WO2007080265A1 - Procede de fabrication de demi-produits comportant deux alliages a base d'aluminium - Google Patents
Procede de fabrication de demi-produits comportant deux alliages a base d'aluminium Download PDFInfo
- Publication number
- WO2007080265A1 WO2007080265A1 PCT/FR2006/002731 FR2006002731W WO2007080265A1 WO 2007080265 A1 WO2007080265 A1 WO 2007080265A1 FR 2006002731 W FR2006002731 W FR 2006002731W WO 2007080265 A1 WO2007080265 A1 WO 2007080265A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alloy
- alloys
- casting
- composition
- aluminum
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/16—Casting in, on, or around objects which form part of the product for making compound objects cast of two or more different metals, e.g. for making rolls for rolling mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C33/00—Feeding extrusion presses with metal to be extruded ; Loading the dummy block
- B21C33/004—Composite billet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/02—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/065—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes starting from a specific blank, e.g. tailored blank
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
- B21J5/002—Hybrid process, e.g. forging following casting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
- Y10T29/49988—Metal casting
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
- Y10T29/49988—Metal casting
- Y10T29/49991—Combined with rolling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12229—Intermediate article [e.g., blank, etc.]
Definitions
- the invention relates to a new manufacturing method for aluminum-based structural elements comprising at least two different alloys, by casting a plate or billet comprising at least two spatially separated alloys, followed by one or more steps. hot processing by rolling, spinning, or forging, and optionally one or more cold processing steps, and intermediate and / or final heat treatments.
- the invention is particularly useful for the manufacture of structural elements for aircraft construction.
- Parts with variable mechanical characteristics in space are very attractive for mechanical engineering. Traditionally, they are obtained by assembling two pieces with different properties, but essentially homogeneous inside each room. The assembly can be carried out mechanically (for example by bolting or riveting), by gluing or by a suitable welding technique. It is thus possible to obtain bifunctional or multifunctional parts or structural elements.
- This bifunctionalization or multifunctionalization can come from the form of assembled parts (which is not the meaning we use here for these two terms) or can be linked to their mechanical properties, especially when two pieces of alloys are assembled. different.
- transition seals are used in shipbuilding (see C. Vargel, Aluminum Corrosion, Paris 1998 (Dunod), page 136), which are structural elements usually assembled by means of explosion welding.
- transition elements 1 are therefore bi-functional structural elements that avoid galvanic corrosion that would inevitably settle in a humid environment between two dissimilar metals assembled in a traditional manner.
- clad plates having a core protected at least one side by an alloy coating more resistant to corrosion and / or more easily fusible, which serves either to protect the core against corrosion, to allow its easy welding on another part.
- Plates are obtained by placing on a rolling plate, preferably scalped, an alloy (said alloy core) of a first composition, a second rolling plate or a sheet, preferably scalped, of lower thickness. alloy (called plating alloy) of a second composition. Then, it is hot rolled and obtains a plated strip, the hot rolling providing a strong metallurgical bond between the two alloys.
- Plated sheets are monolithic pieces, within the meaning of the definition given below. They can be used in aircraft construction, for example as a fuselage coating, see for example US Patent 5,213,639 (Aluminum Company of America) or EP 1 170 118 (Pechiney RJtienalu).
- the plating process makes it possible to manufacture large pieces, but the variation of the chemical composition is in the thickness and not on the length or width of the piece. Thus, functionalization is quite limited: the desired function for plating is either protection against corrosion or weldability.
- Patent EP 0 630 986 discloses a method of manufacturing structurally hardened aluminum alloy sheets having a continuous variation of the use properties in a principal direction of the product (length, width, thickness), in which the final income is made in one. structure oven specific comprising a hot chamber and a cold room, connected by a heat pump. This process made it possible to obtain small pieces with a length of about one meter in alloy 7010, one end of which is in the T651 state and the other in the T7451 state, by an isochronous tempering treatment.
- a first approach uses one or more fixed or mobile partitions.
- U.S. Patent 3,353,934 discloses vertical casting of rolling plates or a billet with a fixed partition disposed vertically (i.e., along the length of the plate). This fixed partition is made of marinite, stainless steel or graphite. The patent describes the casting of the following pairs of alloys: 7075/6063, 7075/5052, 7075/5083.
- JP 485 411 70 discloses another method of vertical partitioning applied to a casting of plates. Another embodiment of a casting with vertical partition is described in patent application DE 44 20 697 (Institut fur Verformungsischen und Heuttenmaschinen). No.
- 6,705,384 proposes to use one or more partitions in the form of a thin or thick aluminum sheet which remains incorporated in the cast billet or billet. Pouring with partition has also been adapted to continuous casting between strips.
- Patents GB 1,174,764 and FR 1,505,826 describe the use of a moving partition applied to an interband casting for casting pairs of Al + 6% Sn / AS5G alloys.
- a second approach uses the concept of the inner mold: a first alloy is solidified by an inner mold, and the solid shell thus formed serves as a mold for the second alloy.
- This concept is described in DE 844 806 (Wieland Maschinene). It is also possible to simply use a metal tube or a hollow billet as an outer shell, into which a liquid alloy is cast, as described in patent FR 1 516 456 (Kennecott Cooper Corporation). This principle has been adapted to the continuous vertical casting of plated plates in US Pat. No. 4,567,936 (Kaiser).
- the patent application WO 2004/112992 (Alcan) describes several methods for forming rolling plates comprising two vertical semi-continuous casting alloys using vertical separators. This process is particularly suitable for making plated rolling plates.
- the problem that the present invention seeks to solve is to propose a new approach to the production of wrought monolithic structural elements having variable properties of use in at least one direction other than that of the thickness, and in particular of elements dual-functional or multifunctional structure wrought to perform at least two functions that are traditionally provided by two different parts.
- the subject of the invention is a process for vertically casting an intermediate product of final height in the casting direction H F , comprising the steps of
- step (a) are not necessarily concomitant.
- the steps of preparation (a) and casting (b and c) are not necessarily successive, in particular the preparation of the second alloy or any additional alloy of step (a) may be concomitant with one or the other stages of casting.
- steps (b) and (c) are performed without interruption of the flow of liquid metal.
- the preparation of the alloys can be carried out in different ways.
- the preparation of aluminum-based alloys can be carried out independently, or (ii) the preparation of alloys of different composition of P can be carried out from the first alloy during casting by adding to said first alloying the necessary quantities of elements to achieve the composition of the alloys of composition different from P 5 or else (iii) the preparation of the at least two alloys based on aluminum can be carried out during casting from a aluminum alloy of composition B, adding to said alloy of composition B the necessary amounts of elements to achieve the composition of said at least two alloys based on aluminum P and T.
- the invention also relates to a first solid intermediate product intended to be rolled, spun or forged, obtainable by the vertical casting method defined above.
- This product shows for at least one alloying element at least one concentration gradient in the direction of casting which is most often the direction of its height (ie of its greater dimension)
- This intermediate product may be for example a plate or a billet.
- Another object of the invention is a method of producing a sheet, a profile or a forged part from a plate or a billet made according to the vertical casting process defined above. .
- Yet another object of the invention is a second solid intermediate product such as a sheet, a profile or a forging piece that can be produced by the manufacturing method described above.
- Yet another object of the present invention is a structural element capable of being manufactured from a second intermediate product as defined above.
- This structural element can be bi-functional or multifunctional.
- Figure 1 schematically shows a spar according to the invention.
- Figure 2 shows schematically a sheet, according to the invention, from which the spar according to the invention can be developed.
- Figure 3 shows schematically a rolling plate according to the invention, from which the strong plate according to the invention can be developed.
- Figure 4 shows a rolling pass in the direction perpendicular to the length of the plate.
- Figure 5 shows schematically a fuselage panel according to the invention obtained by rolling perpendicular to the direction of casting.
- Figure 6 shows the evolution in the direction of the height of the Zn content during casting according to the invention.
- FIG. 7 shows conductivity measurements at mid-thickness and at different positions in the width direction for a sheet according to the invention laminated perpendicularly to the direction of casting. Description of the invention
- the static mechanical characteristics that is the breaking strength R m , the yield point R p o, 2 , and the elongation at break A, are determined by a tensile test according to the EN 10002-1 standard, the location and direction of sample collection being defined in EN 485-1 (rolled products) or EN 755-1 (extruded products).
- Kic toughness is measured according to ASTM E 399.
- machining includes any material removal process such as turning, milling, drilling, reaming, tapping, EDM, grinding, polishing.
- a casting installation may comprise one or more furnaces necessary for the melting of the metals or their maintenance in temperature, one or more furnaces intended to carry out operations of preparation of the liquid metal and adjustment of the composition, one or more tanks ( or “pouches”) intended to carry out a treatment for removing dissolved or suspended impurities in the liquid metal, this treatment possibly consisting of filtering the liquid metal on a filter medium and / or introducing into the bath a gas known as treatment which can be inert or reactive, a device for solidification ⁇ of the liquid metal (or “casting machine") comprising at least the following devices: a mold (or “mold”), at least one device for supplying the liquid metal (or “nozzle”), these different devices being connected between them by channels called “chutes” in which the liquid metal can be transported and a cooling system
- a "structural element” or “structural element” of a mechanical construction is called a mechanical part, the failure of which is likely to endanger the safety of the said construction, its users, its users or others.
- these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs (ribs) and spars) and empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
- fuselage such as fuselage skin (fuselage skin in English
- stiffeners or stringers such as fuselage skin
- bulkheads fuselage (circumferential frames)
- wings such as wing skin
- stiffeners stiffeners (stiffeners), ribs (ribs) and spars
- empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
- monolithic structural element or “monolithic part” refers here to a structural element or a part which has been obtained, most often by machining, from a single piece of rolled semi-finished product, Forged or molded, without assembly, such as riveting, welding, gluing, with another piece.
- bi-functional or multi-functional structural element refers primarily to the functions conferred by the metallurgical and / or mechanical characteristics of the product and not by its geometric form.
- the problem is solved by rolling, spinning or forging a rolling plate or a billet whose composition is variable in the casting direction and advantageously whose foot has a composition different from that of the head.
- foot and head refer respectively to the casting first and last, that is to say to the part which is respectively, during a vertical casting, at the bottom and at the top.
- the method of vertically casting a piece of final height H F comprises the preparation and pouring of an aluminum-based alloy of first composition P up to a desired height Hp, the casting of an additional height HT desired of the second alloy so as to achieve a cast height Hp + HT less than or equal to H F , and optionally the casting of other alloys based on aluminum or alloy P to the final height hp.
- the flow of liquid metal is not interrupted when passing from the casting of the alloy of first composition P to that of the alloy of second composition T, and advantageously when one passes from the casting of the alloy of composition T to that of other alloys.
