WO2007078007A1 - Structure de nanohorn de carbone, composition permettant de réguler la libération d'une substance organique contenue dans celle-ci, et méthode pour libération régulée - Google Patents

Structure de nanohorn de carbone, composition permettant de réguler la libération d'une substance organique contenue dans celle-ci, et méthode pour libération régulée Download PDF

Info

Publication number
WO2007078007A1
WO2007078007A1 PCT/JP2007/050080 JP2007050080W WO2007078007A1 WO 2007078007 A1 WO2007078007 A1 WO 2007078007A1 JP 2007050080 W JP2007050080 W JP 2007050080W WO 2007078007 A1 WO2007078007 A1 WO 2007078007A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanohorn
cddp
cation
release
nhox
Prior art date
Application number
PCT/JP2007/050080
Other languages
English (en)
Japanese (ja)
Inventor
Sumio Iijima
Masako Yudasaka
Kumiko Ajima
Original Assignee
Japan Science And Technology Agency
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Nec Corporation filed Critical Japan Science And Technology Agency
Publication of WO2007078007A1 publication Critical patent/WO2007078007A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0092Hollow drug-filled fibres, tubes of the core-shell type, coated fibres, coated rods, microtubules or nanotubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/143Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls

Definitions

  • Carbon nanohorn structure composition capable of controlling release of organic substances therein, and method thereof
  • the present invention makes it possible to control the release of endogenous organic substances, a new carbon nanohorn structure that is expected to be useful as a DDS drug or its carrier, a preparation method thereof, and the release of intrinsic organic substances.
  • the present invention relates to a composition and a control method.
  • cisplatin can be selectively delivered to the tumor site by increasing permeability and retention effect using a polymer carrier system, and has already been used in vivo using a cisbratin monopolymer system. Tumor growth is effectively suppressed, and in addition, studies of delivery systems using ribosomes, gelatin hydrogels, polymer micelles, etc. have shown that the nephrotoxic side effects of cisbratin are reduced in rats and mice.
  • CNTs carbon nanotubes
  • they are on a nanometer scale, they are well suited for transporting biomolecules such as DNA proteins. Since they are chemically and mechanically stable, they can be transported without degradation in the human body. Modifying CNTs is an answer that increases their biocompatibility by imparting targeting ability to them. Furthermore, the nanospace inside the C NTs is suitable for drug encapsulation.
  • Non-patent Document 1 a non-nanohorn
  • Non-patent Document 4 the number and size of holes can be changed by adjusting the heat treatment conditions (Non-patent Document 4), and the incorporated space has sufficient freedom of movement because of the large internal space. There are things. Open NHs are therefore well suited for drug uptake and controlled release purposes.
  • the control medium is a carbon nanohorn structure-containing composition that enables a cation or hydrogen ion exchange reaction with a cation bonded to an oxygen-containing functional group.
  • Figure 2 shows TG curves for (a) DMF-treated NHox, (b) DMF-treated NHh, (c) DMF-treated CDDP powder, (d) CDDP @ NHox, (e) CDDP @ NHh (Thin line) and DTG curve (thick line).
  • FIG. 6 shows the numerical ratio of Na: P: Cl: K as a percentage.
  • the pie charts are for (a) PBS-NHox, (b) PBS-NHox, (c) PBS.
  • the effective hole size is determined by these van 'del' Wales regions and is indicated by a red circle (diameter: 0.6nm (b), 0.4nm (c)). In this model (c), the effective hole size is reduced to 0.4 nm, which is too small for CDDP molecules to pass through (shown in yellow). For comparison, an orange circle (diameter: about 0.8 nm) is shown, which represents the effective hole size with OH or COOH groups attached.
