WO2007079644A1 - Procédé et station de base à coexistence pour l'affectation du créneau de coexistence de station de base à coexistence - Google Patents

Procédé et station de base à coexistence pour l'affectation du créneau de coexistence de station de base à coexistence Download PDF

Info

Publication number
WO2007079644A1
WO2007079644A1 PCT/CN2006/003142 CN2006003142W WO2007079644A1 WO 2007079644 A1 WO2007079644 A1 WO 2007079644A1 CN 2006003142 W CN2006003142 W CN 2006003142W WO 2007079644 A1 WO2007079644 A1 WO 2007079644A1
Authority
WO
WIPO (PCT)
Prior art keywords
0cts
icts
coexistence
round
base station
Prior art date
Application number
PCT/CN2006/003142
Other languages
English (en)
French (fr)
Inventor
Xuyong Wu
Quanbo Zhao
Zhong Pan
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to JP2008548915A priority Critical patent/JP4809442B2/ja
Publication of WO2007079644A1 publication Critical patent/WO2007079644A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for allocating coexistence time slots of a coexisting base station and a coexisting base station.
  • Broadband wireless access technology is currently booming, and the technology of using broadband resources to carry out broadband metro access has strong vitality and market space.
  • BWA (Broadband wireless access) equipment can provide users with convenient broadband access.
  • BWA devices There are currently BWA devices based on proprietary protocols, as well as A's devices based on standard protocols.
  • Wireless spectrum resources are invaluable in broadband wireless access technologies. Especially in some areas that are not well planned, and some license-free frequency bands, there are often multiple base stations operating in the same frequency band, causing signals from different base stations to interfere with each other. Therefore, in order to coordinate the coexistence between the base station devices in the same frequency band, especially the coexistence between the base station devices on the unlicensed frequency band, it is necessary to establish a coexistence mechanism between the base station devices.
  • a neighboring station is a base station that has a common coverage area and that has a valid terminal in the common coverage area.
  • BS1 base station 1
  • BS2 base station 2
  • BS1 and BS2 stations themselves are each in the coverage area of the other party, but due to the common coverage of the BS1 and BS2 sites.
  • BS2 and BS3 base station 3
  • each of them is not in the cover area of the other party, but there is an effective terminal in the overlapping coverage area, which constitutes interference to the other party's wireless network, so the connection between BS2' and BS3 is called For the neighbor station.
  • the neighboring stations need to negotiate with each other to implement a negotiation coexistence mechanism between the base stations. Then, based on the results of the negotiations.
  • the base station When allocating air interface resources, the base station will use the competitive air interface resources (such as time period, subchannel, etc.) to send data to the terminals in the non-interference area, and use the exclusive air interface resources (such as time period, subchannel, etc.) to send. Data to the terminal in the interfered area.
  • the running base station needs to know the state of the terminal being disturbed at all times, and needs to know whether each terminal is interfered and which base stations are interfered with, so that inter-base station negotiation can be performed.
  • the definitions of the Geography Community and the CC-Community we introduce the definitions of the Geography Community and the CC-Community.
  • a location community is a set of a set of base stations in the same environment.
  • a subset of any one of the base stations or a part of the base stations in a location community is effective with at least one base station in the home location but not belonging to the subset. Common coverage area.
  • BS1, BS2, BS3, BS4 (base station 4) together form a location commonality Cl.
  • BS5 has an overlapping coverage area with BS3, since there is no effective terminal in the overlapping area, BS5 does not belong to the location community Cl, but independently forms the location community C2.
  • BS6 and BS7 they do not belong to the location community Cl, C2, but form another location community C3.
  • a co-channel community refers to a set of base stations operating in the same channel (ie, the same frequency point) in the same environment.
  • a subset consisting of any one of the base stations or a part of the base stations is at least one body, but Base stations that do not belong to this subset have a valid common coverage area.
  • BS4 has an effective common coverage area with BS1 and BS3, BS4 does not belong to Cl because it works on different channels.
  • BS5 has an overlapping coverage area with BS3, there is no effective terminal in the overlapping area, so BS5 does not belong to the same-community Cl.
  • BS6 base station 6
  • BS7 base station 7
  • the complete frame time obtained by the uninterrupted work is called the Master Subframe.
  • BS1, BS2, and BS3 occupy the same channel and form a co-channel community.
  • BS1, BS2, and BS3 have effective coverage areas between each other, that is, neighboring stations.
  • the maximum number of primary frames in the same community is three.
  • the three base stations BS1, BS2, and BS3 each have a primary frame.
  • an idle time slice is often opened in the original physical frame format of the base station as a CTS (coexistence time slot), and the CTS includes a DCTS (downlink coexistence dedicated time slice) and a UCTS (uplink coexistence dedicated time slice). ).
  • CTS coexistence time slot
  • DCTS downlink coexistence dedicated time slice
  • UCTS uplink coexistence dedicated time slice
  • Coexisting base stations including; IBS (starting base station), 0BS (running base station), and terminals can use these CTSs to complete the transmission of coexistence messages.
  • the time parameters of the above CTS include:
  • TCTSstart time deviation of the CTS slot from the start position of the frame
  • TCTSdurat the length of the CTS slot
  • NCTSstart FN (frame number) of the first CTS begins to appear
  • NCTSintv The frame interval at which each CTS appears.
  • the above time parameters of the CTS of each base station are known to all base stations within the system.
  • the CTS of each base station needs to be efficiently allocated between the base stations.
  • the CTS (including DCTS and UCTS) is only used during the neighbor discovery process of the newly activated base station (including IBS/0BS).
  • the method can be applied in the case where there is a wired connection between IBS and 0BS, and there is no wired connection between IBS and 0BS.
  • the interaction process between A and TOS1 includes the following steps:
  • SBS1 starts and completes the wired part initialization, obtains the information needed for wired connection with the neighboring station, such as the IP address of the station, selects the wireless channel, and then uses DCTS to reach all the terminals (including terminal A) that are available to all air interfaces.
  • the terminal A After intercepting the contact request message and the attached auxiliary information, the terminal A sends a coexistence message reporting request to the base station TOS1 to which it belongs.
  • the qualified terminal that receives the above contact request message on the DCTS will send a coexistence message report request to the WBS1 to which it belongs;
  • the WBS1 After receiving the coexistence message reporting request, the WBS1 allocates the bandwidth for reporting the coexistence message to the designated terminal and specifies that the coexistence message is reported. For example, if both terminals A and B apply for coexistence message reporting to WBS1, TOS1 can Specifying the A terminal to report the coexistence message received by the A terminal, and also allowing all the terminals that apply for reporting to report in sequence;
  • the terminal A After receiving the report indication sent by the WBS1, the terminal A reports the contact request message sent by the SBS1 to the WBS1;
  • the WBS1 After receiving the contact request message reported by the terminal A, the WBS1 obtains the wired contact information (such as an IP address) carried in the contact request message, and sends a contact message to the SBS1 through the wired network;
  • the wired contact information such as an IP address
  • SBS1 learns the contact method with the neighboring station TOS1 from the above contact message, and then sends a contact message to WBS1 through the wired network. After the TOS1 receives the contact message sent by SBS1 again from the wired network, SBS1 and WBS1 are established. Effective wired contact. The two parties can then begin to interact with various information, including coexistence negotiations.
  • SBS1 starts and completes the wired part initialization, obtains the information needed for wired connection with the neighboring station, such as the IP address of the station, selects the wireless channel, and then uses the DCTS to reach all the terminals reachable to the air interface (including terminal A).
  • Sending a contact request message the contact request message includes information such as an IP address of the SBS1;
  • terminal A After intercepting the above contact request message and its affiliate information, terminal A sends a coexistence message report request to its neighboring base station WBS1.
  • the qualified terminal that receives the above contact request message on the DCTS will send a coexistence message report request to the TOS1 to which it belongs;
  • the WBS1 After receiving the coexistence message request, the WBS1 allocates the bandwidth for reporting the coexistence message to the designated terminal and specifies that the coexistence message is reported. For example, if both terminals A and B apply for coexistence message reporting, WBS1 can specify the same.
  • the A terminal reports the coexistence message it receives, and can also report all the terminals that apply for reporting in sequence;
  • the terminal A After receiving the report indication sent by the TOS1, the terminal A reports the contact request message sent by the SBS1 to the WBS1;
  • WBS1 selects one or more reporting terminals as CLSS (coexistence contact terminal), sends a contact message to the CLSS through the normal downlink channel, and instructs the CLSS to use the UCTS to contact the contact message. Forward to SBS1.
  • CLSS coexistence contact terminal
  • the CLSS After receiving the above contact message, the CLSS sends a contact message of WBS1 to SBS1 by using UCTS;
  • the SBS1 learns the contact information of the neighboring station WBS1 from the above contact message, and then sends the coexistence message by using the DCTS to the CLSS specified by the WBS1;
  • the CLSS will receive the coexistence message buffer of SBS1 and report it to WBS1. Since then, effective wireless communication has been established between SBS1 and WBS1. The two parties can then begin various information interactions, including coexistence negotiations.
  • the disadvantages of the above prior art methods are:
  • the method uses CTS (including DCTS and UCTS) for interfering neighbor discovery of the base station initialization process, the CTS time slot is only used by the IBS to send a contact message containing the IP address, and at the base station Contact between IBS and 0BS when there is no wired network available. Therefore, in this method, the IBS can only use the CTS to collect interference information of the terminals of the 0BS.