- This vertical casting process generates solid intermediate products to be rolled, spun or forged, having at least two spatially separated alloys in the casting direction.
- the solid intermediate products according to the invention have, for at least one alloying element, a concentration gradient in the casting direction.
- This vertical casting process usually generates between two successively cast alloys a "transition zone" Z of intermediate composition.
- the control of this transition zone between the alloys is important.
- a transition zone is made as short as possible, that is to say a transition as abrupt as possible. But for some applications, one can also consider a wider area, controlling concentration gradients so as to ensure repeatability from one casting to another.
- it is preferable to carry out the transition so that the mixing between the successive alloys takes place in a part of the casting installation having a small volume and close to the casting machine. .
- this transition can be performed in a chute using a dam.
- the metal of composition T can also be produced from the metal of composition P by adding the necessary elements into a liquid metal processing bag. If the transition is carried out in a part of the plant having a high volume, such as a liquid metal treatment ladle for degassing or filtration, or upstream of such a part of the installation, the transition obtained will be wider because the two successive alloys can mix in larger proportions. In a preferred embodiment of the invention to obtain a short transition zone, the transition between alloys is performed in a trough or POcIIe 1 low volume treatment
- the casting method according to the invention can be implemented according to several different embodiments, which are distinguished by the manner in which the alloys are prepared and by the manner of carrying out the transition (s) between alloys.
- Figure 3 shows an example of cast plate according to the invention.
- the casting direction defines the direction of the height H of the plate.
- the plate has a total height HF- It is usual to saw ("crop") the ends of the plate after casting on a height HEP at the bottom and H E T at the head so as to eliminate the parts corresponding to the beginning and the end of the cast form that do not have the required quality to be transformed.
- the useful length Hu of the cast form, typically a plate or billet, is therefore equal to Hp - (HEP + H E T).
- the height Hp is greater than the height of the plate or billet. trimmed billet in HEP foot.
- the height Hp depends on the intended application, however, in the context of the invention, the height Hp is generally greater than HEP + Hu / 4 and sometimes higher H E P + Hu / 2.
- At least two alloys are produced independently, for example in at least two separate furnaces.
- the foot alloy is cast first, by pouring the liquid metal from the first furnace into the chute.
- the desired metal height Hp in the casting loom is reached, the flow of metal from the first furnace is interrupted and replaced by a flow from the second furnace. This switching from one oven to another is preferably done without interrupting the flow of liquid metal in the chute which empties into the casting machine.
- an additional height HT of the alloy of composition T is cast so as to reach a cast height Hp + H T less than or equal to Hp.
- the sum Hp + HT is equal to H F.
- casting other aluminum-based alloys T ', T "from a third or a fourth furnace or alloy P from the first furnace to the final height HF makes it possible to achieve more plates or billets complexed with for example composition sequences such as P / T / P, P / T / T 'or P / T / T7T "This embodiment is suitable for all combinations of alloys, the alloys belong to the same family, for example alloys of the 7XXX family, or to different families such as for example a 2XXX alloy and a 7XXX alloy.
- the foot alloy is poured to the desired height Hp, and the alloy element or elements whose content in the alloy T is greater than that of the alloy are added at the desired moment.
- an additional height HT of the alloy of composition T is cast so as to reach a cast height Hp + Hx less than or equal to HF.
- the alloy P is an Al-Zn 5.0-Cu 1.5 -Mg 1.5 alloy
- the alloy T is an Al-Zn 5.0-Cu 1 alloy. 5 - Mg 2.5
- a liquid alloy is produced whose composition corresponds to that of alloy P, and at the desired moment during casting, magnesium wire is added to the liquid metal in an appropriate part of the metal. casting plant such as the casting furnace, chute or treatment pocket.
- a base alloy of composition B to which is added, typically in the form of son the alloying elements in an amount necessary to obtain the composition P then the composition T, then any other compositions.
- the amount of alloying elements added per unit mass of cast metal is changed when the desired height Hp is reached, and the casting is stopped when the desired final RF height is reached.
- zinc wire, magnesium wire and copper wire can be used and added to a pure aluminum or aluminum which contains, if necessary, other elements whose concentration The target is approximately the same for alloy P, alloy T and any other alloys.
- parent alloy wire for example based on aluminum. This wire is typically supplied in the form of coils, and introduced into the liquid metal via a stripper in an appropriate part of the plant.
- this yarn is supplied in a chute, downstream of the treatment pockets, so as to obtain a sudden transition between alloys when the quantity of yarn supplied per unit of time is changed.
- the alloy of composition P is obtained by adding the necessary alloying elements to the alloy of composition B in a treatment bag and the alloy of composition T has the same composition as the alloy of composition B.
- the first embodiment has the disadvantage of requiring at least two casting furnaces.
- Embodiments based on the addition of wire have the disadvantage of requiring a very strict process control.
- a critical parameter is the temperature control, since the melting of a wire consumes energy, which causes the cooling of the liquid metal. It is found, for example, that the addition of unheated zinc wire to a liquid aluminum bath at a temperature of 720 ° C. leads to a liquid metal temperature drop of about 15 ° C. for a mass flow rate of about 2.8 kg / s. According to the findings of the inventors, this drop in temperature can nevertheless be compensated by a rapid increase in the temperature of the holding furnace when the liquidus temperature of the alloy T is lower than that of the alloy P.
- Another disadvantage of the wire introduction embodiments is when the base alloy composition is distanced from that of the P, T or other composition alloys: a large length of wire has to be unrolled with a wire. quite a lot of unwinding speed or installing several thread unwinding devices which is not always easy.
- An advantage of the embodiments based on the introduction of wire is to allow a great flexibility as to the transition between the two alloys: it is possible to obtain an abrupt transition, but above all it is possible to spread this transition more easily over the length of the plate. or billet to obtain a gradual transition. This supposes that it is possible to vary the speed of movement of the thread (or threads, if several are used, of the same composition or of different compositions) and / or the number of threads introduced.
- a liquid metal treatment pouch for example with an Ar-Cl 2 mixture
- a filtration bag such as a gravel filter, slab filter or any other suitable filtration mode
- the transition between alloys is carried out downstream of the treatment pockets.
- a large liquid metal processing bag which acts as a P alloy tank to form the alloy T.
- This embodiment has the advantage of not requiring an additional furnace. compared to the usual casting modes. On the other hand, the amount of metal available for the casting of the alloy T is limited to the pocket volume.
- This first solid intermediate product preferably has a constant section over at least 95% of its length.
- the first intermediate product for example the plate or billet
- the first intermediate product is converted by heat treatment, typically hot, in one or more steps, possibly followed by one or more processing steps by cold working to obtain a second product.
- intermediate such as a sheet, a profile, a bar spun or a forging.
- the billets can be used to spin profiles or bars having a variable length composition, or forging blanks.
- the plaques can be used as forging blanks or as rolling plates.
- the problem of making rolled products which exhibit spatially variable mechanical characteristics can be solved by using a rolling plate according to the invention and laminating it to obtain a sheet.
- the rolling in the length direction ie in the casting direction H
- the plate is subjected to at least one rolling pass in the direction of casting.
- lamination in the width direction ie perpendicular to the casting direction H
- Figure 4 illustrates the rolling of a plate according to the invention in the width direction.
- the rolling direction L is perpendicular to the casting direction H.
- Such a product is likely to be used as structural element in aeronautical construction. More particularly, it can be used as a spar, rib or wing skin.
- the invention can be applied to all aluminum alloys and advantageously structural hardening alloys from the 2XXX, 6XXX, 7XXX or 8XXX families are used.
- the alloys used are all from the 7XXX family.
- the alloys used are all from the 2XXX family and / or are all alloys of aluminum-lithium type (ie alloys containing at least 0.1% by weight of lithium and preferably at least less than 0.5% by weight of lithium).
- the pairs of alloys P and T are 7040 and 7449 or 2024A and 2027 or 2050 and 2195.
- alloy 7475 for P alloy 7040 for T and alloy 7449 for T '.
- a 7XXX alloy comprising 4.1 to 5.1% Zn, 1.5 to 2.5% by weight of Cu and 1.2 to 1.8% by weight of Mg has proved particularly advantageous in the context of the invention.
- This alloy makes it possible to achieve very high toughness by minimizing the loss of static mechanical characteristics with respect to an alloy such as 7040.
- the alloy P is thus an alloy comprising 4.1 to 5 , 1% of Zn, 1.5 to 2.5% by weight of Cu and 1.2 to 1.8% by weight of Mg and the alloy T is an alloy comprising 7 to 10% of Zn, 1.0 to 3.0% by weight of Cu and 1.0 to 3.0% by weight of Mg.
- the combination of 7040 and 7449 alloys is particularly favorable for spar type applications while the combination of 7475 and 7449 alloys is particularly favorable for wing skin type applications.
- the methods according to the present invention allow the manufacture of bi-functional or multi-functional monolithic structural elements.
- Figure 1 schematically shows a bi-functional spar according to the invention. Its height HL can reach 1000 mm or more, its length L can reach ten meters or more, its thickness E is typically of the order of 100 mm, but can be greater.
- the spars are manufactured by machining from heavy plates. They may comprise a lower sole (4), an upper sole (1), a core (2) and stiffeners machined in the mass (3).
- the transition zone Z can be positioned equidistant from the flanges or closer to one or the other, depending on the design requirements.
- Figure 2 shows schematically the heavy plate in which these rails have been machined.
- the strong plate has been obtained by rolling in the direction of the width of the plate according to the invention so that the height HL is slightly less than Hu-
- the rolling in the cross direction is illustrated in Figure 4.
- FIG. 5 schematically illustrates the use of a sheet according to the invention to produce a fuselage panel (6), reinforced by riveted stiffeners, glued or welded (5).
- the two alloys used are schematically indicated.
- Other structural elements suitable for use in aeronautical construction obtainable from intermediate products according to the invention, comprising for example a wing stiffener or a wing panel, which are suitable for use in an aircraft, can also be produced. use in aircraft construction.
- the range of transformation carried out which may comprise, in the case of a plate, the steps of homogenization, hot rolling, cold rolling, solution setting, quenching, cold deformation (for example traction) and tempering must be compatible with the alloys contained in the plate according to the invention.
- This condition can be limiting as to the choice of alloys because the optimum temperatures are sometimes very different between the alloys and a temperature compromise may lead to not obtaining the desired properties.
- the person skilled in the art tries to adapt the processing range to the alloys at best. Similar problems arise for the person skilled in the art mutatis mutandis in the case of the spinning billet transformation process, or a forging draft.
- the rolling plate is rolled mainly or exclusively along its length, i.e., in the casting direction.
