicle, or secondary such as a secondary output shaft. of the gearbox via the speed multiplier 6.
  • a current generator which comprises fixed or statoric primary coils 8 which surround rotor secondary coils, integral with the rotary shaft 7.
  • These secondary windings are symbolically represented in FIG. 2 and marked by reference numeral 5.
  • These secondary windings 5 here comprise three separate windings 5A, 5B and 5C for delivering a three-phase alternating current having a frequency conditioned by the speed of rotation of the shaft. rotating 7.
  • a fixed inner liner 9 of cylindrical general shape is mounted in the main housing 2 being spaced radially slightly from the outer wall of the main housing 2 to define an intermediate space 10, substantially cylindrical, in which circulates a coolant of this jacket 9.
  • This main casing which also has a generally cylindrical shape, is provided with a coolant intake duct 11 in the space 10 and a discharge duct 12 of the coolant out of this space 10.
  • the cooling circuit of the retarder can be connected in series with the cooling circuit of the engine of the vehicle that the retarder team.
  • the input 11 is connected to the output of the heat engine, the output 12 being connected to the input of a cooling radiator of this circuit.
  • This jacket 9 surrounds several induction coils 13 which are carried by a rotor 14 rigidly secured to the rotary shaft 7.
  • Each induction coil 13 is oriented to generate a radial magnetic field, while having a generally oblong shape extending parallel to the tree 7.
  • the liner 9 and the body of the rotor 14 are made of ferromagnetic material.
  • the casing is a moldable aluminum-based part and seals intervene between the casing and the liner 9, the lid 3 and the part 4 are perforated.
  • the inductor coils 13 are electrically powered by the rotor secondary coils 5 of the generator via a rectifier bridge carried by the rotary shaft 7.
  • This rectifier bridge may be that which is indicated by 15 in FIG. 2, and which comprises six 15A diodes. -15F, for rectifying the three-phase alternating current from the secondary windings 5A-5C in direct current.
  • This bridge rectifier can also be of another type, for example being formed from MOSFET type transistors.
  • the rotor 14 carrying the induction coils 13 has a general shape of a hollow cylinder connected to the rotary shaft 7 by radial arms 16.
  • This rotor 14 thus defines an annular internal space situated around the shaft 7, this internal space being ventilated by an axial fan 17 located substantially at the junction of the lid 3 with the casing 2.
  • a radial fan 18 is located at the opposite end of the casing 2 to evacuate the air introduced by the fan 17.
  • the biasing of the retarder consists in supplying the primary coils 8 with an excitation current coming from the electrical network of the vehicle and in particular from the battery so that the generator delivers a current at its secondary coils 5. This current delivered by the generator then feeds the inductor coils 13 so as to generate eddy currents in the fixed cylindrical jacket 9 to produce a resistive torque ensuring the slowing down of the vehicle.
  • the excitation current is injected into the primary coils 8 by means of a control box described hereinafter.
  • the electric power delivered by the secondary windings 5 of the generator is greater than the electrical power supply of the primary coils 8, since it is the result of the magnetic field of the primary coils 8 and the work provided by the rotary shaft.
  • the shaft 7 of the retarder is connected to the transmission shaft of the vehicle wheels via the multiplier 6 acting on a secondary shaft of the gearbox connected to the main shaft of the -this.
  • This retarder comprises a control unit 19 represented in FIG. 2, which is interposed for example between a vehicle power supply source, and the primary coils 8.
  • the control unit 19 and the primary coils 8 are connected in series between a mass M of the vehicle and a battery supply Batt of the vehicle battery.
  • a diode D is mounted across the primary coils 8 so as to prevent the flow of a reverse current in the primary coils.
  • the control unit 19 of the retarder is an electronic box comprising for example an ASIC type logic circuit operating at 5V, and / or a power control circuit capable of handling high intensity currents.
  • This control unit 19 comprises an input capable of receiving a control signal from the retarder, this signal being representative of a level of retarding torque requested from the retarder.
  • the control unit 19 determines in real time an intensity The maximum permissible Im for the current to be injected in the primary coils 8. It then defines the value of the intensity Ie of the excitation current, starting from the maximum intensity Im and the value taken by the control signal.