  • An object of the present invention is to provide a method for allocating coexistence slots of a coexisting base station and a coexistence base station, so that the intra-community IBS and 0BS can share CTS slots without collision and broadcast their own contact information.
  • a method for a coexistence base station to allocate a coexistence time slot includes: The coexistence time slot CTS of the coexistence base station is allocated as: a coexistence dedicated time slice ICTS for initializing the base station and a coexistence dedicated time slice 0CTS for the working base station;
  • the ICTS is occupied by a base station IBS that starts to start, and the 0CTS is occupied by a running base station 0BS.
  • the ICTS appears in the CTS according to a set ICTS period, the ICTS period and the starting position are unified in the set region and region, and are known by all coexisting base stations of the region and region.
  • the other time slots except the ICTS in the CTS are the 0CTS, and the 0CTS allocated to each 0BS appears in the CTS according to the set 0BS round-robin cycle.
  • the 0BS round robin period is unified in the set regions and regions, and is known by all the coexistence base stations of the regions and regions;
  • the 0BS round-robin cycle is uniformly agreed within the location community and is known by coexistence base stations in all of the location communities;
  • the 0BS round-robin cycle is uniformly agreed in the same community and is known to all coexisting base stations in the same community.
  • the 0BS round-robin cycle is an integer multiple of the ICTS cycle.
  • the ICTS occupied by the IBS specifically includes:
  • the ICTS allocated to the CTS is obtained according to the preset ICTS period and location and the parameter information of the well-known CTS, and the ICTS is occupied during the initialization process, after the IBS becomes 0BS.
  • the ICTS is no longer occupied during normal working hours.
  • the 0CTS is occupied by the 0BS specifically includes - if the 0BS has obtained the available idle frequency, the 0BS occupies any available one of the 0BS round cycles
  • the 0BS acquires the position occupied by the 0BS in the 0BS round-robin cycle according to the preset 0CTS occupation rule, and occupies the corresponding 0CTS.
  • the 0BS occupying the corresponding 0CTS specifically includes - when the available 0CTS in the 0BS round robin period is allocated between each 0BS and its neighbors, the two base stations constituting the neighboring station cannot occupy the same 0CTS, not the two adjacent stations.
  • the 0BS occupies 0CTS slots that are not occupied by its neighbors in the 0BS round robin period.
  • the 0BS occupying the corresponding 0CTS further includes:
  • the number of available 0CTSs in the 0BS round robin period of the same-channel community is greater than the number of primary subframes in the same-channel community, and the 0BS obtains the base station according to the order of the primary word frames of the base station and its neighboring stations. Its neighbor station occupies the position of 0CTS in the 0BS round-robin cycle.
  • the arrangement order of the primary subframes is obtained after the coexistence base station and the neighboring station complete the coexistence negotiation, or after the 0BS finds that the information of the co-channel interference neighboring station changes, and obtains the renegotiation with the neighboring station.
  • the 0BS occupying the corresponding 0CTS further includes:
  • the number of available 0CTSs in the 0BS round-robin cycle originally agreed in the same community is smaller than the number of active frames in the same-channel community, and the same-channel community increases the length of the 0BS round-robin cycle.
  • the 0BS occupying the corresponding 0CTS further includes:
  • the 0BS round-robin cycle of the merged co-channel community selects the largest 0BS round-robin cycle among all the same-community communities before the merge, when the number of available 0CTS in the maximum 0BS round-robin cycle is less than
  • the number of primary frames of the merged co-channel community increases the length of the largest 0BS round-robin cycle.
  • the 0BS occupying the corresponding 0CTS specifically includes:
  • the available 0CTSs in the 0BS round-robin period are uniformly allocated by all base stations in the same-channel community, and each base station occupies a different 0CTS.
  • the 0BS occupies an 0CTS slot that is not occupied by other base stations in the same-channel community in the 0BS round-robin cycle.
  • the 0BS occupying the corresponding 0CTS specifically includes:
  • the available 0CTS in the 0BS round robin period is between the 0BS and the base stations having overlapping coverage areas around the 0BS.
  • the two base stations with overlapping coverage areas cannot occupy the same 0CTS, and two base stations that do not overlap the coverage area can occupy the same 0CTS, the 0BS does not occupy the 0BS round-robin cycle.
  • the 0BS occupying the corresponding 0CTS specifically includes:
  • mapping table in which each 0CTS in the 0BS round robin period is occupied by each 0BS is maintained in the 0BS, and the 0BS selects and occupies the corresponding 0CTS according to the mapping table.
  • a coexisting base station comprising:
  • ICTS time slot processing module used to occupy an ICTS time slot allocated to the CTS according to a preset ICTS occupation rule when the IBS is started;
  • the 0CTS time slot processing module is configured to occupy the 0CTS time slot allocated to the CTS according to the unified 0CTS occupation rule after the IBS is started and after the coexistence initialization negotiation is completed.
  • the ICTS time slot processing module specifically includes:
  • ICTS slot occupancy module used to obtain the ICTS allocated to the CTS according to the preset ICTS period and location and the well-known CTS parameter information before becoming the 0BS after the IBS is started, and occupying in the initialization process With the ICTS, the ICTS is no longer occupied in the normal working phase after the IBS becomes the OBS;
  • An ICTS time slot application module configured to send a contact message including an IP address to other base stations through the ICTS time slot; and send a contact message between the IBS and the 0BS through the ICTS time slot when no wired network is reachable between the base stations; .
  • the 0CTS time slot processing module specifically includes:
  • the 0CTS time slot occupation module is configured to acquire the position of the 0BS occupying the 0CTS in the 0BS round-robin cycle according to the preset 0CTS occupation rule after the completion of the IBS startup and the completion of the coexistence initialization negotiation. And occupy the corresponding 0CTS;
  • the 0CTS time slot application module is configured to: use the occupied 0CTS time slot to broadcast contact information, complete a periodic interference detection process between 0BSs, and perform subsequent 0BS negotiation according to the detected interference information change.
  • the present invention allocates a certain proportion of CTS to ICTS (coexistence dedicated time slice for initializing a base station) to be allocated to the IBS, and the remaining CTS is divided into 0CTS (for work).
  • the coexistence dedicated time slice of the base station is allocated to all coexistence 0BSs fairly, so that IBS and OBS can share CTS slots without conflict in the same-community/location community, and broadcast their own contact information.
  • the invention ensures that the IBS uses the ICTS time slot to complete the interference discovery process of initializing the neighboring station, and the 0BS can also complete the periodic interference detection process between the 0BSs by using the 0CTS time slot, and the 0BS can detect the positional movement due to the subordinate terminal (from the The interference information changes caused by one interfered area to another interfered area; the change of the interfered information of the working terminal due to the change of the base station position or the removal of the base station can be detected. It is possible to complete the collection of the interfered information of the new work terminal that joins the 0BS after the IBS is started. 0BS can change according to the detected interference information and negotiate between subsequent 0BSs.
  • Figure 1 is a schematic diagram of the concept of a neighboring station
  • FIG. 2 is a schematic diagram of a location community networking
  • Figure 3 is a schematic diagram of networking of the same community
  • Figure 4 is a schematic diagram of BS1, BS2 and BS3 forming a co-channel community
  • FIG. 5 is a schematic diagram of three primary base stations of BS1, BS2, and BS3 respectively having an active frame;
  • FIG. 6 is a schematic diagram of efficiently allocating CTS between base stations
  • Figure 7 shows SBS1, Terminal A and SBS1 during the start of SBS1 when there is wired communication between IBS and 0BS.
  • Flow chart of the interaction process between WBS1; 8 is a flow chart showing an interaction process between SBS1, terminal A, and WBS1 during the startup process of SBS1 when there is no wired communication between the IBS and the 0BS;
  • FIG. 9 is a process flow diagram of an embodiment of the method of the present invention.
  • FIG. 10 is a schematic diagram of networking of the embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a corresponding Master Subframe obtained by each base station according to the embodiment of the present invention
  • FIG. 12 is a schematic diagram of a topology of a common channel community according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of an embodiment of a coexistence base station according to the present invention. Mode for carrying out the invention
  • the present invention provides a method of allocating coexistence time slots of a coexisting base station and a coexisting base station.
  • the main technical features of the present invention are: In the community, a certain proportion of CTSs are allocated to the IBS, and the remaining CTSs are allocated to all coexistence 0BSs.
  • FIG. 9 The processing flow of the embodiment of the method of the present invention is as shown in FIG. 9 and includes the following steps:
  • Step 9-1 The CTS of the coexisting base station is divided into ICTS and 0CTS.
  • CTS Code Division Multiple Access
  • the CTS is specifically divided into ICTS according to a certain proportion, and the ICTS is specifically allocated to the IBS.
  • Information about the above ICTS includes:
  • ICTS Cycle Indicates the cycle time at which the TTS periodically occupies the CTS or the corresponding time.
  • the ICTS period and starting position are unified in the set regions and regions and are known by all coexisting base stations in the region and region.
  • the above CTS and ICTS parameters must be uniformly agreed in the regional and regional/location community/common community in the area.
  • Each newly activated base station can obtain its broadcast information for transmitting the initial base station according to the well-known CTS and ICTS parameters. The exact time of ICTS.
  • NCTSintv 2N
  • FN is divisible by NCTSintv.
  • the frame of NCTSstart is set with CTS.
  • the number of each CTS can be represented by CTSN.
  • CTSN is divisible by the ICTS period
  • the CTS is used as ICTS, or it can be simply set to ICTS to appear in every 2N CTSs.
  • the CTSs other than the ICTS are divided into 0CTSs, and the 0CTSs are respectively occupied by the respective 0BSs according to the agreed rules in the set region and the area/location community/common community.
  • Information about OCTS includes:
  • the neighbor index that is, the index number corresponding to each neighbor information, and each neighbor information and the corresponding neighbor index number can be represented by the following table.