- sheets of great length are obtained, one of the geometric ends of which is made of alloy of composition P, and the other geometric end is of alloy of composition T. These sheets show a gradient in their mechanical properties in the direction of their length. .
- This embodiment is particularly applicable to the production of wing plates.
- Other embodiments of the present invention are described in the dependent claims.
- a rolling plate (mark A) was cast whose foot (reference P) was in alloy Al-Zn 5% - Cu 1.8% - Mg 1.5% and the head (mark T) in Al-Zn alloy 8% - Cu 1.8% - Mg 1.9%. Both alloys were made in two separate furnaces. Table 1 shows the composition of the two alloys measured on pions obtained by solidification of liquid metal taken from each of the two furnaces.
- the two liquid alloys were treated for 90 minutes with an Ar - Cl 2 mixture in an IRMA ® type treatment bag.
- the transition between alloys was carried out in a chute. Liquid metal was taken in the trough for the manufacture of spectrometric pins before, during and after the composition transition, approximately every 50 mm of descent. It has thus been found that the transition of the composition takes place over a descent height of about 200 mm.
- the height Hp was 2100 mm
- the height HT was about 1600 mm
- the total height of the HF plate was about 3700 mm.
- a 750mm HEP foot length and a 300mm HET head length were drilled to give a usable length Hu of about 2600mm.
- a plate was cast as shown in Example 1.
- the compositions of the alloys are shown in Table 2.
- the two liquid alloys were treated with an Ar - Cl 2 mixture in an ALPUR ® type treatment bag.
- the metal of composition T was prepared from the composition metal P in the ALPUR ® pocket, then the bag was fed with the liquid metal from the second furnace. Liquid metal was taken in the trough for the manufacture of spectrometric pins before, during and after the composition transition, approximately every 50 mm of descent.
- Figure 6 illustrates the results obtained.
- the transition of the composition takes place on a descent height of less than 100 mm.
- the height Hp was 2100 mm.
- the final height Hp of the plate was about 3850 mm.
- a 800 mm HE P foot length and a 300 mm HET head length were drilled to give a usable length Hu of about 2750 mm.
- a strong plate is manufactured which can be used for the manufacture of an aircraft wing spar.
- the plate obtained from Example 2 is used. This plate has a height Hu of about 2750 mm, which is sufficient for a spar with a height of about 2000 mm.
- the plate is homogenized for 48 hours at 470 ° C. It is hot-rolled in the cross direction (ie perpendicular to the casting direction H of the plate) to a final thickness of 80 mm.
- the hot rolling temperature is between 400 ° C. and 46O 0 C.
- the sheet thus obtained is dissolved at 473 ° C. for 12 hours. After quenching, the sheet is subjected to a controlled pull with a permanent deformation of about 2%. A characterization of the sheet obtained by conductivity measurement is then performed.
- FIG. 7 illustrates the conductivity profile obtained at mid-thickness in the casting direction H.
- the transition zone between alloys extends over a height of approximately 400 mm. This height is greater than the transition height of 100 mm measured by sampling pions during casting because it integrates the shape of the interface between solid and liquid ("the marsh") which is not a plane perpendicular to the casting direction but a surface whose shape depends on the cooling conditions during solidification. Then, the sheet is subjected to a treatment of income in two stages: 6 hours at 120 0 C followed by 20 hours at 155 ° C. Table 3 below illustrates the static mechanical characteristics, toughness and corrosion resistance obtained for samples taken at mid-thickness and at quarter-thickness.
- an aluminum alloy rolling plate is cast whose head composition T (alloy type AA 7449) comprises 8% zinc, 1.9% magnesium and 1.8% copper, and whose foot composition P (alloy type
- AA7040 comprises 5% zinc, 1.5% magnesium and 1.8% copper.
- the zirconium content is 0.11%.
- an alloy of composition P is prepared, the metal is treated with a gas (Ar + Cl 2 ) in a treatment bag, and the composition alloy P is cast with the desired height Hp. , which is the final mid-height Hp of the target plate, and then the casting is continued to the final height Hp by adding to the casting alloy, after the treatment bag, the necessary amount of solid metal rich in zinc and magnesium to bring the alloy of composition P to the composition T.
- This solid metal supply is made by unwinding, via a rewinder, two son with appropriate zinc and magnesium contents, which are supplied in coils.
- an aluminum-based alloy rolling plate is poured whose foot composition P comprises 1.8% magnesium, 7.8% zinc and 1.8% copper and whose top composition T comprises 1.3% magnesium, 7.8% zinc and 1.8% copper.
- the zirconium content is 0.10%.
- an alloy of the composition T is prepared, the amount of Mg necessary to reach the target composition P is then added to a treatment bag and then poured. The transition between the two compositions is progressive, the composition T being reached for a cast height of 800 mm.
- the plate is then converted by homogenization, hot rolling to a thickness of 100 mm, dissolution, quenching and tempering.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Forging (AREA)
Abstract
L'invention concerne un procédé de coulée verticale d'un produit intermédiaire, comprenant les étapes de (a) préparation d'au moins deux alliages à base d'aluminium notamment un premier alliage de composition P et un second alliage de composition T ; (b) coulée du premier alliage de composition P jusqu'à une hauteur HP voulue ; (c) coulée d'une hauteur supplémentaire HT voulue du second alliage de composition T. L'invention permet la fabrication d'éléments de structure monolithiques présentant des propriétés d'usage variables dans au moins une direction, et notamment d'éléments de structure bi-fonctionnels ou multifonctionnels permettant d'assumer au moins deux fonctions qui sont traditionnellement assurées par deux pièces différentes.
Description
Procédé de fabrication de demi-produits comportant deux alliages à base d'aluminium
Domaine de l'invention
L'invention concerne un nouveau procédé de fabrication pour des éléments de structure à base d'aluminium, comportant au moins deux alliages différents, par coulée d'une plaque ou billette comportant au moins deux alliages spatialement séparés, suivi d'une ou plusieurs étapes de transformation à chaud par laminage, filage, ou forgeage, et éventuellement d'une ou plusieurs étapes de transformation à froid, et de traitements thermiques intermédiaires et/ou finales. L'invention est particulièrement utile pour la fabrication d'éléments de structure pour construction aéronautique.
Etat de la technique
Les pièces à caractéristiques mécaniques variables dans l'espace sont très attractives pour la construction mécanique. Traditionnellement, on les obtient par assemblage de deux pièces à propriétés différentes, mais essentiellement homogènes à l'intérieur de chaque pièce. L'assemblage peut être effectué de manière mécanique (par exemple par boulonnage ou rivetage), par collage ou par une technique de soudage appropriée. On peut ainsi obtenir des pièces ou éléments de structure bi- fonctionnels ou multifonctionnels. Cette bifonctionnalisation ou multifonctionnalisation peut relever de la forme des pièces assemblées (ce qui n'est pas la signification que nous utilisons ici pour ces deux termes) ou peut être- liée à leurs propriétés mécaniques, notamment lorsque l'on assemble deux pièces en alliages différents. A titre d'exemple, on utilise en construction navale des joints de transition (voir C. Vargel, Corrosion de l'aluminium, Paris 1998 (Dunod), page 136), qui sont des éléments de structure assemblés habituellement par soudage à explosion à partir d'une pièce en acier et d'une pièce en aluminium. Le côté acier a la fonction
de servir comme base pour fixer d'autres pièces en acier, alors que le côté aluminium sert comme base pour fixer d'autres pièces en aluminium. Ces JoIiItS1 de transition sont donc des éléments de structure bi-fonctionnels qui évitent la corrosion galvanique qui s'installerait inévitablement en milieu humide entre deux métaux dissemblables assemblés de manière traditionnelle.
C'est dans le domaine de la protection contre la corrosion et du soudage qu'on trouve d'autres exemples pour des pièces multi-fonctionnelles à base essentiellement d'aluminium. En effet, on utilise depuis longtemps des tôles plaquées, comportant une âme protégée d'au moins un côté par un revêtement en alliage plus résistant à la corrosion et / ou plus facilement fusible, qui sert soit à protéger l'âme contre la corrosion, soit à permettre son soudage aisé sur une autre pièce. On obtient des tôles plaquées en posant sur une plaque de laminage, de préférence scalpée, en alliage (dit alliage d'âme) d'une première composition, une deuxième plaque de laminage ou une tôle, de préférence scalpée, d'épaisseur plus faible, en alliage (dit alliage de placage) d'une deuxième composition. Ensuite, on lamine à chaud et obtient une bande plaquée, le laminage à chaud assurant une liaison métallurgique forte entre les deux alliages. Les tôles plaquées sont des pièces monolithiques, au sens de la définition donnée ci-dessous. Elles peuvent être utilisées eu construction aéronautique, par exemple comme revêtement de fuselage, voir par exemple le brevet US 5,213,639 (Aluminum Company of America) ou le brevet EP 1 170 118 (Pechiney RJtienalu). Le procédé de placage permet de fabriquer des pièces de grande taille, mais la variation de la composition chimique se fait dans l'épaisseur et non pas sur la longueur ou largeur de la pièce. Ainsi, la fonctionnalisation est assez limitée : la fonction recherchée pour le placage est soit la protection contre la corrosion, soit la soudabilité.
Dans une autre approche à la fabrication d'une pièce bi-fontionnelle monolithique, on applique à chacune des deux extrémités d'un produit long en un seul alliage à base d'aluminium un traitement de revenu différent. Le brevet EP 0 630 986 (Pechiney Rhenalu) décrit un procédé de fabrication de tôles en alliage d'aluminium à durcissement structural présentant une variation continue des propriétés d'emploi selon une direction principale du produit (longueur, largeur, épaisseur), dans lequel le revenu final est effectué dans un. four de structure
spécifique comprenant une chambre chaude et une chambre froide, reliées par une pompe à chaleur. Ce procédé a permis d'obtenir des petites pièces d'une longueur d'environ un mètre en alliage 7010 dont une extrémité se trouve à l'état T651 et l'autre à l'état T7451, par un traitement de revenu isochrone. Ce procédé n'a jamais été développé à l'échelle industrielle, car il est difficile à contrôler d'une manière compatible avec les exigences de qualité que pose le domaine de la construction aéronautique ; ces difficultés industrielles augmentent avec la taille des pièces. Par ailleurs, en se limitant à une pièce en un seul alliage, l'amplitude de la variation des propriétés mécaniques sur la longueur de la pièce se trouve être assez limitée. Une amélioration significative de ce procédé est décrite dans la demande de brevet (FR2868084), mais ce procédé ne permet pas non plus de modifier la composition chimique de l'alliage.
C'est avec deux alliages d'aluminium différents que l'on peut espérer obtenir une variation importante des propriétés mécaniques.