  • the maximum permissible intensity Im of the excitation current Ie to be injected into the primary coils is determined in real time in the control box 19 from data and measurements representative of the temperature of the coolant at the outlet 12 , denoted Tr, and the flow rate of the coolant, noted D.
  • the intensity Im is a threshold value beyond which the temperature of the cylindrical liner 9 is too high and provokes the boiling of the cooling liquid, even if this circuit is capable of evacuating the heating power resulting from the currents. Foucault circulating in this shirt.
  • the coolant boils, causing short-term failure of the electromagnetic retarder.
  • the temperature of the cylindrical jacket 9 depends mainly on the intensity of the eddy currents flowing in the cylindrical jacket 9. This is directly related to the intensity of the current, denoted If, which flows in the inductor coils 13. This current If itself has an intensity depending on the rotational speed Na of the rotary shaft 7, and the intensity of the excitation current Ie. In other words, for a constant intensity of the current If flowing in the inductor coils 13, the excitation current Ie injected into the primary coils 8 must decrease when the rotation speed Na of the rotary shaft 7 increases, as represented schematically in FIG.
  • the rotational speed Na of the rotary shaft 7 can come from a rotation speed sensor equipping the retarder, or be deduced from data available on a CAN data bus of the vehicle to which the housing 19 is connected.
  • the factor of the speed multiplier 6 is stored in the control box 19 to enable the determination of the speed Na from the data of the CAN bus.
  • FIG. 4 is a graph representative of the critical temperature Tc (105 °) as a function of the flow rate D of coolant, for a coolant having a temperature Tr equal to one hundred and five degrees. As this graph shows, the higher the flow rate D, the higher the critical temperature Tc can be important.
  • the flow rate D of the coolant depends on the speed of rotation of a water pump driven by the engine of the vehicle, and which causes the circulation of the coolant. This flow rate results from the rotation speed of the heat engine, denoted Nt, and an abacus representative of the characteristic of this pump.
  • the control unit 19 retrieves on the CAN bus the rotational speed Nt to determine the flow rate D from the pump chart stored in this control box 19.
  • the critical temperature Tc is in fact also dependent on the temperature Tr of the coolant: it can be even higher than the temperature Tr of the coolant is low, and without risk of boiling of the liquid of cooling.
  • FIG. 5 is a graph representative of the correction C (Tr) to be applied at the temperature Tc (105 °) of the graph of FIG. 4 to take into account the temperature Tr of the cooling liquid at the outlet 12 of the cooling circuit. As can be seen in this graph, when the temperature Tr is eighty-five degrees, the critical temperature value Tc from the graph of FIG. 4 can be increased by forty-five degrees. five degrees.
  • the correction C (Tr) to be applied is zero when Tr is greater than or equal to one hundred and five degrees.
  • Tc Tc (105 °) + C (Tr).
  • the determination of the maximum permissible intensity Im consists in first identifying a threshold value of the current If flowing in the inductive coils beyond which the heating power generated by the eddy currents resulting from If would cause a rise in temperature of the cylindrical jacket beyond the critical temperature Tc.
  • This other data table is representative of the current If as a function of the excitation current Ie and the rotation speed Na of the rotary shaft 7.
  • the corrective C (Tr) makes it possible to increase the operating temperature of the cylindrical jacket, by an additional forty degrees in the most favorable cases. This increase in temperature allows a significant increase in the intensity Im of the injected current, and therefore the retarding torque that the retarder is able to provide.
  • Fig. 6 is a graph showing the maximum allowable current for the excitation current as a function of the temperature of the jacket.
  • the maximum admissible intensity is represented by a curve marked by Im (105 °) in the case of a coolant having a temperature Tr of one hundred and five degrees, and is represented by another curve marked by Im (85 °) ) corresponding to a case in which the coolant temperature is eighty-five degrees, thereby increasing the critical temperature Tc by forty degrees.
  • a forty-degree increase in the critical temperature Tc may correspond to an increase in the maximum intensity of up to seventy-five percent.
  • the data is stored as independent data tables, but this data can also be stored in the control box 19 in the form of one or more crossed dynamic tables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