  • Table 1 Schematic Table of Neighbor Information and Corresponding Neighbor Index Numbers
  • OBS RR Cycle This parameter is the round-robin cycle of an OBS group. It indicates the cycle time of the OBS periodically occupied by the OBS or the number of CTSs corresponding to the time or the number of physical frames corresponding to the time or The number of ICTS cycles corresponding to this time.
  • the 0BS in the round robin group chooses to occupy its own 0CTS according to the period. For ease of maintenance, the 0BS round-robin cycle can be selected as an integer multiple of the ICTS cycle.
  • the calculated granularity can be calculated by CTSN or ICTS cycle.
  • the above 0BS round robin period can be unified in the set regions and regions, and is known to all coexisting base stations in the region and region.
  • the above 0BS round robin period parameters can be uniformly agreed within the same community and are known by coexisting base stations in all co-channel communities, and can be negotiated and modified between base stations within the same community.
  • the above 0BS round robin period parameters can be uniformly agreed within the location community and are known by coexisting base stations in all location communities, and can be negotiated and modified between base stations within the location community.
  • OBS RR Map This parameter is a mapping map of 0CTS in the 0BS round robin period occupied by each base station. Assuming that the ICTS period is 4, the 0BS round-robin period is two ICTS periods, and the base station has four 0BS neighbors, that is, there are at least five Master Subframes in the same community, the OBS RR Map can be represented by Table 2 as follows:
  • IBS BS1 BS4 BS3 IBS BS2 Table 2 above shows the location of each base station occupying 0CTS resources in the 0BS round-robin cycle, which can be identified by different 0CTS location identification numbers, and each 0CTS location points to a group of CTSs that occur in the 0BS round-robin cycle. Reserved for IBS, it can be allocated as a resource to a 0BS.
  • CTS slots There are 8 CTS slots in a 0BS round robin period in the table, two of which are ICTS, reserved for IBS, and the other 6 are 0CTS, which are allocated to 0BS, because the base station has only 4 neighbors, so it only occupies There are 5 CTS slots, and 1 CTS slot is idle.
  • the above 0CTS related information is maintained in the database of each 0BS.
  • Step 9-2 The IBS obtains the ICTS time slot reserved for itself at the time of startup, and after completing the coexistence initialization negotiation, obtains the 0CTS time slot allocated to itself according to the unified 0CTS occupation rule.
  • the rules for assigning each base station to occupy 0CTS in the 0BS round-robin cycle in the same community can have the following three types -
  • the available 0CTS in the 0BS round robin cycle is allocated between each working base station and its neighboring stations.
  • the two base stations constituting the neighboring station cannot occupy the same 0CTS, and each base station only needs to maintain the occupied position of itself and the neighboring station;
  • 0BS available in the round-robin cycle 0CTS is uniformly allocated by all base stations in the same-channel community, each base station occupies different 0CTS, and each base station maintains the occupied positions of all base stations in the same-channel community;
  • the available 0CTS in the 0BS round-robin cycle is allocated between the base station and the base stations with overlapping coverage areas around it.
  • the two base stations with overlapping coverage areas cannot occupy the same 0CTS, and each base station needs to maintain itself and its surroundings.
  • the IBS time slot reserved for the IBS in the 0BS round-robin cycle is first acquired when performing the interference neighbor discovery of the base station initialization process, and is used to send the IPTS slot included in the 0BS round-robin cycle.
  • Contact messages and when there is no wired network between base stations, send a contact message between IBS and 0BS.
  • the IBS After the IBS is started, it becomes 0BS after completing the coexistence initialization negotiation.
  • the 0BS may select any CTS other than the reserved for the ICTS in the above 0BS round-robin cycle as the 0CTS of the 0BS.
  • the 0BS obtains the shared channel by negotiating with other neighboring stations, and selects the corresponding 0CTS by the following processing according to the rules of the above three base stations occupying 0CTS.
  • the 0CTS identifier is allocated between the base station and its neighbors - when the IBS obtains a Master Subframe by negotiating the shared channel with other neighbors, the IBS can occupy
  • the new base station BS5 joins the CC-Community that already has BS1, BS2, BS3, and BS4 base stations, and each base station of BS1 to BS5 obtains a corresponding Master Subframe after being negotiated as shown in FIG. Assuming that the ICTS period is 4, and the 0BS round-robin period is 8, the OBS RR Maps corresponding to the base station BS5 are as shown in Table 3 below according to the order of the Master Subframes between the BSs.
  • the content of the map may be different in each base station in the same CC-Community, that is, the same An OCTS may be occupied by two or more base stations that do not form a neighbor station with each other.
  • the internal CCS cycle of the same CC-Community is unified.
  • the number of 0CTS in the 0BS round robin period must be greater than the number of Master Subframes. As the new sub-base station in the community increases the number of Master Subframes, the number of 0CTSs in the original 0BS round-robin cycle is less than or equal to the Master Subframe. If the number is new, the new base station needs to negotiate with other base stations to change the 0BS round-robin cycle parameters.
  • the combined CC-Co wakes up the 0BS round-robin period parameters of unity.
  • the largest 0BS cycle cycle parameter should be negotiated. When the number of available 0CTSs in the maximum 0BS round robin period is less than the number of active frames of the merged co-channel community, the length of the largest 0BS round robin period is increased.
  • the maximum utilization of the current 0CTS can be obtained, but there may be two cases where the base station that is not the neighbor but has the overlapping coverage area uses the same 0CTS, and when the new terminal of the two base stations is in this area When attempting to access a certain base station, the two base stations use the same 0CTS, which causes the station to be unable to perform interference and subsequent negotiation. The new terminal cannot access.
  • the 0CTS in the 0BS round-robin cycle has a base of overlapping coverage areas at and around the base station. The situation of allocation between stations.
  • BS5 cannot select the same 0CTS as the base station with overlapping coverage areas.
  • the new base station BS5 must select an OCTS different from that occupied by BS2, BS3, and BS4. As shown in Table 4, BS5 selects the 0CTS location with the identification number 5 in the idle order.
  • the number of 0CTSs that can be allocated to the working base station in the 0BS round-robin cycle must be greater than the maximum number of overlapping base stations in the same-channel community, and there are no two base stations that are not neighboring stations but have overlapping coverage areas. Use the same 0CTS case.
  • the new terminals of the two base stations attempt to access a certain base station in the overlapping coverage area of the two base stations, the two base stations do not use the same 0CTS, and the interference between the base stations and subsequent negotiation cannot be performed. The new terminal in this new area cannot be accessed.
  • 0CTS in the 0BS round-robin cycle is uniformly allocated by all base stations in the same-channel community:
  • the co-channel community topology shown in FIG. 12 is taken as an example: there are four base stations before the start of the new base station BS5, and the first four 0CTS locations in Table 5 below are selected, and the fifth 0CTS position that BS5 can only occupy, although The neighboring stations of BS5 are only BS3 and BS4, but according to the allocation rule, BS5 cannot occupy the same 0CTS as BS1 and BS2 in the same-channel community.
  • the number of 0CTSs that can be allocated to the working base station in the 0BS round-robin cycle must be greater than the number of base stations in the same-channel community.
  • the utilization of the 0CTS is low, there is no case where two base stations occupy the same 0CTS. Two base stations in the same community that use the same 0CTS, which are not neighbors but have overlapping coverage areas, are connected in the overlapping coverage area. The problem of entering a new terminal can be solved.
  • the 0BS can use the obtained 0CTS time slot to broadcast its own contact information, complete the periodic interference detection process between 0BS, and perform subsequent 0BS negotiation according to the detected interference information change.
  • FIG. 13 A schematic structural diagram of an embodiment of a coexistence base station proposed by the present invention is shown in FIG. 13 and includes the following modules:
  • the ICTS time slot processing module is configured to: when the IBS is started, acquire an ICTS time slot allocated to itself in the CTS according to a preset ICTS occupation rule; use the acquired ICTS time slot to send a contact message including an IP address to other base stations. And transmitting a contact message between the IBS and the 0BS through the ICTS slot when the wired network is reachable between the base stations.
  • ICTS slot occupancy module ICTS slot application module.
  • the ICTS slot occupancy module is configured to obtain an ICTS allocated to the CTS according to a preset ICTS period and location and a well-known CTS parameter information before the IBS is started as the 0BS, and during the initialization process.
  • the ICTS is occupied, and the ICTS is no longer occupied in the normal working phase after the IBS becomes 0BS.
  • the ICTS time slot application module is configured to: send, by using the acquired ICTS time slot, a contact message including an IP address to other base stations; and send the IBS and the 0BS through the ICTS time slot when no wired network is reachable between the base stations; Contact message between.
  • 0CTS time slot processing module used to obtain the 0CTS time slot allocated to itself in the CTS according to the unified 0CTS occupation rule after the IBS is started and after the coexistence initialization negotiation is completed.
  • the obtained 0CTS time slot is used to broadcast its own contact information, and the periodic interference detection process between 0BS is completed, and the subsequent 0BS negotiation is performed according to the detected interference information change.
  • 0CTS slot occupancy module 0CTS slot application module.
  • the 0CTS time slot occupation module is configured to: after the IBS is started, after the 0BS is completed, after the coexistence initialization negotiation is completed, according to the preset 0CTS occupation rule, the 0BS is acquired to occupy the 0CTS in the 0BS rotation cycle. The location, and occupy the corresponding 0CTS.
  • the 0CTS time slot application module is configured to broadcast its own contact information by using the acquired 0CTS time slot, complete a periodic interference detection process between 0BSs, and perform subsequent 0BS negotiation according to the detected interference information change.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Description