Dans le domaine du moulage, la fabrication de pièces monolithiques comportant plusieurs alliages a été décrite. La demande internationale WO 2005/063422 divulgue ainsi un procédé de fabrication dans lequel une masse coulée formée par stratification d'alliages ayant un intervalle de solidification suffisamment différent pour éviter leur mélange est introduite à l'état semi-solide dans une coquille de manière à la remplir et obtenir un produit moulé solidifié.
Mais les présents inventeurs n'ont pas connaissance de pièces monolithiques corroyées comportant deux alliages spatialement séparés qui soient fabriquées de manière industrielle par un procédé autre que le placage impliquant un laminage à chaud. L'idée de partir de formes brutes (i.e. de pièces coulées, par exemple de billettes de filage, plaques de laminage) comportant deux alliages spatialement séparés n'est pas nouvelle. On distingue plusieurs approches.
Une première approche utilise une ou plusieurs cloisons fixes ou mobiles. Le brevet US 3,353,934 (Reynolds) décrit la coulée verticale de plaques de laminage ou d'une billette avec une cloison fixe disposée verticalement (c'est-à-dire dans le sens de la longueur de la plaque). Cette cloison fixe est en marinite, acier inoxydable ou graphite. Le brevet décrit la coulée des couples d'alliages suivants : 7075/6063,
7075/5052, 7075/5083. Le brevet JP 485 411 70 (Sumitomo) décrit un autre mode de cloisonnage vertical appliqué à une coulée de plaques. Un autre mode de réalisation d'une coulée avec cloison verticale est décrit dans la demande de brevet DE 44 20 697 (Institut fur Verformungskunde und Hûttenmaschinen). Le brevet US 6,705,384 (Alcoa, Inc.) propose d'utiliser une ou plusieurs cloisons sous forme d'une tôle mince ou épaisse en aluminium qui reste incorporée dans la plaque ou billette coulée. La coulée avec cloison a également été adaptée à la coulée continue entre bandes. Les brevets GB 1 174 764 et FR 1 505 826 (Glacier) décrivent l'utilisation d'une cloison mobile appliquée à une coulée entre bandes pour la coulée des couples d'alliages Al + 6%Sn / AS5G.
Une deuxième approche utilise le concept de la lingotière interne : un premier alliage est solidifié par une lingotière interne, et la coque solide ainsi formée sert comme un moule pour le second alliage. Ce concept est décrit dans le brevet DE 844 806 (Wieland Werke). On peut aussi utiliser simplement un tube métallique ou une billette creuse comme coque externe, dans lequel on coule un alliage liquide, comme décrit dans le brevet FR 1 516 456 (Kennecott Cooper Corporation). Ce principe a été adapté à la coulée continue verticale de plaques plaquées dans le brevet US 4,567,936 (Kaiser). La demande de brevet WO 2004/112992 (Alcan) décrit plusieurs méthodes pour former des plaques de laminage comportant deux alliages par coulée semi-continue verticale en utilisant des séparateurs verticaux. Ce procédé est particulièrement approprié pour fabriquer des plaques de laminage plaquées.
Tous ces procédés selon l'état de la technique conduisent à des produits coulés longs qui comportent deux alliages différents séparés par des cloisons ou interfaces parallèles à la direction de coulée.
Le problème que la présente invention cherche à résoudre est de proposer une nouvelle approche à la fabrication d'éléments de structure monolithiques corroyés présentant des propriétés d'usage variables dans au moins une direction autre que celle de l'épaisseur, et notamment d'éléments de structure bi-fonctionnels ou multifonctionnels corroyés permettant d'assumer au moins deux fonctions qui sont traditionnellement assurées par deux pièces différentes.
Objet de l'invention
L'invention a pour objet un procédé de coulée verticale d'un produit intermédiaire de hauteur finale dans la direction de coulée HF, comprenant les étapes de
(a) préparation d'au moins deux alliages à base d'aluminium notamment un premier alliage de composition P et un second alliage de composition T,
(b) coulée dudit premier alliage de composition P jusqu'à une hauteur Hp voulue,
(c) coulée d'une hauteur supplémentaire HT voulue dudit second alliage de façon à atteindre une hauteur coulée Hp + HT qui soit inférieure ou égale à HF.
Les préparations d'alliages lors de l'étape (a) ne sont pas nécessairement concomitantes. Les étapes de préparation (a) et de coulée (b et c) ne sont pas nécessairement successives, en particulier la préparation du second alliage ou de tout alliage supplémentaire de l'étape (a) peut être concomitante de l'une ou l'autre des étapes de coulée. Dans une réalisation avantageuse de l'invention, les étapes (b) et (c) sont réalisées sans interruption du flux de métal liquide. Dans ce procédé, la préparation des alliages peut être effectuée de différentes manières. Par exemple, (i) la préparation des alliages à base d'aluminium peut être effectuée de manière indépendante, ou (ii) la préparation des alliages de composition différente de P peut être effectuée à partir du premier alliage pendant la coulée en ajoutant audit premier alliage les quantités nécessaires d'éléments pour atteindre la composition des alliages de composition différente de P5 ou encore (iii) la préparation des au moins deux alliages à base d'aluminium peut-être effectuée au cours de la coulée à partir d'un alliage à base d'aluminium de composition B, en ajoutant audit alliage de composition B les quantités nécessaires d'éléments pour atteindre la composition desdits au moins deux alliages à base d'aluminium P et T.
L'invention a également pour objet un premier produit intermédiaire solide, destiné à être laminé, filé ou forgé, susceptible d'être obtenu selon le procédé de coulée verticale défini ci-dessus. Ce produit montre pour au moins un élément d'alliage au moins un gradient de concentration dans la direction de coulée qui est le plus souvent
le sens dé sa hauteur (i.e. de sa plus grande dimension) Ce produit intermédiaire peut être par exemple une plaque ou une billette.
Un autre objet de l'invention est un procédé d'élaboration d'une tôle, d'un profilé ou d'une pièce forgée à partir d'une plaque ou d'une billette élaborée selon le procédé de coulée verticale défini ci-dessus.
Encore un autre objet de l'invention est un second produit intermédiaire solide tel qu'une tôle, un profilé ou une pièce forgée susceptible d'être élaboré par le procédé d'élaboration décrit ci-dessus.
Encore un autre objet de la présente invention est un élément de structure susceptible d'être fabriqué à partir d'un second produit intermédiaire tel que défini ci-dessus. Cet élément de structure peut être bi-fontionnel ou rnulti-fonctionnel.
Description des figures
La figure 1 montre de manière schématique un longeron selon l'invention.
La figure 2 montre de manière schématique une tôle, selon l'invention, à partir de laquelle le longeron selon l'invention peut être élaboré.
La figure 3 montre de manière schématique une plaque de laminage selon l'invention, à partir de la quelle la tôle forte selon l'invention peut être élaborée.
La figure 4 schématise une passe de laminage dans le sens perpendiculaire à la longueur de la plaque.
La figure 5 montre de manière schématique un panneau de fuselage selon l'invention obtenu par laminage perpendiculairement au sens de coulée.
La figure 6 montre l'évolution dans le sens de la hauteur de la teneur en Zn pendant une coulée selon l'invention.
La figure 7 montre des mesures de conductivité à mi-épaisseur et à différentes positions dans le sens de la largeur pour une tôle selon l'invention laminée perpendiculairement au sens de coulée.
Description de l'invention
a) Définitions
Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Par conséquent, dans une expression mathématique, « 0,4 Zn » signifie : 0,4 fois la teneur en zinc, exprimée en pourcent massique ; cela s'applique mutatis mutandis aux autres éléments chimiques. La désignation des alliages suit les règles de The Aluminum Association, connues de l'homme du métier. Les états métallurgiques sont définis dans la norme européenne EN 515. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rpo,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, l'endroit et le sens du prélèvement des éprouvettes étant définis dans les normes EN 485-1 (produits laminés) ou EN 755-1 (produits filés). La ténacité Kic est mesurée selon la norme ASTM E 399.
Sauf mention contraire, les définitions de la norme européenne EN 12258-1 s'appliquent. Le terme « tôle » est utilisé ici pour des produits laminés de toute épaisseur.
Le terme « usinage » comprend tout procédé d'enlèvement de matière tel que le tournage, le fraisage, le perçage, l'alésage, le taraudage, l' électroérosion, la rectification, le polissage.
On appelle ici « installation de coulée » l'ensemble des dispositifs permettant de transformer des métaux sous forme quelconque en demi-produit de forme brute en passant par la phase liquide. Une installation de coulée peut comprendre un ou plusieurs fours nécessaires à la fusion des métaux ou à leur maintien en température, un ou plusieurs fours destinés à effectuer des opérations de préparation du métal liquide et d'ajustement de la composition, une ou plusieurs cuves (ou « poches ») destinées à effectuer un traitement d'élimination des impuretés dissoutes ou en suspension dans le métal liquide, ce traitement pouvant consister à filtrer le métal liquide sur un média filtrant et / ou à introduire dans le bain un gaz dit « de traitement » pouvant être inerte ou réactif, un dispositif permettant la solidification
δ du métal liquide (ou « métier de coulée ») comprenant au moins les dispositifs suivants : un moule (ou « lingotière »), au moins un dispositif d' approvisionnement du métal liquide (ou « busette »), ces différents dispositifs étant reliés entre eux par des chenaux appelés « goulottes » dans lesquels le métal liquide peut être transporté et un système de refroidissement
On appelle ici « élément de structure » ou « élément structural » d'une construction mécanique une pièce mécanique dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, de ses usagers ou d' autrui.
Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.
Le terme « élément de structure monolithique » ou « pièce monolithique » se réfère ici à un élément de structure ou une pièce qui a été obtenu, le plus souvent par usinage, à partir d'une seule pièce de demi-produit laminé, filé, forgé ou moulé, sans assemblage, tel que rivetage, soudage, collage, avec une autre pièce.
Le terme « élément de structure bi-fonctionnel ou multi-fonctionnel » se réfère ici principalement aux fonctions conférées par les caractéristiques métallurgiques et / ou mécaniques du produit et non pas par sa forme géométrique.
b) Description détaillée de l'invention
Selon l'invention, le problème est résolu par laminage, filage ou forgeage d'une plaque de laminage ou une billette dont la composition est variable dans la direction de coulée et avantageusement dont le pied a une composition différente de celle de la tête. Les termes « pied » et « tête » se réfèrent respectivement à la partie coulée en premier et en dernier, c'est-à-dire à la partie qui se trouve respectivement,
lors d'une coulée verticale, en bas et en haut. Le procédé de coulée verticale d'une pièce de hauteur finale HF selon l'invention comporte la préparation et la,coulée d'un alliage à base d'aluminium de première composition P jusqu'à une hauteur Hp voulue, la coulée d'une hauteur supplémentaire HT voulue du second alliage de façon à atteindre une hauteur coulée Hp + HT inférieure ou égale à HF, et optionnellement la coulée d'autres alliages à base d'aluminium ou de l'alliage P jusqu'à la hauteur finale Hp. Dans un mode de réalisation préféré, on n'interrompt pas le flux de métal liquide lorsque l'on passe de la coulée de l'alliage de première composition P à celle de l'alliage de seconde composition T, et avantageusement lorsque l'on passe de la coulée de l'alliage de composition T à celle d'autres alliages.