L'invention concerne un procédé pour piloter un ralentisseur électromagnétique comprenant une génératrice de courant dans laquelle un courant d'excitation est injecté. Le procédé consiste à déterminer une intensité maximale admissible (Im) du courant d'excitation à injecter dans les bobines primaires statoriques du ralentisseur qui comprend un arbre portant des bobinages secondaires et des bobines inductrices alimentées par ces bobinages secondaire, les bobines primaires et les bobinages secondaires formant la génératrice. Le ralentisseur comprend une chemise dans laquelle les bobines inductrices génèrent des courants de Foucault, et un circuit de refroidissement liquide de cette chemise. . Le procédé consiste à déterminer l'intensité maximale admissible en temps réel de manière à atteindre une température critique de la chemise cylindrique, et à déterminer cette température critique en prenant en compte une valeur de température du liquide de refroidissement. L'invention s'applique aux ralentisseurs destinés à équiper des véhicules tels que des poids lourds.

Description

Procédé de pilotage d'un ralentisseur électromagnétique
DOMAINE DE L'INVENTION
L'invention concerne un procédé de pilotage d'un ralentisseur électromagnétique comprenant une génératrice de courant .
L'invention s'applique à un ralentisseur capable de générer un couple résistant de ralentissement sur un arbre de transmission principal ou secondaire d'un véhicule qu'il équipe, lorsque ce ralentisseur est actionné.
ETAT DE LA TECHNIQUE
Un tel ralentisseur électromagnétique comprend un arbre rotatif qui est accouplé à l'arbre de transmission principal ou secondaire du véhicule pour exercer sur celui-ci le couple résistant de ralentissement pour notamment assister le freinage du véhicule.
Le ralentissement est généré avec des bobines inductrices alimentées en courant continu pour produire un champ magnétique dans une pièce métallique en matériau ferromagnétique, afin de faire apparaître des courants de Foucault dans cette pièce métallique.
Les bobines inductrices peuvent être fixes pour coopérer avec au moins une pièce métallique en matériau ferromagnétique mobile ayant une allure générale de disque rigidement solidaire de l'arbre rotatif.
Dans ce cas, ces bobines inductrices sont généralement orientées parallèlement à 1 ' axe de rotation et disposées autour de cet axe, en vis-à-vis du disque, en étant, solidarisées à un flasque fixe. Deux bobines inductrices successives sont alimentées électriquement pour générer des champs magnétiques de directions opposées . Lorsque ces bobines inductrices sont alimentées électriquement, les courants de Foucault qu'elles génèrent dans le disque s'opposent par leurs effets à la cause qui leur a donné naissance, ce qui produit un couple résistant sur le disque et donc sur l'arbre rotatif, pour ralentir le véhicule.
Dans ce mode de réalisation, les bobines inductrices sont alimentées électriquement par un courant provenant du réseau électrique du véhicule, c'est-à-dire par exemple à partir d'une batterie du véhicule. Mais pour augmenter les performances du ralentisseur, on recourt à une conception dans laquelle une génératrice de courant est intégrée au ralentisseur.
Ainsi, selon une autre conception connue des documents de brevet EP0331559 et FR1467310, l'alimentation électrique des bobines inductrices est assurée par une génératrice comprenant des bobines primaires statoriques alimentées par le réseau du véhicule, et des bobinages secondaires rotoriques solidaires de l'arbre rotatif.
Les bobines inductrices sont alors solidaires de l'arbre rotatif en étant radialement saillantes, de sorte qu'elles tournent avec l'arbre rotatif pour générer un champ magnétique ι dans une chemise cylindrique fixe qui les entoure.
Un redresseur tel qu'un redresseur à pont de diodes est interposé entre les bobinages secondaires rotoriques de la génératrice et les bobines inductrices, pour convertir le courant alternatif délivré par les bobinages secondaires de la génératrice en courant continu d'alimentation des bobines inductrices.
Deux bobines inductrices radiales consécutives autour de 1 ' axe de rotation génèrent des champs magnétiques de directions opposées, l'une générant un champ orienté de façon centrifuge, l'autre un champ orienté de façon centripète .
En fonctionnement, l'alimentation électrique des bobines primaires permet à la génératrice de produire le courant d'alimentation des bobines inductrices, ce qui donne naissance à des courants de Foucault dans la chemise cylindrique fixe, pour générer un couple résistant sur l'arbre rotatif, qui ralentit le véhicule.
Afin de réduire le poids et d ' augmenter encore les performances d'un tel raientisseur, il est avantageux de l'accoupler à l'arbre de transmission du véhicule par l'intermédiaire d'un multiplicateur de vitesse, conformément à la solution adoptée dans le document de brevet EP1527509.
La vitesse de rotation de l'arbre du ralentisseur est alors surmultipliée par rapport à la vitesse de rotation de l'arbre de transmission auquel il est accouplé. Cet agencement permet d'augmenter significativement la puissance électrique délivrée par la génératrice, et donc la puissance du ralentisseur.
OBJET DE L'INVENTION
Le but de 1 ' invention est un procédé de détermination de 1 ' intensité maximale admissible du courant d'excitation des bobines primaires d'un ralentisseur électromagnétique permettant d'en améliorer les performances et la fiabilité.