分配共存性基站的共存性时隙的方法以及共存性基站 技术领域
本发明涉及通讯领域, 尤其涉及一种分配共存性基站的共存性时隙的方法以及共存 性基站。
发明背景
宽带无线接入技术目前正蓬勃发展, 利用无线资源开展宽带城域接入的技术具有很 强的生命力和市场空间。 BWA (Broadband wireless access, 宽带无线接入)设备可以 为用户提供方便 宽带接入方式。 目前有基于私有协议的 BWA设备, 也有基于标准协议 的售 A'设备。
在宽带无线接入技术中无线的频谱资源是非常宝贵的。特别是在一些没有很好地规 划的区域, 以及一些免许可的频段, 往往在相同的频段上有多个基站运行, 导致不同基 站的信号相互干扰。 因此, 为了协调同频段下各基站设备之间的共存, 尤其是在免许可 频段上的各基站设备之间的共存, 需要建立一些基站设备间的共存机制。
::.为了更好地描述本发明, 我们先介绍一下邻站的定义。
邻站是指有共同覆盖区域, 且共同覆盖区域中含有有效终端的基站。 比如在图 1中 所示的网络中, BS1 (基站 1)和 BS2 (基站 2)虽然地理很近, 且 BS1和 BS2站点本身各自 都在对方的覆盖区域, 但由于 BS1和 BS2站点的共同覆盖区域中没有有效终端, 因此, BS1和 BS2之间不是邻站。而 BS2和 BS3 (基站 3)间虽然交叠区域比较小, 各自都不在 对方的 盖区域, 但交叠覆盖区域中有有效终端, 构成对对方无线网络造成干扰, 所以 BS2'和 BS3之间称为邻站。
在共存性基站系统中, 往往要求各基站间必须保证收发的相互同步, 要求各基站间 的发送信号帧和接收信号帧的定时严格对齐,这样就可以保障地理位置相近的站点间不 会造成相互的收发干扰。例如, 在图 1中的 BS1和 BS2, 如果 BSl在发的时候 BS2在收, 则 BS1会对 BS2接收下属终端的信号造成严重的干扰。
在共存性基站系统中, 为解决共存性问题, 邻站之间需要相互进行协商, 实现基站 间协商共存机制。 然后, 根据协商结果。 在分配空口资源时, 基站将利用有竞争的空口 资源(如时间段、 子信道等)将数据发送到无干扰区域的终端, 而利用独享的空口资源 (如时间段、 子信道等) 发送数据到受干扰区域的终端。
因此, 正在运行的基站需要时刻知道终端受千扰的状态, 需要了解每个终端是否受 干扰以及受哪些基站千扰, 以便能够进行基站间协商。 为了更好地描述本发明, 我们介绍一下位置共同体(Geography Community)和同道 共同体 (CC- Community) 的定义。
位置共同体是处于同一环境下的一组基站的集合, 由一个位置共同体中的任何一个 基站或部分基站组成的子集都至少与一个本位置共同体内、但不属于该子集的基站具有 有效的共同覆盖区域。
比如, 在图 2所示的网络中, BS1、 BS2、 BS3、 BS4 (基站 4)共同组成一个位置共 同体 Cl。 而 BS5虽然与 BS3有重叠的覆盖区域, 但由于该重叠区域内并没有有效终端, 所以 BS5并不属于位置共同体 Cl,而是独立地组成位置共同体 C2。对于 BS6和 BS7, 它 们本身并不属于位置共同体 Cl、 C2, 而是组成另一个位置共同体 C3。
同道共同体是指处于同一环境下工作于相同信道(即相同频点)的一组基站的集合, 由一个同道共同体中的任何一个基站或部分基站组成的子集都至少与一个本共同体内、 但不属于该子集的基站具有有效的共同覆盖区域。
比如, 在图 3所示的网络中, 除 BS4外所有基站都工作于同一信道, 则 BS1、 BS2、 BS3共同组成一个同道共同体 CI。 而 BS4虽然与 BS1、 BS3都有有效的共同覆盖区域, 但由于 BS4工作于不同信道, 所以不属于 Cl。而 BS5虽然与 BS3有重叠的覆盖区域,但 由 该重叠区域内并没有有效终端, 所以 BS5并不属于同道共同体 Cl。对于 BS6 (基站 6)和 BS7 (基站 7), 它们与 BS1、 BS2和 BS3都没有交叠, 并不属于同道共同体 Cl, 而 是组成另一个同道共同体 C3。 '
同道共同体内的每个基站与其相互干扰基站进行协商、 公平分享信道带宽资源后, 获得的不受干扰工作的完整帧时间称为 Master Subframe (主用子帧)。
比如, 在图 4所示的网络中, BS1、 BS2和 BS3占用同一个信道, 构成一个同道共同 体, BS1、 BS2和 BS3间两两彼此都有有效的覆盖区域, 即互为邻站。该同道共同体中最 大的主用帧个数为 3, 如图 5所示, BS1、 BS2和 BS3三个基站分别拥有一个主用帧。
在共存性基站系统中, 往往在基站原有的物理帧格式中开辟一段空闲时片作为 CTS (共存性时隙), CTS包括. DCTS (下行共存专用时间片)和 UCTS (上行共存专用时间片)。 共存性基站, 包括; IBS (开始启动的基站)、 0BS (正在运行的基站)和终端可利用这些 CTS完成共存性消息的传送。
上述 CTS的时间参数包括:
TCTSstart: CTS时隙与帧起始位置的时间偏差;
TCTSdurat: CTS时隙的长度; NCTSstart: 开始出现第一个 CTS的 FN (帧序号);
NCTSintv: 每个 CTS出现的帧间隔 。
每个基站的 CTS的上述时间参数在系统内被所有基站共知。 为解决共存性基站间能 充分有效地利用 CTS进行共存性消息传送, 如图 6所示, 每个基站的 CTS需要在基站间 进行有效地分配。
现有技术中一种在共存性基站间分配 CTS的方法为:
CTS (包括 DCTS和 UCTS)仅在新启动基站(包括 IBS/0BS)的邻站发现过程中使用。 该方法可以应用在 IBS和 0BS之间有有线联络、 IBS和 0BS之间无有线联络的两钟情况 下。
当 IBS和 0BS之间有有线联络时, 如图 7所示, 在 SBS1的启动过程中, SBS1、终端
A和 TOS1之间的互动处理过程包括如下步骤:
1、 SBS1 启动并完成有线部分初始化, 获取与邻站进行有线连接需要用到的信息, 如本站 IP地址等, 选定无线信道,然后利用 DCTS向所有空口可达的终端(包括终端 A) 发送联络请求报文, 该联络请求报文中携带 SBS1的 IP地址等信息;
2、 终端 A截获该联络请求报文及其携带的附属信息后, 向其所属基站 TOS1发送共 存消息上报请求。 收到 DCTS上的上述联络请求报文的合格终端, 都会向其所属的 WBS1 发送共存消息上报请求;
3、 WBS1 接收到上述共存消息上报请求后, 为指定终端分配上报共存消息用的带宽 并指定其进行共存消息上报, 例如, 如果 A、 B两个终端都向 WBSl申请共存消息上报, 而 TOS1可以指定其中的 A终端上报其收到的共存性消息, 也可以让所有申请上报的终 端依序上报;
4、终端 A接收到 WBS1发送的上报指示后,将获取的 SBS1发送的联络请求报文上报 给 WBS1 ;
5、 WBS1接收到终端 A上报的联络请求报文后, 获取该联络请求报文上携带的有线 联络用信息 (如 IP地址等), 通过有线网络向 SBS1发送联络消息;
6、 SBS1从上述联络消息中获知其与邻站 TOS1的联络方法,然后通过有线网络向 WBS1 发送联络报文, TOS1从有线网络再次接收到 SBS1发送的联络报文后, SBS1与 WBS1间 已建立起有效的有线联络。其后双方就可以开始进行包括共存性协商在内的各种信息交 互。
当 IBS和 0BS之间无有线联络时, 如图 8所示, 在 SBS1的启动过程中, 0BS与 IBS 的联络需要 DCTS和 UCTS共同来完成, SBS1、 终端 A和 WBS1之间的互动处理过程包括 如下步骤:
1、 SBS1启动并完成有线部分初始化, 获取与邻站进行有线连接时需要用到的信息, 如本站 IP地址等,选定无线信道,然后利用 DCTS向所有空口可达的终端(包括终端 A) 发送联络请求报文, 该联络请求报文中包括 SBS1的 IP地址等信息;
2、 终端 A截获上述联络请求报文及其附属信息后, 向其所属基站 WBS1发送共存消 息上报请求。收到 DCTS上的上述联络请求报文的合格终端, 都会向其所属的 TOS1发送 共存消息上报请求;
3、 WBS1 接收到上述共存消息请求后, 为指定终端分配上报共存消息用的带宽并指 定其进行共存消息上报, 例如, 如果 A、 B两个终端都申请共存消息上报, 而 WBS1可以 指定其中的 A终端上报其收到的共存性消息, 也可以让所有申请上报的终端依序上报;
4、终端 A接收到 TOS1发送的上报指示后,将获取的 SBS1发送的联络请求报文上报 给 WBS1 ;
5、 WBS1根据接收到的信息进行判断后, 选择一个或多个上报终端作为 CLSS (共存 性联络终端), 通过普通的下行通道向该 CLSS发送联络消息, 并指示 CLSS利用其 UCTS 将该联络消息转发给 SBS1。
6、 CLSS收到上述联络消息后, 利用 UCTS向 SBS1发送 WBS1的联络消息;
7、 SBS1从上述联络消息中获知其邻站 WBS1的联络信息, 然后, 利用其 DCTS向上 述 WBS1指定的 CLSS发送共存性消息;
8、 CLSS将接收到 SBS1的共存性消息缓存并上报给 WBS1。其后 SBS1与 WBS1间已建 立起有效的无线联络。 其后双方就可以开始进行包括共存性协商在内的各种信息交互。
上述现有技术的方法的缺点为: 该方法将 CTS (包括 DCTS和 UCTS )用于基站初始化 过程的干扰邻站发现, CTS时隙仅被 IBS用于发送包含 IP地址的联络消息, 以及在基站 间无有线网络可达时 IBS与 0BS间的联络。 因此, 在该方法中, IBS只能利用 CTS收集 0BS下属终端的干扰信息。
发明内容
本发明的目的是提供一种分配共存性基站的共存性时隙的方法以及共存性基站, 从 而可以实现共同体内 IBS、 0BS无冲突地共用 CTS时隙, 广播自己的联络信息。
本发明的目的是通过以下技术方案实现的:
一种共存性基站分配共存性时隙的方法, 包括: 将共存性基站的共存性时隙 CTS分配为: 用于初始化基站的共存专用时间片 ICTS和 用于工作基站的共存专用时间片 0CTS;