Ce procédé de coulée verticale génère des produits intermédiaires solides destinés à être laminés, filés ou forgés, présentant au moins deux alliages spatialement séparés dans la direction de coulée. Les produits intermédiaires solides selon l'invention présentent pour au moins un élément d'alliage un gradient de concentration dans la direction de coulée.
Ce procédé de coulée verticale génère le plus souvent entre deux alliages coulés successivement une « zone de transition » Z de composition intermédiaire. Le contrôle de cette zone de transition entre les alliages est important. Dans une variante préférée, on réalise une zone de transition aussi courte que possible, c'est-à-dire une transition aussi abrupte que possible. Mais pour certaines applications, on peut également envisager une zone plus large, en contrôlant les gradients de concentration de manière à pouvoir garantir leur répétabilité d'une coulée à l'autre. Afin d'obtenir une transition abrupte entre alliages, il est préférable d'effectuer la transition de manière à ce que le mélange entre les alliages successifs se fasse dans une partie de l'installation de coulée présentant un faible volume et proche du métier de coulée. Typiquement cette transition peut être effectuée dans une goulotte à l'aide d'un barrage. Afin d'obtenir une transition abrupte, on peut également élaborer le métal de composition T à partir du métal de composition P en ajoutant les éléments nécessaires dans une poche de traitement du métal liquide. Si la transition est effectuée dans une partie de l'installation présentant un volume élevé, telle qu'une poche de traitement du métal liquide pour le dégazage ou la filtration, ou en amont d'une telle partie de l'installation, la transition obtenue sera plus large car les deux alliages successifs peuvent se mélanger dans des proportions plus importantes. Dans
une réalisation préférée de l'invention visant à obtenir une zone de transition courte, la transition entre alliages est effectuée dans une goulotte ou une POcIIe1 de traitement de faible volume
Le procédé de coulée selon l'invention peut être mis en œuvre selon plusieurs modes de réalisation différents, qui se distinguent par la manière dont sont préparés les alliages et par la manière d'effectuer la(les) transition(s) entre alliages. La figure 3 montre un exemple de plaque coulée selon l'invention. La direction de coulée définit la direction de la hauteur H de la plaque. La plaque a une hauteur totale HF- II est habituel de scier (« ébouter ») les extrémités de la plaque après la coulée sur une hauteur HEP en pied et HET en tête de façon à éliminer les parties correspondant au début et à la fin de la forme coulée qui n'ont pas la qualité requise pour être transformées. La longueur utile Hu de la forme coulée, typiquement une plaque ou billette, est donc égale à Hp - (HEP + HET)- Dans les modes de réalisation les plus avantageux, la hauteur Hp est supérieure à la hauteur de plaque ou de billette éboutée en pied HEP. La hauteur Hp dépend de l'application visée, cependant dans le cadre de l'invention, la hauteur Hp est en général supérieure à HEP + Hu /4 et parfois supérieure HEP + Hu /2. La zone de transition a une hauteur Hz. Dans l'exemple de la Figure 3 deux alliages ont été coulés et on a donc la relation Hp = Hp + HT.
Dans un premier mode de réalisation, on élabore au moins deux alliages (appelés ici : « alliage de pied » ou « alliage P » et « alliage de tête » ou « alliage T ») indépendamment, par exemple dans au moins deux fours séparés. On coule d'abord l'alliage de pied, en versant le métal liquide provenant du premier four dans la goulotte. Lorsque la hauteur de métal Hp voulue dans le métier de coulée est atteinte, on interrompt le flux de métal provenant du premier four, et on le remplace par un flux provenant du second four. Ce basculement d'un four à l'autre se fait de manière préférée sans interrompre le flux de métal liquide dans la goulotte qui se vide dans le métier de coulée. Ainsi, on coule une hauteur supplémentaire HT de l'alliage de composition T de façon à atteindre une hauteur coulée Hp + HT inférieure ou égale à Hp. Dans une réalisation avantageuse de l'invention, la somme Hp + HT est égale à HF. Optionnellement la coulée d'autres alliages à base d'aluminium T', T" à partir d'un troisième ou d'un quatrième four ou de l'alliage P à partir du premier four jusqu'à la hauteur finale HF permet de réaliser des plaques ou des billettes plus
complexés avec par exemple des séquences de composition telles que P/T/P, P/T/T' ou P/T/T7T". Ce mode de réalisation convient pour toutes les combinaisons d'alliages, que les alliages appartiennent à la même famille, par exemple des alliages de la famille 7XXX, ou à des familles différentes comme par exemple un alliage 2XXX et un alliage 7XXX.
Dans un deuxième mode de réalisation on coule l'alliage de pied jusqu'à la hauteur Hp voulue, et on ajoute au moment voulu le ou les éléments d'alliages dont la teneur dans l'alliage T est supérieure par rapport à celle de l'alliage P sous forme de fil ou toute autre forme appropriée. Ainsi, on coule une hauteur supplémentaire HT de l'alliage de composition T de façon à atteindre une hauteur coulée Hp + Hx inférieure ou égale à HF. A titre d'exemple, si l'alliage P est un alliage de type Al- Zn 5,0 - Cu 1,5 - Mg 1,5 et l'alliage T un alliage de type Al - Zn 5,0 - Cu 1,5 - Mg 2,5, on élabore un alliage liquide dont la composition correspond à celle de l'alliage P, et au moment voulu lors de la coulée, on ajoute du fil de magnésium dans le métal liquide dans une partie appropriée de l'installation de coulée comme le four de coulée, une goulotte ou une poche de traitement.
Dans un troisième mode de réalisation, on coule un alliage de base de composition B auquel on ajoute, typiquement sous forme de fils, les éléments d'alliage en quantité nécessaire pour obtenir la composition P puis la composition T, puis les éventuelles autres compositions. On modifie la quantité d'éléments d'alliage ajoutés par unité de masse de métal coulée lorsque la hauteur voulue Hp est atteinte, et on arrête la coulée lorsque la hauteur finale HF voulue est atteinte. A titre d'exemple, on peut utiliser du fil de zinc, du fil de magnésium et du fil de cuivre que l'on ajoute à un aluminium pur ou à un aluminium qui contient, le cas échéant, d'autres éléments dont la concentration visée est approximativement la même pour l'alliage P, l'alliage T et les éventuels autres alliages. On peut également utiliser du fil en alliage mère, par exemple à base d'aluminium. Ce fil est typiquement approvisionné sous forme de bobines, et introduit dans le métal liquide par l'intermédiaire d'un dérouleur dans une partie appropriée de l'installation. Dans une réalisation avantageuse de l'invention, ce fil est approvisionné dans une goulotte, en aval des poches de traitement, de façon à obtenir lors du changement de quantité de fil approvisionnée par unité de temps une transition abrupte entre alliages. Dans un autre exemple de ce troisième mode de réalisation, l'alliage de composition P est
obtenu par ajout des éléments d'alliage en quantité nécessaire à l'alliage de composition B dans une poche de traitement et l'alliage de composition T a la même composition que l'alliage de composition B.
Le premier mode de réalisation a l'inconvénient de nécessiter au moins deux fours de coulée. Afin de faciliter une transition abrupte entre les alliages, il peut être avantageux de disposer d'au moins deux lignes indépendantes de traitement du métal liquide (poches de filtration et de dégazage).
Les modes de réalisation basés sur l'ajout de fil ont l'inconvénient de nécessiter un contrôle du procédé très strict. Un paramètre critique est le contrôle de la température, car la fusion d'un fil métallique consomme de l'énergie, ce qui entraîne le refroidissement du métal liquide. On trouve par exemple que l'ajout de fil en zinc non préchauffé à un bain d'aluminium liquide d'une température de 7200C conduit à une baisse de température du métal liquide d'environ 15°C pour un débit massique d'environ 2,8 kg/s. Selon les constatations des inventeurs, cette baisse de température peut néanmoins être compensée par une augmentation rapide de la température du four de maintien lorsque la température de liquidus de l'alliage T est plus basse que celle de l'alliage P.
Un autre inconvénient des modes de réalisation basés sur l'introduction de fil est que l'amplitude de variation de la composition chimique entre l'alliage P, l'alliage T et les éventuels autres alliages est limitée par la vitesse de dissolution du fil dans le métal liquide. Ce problème peut être résolu au moins partiellement en préchauffant le fil avant son introduction dans le métal liquide. Ce préchauffage peut être réalisé à l'aide d'un tube chauffé inerte immergé dans le métal liquide qui assure à la fois le déroulage du fil et sa dispersion dans le métal liquide. Un tel dispositif a été décrit dans la demande de brevet EP 819 772 Al (Alusuisse). Les présents inventeurs ont trouvé que l'on peut utiliser ce dispositif de manière à ce que le fil entre dans le métal liquide pratiquement à l'état liquide. Un autre inconvénient des modes de réalisation basés sur l'introduction de fil se fait sentir lorsque la composition de .'alliage de base est éloignée de celle des alliages de composition P, T ou autres : il iaut dérouler une longueur importante de fil avec une vitesse de déroulement assez mportante ou installer plusieurs dispositifs de déroulement de fil ce qui n'est pas oujours aisé.
Un avantage des modes de réalisation basés sur l'introduction de fil est de permettre une grande souplesse quant à la transition entre les deux alliages : on peut obtenir une transition brusque, mais surtout on peut étaler cette transition plus facilement sur la longueur de la plaque ou billette pour obtenir une transition graduelle. Cela suppose de pouvoir varier la vitesse de défilement du fil (ou des fils, si l'on en utilise plusieurs, de même composition ou de compositions différentes) et/ou le nombre de fils introduits.
Dans tous ces trois modes de réalisation, on peut avantageusement utiliser une poche de traitement du métal liquide (par exemple avec un mélange Ar - Cl2) de type connu et/ou une poche de filtration de type filtre à gravier, filtre à dalle ou tout autre mode de filtration approprié, afin de minimiser la teneur en hydrogène du métal liquide et d'obtenir une qualité inclusionnaire satisfaisante. De façon avantageuse dans le cas où l'on chercherait à obtenir une transition abrupte, la transition entre alliages est effectuée en aval des poches de traitement.