A cet effet, l'invention a pour objet un procédé pour déterminer, dans un boîtier de commande, une intensité maximale admissible d'un courant d'excitation à injecter dans des bobines primaires statoriques d'un ralentisseur électromagnétique comprenant un arbre rotatif portant des bobinages secondaires et des bobines inductrices alimentées électriquement par ces bobinages secondaire, les bobines primaires et les bobinages secondaires formant une génératrice, ce ralentisseur comprenant une chemise cylindrique fixe entourant les bobines inductrices et dans laquelle les bobines inductrices génèrent des courants de Foucault, et un circuit de refroidissement à circulation de liquide de cette chemise, ce procédé consistant à déterminer l'intensité maximale admissible en temps réel, de manière à ce que cette intensité maximale admissible corresponde à une température critique de la chemise cylindrique, et à déterminer cette température critique en prenant en compte une valeur de température du liquide de refroidissement . La prise en compte de la température du liquide de refroidissement permet d'augmenter la valeur de la température critique de la chemise cylindrique fixe, en particulier lorsque le liquide de refroidissement a une température qui est basse. L'augmentation de la température critique de la chemise permet d'augmenter d'autant l'intensité du courant d'excitation, et par là même, le ' couple de ralentissement généré par le ralentisseur .
L ' invention concerne également un procédé tel que défini ci-dessus, dans lequel la température du liquide de refroidissement correspond à une valeur de mesure issue d'une sonde de température située en sortie du circuit de refroidissement .
L'invention concerne également un procédé tel que défini ci-dessus, consistant à prendre en compte le débit du liquide de refroidissement pour déterminer la température critique.
L ' invention concerne également un procédé tel que défini ci-dessus, dans lequel l'intensité maximale admissible est déterminée dans le boîtier de commande à partir de tables de valeurs numériques mémorisées dans ce boîtier de commande, ces tables comprenant des valeurs représentatives du courant maximal admissible pour différentes conditions de fonctionnement. L'invention concerne également un procédé tel que défini ci-dessus, consistant à déterminer la valeur représentative du débit de liquide de refroidissement à partir du régime d'un moteur thermique du véhicule et d'une abaque caractéristique d'une pompe à eau entraînée par ce moteur thermique, cette pompe à eau provoquant la circulation du liquide de refroidissement. L ' invention concerne également un procédé tel que défini ci-dessus, dans lequel la valeur significative du régime du moteur thermique est issue de données transmises par un bus CAN.
BREVE DESCRIPTION DES DESSINS
L'invention sera maintenant décrite plus en détail, et en référence aux dessins annexés qui en illustrent une forme de réalisation à titre d'exemple non limitatif. La figure 1 est une vue d'ensemble avec un arrachement local d'un ralentisseur électromagnétique auquel s ' applique l ' invention ;
La figure 2 est une représentation schématique des composants électriques du ralentisseur auquel est destiné le procédé selon l'invention ;
La figure 3 est une courbe représentative de l'intensité du courant d'excitation en fonction de la vitesse de rotation de l'arbre rotatif pour obtenir un courant circulant dans les bobines inductrices ayant une intensité constante ;
La figure 4 est une courbe représentative de la température critique de la chemise cylindrique en fonction du débit de liquide de refroidissement ;
La figure 5 est une courbe représentative de l'augmentation de là température critique en fonction de la température du liquide de refroidissement ;
La figure 6 comprend deux courbes d'intensité du courant injecté dans les bobines primaires en fonction de la température de la chemise cylindrique pour deux températures du liquide de refroidissement.
DESCRIPTION DE MODES DE REALISATION DE L'INVENTION
Dans la figure 1, le ralentisseur électromagnétique
1 comprend un carter principal 2 de forme généralement cylindrique ayant une première extrémité fermée par un couvercle 3, et une seconde extrémité fermée par une pièce d'accouplement 4 par laquelle ce ralentisseur 1 est fixé à un carter de boîte de vitesses soit directement soit indirectement, ici via un multiplicateur de vitesse repéré par 6.
Ce carter 2, qui est fixe, renferme un arbre rotatif 7 qui est accouplé à un arbre de transmission non visible sur la figure, tel qu'un arbre principal de transmission aux roues du véhicule, ou secondaire tel qu'un arbre secondaire de sortie de boîte de vitesses via le multiplicateur de vitesse 6. Dans une région correspondant à l'intérieur du couvercle 3 est située une génératrice de courant qui comprend des bobines primaires 8 fixes ou statoriques qui entourent des bobinages secondaires rotoriques, solidaires de l'arbre rotatif 7.
Ces bobinages secondaires sont représentés symboliquement en figure 2 en étant repérés par la référence 5. Ces bobinages secondaires 5 comprennent ici trois bobinages distincts 5A, 5B et 5C pour délivrer un courant alternatif triphasé ayant une fréquence conditionnée par la vitesse de rotation de l'arbre rotatif 7.
Une chemise interne 9 fixe de forme générale cylindrique est montée dans le carter principal 2 en étant légèrement espacée radialement de la paroi externe de ce carter principal 2 pour définir un espace intermédiaire 10, sensiblement cylindrique, dans lequel circule un liquide de refroidissement de cette chemise 9.