所述 ICTS由开始启动的基站 IBS占用, 所述 0CTS由正在运行的基站 0BS占用。 所述 ICTS按照设定的 ICTS周期在 CTS中出现, 该 ICTS周期和起始位置在设定的地区 和区域中统一, 并被所有该地区和区域的共存性基站所共知。
所述 CTS中除了 ICTS外的其它时隙为所述 0CTS, 分配给每个 0BS使用的 0CTS按照设 定的 0BS轮循周期在 CTS中出现。
所述 0BS轮循周期在设定的地区和区域中统一, 并被所有所述地区和区域的共存性 基站所共知;
所述 0BS轮循周期在位置共同体内统一约定, 并被所有所述位置共同体内的共存性 基站所共知;
所述 0BS轮循周期在同道共同体内统一约定, 并被所有所述同道共同体内的共存性 基站所共知。
所述的 0BS轮循周期为 ICTS周期的整数倍。
所述 ICTS由 IBS占用具体包括:
所述 IBS成为 0BS之前根据预先设定的 ICTS周期及位置和共知的 CTS的参数信息, 获 得在 CTS中分配给其的 ICTS, 并在初始化过程中占用所述 ICTS, 在 IBS成为 0BS后的正常 工作阶段中不再占用该 ICTS。
所述 0CTS由 0BS占用具体包括- 如果 0BS已经获得了可用空闲频率, 则该 0BS占用所述 0BS轮循周期内任一个可用的
0CTS; 否则, 所述 0BS根据预先设定的 0CTS占用规则, 获取该 0BS在所述 0BS轮循周期内 中占用 0CTS的位置, 并占用相应的 0CTS。
所述 0BS占用相应的 0CTS具体包括- 当所述 0BS轮循周期内的可用 0CTS在各 0BS及其邻站间进行分配, 构成邻站的两个基 站不能占用同一个 0CTS, 不是邻站的两个基站可以占用相同的 0CTS时, 所述 0BS占用所 述 0BS轮循周期中没有被其邻站占用的 0CTS时隙。
所述 0BS占用相应的 0CTS还包括:
所述同道共同体的 0BS轮循周期内的可用 0CTS数大于所述同道共同体的主用子帧个 数, 所述 0BS根据该基站及其邻站的主用字帧的排列顺序获得包括该基站及其邻站在所 述 0BS轮循周期中的占用 0CTS的位置。 所述的主用子帧的排列顺序在共存性基站与邻站完成共存协商后获得, 或者在 0BS 发现同信道干扰邻站的信息发生变化后, 与邻站重新协商后获得。
所述 0BS占用相应的 0CTS还包括:
当 0BS加入同道共同体后, 该同道共同体内原先约定的 0BS轮循周期内的可用 0CTS数 小于该同道共同体的主用帧个数, 则该同道共同体增大所述 0BS轮循周期的长度。
所述 0BS占用相应的 0CTS还包括:
当 0BS引起不止一个的同道共同体合并, 则合并后的同道共同体的 0BS轮循周期选择 合并前的所有同道共同体中最大的 0BS轮循周期, 当该最大的 0BS轮循周期内的可用 0CTS 数小于合并后的同道共同体的主用帧个数, 则增大该最大的 0BS轮循周期的长度。
所述 0BS占用相应的 0CTS具体包括:
当所述 0BS轮循周期内的可用 0CTS数大于所述同道共同体的基站个数, 所述 0BS轮循 周期内的可用 0CTS在同道共同体中所有基站统一分配, 每个基站占用不同的 0CTS时, 所 述 0BS占用所述 0BS轮循周期中没有被同道共同体中其它基站占用的 0CTS时隙。
所述 0BS占用相应的 0CTS具体包括:
当所述 0BS轮循周期内的可用 0CTS数大于所述同道共同体中的最大的交叠基站个数, 所述 0BS轮循周期内的可用 0CTS在 0BS及其周围有交叠覆盖区域的基站间进行分配,有交 叠覆盖区域的两个基站不能占用同一个 0CTS,彼此没有交叠覆盖区域的两个基站可以占 用同一个 0CTS时,所述 0BS占用所述 0BS轮循周期中没有被和其有交叠覆盖区域的基站占 用的 0CTS时隙。
所述 0BS占用相应的 0CTS具体包括:
在 0BS中维护记录所述 0BS轮循周期内的各个 0CTS分别被各个 0BS占用的映射表, 0BS 根据该映射表选择并占用相应的 0CTS。
一种共存性基站, 包括:
ICTS时隙处理模块: 用于在 IBS启动时, 根据预先设定的 ICTS占用规则, 占用在 CTS中分配给其的 ICTS时隙;
0CTS时隙处理模块:用于在 IBS启动后,完成共存性初始化协商后,根据统一的 0CTS 占用规则, 占用在 CTS中分配给其的 0CTS时隙。
. 所述 ICTS时隙处理模块具体包括:
ICTS时隙占用模块: 用于在 IBS启动后成为 0BS之前, 根据预先设定的 ICTS周期 及位置和共知的 CTS的参数信息,获得在 CTS中分配给其的 ICTS,并在初始化过程中占 用所述 ICTS, 在 IBS成为 OBS后的正常工作阶段中不再占用该 ICTS;
ICTS时隙应用模块:用于通过所述 ICTS时隙向其它基站发送包含 IP地址的联络消 息; 以及在基站间无有线网络可达时, 通过所述 ICTS时隙发送 IBS与 0BS间的联络消 息。
所述 0CTS时隙处理模块具体包括:
0CTS时隙占用模块:用于在 IBS启动完成,成为 0BS后,完成共存性初始化协商后, 根据预先设定的 0CTS占用规则,获取所述 0BS在所述 0BS轮循周期内中占用 0CTS的位 置, 并占用相应的 0CTS;
0CTS时隙应用模块: 用于利用所述占用的 0CTS时隙广播联络信息, 完成 0BS间的 定期的干扰检测过程, 根据检测到的干扰信息变化进行后续 0BS间的协商。
由上述本发明提供的技术方案可以看出,本发明通过将一定比例的 CTS划分为 ICTS (用于初始化基站的共存专用时间片)分配给 IBS占用,其佘的 CTS划分为 0CTS (用于 工作基站的共存专用时间片), 公平地分配给所有共存性 0BS 占用, 从而可以实现同道 共同体 /位置共同体内 IBS、 OBS无冲突地共用 CTS时隙, 广播自己的联络信息。
本发明在保证了 IBS利用 ICTS时隙完成初始化邻站的干扰发现过程的同时, 0BS也 能利用 0CTS时隙完成 0BS间的定期的千扰检测过程, 0BS可以检测到由于下属终端位置 移动(从一个受干扰区域到另一个受干扰区域)导致的干扰信息变化; 可以检测到由于 基站位置变化或拆除基站带来的已工作终端受干扰信息的变化。可以完成在 IBS启动后 才加入 0BS的新工作终端的受干扰信息搜集。 0BS可以根据检测到的干扰信息变化, 进 行后续 0BS间的协商。
附图简要说明
图 1为邻站概念示意图;
图 2为位置共同体组网示意图;
图 3为同道共同体组网示意图;
图 4为 BS1、 BS2和 BS3构成一个同道共同体的示意图;
图 5为 BS1、 BS2和 BS3三个基站分别拥有一个主用帧的示意图;
图 6为在基站间有效地分配 CTS的示意图;
图 7为当 IBS和 0BS之间有有线联络时, 在 SBS1的启动过程中, SBS1、 终端 A和
WBS1之间的互动处理过程流程图; 图 8为当 IBS和 0BS之间无有线联络时, 在 SBS1的启动过程中, SBS1、 终端 A和 WBS1之间的互动处理过程流程图;
图 9为本发明所述方法的实施例的处理流程图;
图 10为本发明所述实施例的组网示意图;
图 11为本发明所述实施例中各个基站获得对应的 Master Subframe示意图; 图 12为本发明所述实施例中同道共同体拓扑示意图;
图 13为本发明所述共存性基站的实施例的结构示意图。 实施本发明的方式
本发明提供了一种分配共存性基站的共存性时隙的方法以及共存性基站。 本发明的 主要技术特点为: 在共同体中, 将一定比例的 CTS分配给 IBS占用, 其余的 CTS公平分 配给所有共存性 0BS占用。
下面结合附图来详细描述本发明,本发明所述方法的实施例的处理流程如图 9所示, 包括如下步骤:
步骤 9-1、 将共存性基站的 CTS划分为 ICTS和 0CTS。
本发明在 CTS定义的基础上, 针对初始化基站和工作基站将 CTS分为两类: ICTS和 OCTS c
为了使初始化基站更方便、 可靠地找到可用的 CTS时隙, 专门将 CTS按照一定比例 划分为 ICTS, 该 ICTS专门分配给 IBS使用。 上述 ICTS的相关信息包括:
ICTS周期 (ICTS Cycle) : 表示 TTS周期性占用 CTS的周期时间或该时间对应的
CTS个数或该时间对应的物理帧个数。该 ICTS周期和起始位置在设定的地区和区域中统 一, 并被所有该地区和区域的共存性基站所共知。
上述 CTS及 ICTS参数在区域内的设定的地区和区域 /位置共同体 /同道共同体中必须 统一约定, 每个新启动基站可根据共知的 CTS及 ICTS参数获得其用于发送初始化基站 广播消息的 ICTS的确切时间。
比如, 可以约定 CTS在每 2N个 FN中出现一个, 即 NCTSintv=2N, FN被 NCTSintv 整除余 NCTSstart的帧设置有 CTS。可以用 CTSN表示每个 CTS的编号, 当 CTSN被 ICTS 周期整除的时候该 CTS就作为 ICTS,也可以简单设置为 ICTS在每 2N个 CTS中出现一个。
除了 ICTS之外的 CTS都划分为 0CTS, 0CTS在设定的地区和区域 /位置共同体 /同道 共同体内被各个 0BS按照约定规则分别占用。 OCTS的相关信息包括:
1、 邻站索引号 (Neighbor Index), 即各个邻站信息对应的索引号, 各个邻站信息 和对应的邻站索引号可以用如下的表格来表示。
表 1 : 邻站信息和对应的邻站索引号示意表
Figure imgf000011_0001
2、 OBS轮循周期 (OBS RR Cycle): 该参数为一个 OBS组的轮循周期, 表示 OBS周 期性占用 CTS的周期时间或该时间对应的 CTS个数或该时间对应的物理帧个数或该时间 对应的 ICTS周期的个数。 在轮循组里的 0BS按该周期选择占用属于自己的 0CTS。 如为 方便维护, 可选择 0BS轮循周期为 ICTS周期整数倍, 计算粒度可以以 CTSN计算, 也可 以以 ICTS周期计算。
上述 0BS轮循周期可以在设定的地区和区域中统一, 并被所有该地区和区域的共存 性基站所共知。
上述 0BS轮循周期参数可以在同道共同体内部统一约定, 并被所有同道共同体内的 共存性基站所共知, 并且可以在同道共同体内部基站之间协商修改。