Dans un quatrième mode de réalisation, on utilise une poche de traitement du métal liquide de grande taille, qui agit comme réservoir d'alliage P pour élaborer l'alliage T. Ce mode de réalisation a l'avantage de ne pas nécessiter un four additionnel par rapport aux modes de coulée habituellement utilisés. En revanche, la quantité de métal disponible pour la coulée de l'alliage T est limitée au volume de poche.
Ces quatre modes de réalisation, qui peuvent être aisément combinés entre eux, permettent d'élaborer un premier produit intermédiaire solide destiné à être laminé, filé ou forgé, et notamment une plaque ou une billette à composition variable dans la direction de coulée. Ce premier produit intermédiaire solide a de préférence une section constante sur au moins 95% de sa longueur.
Ensuite, le premier produit intermédiaire, par exemple la plaque ou billette, ainsi obtenu est transformé par corroyage, typiquement à chaud, en une ou plusieurs étapes, suivi possiblement d'une ou plusieurs étapes de transformation par corroyage à froid pour obtenir un second produit intermédiaire, tel qu'une tôle, un profilé, une barre filée ou une pièce forgée.
Les billettes peuvent être utilisées pour filer des profilés ou des barres ayant sur eur longueur une composition variable, ou comme ébauche de forge. Les plaques
peuvent être utilisées comme ébauches de forge ou comme plaques de laminage. Le problème de fabriquer des produits laminés qui montrent des caractéristiques mécaniques variables dans l'espace peut être résolu en utilisant une plaque de laminage selon l'invention et en la laminant pour obtenir une tôle. Le laminage dans le sens de la longueur (c'est à dire dans la direction de coulée H) conduit à allonger la zone de transition Z ce qui peut être avantageux pour certaines applications. Dans un mode de réalisation de l'invention on soumet la plaque à au moins une passe de laminage dans la direction de coulée. On préfère cependant généralement le laminage dans le sens de la largeur (c'est à dire perpendiculairement à la direction de coulée H), car cela permet de ne pas allonger la zone de transition. Cela induit des contraintes dans le choix de la dimension des plaques pour atteindre la dimension de tôle souhaitée. La figure 4 illustre le laminage d'une plaque selon l'invention dans le sens de la largeur. La direction de laminage L est perpendiculaire à la direction de coulée H .
On peut élaborer ainsi des tôles épaisses utilisables pour la fabrication de longerons de composition variable, dont un coté est compatible avec la fonction d'un extrados, orientée vers la partie supérieure de l'aile et particulièrement dimensionnée en compression, alors que l'autre coté est compatible avec la fonction d'intrados, orientée vers la partie inférieure de l'aile et particulièrement dimensionnée en ténacité. Pour cette application, il est préférable d'avoir une transition aussi courte que possible entre les deux alliages dans la plaque de laminage coulée.
Un tel produit est susceptible d'être utilisé comme élément de structure en construction aéronautique. Plus particulièrement, on peut l'utiliser comme longeron, nervure ou peau de voilure.
Il peut également être avantageux d'utiliser l'invention pour réaliser des tôles de fuselage de propriétés variables, adaptées aux contraintes de la partie supérieure et de la partie inférieure du fuselage. Pour cette application on peut avantageusement choisir de laminer en partie ou totalement perpendiculairement à la direction de coulée c'est à dire dans le sens de la largeur de la plaque initiale (Figure 5).
L'invention peut s'appliquer à tous les alliages d'aluminium et avantageusement, on utilise des alliages à durcissement structural provenant des familles 2XXX, 6XXX, 7XXX ou 8XXX. Dans un mode de réalisation préféré, les alliages utilisés sont tous issus de la famille 7XXX. Dans un autre mode de
réalisation avantageux, les alliages utilisés sont tous issus de la famille 2XXX et/ou sont tous des alliages de type aluminium-lithium (c'est-à-dire les alliages contenant au moins 0,1 % en poids de lithium et de préférence au moins 0,5% en poids de lithium). A titre d'exemple, les couples d'alliages P et T (ou inversement) sont 7040 et 7449 ou 2024A et 2027 ou 2050 et 2195. Dans le cas d'une séquence de composition P/T/T' on utilise avantageusement l'alliage 7475 pour P, l'alliage 7040 pour T et l'alliage 7449 pour T'.
Un alliage 7XXX comprenant 4,1 à 5,1% de Zn, 1,5 à 2,5 % en poids de Cu et 1,2 à 1,8 % en poids de Mg s'est avéré particulièrement avantageux dans le cadre de l'invention. Cet alliage permet d'atteindre des ténacités très élevées en minimisant la perte de caractéristiques mécaniques statiques par rapport à un alliage comme le 7040. Dans une réalisation avantageuse de l'invention, l'alliage P est ainsi un alliage comprenant 4,1 à 5,1% de Zn, 1,5 à 2,5 % en poids de Cu et 1,2 à 1,8 % en poids de Mg et l'alliage T est un alliage comprenant 7 à 10% de Zn, 1,0 à 3,0 % en poids de Cu et 1,0 à 3,0 % en poids de Mg. La combinaison entre les alliages 7040 et 7449 est particulièrement favorable pour les applications de type longeron tandis que la combinaison entre les alliages 7475 et 7449 est particulièrement favorable pour les applications de type peau de voilure.
Les procédés selon la présente invention permettent la fabrication d'éléments de structure monolithiques bi-fonctionnels ou multi-fonctionnels.
Les procédés selon la présente invention permettent notamment d'élaborer des éléments de structure appropriés pour une utilisation dans la construction aéronautique comprenant des longerons ou nervures de voilure d'avions de grande capacité. La figure 1 montre de manière schématique un longeron bi-fonctionnel selon l'invention. Sa hauteur HL peut atteindre 1 000 mm ou plus, sa longueur L peut atteindre dix mètres ou plus, son épaisseur E est typiquement de l'ordre de 100 mm, mais peut être plus grande. Les longerons sont fabriqués par usinage à partir de tôles fortes. Ils peuvent comporter une semelle inférieure (4), une semelle supérieure (1), une âme (2) et des raidisseurs usinés dans la masse (3). La zone de transition Z peut être positionnée à égale distance des semelles ou plus proche de l'une ou de l'autre, en fonction des besoins de dimensionnement. La figure 2 montre de manière schématique la tôle forte dans laquelle ces longerons ont été usinés. Dans une réalisation avantageuse de l'invention, la tôle forte a été obtenue par laminage dans
le sens de la largeur de la plaque selon l'invention de façon à ce que la hauteur HL soit légèrement inférieure à Hu- Le laminage en sens travers est illustré sur la Figure 4.
Les procédés selon la présente invention permettent également d'élaborer des éléments de structure appropriés pour une utilisation dans la construction aéronautique comprenant des éléments de fuselage. La Figure 5 illustre schématiquement l'utilisation d'une tôle selon l'invention pour réaliser un panneau de fuselage (6), renforcée par des raidisseurs rivetés, collés ou soudés (5). Dans chacune des figures, on a indiqué de manière schématique les deux alliages utilisés. On peut également réaliser d'autres éléments de structure appropriés pour une utilisation dans la construction aéronautique, susceptibles d'être obtenus à partir de produits intermédiaires selon l'invention, comprenant par exemple un raidisseur de voilure ou un panneau de voilure, appropriés pour une utilisation dans la construction aéronautique.
La gamme de transformation réalisée qui peut comporter dans le cas d'une plaque les étapes d'homogénéisation, de laminage à chaud, de laminage à froid, de mise en solution, trempe, déformation à froid (par exemple traction) et revenu doit être compatible avec les alliages contenus dans la plaque selon l'invention. Cette condition peut être limitante quant au choix des alliages car les températures optimales sont parfois très différentes entre les alliages et un compromis de température peut conduire à ne pas obtenir les propriétés souhaitées. L'homme du métier tente d'adapter au mieux la gamme de transformation aux alliages en présence.Des problèmes similaires se posent à l'homme du métier mutatis mutandis dans le cas du procédé de transformation d'une billette de filage, ou d'une ébauche de forge.
Dans un autre mode de réalisation de la présente invention, on lamine la plaque de laminage principalement ou exclusivement dans le sens de sa longueur, c'est-à-dire dans la direction de coulée. On obtient ainsi des tôles de grande longueur dont l'une des extrémités géométriques est en alliage de composition P, et l'autre extrémité géométrique est en alliage de composition T. Ces tôles montrent un gradient dans leurs propriétés mécaniques dans le sens de leur longueur. Ce mode de réalisation s'applique en particuler à la réalisation de tôles de voilure.
D'autres modes de réalisation de la présente invention sont décrits dans les revendications dépendantes.
Dans les exemples qui suivent, on décrit à titre d'illustration des modes de réalisation avantageux de l'invention. Ces exemples n'ont pas de caractère limitatif.
Exemples
Exemple 1
Dans cet exemple, on a coulé une plaque (repère A) de laminage dont le pied (repère P) était en alliage Al- Zn 5% - Cu 1,8% - Mg 1,5% et la tête (repère T) en alliage Al- Zn 8% - Cu 1,8% - Mg 1,9%. On a élaboré les deux alliages dans deux fours séparés. Le tableau 1 indique la composition des deux alliages mesurée sur des pions obtenus par solidification de métal liquide prélevés dans chacun des deux fours.
Tableau 1. Compositions mesurées (% en poids)
Les deux alliages liquides ont été traités pendant 90 minutes avec un mélange Ar - Cl2 dans une poche de traitement de type IRMA ®. La transition entre alliages a été effectuée dans une goulotte. On a prélevé dans la goulotte du métal liquide pour la fabrication de pions spectrométriques avant, pendant et après la transition de composition, environ tous les 50 mm de descente. On a ainsi constaté que la transition de la composition s'opère sur une hauteur de descente d'environ 200 mm. La hauteur Hp était de 2100 mm, la hauteur HT était d'environ 1600 mm et la hauteur totale de la plaque HF était d'environ 3700 mm. On a ébouté une longueur de pied HEP de 750 mm et une longueur de tête HET de 300 mm, ce qui donne une longueur utilisable Hu d'environ 2600 mm.
Exemple 2
On a coulé une plaque comme indiqué dans l'exemple 1. Les compositions des alliages sont indiquées dans le tableau 2.
Les deux alliages liquides ont été traités avec un mélange Ar - CI2 dans une poche de traitement de type ALPUR ®. De façon à obtenir une transition abrupte, le métal de composition T a été élaboré à partir du métal de composition P dans la poche ALPUR ®, puis la poche a été alimentée par le métal liquide provenant du second four. On a prélevé dans la goulotte du métal liquide pour la fabrication de pions spectrométriques avant, pendant et après la transition de composition, environ tous les 50 mm de descente. La figure 6 illustre les résultats obtenus. La transition de la composition s'opère sur une hauteur de descente de moins de 100 mm. La hauteur Hp était de 2100 mm. La hauteur finale Hp de la plaque était d'environ 3850 mm. On a ébouté une longueur de pied HEP de 800 mm et une longueur de tête HET de 300 mm, ce qui donne une longueur utilisable Hu d'environ 2750 mm.