Ce carter principal, qui a également une forme générale cylindrique, est pourvu d'une canalisation d'admission 11 de liquide de refroidissement dans l'espace 10 et d'une canalisation de refoulement 12 du liquide de refroidissement hors de cet espace 10.
Le circuit de refroidissement du ralentisseur peut être connecté en série avec le circuit de refroidissement du moteur thermique du véhicule que ce ralentisseur équipe. Dans ce cas, l'entrée 11 est connectée en sortie du moteur thermique, la sortie 12 étant connectée en entrée d'un radiateur de refroidissement de ce circuit. Cette chemise 9 entoure plusieurs bobines inductrices 13 qui sont portées par un rotor 14 rigidement solidaire de l'arbre rotatif 7. Chaque bobine inductrice 13 est orientée pour générer un champ magnétique radial, tout en ayant une forme générale oblongue s 'étendant parallèlement à l'arbre 7.
De manière connue, la chemise 9 et le corps du rotor 14 sont en matériau ferromagnétique. Ici le carter est une pièce moulable à base d'aluminium et des joints d'étanchéité interviennent entre le carter et la chemise 9, le couvercle 3 et la pièce 4 sont ajourés.
Les bobines inductrices 13 sont alimentées électriquement par les bobinages secondaires rotoriques 5 de la génératrice via un pont redresseur porté par l'arbre rotatif 7. Ce pont redresseur peut être celui qui est repéré par 15 sur la figure 2, et qui comprend six diodes 15A-15F, pour redresser le courant alternatif triphasé issu des bobinages secondaires 5A-5C en courant continu. Ce pont redresseur peut aussi être d'un autre type, en étant par exemple formé à partir de transistors de type MOSFET.
Comme visible dans la figure 1, le rotor 14 portant les bobines inductrices 13 a une forme générale de cylindre creux relié à l'arbre rotatif 7 par des bras radiaux 16. Ce rotor 14 définit ainsi un espace interne annulaire situé autour de l'arbre 7, cet espace interne étant ventilé par un ventilateur axial 17 situé sensiblement au droit de la jonction du couvercle 3 avec le carter 2. Un ventilateur radial 18 est situé à l'extrémité opposée du carter 2 pour évacuer l'air introduit par le ventilateur 17.
La sollicitation du ralentisseur consiste à alimenter les bobines primaires 8 avec un courant d'excitation provenant du réseau électrique du véhicule et notamment de la batterie, pour que la génératrice délivre un courant au niveau de ses bobinages secondaires 5. Ce courant délivré par la génératrice alimente alors les bobines inductrices 13 de manière à générer des courants de Foucault dans la chemise cylindrique fixe 9 pour produire un couple résistant assurant le ralentissement du véhicule. Le courant d'excitation est injecté dans les bobines primaires 8 au moyen d'un boîtier de commande décrit ci-après.
La puissance électrique délivrée par les bobinages secondaires 5 de la génératrice est supérieure à la puissance électrique d'alimentation des bobines primaires 8, puisqu'elle est le résultat du champ magnétique des bobines primaires 8 et du travail fourni par 1 ' arbre rotatif. Dans le mode de réalisation de la figure 1, l'arbre 7 du ralentisseur est relié à l'arbre de transmission des roues du véhicule via le multiplicateur 6 agissant sur un arbre secondaire de la boîte de vitesses relié à l'arbre principal de celle-ci.
Ce ralentisseur comprend un boîtier de commande 19 représenté en figure 2, qui est interposé par exemple entre une source d'alimentation électrique du véhicule, et les bobines primaires 8. Dans l'exemple de la figure 2, le boîtier de commande 19 et les bobines primaires 8 sont montées en série entre une masse M du véhicule et une alimentation Batt de la batterie du véhicule. Comme visible dans cette figure, une diode D est montée aux bornes des bobines primaires 8 de façon à éviter la circulation d'un courant inverse dans les bobines primaires .
Le boîtier de commande 19 du ralentisseur est un boîtier électronique comprenant par exemple un circuit logique de type ASIC fonctionnant sous 5V, et/ou un circuit de commande de puissance capable de gérer des courants d'intensité élevée.
Ce boîtier de commande 19 comprend une entrée apte à recevoir un signal de pilotage du ralentisseur, ce signal étant représentatif d'un niveau de couple de ralentissement demandé au ralentisseur. Le boîtier de commande 19 détermine en temps réel une intensité maximale Im admissible pour le courant à injecter dans les bobines primaires 8. Il définit ensuite la valeur de l'intensité Ie du courant d'excitation, à partir de 1 ' intensité maximale Im et de la valeur prise par le signal de commande.
L'intensité maximale admissible Im du courant d'excitation Ie à injecter dans les bobines primaires est déterminée en temps réel dans le boîtier de commande 19 à partir de données et de mesures représentatives de la température du liquide de refroidissement au niveau de la sortie 12, notée Tr, et du débit du liquide de refroidissement, noté D.
L ' intensité Im est une valeur seuil au-delà de laquelle la température de la chemise cylindrique 9 est trop élevée et provoque l'entrée en ébullition du liquide de refroidissement, même si ce circuit est capable d'évacuer la puissance calorifique résultant des courants de Foucault circulant dans cette chemise.
Si la température de la chemise est située au delà de la température critique Tc, le liquide de refroidissement entre en ébullition, ce qui provoque à court terme la ruine du ralentisseur électromagnétique .