  • NHs abbreviated as “NHs” indicating plural forms.
  • the “opening” or “opening edge” means that the above is formed on each of one or more of the horn-shaped bodies constituting the NHs.
  • the carbon nanohorn structure of the present invention is prepared by bringing into contact with a cation-containing liquid to form a bond between an oxygen-containing functional group at the opening edge and a cation.
  • graphite is CO laser blurred at room temperature and Ar (760 Torr) conditions.
  • NHs were prepared by following (according to Chem. Phys. Lett., 1999, 309, 165).
  • NHs were applied for 10 minutes in an air stream at 570-580 ° C.
  • CDDP @ NHox and CDDP @ NHh were subjected to X-ray diffraction (XRD) to show the size of CDDP crystallites deposited on the outside of NHox.
  • (1) and (2) show internal and external emissions, respectively.
  • the amount of NHox and NHh includes the amount of graphite particles.
  • the weight loss at about 100 ° C corresponds to the desorption of DMF ( Figures 2d and 2e).
  • Decomposition of plain CDDP crystallites was observed at approximately 330 ° C ( Figure 2c), CDDP @ NH ox CDDP burned or decomposed at different temperatures, which were approximately 250 ° C and approximately 400 ° C. C.
  • CDDP @ NHh CDDP burned or decomposed at about 250 ° C.
  • the XRD pattern of CDDP @ NHox and CDDP @ NHh showed a diffraction peak characteristic of CD DP with a 2-theta of approximately 14 ° (Fig. 3).
  • the particle size estimated using the peak width and Scherrer equation is about 20-50 nm, which means that they are likely to exist outside of NHox and NHh.
  • the CDDP crystallites with a size of 20-50 nm during HRTEM observations were unseen, so their amount is a small answer.
  • the peak at about 26.5 ° ( Figure 3) is due to the graphite impurity in the nanohorn.
  • the 1-2 nm sized CDDP clusters inside the nanospace of NHox (Fig. 1) or NHh (not shown) may show peaks due to their poor crystallinity or small crystal size. could not. When the crystallinity is poor or the crystal size is small, the XRD peak is usually too wide to observe.
  • the hole size used here is considered to be 1.2 nm according to the previous report (Adv. Mater., 2004, 16, 397).
  • Figure 7c shows that the effective hole size of 0.8 nm (orange circle) is reduced to 0.4 nm by changing the COOH group to -COONa group. Since the molecular size of CDDP is about 0.4 X 0.6 nm and the thickness is about 0.1 nm, it is difficult to pass CDDP molecules with COONa group and one ONa group bonded to the hole edge! / ,.
  • CDDP @ NHox and CDDP @ NHh showed that they are similar in structure, CDDP uptake, CDDP cluster size, etc.
  • the amount of CDDP released from CDDP @ NHox in PBS was only 15%, while that from CDDP @ NHh was 75%.
  • the cessation of CDDP release from NHox is due to the embolic effect.
  • the COONa group and —O Na group occupy the COOH group and OH group bonded to the hole edge of NHox, and NHox internal force also sterically hinders CDDP passing through the hole. It is. Since NHh has holes with hydrogen-terminated edges, such substitution does not occur, and therefore embolization was not observed.
  • NHox As part of the safety assessment of NHox, a carbon substance, it was used as a test substance and administered to mice once in a single dose, and long-term toxicity was examined 2 weeks after administration, 4 weeks after administration, and 26 weeks after administration. .
  • body weight was measured on the following schedule.
  • Group 1 Measurements were made on Day 1 (before administration), 2, 3.5, 8, 12, and 15.
  • Group 2 Measurements were made on Day 1 (administration ii), 2, 3, 5, 8> 12, 15, 22, and 29.
  • Group 3 Day 1 (before administration), 2, 3, 5, 8, 12, 15, 22, 29, 36. 43, 50, 57, 64, 'F], F 8, 85, 92, 99,] 06, 113, 120. 127, 134, 141, 148, 155, 162,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Epidemiology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Preparation (AREA)