Exemple 3
Dans cet exemple, on fabrique une tôle forte susceptible d'être utilisée pour la fabrication d'un longeron d' aile d'avion.
On utilise la plaque issue de l'exemple 2. Cette plaque a une hauteur Hu d'environ 2750 mm ce qui est suffisant pour un longeron d'une hauteur d'environ 2000 mm. La plaque est homogénéisée pendant 48 heures à 4700C. Elle est laminée à chaud dans le sens travers (i.e. perpendiculairement à la direction de coulée H de la plaque) jusqu'à une épaisseur finale de 80 mm. La température de laminage à chaud est comprise entre 400°C et 46O0C. La tôle ainsi obtenue est mise en solution à 4730C pendant 12 heures. Après trempe, la tôle est soumise à une traction contrôlée avec une déformation permanente d'environ 2%.
Une caractérisation de la tôle obtenue par mesure de conductivité est alors effectuée.
La figure 7 illustre le profil de conductivité obtenu à mi-épaisseur dans la direction de coulée H. La zone de transition entre alliage s'étend sur une hauteur d'environ 400 mm. Cette hauteur est supérieure à la hauteur de transition de 100 mm mesurée par prélèvement de pions en cours de coulée car elle intègre la forme de l'interface entre solide et liquide (« le marais ») qui n'est pas un plan perpendiculaire à la direction de coulée mais une surface dont la forme dépend des conditions de refroidissement lors de la solidification. Ensuite, la tôle est soumise à un traitement de revenu en deux paliers : 6 heures à 1200C suivi de 20 heures à 155°C. Le tableau 3 ci-dessous illustre les caractéristiques mécaniques statiques, la ténacité et la tenue à la corrosion obtenues pour des prélèvements effectués à mi-épaisseur et à quart d'épaisseur.
Tableau 3
On obtient ainsi une tôle présentant à l'extrémité T une valeur de Rpo.2 supérieure à 510 MPa et une valeur de Kic supérieure à 32 MPaVm5 et à l'extrémité P une valeur de Rpo.2 supérieure à 410 MPa et une valeur de Kic supérieure à 54 MPaVm. Dans cette tôle, on peut usiner un élément de structure bi-fontionnel pour construction aéronautique, à savoir un longeron, de manière à avoir le côté extrados en alliage de composition T, et le côté intrados en alliage de composition P. Ce longeron, est schématiquement représenté sur la figure 1.
Exemple 4
Dans cet exemple, on coule une plaque de laminage en alliage à base d'aluminium dont la composition de tête T (alliage de type AA 7449) comprend 8% de zinc, 1,9%
de magnésium et 1,8% de cuivre, et dont la composition de pied P (alliage de type
AA7040) comprend 5% de zinc, 1,5% de magnésium et 1,8% de cuivre. La teneur en zirconium est de 0,11%. Pour couler cette plaque, on prépare un alliage de composition P, on traite le métal par un gaz (Ar + Cl2) dans une poche de traitement, on coule avec l'alliage de composition P la plaque jusqu'à la hauteur Hp voulue, qui est la mi-hauteur finale Hp de la plaque visée, et ensuite on continue la coulée jusqu'à la hauteur finale Hp en ajoutant à l'alliage en cours de coulée, après la poche de traitement, la quantité nécessaire de métal solide riche en zinc et magnésium pour amener l'alliage de composition P à la composition T. Cet apport de métal solide est fait en déroulant, par l'intermédiaire d'un dérouleur, deux fils avec des teneurs en zinc et magnésium appropriées, qui sont fournis en bobines.
Exemple 5
Dans cet exemple, on coule une plaque de laminage en alliage à base d'aluminium dont la composition de pied P comprend 1,8% de magnésium, 7,8% de zinc et 1,8% de cuivre et dont la composition de tête T comprend 1,3% de magnésium, 7,8% de zinc et 1,8% de cuivre. La teneur en zirconium est de 0,10 %. Pour couler cette plaque, on prépare un alliage de la composition T, on ajoute dans une poche de traitement la quantité de Mg nécessaire pour atteindre la composition P visée puis on coule. La transition entre les deux compostions est progressive, la composition T étant atteinte pour une hauteur coulée de 800 mm. La plaque est ensuite transformée par homogénéisation, laminage à chaud jusqu'à une épaisseur de 100 mm, mise en solution, trempe et revenu.
Les résultats obtenus en pied et en tête sont présentés dans le Tableau 4 pour 4 conditions différentes de revenu.
Tableau 4
Claims
1. Procédé de coulée verticale d'un produit intermédiaire de hauteur finale HF dans la direction de coulée, comprenant les étapes de
(a) préparation d'au moins deux alliages à base d'aluminium notamment un premier alliage de composition P et un second alliage de composition T,
(b) coulée dudit premier alliage de composition P jusqu'à une hauteur Hp voulue,
(c) coulée d'une hauteur supplémentaire Hx voulue dudit second alliage de façon à atteindre une hauteur coulée Hp + HT qui soit inférieure ou égale à HF, et dans lequel
(i) la préparation desdits alliages à base d'aluminium est effectuée de manière indépendante, ou dans lequel
(ii) la préparation des alliages d'aluminium de composition différente de P est effectuée à partir dudit premier alliage pendant la coulée en ajoutant audit premier alliage les quantités nécessaires d'éléments pour atteindre la composition desdits alliages de composition différente de P, ou encore dans lequel
(iii) la préparation desdits au moins deux alliages à base d'aluminium est effectuée au cours de la coulée à partir d'un alliage à base d'aluminium de composition B, en ajoutant audit alliage de composition B les quantités nécessaires d'éléments pour atteindre la composition desdits au moins deux alliages à base d'aluminium P et T.
2. Procédé selon la revendication 1 dans lequel la transition entre les alliages P et T est effectuée sans interrompre le flux de métal liquide.
3. Procédé selon la revendication 1 ou 2 dans lequel la somme Hp + Hx est égale à HF
4. Procédé selon la revendication 1 ou 2 dans lequel la somme Hp + Hx est inférieure à HF et dans lequel on effectue l'étape supplémentaire suivante
(d) coulée de l'alliage P de la hauteur Hp + Hx à la hauteur HF-
5. Procédé selon la revendication 1 ou 2 dans lequel la somme Hp + HT est inférieure à Hp5 dans lequel l'étape (a) comprend la préparation d'un alliage T' et dans lequel on effectue l'étape supplémentaire suivante (d) coulée de l'alliage T' de la hauteur Hp + HT à la hauteur Hp.
6. Procédé selon une quelconque des revendications 1 à 5 dans lequel la hauteur Hp est supérieure ou égale à la longueur éboutée en pied HEP.
7. Procédé selon la revendication 6 dans lequel la hauteur Hp est supérieure ou égale à HEP + Hu/4 où Hu est la longueur utile de la forme coulée.
8. Procédé selon une quelconque des revendications 1 à 7 dans lequel lesdits alliages d'aluminium sont des alliages à durcissement structural compris dans le groupe constitué des alliages 2XXX, 6XXX5 7XXX et 8XXX
9. Procédé selon une quelconque des revendications 1 à 7 dans lequel lesdits alliages d'aluminium sont en alliage d'aluminium 7XXX.
10. Procédé selon une quelconque des revendications 1 à 7 dans lequel lesdits alliages d'aluminium sont en alliage d'aluminium 2XXX.
11. Procédé selon une quelconque des revendications 1 à 7 dans lequel lesdits alliages d'aluminium sont en alliage de type aluminium-lithium.
12. Procédé selon la revendication 3 ou 4 dans lequel l'alliage P est le 7040 et l'alliage T est le 7449.
13. Procédé selon la revendication 3 ou 4 dans lequel l'alliage P est un alliage comprenant 4,1 à 5,1% en poids de Zn, 1,5 à 2,5 % en poids de Cu et 1,2 à 1,8 % en poids de Mg et l'alliage T est un alliage comprenant 7 à 10% en poids de Zn, 1,0 à 3,0 % en poids de Cu et 1,0 à 3,0 % en poids de Mg
14. Procédé selon la revendication 5 dans lequel l'alliage P est le 7475, l'alliage
T est le 7040 et l'alliage T' est le 7449.
15. Produit intermédiaire solide destiné à être laminé, filé ou forgé susceptible d'être obtenu par le procédé selon une quelconque des revendications 1 à 14.
16. Produit intermédiaire selon la revendication 15 caractérisé en ce qu'il comporte entre deux alliages coulés successivement au moins une « zone de transition » Z de composition intermédiaire.
17. Produit intermédiaire selon la revendication 15 ou la revendication 16, caractérisé en ce que ledit produit intermédiaire est une plaque ou billette de section constante sur au moins 95% de sa longueur.
18. Procédé d'élaboration d'une tôle à partir d'une plaque selon la revendication 17, dans lequel
(a) on approvisionne une plaque selon la revendication 16,
(b) on lamine ladite plaque pour obtenir un deuxième produit intermédiaire.
19. Procédé d'élaboration d'une tôle selon la revendication 18 dans lequel ledit laminage est effectué dans le sens perpendiculaire à la direction de coulée.
20. Procédé d'élaboration d'une tôle selon la revendication 18 dans lequel on soumet ladite plaque à au moins une passe de laminage dans la direction de coulée.
21. Tôle susceptible d'être élaborée par le procédé selon une quelconque des revendications 18 à 20.
22. Procédé d'élaboration d'un profilé ou d'une barre à partir d'une billette selon la revendication 17 dans lequel
(a) on approvisionne une billette selon la revendication 17 (b) on file ladite billette pour obtenir un deuxième produit intermédiaire
23. Profilé ou barre susceptible d'être élaborée par le procédé selon la revendication 22.
24. Procédé d'élaboration d'une pièce forgée à partir d'une plaque ou d'une billette selon la revendication 17 dans lequel
(a) on approvisionne une plaque ou une billette selon la revendication 17,
(b) on forge ladite billette ou ladite plaque pour obtenir un deuxième produit intermédiaire.
25. Pièce forgée susceptible d'être élaborée par le procédé selon la revendication 24.
26. Elément de structure monolithique bi-fonctionnel ou multi-fonctionnel fabriqué à partir d'un produit intermédiaire selon une quelconque des revendications 21, 23 ou 25.
27. Elément de structure selon la revendication 26, dans lequel ledit élément de structure comprend un longeron approprié pour une utilisation dans la construction aéronautique.