La température de la chemise cylindrique 9 dépend principalement de 1 ' intensité des courants de Foucault circulant dans la chemise cylindrique 9. Celle-ci est directement liée à l'intensité du courant, noté If, qui circule dans les bobines inductrices 13. Ce courant If a lui-même une intensité dépendant du régime de rotation Na de l'arbre rotatif 7, et de l'intensité du courant d'excitation Ie. En d'autres termes, pour une intensité constante du courant If circulant dans les bobines inductrices 13, le courant d'excitation Ie injecté dans les bobines primaires 8 doit diminuer lorsque le régime Na de rotation de l'arbre rotatif 7 augmente, comme représenté schématiquement en figure 3.
Le régime de rotation Na de l'arbre rotatif 7 peut provenir d'un capteur de vitesse de rotation équipant le ralentisseur, ou bien être déduit de données disponibles sur un bus de données CAN du véhicule auquel le boîtier 19 est relié. Dans ce cas, le facteur du multiplicateur de vitesse 6 est mémorisé dans le boîtier de commande 19 pour permettre la détermination du régime Na à partir des données du bus CAN.
La figure 4 est un graphe représentatif de la température critique Tc (105°) en fonction du débit D de liquide de refroidissement, pour un liquide de refroidissement ayant une température Tr valant cent-cinq degrés. Comme le montre ce graphe, plus le débit D est élevé, plus la température critique Tc peut être importante .
Le débit D du liquide de refroidissement dépend du régime de rotation d'une pompe à eau entraînée par le moteur thermique du véhicule, et qui provoque la circulation du liquide de refroidissement. Ce débit résulte du régime de rotation du moteur thermique, noté Nt, et d'une abaque représentative de la caractéristique de cette pompe. Avantageusement, le boîtier de commande 19 récupère sur le bus CAN le régime de rotation Nt pour déterminer le débit D à partir de l'abaque de la pompe mémorisée dans ce boîtier de commande 19.
La température critique Tc est en fait également dépendante de la température Tr du liquide de refroidissement : elle peut être d'autant plus élevée que la température Tr du liquide de refroidissement est basse, et ce, sans risque d'entrée en ébullition du liquide de refroidissement. La figure 5 est un graphe représentatif de la correction C(Tr) à appliquer a la température Tc (105°) du graphe de la figure 4 pour prendre en compte la température Tr du liquide de refroidissement en sortie 12 du circuit de refroidissement. Comme visible dans ce graphe, lorsque la température Tr vaut quatre-vingt-cinq degrés, la valeur de température critique Tc issue du graphe de la figure 4 peut être augmentée de quarante- cinq degrés. La correction C(Tr) à appliquer est nulle lorsque Tr est supérieur ou égal à cent-cinq degrés.
L'utilisation des données représentées dans les graphes des figures 4 et 5 permet de déterminer la température critique Tc en fonction du débit D, c'est-à- dire du régime de rotation Nt du moteur thermique et de la température Tr du liquide de refroidissement, en sortie 12 du circuit de refroidissement .
Pour ce faire, des données numériques correspondant aux graphes des figures 4 et 5 sont mémorisées dans le boîtier de commande. La détermination de Tc consiste d'abord à lire dans une première table, à partir du débit D, ou du régime de rotation Nt du moteur thermique, la température critique pour cent-cinq degrés : Tc (105°). Ensuite, le correctif C(Tr) à appliquer est lu dans une autre table de données correspondant à la figure 5, et est ajouté à la température Tc (105°) . On a ainsi Tc = Tc(105°) + C(Tr) .
La détermination de l ' intensité maximale admissible Im consiste à identifier d'abord une valeur seuil du courant If circulant dans les bobines inductrices au-delà de laquelle la puissance calorifique générée par les courants de Foucault issus de If provoquerait une montée en température de la chemise cylindrique au-delà de la température critique Tc.
A partir de cette valeur seuil du courant If circulant dans les bobines inductrices, et du régime de rotation Na de l'arbre rotatif 7, la valeur de l'intensité maximale Im du courant d'excitation est lue dans une autre table de données. Cette autre table de données est représentative du courant If en fonction du courant d'excitation Ie et du régime de rotation Na de 1 ' arbre rotatif 7.
Le correctif C(Tr) permet d'augmenter la température de fonctionnement de la chemise cylindrique, de quarante degrés supplémentaires dans les cas les plus favorables. Cette augmentation de température permet une augmentation significative de l'intensité Im du courant injecté, et donc du couple de ralentissement que le ralentisseur est capable de fournir.
La figure 6 est un graphe donnant 1 ' intensité maximale admissible pour le courant d'excitation, en fonction de la température de la chemise. L'intensité maximale admissible est représentée par une courbe repérée par Im (105°) dans le cas d'un liquide de refroidissement ayant une température Tr de cent-cinq degrés, et elle est représentée par une autre courbe repérée par Im (85°) correspondant à un cas dans lequel la température dμ liquide de refroidissement vaut quatre- vingt cinq degrés, ce qui permet d'augmenter la température critique Tc de quarante degrés. Une augmentation de quarante degrés de la température critique Tc peut correspondre à une augmentation de l'intensité maximale allant jusqu'à soixante-quinze pourcent.
Dans le mode de réalisation présenté ci-dessus, les données sont mémorisées sous forme de tables de données indépendantes, mais ces données peuvent également être mémorisées dans le boîtier de commande 19 sous forme d'un ou plusieurs tableaux dynamiques croisés.
Ceci permet de faciliter 1 ' implémentation du procédé de pilotage selon l ' invention tout en offrant une flexibilité permettant une adaptabilité à différents contextes d'utilisation.