Abstract

L'invention concerne une structure de nanohorn de carbone dans laquelle un groupe fonctionnel contenant de l'oxygène situé au niveau d'un bord ouvert du nanohorn est lié à un cation. L'invention concerne également une structure de nanohorn de carbone comprenant une substance organique contenue dans un espace intérieur du nanohorn. Une nouvelle structure de nanohorn de carbone permet de réguler la libération d'une substance contenue dans celle-ci par l'intermédiaire d'un site d'ouverture de manière précise et simple. L'utilisation de cette structure de nanohorn de carbone permet d'obtenir un nouveau moyen pour la libération régulée d'une substance contenue dans la structure de nanohorn de carbone.
PCT/JP2007/050080 2006-01-06 2007-01-09 Structure de nanohorn de carbone, composition permettant de réguler la libération d'une substance organique contenue dans celle-ci, et méthode pour libération régulée WO2007078007A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-001896 2006-01-06
JP2006001896 2006-01-06

Publications (1)

Publication Number Publication Date
WO2007078007A1 true WO2007078007A1 (fr) 2007-07-12

Family

ID=38228343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050080 WO2007078007A1 (fr) 2006-01-06 2007-01-09 Structure de nanohorn de carbone, composition permettant de réguler la libération d'une substance organique contenue dans celle-ci, et méthode pour libération régulée

Country Status (1)

Country Link
WO (1) WO2007078007A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004532A1 (fr) * 2006-07-07 2008-01-10 Nec Corporation Composite de nanocornet de carbone contenant une substance doté d'une fiche de polyamine et procédé permettant de le produire
JP2009184973A (ja) * 2008-02-06 2009-08-20 Nec Corp カーボンナノホーンをキャリアとする抗菌剤徐放化製剤

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812310A (ja) * 1994-07-05 1996-01-16 Nec Corp 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
JPH08325008A (ja) * 1995-05-30 1996-12-10 Nec Corp イオン交換されたカーボンナノチューブおよびその製造方法および緩衝材および元素捕集方法
JP2000504002A (ja) * 1996-01-30 2000-04-04 ノバジェント オサケユイチア 薬剤の経皮デリバリーのための組成物
WO2002075831A1 (fr) * 2001-03-19 2002-09-26 Nec Corporation Électrode de pile à combustible, et pile à combustible pourvue de cette électrode
JP2005343885A (ja) * 2004-05-07 2005-12-15 Japan Science & Technology Agency 薬物カーボンナノホーン複合体とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812310A (ja) * 1994-07-05 1996-01-16 Nec Corp 液相におけるカーボン・ナノチューブの精製・開口方法および官能基の導入方法
JPH08325008A (ja) * 1995-05-30 1996-12-10 Nec Corp イオン交換されたカーボンナノチューブおよびその製造方法および緩衝材および元素捕集方法
JP2000504002A (ja) * 1996-01-30 2000-04-04 ノバジェント オサケユイチア 薬剤の経皮デリバリーのための組成物
WO2002075831A1 (fr) * 2001-03-19 2002-09-26 Nec Corporation Électrode de pile à combustible, et pile à combustible pourvue de cette électrode
JP2005343885A (ja) * 2004-05-07 2005-12-15 Japan Science & Technology Agency 薬物カーボンナノホーン複合体とその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AJIMA K. ET AL.: "Effect of Functional Groups at Hole Edges on Cisplatin Release from Inside Single-Wall Carbon Nanohorns", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 110, no. 11, 23 March 2006 (2006-03-23), pages 5773 - 5778, XP003015344 *
MIYAWAKI J. ET AL.: "Solvent Effects on Hole-Edge Structure for Single-Wall Carbon Nanotubes and Single-wall Carbon Nanohorns", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 108, no. 30, 2004, pages 10732 - 10735, XP003004045 *
MURAKAMI T. ET AL.: "Carbon Nano Kagobutsu to Peptide Jinko Tanpakushitsu Fukugotai Sozai no Kaihatsu to DDS eno Riyo", BIO INDUSTRY, vol. 22, no. 11, 2005, pages 28 - 33, XP003015343 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004532A1 (fr) * 2006-07-07 2008-01-10 Nec Corporation Composite de nanocornet de carbone contenant une substance doté d'une fiche de polyamine et procédé permettant de le produire
US8084505B2 (en) 2006-07-07 2011-12-27 Nec Corporation Substance-containing carbon nanohorn composite having polyamine plug and process for producing the same
JP5130544B2 (ja) * 2006-07-07 2013-01-30 日本電気株式会社 ポリアミンプラグを持つ物質内包カーボンナノホーン複合体、およびその製造方法
JP2009184973A (ja) * 2008-02-06 2009-08-20 Nec Corp カーボンナノホーンをキャリアとする抗菌剤徐放化製剤