上述 0BS轮循周期参数可以在位置共同体内部统一约定, 并被所有位置共同体内的 共存性基站所共知, 并且可以在位置共同体内部基站之间协商修改。
3、 OBS RR Map:该参数为各基站占用 0BS轮循周期内的 0CTS的映射地图。假设 ICTS 周期为 4, 0BS轮循周期为两个 ICTS周期, 本基站有 4个 0BS邻站, 即同道共同体内至 少有 5个 Master Subframe, 则 OBS RR Map可以用如下述的表 2来表示:
表 2、 OBS RR Map示意表
0CTS 0 1 2 3 4 5 6 7 位置标
占用 IBS BS1 BS4 BS3 IBS BS2 本 空 基站 预 预 站 闲 留 上述表 2反映了各基站在 0BS轮循周期中占用 0CTS资源的位置,可以用不同的 0CTS 位置标识号来标识,每个 0CTS位置指向一组以 0BS轮循周期为周期出现的 CTS,除了预 留给 IBS的以外, 可作为资源分配给一个 0BS使用。 表中一个 0BS轮循周期有 8个 CTS 时隙, 其中两个为 ICTS, 预留给 IBS使用, 其它 6个为 0CTS, 分配给 0BS使用, 因为 该基站仅有 4个邻站, 所以只占用了 5个 CTS时隙, 有 1个 CTS时隙空闲。
每个 0BS的数据库中都维护着上述 0CTS相关信息。
步骤 9-2、 IBS在启动时获得预留给自己的 ICTS时隙,在完成共存性初始化协商后, 根据统一的 0CTS占用规则, 获得分配给自己的 0CTS时隙。
以同道共同体内为例,同道共同体内给各基站分配占用 0BS轮循周期中的 0CTS的规 则可以有以下三种-
1、 0BS轮循周期中的可用 0CTS在各工作基站及其邻站间进行分配, 构成邻站的两 个基站不能占用同一个 0CTS, 每个基站只要维护自己及邻站的占用位置;
, 2、 0BS轮循周期中的可用 0CTS在同道共同体中所有基站统一分配, 每个基站占用 不同的 0CTS, 每个基站要维护同道共同体中所有基站的占用位置;
3、 0BS轮循周期中的可用 0CTS在基站及其周围有交叠覆盖区域的基站间进行分配, 有交叠覆盖区域的两个基站不能占用同一个 0CTS,每个基站要维护自己及其周围有交叠 覆盖区域的基站的占用位置。
在共存性基站系统中, IBS在启动时, 在进行上述基站初始化过程的干扰邻站发现 时, 首先获取上述 0BS轮循周期中给该 IBS预留的 ICTS时隙, 用于发送包含 IP地址的 联络消息, 以及在基站间无有线网络可达时, 发送 IBS与 0BS间的联络消息。
IBS在启动后, 在完成共存性初始化协商后变成 0BS。
此时, 如果 0BS已经获得了一个可用空闲频率, 则该 0BS可在上述 0BS轮循周期内 选择除了预留给 ICTS以外的任一个 CTS, 作为该 0BS的 0CTS。
如果 0BS没有获得一个可用空闲频率, 则该 0BS通过与其他邻站协商获得共享信道 后, 根据上述三种基站占用 0CTS的规则, 通过如下处理选择相应的 0CTS。
1、 针对上述规则 1, 0CTS标识在基站及其邻站间进行分配的情况- 当 IBS通过与其他邻站协商共享信道获得一个 Master Subframe后, IBS可以占用
0BS轮循周期中除了已被其邻站占用的 0CTS时隙位置,如为了简便和保持一致性,可以 根据基站及其邻站的 Subframe的排列顺序获得包括本基站及其邻站在 OBS RR Map中的 占用 0CTS的位置。
比如, 如图 10所示, 新基站 BS5 加入已经有 BS1、 BS2、 BS3 和 BS4个基站的 CC- Community, BS1至 BS5各基站经过协商后, 获得对应的 Master Subframe如图 11 所示。 假设 ICTS周期为 4, 0BS轮循周期为 8, 则根据 BS间 Master Subframe的顺序, 基站 BS5对应的 OBS RR Maps如下述表 3所示。
表 3、 基站 BS5的 OBS RR Maps示意表
Figure imgf000013_0001
按照该规则选择 0CTS时, 由于同一个 CC- Community中并不一定总是基站间两两彼 此构成邻站, 所以该映射图内容在同一个 CC- Community中的各个基站可能不相同的, 即同一个 0CTS可能被两个或多个彼此不构成邻站的基站占用。但同个 CC- Community内 部 0BS轮循周期是统一的。
0BS轮循周期 中的 0CTS个数必须大于 Master Subframe个数, 如同道共同体内新 增加同道基站导致 Master Subframe增加, 而原先同道共同体内部统一的 0BS轮循周期 中的 0CTS个数小于或等于 Master Subframe个数, 则新增基站需要与其他基站协商更 改 0BS轮循周期参数。
如果由于新基站的加入, 引起了两个以上 CC- Community 的合并, 而不同的 CC- Community的 0BS轮循周期参数可能并不一样, 则合并后的 CC- Co醒 unity的 0BS轮 循周期参数应协商选择最大的 0BS轮循周期参数。 当该最大的 0BS轮循周期内的可用 0CTS数小于合并后的同道共同体的主用帧个数, 则增大该最大的 0BS轮循周期的长度。
按照该规则选择 0CTS时, 可以获得当前 0CTS的最大利用率, 但可能存在两个不是 邻站但具有交叠覆盖区域的基站使用相同的 0CTS的情况, 且当两个基站的新终端在这 个区域试图接入某个基站时, 会因为两个基站使用相同的 0CTS而导致 站间无法进行 干扰获知及后续协商, 新终端无法实现接入。
2、 针对上述规则 2, 0BS轮循周期中的 0CTS在基站及其周围有交叠覆盖区域的基 站间进行分配的情况。
以图 12所示的同道共同体拓扑为例:在新基站 BS5启动前已有 4个基站,其中 BS2、 BS3为新基站 BS5的邻站, BS4和 BS5有交叠覆盖区域但不构成邻站。根据该准则, BS5 不能选择与有交叠覆盖区域的基站相同的 0CTS。
假设 BS1、 BS2、 BS3和 BS4已分别占用第 1、 2、 3、 1号 0CTS位置 (BS4和 BS1无 交叠区域可以共用), 则新基站 BS5必须选用不同于 BS2、 BS3、 BS4占用的 OCTS, 如表 4, BS5按照空闲顺序选择占用了标识号为 5的 0CTS位置。
表 4、 基站 BS5的 OBS RR Maps示意表
Figure imgf000014_0001
按照该规则选择 0CTS时, 0BS轮循周期内可分配给工作基站的 0CTS数必须大于该 同道共同体中的最大的交叠基站个数,不存在两个不是邻站但具有交叠覆盖区域的基站 使用相同的 0CTS的情况。 当该两个基站的新终端在两个基站的交叠覆盖区域内试图接 入某个基站时, 也就不会因为两个基站使用相同的 0CTS而导致基站间无法进行干扰获 知及后续协商, 该新区域的新终端无法实现接入。
3、针对上述规则 3, 0BS轮循周期中的 0CTS在同道共同体中所有基站统一分配的情 况:
同样以图 12所示的同道共同体拓扑为例:在新基站 BS5启动前已有 4个基站,并巳 选用如下表 5的前 4个 0CTS位置, BS5只能占用的第 5个 0CTS位置, 虽然 BS5的邻站 只有 BS3、 BS4,但按照分配规则, BS5不能与同道共同体中的 BS1、 BS2占用相同的 0CTS。
表 5: 基站 BS5的 OBS RR Maps示意表
0CTS 0 1 2 3 4 5 6 7 位置标
识号
占用 IBS BS1 BS2 BS3 IBS BS4 本 空
Figure imgf000015_0001
按照该规则选择 0CTS时, 0BS轮循周期内可分配给工作基站的 0CTS数必须大于该 同道共同体的基站个数。虽然 0CTS的利用率低, 但不存在两个基站占用同一个 0CTS的 情况, 同道共同体内可能存在的两个使用相同的 0CTS、不是邻站但具有交叠覆盖区域的 基站在交叠覆盖区域接入新终端的问题可以得到解决。
0BS可以利用获得的 0CTS时隙广播自己的联络信息,完成 0BS间的定期的干扰检测 过程, 根据检测到的干扰信息变化进行后续 0BS间的协商。
本发明提出的共存性基站的实施例的结构示意图如图 13所示, 包括如下模块:
ICTS时隙处理模块: 用于在 IBS启动时, 根据预先设定的 ICTS占用规则, 获取在 CTS中分配给自己的 ICTS时隙;利用获取的 ICTS时隙向其它基站发送包含 IP地址的联 络消息, 以及在基站间无有线网络可达时, 通过所述 ICTS时隙发送 IBS与 0BS间的联 络消息。 包括: ICTS时隙占用模块、 ICTS时隙应用模块。
其中, ICTS时隙占用模块:用于在 IBS启动后成为 0BS之前,根据预先设定的 ICTS 周期及位置和共知的 CTS的参数信息,获得在 CTS中分配给其的 ICTS,并在初始化过程 中占用所述 ICTS, 在 IBS成为 0BS后的正常工作阶段中不再占用该 ICTS。
其中, ICTS时隙应用模块: 用于通过所述获取的 ICTS时隙向其它基站发送包含 IP 地址的联络消息; 以及在基站间无有线网络可达时,通过所述 ICTS时隙发送 IBS与 0BS 间的联络消息。
0CTS时隙处理模块:用于在 IBS启动后,完成共存性初始化协商后,根据统一的 0CTS 占用规则, 获得在 CTS中分配给自己的 0CTS时隙。利用获取的 0CTS时隙广播自己的联 络信息, 完成 0BS间的定期的干扰检测过程, 根据检测到的干扰信息变化进行后续 0BS 间的协商。 包括: 0CTS时隙占用模块、 0CTS时隙应用模块。
其中, 0CTS时隙占用模块: 用于在 IBS启动完成, 成为 0BS后, 完成共存性初始化 协商后, 根据预先设定的 0CTS占用规则, 获取所述 0BS在所述 0BS轮循周期内中占用 0CTS的位置, 并占用相应的 0CTS。
其中, 0CTS时隙应用模块: 用于利用获取的 0CTS时隙广播自己的联络信息, 完成 0BS间的定期的干扰检测过程, 根据检测到的干扰信息变化进行后续 0BS间的协商。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保 护范围为准。