Claims

REVENDICATIONS
1. Procédé pour déterminer, dans un boîtier de commande, une intensité maximale admissible (Im) d'un courant d'excitation (Ie) à injecter dans des bobines primaires (8) statoriques d'un raientisseur électromagnétique (1) comprenant un arbre rotatif (7) portant des bobinages secondaires (5) et des bobines inductrices (13) alimentées électriquement par ces bobinages secondaire (5) , les bobines primaires (8) et les bobinages secondaires (5) formant une génératrice, ce ralentisseur (1) comprenant une chemise cylindrique (9) fixe entourant les bobines inductrices (13) et dans laquelle les bobines inductrices (13) génèrent des courants de Foucault, et un circuit de refroidissement à circulation de liquide de cette chemise, ce procédé consistant à déterminer l'intensité maximale admissible
(Im) en temps réel de manière à ce que cette intensité maximale admissible corresponde à une température critique (Tc) de la chemise cylindrique (9) , et à déterminer cette température critique (Tc) en prenant en compte une valeur de température (Tr) du liquide de refroidissement .
2. Procédé selon la revendication 1, dans lequel la température (Tr) du liquide de refroidissement correspond à une valeur de mesure issue d'une sonde de température située en sortie (12) du circuit de refroidissement.
3. Procédé selon la revendication 1 ou 2 , consistant à prendre en compte le débit (D) du liquide de refroidissement pour déterminer la température critique (Tc) .
4. Procédé selon l'une des revendications précédentes, dans lequel l'intensité maximale (Im) admissible est déterminée dans le boîtier de commande (19) à partir de tables de valeurs numériques mémorisées dans ce boîtier de commande (19) , ces tables comprenant des valeurs représentatives du courant maximal (Im) admissible pour différentes conditions de fonctionnement.
5. Procédé selon l'une des revendications précédentes, consistant à déterminer la valeur représentative du débit (D) de liquide de refroidissement à partir du régime (Nt) d'un moteur thermique du véhicule et d'une abaque caractéristique d'une pompe à eau entraînée par ce moteur thermique, cette pompe à eau provoquant la circulation du liquide de refroidissement .
6. Procédé selon la revendication 5, dans lequel la valeur significative du régime du moteur thermique est issue de données transmises par un bus CAJSF.
PCT/FR2006/002751 2005-12-22 2006-12-15 Procédé de pilotage d'un ralentisseur électromagnétique WO2007080280A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2008008348A MX2008008348A (es) 2005-12-22 2006-12-15 Metodo de control de un desacelerador electromagnetico.
US12/092,148 US20090247354A1 (en) 2005-12-22 2006-12-15 Method for controlling an electromagnetic retarder
BRPI0618537A BRPI0618537A2 (pt) 2005-12-22 2006-12-15 processo para determinar, em uma caixa de comando, uma intensidade máxima admissível de uma corrente de excitação a injetar em bobinas primárias de estator de um desacelerador eletromagnético
EP06841954A EP1964255A2 (fr) 2005-12-22 2006-12-15 Procédé de pilotage d'un ralentisseur électromagnétique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0554046 2005-12-22
FR0554046A FR2895596B1 (fr) 2005-12-22 2005-12-22 Procede de pilotage d'un ralentisseur electromagnetique.

Publications (2)

Publication Number Publication Date
WO2007080280A2 true WO2007080280A2 (fr) 2007-07-19
WO2007080280A3 WO2007080280A3 (fr) 2007-08-30

Family

ID=37036828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/002751 WO2007080280A2 (fr) 2005-12-22 2006-12-15 Procédé de pilotage d'un ralentisseur électromagnétique

Country Status (7)

Country Link
US (1) US20090247354A1 (fr)
EP (1) EP1964255A2 (fr)
CN (1) CN101322308A (fr)
BR (1) BRPI0618537A2 (fr)
FR (1) FR2895596B1 (fr)
MX (1) MX2008008348A (fr)
WO (1) WO2007080280A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884640A1 (fr) * 2012-08-13 2015-06-17 Nippon Steel & Sumitomo Metal Corporation Dispositif de décélération à courant de foucault

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895166B1 (fr) * 2005-12-19 2008-06-13 Telma Sa Procede de detection de defaut de fobnctionnement d'un ralentisseur electromagnetique
FR3083386B1 (fr) * 2018-06-28 2021-05-14 Telma Ensemble ralentisseur electromagnetique et generatrice et vehicule comportant un tel ensemble

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1467310A (fr) * 1965-01-11 1967-01-27 Hitachi Ltd Ralentisseur pour véhicules automobiles
EP0331559A1 (fr) * 1988-02-25 1989-09-06 Labavia S.G.E. Ensemble constitué par un ralentisseur électromagnétique et par ses moyens d'alimentation électrique
JPH10295100A (ja) * 1997-04-18 1998-11-04 Sawafuji Electric Co Ltd エキサイタ方式リターダの制御装置
JPH10304648A (ja) * 1997-04-24 1998-11-13 Sumitomo Metal Ind Ltd 渦電流式減速装置の回転子
JP2002223555A (ja) * 2001-01-25 2002-08-09 Nippon Sharyo Seizo Kaisha Ltd 電磁式リターダ
FR2842961A1 (fr) * 2002-07-29 2004-01-30 Telma Ralentisseur electromagnetique d'un vehicule muni d'un dispositif multiplicateur de vitesse