Similar Documents

Publication Publication Date Title
JP5569837B2 (ja) 表面被覆無機物粒子の製造方法
Tang et al. Coordination polymer nanocapsules prepared using metal–organic framework templates for pH-responsive drug delivery
DK2598437T3 (en) INHERENT MAGNETIC HYDROXYAPATIT
Pistone et al. Hydroxyapatite-magnetite-MWCNT nanocomposite as a biocompatible multifunctional drug delivery system for bone tissue engineering
Arun Kumar et al. Two‐dimensional metal organic frameworks for biomedical applications
Hancock et al. The characterization of purified citrate-coated cerium oxide nanoparticles prepared via hydrothermal synthesis
Kurapov et al. Physical synthesis of iron oxide nanoparticles and their biological activity in vivo
Asenath-Smith et al. Role of akaganeite (β-FeOOH) in the growth of hematite (α-Fe2O3) in an inorganic silica hydrogel
Pandit et al. Iron oxide nanoparticle encapsulated; folic acid tethered dual metal organic framework-based nanocomposite for MRI and selective targeting of folate receptor expressing breast cancer cells
Zhang et al. Facile controlled preparation of phosphonic acid-functionalized gold nanoparticles
Casañas-Montes et al. Molybdocene dichloride intercalation into zirconium phosphate nanoparticles
Abramov et al. Synthesis and properties of magnetosensitive nanocomposites and ferrofluids based on magnetite, gemcitabine and HER2 antibody
Jiang et al. A combined experimental and molecular dynamics simulation study on doxorubicin adsorption on strontium-substituted hydroxyapatite hollow microspheres
Babayevska et al. ZnO: Tb3+ hierarchical structures as carriers for drug delivery application
WO2007078007A1 (fr) Structure de nanohorn de carbone, composition permettant de réguler la libération d'une substance organique contenue dans celle-ci, et méthode pour libération régulée
Groenke et al. Structural characterization, solution stability, and potential health and environmental effects of the Nano-TiO 2 bioencapsulation matrix and the model product of its biodegradation TiBALDH
JP5158835B2 (ja) 生分解性高分子リン酸カルシウム複合ナノ粒子及びその製造方法
US20090036549A1 (en) Substance-encapsulated carbon nanohorn complex and producing method thereof
Xu et al. A tiered experimental approach for characterization and silver release of silver-containing wound dressings
CN108785686B (zh) 基于钯纳米片双面神纳米粒子的制备方法及其应用
EP2175988A1 (fr) Procédés pour produire des matériaux à couche superficielle profonde, constitués de fines particules, revêtus de nanoparticules inorganiques et utilisation desdits matériaux
Dong et al. A zeolite-based ship-in-a-bottle route to ultrasmall carbon dots for live cell labeling and bioimaging
Racles et al. Silver nanoparticles obtained with a glucose modified siloxane surfactant
JP5130544B2 (ja) ポリアミンプラグを持つ物質内包カーボンナノホーン複合体、およびその製造方法
JP2007161521A (ja) 微細炭素繊維分散体

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)