28. Elément de structure selon la revendication 26, dans lequel ledit élément de structure comprend une nervure appropriée pour une utilisation dans la construction aéronautique.
29. Elément de structure selon la revendication 26, dans lequel ledit élément de structure comprend un panneau de fuselage approprié pour une utilisation dans la construction aéronautique.
30. Elément de structure selon la revendication 26, dans lequel ledit élément de structure comprend un raidisseur de voilure approprié pour une utilisation dans la construction aéronautique.
31. Elément de structure selon la revendication 26, dans lequel ledit élément de structure comprend un panneau de voilure approprié pour une utilisation dans la construction aéronautique.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200680047517XA CN101330995B (zh) | 2005-12-16 | 2006-12-14 | 含有两种铝基合金的半成品及其制造方法以及由该半成品制造板材的方法和板材 |
CA2632999A CA2632999C (fr) | 2005-12-16 | 2006-12-14 | Procede de fabrication de demi-produits comportant deux alliages a base d'aluminium |
EP06841935.7A EP1965936B1 (fr) | 2005-12-16 | 2006-12-14 | Procédé de fabrication de demi-produits comportant deux alliages à base d'aluminium |
DE06841935T DE06841935T1 (de) | 2005-12-16 | 2006-12-14 | Verfahren zur herstellung halbfertiger produkte mit zwei legierungen auf aluminiumbasis |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0512809 | 2005-12-16 | ||
FR0512809A FR2894857B1 (fr) | 2005-12-16 | 2005-12-16 | Procede de fabrication de demi-produits comportant deux alliages a base d'aluminium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007080265A1 true WO2007080265A1 (fr) | 2007-07-19 |
Family
ID=36764053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2006/002731 WO2007080265A1 (fr) | 2005-12-16 | 2006-12-14 | Procede de fabrication de demi-produits comportant deux alliages a base d'aluminium |
Country Status (7)
Country | Link |
---|---|
US (1) | US7938165B2 (fr) |
EP (1) | EP1965936B1 (fr) |
CN (1) | CN101330995B (fr) |
CA (1) | CA2632999C (fr) |
DE (1) | DE06841935T1 (fr) |
FR (1) | FR2894857B1 (fr) |
WO (1) | WO2007080265A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8152943B2 (en) | 2007-10-04 | 2012-04-10 | Aleris Aluminum Koblenz Gmbh | Method for manufacturing a wrought metal plate product having a gradient in engineering properties |
US9234255B2 (en) | 2010-01-29 | 2016-01-12 | Tata Steel Nederland Technology Bv | Process for the heat treatment of metal strip material |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE026137T2 (en) | 2005-12-09 | 2016-05-30 | Kobe Steel Ltd | Crust material for clad material containing at least one molding structure |
US8448690B1 (en) | 2008-05-21 | 2013-05-28 | Alcoa Inc. | Method for producing ingot with variable composition using planar solidification |
EP2789706B1 (fr) * | 2013-04-11 | 2015-07-15 | Aleris Rolled Products Germany GmbH | Procédé de coulage d'alliages d'aluminium contenant du lithium |
US9656321B2 (en) * | 2013-05-15 | 2017-05-23 | General Electric Company | Casting method, cast article and casting system |
US9783871B2 (en) * | 2013-07-11 | 2017-10-10 | Aleris Rolled Products Germany Gmbh | Method of producing aluminium alloys containing lithium |
CN109890663B (zh) | 2016-08-26 | 2023-04-14 | 形状集团 | 用于横向弯曲挤压成形铝梁从而温热成型车辆结构件的温热成型工艺和设备 |
CN110114498A (zh) | 2016-10-24 | 2019-08-09 | 形状集团 | 用于生产车辆零件的多阶段铝合金形成与热加工方法 |
CN107832536B (zh) * | 2017-11-16 | 2021-02-26 | 中船黄埔文冲船舶有限公司 | 一种纵向型材肋位标记建模方法 |
CN114178508A (zh) * | 2021-12-13 | 2022-03-15 | 湖南工程学院 | 一种多层铝基复合材料的真空铸造方法 |
CN115055975B (zh) * | 2022-06-29 | 2024-10-18 | 浙江西子势必锐航空工业有限公司 | 一种飞机座椅支撑板的加工工艺方法及加工装置 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005063422A1 (fr) * | 2003-12-30 | 2005-07-14 | Arc Leichtmetallkompetenz- Zentrum Ranshofen Gmbh | Procede et dispositif pour produire une unite structurale en metal leger a plusieurs composants |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE844806C (de) | 1944-08-10 | 1952-07-24 | Wieland Werke Ag | Verfahren und Vorrichtung zur Herstellung von Verbundmetallstraengen |
US3353934A (en) * | 1962-08-14 | 1967-11-21 | Reynolds Metals Co | Composite-ingot |
GB1174764A (en) * | 1965-12-21 | 1969-12-17 | Glacier Co Ltd | Method of Casting a Bi-Metallic Member |
US3421569A (en) * | 1966-03-11 | 1969-01-14 | Kennecott Copper Corp | Continuous casting |
JPS5832543A (ja) * | 1981-08-21 | 1983-02-25 | Sumitomo Metal Ind Ltd | クラツド鋳片の製造方法および装置 |
US4567936A (en) * | 1984-08-20 | 1986-02-04 | Kaiser Aluminum & Chemical Corporation | Composite ingot casting |
US5213639A (en) * | 1990-08-27 | 1993-05-25 | Aluminum Company Of America | Damage tolerant aluminum alloy products useful for aircraft applications such as skin |
FR2707092B1 (fr) * | 1993-06-28 | 1995-08-25 | Pechiney Rhenalu | Produit métallurgique en alliage d'Al à durcissement structural présentant une variation continue des propriétés d'emploi suivant une direction donnée et un procédé et dispositif d'obtention de celui-ci. |
DE4419387C1 (de) * | 1994-05-30 | 1995-08-31 | Mannesmann Ag | Verfahren und Anlage zum Stranggießen von endabmessungsnahen Gießformaten |
DE4420697C2 (de) | 1994-06-14 | 1997-02-27 | Inst Verformungskunde Und Huet | Stranggießkokille zum Gießen eines Verbundmetallstranges mit einem Trennkörper zum Trennen der eingegossenen Schmelzen der Teilstränge |
FR2811337B1 (fr) * | 2000-07-05 | 2002-08-30 | Pechiney Rhenalu | Toles en alliage d'aluminium plaquees pour elements de structure d'aeronefs |
US6450237B1 (en) * | 2001-04-02 | 2002-09-17 | Alcoa Inc | Compound cast product and method for producing a compound cast product |
US6705384B2 (en) * | 2001-10-23 | 2004-03-16 | Alcoa Inc. | Simultaneous multi-alloy casting |
PL1638715T5 (pl) | 2003-06-24 | 2020-04-30 | Novelis Inc. | Sposób odlewania wlewka kompozytowego |
CN2644048Y (zh) * | 2003-07-29 | 2004-09-29 | 高新张铜股份有限公司 | 垂直连铸装置 |
FR2868084B1 (fr) | 2004-03-23 | 2006-05-26 | Pechiney Rhenalu Sa | Element de structure pour construction aeronautique presentant une variation des proprietes d'emploi |
-
2005
- 2005-12-16 FR FR0512809A patent/FR2894857B1/fr not_active Expired - Fee Related
-
2006
- 2006-12-05 US US11/633,640 patent/US7938165B2/en active Active
- 2006-12-14 WO PCT/FR2006/002731 patent/WO2007080265A1/fr active Application Filing
- 2006-12-14 CA CA2632999A patent/CA2632999C/fr not_active Expired - Fee Related
- 2006-12-14 EP EP06841935.7A patent/EP1965936B1/fr active Active
- 2006-12-14 DE DE06841935T patent/DE06841935T1/de active Pending
- 2006-12-14 CN CN200680047517XA patent/CN101330995B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005063422A1 (fr) * | 2003-12-30 | 2005-07-14 | Arc Leichtmetallkompetenz- Zentrum Ranshofen Gmbh | Procede et dispositif pour produire une unite structurale en metal leger a plusieurs composants |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8152943B2 (en) | 2007-10-04 | 2012-04-10 | Aleris Aluminum Koblenz Gmbh | Method for manufacturing a wrought metal plate product having a gradient in engineering properties |
US9234255B2 (en) | 2010-01-29 | 2016-01-12 | Tata Steel Nederland Technology Bv | Process for the heat treatment of metal strip material |
Also Published As
Publication number | Publication date |
---|---|
CN101330995A (zh) | 2008-12-24 |
EP1965936A1 (fr) | 2008-09-10 |
EP1965936B1 (fr) | 2020-04-15 |
CN101330995B (zh) | 2012-04-18 |
DE06841935T1 (de) | 2009-01-15 |
CA2632999A1 (fr) | 2007-07-19 |
US7938165B2 (en) | 2011-05-10 |
FR2894857A1 (fr) | 2007-06-22 |
US20070259200A1 (en) | 2007-11-08 |
CA2632999C (fr) | 2016-11-08 |
FR2894857B1 (fr) | 2009-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1965936B1 (fr) | Procédé de fabrication de demi-produits comportant deux alliages à base d'aluminium | |
EP1766102B1 (fr) | Procede de fabrication de produits en alliage d'aluminium a haute tenacite et haute resistance a la fatigue | |
EP2038440B1 (fr) | Procede de recyclage de scrap en alliage d'aluminium provenant de l'industrie aeronautique | |
EP1492895B1 (fr) | Produits en alliages al-zn-mg-cu | |
CA2841291C (fr) | Procede de coulee semi-continue verticale multi-alliages | |
CA2798480C (fr) | Alliage aluminium-cuivre-lithium pour element d'intrados | |
US20210008671A1 (en) | Extrusion Material | |
EP1891247A1 (fr) | Tole en aluminium-cuivre-lithium a haute tenacite pour fuselage d'avion | |
EP1544315B1 (fr) | Produit corroyé sous forme de tôle laminée et élément de structure pour aéronef en alliage Al-Zn-Cu-Mg | |
CA2528614C (fr) | Produits en alliages al-zn-mg-cu a compromis caracteristiques mecaniques statiques/tolerance aux dommages ameliore | |
EP2364378A1 (fr) | Produits en alliage aluminium-cuivre-lithium | |
EP3411508B1 (fr) | Tôles épaisses en alliage al cu li à propriétés en fatigue améliorées | |
EP3610048B1 (fr) | Produits en alliage aluminium-cuivre-lithium a faible densite | |
EP2868761A1 (fr) | Plaque d'alliage d'aluminium pour boîtiers de batterie qui a une excellente moulabilité et une excellente soudabilité |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680047517.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006841935 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2632999 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2006841935 Country of ref document: EP |