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059515Y2 (fr) * 1986-06-11 1993-03-09
DE4136759C2 (de) * 1991-11-08 1996-12-19 Voith Turbo Kg Hydrodynamischer Retarder
DE4141837B4 (de) * 1991-12-18 2006-08-03 Robert Bosch Gmbh Vorrichtung zur Regelung eines Generators
JPH06165304A (ja) * 1992-03-31 1994-06-10 Suzuki Motor Corp 回生ブレーキシステム
US7218017B1 (en) * 1996-06-24 2007-05-15 Anorad Corporation System and method to control a rotary-linear actuator
DE19716919C2 (de) * 1997-04-23 2001-07-12 Voith Turbo Kg Verfahren und Vorrichtung zur maximalen Ausnutzung der Bremswirkung eines Retarders
FR2805937B1 (fr) * 2000-03-03 2002-12-06 Daniel Drecq Dispositif de freinage a courants de foucault et echangeur de chaleur pour dispositif de freinage a courants de foucault
DE10231610A1 (de) * 2002-07-12 2004-02-12 Zf Friedrichshafen Ag Verfahren zur Begrenzung der Bremswirkung eines Retarders in Abhängigkeit von der Temperatur
US7591302B1 (en) * 2003-07-23 2009-09-22 Cooligy Inc. Pump and fan control concepts in a cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1467310A (fr) * 1965-01-11 1967-01-27 Hitachi Ltd Ralentisseur pour véhicules automobiles
EP0331559A1 (fr) * 1988-02-25 1989-09-06 Labavia S.G.E. Ensemble constitué par un ralentisseur électromagnétique et par ses moyens d'alimentation électrique
JPH10295100A (ja) * 1997-04-18 1998-11-04 Sawafuji Electric Co Ltd エキサイタ方式リターダの制御装置
JPH10304648A (ja) * 1997-04-24 1998-11-13 Sumitomo Metal Ind Ltd 渦電流式減速装置の回転子
JP2002223555A (ja) * 2001-01-25 2002-08-09 Nippon Sharyo Seizo Kaisha Ltd 電磁式リターダ
FR2842961A1 (fr) * 2002-07-29 2004-01-30 Telma Ralentisseur electromagnetique d'un vehicule muni d'un dispositif multiplicateur de vitesse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2884640A1 (fr) * 2012-08-13 2015-06-17 Nippon Steel & Sumitomo Metal Corporation Dispositif de décélération à courant de foucault
EP2884640A4 (fr) * 2012-08-13 2016-04-13 Nippon Steel & Sumitomo Metal Corp Dispositif de décélération à courant de foucault
US9933032B2 (en) 2012-08-13 2018-04-03 Nippon Steel & Sumitomo Metal Corporation Eddy-current retarding device

Also Published As

Publication number Publication date
BRPI0618537A2 (pt) 2018-11-06
US20090247354A1 (en) 2009-10-01
FR2895596A1 (fr) 2007-06-29
FR2895596B1 (fr) 2008-03-14
CN101322308A (zh) 2008-12-10
MX2008008348A (es) 2008-09-23
WO2007080280A3 (fr) 2007-08-30
EP1964255A2 (fr) 2008-09-03

Similar Documents

Publication Publication Date Title
EP0331559B1 (fr) Ensemble constitué par un ralentisseur électromagnétique et par ses moyens d'alimentation électrique
CA2803739C (fr) Alimentation electrique des equipements portes par un support rotatif
CA2802569C (fr) Alimentation electrique des equipements portes par le rotor d'un moteur d'aeronef
FR2795253A1 (fr) Systeme d'entrainement pour vehicule automobile comprenant un agencement de transmission thermique pour le rotor
EP3953199A1 (fr) Dispositif de refroidissement et de lubrification d'un groupe motopropulseur électrique d'un véhicule automobile électrique ou hybride
WO2007080279A1 (fr) Procédé de détection de défaut de fonctionnement d'un ralentisseur électromagnétique
EP1958326A1 (fr) Procede de pilotage d'un ralentisseur electromagnetique et systeme comprenant un ralentisseur et un boitier de pilotage
WO2007080280A2 (fr) Procédé de pilotage d'un ralentisseur électromagnétique
FR2895595A1 (fr) Procede de pilotage d'un ralentisseur electromagnetique.
FR2885274A1 (fr) Ventilateur debrayable pour un ralentisseur electromagnetique
FR2894734A1 (fr) Procede de mise en service d'un ralentisseur electromagnetique
FR2894091A1 (fr) Procede d'amelioration du refroidissement d'un ralentisseur electromagnetique
WO2019092489A1 (fr) Machine électromagnétique à flux axial à circuit de refroidissement commun à la machine et à ses moyens électroniques de commande et de puissance
EP0802403B1 (fr) Dispositif pour la mesure d'un couple moteur
EP0898353A1 (fr) Groupe électrogène perfectionné
EP2779364A1 (fr) Moteur électronique ayant un rotor à aimant permanent
WO2022084481A1 (fr) Machine électrique tournante refroidie et procédé de contrôle d'une telle machine tournante
FR2864369A1 (fr) Ralentisseur electromagnetique comportant des moyens pour creer un courant d'air
WO2024121234A1 (fr) Machine électrique tournante comprenant un capteur de température dans un circuit de refroidissement de rotor
FR3028112A1 (fr) Ventilateur embarque a bord d'un aeronef et aeronef associe
EP1007841A1 (fr) Systeme de gestion de l'energie electrique et alternateur pour vehicule automobile
FR2935562A1 (fr) Agencement de connexions dans une machine electrique tournante.
FR3105639A1 (fr) machine électrique tournante comprenant un capteur de température
FR2742604A1 (fr) Alternateur avec thermoplongeurs integres
FR2750814A1 (fr) Alternateur integre au volant d'inertie d'un moteur a combustion interne

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680045569.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006841954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2008/008348

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006841954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12092148

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0618537

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080513