Claims

权利要求
1、 一种共存性基站分配共存性时隙的方法, 其特征在于, 包括:
将共存性基站的共存性时隙 CTS分配为: 用于初始化基站的共存专用时间片 ICTS和 用于工作基站的共存专用时间片 0CTS;
所述 ICTS由开始启动的基站 IBS占用, 所述 0CTS由正在运行的基站 0BS占用。
2、 根据权利要求 1所述的方法, 其特征在于- 所述 ICTS按照设定的 ICTS周期在 CTS中出现, 该 ICTS周期和起始位置在设定的地区 和区域中统一, 并被所有该地区和区域的共存性基站所共知。
3、 根据权利要求 2所述的方法, 其特征在于:
所述 CTS中除了 ICTS外的其它时隙为所述 0CTS, 分配给每个 0BS使用的 0CTS按照设 定的 0BS轮循周期在 CTS中出现。
4、 根据权利要求 3所述的方法, 其特征在于:
所述 0BS轮循周期在设定的地区和区域中统一, 并被所有所述地区和区域的共存性 基站所共知;
所述 0BS轮循周期在位置共同体内统一约定, 并被所有所述位置共同体内的共存性 基站所共知;
所述 0BS轮循周期在同道共同体内统一约定, 并被所有所述同道共同体内的共存性 基站所共知。
5、 根据权利要求 3所述的方法, 其特征在于, 所述的 0BS轮循周期为 ICTS周期的整 数倍。
.
6、 根据权利要求 1至 5任一项所述的方法, 其特征在于, 所述 ICTS由 IBS占用具体 包括:
所述 IBS成为 0BS之前根据预先设定的 ICTS周期及位置和共知的 CTS的参数信息, 获 得在 CTS中分配给其的 ICTS, 并在初始化过程中占用所述 ICTS, 在 IBS成为 OBS后的正常 工作阶段中不再占用该 ICTS。
7、 根据权利要求 1至 5任一项所述的方法, 其特征在于, 所述 0CTS由 0BS占用具体 包括- 如果 0BS已经获得了可用空闲频率, 则该 0BS占用所述 0BS轮循周期内任一个可用的 OCTS; 否则, 所述 0BS根据预先设定的 0CTS占用规则, 获取该 0BS在所述 0BS轮循周期内 中占用 0CTS的位置, 并占用相应的 0CTS。
8、 根据权利要求 7所述的方法, 其特征在于, 所述 0BS占用相应的 0CTS具体包括- 当所述 0BS轮循周期内的可用 0CTS在各 0BS及其邻站间进行分配, 构成邻站的两个基 站不能占用同一个 0CTS, 不是邻站的两个基站可以占用相同的 OCTS时, 所述 0BS占用所 述 0BS轮循周期中没有被其邻站占用的 0CTS时隙。
9、 根据权利要求 8所述的方法, 其特征在于, 所述 0BS占用相应的 0CTS还包括: 所述同道共同体的 0BS轮循周期内的可用 0CTS数大于所述同道共同体的主用子帧个 数, 所述 0BS根据该基站及其邻站的主用字帧的排列顺序获得包括该基站及其邻站在所 述 0BS轮循周期中的占用 0CTS的位置。
10、根据权利要求 9所述的方法,其特征在于, 所述的主用子帧的排列顺序在共存性 基站与邻站完成共存协商后获得, 或者在 0BS发现同信道干扰邻站的信息发生变化后, 与邻站重新协商后获得。 '
11、 根据权利要求 9所述的方法, 其特征在于, 所述 0BS占用相应的 0CTS还包括: 当 0BS加入同道共同体后, 该同道共同体内原先约定的 0BS轮循周期内的可用 0CTS数 小于该同道共同体的主用帧个数, 则该同道共同体增大所述 0BS轮循周期的长度。
12、 根据权利要求 9所述的方法, 其特征在于, 所述 0BS占用相应的 0CTS还包括: 当 0BS引起不止一个的同道共同体合并, 则合并后的同道共同体的 0BS轮循周期选择 合并前的所有同道共同体中最大的 0BS轮循周期, 当该最大的 0BS轮循周期内的可用 0CTS 数小于合并后的同道共同体的主用帧个数, 则增大该最大的 0BS轮循周期的长度。
13、 根据权利要求 7所述的方法, 其特征在于, 所述 0BS占用相应的 0CTS具体包括: 当所述 0BS轮循周期内的可用 0CTS数大于所述同道共同体 基站个数, 所述 0BS轮循 周期内的可用 0CTS在同道共同体中所有基站统一分配, 每个基站占用不同的 0CTS时, 所 述 0BS占用所述 0BS轮循周期中没有被同道共同体中其它基站占用的 0CTS时隙。
14、 根据权利要求 7所述的方法, 其特征在于, 所述 0BS占用相应的 0CTS具体包括- 当所述 0BS轮循周期内的可用 0CTS数大于所述同道共同体中的最大的交叠基站个数, 所述 0BS轮循周期内的可用 0CTS在 0BS及其周围有交叠覆盖区域的基站间进行分配,有交 叠覆盖区域的两个基站不能占用同一个 0CTS,彼此没有交叠覆盖区域的两个基站可以占 用同一个 0CTS时,所述 0BS占用所述 0BS轮循周期中没有被和其有交叠覆盖区域的基站占 用的 0CTS时隙。
15、 根据权利要求 7所述的方法, 其特征在于, 所述 0BS占用相应的 0CTS具体包括- 在 OBS中维护记录所述 OBS轮循周期内的各个 0CTS分别被各个 0BS占用的映射表, 0BS 根据该映射表选择并占用相应的 0CTS。
16、 一种共存性基站, 其特征在于, 包括:
ICTS时隙处理模块: 用于在 IBS启动时, 根据预先设定的 ICTS占用规则, 占用在 CTS中分配给其的 ICTS时隙;
0CTS时隙处理模块:用于在 IBS启动后,完成共存性初始化协商后,根据统一的 0CTS 占用规则, 占用在 CTS中分配给其的 0CTS时隙。
17、 根据权利要求 16所述的共存性基站, 其特征在于, 所述 ICTS时隙处理模块具 体包括:
ICTS时隙占用模块: 用于在 IBS启动后成为 0BS之前, 根据预先设定的 ICTS周期 及位置和共知的 CTS的参数信息,获得在 CTS中分配给其的 ICTS,并在初始化过程中占 用所述 ICTS, 在 IBS成为 0BS后的正常工作阶段中不再占用该 ICTS;
ICTS时隙应用模块:用于通过所述 ICTS时隙向其它基站发送包含 IP地址的联络消 息; 以及在基站间无有线网络可达时, 通过所述 ICTS时隙发送 IBS与 0BS间的联络消 息。
18、根据权利要求 16或 17所述的共存性基站,其特征在于,所述 0CTS时隙处理模 块具体包括-
0CTS时隙占用模块:用于在 IBS启动完成,成为 0BS后,完成共存性初始化协商后, 根据预先设定的 0CTS占用规则,获取所述 0BS在所述 0BS轮循周期内中占用 0CTS的位 置, 并占用相应的 0CTS;
OCTS时隙应用模块: 用于利用所述占用的 0CTS时隙广播联络信息, 完成 0BS间的 定期的干扰检测过程, 根据检测到的干扰信息变化进行后续 0BS间的协商。
PCT/CN2006/003142 2006-01-09 2006-11-22 Procédé et station de base à coexistence pour l'affectation du créneau de coexistence de station de base à coexistence WO2007079644A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008548915A JP4809442B2 (ja) 2006-01-09 2006-11-22 共存的基地局の共存的タイムスロットの割当方法および共存的基地局

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200610000714.8 2006-01-09
CN2006100007148A CN101001437B (zh) 2006-01-09 2006-01-09 共存性基站分配共存性时隙的方法

Publications (1)

Publication Number Publication Date
WO2007079644A1 true WO2007079644A1 (fr) 2007-07-19

Family

ID=38255974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003142 WO2007079644A1 (fr) 2006-01-09 2006-11-22 Procédé et station de base à coexistence pour l'affectation du créneau de coexistence de station de base à coexistence

Country Status (3)

Country Link
JP (1) JP4809442B2 (zh)
CN (1) CN101001437B (zh)
WO (1) WO2007079644A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514108A (ja) * 2008-03-11 2011-04-28 インテル・コーポレーション ネットワーク間干渉の緩和

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662827A (zh) * 2008-08-25 2010-03-03 三星电子株式会社 指定保护工作时隙减少系统间干扰的方法
DE102008052718A1 (de) * 2008-10-22 2010-04-29 Rohde & Schwarz Gmbh & Co. Kg Selbstorganisierendes Kommunikationsnetzwerk und Verfahren zu dessen Bereich
CN102696255B (zh) * 2010-01-07 2014-08-06 上海贝尔股份有限公司 在不同无线通信系统中进行频谱共享的方法和设备
CN108347325B (zh) 2017-01-25 2021-08-20 华为技术有限公司 一种信息传输方法及装置
CN111669830B (zh) * 2020-05-19 2023-07-25 上海芯袖微电子科技有限公司 一种wlan通信方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130886A (en) * 1995-10-26 2000-10-10 Omnipoint Corporation Coexisting communication systems
CN1391414A (zh) * 2001-06-11 2003-01-15 深圳市中兴通讯股份有限公司上海第二研究所 分布式个人手持通信系统基站系统空中信道选择方法和装置
WO2004028062A1 (en) * 2002-09-20 2004-04-01 Philips Intellectual Property & Standards Gmbh Resource reservation in transmission networks

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05206933A (ja) * 1992-01-27 1993-08-13 Fujitsu Ltd 無線チャネル割り当て方式
JPH08237723A (ja) * 1995-02-27 1996-09-13 Matsushita Electric Ind Co Ltd コードレス電話装置
JP3707952B2 (ja) * 1998-04-09 2005-10-19 株式会社東芝 無線通信システムおよびその制御方法
JP2000134666A (ja) * 1998-10-28 2000-05-12 Fuji Electric Co Ltd 時分割多重方式の無線通信システム
JP2000308123A (ja) * 1999-04-23 2000-11-02 Ntt Docomo Inc 移動通信システムおよび移動通信システムにおける同期方法
JP2002152813A (ja) * 2000-11-09 2002-05-24 Ntt Docomo Inc 移動通信システムにおけるタイムスロット割り当て方法および移動通信システムにおけるタイムスロット割り当て装置
JP2004048356A (ja) * 2002-07-11 2004-02-12 Sony Corp アクセスポイント調停装置及びそれを用いたデータ通信システム
JP4190927B2 (ja) * 2003-03-27 2008-12-03 京セラ株式会社 基地局装置および端末装置ならびにそれらを利用した通信システム
JP4680046B2 (ja) * 2005-12-02 2011-05-11 富士通株式会社 動的チャネル割当方法及び動的チャネル割当装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130886A (en) * 1995-10-26 2000-10-10 Omnipoint Corporation Coexisting communication systems
CN1391414A (zh) * 2001-06-11 2003-01-15 深圳市中兴通讯股份有限公司上海第二研究所 分布式个人手持通信系统基站系统空中信道选择方法和装置
WO2004028062A1 (en) * 2002-09-20 2004-04-01 Philips Intellectual Property & Standards Gmbh Resource reservation in transmission networks

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011514108A (ja) * 2008-03-11 2011-04-28 インテル・コーポレーション ネットワーク間干渉の緩和
US8639189B2 (en) 2008-03-11 2014-01-28 Intel Corporation Mitigation of internetwork interference

Also Published As

Publication number Publication date
JP4809442B2 (ja) 2011-11-09
JP2009522882A (ja) 2009-06-11
CN101001437A (zh) 2007-07-18
CN101001437B (zh) 2011-03-09

Similar Documents

Publication Publication Date Title
US8094610B2 (en) Dynamic cellular cognitive system
JP5149994B2 (ja) 移動電子装置からの共同設置共存(co−locatedcoexistence、clc)要求に応答する方法とマルチ無線共存を制御することができる通信装置
US9241332B2 (en) System and method for managing resources in a communication system
KR101424412B1 (ko) 공존 프로토콜 메시지를 구성하는 방법
TWI433577B (zh) 用於異質無線網路之多重無線射頻協調的設備及方法
US20100195590A1 (en) Method and apparatus for radio spectrum sensing or monitoring
WO2007025483A2 (fr) Procede et systeme de coexistence d'information sur le statut d'interference bs d'un terminal
Gao et al. A taxonomy of coexistence mechanisms for heterogeneous cognitive radio networks operating in TV white spaces
US11863998B1 (en) Capacity sharing between wireless systems
JP2014502438A (ja) 共存システムにおける情報取得方法及びそれを利用した装置
US20130051279A1 (en) Management device for serving network or device and resource management method thereof
KR101788062B1 (ko) 네트워크 또는 디바이스를 서비스하는 관리기기의 서비스 전환 방법
JP5323847B2 (ja) 通信システムで無線チャンネル資源を共有する方法
WO2007082440A1 (fr) Procédé et système permettant de sélection et d'attribution automatiques de ressources
WO2007079644A1 (fr) Procédé et station de base à coexistence pour l'affectation du créneau de coexistence de station de base à coexistence
CN111328463B (zh) 一种通信方法及装置
US20170359819A1 (en) Neighborhood Awareness Network and Multi-Channel Operation over OFDMA
WO2008089678A1 (fr) Procédé de détection de station voisine et de station d'interférence et équipement de détection de station
WO2016045568A1 (zh) 一种d2d资源分配方法及装置
WO2016026112A1 (zh) 一种频率复用方法及相关装置
KR100678942B1 (ko) 무선 네트워크 장치 및 이를 이용한 통신 방법
US20140162675A1 (en) Method and system for data communication in hierarchically structured network
Junell et al. Coexistence for unlicensed spectrum users in white spaces
WO2007003137A1 (fr) Méthode pour trouver une station adjacente et établir à l’initialisation la connexion entre la station adjacente et la station de base de coexistence
KR101268759B1 (ko) 무선 분산 비코닝 시스템에서, 의사 중앙 제어형 비코닝 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008548915

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06828177

Country of ref document: EP

Kind code of ref document: A1